

Integrale ricostruzione dell'impianto eolico VRG-040

Progetto definitivo									
Oggetto:									
040-18 - Relazione Geologica									
Proponente:	Progettista:								
VRg wind 040	Stantec								
VRG Wind 040 S.r.l. Via Algardi 4 Milano (MI)	Stantec S.p.A. Centro Direzionale Milano 2, Palazzo Canova Segrate (Milano)								

Rev. N.	Data	Descri	zione modifiche	Redatto da	Rivisto da	Approvato da
00	17/06/2022	Prir	na Emissione	L. Cariati	A. Santambrogio	G. Prosperi
01	05/08/2022	Integ	rati Commenti	L. Cariati	A. Santambrogio	G. Prosperi
02	12/04/2024	Integro	azioni volontarie	A. Santambrogio	M. Carnevale	G. Prosperi
03	15/05/2024	Integro	azioni volontarie	A. Santambrogio	M. Carnevale	G. Prosperi
Fase pro	ogetto: Definit	ivo			Formato elaborato	: A4

Nome File: 040-18.03 - Relazione geologica.docx

Indice

1	PREM	IESSA	.5
	1.1	Descrizione del proponente	.5
	1.2	Contenuti della relazione	.6
	1.3	Documentazione di riferimento	.6
2	INQU		.7
3		ATTERI CLIMATICI	.9
	3.1	Caratteristiche climatiche della Sicilia	.9
	3.2	Caratteristiche climatiche locali	.9
4	INQU	ADRAMENTO GEOLOGICO1	2
	4.1	Inquadramento Geologico Regionale1	2
	4.2	Inquadramento Geologico Locale di Campofelice di Fitalia1	4
	4.3	Inquadramento Geologico Locale di Villafrati1	5
5	INQU	ADRAMENTO GEOMORFOLOGICO1	8
6	INQU	ADRAMENTO IDROLOGICO E IDROGEOLOGICO	22
7	PIAN	O DI ASSETTO IDROGEOLOGICO	24
8	INQU	ADRAMENTO SISMICO	28
	8.1	Inquadramento macrosismico2	28
	8.2	Zone sismogenetiche	31
	8.3	Sismicità storica e pericolosità sismica del territorio comunale	31
	8.4	Definizione di sismicità dell'area3	34
		8.4.1 Premessa	34
		8.4.2 Effetti di amplificazione topografica	35
		8.4.3 Categoria del suolo di fondazione	35
		8.4.4 Pericolosità sismica di base	35
9	CON	CLUSIONI	38

Indice delle figure

Figura 2-1: Inquadramento territoriale dell'impianto VRG-040	7
Figura 2-2: Inquadramento su ortofoto dell'area dell'impianto VRG-040 nel suo stato di fatto e nello stato di progetto. In evidenza i settori nei comuni di Villafrati (sopra) e Campofelice di Fitalia (sotto).	8
Figura 3-1: Grafico temperature/ precipitazioni mensili; Grafico temperatura media mensile	10
Figura 3-2: Grafico temperature/ precipitazioni mensili; Grafico temperatura media mensile	11
Figura 4-1: Carta dei differenti settori crostali della regione centrale del mediterraneo (Catalano et al., 2011)	12
Figura 4-2: Schema strutturale dei rapporti tra le varie unità S.S. affioranti nel Foglio 608 "Caccamo" e nei fogli adiacenti, su cui è' stata sovrimposta una mappa delle anomalie di Bouguer, filtrate alla profondità di 3-6 km, modificata da (Murgia, 1989). Il rettangolo rosso indica l'area di studio	13
Figura 4-3: Stralcio foglio CARG 608 – Caccamo 1:50.000 dell'area di Campofelice di Fitalia; ("per gentile concessione di ed uso da parte di ISPRA")	14
Figura 4-4: Stralcio foglio CARG 608 – Caccamo 1:50.000 dell'area di Villafrati ("per gentile concessione ed uso da parte di ISPRA")	16
Figura 4-5: Sezione geologica in scala 1:100.000 orientata NNE/S e passante per il bacino evaporitico di Ciminna	17
Figura 5-1: Geomorfologia dell'area sud di impianto con indicazione di curve di livello	19
Figura 5-2: Geomorfologia dell'area nord di impianto con indicazione di curve di livello	20
Figura 5-3: individuazione delle pericolosità geomorfologiche, legate alla presenza di dissesti come riportate nel piano di assetto idrogeologico PAI	21
Figura 6-1: Caratteri idrologici dell'area in studio	23
Figura 7-1: Perimetrazioni PAI dell'area di Campofelice (fonte: Geoportale Regionale)	26
Figura 7-2: Perimetrazioni PAI dell'area di Villafrati (fonte: Geoportale Regionale)	27
Figura 8-1: Mappa di pericolosità sismica del territorio nazionale espressa in termini di accelerazione massima al suolo con probabilità di eccedenza del 10% in 50 anni riferita a suoli molto rigidi (OPCM 3519-06)	30
Figura 8-2: Zone sismogenetiche nelle vicinanze dell'aerea di studio	31

Stantec

Figura 8-3: Mappa della sismicità storica contenuta nel Database of Individual	
Seismogenetic Sources (Progetto DISS vv 3.3.0)	33
Figura 8-4: Storico dei terremoti che hanno interessato l'area di studio	33

1 PREMESSA

Stantec S.p.A., in qualità di Consulente Tecnico, è stata incaricata da Sorgenia S.p.A. di redigere il progetto definitivo per il potenziamento dell'esistente impianto eolico ubicato nei Comuni di Campofelice di Fitalia (PA), Villafrati (PA) e Ciminna (PA), costituito da 35 aerogeneratori di potenza 0,85 MW ciascuno, con una potenza complessiva dell'impianto pari a 29,75 MW installati.

L'energia elettrica prodotta dagli aerogeneratori dell'impianto viene convogliata tramite cavidotto interrato MT da 20 kV, alla Sottostazione Utente, ubicata nel comune di Ciminna. L' allacciamento dell'impianto alla Rete di Trasmissione Nazionale (RTN) avviene attraverso un collegamento direttamente alla Cabina Primaria di Ciminna di Enel Distribuzione, la quale a sua volta è collegata in entra-esci sulla linea esistente AT a 150 kV "Ciminna-Castronovo".

L'intervento in progetto consiste nella sostituzione delle 35 turbine eoliche dell'impianto esistente con 11 aerogeneratori di potenza nominale pari a 6 MW ciascuno. Si prevede di collegare gli 11 aerogeneratori di progetto alla Sottostazione di trasformazione MT/AT del comune di Ciminna mediante un cavo interrato MT da 33 kV. Il seguente progetto di repowering consente di aumentare notevolmente la potenza complessivamente prodotta dall' impianto, riducendo gli impatti sul territorio grazie al più ridotto numero di aerogeneratori impiegati. Inoltre, la maggior efficienza dei nuovi aerogeneratori comporta un aumento considerevole dell'energia specifica prodotta, riducendo in maniera proporzionale la quantità di CO2 equivalente.

1.1 Descrizione del proponente

Il soggetto proponente del progetto in esame è VRG Wind 040 S.r.l., interamente parte del gruppo Sorgenia Spa, uno dei maggiori operatori energetici italiani.

Il Gruppo è attivo nella produzione di energia elettrica con oltre 4.750 MW di capacità di generazione installata e oltre 400.000 clienti in fornitura in tutta Italia. Efficienza energetica e attenzione all'ambiente sono le linee guida della sua crescita. Il parco di generazione, distribuito su tutto il territorio nazionale, è costituito dai più avanzati impianti a ciclo combinato e da impianti a fonte rinnovabile, per una capacità di circa 370 MW tra biomassa ed eolico. Nell'ambito delle energie rinnovabili, il Gruppo, nel corso della sua storia, ha anche sviluppato, realizzato e gestito impianti di tipo fotovoltaico (ca. 24 MW), ed idroelettrico (ca. 33 MW). In quest'ultimo settore, Sorgenia è attiva con oltre 75 MW di potenza installata gestita tramite la società Tirreno Power, detenuta al 50%.

Il Gruppo Sorgenia, tramite le sue controllate, fra le quali VRG Wind 040 S.r.l., è attualmente impegnata nello sviluppo di un importante portafoglio di progetti rinnovabili di tipo eolico, fotovoltaico, biometano, geotermico ed idroelettrico, caratterizzati dall'impiego delle Best Available Technologies nel pieno rispetto dell'ambiente.

1.2 Contenuti della relazione

Il presente documento costituisce revisione dell'elaborato depositato in fase di prima istanza per una modifica di layout sopraggiunta a seguito di approfondimenti sulle caratteristiche ed il rischio geomorfologico del sito che hanno portato ad una ottimizzazione della localizzazione degli aerogeneratori e delle relative opere, volta a garantire la stabilità idrogeomorfologica dei versanti, nonché alla minimizzazione dell'entità di scavi e riporti.

Esso costituisce la relazione geologica e sismica a supporto della documentazione tecnicodescrittiva per il progetto di repowering dell'impianto eolico attualmente in essere; finalizzato a fornire una indicazione del contesto geologico di base, dei principali aspetti geomorfologici con particolare riguardo alle condizioni di stabilità dei versanti ed una caratterizzazione di massima dei litotipi che verranno interessati dalle opere di fondazione per l'edificazione dell'impianto.

L'indagine in oggetto al presente elaborato si è basata su dati e studi di origine bibliografica e sulla documentazione fornita dalla committenza. In particolare, la documentazione è composta da relazioni geologiche realizzate per gli attuali impianti in esercizio, da informazioni bibliografiche fruibili sul geoportale nazionale e da una relazione geotecnica di un impianto fotovoltaico posto in un sito vicino all'area di studio. Lo studio, dunque, ha affrontato e approfondito i seguenti temi:

- Inquadramento del contesto geologico-strutturale.
- Inquadramento e caratterizzazione sismica dei terreni.
- Assetto geomorfologico, idrologico e idrogeologico insieme ad una valutazione preliminare sulle condizioni di pericolosità dell'area.

1.3 Documentazione di riferimento

Nella stesura della presente relazione tecnica, sono state seguite le prescrizioni indicate e applicabili al caso specifico dalle seguenti norme:

- DM 17/1/2018 "Aggiornamento delle Norme Tecniche sulle Costruzioni".
- UNI ENV 1997-1 "Eurocodice 7 progettazione geotecnica".
- O.P.C.M. n. 3274/2003 e O.P.C.M. 3519/2006 "Normativa sismica".

Inoltre, si è consultata la seguente documentazione bibliografica:

- Progetto di repowering dell'impianto eolico VRG040 Studio Geomorfologico; Dott. Geol. Carlo Cibella; Febbraio 2024.
- Foglio CARG 608 Caccamo 1:50.000 ("per gentile concessione di ed uso da parte di ISPRA")

2 INQUADRAMENTO TERRITORIALE

Il sito in cui è ubicato il parco eolico oggetto di Repowering, denominato VRG-040, è collocato nei comuni di Villafrati, Ciminna, Campofelice di Fitalia e Mezzojuso, nella provincia di Palermo, in Sicilia.

L'impianto VRG-040 è localizzato a circa 30 km a Sud dal capoluogo, a 2 km in direzione Sud-Est rispetto al centro urbano del Comune di Villafrati ed a 0,8 km in direzione Sud/Sud-Ovest rispetto al centro storico di Campofelice di Fitalia.

Figura 2-1: Inquadramento territoriale dell'impianto VRG-040

L'impianto eolico VRG-040 è situato in una zona prevalentemente collinare non boschiva caratterizzata da un'altitudine media pari a circa 700 m, ma con rilievi montuosi non trascurabili, con sporadiche formazioni di arbusti e la presenza di terreni seminativi/incolti.

Gli aerogeneratori di progetto ricadono all' interno dei seguenti fogli catastali:

- Fogli 5, 8, 11, 13 nel comune di Campofelice di Fitalia;
- Fogli 15, 16, 17, 18 nel comune di Villafrati;
- Foglio 28 nel comune di Mezzojuso.

L'intervento di integrale ricostruzione e potenziamento dell'impianto consiste nello smantellamento dei 35 aerogeneratori esistenti e la relativa sostituzione con 11 turbine eoliche di potenza ed efficienza maggiore.

In Figura 2-2 è riportato l'inquadramento territoriale dell'aerea, con la posizione degli aerogeneratori su ortofoto nel suo stato di fatto e nel suo stato di progetto.

Figura 2-2: Inquadramento su ortofoto dell'area dell'impianto VRG-040 nel suo stato di fatto e nello stato di progetto. In evidenza i settori nei comuni di Villafrati (sopra) e Campofelice di Fitalia (sotto).

Si riporta in formato tabellare un dettaglio sulla localizzazione degli aerogeneratori di nuova costruzione, in coordinate WGS84 UTM fuso 33 N:

ID	Comune	Est [m]	Nord [m]
VF-01_r	Villafrati	368426	4195457
VF-02_r	Villafrati	370351	4195239
VF-03_r	Villafrati	369560	4195527
VF-04_r	Villafrati	368145	4195831
CF-01_r	Mezzojuso	365474	4187475
CF-02_r	Campofelice di Fitalia	366612	4186827
CF-03_r	Campofelice di Fitalia	367414	4186249
CF-04_r	Campofelice di Fitalia	367808	4185895
CF-05_r	Campofelice di Fitalia	368221	4185627
CF-06_r	Campofelice di Fitalia	364855	4187855
CF-07_r	Campofelice di Fitalia	366221	4186975

Tabella 1: Localizzazione geografica degli aerogeneratori di nuova costruzione

3 CARATTERI CLIMATICI

3.1 Caratteristiche climatiche della Sicilia

La Sicilia è una regione dove coesistono diversi tipi di climi, la tipologia dominante in accordo con la classificazione di Köppen e Geiger è la Csa: mesotermico umido sub-tropicale con estate asciutta (tipico clima mediterraneo), caratterizzato da una temperatura media del mese più caldo superiore ai 22°C e da un regime delle precipitazioni contraddistinto da una concentrazione delle stesse nel periodo autunno-invernale. Tuttavia, questa definizione ha un valore macroclimatico. Infatti, all'interno del clima temperato di tipo C di Köppen e Geiger si possono distinguere diverse classi climatiche riportate nella seguente Tabella 2.

Classification	Count	Köppen- Geiger	Examples
Hot-summer Mediterranean climate	679	Csa	<u>Palermo, Catania, Messina, Marsala, Gela</u>
Warm-summer Mediterranean climate	10	Csb	<u>Troina, Prizzi, Maletto, Petralia Soprana, Petralia</u> <u>Sottana</u>
Hot semi-arid climates	3	BSh	Pantelleria, Lampedusa, Linosa
Cold semi-arid climates	2	BSk	Khamma, Scauri

Tabella 2: Classi climatiche delle principali città della Sicilia

3.2 Caratteristiche climatiche locali

All'interno dei comuni di Campofelice di Fitalia e Villafrati troviamo un clima caldo e temperato. La piovosità annua è distribuita maggiormente durante l'inverno rispetto all'estate. Secondo la classificazione di Köppen e Geiger troviamo le caratteristiche climatiche definite dal termine Csa; ovvero un clima "temperato" caratterizzato da estati secche, la piovosità di almeno un mese invernale deve essere il triplo delle precipitazioni di un mese estivo e la temperatura del mese più caldo superiore a 22 °C.

La temperatura media di Campofelice di Fitalia è di 14.5 °C, dove il mese di luglio è il mese più caldo dell'anno con una temperatura media di 24 °C mentre il più freddo è febbraio con 6.3 °C; di seguito viene riportato in Figura 3-1 ; grafico temperature/precipitazioni mensili e grafico temperatura media mensile.

Figura 3-1: Grafico temperature/ precipitazioni mensili; Grafico temperatura media mensile

La piovosità media annuale risulta essere pari a 657 mm, dove luglio è il mese con minore piovosità con 6 mm e ottobre è il mese con maggiore piovosità con 82 mm. I parametri climatici sono riassunti in Tabella 3.

	Gennaio	Febbraio	Marzo	Aprile	Maggio	Giugno	Luglio	Agosto	Settembre	Ottobre	Novembre	Dicembre
Medie Temperatura (°C)	6.3	6.3	8.9	12	16.2	21.1	24	23.9	19.7	16.2	11.6	7.9
Temperatura minima (°C)	3	2.7	4.8	7.4	11.1	15.6	18.3	18.6	15.5	12.4	8.3	4.8
Temperatura massima	10.1	10.3	13.4	16.7	21.2	26.5	29.6	29.5	24.3	20.5	15.3	11.3
(°C)												
Precipitazioni (mm)	74	75	68	70	43	19	6	19	57	82	72	72
Umidità(%)	85%	82%	77%	71%	63%	52%	48%	51%	68%	76%	82%	84%
Giorni di pioggia (g.)	8	8	8	8	5	3	2	3	6	8	8	9
Ore di sole (ore)	4.6	5.2	7.1	8.9	10.7	12.2	12.5	11.6	8.9	7.2	5.6	4.8

Tabella 3: Parametri climatici di Campofelice di Fitalia

Nel comune di Villafrati la temperatura media è di 15.5 °C, con agosto mese più caldo dell'anno con una temperatura media di 24.7 °C e febbraio più freddo con una temperatura di 7.7 °C; di seguito viene riportato in Figura 3-2; grafico temperature/precipitazioni mensili e grafico temperatura media mensile.

Figura 3-2: Grafico temperature/ precipitazioni mensili; Grafico temperatura media mensile

La piovosità media annuale di 644 mm, dove luglio è il mese con minore piovosità con 6 mm e ottobre è il mese con maggiore piovosità con 83 mm. I parametri climatici sono riassunti in Tabella 4.

	Gennaio	Febbraio	Marzo	Aprile	Maggio	Giugno	Luglio	Agosto	Settembre	Ottobre	Novembre	Dicembre
Medie Temperatura (°C)	7.8	7.7	10.1	12.9	17	21.7	24.5	24.7	20.7	17.3	12.9	9.3
Temperatura minima (°C)	4.8	4.5	6.4	8.9	12.6	17	19.7	20.2	17.1	14	10	6.6
Temperatura massima	11	11.1	14.1	17.1	21.3	26.2	29.3	29.4	24.7	21.1	16.2	12.3
(°C)												
Precipitazioni (mm)	77	76	64	61	36	15	6	17	61	83	69	79
Umidità(%)	83%	80%	76%	72%	66%	57%	54%	56%	69%	76%	80%	82%
Giorni di pioggia (g.)	9	8	7	7	4	2	1	2	6	7	8	10
Ore di sole (ore)	5.8	6.4	8.1	9.7	11.2	12.4	12.5	11.6	9.5	8.0	6.7	5.9

Tabella 4: Parametri climatici di Villafrati

4 INQUADRAMENTO GEOLOGICO

4.1 Inquadramento Geologico Regionale

L'area oggetto di studio, che sarà predisposta all'intervento di repowering degli impianti attualmente esistenti, occupa due località, la prima si sviluppa a Sud/Sud-Ovest del Comune di Campofelice di Fitalia, la seconda, situata a Sud-Est di Villafrati.

A livello geodinamico regionale, la Sicilia costituisce una porzione di mega sutura che si sviluppa lungo il limite tra la placca africana e quella europea nel Mediterraneo centro-occidentale. In quest'area un segmento di catena collega le Maghrebidi africane con la Calabria e gli Appennini e si estende dalla Sardegna attraverso la Sicilia, fino alla piattaforma pelagiana (Canale di Sicilia).

I movimenti a cui è soggetto questo settore del Mediterraneo sono dovuti alla rotazione antioraria oligo-miocenica del blocco Sardo-Corso, la cui collisione con il margine continentale africano è considerata comunemente come la causa primaria di gran parte della deformazione compressiva nella catena subappenninica-siciliana.

A seguire, dal Miocene superiore, alla fine della rotazione del blocco sardo-corso parte dell'orogenesi alpino-appenninico è interessata da processi distensivi associati, con il progressivo arretramento del piano di subduzione, immergente verso NO, della placca Adriatico-Ionica al di sotto della Calabria, responsabili della formazione ed evoluzione del bacino Tirrenico meridionale.

Di seguito, in Figura 4-1, viene riportata la schematizzazione strutturale dell'area di studio a livello regionale.

Figura 4-1: Carta dei differenti settori crostali della regione centrale del mediterraneo (Catalano et al., 2011)

L'area di interesse rappresenta un settore chiave per la comprensione delle caratteristiche della catena siciliana, in quanto costituisce la zona di transizione tra le strutture affioranti nella Sicilia

occidentale e quelle della Sicilia centrale. Il 60% dell'area in esame risulta interessata da estese coperture mioceniche terrigene, per lo più deformate, che sono espressione di ambienti tettonosedimentari diversi.

Nell'edificio tettonico dell'area di studio si distinguono varie unità stratigrafiche – strutturali (in seguito U.S.S) costituite da successioni mesocenozoiche. Le unità tettoniche, distinte a partire da quelle geometricamente più alte e più dislocate riportate nella seguente Figura 4-2, sono:

- Unità S.S derivanti dalla deformazione del Dominio Sicilide.
- Unità S.S. derivanti dalla deformazione del bacino del Flysch Numidico.
- Unità S.S. derivanti dalla deformazione del bacino di Lercara.
- Unità S.S. derivanti dalla deformazione del Bacino Imerese.
- Unità S.S. derivanti dalla deformazione del Bacino Sicano.
- Unità S.S. derivanti dalla deformazione Dominio PrePanoramide.
- Unità S.S. derivanti dalla deformazione della Piattaforma Carbonatica Trapanese.

Figura 4-2: Schema strutturale dei rapporti tra le varie unità S.S. affioranti nel Foglio 608 "Caccamo" e nei fogli adiacenti, su cui è' stata sovrimposta una mappa delle anomalie di Bouguer, filtrate alla profondità di 3-6 km, modificata da (Murgia, 1989). Il rettangolo rosso indica l'area di studio

4.2 Inquadramento Geologico Locale di Campofelice di Fitalia

L'area di Campofelice di Fitalia si trova all'interno del Foglio CARG 608 Caccamo (1:50.000). Di seguito in Figura 4-3 uno stralcio dell'area in esame;

SINTEMA DI CAPO PLAIA Depositi di frana (a,), deritti di falda attuali ed accumuli di materiali eterometrici di spessore (a), futviali di fondrovalle (b), coltri etuvio-coltiviali (b), depositi di origine mista (i), Limite una superficie di erosione post-glacale incisa sui terreni più antichi; limite superiore superficie topografica, marcata da suoli. E' databile all'intervallo temporale compreso ti dell'espansione glacale (E' Ka) e l'attuale. PLEISTOCENE SUPERIORE-OLOCENE

FORMAZIONE TERRAVECCHIA

RV₁

INMAZIONE TAVERNOLA Mame politico-sabbiose bruno giallastre con intercalazioni di arenarie micacee e glauconitiche con foraminiferi arenacei e planctonici (biozone MMI 4), nannofossili caicarei (biozone MNN4a, MNN5a), Intercalati ran livelli di arenarie calcaree ("calcari a Lucina", TAV,). Spessori 80-200 m. Limite inferiore disordante su PN, e netto e de rosivo su PN₂. Ambiente di bacino torbiditico. BURDIGALLANO SUPERIORE-LANGHIANO.

FLYSCH NUMIDICO

RECHAUMIDICC Petti e petti anglitose con livelli arenacei, bioclastici e a megabrecce calcaree; banchi quarzarenitici con liveli conglomeratici e sittici. Limite inferiore paraconcordante su CAL, o discordanta. *OLIGOCENE SUPERIOREE. MIOCENE INFERIORE* membro di Geraci Siculo (FYN), Arenarie con intercalazioni di petiti micacee a foraminiferi agglutinanti e plancionici. (Globygorina angulisaturalis, Catapsydrax dissimilis, Globoquadrina dehiseons dehiseons) e nanofossili calcarei (biazone MNN 1, MNN 2b). Banchi di quarzoareniti torbiditiche, microcongiomerati quazzosi, con ciototi di argila e maticea eraneace-pelicita con geometrie canalizzate (FYN₆). Spessore 300-700 m. Limite inferiore paraconcordante su FNN, o meccanico sui terreni sottostanti. Ambienti di base di scarpata - conoide torbidita. *AQUITAMANO-BUDIGGLILMO* epiano-parallela e siliti ed arenarie quarzose con geometrie canalizzate (FIN₆). Rairo il planctoni calcareo tra cui foraminiferi planctonici (Dicozone a Globrotati gorina ggiutinanti Spessore 200-300 m. Nei liveli inferiori, biocarenni a Lopidocyicilna spp: nei livelli di toti si rinvengono engabrecce di San Sulvister, non cardografate. Limite inferiore in paraconcordaraza su CAL, o discordante su CRI o disarmorico. Ambiente deposizionale di scarpata e base di scarpata. *CHATTIANO-AQUIENIMO INFERIORE*.

Figura 4-3: Stralcio foglio CARG 608 – Caccamo 1:50.000 dell'area di Campofelice di Fitalia; ("per gentile concessione di ed uso da parte di ISPRA")

L'area in cui andrà ad insediarsi l'impianto è costituita prevalentemente da successioni clasticoterrigene oligo-mioceniche, per lo più torbiditiche, depositatisi (in discordanza o in paraconcordanza) in depressioni di un margine continentale in via di formazione.

Stratigraficamente, rappresentano le coperture di successioni mesozoico-paleogeniche depositatesi in domini più esterni (Imerese e Panormide) e di successioni di domini più interni (Sicilidi).

Nell'area rappresentata in Figura 4-3 affiora il Flysch Numidico (FYN₅) costituito da un'alternanza di prevalenti arenarie giallastre, quarzoareniti in potenti banchi (megacicli, FYN₅a) e di sottili livelli di peliti, e peliti siltose grigio-brune talvolta micacee con rari foraminiferi arenacei e planctonici. Questa unità raggiunge la sua massima potenza compresa tra i 300 e 700 m proprio in prossimità dell'area di studio.

Inoltre, l'area è racchiusa tra un sistema di faglie che si esplica a nord con una faglia inversa e una faglia diretta a sud, formando un alto strutturale. In questa porzione gli strati immergono in direzione N/NE e a basso angolo.

4.3 Inquadramento Geologico Locale di Villafrati

L'area di Villafrati si trova all'interno del Foglio CARG 608 Caccamo (1:50.000); di seguito in Figura 4-4 uno stralcio dell'area in esame riportante anche l'ubicazione della SSU Ciminna.

L'area su cui andrà ad insediarsi l'impianto è costituita partendo dai depositi più antichi a quelli più recenti: dall'unità litostratigrafica nota come "Formazione Terravecchia", che affiora a sud dell'area di studio come un corpo pelitico-argillo-marnoso (membro pelitico-argilloso, TRV₃) spesso circa 100-250 m; l'intervallo risulta costituito dal basso verso l'alto da argille sabbiose e/o sabbie e marne argillose (TRV_{3b}) e da un livello di marne marine contenenti *Turborotalita Multiloba* (TRV_{3c}). Questo deposito affiora nella depressione tettonica che si estende da Campofelice di Fitalia a sud fino a Villafrati a Nord e costituisce il substrato del bacino evaporitico di Ciminna e dalla sua prosecuzione orientale. Il limite inferiore della formazione è discordante ed erosivo rispetto alle Argille Varicolari inferiori, alla Formazione di Tavernola, al Flysch Numidico e alla Formazione Castellana Sicula; il limite superiore è discordante ed erosivo con la Formazione di Baucina e la Formazione di Cattolica.

Stratigraficamente sopra affiora la Formazione di Cattolica con gessi selenitici massivi e/o stratificati con a luoghi intercalazioni di laminiti algali e di calcari e marne gessose biancastre arrangiati in 5/6 cicli. Nel loro insieme raggiungo uno spessore di circa 150 m e sono raggruppabili nel membro selenitico della Formazione di cattolica. Il limite inferiore è discordante e a carattere erosivo sul membro pelitico argilloso della Formazione di Terravecchia, sulla Formazione di Ciminna e sulla Formazione Baucina; il limite superiore discordante e a carattere erosivo sulla Formazione di Pasquaia e Trubi. La formazione di Pasquaia è rappresentata nell'area dal membro gessosomarnoso (GPQ₂) e verso l'alto da quello dei conglomerati (GPQ₄). Il primo è costituito da gessopeliti e gessoareniti a struttura enterolitica e/o alabastrina con uno spessore di circa 100 metri, mentre il secondo comprende fanglomerati polimittici rossastri, argille e marne ad ostracodi. Il limite superiore di entrambi i membri appare come limite discordante con erosione rispetto a Trubi (TRB), membro

) Stantec

composto principalmente da calcari e calcari marnosi bianco-giallastri ben stratificati a foraminiferi planctonici alla cui base sono visibili, localmente, ciottoli risedimentati carbonatici e silicei derivanti dall'erosione dell'unità superiore dei terreni evaporitici con spessori compresi tra i 60 e 100 metri.

NTEMA DI CAPO PLAIA Depositi di frana (a,), derriti di falda attuali ed accumuli di materiali eterometrici di spessore variab (a), furviali di fondovalle (b), coltri eluvio-colluviali (b), depositi di origine mista (i). Limite inferior una superficie topografica, marcata da suoli. E' databile all'intervallo temporale compreso tra la fir dell'espansione glatale (15 Ka) e l'attuale. PLESTOCENE SUPERIORE-OLOCENE

TRB

Calcari marnosi bianchi e marne a foraminiferi planctonici (biozone MPL1, MPL 3 ed MPL 4a), passanti verso l'alto a marne sabbiose e argiliose grigio-verdi o biancastre (TRB_a). Spessore 60 -100 metri. Limita discortante su GPQ₄. Ambiente pelagico. ZANCLEANO

FORMAZIONE DI PASQUASIA membro dei fanglomerati (GPQ.): fanglomerati polimittici rossastri, argille e marne g PQ, rosso-brunastre ad ostracodi dulcicoli (Cyprideis pannonica) con locali gessarenti e gest Spessore poch merit. Limite Inferiore discordante su GPQ, Ambiente paralico-continentale. MESSINIANO SUPERIORE me grigie o

membro gessoso marroso (GPQ₂): gessopeliti e gessoareniti a struttura enterolitica e/o alabastrina. Spessore 100 metri. Limite inferiore discordante su GTL₂. Ambiente paralico-continentale. MESSINIANO SUPERIORE Q2

membro selenitico (GTL₂): gessi selenitici massivi e/o mal stratificati con intercalazioni di laminiti algali e marne bianche gessose. Spessore 150 m. Limite inferiore discordante su BAU e TRV_{3c}-Ambiente evaportico. MESSINIANO

FORMAZIONE TERRAVECCHIA

RMAZIONE TERRAVECCHIA Conglomerati e sabbie grossolane, pelli sabbiose, sabbie ed arenarie pellich, argille sabbiose e polit, mane grige o azzuropiole con plancton calcareo. Spessore massimo 400-700 m. Ambiente fluvio-delizio fino a piattaforma aperta. Limite inferiore inconforme sui terreni più antohi. TORTONLANO SUPERIORE - MESSINANO DIVERSIORE membro pellico argilloso (IRVs): argille sabbiose e pelli biuastre con importanti intercalazioni arenitche (IRVs), passanti verso i alte a mane grigie, argille grigio verdastre o azzurogonde (IRVs), a foraminiferi planctonici (biozone a *Globorotala suferae* e *Globorotala* conomizoza) e nanotossili cactarei (biozone da *Miniyiha convalia* s Afectuo/fanestra rotaria). Mame marine fossilifere (TRVs,) a Turborotalita multibale (zona non disintiva). Spessore del membro fino a 250 m circo. Tali depositi poggiano in pareconformito o in eteropia su TRV, Ambiente di prodetta. membro sabbioso (IRVs): sabbie ed arenarie da gialtastre a grigie, con stratificazione incrociata, inferiore diacrono con TRV, Ambiente di transizione e di piattaforma. membro conglomentici (TRVs): otto e paraconglomentali collinitici rosso-grigastri e gialtastri in banchi più e meno cementali che si alternano con sabbie grossolane ciotoloze gallastre contenenti lenti di conglomenta grano sostenuti (TRVs): 1 ciotali aranaco-quarzosi, catarei le in subordine ignel sono immersi in una matrice prevalentemente silloca. Spessore 50-200 m. Limite inferiore disordante ed erosivo su SiC, AVF, PrN. Ambiente da continentale a fluvio-delizio. RV₁

FORMAZIONE TAVERNOLA

RMAZIONE TAVERNOLA Mame paifico-sabbiose bruno giallastre con intercalazioni di arenarie micacee e glauconitiche con foraminiferi arenacei e planctonici (biozone MMI 4), nannofossili calcarei (biozone MNN4a, MNN5a). Intercalati rati fivelli di arenarie calcaree ("calcari a Lucina", TAV), Spessoni 80-200 m. Limite inferiore discordante su PN₂ e netto ed erosivo su PN₂. Ambiente di bacino torbiditico. BURDIGALLANO SUPERIORE-LANGHIANO AV.

FLYSCH NUMIDICO

YSCH NUMIDICO Politi o pelli agrillose con livelli arenacei, bioclastici e a megabrecce calcaree; banchi quarzarenitici con livelli conglomeratici e silitici. Limite inferiore paraconcordante su CAL, o discordante. *OLIGOCENE SUPERIORE. NUCCENE INFERIORE* membro di Geraci Siculo (FYN_b). Arenarie con intercalazioni di peliti micacee a foraminferi aggiutinanti e plancionici (Globigerina angulusuturalis, Calapsydrax dissimilis, Globoquadrina dehiscens dehiscens) e nannofossili calcarei (biozone MNN 1, MNN 2b). Banchi di quarzoareniti torbidiche, microcongiomerati quarzosi, con ciottoli di agiila e matrice arenaceo-pelitica con geometrie canalizate (FYN_b). Spessore 300-700 m. Limite inferiore paraconcordante su FYN₂, o meccanico sui terreni sottostanti. Ambienti di base di scarpata – conoide torbiditica. *MUTTINIMON SUDIGLILINO*

meccanico sui terreni sottostanti. Ambienti di base di scarpata - conoide torbiditica. *AQUITINANO BUBDIGLIANO* **membro Portella Colla** (FN); pelli di colore bruno talora manganesifere, con laminazione piano-parallele e sitili di anenaria quazzose con geometrie canalizzate (FN)_b). Raro il plancton calcareo tra cui foraminiferi planctonici (biczone a *Globorotalia opima opima*, a *Globigerina* oparoensis ciperoensis, e a *Globoquadrina dehiscons dehiscone-Catapsydrax dissimilis*), nannofessili calcarei (biczone NP 24 - NP 25). Abbondanti foraminiferi agglutinanti. Spessore 200-300 m. Nei Ilveili inferiori, biccalcarenti a Lapidocyclina spp. nei livelli di teto si rivenogono megabrecce di San Salvatore, non cartografate. Limite inferiore in paraconcordanza su CAL, o discordante su CRI od isamonico. Ambiente deposizionale di scarpata e base di scarpata. *CHATTIANO-AQUITANIANO INFERIORE*

Figura 4-4: Stralcio foglio CARG 608 – Caccamo 1:50.000 dell'area di Villafrati ("per gentile concessione ed uso da parte di ISPRA")

Strutturalmente, l'area è interessata da faglie in direzione prevalente S/N–SW/NE. Le unità litologiche del bacino evaporitico immergono a basso angolo in direzione N/NE e sono talvolta piegate formando delle sinclinali.

Di seguito, in Figura 4-5, viene riportata una sezione eseguita 5 km ad est dell'area di studio, con orientamento dove vengono mostrati i rapporti stratigrafici tra le varie unità sopra citate.

Figura 4-5: Sezione geologica in scala 1:100.000 orientata NNE/S e passante per il bacino evaporitico di Ciminna

5 INQUADRAMENTO GEOMORFOLOGICO

L'area di Campofelice di Fitalia è prettamente collinare con diffuse forme dovute all'azione fluviale e di movimenti franosi (per lo più riconducibili a dilavamenti della copertura superficiale). Questo settore si trova in un settore compreso tra aree montuose elevate a NW e grandi depressioni, coincidenti con bassi strutturali. Questi fenomeni sono prevalentemente riconducibili a movimenti tettonici che hanno in parte sollevato le aree situate ad ovest del comune e ribassato le attuali zone collinari.

Le quote maggiori si trovano in prossimità di Pizzo Mezzaluna a circa 922 m s.l.m. L'andamento morfologico è aspro, con pendenze notevoli e scarpate evidenti. L'area dove si imposteranno i generatori eolici, tra Portella Guddemi e Pizzo Mezzaluna è costituita da quarzoareniti giallo biancastre con subordinati livelli arenacei che presentano fenomeni di erosione accelerata e dilavamento diffuso. Localmente si possono verificare fenomeni di crollo seguiti da erosione selettiva dei livelli argillosi ed alla fratturazione dei banchi arenacei e nella giacitura a franappoggio fenomeni di scivolamento in quanto i livelli argillosi fungono da corpo lubrificante.

A nord e a sud dell'area di studio i versanti costituiti dalle argille ed argille sabbiose del Flysch si presentano meno acclivi. In questi terreni l'azione erosiva degli agenti morfogenetici si è esplicata in maniera veloce, determinando i lineamenti topografici più addolciti e una morfologia a caratteri decisamente più blandi. L'erosione diffusa rappresentata da un finissimo reticolato di minuti rivoletti interessa tutti i versanti e talvolta si evolve in erosione a rigagnoli.

Un importante ruolo morfologico è svolto dalla dinamica fluviale: i corsi d'acqua per il loro carattere stagionale torrentizio determinano alvei d'erosione.

L'area di Villafrati è montuosa/collinare e dominata da forme riconducibili al carsismo, all'erosione selettiva e a processi gravitativi. Nell'area tra Villafrati e Ciminna troviamo significativi esempi di inversioni del rilievo, in corrispondenza di una sinforme, con la formazione di un alto morfologico.

All'originaria sovrapposizione di rocce "tenere" (termini argillosi, marnosi, sabbiosi) su rocce "dure" (carbonati), attivando la selettività dei processi erosivi. Tale azione ha comportato, a seguito del progressivo smantellamento delle coperture più erodibili, sia il rallentamento dell'erosione dove venivano esumati i blocchi carbonatici più resistenti, posizionati in posizione di alto strutturale, sia il continuo approfondimento delle circostanti aree di basso strutturale, in relazione alla presenza di rocce meno resistenti. Al contrario, la protezione operata dalle rocce dure del Gruppo gessoso-solfifero nei confronti delle sottostanti rocce tenere costituite da argille, marne e sabbie delle unità sottostanti ha determinato la formazione dell'alto topografico.

Tuttavia, la zona ricade in una zona collinare che presenta un'altitudine media più bassa ed è caratterizzata da un'ampia coltre di depositi terrigeni, fluvio-deltizi costituiti da argille sabbiose con

lenti di sabbie e conglomerati. Le quote maggiori le troviamo in prossimità di Pizzo Avvoltoio a circa 737 m s.l.m.; si notano infine, rotture di pendenza notevoli, con scarpate evidenti.

Nell'areale in studio si osservano inoltre forme carsiche come doline (generalmente con forma ad imbuto), inghiottitoi, campi solcati (un insieme di piccole forme provocate nella roccia dalla corrosione), solchi o docce carsiche (Rinnenkarren) e valli cieche con inghiottitoi in corrispondenza del contatto gessi-rocce insolubili.

I versanti dell'area di studio sono costituiti da depositi terrigeni cuneiformi costituiti da argille e argille sabbiose sulla quale i gessi giacciono in discordanza presentandosi meno acclivi. In questi terreni l'azione erosiva degli agenti morfogenetici si è esplicata in maniera veloce, determinando i lineamenti topografici più addolciti e una morfologia blanda.

Su tutti i versanti si trova un'erosione diffusa a rivoletti che si evolve in rigagnoli. Si segnalano anche movimenti dati da piccoli smottamenti superficiali associati a dilavamento diffuso generalizzato.

Di seguito vengono riportate due figure rappresentanti il rilievo topografico delle due aree del sito, corredato di toponimi, curve di livello, corpi idrici superficiali e ubicazione degli aereogeneratori:

Figura 5-1: Geomorfologia dell'area sud di impianto con indicazione di curve di livello

Figura 5-2: Geomorfologia dell'area nord di impianto con indicazione di curve di livello

L'areale in studio presenta un diffuso dissesto idrogeologico che interessa in particolar modo l'area di Campofelice di Fitalia (Figura 5-3). I fenomeni franosi riscontrati non interessano gli aerogeneratori di progetto ma coinvolgono in particolar modo la viabilità del parco; il layout di progetto, relativo alle postazioni degli aerogeneratori e delle relative piazzole di approntamento, è stato sviluppato dopo un attento esame delle condizioni geomorfologiche locali tramite utilizzo dei dati storici (campagne geognostiche effettuate in varie occasioni per l'impianto esistente) nonché sopralluoghi, al fine di evitare influenze negative sulla condizione di stabilità pre-esistente.

Le forme di dissesto riscontrate sono ascrivibili a frane superficiali che coinvolgono i primi metri della coltre superficiale argillosa oppure a frane più o meno profonde il cui spessore sarà valutato in successive fasi di progettazione, inerentemente le eventuali opere intersecanti le aree in dissesto.

Al successivo paragrafo 7 è riportato un dettaglio più approfondito riguardo le condizioni di pericolosità idrogeologica.

Figura 5-3: individuazione delle pericolosità geomorfologiche, legate alla presenza di dissesti come riportate nel piano di assetto idrogeologico PAI

6 INQUADRAMENTO IDROLOGICO E IDROGEOLOGICO

Per quanto concerne l'idrogeologia dell'area di Campofelice di Fitalia, essa presenta un acquifero costituito da depositi flyschoidi, con spessori che variano tra i 300 a 700 metri di spessore. La principale componente della circolazione idrica è essenzialmente condizionata dai principali lineamenti strutturali, ed in particolare dai sovrascorrimenti oltre che alla presenza di forme carsiche. Per quanto riguarda il comune di Villafrati, le strutture sinclinali del bacino di Ciminna, costituite da terreni tardorogenici, ospitano nel loro seno diversi acquiferi, spesso multi-falda, separati da orizzonti impermeabili o semi-permeabili. Gli acquiferi presenti negli intervalli arenaceo-conglomeratici della Formazione di Terravecchia, presentano manifestazioni sorgentizie, talvolta captate ad uso idropotabile. Queste manifestazioni di piccola entità sono dovute al singolo livello di roccia permeabile compreso tra livelli pelitici impermeabili. In conclusione, anche la presenza di forme carsiche sparse all'interno del territorio potrebbe costituire una via di potenziale drenaggio. Nelle indagini geognostiche precedentemente condotte in sito, e da bibliografia, risulta che la falda non è stata mai raggiunta durante i sondaggi e inoltre la profondità attesa sia senz'altro superiore a 20 m dal p.c.

Unitamente all'esperienza acquisita nel corso di precedenti lavori eseguiti su terreni analoghi di aree limitrofe, è possibile fornire una stima della profondità dell'acquifero che, nelle zone predisposte al progetto di repowering data la presenza di un paesaggio para carsico è senz'altro superiore a 20 m da p.c.

Il comportamento idrologico dei litotipi riscontrati nell'area rilevata varia in relazione alla loro intrinseca natura litologica. Esistono almeno due complessi idrologici:

 Complesso evaporitico: costituito di gessi con intercalazioni di argille marnose, spesso bituminose, gessi del tipo micro e macrocristallino, con intercalazioni di gessareniti e marne gessose, si presentano a volte stratificati a volte massive e irregolarmente giuntate e tettonizzate. Presentano permeabilità e per porosità molto bassa ed elevata per fessurazione nei gessi.

La continuità idraulica di tali acquiferi viene, comunque interrotta dalle discrete manifestazioni sorgentizie la cui alimentazione è dovuta al singolo livello di roccia permeabile compreso tra i livelli pelitici impermeabili.

La qualità delle acque nota la presenza di alto contenuto salino (NaCl) e acque ricche in solfati e solfuri. Li troviamo nell'area in studio a Serra Capezzagna e al di sotto della tavola calcarenitica e sabbiosa presente a Pizzo Avvoltoio e Serra Capezzana e Rocca Cavallo.

 Complesso argilloso-sabbioso: si tratta di argille-sabbiose spesso siltose di colore grigio-giallo in superficie per alterazione, associata ad argille-sabbiose, limi e sabbie più in profondità, e a sabbie e conglomerati in livelli e lenti intercalate.

Tale complesso deltizio presenta permeabilità nulla nelle argille e permeabilità per porosità bassa e media nelle sabbie e nei conglomerati. Quest'ultima facies, che presenta anche permeabilità per porosità secondaria, è sede di piccole falde idriche sospese tipiche di questo complesso e di manifestazioni sorgentizie. La presenza di passaggi laterali di facies a brevi distanze condiziona in maniera determinante la trasmissività idraulica e, di conseguenza, la circolazione idrica sotterranea che appare frequentemente interrotta sia verticalmente che lateralmente.

L'idrografia superficiale, nell'area di Campofelice di Fitalia come in quella di Villafrati, è rappresentata da una serie di corsi d'acqua a carattere torrentizio presenti là dove sono affioranti le unità del Flysch Numidico. Inoltre, si può assumere che il comportamento della litologia su cui si imposta il progetto possiede una permeabilità intrinseca molto bassa o nulla (generalmente compresa tra 10-8 e 10-11 m/s) e secondaria media nei banconi arenacei fratturati, da cui ne deriva una circolazione idrica localizzata ed un elevato numero di manifestazioni sorgentizie di limitata entità.

Figura 6-1: Caratteri idrologici dell'area in studio

7 PIANO DI ASSETTO IDROGEOLOGICO

Il PAI è stato redatto ai sensi del comma 6 ter, art. 17 della L. 18 maggio 1989, n. 183 come modificato dall'art.12 della Legge 493/93, quale stralcio del Piano di bacino e contiene la individuazione e perimetrazione delle aree a rischio idrogeologico, le norme di attuazione, le aree da sottoporre a misure di salvaguardia e le relative misure.

II P.A.I. ha sostanzialmente tre funzioni:

- La funzione conoscitiva, che comprende lo studio dell'ambiente fisico e del sistema antropico, nonché della ricognizione delle previsioni degli strumenti urbanistici e dei vincoli idrogeologici e paesaggistici;
- La funzione normativa e prescrittiva, destinata alle attività connesse alla tutela del territorio e delle acque fino alla valutazione della pericolosità e del rischio idrogeologico e alla conseguente attività di vincolo in regime sia straordinario che ordinario;
- La funzione programmatica, che fornisce le possibili metodologie d'intervento finalizzate alla mitigazione del rischio, determina l'impegno finanziario occorrente e la distribuzione temporale degli interventi;

Valutando la documentazione disponibile dell'area, risulta che le postazioni degli aerogeneratori non sono interessate/non intersecano situazioni di dissesto attivo; tuttavia, come osservato al precedente capitolo 5 gli areali sono collocati in zone caratterizzate da fenomeni di dissesto diffuso. Si osserva principalmente dissesti che coinvolgono i litotipi superficiali e caratterizzati dunque da pericolosità bassa-moderata. La geologia che caratterizza le dorsali sulle quali sono ubicati gli aerogeneratori, caratterizzata da litologie flyschoidi e marnose (a sud nell'area di Campofelice di Fitalia) e gessose (a nord nell'area di Villafrati), predispone i pendii a situazioni di dissesto differenti in funzione dell'orientazione della stratificazione. Infatti, a Nord sono presenti fenomeni gravitativi di versante principalmente di crollo mentre a sud di colamento lento.

Si segnala che la condizione geomorfologica osservata è stata considerata nello sviluppo del layout al fine di localizzare gli aerogeneratori in aree stabili; lo studio è stato supportato da sopralluoghi in sito per valutare il reale livello di pericolosità riportato nelle fonti consultate e in cartografia.

In particolare, si segnalano le seguenti situazioni critiche come osservabile nelle successive Figura 7-1 e Figura 7-2:

Area Villafrati

• Gli aerogeneratori sono tutti esterni a zone di pericolo da frana; tuttavia, l'aerogeneratore VF-02 è ubicato a monte e in prossimità di una parete soggetta a caduta di massi.

 Il tracciato dei cavidotti "sottocampo 1" e "sottocampo 2" attraversano la medesima area di pericolosità di tipo P4, legata a condizioni di caduta massi da parete esposta e un'area in dissesto per erosione accelerata P2. Tali opere si sviluppano su viabilità già esistente e dunque non si prevede possano accrescere il livello di pericolo.

Area Campofelice di Fitalia

- Gli aerogeneratori in progetti sono tutti esterni a zone con criticità geomorfologiche.
- Il tracciato del cavidotto "sottocampo 5" attraversa due aree in dissesto per erosione accelerata P2. Tali opere si sviluppano su viabilità già esistente e dunque non si prevede possano accrescere il livello di pericolo
- Il tratto di viabilità esistente tra CF-01 e CF-03 che necessita di ri-adattamento attraversa un'area di pericolosità P4, dovuto ad un dissesto di tipo traslazionale. Sarà necessario indagare approfonditamente l'area per mezzo di specifiche prove al fine di valutare lo spessore in frana e gli opportuni sistemi di mitigazione della pericolosità.
- Lo sviluppo di tutta la viabilità di progetto da adattare attraversa più aree in dissesto con pericolosità P2 relativi a erosione superficiali, per cui sarà necessario prevedere interventi di consolidamento del suolo superficiale.

Le opere in progetto non si prevede possano accrescere il livello di pericolosità dell'area, in quanto la compatibilità geomorfologica delle fondazioni degli aerogeneratori, è assicurata dall'impiego di fondazioni indirette adeguatamente dimensionate.

Riguardo alle interferenze tra tracciati cavidotti e aree a pericolosità, non si prevede che tali condizioni possono generare situazione di rischio, in quanto le attività di realizzazione previste coinvolgono movimentazioni di terra e scavi limitati e interessanti tratti di viabilità già esistente. In ogni modo, laddove necessario, saranno previsti interventi di consolidazione dei terreni superficiali al fine di garantire un minor impatto delle attività sul territorio e generare un miglioramento delle condizioni di dissesto ad ora registrate.

Figura 7-1: Perimetrazioni PAI dell'area di Campofelice (fonte: Geoportale Regionale)

Figura 7-2: Perimetrazioni PAI dell'area di Villafrati (fonte: Geoportale Regionale)

8 INQUADRAMENTO SISMICO

Per quanto riguarda gli aspetti sismici la Normativa prende atto della classificazione fornita in prima approssimazione dall'O.P.C.M. N. 3274/03 ed impone l'obbligo della progettazione antisismica per i comuni che ricadono nelle zone 2, 3 e 4 esclusivamente per gli edifici considerati strategici e/o rilevanti ad uso pubblico.

In base alla classificazione sismica il comune di Campofelice di Fitalia e Villafrati, nei quali territori ricadono le opere in progetto è classificato come Zona Sismica 2 – Livello di pericolosità media.

La normativa di settore, la N.T.C. 2018 suddivide edifici e strutture in 4 categorie al § 2.4.3. Per quanto concerne la valutazione sismica, fa esplicito riferimento a dette classificazioni per quanto riguarda il "livello di valutazione" da adoperare nella assegnazione dei parametri sismici di riferimento.

L'analisi sismica predisposta a livello geotecnico sarà quindi limitata alla così detta "Fase di secondo livello", verrà quindi semplicemente riportata una valutazione numerica dei parametri ag ed Fo sulla base del tempo di ritorno Tc relativamente al punto centrale dell'areale in studio.

8.1 Inquadramento macrosismico

La Sicilia è considerata da tutti gli studi di settore e in particolare dal GNDT (Gruppo Nazionale per la Difesa dai Terremoti) come un'area caratterizzata da tutte le categorie di sismicità. In conformità all'Ordinanza del Presidente del Consiglio dei Ministri 3274 del 2003 con la quale si stabiliscono i nuovi criteri per la classificazione sismica del territorio italiano, la Sicilia rientra in più classificazioni:

Tabella 5: Classificazione sismica dei comuni siciliani

Di seguito viene riportata la categoria sismica per il territorio di Campofelice di Fitalia e di Villafrati, indicata nell'Ordinanza del Consiglio dei Ministri n. 3274/2003, aggiornata con la delibera della Giunta Regionale della Sicilia n. 408 del 19.12.2003.

I criteri per l'aggiornamento della mappa di pericolosità sismica sono stati definiti nell'OPCM n. 3519/2006, che ha suddiviso l'intero territorio nazionale in quattro zone sismiche come in Tabella 6 sulla base del valore dell'accelerazione orizzontale massima (ag) su suolo rigido o pianeggiante, che ha una probabilità del 10% di esser superata in 50 anni.

Zona sismica	Descrizione	accelerazione con probabilità di superamento del 10% in 50 anni [a g]	accelerazione orizzontale massima convenzionale (Norme Tecniche) [a g]	numero comuni con territori ricadenti nella zona (*)
1	Indica la zona più pericolosa, dove possono verificarsi fortissimi terremoti.	a _g > 0,25 g	0,35 g	703
2	Zona dove possono verificarsi forti terremoti.	0,15 < a _g ≤ 0,25 g	0,25 g	2.224
3	Zona che può essere soggetta a forti terremoti ma rari.	0,05 < ag ≤ 0,15 g	0,15 g	3.002
4	È la zona meno pericolosa, dove i terremoti sono rari ed è facoltà delle Regioni prescrivere l'obbligo della progettazione antisismica.	a _g ≤ 0,05 g	0,05 g	1.982

Tabella 6: Descrizione zone sismiche

Nello specifico, per le zone di interesse i valori di accelerazione al suolo (con probabilità di eccedenza del 10% in 50 anni) sono compresi nell'intervallo 0.100<ag<0.125 per il comune di Campofelice di Fitalia e compresi nell'intervallo 0.125<ag<0.150 per il comune di Villafrati.

Cautelativamente si considererà questo ultimo valore, relativo all'accelerazione minima che individua la classe sismica 2.

SISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

Figura 8-1: Mappa di pericolosità sismica del territorio nazionale espressa in termini di accelerazione massima al suolo con probabilità di eccedenza del 10% in 50 anni riferita a suoli molto rigidi (OPCM 3519-06)

8.2 Zone sismogenetiche

Dal punto di vista sismogenetico a grande scala, l'area si trova in vicinanza di fasce sismogenetiche attive come visibile nell'estratto di carta sismogenetica proposto di seguito;

Figura 8-2: Zone sismogenetiche nelle vicinanze dell'aerea di studio

La fascia sismogenetica composita più vicina al sito è ubicata ad una distanza di circa 45 Km in direzione SW. La sorgente sismogenetica composita è una rappresentazione semplificata e tridimensionale di una faglia crostale contenente un numero imprecisato di sorgenti sismogeniche che non possono essere distinte regolarmente.

8.3 Sismicità storica e pericolosità sismica del territorio comunale

L'area in esame risulta essere stata storicamente interessata da fenomeni sismici rilevanti; il database macrosismico, utilizzato nel 2004 per la compilazione del catalogo CPTIO4 (Gruppo di lavoro CPTI, 2004), permette di visionare la storia sismica delle località italiane presenti almeno tre volte in DBMI04 (5325 in totale).

La fascia costiera orientale è caratterizzata da una notevole attività sismica, compresa tra lo stretto di Messina e il Siracusano; la zona settentrionale, lungo la dorsale dei Peloritani – Nebrodi – Madonie – Monti di Palermo; la zona del Belice, nella parte occidentale dell'isola e le zone a vulcanismo attivo, come quelle dell'Etna e delle isole Eolie. Altri terremoti si verificano nel Mar Tirreno meridionale, nell'area delle isole Egadi, nella zona del canale di Sicilia.

Queste caratteristiche sono ben evidenti nella mappa della sismicità storica che rappresenta i principali terremoti avvenuti nell'ultimo millennio, come da Figura 8-3. I terremoti più significativi di tutta la regione sono avvenuti nella Sicilia orientale. Qui si sono verificati gli eventi sismici del 1169 (magnitudo Mw 6.4) e 1693 (Mw 7.4), lungo la fascia costiera tra Siracusa e Catania, che hanno causato danni nell'area iblea nel Catanese, e quello più recente del 1908 (Mw 7.1) nello stretto di Messina, che ha provocato ampie devastazioni in Sicilia nord-orientale e in Calabria meridionale. In quest'area si sono verificati anche terremoti meno distruttivi nel 1543, 1624, 1818 e 1990.

Nel tirreno meridionale sono avvenuti terremoti di elevata magnitudo (1726, 1823, 1940, 2002), che hanno causato fino al grado 8 di MSC lungo la costiera settentrionale. Anche il canale di Sicilia è sede di una frequente, ma di bassa magnitudo, legata anche all'attività vulcanica sottomarina. Sebbene in misura minore rispetto al settore orientale, la Sicilia occidentale è interessata da attività sismica che può causare danni ingenti come avvenuto in occasione della sequenza sismica del 1968 nella valle del Belice. Numerose scosse nel giro di pochi giorni causarono danni gravi in una vasta area della Sicilia occidentale compresa tra la provincia di Agrigento, Trapani e Palermo; l'evento più forte si registrò il 15 gennaio del 1968 (Magnitudo Mw 6.3).

La sismicità della Sicilia, registrata dalla rete sismica nazionale, risulta essere moderata e concentrata principalmente nell'area etnea, sede di una sismicità molto intensa che accompagna spesso le fasi di attività eruttiva del vulcano; lungo la dorsale montuosa dei Peloritani – Nebrodi – Madonie che arrivano fino a Palermo, e che corre lungo tutta la parte settentrionale dell'Isola; in Sicilia sud-orientale e nord-orientale, in particolare nel Golfo di Patti. Gli eventi sismici recenti più forti sono il terremoto del 13 dicembre 1990 in Sicilia sud-orientale (Magnitudo MI 5.4 Mw 5.6) e quello del 6 settembre 2002 a largo di Palermo (MI 5.6 e Mw 5.9).

Figura 8-3: Mappa della sismicità storica contenuta nel Database of Individual Seismogenetic Sources (Progetto DISS vv 3.3.0)

In particolare, in località Campofelice di Fitalia e di Villafrati sono stati registrati i seguenti terremoti con queste Magnitudo:

Effetti	In occasione del terremoto del			
Int.	Anno Me Gi Ho Mi Se Area epicentrale	NMDP	Io	Mw
5	🗗 1823 03 05 16 37 Sicilia settentrionale	107	8	5.81
6-7	🗗 1968 01 15 02 01 0 Valle del Belice	162	10	6.41
NF	🚰 1996 12 14 00 18 4 Monti Madonie	45	5	4.27
4-5	🗗 2002 09 06 01 21 2 Tirreno meridionale	132	б	5.92
NF	🚰 2005 11 21 10 57 4 Sicilia centrale	255		4.56

Effetti	In occasione del terremoto del										
Int.	An	no Me	Gi	Но	Mi	Se		Area epicentrale	NMDP	Io	Mw
5	P	1908	12	28	04	20	2	Stretto di Messina	772	11	7.10
7	P	1968	01	15	02	01	0	Valle del Belice	162	10	6.41
NF	P	1996	12	14	00	18	4	Monti Madonie	45	5	4.27
NF	P	2004	05	05	13	39	4	Isole Eolie	641		5.42
NF	ď	2005	11	21	10	57	4	Sicilia centrale	255		4.56

8.4 Definizione di sismicità dell'area

8.4.1 Premessa

Di seguito viene fornito un inquadramento generale sulla classificazione sismica dell'area in esame nel rispetto delle disposizioni delle Nuove Norme Tecniche per le Costruzioni del Decreto Ministeriale del 17/01/2018.

Secondo la norma vigente la tipologia del suolo di fondazione è dipendente dal valore $V_{s,eq}$ definito dalla seguente equazione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

Per depositi con profondità H del susbstrato superiore a 30 m, la velocità equivalente delle onde di taglio $V_{S,eq}$ è definita dal parametro $V_{S,30}$, ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Le verifiche strutturali nei diversi stati limiti vanno condotte adottando le azioni sismiche che sono funzione della "pericolosità sismica" dell'area in esame. La "pericolosità sismica" è definita a partire dall'accelerazione orizzontale massima attesa ag in condizioni di campo libero su suolo rigido, con piano campagna orizzontale.

Le azioni di progetto dovute al sisma si ricavano dalle accelerazioni a_ge dalle relative forme spettrali definite in funzione dei parametri:

- ag = accelerazione orizzontale massima al sito
- F_o = valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- Tc* = periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale

I valori di tali parametri sono riportati nella tabella esposta nell'Allegato A del decreto, grazie alla quale i parametri dell'area in esame vengono ottenuti per interpolazione lineare tra quattro punti di una griglia di punti prefissati sul territorio.

Utilizzando il software dedicato si ricavano gli spettri di risposta elastica delle componenti orizzontali di moto, per i diversi periodi di ritorno considerati dal D.M.

8.4.2 Effetti di amplificazione topografica

Le verifiche sugli effetti di amplificazione topografica si basano puramente su criteri di tipo morfometrico/morfologico riportati nelle NTC 2018; per le sezioni e le misurazioni si è fatto riferimento alla cartografia disponibile.

Categoria topografica	Ubicazione opera	St
T1(sup. pianeggiante, pendii e rilievi isolati con incl. media <= 15°)	-	1.0
T2 (pendii con inclinazione media > 15°)	Sommità del pendio	1.2
T3(rilievi con larghezza in cresta molto minore che alla base ed inclinazione media compresa tra 15-30°)	Cresta del rilievo	1.2

Tabella 8-3: valori di amplificazione topografica e ubicazione opera in funzione della categoria topografica

8.4.3 Categoria del suolo di fondazione

Le nuove Norme Tecniche per le Costruzioni, ai fini della definizione della azione sismica di progetto definiscono le seguenti categorie di profilo stratigrafico del suolo di fondazione (le profondità si riferiscono al piano di posa delle fondazioni, i valori da utilizzare per Vs, NSPT e C_{U} sono valori medi): Nell'area di indagine è stata eseguita, mediante le prospezioni MASW, la determinazione del valore della velocità equivalente delle onde di taglio V_{s,30}, risultata pari a:

Il sottosuolo risulta quindi di categoria "C": Depositi di terreni a grana grossa mediamente addensati o di terreni a grana fine mediamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V_{s30} compresi tra 180m/s e 360 m/s.

8.4.4 Pericolosità sismica di base

Vita nominale (Vn): 50 Classe d'uso: Il	[anni]	
Coefficiente d'uso (Cu): Periodo di riferimento (Vr):	1.0 50	[anni]
Periodo di ritorno (Tr) SLO: Periodo di ritorno (Tr) SLD:	30 50	[anni] [anni]

Periodo di ritorno (Tr) SLV: 475 [anni] Periodo di ritorno (Tr) SLC: 975 [anni]

Tipo di interpolazione: Media ponderata

Coordinate geografiche del punto Latitudine (WGS84):37.818896 [°] Longitudine (WGS84): 13.483285 [°]

Punto d'indagine

Tabella 7: Parametri di pericolosità sismica così come previsti da NTC2018

Stato limite	Tr	ag	FO	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0.036	2.401	0.222
SLD	50	0.046	2.407	0.258
SLV	475	0.109	2.524	0.327
SLC	975	0.137	2.566	0.343

Pericolosità sismica di sito

Coefficiente di smorzamento viscoso ξ: 5% Fattore di alterazione dello spettro elastico η: 1.000 Categoria sottosuolo: C Categoria topografica: T2: Pendii con inclinazione media maggiori di 15°

Coefficienti	SLO	SLD	SLV	SLC
kh	0.016	0.019	0.044	0.057
kv	0.008	0.009	0.022	0.028
amax [m/s²]	0.065	0.077	0.185	0.236
Beta	0.240	0.240	0.240	0.240

Tabella 8: Stabilità dei pendii e fondazioni - NTC 2018

Spettro di risposta elastico in accelerazione delle componenti orizzontali – Spettro di Progetto

	<u></u>	ag	FO	Tc*	Ss	Сс	St	S	η	ТВ	TC	TD	Se(0)	Se(TB)
	cu	[g]	[-]	[s]	[-]	[-]	[-]	[-]	[-]	[s]	[s]	[s]	[g]	[g]
SLO	1.0	0.036	2.401	0.222	1.500	1.725	1.2	1.800	1	0.128	0.383	1.744	0.065	0.156
SLD	1.0	0.043	2.436	0.256	1.500	1.646	1.2	1.800	1	0.140	0.421	1.772	0.077	0.188
SLV	1.0	0.103	2.543	0.330	1.500	1.514	1.2	1.800	1	0.167	0.500	2.012	0.185	0.472
SLC	1.0	0.131	2.577	0.348	1.500	1.488	1.2	1.800	1	0.173	0.518	2.124	0.236	0.609

9 CONCLUSIONI

L'analisi del contesto idrogeomorfologico dell'area in esame ha permesso di trarre le seguenti considerazioni:

I terreni presenti sono depositi di origine mista marina e continentale; si distingue uno strato superficiale di terreno vegetale costituito di materiale sciolto a grana medio-fine, derivante dal disfacimento dei terreni di natura argilloso-limosa e uno strato sottostante appartenente alla formazione di Terravecchia caratterizzato da alternanze litologiche di rocce coerenti con livelli pseudo-coerenti costituiti da argille siltoidi, alternate a sottili livelli arenacei con intercalazioni di calcareniti gradate, e da argille sabbiose e quarzoareniti gradate (flysch).

Dalle indagini svolte in sito non si evince la presenza di falda acquifera, almeno fino alla profondità massima indagata di 8 m da p.c.

Sull'area risulta la presenza di fenomeni legati alla pericolosità idrogeologica come dissesti, ma non fasce di pericolosità alluvionale. In particolare, sono presenti diffusi fenomeni di dissesto legate a frane di colamento e gravitativi di versante. Il layout di progetto, relativo alle postazioni degli aerogeneratori e delle relative piazzole di approntamento, è stato sviluppato dopo un attento esame delle condizioni geomorfologiche locali tramite utilizzo dei dati storici (campagne geognostiche effettuate in varie occasioni per l'impianto esistente) nonché sopralluoghi, al fine di evitare influenze negative sulla condizione di stabilità pre-esistente.

Dal punto di vista sismico, il comune di Campofelice di Fitalia e Villafrati ricade in zona sismica 2, rispetto alla classificazione eseguita dall'INGV per il territorio nazionale, caratterizzata da una pericolosità sismica media; il sito in esame invece risulta ubicato in una zona con accelerazione al suolo attesa massima di 0.150 g. Le indagini geofisiche di tipo MASW sono state reperite da una relazione tecnica di un impianto fotovoltaico sito nelle aree limitrofe al sito di indagine, hanno evidenziato che le classi sismiche più ricorrenti nell'area sono la B e la C, quindi, in via cautelativa la categoria sismica di sottosuolo attribuita all'intera area di progetto è la tipo "C".