

REGIONE ABRUZZO

Provincia di CH (CHIETI)

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI FRESAGRANDINARIA, DOGLIOLA E LENTELLA IN LOCALITA' MACCHIA DELLA VALLE, GUARDIOLA, LAGO LA CORTE E **COLLE MILARAGNO**

COMMITTENTE

Q-ENERGY RENEWABLES 2 S.r.l.

Via Vittor Pisani, 8/a - 20124 Milano (MI) PEC: q-energyrenewables2srl@legalmail.it P.IVA: 12490070963

74121 - Taranto SHEEDSV **PROGETTAZIONE** Direttore Tecnico: Dott. Ing. Angelo Micolucci

Codice Commessa PHEEDRA: 24_03_EO_FRS

PHEEDRA S.r.I. Via Lago di Nemi, 90 Tel 099 7722302 - Fax 099 9870285 e-mail: info@pheedra.it - web: www.pheedra.it

ORDINE INGEGNERI PROVINCIA TARANTO Sezione A Dott. Ing. MICOLUCO Angelo Civile Ambientale Industriale n° 1851 Informazione

00	APRILE 2024	PRIMA EMISSIONE	MS	AM	VS
REV.	DATA	ATTIVITA'	REDATTO	VERIFICATO	APPROVATO

OGGETTO DELL'ELABORATO

RELAZIONE IDROLOGICA

FORMATO	SCALA		CODICE DOCUMENTO			NOME FILE	FOGLI	
Λ.4		SOC.	DISC.	TIPO DOC.	PROG.	REV.	FRS-CIV-REL-032 00	FOGLI -
A4	-	FRS	CIV	REL	032	00	FRS-CIV-REL-032_00	-

Committente: **Q-Energy Renewables 2 S.r.l.** Via Vittor Pisani 8/a 20124 Milano (MI)

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI FRESAGRANDINARIA, DOGLIOLA E LENTELLA IN LOCALITA' "MACCHIA DELLA VALLE, GUARDIOLA, LAGO LA CORTE E COLLE MILARAGNO"

Nome del file:

FRS-CIV-REL-032_00

SOMMARIO

1.	PARC	CO EOLICO	2
	1.1.	Premessa	2
2.	INQU	ADRAMENTO INTERVENTO	5
	2.1.	Individuazione del bacino imbrifero	9
	2.2.	Calcolo delle portate di piena	. 10
	2.3.	Metodo del Curve Number	. 20
3	CONC	CLUSIONI	27

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI FRESAGRANDINARIA, DOGLIOLA E LENTELLA IN LOCALITA' "MACCHIA DELLA VALLE, GUARDIOLA, LAGO LA CORTE E COLLE MILARAGNO"

Nome del file:

FRS-CIV-REL-032 00

PARCO EOLICO

1.1. PREMESSA

La presente relazione espone gli aspetti tecnici idrologici relativi alla progettazione di un "Parco Eolico" per la produzione di energia elettrica da fonte rinnovabile di tipo eolica, e la conseguente immissione dell'energia prodotta, attraverso la dedicata rete di connessione, sino alla Rete di Trasmissione Nazionale.

Il progetto riguarda la realizzazione di un impianto eolico di potenza elettrica nominale installata di 79.2 MW, ottenuta attraverso l'installazione di 11 aerogeneratori ognuno da 7,2 MW e relative opere di connessione alla RTN, da realizzarsi nei Comuni di Fresagrandinaria, Dogliola e Lentella (CH) nelle localita' "Macchia Della Valle, Guardiola, Lago La Corte e Colle Milaragno", con opere di connessione ricadenti nei medesimi comuni e nei comuni di Montecilfone, Montenero di Bisaccia, Mafalda e Tavenna , questi ultimi ubicati in provincia di Campobasso.

Gli aerogeneratori saranno collegati tra di loro mediante un cavidotto interrato in media tensione che collegherà l'impianto alla cabina di raccolta e quest'ultima alla Sottostazione Elettrica a 30/150 kV e mediante cavidotto in Alta Tensione 150 kV per il collegamento alla futura Stazione Elettrica 380/150 kV di Terna S.p.A., che sarà ubicata in agro di Montecilfone (CB).

L'aerogeneratore preso in considerazione per tale progetto è il Modello V (modello Vestas) 162 – 7,2 MW con altezza al mozzo 119 m e diametro 162 m.

La seguente relazione espone gli aspetti idrologici legati al territorio; in quanto, l'Autorità di Bacino della Regione Abruzzo, attraverso il P.A.I. ed il P.S.D.A, ha definito l'andamento e lo sviluppo del reticolo idrografico regionale e dunque dell'area in esame.

La cartografia del P.A.I. e del P.S.D.A. attraverso le tavole di pericolo e di rischio idraulico e geomorfologico, utilizzando dati topografici e morfologici di recente acquisizione, fornisce un quadro conoscitivo di elevato dettaglio inerente al reale sviluppo del reticolo idrografico nel territorio di competenza dell'AdB Regione Abruzzo. Tale strumento è utilizzato come elemento conoscitivo essenziale anche per la redazione dei P.U.G. e costituisce una delle cartografie di riferimento del Piano Paesaggistico Regionale.

In assenza di studi idraulici che definiscano in dettaglio gli sviluppi planimetrici degli alvei in modellamento attivo e delle aree golenali di ciascuna linea di deflusso, per il reticolo idrografico identificato dalla Cartografia del P.A.I. e del P.S.D.A. vigono le misure di salvaguardia, delle NTA del Piano.

Inoltre, il reale comportamento idraulico del reticolo idrografico dell'area, così come definito dalla Cartografia del P.A.I. e del P.S.D.A., è stato per lunghi tratti studiato attraverso specifica modellazione sino a definire perimetrazioni di dettaglio (aree di pericolosità idraulica e rischio idraulico).

Come indicato in precedenza, l'Autorità di Bacino della Regione Abruzzo, attraverso la Cartografia del P.A.I. e del P.S.D.A., ha definito l'andamento e lo sviluppo del reticolo idrografico dell'area in esame, rispetto a quanto riportato sulle vecchie cartografie I.G.M., riducendo la frammentazione del reticolo osservabile sulle cartografie storiche.

Per l'accertamento della posizione delle opere in progetto rispetto alle previsioni dei Piani per la tutela delle aree a rischio idraulico e del reticolo idrografico, si è proceduto a verifiche cartografiche, eseguite su due livelli di scala sulla cartografia IGM e sulla CTR regionale e ortofoto.

Per la definizione delle fasce di rispetto dei reticoli idrografici, ai sensi dell'art.142 del D.Lgs 42/2004 e delle N.T.A. del P.A.I. e del P.S.D.A. sono stati assunti valori di 10-20-40-150 m dal reticolo.

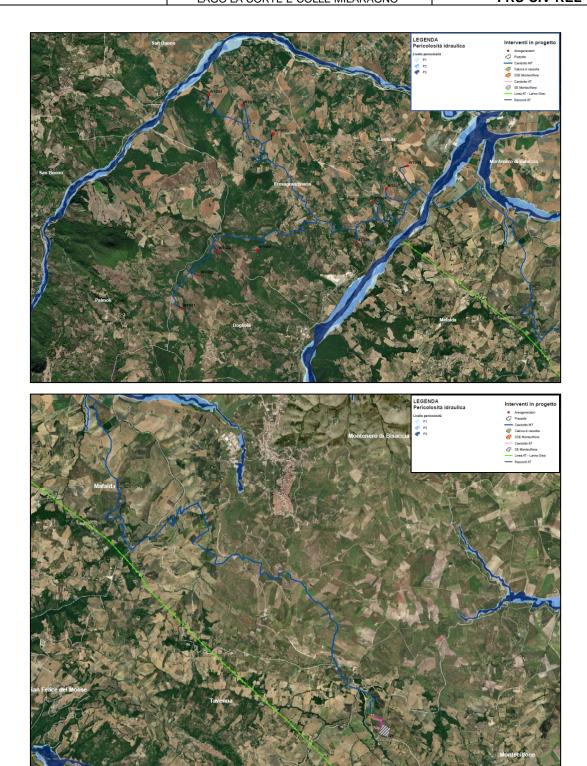
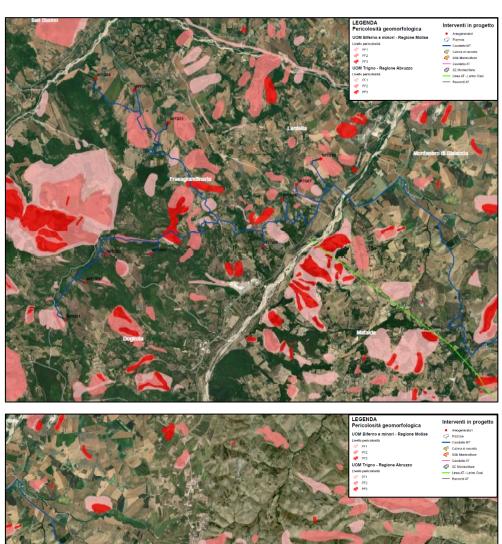



Figura 1 - Inquadramento su P.A.I. (carta della pericolosità Idraulica)

Committee a martin. Register Mortes

| Part | Part

Figura 2 - Inquadramento su P.A.I. (carta della pericolosità geomorfologica)

Committente:	PROGETTO PER LA REALIZZAZIONE DI UN	Nome del file:
Q-Energy Renewables 2 S.r.l.	PARCO EOLICO NEI COMUNI DI	
Via Vittor Pisani 8/a	FRESAGRANDINARIA, DOGLIOLA E LENTELLA IN	
20124 Milano (MI)	LOCALITA' "MACCHIA DELLA VALLE, GUARDIOLA,	
20124 Willario (Wil)	LAGO LA CORTE E COLLE MILARAGNO"	FRS-CIV-REL-032 00

Gli aerogeneratori sono localizzabili alle seguenti coordinate, espresse con datum UTM 33 N:

TURBINA	E (UTM WGS84 33N) [m]	N (UTM WGS84 33N) [m]
WTG01	468924,7993	4644756,0600
WTG02	469412,5987	4645652,3600
WTG03	469886,3052	4646383,6160
WTG04	470973,2021	4646349,9560
WTG05	473654,6435	4646530,0060
WTG06	474116,3912	4647659,0650
WTG07	474476,3501	4648002,5560
WTG08	474993,9157	4648576,7520
WTG09	469648,7946	4650558,0790
WTG10	470576,2649	4650274,2700
WTG11	471406,0590	4649501,3790

Le turbine sono identificate ai seguenti estremi catastali:

TURBINA	COMUNE	FOGLIO	PARTICELLA
WTG01	DOGLIOLA	2	212
WTG02	DOGLIOLA	2	58
WTG03	DOGLIOLA	1	18
WTG04	FRESAGRANDINARIA	16	133
WTG05	FRESAGRANDINARIA	17	454
WTG06	FRESAGRANDINARIA	14	25
WTG07	LENTELLA	12	45
WTG08	LENTELLA	11	107
WTG09	FRESAGRANDINARIA	2	51
WTG10	FRESAGRANDINARIA	3	4042
WTG11	FRESAGRANDINARIA	8	41

PHEEDRA SrI Servizi di Ingegneria Integrata Via Lago di Nemi, 90 74121 – Taranto (Italy) Tal 130 1092 772302 – Fay: 139 1099 9870285	RELAZIONE IDROLOGICA	Pag. 5 di 27
Tel. +39.099.7722302 – Fax: +39.099.9870285 Email: info@pheedra.it – web: www.pheedra.it		

FRS-CIV-REL-032_00

INQUADRAMENTO INTERVENTO

Gli aerogeneratori ricadono su un'area posta a Nord, Nord – Est del centro urbano del Comune di Dogliola ad una distanza di circa 1,44 km in linea d'aria, ad Ovest, Sud e Sud-Est del centro urbano del Comune di Lentella il cui aerogeneratore più vicino dista circa 1,62 km. Il comune di Fresagrandinaria si trova centralmente rispetto all'area dove ricadono gli aerogeneratori, nello specifico quello più vicino al comune dista circa 1,24 km. In ultimo l'intero impianto è posizionato ad Est, Nord - Est dalla frazione del comune di Palmoli ovvero Fontelacasa ad una distanza di circa 1,57 km.

Il parco eolico è circoscritto dalle seguenti strade provinciali, regionali e statali:

- SS 650 Fondo Valle Trigno
- SP 192 Trignina
- SP 207 Palmoli Dogliola
- Strade comunali

L'accesso alle torri è garantito da tutte le strade elencate e strade comunali. La viabilità da realizzare non prevede opere di impermeabilizzazione. Sono inoltre previste piazzole in prossimità degli aerogeneratori.

Distanza parco dai centri abitati

- 1,5 Km dal Comune di Fresagrandinaria (CH);
- 1,55 km dal Comune di Dogliola (CH);
- 1,73 km dal Comune di Fontelacasa (CH);
- 1,8 km dal Comune di Lentella (CH).

L'accesso alle torri è garantito da tutte le strade elencate e strade comunali. La viabilità da realizzare non prevede opere di impermeabilizzazione.

Completano il quadro della viabilità tutta una serie di strade secondarie che partendo dai tracciati appena menzionati consentono di raggiungere abbastanza agevolmente anche i siti più distanti dalla viabilità principale e destinati all'installazione dei restanti aerogeneratori.

Per la costruzione degli aerogeneratori è prevista la realizzazione di piazzole temporanee per lo stoccaggio e il montaggio. Tali aree saranno dismesse e ripristinate nella condizione ante-operam.

La precisa localizzazione del sito si evince dagli allegati elaborati cartografici FRS-CIV-TAV-003 -Inquadramento geografico e FRS-CIV-TAV-004 - Inquadramento territoriale.

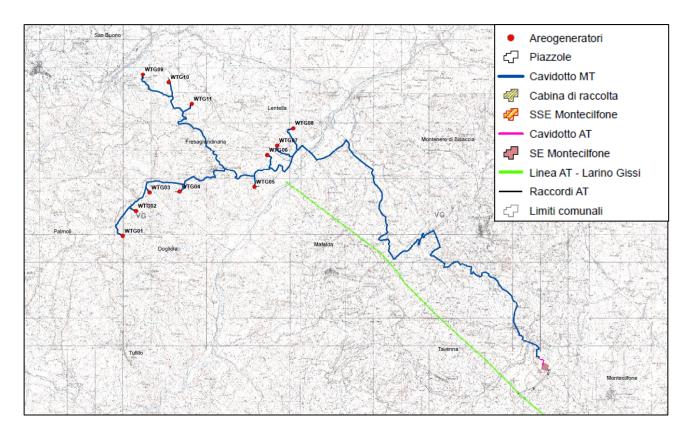


Figura 3 - Inquadramento impianto su Stralcio IGM 1:50.000

Email: info@pheedra.it - web: www

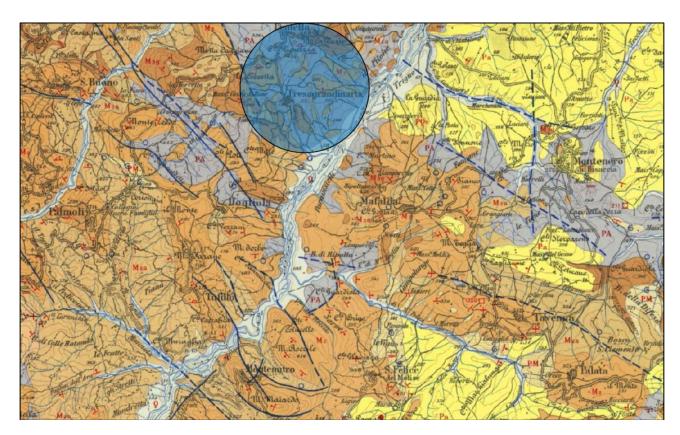


Figura 4 - Inquadramento su Carta geologica d'Italia Foglio 154

Come indicato in precedenza, l'Autorità di Bacino della Regione Abruzzo, attraverso la cartografia tecnica, ha definito l'andamento e lo sviluppo del reticolo idrografico dell'area in esame.

Al fine di non creare squilibri alla rete idrografica esistente, si sono effettuati degli studi idrologici, atti a computare le portate al colmo di piena e dimensionare le opere idrauliche, di attraversamento stradale di nuova realizzazione, interferenti con l'idrografia superficiale.

Per l'accertamento della posizione delle opere in progetto rispetto alle previsioni delle N.T.A. del P.A.I per la tutela delle aree a rischio idraulico e del reticolo idrografico, si è proceduto ad accertamenti in sito, ed a verifiche cartografiche, eseguite su due livelli di scala sulla cartografia IGM e sulla CTR regionale.

Con riferimento all'intervento oggetto di studio, nessuna nuova strada interessa il reticolo idrografico. Si specifica che le nuove strade e l'adeguamento delle strade esistenti, verranno realizzate in Macadam, costituita da una massicciata di pietrisco sabbia e acqua, costipata e spianata ripetutamente da rullo compressore, integrata da un sottofondo di pietrame di grossa pezzatura, quindi senza ulteriore incremento di superfici impermeabili atte ad aumentare il deflusso idrico superficiale.

Per l'impianto in esame non si sono riscontrate interferenze tra le strade di nuova realizzazione e il reticolo idrografico come definito dalla cartografia ufficiale. Per lo studio dell'area si sono comunque definiti i riferimenti idrologici, Bacini e Curva di possibilità pluviometrica.

Per ciò che concerne il cavidotto intercetta il reticolo idrografico in più punti di intersezione, tuttavia, si evidenzia che tutte le intersezioni avvengono su strada esistente, già provviste quindi di strutture di attraversamento (tombini circolari, scatolari, ecc), che tutte le modalità di superamento dell'Intersezione Committente: **Q-Energy Renewables 2 S.r.l.** Via Vittor Pisani 8/a 20124 Milano (MI)

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI FRESAGRANDINARIA, DOGLIOLA E LENTELLA IN LOCALITA' "MACCHIA DELLA VALLE, GUARDIOLA, LAGO LA CORTE E COLLE MILARAGNO"

Nome del file:

FRS-CIV-REL-032_00

saranno affrontate tramite tecnologia TOC come evidenziato nella tavola FRS-CIV-TAV-022 – Studio delle interferenze.

2.1. INDIVIDUAZIONE DEL BACINO IMBRIFERO

Dopo l'acquisizione dei dati territoriali e cartografici di base, si è proceduto alla delimitazione e caratterizzazione dei bacini di interesse con l'ausilio di QGIS, sistema geografico informatizzato che consente di ottenere carte tematiche interattive utili al fine della valutazione del rischio.

Con l'utilizzo di QGis è stato possibile tracciare i confini geografici (linea di displuvio) del bacino in base ad una prefissata sezione di chiusura e determinare le relative informazioni geometriche (area, perimetro, altitudine), geologiche e di uso del territorio.

È necessario individuare e caratterizzare il bacino per determinare la portata che defluisce attraverso la sezione in esame. Si elencano le operazioni eseguite, attivando, di volta in volta, l'ultimo tema creato:

- 1) si è caricato il DEM per la zona interessata, ottenuto dal SIT regionale;
- 2) ottenuto il DEM si è attivata la funzione <u>Fill sinks</u>, che permette di eseguire l'interpolazione dei dati altimetrici immessi attraverso il grid, in maniera da ottenere continuità nel modello del terreno;
- 3) attraverso la funzione <u>Catchment area</u> si sono individuate le flow direction (direzioni di scorrimento delle acque superficiali: fiumi, torrenti, lame etc.) e le flow accumulation (aree contribuenti);
- **4)** si è applicata la funzione <u>Channel network</u> che permette di determinare il reticolo idrografico, con diversi gradi di risoluzione;
- 5) con la funzione Watershed basins si sono determinati tutti i bacini della mappa;
- 6) Infine, con la funzione <u>Upslow area</u>, inserendo le coordinate del punto appartenente alla sezione di chiusura di interesse per la lama, si è determinato bacino sotteso alla sezione di chiusura; infatti scegliendo come sezione di chiusura la foce del corso d'acqua si ottiene il bacino principale; se invece la sezione di chiusura è una qualunque sezione fluviale posta a monte della foce, si individua il bacino secondario o sottobacino;
- 7) Con la funzione Raster Layer statistic si sono determinate le caratteristiche morfologiche, area, perimetro e altitudine media del sottobacino sotteso alla sezione di chiusura.

Tel. +39.099.7722302 – Fax: +39.099.987028 Email: info@pheedra.it – web: <u>www.pheedra.it</u>

Committente:	PROGETTO PER LA REALIZZAZIONE DI UN	Nome del file:
Q-Energy Renewables 2 S.r.l.	PARCO EOLICO NEI COMUNI DI	
Via Vittor Pisani 8/a	FRESAGRANDINARIA, DOGLIOLA E LENTELLA IN	
20124 Milano (MI)	LOCALITA' "MACCHIA DELLA VALLE, GUARDIOLA,	
20124 Willario (Wil)	LAGO LA CORTE E COLLE MILARAGNO"	FRS-CIV-RFI -032 00

I parametri geomorfologici caratteristici dei bacini idrografici sono indicati nelle tabelle seguenti:

DATI GEOMORFOLOGICI BACINO 1		
Superficie (kmq)	1,86	
Altezza media del bacino (m)	247,50	
Altezza massima asta principale (m)	291,13	
Altezza minima asta principale (m)	184,45	
Pendenza media del bacino (%)	2,01	
Lunghezza asta principale (km)	7,72	
Lunghezza asta principale (m)	7720,00	
Pendenza media asta principale	1,38	

Per completare lo studio del bacino si sono ricavati i dati relativi al tipo di suolo caricando le mappe della permeabilità e dell'uso del suolo. Con il comando geoprocessing intersezione, sono state effettuate le seguenti intersezioni: tema del bacino - mappa della permeabilità, tema del bacino - mappa dell'uso del suolo, tema del bacino - mappa della litologia; tale elaborazione ha fornito, i dati necessari all'applicazione del metodo del Curve Number.

Gli elementi forniti dal programma hanno consentito l'avvio dello studio idrologico volto alla determinazione delle portate al colmo di piena associate a tempi di ritorno di 30, 200 anni.

A parità d'intensità e di altre condizioni è la precipitazione della durata uguale al tempo di corrivazione a determinare la massima portata in un bacino; se viene superato il tempo di corrivazione, la pioggia continua a cadere, con la stessa intensità, la portata si mantiene costante sul valore massimo, per poi cominciare a decrescere non appena la pioggia cessa, o comunque, si riduce d'intensità.

Se per contro la durata della precipitazione è inferiore al tempo di corrivazione, l'acqua proveniente dalle zone più lontane del bacino raggiunge la sezione terminale quando già ha avuto inizio la fase decrescente, giacché le aree più vicine hanno già cessato di dare il loro contributo.

2.2. CALCOLO DELLE PORTATE DI PIENA

Per il calcolo delle portate di piena, rispetto alle quali verificare le sezioni del canale in prossimità delle opere di progetto, possono essere adottate diverse metodologie di calcolo, tra cui la procedura di calcolo delle portate di piena proposta nel Va.Pi. e la procedura del Curve Number del Soil Conservation Service. Queste metodologie di calcolo sono le più utilizzate per i bacini idrografici.

La determinazione della portata di massima piena è avvenuta attraverso il calcolo preliminare della massima intensità di pioggia attendibile per un tempo di ritorno di 20,200 e 500 anni.

Per il calcolo dell'intensità critica delle precipitazioni si è fatto ricorso agli studi condotti dalla Regione Abruzzo per il Piano Stralcio Difesa Alluvioni, i quali hanno definito delle tavole che riportano, per ciascuno dei tre tempi di ritorno, i due parametri h1, T e n(T) che definiscono la curva di possibilità pluviometrica:

$$h_{d,T} = h_{1,T} d^{n(T)}$$

PHEEDRA Srl		
Servizi di Ingegneria Integrata Via Lago di Nemi, 90 74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285 Email: info@pheedra it – wah: www.pheedra it	RELAZIONE IDROLOGICA	Pag. 10 di 27

FRS-CIV-REL-032 00

Distribuzione TCEV

La legge di distribuzione probabilistica per la variabile casuale hd, massimo annuale dell'altezza di pioggia di durata oraria o sub-oraria d, è la Two Component Extreme Value (TCEV), secondo cui i valori

estremi di una grandezza idrologica provengono da due diverse popolazioni: una degli eventi normali e un'altra degli eventi eccezionali (outliers), legati a differenti fenomeni meteorologici. Tale distribuzione ha la caratteristica di prestarsi all'interpretazione di variabili fortemente asimmetriche, con presenza di alcuni valori molto elevati, di cui difficilmente le distribuzioni usuali (log-normale, Gumbel, Fréchet, ecc.) riescono a rendere conto. La funzione di distribuzione di probabilità della hd è funzione di 4 parametri: Λb ,d, Θb ,d, Λs ,d e Θs ,d, che esprimono il numero medio annuo di eventi indipendenti superiori a una soglia delle due popolazioni (Λb ,d e Λs ,d) e il loro valore medio (Θb ,d e Θs ,d) con Λb ,d, Θb ,d relativi ad una componente base contenente i valori medi e bassi e Λs ,d, Θs ,d relativi ad una componente straordinaria contenente i valori più elevati.

$$P(h_d) = e^{\begin{pmatrix} -\frac{h_d}{\Theta_{b,d}} - \Lambda_{s,d}e^{-\frac{h_d}{\Theta_{s,d}}} \end{pmatrix}}$$

Se si pone $\Theta*=\Theta$ s,d $/\Theta$ b,d e Λ *= Λ s,d $/\Lambda$ b,d $1/\theta*$, si può considerare la quaterna di parametri Λ *, $\Theta*$, Λ b,d e Θ b,d. La funzione di distribuzione di probabilità della variabile casuale x=hd (massimo annuale della pioggia di durata t) è espressa come segue:

$$P(h_d) = e^{ \left(-\Lambda_{b,d}^{} e^{-\frac{h_d}{\Theta_{b,d}}} - \Lambda^* \Lambda_{b,d}^{} 1/\Theta^* e^{-\frac{h_d}{\Theta^* \Theta_{b,d}}} \right) }$$

Si può dimostrare che il coefficiente d'asimmetria $\xi(hd)$ dipende soltanto dai parametri Λ *e Θ * , il coefficiente di variazione $\gamma(hd)$ dipende dai parametri Λ * , Θ *e Λ b,d e la media $\mu(hd)$ dipende dai parametri Λ * , Θ * , Λ b,d , Θ b,d che si esprime con:

$$\mu(h_d) = \left[\ln \Lambda_{b,d} + 0.5772 - \sum_{j=1}^{\infty} \frac{(-1)^j \Lambda^{*j}}{j!} \Gamma\left(\frac{j}{\Theta^*}\right)\right] \Theta_{b,d}$$

dove posto:

$$\beta = \left[\ln \Lambda_{b,d} + 0.5772 - \sum_{j=1}^{\infty} \frac{(-1)^j \Lambda^{*j}}{j!} \Gamma\left(\frac{j}{\Theta^*}\right) \right]$$

FRS-CIV-REL-032 00

Si ha:

$$P(h_d) = e^{\left(-\Lambda_{b,d} e^{-\beta \frac{h_d}{\mu_{h,d}}} - \Lambda^* \Lambda_{b,d}^{1/\Theta^*} e^{-\beta \frac{h_d}{\Theta^* \mu_{h,d}}}\right)}$$

Sostituendo nella precedente espressione il coefficiente di crescita KT=hd/µhd si ottiene:

$$P(h_d) = e^{\left(-\Lambda_{b,d} e^{-\beta K_T} - \Lambda^* \Lambda_{b,d}^{1/\Theta^*} e^{-\beta \frac{K_T}{\Theta^*}}\right)}$$

che in forma implicita fornisce la curva di crescita K(Tr) della variabile hd, dove Tr è il tempo di ritorno di hd:

$$Tr = \frac{1}{1 - P(K_T)}$$

Purtroppo, non è esplicitabile in forma esatta, ma può essere invertita con la seguente espressione approssimata, valida per: 0,1 [$\Lambda*$ [0,9 e 1,1 [$\Theta*$ [10. Posto:

$$x = \ln\{-\ln[-P(k_T)]\}$$

$$x_0 = \frac{\Theta^*}{1 - \Theta^*} \ln \Lambda^*$$

$$x = \ln\{-\ln[-P(k_T)]\} \qquad x_0 = \frac{\Theta^*}{1 - \Theta^*} \ln \Lambda^* \qquad A = 0.8288 \left(\Theta^* - 0.4315\right)^{0.3456}$$

per x[x0:

$$k = \frac{x + Ae^{-B_1(x-x_0)^{C_1}}}{\beta}$$

Con

$$B_1 = 1,345 \frac{\Theta^* - 1}{(\Theta^* - 1,092)^{0.9319}}$$

$$C_1 = 0.8118 + 0.2453e^{-0.1731(\Theta^* - 1)}$$

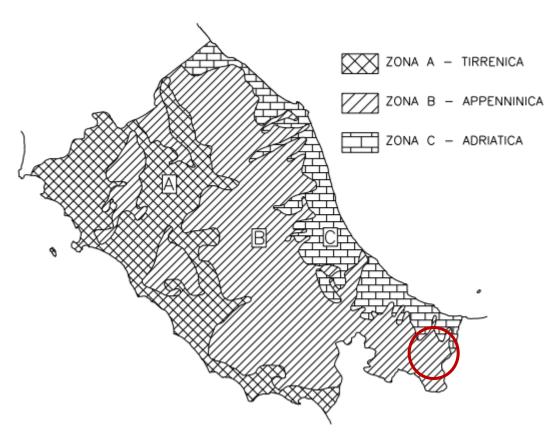
per x/x0:

FRS-CIV-REL-032 00

$$k = \frac{\Theta^* \left(x + \ln \Lambda^* \right) + A e^{-B^{2(x-x_0)/2}}}{\beta}$$

Con

$$B_2 = 0,6501 (\Theta^* - 1) + 0,009705 (\Theta^* - 1)^2$$


$$C_2 = 1 + 0,08680 (\Theta^* - 1)^{0,5942}$$

Stima regionale dei parametri con i massimi giornalieri

Con regionalizzazione delle altezze di pioggia h(d)k nei diversi pluviometri k=1,2,...,n s'intende l'aggregazione di tali variabili in gruppi con caratteristiche stocastiche comuni. Si richiede generalmente che i raggruppamenti abbiano anche riferimenti geografici. Sono stati utilizzati tre livelli di regionalizzazione: I. Regioni omogenee rispetto ai parametri Λ * e Θ * , da cui deriva l'omogeneità rispetto al coefficiente d'asimmetria ξ (hd) II. Zone omogenee rispetto ai parametri Λ * , Θ * e Λ b,d, da cui deriva l'omogeneità rispetto al coefficiente di variazione γ (hd) III. Sottozone omogenee rispetto ai parametri Λ * , Θ * , Λ b,d , Θ b,d dai cui dipende la media μ (hd)

Per potere utilizzare le formule che contengono dati relativi alle precipitazioni in termini di altezze o di intensità si è provveduto alla determinazione di tali parametri sulla base dei dati pluviometrici regionali elaborati nel progetto VAPI. Al primo e al secondo livello di regionalizzazione sono state identificate tre regioni omogenee, in cui l'ipotesi della costanza del coefficiente di variazione e del coefficiente di asimmetria può essere accettata, rappresentate nella figura seguente, indicate come:

- ZONA A (TIRRENICA), che interessa la fascia del litorale tirrenico e si protende all'interno lungo le valli dei principali corsi d'acqua
- ZONA B (APPENNINICA), che interessa l'ampia fascia dell'Appennino propriamente detto, con le propaggini dei colli Albani, e i monti Lepini, Ausoni e Aurunci, nonché, separati da questa zona, i gruppi montuosi nell'entroterra tirrenico a nord-ovest del Tevere (i massicci dell'Amiata e del Cetona con i monti Vulsini; e i monti Cimini con i monti della Tolfa e i monti Sabatini)
- ZONA C (ADRIATICA), che interessa una ristretta fascia del litorale adriatico e si protende con ristrette lingue lungo le valli dei corsi d'acqua.

VAPI: zono omogenee al I e II livello di regionalizzazione

I parametri $\Lambda * e \Theta^*$, determinati al primo livello di regionalizzazione per le tre zone, sono indicati nella tabella seguente.

ZONA	Λ*	Θ*
A	0.174	3.490
В	0.762	1.241
C	0.795	2.402

Il parametro Λb , determinato al secondo livello di regionalizzazione per le tre zone, e la corrispondente funzione β assumono invece i seguenti valori:

ZONA	Λ_{b}	β
A	29.31	4.480
В	22.02	4.359
С	27.81	5.301

PHEEDRA SrI
Servizi di Ingegneria Integrata
Via Lago di Nemi, 90 74121 – Taranto (Italy)
74121 – Taranto (Italy)
Tel. +39.099.7722302 - Fax: +39.099.987028
Email: info@pheedra.it - web: www.pheedra.it

Più utile dal punto di vista pratico è la forma inversa per cui, fissato un valore Tr del periodo di ritorno, si ricava il corrispondente valore del coefficiente di crescita KT. Per la distribuzione TCEV tale relazione non è analiticamente ottenibile per cui si riportano di seguito, i valori di kT ottenuti numericamente per alcuni valori del periodo di ritorno.

Tr (anni)	2	5	10	20	25	40	50	100	200	300	500	1000
K _T (SZO A)	0.89	1.22	1.49	1.84	1.97	2.29	2.45	2.98	3.52	3.84	4.23	4.77
K _T (SZO B)	0.96	1.25	1.45	1.64	1.70	1.83	1.89	2.07	2.26	2.39	2.51	2.70
K _T (SZO C)	0.90	1.29	1.59	1.90	2.01	2.22	2.32	2.64	2.96	3.14	3.38	3.70

Nelle pratiche approssimazioni è possibile fare riferimento alla seguente espressione semplificata:

$$k_T = \left(\frac{\Theta^* L n \Lambda^*}{\eta} + \frac{L n \Lambda_1}{\eta}\right) + \frac{\Theta^*}{\eta} L n T$$

che dati i valori assunti dai parametri della distribuzione TCEV nell'area esaminata, diventa:

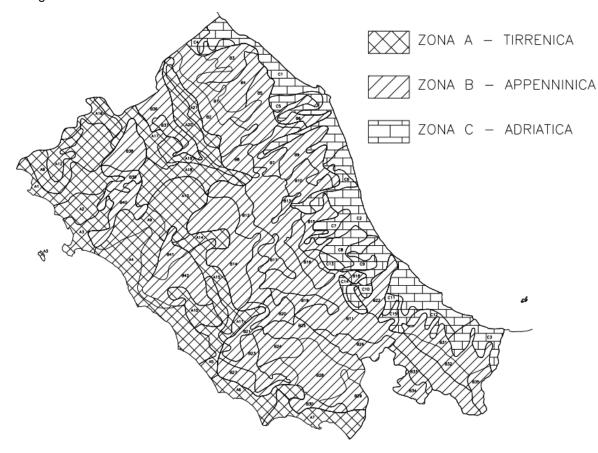
- (SZO A) K_T = -0.6086 + 0.779 LnT
- (SZO B) K_T = 0.6419 + 0.289 LnT
- (SZO C) K_T = 0.5296 + 0.459 LnT

Per valori del tempo di ritorno superiori a 10 anni, l'errore nell'uso delle espressioni semplificate è sempre inferiore al 10%.

Piogge brevi

Considerata la relativa limitatezza dei dati pluviografici rispetto alla quantità di dati pluviometrici, è stato elaborato un modello probabilistico, relativo alle piogge brevi che impiega l'informazione regionale stabilita per i massimi annuali delle piogge giornaliere. Per impiegare l'informazione regionale, si è assunta l'ipotesi che la curva di crescita, stabilita per i massimi delle piogge giornaliere, sia valida anche per rappresentare la distribuzione di probabilità dei coefficienti probabilistici di crescita dei massimi annuali delle piogge di durata inferiore.

Leggi di probabilità pluviometriche


Al terzo livello di regionalizzazione sono state individuate delle zone omogenee in cui è accettabile l'ipotesi che la media del massimo annuale dell'altezza giornaliera $\mu(hg)$, che prende il nome di pioggia indice, dipenda linearmente dalla sola quota z della stazione:

$$\mu(h_g) = C Z + D$$

I parametri della precedente espressione non assumono unico valore per l'intera regione esaminata: è stato invece possibile identificare delle aree pluviometriche omogenee (APO), in ognuna delle quali se ne può ottenere una stima univoca.

PHEEDRA Srl		
Servizi di Ingegneria Integrata Via Lago di Nemi, 90 74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285 Email: info@pheedra it – wah: www.pheedra it	RELAZIONE IDROLOGICA	Pag. 15 di 27

Sono state individuate 78 APO (Aree Pluviometriche Omogenee), di seguito rappresentate, in cui i parametri della regressione assumono i valori indicati nella successiva tabella.

VAPI: aree pluviometriche omogenee (APO)

Sottozona	N	c (mm/m)	d (mm)
A1	10	0.01892	55.64
A2	8	0.02785	59.22
A3	9	0.02738	64.43
A4	13	0.03390	67.67
A5	7	0.03031	60.09
A6	8	0.13518	66.15
A7	7	0.03582	67.72
A8	16	0.01680	62.79
A9	7	0.02671	61.61
A10	5	0.06301	67.83
A11	3	0.07624	41.70
A12	6	0.01510	72.77

Sottozona	N	c (mm/m)	d (mm)
B19	6	0.01418	36.02
B20	5	0.01098	57.23
B21	6	0.15691	16.83
B22	7	0.01890	76.65
B23	5	0.04972	60.54
B24	7	0.07960	30.38
B25	10	0.02089	64.28
B26	9	0.13532	-48.29
B27	5	0.05786	67.35
B28	12	0.03599	63.48
B29	5	0.03152	87.30
B30	4	0.05066	68.93

Committente: **Q-Energy Renewables 2 S.r.l.** Via Vittor Pisani 8/a 20124 Milano (MI) PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI FRESAGRANDINARIA, DOGLIOLA E LENTELLA IN LOCALITA' "MACCHIA DELLA VALLE, GUARDIOLA, LAGO LA CORTE E COLLE MILARAGNO" Nome del file:

FRS-CIV-REL-032_00

Sottozona	N	c (mm/m)	d (mm)
A13	9	0.02714	50.42
A14	4	0.02517	62.33
A15	4	0.03647	68.78
A16	4	0.02592	52.00
A17	7	0.10165	15.14
A18	11	0.02208	58.80
A19	5	0.03408	41.11
A20	7	0.03637	49.62
A21	4	0.02854	43.38
B1	13	0.03028	43.52
B2	5	0.02250	42.59
В3	11	0.03478	49.18
B4	10	0.02747	62.61
B5	13	0.03136	53.96
B6	6	0.03764	44.54
B7	9	0.01863	49.36
B8	4	0.02219	50.91
В9	16	0.04546	46.32
B10	9	0.04145	37.12
B11	44	0.02300	35.60
B12	13	0.04292	45.49
B13	2	0.01793	20.47
B14	13	0.05343	55.04
B15	6	0.00153	69.69
B16	12	0.02565	22.88
B17	5	0.00722	64.41
B18	3	0.00128	62.43

Sottozona	N	c (mm/m)	d (mm)
B31	11	0.00116	60.07
B32	7	0.04004	27.64
B33	6	0.01264	54.93
B34	4	0.25615	-85.09
B35	5	0.07432	15.64
B36	7	0.05270	40.46
B37	2	0.03513	33.42
B38	10	0.01874	40.79
B39	4	0.04514	38.13
B40	8	0.04250	58.21
B41	4	0.08894	34.37
B42	9	0.02237	71.20
C1	19	0.00482	57.46
C2	34	0.02822	64.04
C3	8	0.05900	42.12
C4	5	0.06381	49.63
C5	6	0.01574	61.16
C6	5	0.01374	58.39
C7	5	0.00985	62.40
C8	7	0.07690	50.19
C9	6	0.02767	51.23
C10	7	0.11377	38.98
C11	5	0.02573	57.44
C12	4	0.02395	44.17
C13	3	0.04634	-5.21
C14	4	0.03330	32.01
C15	4	0.00655	57.57

Per ottenere le leggi di probabilità pluviometrica, l'elaborazione effettuata è stata rivolta a stabilire una relazione durata-intensità-frequenza, attraverso una legge a tre parametri del tipo:

$$i_d(T) = \frac{a(T_r)}{(b+d)^m}$$

dove io(T) è l'intensità con tempo di ritorno Tr. La pioggia indice è data dalla media di id che risulta:

$$\mu_{it} = \mu_{io} \left(\frac{b}{b+d} \right)^m$$

PHEEDRA SrI		
Servizi di Ingegneria Integrata Via Lago di Nemi, 90 74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285 Email: info@pheedra it – web: www.pheedra it	RELAZIONE IDROLOGICA	Pag. 17 di 27

FRS-CIV-REL-032 00

dove µio è la media dell'intensità istantanea. Il coefficiente di crescita da introdurre nella distribuzione TCEV funzione di kT è quindi:

$$k_T = \frac{i_t}{\mu_{io}} \left(\frac{b+t}{b} \right)^m$$

L'esponente m e il parametro di deformazione temporale b sono stati assunti indipendenti dal tempo di ritorno Tr, in modo da imporre il parallelismo sul piano logaritmico delle leggi IDF relative a diversi tempi di ritorno; per ricavare tali parametri sono state fatte le seguenti ipotesi: A. sul tutto il territorio considerato: a) l'intensità media di 24 ore μ i24 è proporzionale all'intensità media giornaliera μ id: μ i24 = $\delta \cdot \mu$ id dove il coefficiente di proporzionalità è assunto costante su tutto il territorio considerato con valore δ =1.15; b) il rapporto tra l'intensità media della pioggia di 5' e quella della pioggia oraria è costante su tutta l'area esaminata

$$r = \frac{\mu_{i5'}}{\mu_{i1}} = \left(\frac{b+1}{b+0.0833}\right)^m = 3.36$$

da cui si ricava per ciascuna zona omogenea il coefficiente di trasformazione temporale:

$$b = \frac{1 - 0.0833r^{1/m}}{r^{1/m} - 1}$$

B. sulle zone omogenee identificate per i massimi giornalieri dell'anno:

a) l'intensità istantanea media µi0 è dipendente dalla quota z della stazione pluviometrica secondo la relazione:

$$\frac{\mu_{io}(z)}{\overline{\mu}_{io}} = \frac{\mu_{hd}(z)}{\overline{\mu}_{hd}}$$

Da queste ipotesi si ricava per ciascuna zona omogenea l'esponente:

$$m = \frac{\ln\left(\frac{\overline{\mu}_{io}}{\overline{\mu}_{i24}}\right)}{\ln\left[1 + \frac{24(r^{1/m} - 1)}{1 - 0,0833r^{1/m}}\right]}$$

I valori regionali dei parametri b, m e μ io / μ i24 che comP.A.I. E P.S.D.A. e P.S.D.A. ono nelle espressioni precedenti sono riportati nella tabella seguente.

Sottozona	b(h)	m	$\bar{\mu}_{io}I\bar{\mu}_{i24}$
A1	0.1660	0.7810	4.890
A2	0.1528	0.7597	4.683
A3	0.1454	0.7478	4.574
A4	0.1705	0.7881	4.962
A5	0.1621	0.7748	4.828
A6	0.1137	0.6955	4.150
A7	0.1054	0.6816	4.054
A8	0.1323	0.7263	4.389
A9	0.1502	0.7555	4.645
A10	0.1415	0.7415	4.518
A11	0.1744	0.7943	5.026
A12	0.1251	0.7145	4.293

Sottozona	b(h)	m	$\bar{\mu}_{io}I\bar{\mu}_{i24}$
B19	0.1135	0.6951	4.148
B20	0.1170	0.7010	4.190
B21	0.1585	0.7690	4.772
B22	0.1101	0.6895	4.108
B23	0.1398	0.7387	4.494
B24	0.1040	0.6792	4.038
B25	0.0986	0.6700	3.980
B26	0.0908	0.6565	3.902
B27	0.1366	0.7335	4.449
B28	0.1168	0.7007	4.188
B29	0.0895	0.6542	3.889
B30	0.1222	0.7097	4.256

Sottozona	b(h)	m	$\frac{-}{\mu_{io}}I_{\mu_{i24}}^{-}$
A13	0.1484	0.7526	4.618
A14	0.1521	0.7586	4.673
A15	0.1326	0.7269	4.393
A16	0.1427	0.7434	4.535
A17	0.1728	0.7917	5.000
A18	0.1498	0.7549	4.639
A19	0.1729	0.7919	5.002
A20	0.1456	0.7482	4.577
A21	0.1437	0.7450	4.549
B1	0.1168	0.7006	4.188
B2	0.1603	0.7718	4.799
B3	0.1252	0.7146	4.294
B4	0.1015	0.6748	4.010
B5	0.1302	0.7230	4.361
B6	0.1354	0.7314	4.431
B7	0.1275	0.7185	4.325
B8	0.1768	0.7981	5.066
B9	0.1455	0.7479	4.575
B10	0.1136	0.6953	4.149
B11	0.1035	0.6782	4.032
B12	0.1097	0.6887	4.102
B13	0.0685	0.6173	3.730
B14	0.1380	0.7357	4.468
B15	0.1048	0.6804	4.047
B16	0.1051	0.6811	4.051
B17	0.0889	0.6532	3.884
B18	0.1167	0.7005	4.187

Sottozona	b(h)	m	$\bar{\mu}_{io}I\bar{\mu}_{i24}$
B31	0.0902	0.6555	3.896
B32	0.1071	0.6844	4.073
B33	0.0806	0.6389	3.813
B34	0.0940	0.6620	3.933
B35	0.0977	0.6684	3.971
B36	0.1434	0.7446	4.545
B37	0.1141	0.6962	4.156
B38	0.1670	0.7826	4.906
B39	0.0971	0.6674	3.965
B40	0.1136	0.6953	4.149
B41	0.1673	0.7830	4.911
B42	0.1279	0.7190	4.329
C1	0.1408	0.7403	4.508
C2	0.1107	0.6905	4.115
C3	0.1156	0.6986	4.173
C4	0.1123	0.6932	4.134
C5	0.1281	0.7195	4.333
C6	0.0957	0.6650	3.950
C7	0.1129	0.6942	4.141
C8	0.1001	0.6725	3.996
C9	0.1076	0.6852	4.079
C10	0.1034	0.6781	4.031
C11	0.1101	0.6895	4.108
C12	0.1100	0.6894	4.107
C13	0.0821	0.6414	3.825
C14	0.0897	0.6547	3.892
C15	0.0863	0.6488	3.861

Committente:	PROGETTO PER LA REALIZZAZIONE DI UN	Nome del file:
Q-Energy Renewables 2 S.r.l.	PARCO EOLICO NEI COMUNI DI	
Via Vittor Pisani 8/a	FRESAGRANDINARIA, DOGLIOLA E LENTELLA IN	
20124 Milano (MI)	LOCALITA' "MACCHIA DELLA VALLE, GUARDIOLA,	
ZOTZ+ WIIIATIO (WII)	LAGO LA CORTE E COLLE MILARAGNO"	FRS-CIV-REL-032_00

Calcoli idrologici

KT	1,64	2,26	2,51
	ALTEZZE DI PIO	OGGIA	
Tempo (ore)	TR20 h (mm)	TR200 h (mm)	TR500 h (mm)
1	69,37	95,60	106,17
3	90,30	124,44	138,20
6	106,65	146,96	163,22
12	125,95	173,56	192,76
24	148,74	204,97	227,65

Metodo del Curve Number

Il calcolo è stato eseguito con il metodo del Curve Number, proposto dal Soil Conservation Service del Dipartimento dell'Agricoltura degli Stati Uniti. La formulazione usata permette di ricavare la pioggia netta depurata in base all'espressione:

$$h_{netta} = \frac{(h_{lorda} - I)^2}{(h_{lorda} + S - I)}$$

dove h_{lorda} è la pioggia stimata per assegnata distribuzione di probabilità, S (in mm) rappresenta l'assorbimento del bacino, espresso dalla relazione:

$$S = 254 \cdot \left(\frac{100}{CN} - 1\right)$$

ed I è l'assorbimento iniziale, legato empiricamente al parametro S dalla relazione I a= 0,2 · S .

In particolare, il metodo del CN sintetizza le caratteristiche idrologiche di un bacino attraverso un unico parametro CN che definisce la relazione precipitazione—volume di deflusso in bacini idrografici di cui è nota, oltre che la morfologia, la copertura vegetale e il tipo idrologico di suolo presenti nelle carte tematiche.

Il parametro CN, ricavato dall'analisi qualitativa delle carte tematiche, rappresenta la capacità di una porzione di terreno del bacino imbrifero di produrre deflusso ed è stato calcolato sulla base delle caratteristiche geopedologiche e vegetazionali del bacino stesso.

Il valore del CN si ottiene per incrocio delle caratteristiche del suolo (quattro tipi A, B, C, D) a permeabilità decrescente e delle caratteristiche di uso prevalente.

- Gruppo A: suoli aventi scarsa potenzialità di deflusso e capacità di infiltrazione, in condizioni di saturazione, molto levata; comprende sabbie profonde, con bassa percentuale di limi e argille molto permeabili.
- Gruppo B: suoli aventi moderata potenzialità di deflusso e capacità di infiltrazione, anche in condizioni di saturazione, elevata; comprende la maggior parte dei suoli sabbiosi meno profondi rispetto al gruppo A;
- Gruppo C: suoli aventi potenzialità di deflusso moderatamente alta e scarsa capacità di infiltrazione e saturazione; comprende suoli contenenti considerevoli quantità di argille e colloidi.

PHEEDRA SrI		
Servizi di Ingegneria Integrata Via Lago di Nemi, 90	RELAZIONE IDROLOGICA	Pag. 20 di 27
74121 - Taranto (Italy)	KLLAZIONE IDROLOGICA	Ĭ
Tel. +39.099.7722302 – Fax: +39.099.9870285		

Committente:	PROGETTO PER LA REALIZZAZIONE DI UN	
Q-Energy Renewables 2 S.r.l.	PARCO EOLICO NEI COMUNI DI	
Via Vittor Pisani 8/a	FRESAGRANDINARIA, DOGLIOLA E LENTELLA IN	
20124 Milano (MI)	LOCALITA' "MACCHIA DELLA VALLE, GUARDIOLA,	
20124 Willario (Wil)	LACO LA CORTE E COLLE MILARAGNO"	FR

FRS-CIV-REL-032_00

- Gruppo D: Suoli aventi potenzialità di deflusso molto elevate e scarsissima capacità di infiltrazione a saturazione; comprende argille ad elevata capacità di rigonfiamento, ma anche suoli sottili con orizzonti pressoché impermeabili in vicinanza della superficie.

I valori del CN normalmente utilizzati per i tipi di suolo A, B, C e D e per una condizione standard di umidità del terreno agli inizi dell'evento di pioggia ("AMC", Antecedent Moisture Condition, di classe II) sono riportati nella seguente tabella.

Tipo di suolo	Descrizione	
A deflusso superficiale potenziale basso	I suoli di questo gruppo, quando sono completamente saturi, hanno deflusso superficiale potenziale (runoff) basso, ed è alta la permeabilità. Sono caratterizzati da avere meno del 10% di argilla e oltre il 90% di sabbia e/o ghiaia e la tessitura è sabbiosa o ghiaiosa. La conducibilità idraulica (Ksat) è maggiore di 14,4 cm/h per tutta la profondità, la profondità dell'orizzonte impermeabile è maggiore di 50 cm, e la profondità della falda superficiale è superiore a 60 cm. Appartengono a questo gruppo anche le rocce con alta permeabilità per fratturazione e/o carsismo	
B deflusso superficiale potenziale moderatamente basso	I suoli di questo gruppo, quando sono completamente saturi, hanno deflusso superficiale potenziale (runoff) moderatamente basso, e l'acqua attraversa il suolo senza impedimenti. Sono caratterizzati da avere tra il 10% e il 20% di argilla e tra il 50 e il 90% di sabbia e la tessitura è sabbioso-franca, franco-sabbiosa. La conducibilità idraulica (Ksat) varia tra 3,6 e 14,4 cm/h per tutta la profondità, la profondità dell'orizzonte impermeabile è maggiore di 50 cm, e la profondità della falda superficiale è superiore a 60 cm. Appartengono a questo gruppo anche le rocce con permeabilità, medio-alta e media, per fratturazione e/o carsismo	
C deflusso superficiale potenziale moderatamente alto	I suoli di questo gruppo, quando sono completamente saturi, hanno deflusso superficiale potenziale (runoff) moderatamente alto, e l'acqua attraversa il suolo con qualche limitazione. Sono caratterizzati da avere tra il 20% e il 40% di argilla e meno del 50% di sabbia e la tessitura è prevalentemente franca, franco-limosa, franco-argilloso-sabbioso, franco-argillosa, e franco-argilloso-limosa. La conducibilità idraulica (Ksat) varia tra 0,36 e 3,6 cm/h per tutta la profondità, la profondità dell'orizzonte impermeabile è maggiore di 50 cm, e la profondità della falda superficiale è superiore a 60 cm Appartengono a questo gruppo anche le rocce con bassa e medio-bassa permeabilità per fratturazione e/o carsismo	
D deflusso superficiale potenziale alto	I suoli di questo gruppo, quando sono completamente saturi, hanno deflusso superficiale potenziale (runoff) alto, e l'acqua attraversa il suolo con forti limitazioni. Sono caratterizzati da avere oltre il 40% di argilla e meno del 50% di sabbia e la tessitura è argillosa, talvolta anche espandibili. La conducibilità idraulica (Ksat) è ≤ 0,36 cm/h per tutta la profondità, la profondità dell'orizzonte impermeabile è compresa tra 50 cm e 100 cm, e la profondità della falda superficiale è entro i 60 cm Appartengono a questo gruppo anche le rocce con permeabilità molto bassa, le rocce impermeabili e le aree non rilevate o non classificate.	

Tabella 1 - Tabella che descrive le diverse classi in funzione dei gruppi di Tipo di suolo

Codice Uso del Suolo (UDS)	UDS	A	В	С	D
AREE PORTUALI	123	98	98	98	98
AREE AEROPORTUALI ED ELIPORTI	124	92	93	94	95
AREE ESTRATTIVE	131	89	92	94	95
DISCARICHE E DEPOSITI DI ROTTAMI	132	90	92	94	95
CANTIERI	133	90	92	94	95
AREE VERDI URBANE	141	65	74	81	84
CIMITERI	143	57	77	85	89
VIGNETI	221	72	81	88	91
FRUTTETI E FRUTTI MINORI	222	67	78	85	89
OLIVETI	223	72	81	88	91
ARBORICOLTURA CON ESSENZE	22,5	12	- 01	- 00	71
FORESTALI	224	67	78	85	89
PRATI STABILI	231	67	71	81	89
COLTURE TEMPORANEE ASSOCIATE A	2,71	07	7.1	- 61	0,7
COLTURE PERMANENTI	241	59	74	82	86
SISTEMI COLTURALI E PARTICELLARI	241	39	/4	02	- 00
COMPLESSI	242	63	73	82	88
AREE PREVALENTEMENTE OCCUPATE DA	242	0.5	13	82	88
COLTURA AGRARIE CON PRESENZA DI					
SPAZI NATURALI IMPORTANTI	243	62	71	78	81
AREE AGROFORESTALI	243	45	66	77	83
BOSCHI MISTI DI CONIFERE E LATIFOGLIE	313	39	51	63	70
AREE A PASCOLO NATURALE	321	67	71	81	89
SPIAGGE DUNE E SABBIE	331	56 98	73 98	82 98	86
PARETI ROCCIOSE E FALESIE	332				98
AREE CON VEGETAZIONE RADA	333	70	75	84	90
PALUDI INTERNE	411	100	100	100	100
PALUDI SALMASTRE	421	100	100	100	100
SALINE	422	100	100	100	100
ZONE INTERTIDALI	423	98	98	98	98
LAGUNE, LAGHI E STAGNE COSTIERI	521	100	100	100	100
MARI	523	100	100	100	100
TESSUTO RESIDENZIALE COMPATTO E					
DENSO	1111	89	92	94	96
TESSUTO RESIDENZIALE RADO	1112	78	80	85	87
TESSUTO RESIDENZIALE RADO E					
NUCLEIFORME A CARATTERE					
RESIDENZIALE E SUBURBANO	1121	74	75	78	80
TESSUTO AGRO-RESIDENZIALE SPARSO E					
FABBRICATI RURALI A CARATTERE					
TIPICAMENTE AGRICOLO O RURALE	1122	65	67	70	72
INSEDIAMENTI INDUSTRIALI/ARTIG. E					
COMM. E SPAZI ANNESSI	1211	89	92	94	95
INSEDIAMENTO DI GRANDI IMPIANTI DI					
SERVIZI	1212	89	92	94	95
RETI STRADALI E SPAZI ACCESSORI					
(SVINCOLI, STAZIONI DI SERVIZIO, AREE					
DI PARCHEGGIO ECC.)	1221	98	98	98	98
RETI FERROVIARIE COMPRESE LE					
SUPERFICI ANNESSE (STAZIONI,					
SMISTAMENTI, DEPOSITI ECC.)	1222	96	96	96	96
GRANDI IMPIANTI DI CONCENTRAMENTO					
E SMISTAMENTO MERCI (INTERPORTI E					
SIMILI)	1223	92	93	94	95
IMPIANTI A SERVIZIO DELLE RETI DI					
DISTRIBUZIONE					
(TELECOMUNICAZIONI/ENERGIA/IDRICHE)	1224	92	93	94	95

PH	HEEDRA Srl
Se	ervizi di Ingegneria Integrata
Via	Lago di Nemi, 90
741	121 - Taranto (Italy)
Tel	. +39.099.7722302 - Fax: +39.099.9870285
Em	Lago di Nemi, 90 121 – Taranto (Italy) . +39.099.7722302 – Fax: +39.099.9870285 ail: info@pheedra.it – web: www.pheedra.it

Codice Uso del Suolo (UDS)	UDS	A	В	С	D
DISCARICHE	1321	90	92	94	95
DEPOSITI DI ROTTAMI A CIELO APERTO,	1,521				
CIMITERI DI AUTOVEICOLI	1322	90	92	94	95
AREE RICREATIVE E SPORTIVE	1421	70	78	83	88
AREE ARCHEOLOGICHE	1422	49	69	79	84
SEMINATIVI IN AREE NON IRRIGUE	2111	58	72	81	85
PRATI ARTIFICIALI. COLTURE	2111	50		31	0.0
FOR AGGERE OVE SI PUÒ RICONOSCERE					
UNA SORTA DI AVVICENDAMENTO CON I					
SEMINATIVI E UNA CERTA					
PRODUTTIVITÀ, SONO SEMPRE					
POTENZIALMENTE RICONVERTITI A					
SEMINATIVO, POSSONO ESSERE					
RICONOSCIBILI MURETTI O MANUFATTI	2112	67	71	81	89
SEMINATIVI SEMPLICI E COLTURE					
ORTICOLE A PIENO CAMPO	2121	66	77	85	89
RISAIE	2122	98	98	98	98
VIVAI	2123	66	77	85	89
COLTURA IN SERRA	2124	98	98	98	98
COLTURE TEMPORANEE ASSOCIATE					
ALL'OLIVO	2411	59	74	82	86
COLTURE TEMPORANEE ASSOCIATE AL					
VIGNETO	2412	59	74	82	86
COLTURE TEMPORANEE ASSOCIATE AD					
ALTRE COLTURE PERMANENTI (PASCOLI					
E SEMINATIVI ARBORATI CON					
COPERTURA DELLA SUGHERA DAL 5 AL					
25%)	2413	59	74	82	86
BOSCO DI LATIFOGLIE	3111	39	51	63	70
ARBORICOLTURA CON ESSENZE					
FORESTALI (LATIFOGLIE)	3112	39	51	63	70
BOSCHI DI CONIFERE	3121	39	51	63	70
CONIFERE A RAPIDO ACCRESCIMENTO	3122	39	51	63	70
FORMAZIONI VEGETALI BASSE E CHIUSE,					
STABILI, COMPOSTE PRINCIPALMENTE DI					
CESPUGLI, ARBUSTI E PIANTE ERBACEE (ERICHE, ROVI, GINESTRE, GINEPRI NANI					
ECC.)	3221	51	58	73	90
FORMAZIONI DI RIPA NON ARBOREE	3222	51	58	73	80 80
MACCHIA MEDITERRANEA	3222	51	58	73	80
GARIGA GARIGA	3231	51	58	73	80
AREE A RICOLONIZZAZIONE NATURALE		45		68	75
AREE A RICOLONIZZAZIONE NATURALE AREE A RICOLONIZZAZIONE ARTIFICIALE	3241 3242	45	55 55	68	75
			73	82	86
SPIAGGE DI AMPIEZZA SUPERIORE A 25M AREE DUNALI NON COPERTE DA	3311	56	//	82	86
VEGETAZIONE DI AMPIEZZA SUPERIORE					
A 25M	3312	56	73	82	86
AREE DUNALI CON COPERTURA	3312	30	13	82	80
VEGETALE CON AMPIEZZA SUPERIORE A					
25 M	3313	56	73	82	86
LETTI ASCIUTTI DI TORRENTI DI	3313	50	13	62	- 60
AMPIEZZA SUPERIORE A 25M	3315	56	73	82	86
FIUMI, TORRENTI E FOSSI	5111	100	100	100	100
CANALI E IDROVIE	5112	100	100	100	100
BACINI NATURALI	5112	100	100	100	100
BACINI NATURALI BACINI ARTIFICIALI	5121	100	100	100	100
LAGUNE, LAGHI E STAGNE COSTIERI A	3122	100	100	100	100
PRODUZIONE ITTICA NATURALE	5211	100	100	100	100
	7211	100	100	100	100

PHEEDRA SrI
Servizi di Ingegneria Integrata
Via Lago di Nemi, 90
74121 - Taranto (Italy)
Tel. +39.099.7722302 - Fax: +39.099.9870285
Via Lago di Nemi, 90 74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285 Email: info@pheedra.it – web: www.pheedra.it

Codice Uso del Suolo (UDS)	UDS	A	В	С	D
ACQUACOLTURE IN LAGUNE, LAGHI E					
STAGNI COSTIERI	5212	100	100	100	100
ESTUARI E DELTA	5213	100	100	100	100
AREE MARINE A PRODUZ. ITTICA					
NATURALE	5231	100	100	100	100
ACQUACOLTURE IN MARE LIBERO	5232	100	100	100	100
PIOPPETI, SALICETI, EUCALITTETI ECC.					
ANCHE IN FORMAZIONI MISTE	31121	39	51	63	70
SUGHERETE	31122	39	51	63	70
CASTAGNETI DA FRUTTO	31123	39	51	63	70
ALTRO	31124	39	51	63	70

Tabella 2 - Valore del Curve Number in funzione dell'uso del suolo (Corine) e del tipo di suolo

Dalla combinazione della attribuzione della classe di tipo di suolo e dell'uso del suolo, tramite la Tabella 3 sopra riportata è stato possibile ricavare il valore del CN-II medio dell'intera area che nel caso di specie ha condotto allo stesso valore:

CN II = 82

Nella presente trattazione si sono ipotizzate, a seconda delle caratteristiche dei bacini oggetto di studio, condizioni AMC tipo III (Antecedent Moisture Conditions) che prevede l'assunzione di un unico valore CN III, determinato a partire dal valore di CN II attraverso la seguente formulazione:

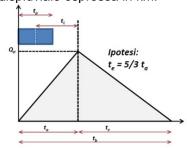
$$CN III = \frac{CNII}{0.43 + 0.0057 \cdot CNII} = 91.38$$

Con riferimento al calcolo della portata al colmo Q_p (m³/s) il metodo SCS-CN considera un idrogramma approssimato di forma triangolare che ha una fase crescente di durata $\mathbf{t_a}$ (tempo di accumulo) e una fase di esaurimento di durata $\mathbf{t_e}$ (tempo di esaurimento) e il cui volume, espresso in m³, ha la seguente espressione:

$$V = \frac{Q_p}{2}(t_a + t_e) = \frac{Q_p \cdot t_b}{2}$$

avendo indicato con t_b la durata dell'evento di piena.

Poiché è stato stabilito sperimentalmente che nella fase crescente dell'idrogramma defluisce un volume idrico che è pari al 37.5% del volume totale V di deflusso, ne consegue che la durata della fase crescente è pari a 0,375 volte la durata dell'evento di piena t_{b} e pertanto:


Utilizzando le formule di cui sopra, esprimendo il volume di deflusso V in mm, il tempo t_a in ore, l'area A del bacino in Km² si ottiene:

$$Qp = 0.208 \frac{VA}{t_a}$$

La determinazione di ta, nell'ipotesi di precipitazione di intensità costante di durata tp e indicando con TL il tempo di ritardo, calcolato con la formula di Mokus:

$$T_L = 0.342 \frac{L^{0.8}}{s^{0.5}} (\frac{1000}{CN} - 9)^{0.7}$$

in cui s è la pendenza del bacino espressa in %, L è la lunghezza dell'asta principale prolungata fino alla displuviale espressa in km.

Per la determinazione della durata di pioggia si è determinato:

PHEEDRA SrI		
Servizi di Ingegneria Integrata Via Lago di Nemi, 90 74121 – Taranto (Italy) Tel. +39,099,7722302 – Fax: +39,099,9870285	RELAZIONE IDROLOGICA	Pag. 24 di 27
Fmail: info@nheedra it _ web: www.pheedra it		

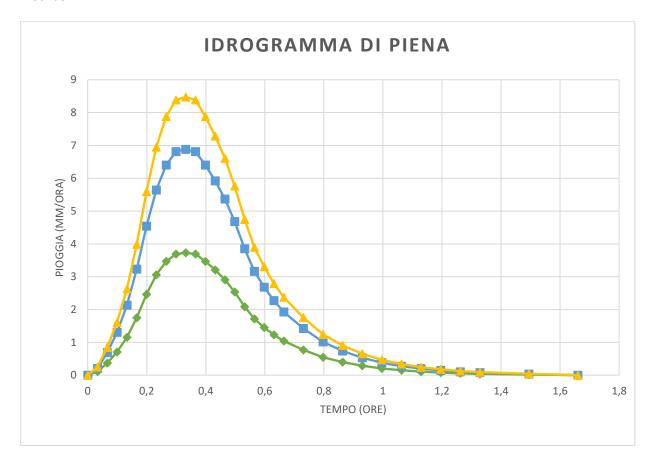
Committente:	PROGETTO PER LA REALIZZAZIONE DI UN	Nome del file:
Q-Energy Renewables 2 S.r.l.	PARCO EOLICO NEI COMUNI DI	
Via Vittor Pisani 8/a	FRESAGRANDINARIA, DOGLIOLA E LENTELLA IN	
20124 Milano (MI)	LOCALITA' "MACCHIA DELLA VALLE, GUARDIOLA,	
20124 IVIIIario (IVII)	LAGO LA CORTE E COLLE MILARAGNO"	FRS-CIV-REL-032 _00

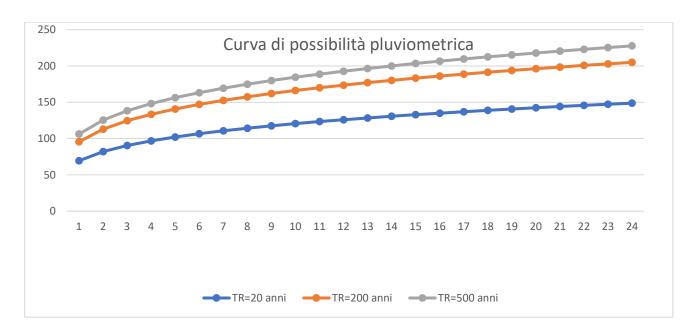
ta= 0,5 Tc+ T_L - tb= 8/3 ta Si è infine determinato il tempo di corrivazione 0,6 T_L ottenendo un valore del tempo di corrivazione **Tc.** Si sono così determinate le portate al colmo per i tempi di ritorno di 30 e 200 e 500 anni.

I risultati possono essere così sintetizzati:

METODO SCS CN (DETERMINAZIONE PORTATA AL COLMO)				
Curve Number				
CN(II)	82,00			
CN(III)	91,38			
Tempi				
TL (Mokus)	1,97	Tempo di ritardo		
Tc (0,6*TL)	1,18	Tempo di corrivazione		
ta (ore)	2,56	Tempo di accumulo		
tb (ore)	6,83	Durata totale		
Determinazione perdite per infiltrazione				
S	23,96	Volume specifico di saturazione		
la	4,79	Perdite iniziali		
Altezza di Pioggia relativa al tempo di corrivazione				
Нс	25,78			
Altezze di pioggia relative ai tempi di ritorno				
H 30 (mm)	69,37	Pioggia lorda (TR 30 anni)		
H 200 (mm)	95,60	Pioggia lorda (TR 200 anni)		
H 500 (mm)	106,17	Pioggia Lorda (TR 500 anni)		
Altezza di pioggia netta				
Pe netta 30 (mm)	43,59	Pioggia netta (TR 30 anni)		
Pe netta 200 (mm)	69,81	Pioggia netta (TR 200 anni)		
Pe netta 500 (mm)	80,39	Pioggia netta (TR 500 anni)		

Portate al colmo di piena			
Q 20 (mc/s)	6,59		
Q 200 (mc/s)	10,55		
Q 500 (mc/s)	12,15		


PHEEDRA SrI Servizi di Ingegneria Integrata Via Lago di Nemi, 90 74121 – Taranto (Italy) Tel. +39,099,7722302 – Fax: +39,099,9870285	RELAZIONE IDROLOGICA	Pag. 25 di 27
Tel. +39.099.7722302 – Fax: +39.099.9870285 Email: info@pheedra.it – web: www.pheedra.it		


FRS-CIV-REL-032_00

L'idrogramma unitario SCS relativo ad un volume di deflusso V pari a un millimetro, si costruisce a partire dall'idrogramma adimensionale di Mockus che è una curva adimensionale, ricavata da numerosi idrogrammi unitari ottenuti da idrogrammi di piena registrati in bacini di differente estensione e posizione geografica, che mette in relazione il rapporto tra la generica portata Q all'istante t e la portata al colmo Qp che si verifica all'istante ta (durata della fase di crescita) con la variabile adimensionale t/ta.

Per il suddetto idrogramma unitario il 37,5% del volume totale di deflusso, che corrisponde ovviamente all'intera area ricadente tra l'idrogramma e l'asse delle ascisse t/ta, si verifica in corrispondenza della sola fase ascendente dell'idrogramma stesso. In altri termini il volume di deflusso corrispondente alla fase crescente dell'idrogramma è pari al 37,5% del volume totale di deflusso.

Si sono determinati gli idrogrammi di piena dei bacini sulla base della formulazione dell'idrogramma di Mockus:

3. CONCLUSIONI

A seguito di un accurato studio idrologico, sono stati valutati gli eventi di piena caratteristici dei bacini idrografici che interessano le aree in progetto e se ne sono determinate oltre che le portate al colmo riferite ai tempi di ritorno di 20, 200, 500 anni anche gli idrogramma di piena ottenuti con il metodo di Mockus.

Pertanto, l'intervento nell'area in oggetto, risulta compatibile con le risultanze dello studio.