

Francesco CALDARONE Ordine Geologi della Regione odi. Geologi della Regione

GREEN ENERGY 5 S.R.L.

Sede legale: Corso Europa 13 MILANO (MI), 20122 P. IVA 12767930964

PEC: green.energy5.srl@legalmail.it

RESPONSABILE TECNICO BELL FIX PLUS SRL

Cosimo TOTARO

Ordine Ingegneri della Provincia di Brindisi - n. 1718 elettrico@bellfixplus.it

APRILE 2024

Indice

			Pag.
1. F	reme	essa	2
2. (Colloc	cazione geografica dell'area	3
3. I	nqua	dramento geomorfologico	7
4. I	nqua	dramento geologico e strutturale	9
4	1.1	Argille scistose, argille marnose grigio-azzurrognole, sabbie argillose PQa	10
4	1.2	Ciottolame con elementi di medie e grandi dimensioni, a volte cementati Qc_1	10
5. I	nqua	dramento idrogeologico	14
6.	Inda	agini eseguite	19
6	5.1	Profili sismici a rifrazione	19
6	5.2	Profili sismici con metodologia MASW	20
7. (Geolit	ologia e idrogeologia dell'area interessata dall'impianto agrivoltaico	22
7	7.1	Geolitologia e caratteristiche tecniche dei terreni	22
8.	Cara	atterizzazione sismica: individuazione della categoria di suolo a mezzo indagine	
sisı	nica (con la metodologia MASW	27
8	3.1	Classificazione sismica	27
8	3.2	Indagine sismica con metodologia MASW	28
8	3.3	Categoria del suolo di fondazione	29
a	Con	clusioni	33

Allegati

RELAZIONE CONCLUSIVA DELLE ATTIVITA' DI INDAGINE IN SITO

RELAZIONE GEOLOGICA

1. Premessa

La società proponente GREEN ENERGY 5 S.R.L., con Sede legale in Corso Europa 13 - 20122 - Milano (MI) - C.F e P.IVA: 12767930964 - PEC: green.energy5.srl@legalmail.it, ha affidato allo scrivente l'incarico per la redazione di una Relazione Geologica relativa al progetto di installazione di un impianto denominato *Impianto Agrivoltaico Volturino 63.3* della potenza di 74.360,16 kWp, in agro di Volturino nella Provincia di Foggia, realizzato con moduli fotovoltaici in silicio monocristallino, aventi una potenza di picco di 630Wp, mentre le opere di connessione attraversano anche i comuni di Lucera e San Severo.

La Società Proponente intende realizzare un impianto "agrivoltaico" nel Comune di Volturino (FG), ponendosi come obiettivo la produzione di energia elettrica da fonte rinnovabile coerentemente agli indirizzi stabiliti in ambito nazionale e internazionale volti alla riduzione delle emissioni dei gas serra ed alla promozione di un maggior contributo delle fonti energetiche rinnovabili alla produzione di elettricità nel relativo mercato italiano e comunitario e adottare anche soluzioni volte a preservare la continuità delle attività agricola e pastorale sul sito di installazione.

La vendita dell'energia prodotta dall'impianto fotovoltaico sarà regolata da criteri di "market parity", ossia avrà gli stessi costi, se non più bassi, dell'energia prodotta dalle fonti tradizionali (petrolio, gas, carbone).

Lo studio ha per obiettivo quello di definire le componenti litostratigrafiche e idrogeologiche che caratterizzano il sito stesso e l'area in cui esso ricade con l'individuazione delle caratteristiche fisiche dei terreni.

Al fine di ricostruire l'assetto litostratigrafico dell'area oggetto di studio e di una sua caratterizzazione geotecnica, si è proceduto:

- al rilevamento geologico di campagna di dettaglio;
- all'analisi di dati in possesso dello scrivente;
- all'analisi di dati e informazioni desunte da letteratura tecnica;
- all'esecuzione di un piano di investigazione costituito da
 - <u>indagini indirette</u>:
 - o n.5 profili sismici a rifrazione con ricostruzione tomografica;
 - n.3 profili sismici con metodologia MASW per caratterizzazione sismica con individuazione delle Vs,eq.

Si fornisce, inoltre, un inquadramento geologico e morfologico-strutturale dei luoghi, si identificano le formazioni ed i litotipi presenti in sito, le caratteristiche geostrutturali del sottosuolo e le caratteristiche idrogeologiche anche in riferimento alla natura e collocazione della falda acquifera. I dati raccolti hanno consentito di caratterizzare in maniera soddisfacente i terreni coinvolti, salvo poi verificarne l'esatta corrispondenza prima dell'inizio dei lavori.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

Le prospezioni geofisiche (indagine sismica passiva con metodologia MASW) sono state finalizzate all'individuazione della categoria di suolo come previsto dalle vigenti Norme Tecniche per le Costruzioni (DM 17.01.2018).

La presente è stata redatta in ottemperanza alle disposizioni dettate dalle Norme Tecniche sulle Costruzioni - D.M. del 17.01.2018.

2. Collocazione geografica dell'area

L'impianto agrivoltaico ricopre una superficie di circa 92,71 ettari; il campo agrivoltaico risulta accessibile dalla viabilità locale, costituita da strade provinciali e comunali e da servitù private da acquisire.

I siti ricadono nel territorio comunale di Volturino, in direzione Nord-Est rispetto al centro abitato, in una zona occupata da terreni agricoli. Sono individuati alle coordinate geografiche: 41°30'15.58"N, 15°11'44.16"E ed ha un'altitudine media di circa 300 m s.l.m. (Figura 1).

Esso ricade sul Foglio 163 della Carta d'Italia I.G.M. scala 1:25.000, Tav. I S.O. "Fattoria Cavalli". L'impianto agrivoltaico sarà realizzato su terreni identificati catastalmente al:

- foglio 8 p.lle 17-19-27-37-38-44-51-70-73-74-75-89-90-92-94-297-298-319-320-321-355-356-357-358-359-361-387-388-393-394-398-404-405-582-585-586-587-617-618-620-623-652-653-654-656-657-658-659-665-666-740-741-746-756-842-843-845-890-918-938-939;
- foglio 9 p.lle 34-35-265-334-335-336-520-521-522-523-524-525.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

Fig. 1 - Ortofoto con ubicazione dell'area di impianto

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

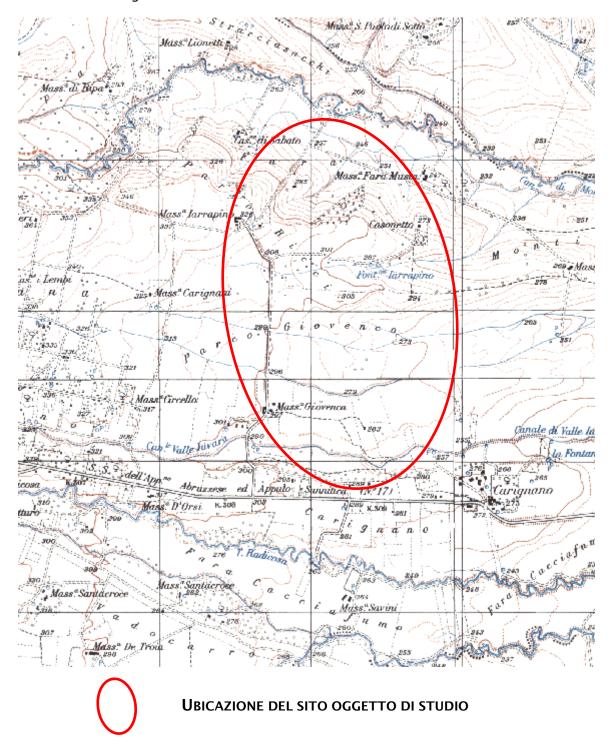


Fig. 2 - Layout di impianto

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

Fig. 3 - COROGRAFIA

Estratto del foglio 163 - Tav. "Fattoria Cavalli" - Carta d'Italia I.G.M. - scala 1:25.000

GREEN ENERGY 5 S.R.L.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

3. Inquadramento geomorfologico¹

Il sito oggetto di studio è posto al margine occidentale del Tavoliere di Puglia, il quale è situato nella parte settentrionale della Regione pugliese e costituisce la più estesa pianura dell'Italia meridionale; si sviluppa in direzione NW-SE ed è compreso tra il F. Fortore a nord, i Monti della Daunia ad ovest, il Gargano e il mare Adriatico ad est, e il F. Ofanto a sud.

Il Tavoliere è l'unica area della Puglia ad essere dotata di una rete idrografica ben definita, costituita da corsi d'acqua a regime prevalentemente torrentizio che incidono i depositi quaternari. Morfologicamente il Tavoliere è una pianura lievemente ondulata caratterizzata da vaste spianate che digradano debolmente verso mare a partire dalle quote più alte del margine appenninico.

L'idrografia superficiale dell'intero territorio, è collegata ai due fiumi principali, il Fortore e l'Ofanto, che scorrono alle due estremità del Tavoliere e nascono dall'Appennino, sfociando entrambi nel Mare Adriatico; gli altri corsi d'acqua maggiori, il Candelaro, il Cervaro ed il Carapelle, scendono pure dall'Appennino e attraversano il Tavoliere, ma con regimi tipicamente torrentizi e deflussi stagionali; sono caratterizzati da alvei poco profondi e generalmente regolarizzati con opere di regimazione.

È possibile distinguere da ovest verso est ben cinque distretti morfologici (Bonzi, 1983):

un'area collinare, una zona a ripiani, una vasta piana alluvionale antica, una piana costiera ed una zona litorale. La prima zona, che borda il margine orientale appenninico, è rappresentata da rilievi collinari, posti a 300-400 m di quota. I ripiani corrispondono a terrazzi marini, che digradano verso l'Adriatico e sono, a luoghi, delimitati verso est da scarpate poco elevate, corrispondenti a ripe di abrasione. La piana alluvionale si estende con continuità dalla zona dei terrazzi più antichi fino alla piana costiera che corrisponde, per gran parte, ad antiche aree lagunari (Lago di Salpi e Lago Salso) successivamente colmate per fatti naturali ed antropici.

Nell'area si individuano tre regioni a carattere morfologico differente: l'Appennino, il Gargano e il Tavoliere.

La piana del Tavoliere corrisponde a una superficie strutturale allungata in direzione NW-SE, leggermente inclinata verso l'attuale linea di costa, incisa da torrenti e canali allineati in direzione E-O.

In relazione ai sedimenti affioranti -in quest'area sì Possono distinguere forme di modellamento diverso procedendo da ovest verso est (Boenzi, 1983): un'area collinare, una zona a ripiani, una vasta piana alluvionale antica, una piana costiera ed una zona litorale.

I ripiani corrispondono a terrazzi marini che digradano verso l'Adriatico e sono delimitati ad est da poco elevate scarpate, corrispondenti a ripe di abrasione, che specialmente nella parte meridionale del Tavoliere risultano più erosi tanto da essere completamente circondati da

GREEN ENERGY 5 S.R.L.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

¹ DPP_Nota di aggiornamento – Allegato_Relazione Geologica Preliminare – PUG Foggia. Marzo 2019.

RELAZIONE GEOLOGICA

depositi alluvionali. Questi ultimi, si raccordano più ad est con i sedimenti della piana costiera, sede in un passato storico di ambiente palustre di laguna, successivamente bonificato.

La faglia che corre lungo il T. Candelaro separa nettamente dalle basse pianure del Tavoliere di Foggia il massiccio Promontorio Garganico, che viene così a formare una caratteristica unità orografica, geologica, idrografica e morfologica.

Il territorio comunale di Foggia è caratterizzato morfologicamente da una piana alluvionale leggermente pendente verso il golfo di Manfredonia.

Il reticolo idrografico è caratterizzato dalla presenza vasti bacini ma con linee di impluvio a basso grado di gerarchizzazione che si generano dai rilievi di origine appenninica. I profili delle sezioni trasversali di queste incisioni sono piuttosto profondi.

Si tratta di corsi d'acqua a carattere torrentizio, con portate minime per la maggior parte dei giorni dell'anno, ma che in occasione di eventi piovosi di una determinata entità e durata sono in grado di convogliare notevoli quantità d'acqua e di trasporto solido.

Il sito oggetto del presente studio risulta posto a quote comprese tra 260 e 310 m.

Le porzioni settentrionali delle aree di impianto si sovrappongono (cfr Fig. seguente) al vincolo individuato dal PAI dall'Autorità di Bacino Distrettuale dell'Appennino Meridionale (AdB DAM) come Aree a Pericolosità Geomorfologica media e moderata (P.G.1).

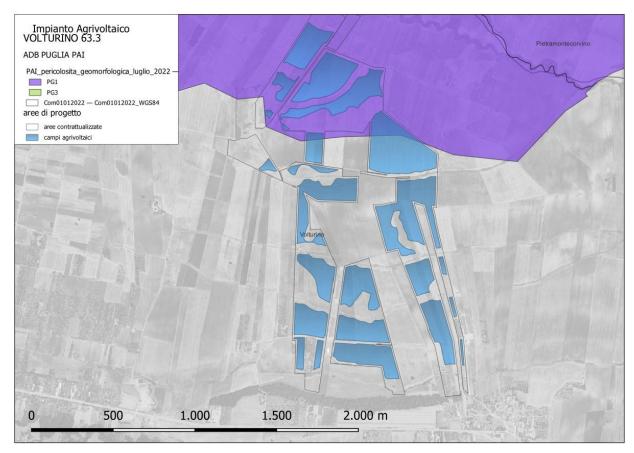


Fig. 4 - Sovrapposizione delle aree di impianto con le perimetrazioni P.G.1 di AdBDAM

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

4. Inquadramento geologico e strutturale

In cartografia ufficiale – Carta Geologica d'Italia alla scala 1:100.000 (Fig.5) - l'area di studio ricade nel Foglio 163 "Lucera", a cavallo tra i "Monti della Daunia" ed il "Tavoliere di Puglia". Quest'ultimo consiste in una vasta zona pianeggiante delimitata a sud-est dall'altopiano murgiano, a sud-ovest dai primi rilievi collinari dell'Appennino Dauno e a nord dal promontorio del Gargano.

Da un punto di vista geologico il Tavoliere di Puglia coincide con la parte settentrionale della Fossa bradanica (MIGLIORINI, 1937), un bacino di sedimentazione di età plio-pleistocenica situato tra il margine esterno della Catena sud-appenninica e l'Avampaese apulo-garganico. La Fossa Bradanica si estende per circa 200 km in direzione NO-SE dal Fiume Fortore fino al Golfo di Taranto con un'ampiezza che varia da 15-20 km a nord dell'Ofanto fino a 50-60 km in prossimità della costa ionica. Verso nord, all'altezza del Fiume Fortore, il bacino bradanico si raccorda all'Avanfossa padano-adriatica, mentre verso sud prosegue nel Golfo di Taranto. Come è noto, le avanfosse sono dei bacini di sedimentazione che si formano tra il fronte di una catena in sollevamento e il settore di avampaese non ancora coinvolto dall'orogenesi. La loro origine è da porre in relazione alla subsidenza flessurale delle aree di avampaese dovuto ad un progressivo processo di arretramento della cerniera della subduzione e al carico litostatico della catena. In questo contesto geodinamico settori crostali, in cui era presente una sedimentazione di mare sottile o continentale, sono interessati da una rapida sedimentazione clastica sottomarina con depositi provenienti in massima parte dalle aree di catena in via di sollevamento. Il Bacino bradanico, in particolare, si inizia a delineare nel Pliocene inferiore e deve la sua formazione alla subduzione verso ovest della litosfera adriatica (MALINVERNO & RYA N. 1986; ROYDEN et alii, 1987; PATACCA & SCANDONE, 1989; DOGLIONI, 1991) un processo già attivo a partire dal Miocene inferiore. Durante il processo di flessurazione l'avampaese apulo subisce un'intensa fratturazione con la formazione di una struttura ad horst e graben. Come conseguenza di ciò si ha l'ingressione marina e un progressivo approfondimento del bacino. Tale approfondimento è guidato dalla retroflessione della litosfera adriatica e dal carico litostatico della catena appenninica il cui fronte progressivamente si sposta verso est sovrapponendosi agli stessi depositi di avanfossa.

A partire dal Pleistocene medio, l'arretramento della litosfera rallenta a causa della resistenza a subdurre della spessa litosfera continentale adriatica (DOGLIONI, 1991). Inizia una fase di sollevamento regionale e di regressione marina testimoniata dalla presenza di un trend regressivo nei sedimenti bradanici. Con il colmamento del bacino si ha l'emersione dell'intera area che da quel momento in poi non subisce movimenti significativi.

Per meglio comprendere le caratteristiche stratigrafiche e strutturali dell'area ricadente nel Foglio 163 "Lucera" e l'evoluzione geologica dell'area si ritiene opportuno fornire un quadro regionale delle unità affioranti e di quelle presenti nel sottosuolo. È bene sottolineare che queste ultime rivestono una notevole importanza per la comprensione dell'evoluzione

GREEN ENERGY 5 S.R.L.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

geologica dell'area; la gran parte della successione bradanica, infatti, non affiora, ma è stata ampiamente investigata attraverso studi geofisici, profili sismici a riflessione e perforazioni per ricerche di idrocarburi e risorse idriche (JABOLI & ROGER, 1954).

Sulla base dei dati di superficie e di sottosuolo è possibile distinguere nell'area dei fogli interessati due unità stratigrafiche che rivestono anche una notevole importanza dal punto di vista paleogeografico:

- · la piattaforma apulo-garganica appartenente al dominio strutturale di avampaese, costituita da una successione sedimentaria la cui età accertata va dal Permiano fino al Miocene;
- · la successione di riempimento della Fossa Bradanica appartenente al dominio strutturale di avanfossa, la cui età, nell'area del Foglio, va dal Pliocene medio al Pleistocene medio.

L'area in questione è caratterizzata dalla presenza di depositi recenti che vanno dal Pliocene all'Olocene.

All'interno del foglio interessato, nell'intorno del sito, si evidenzia una serie di formazioni stratigrafiche, così deposte²:

4.1 Argille scistose, argille marnose grigio-azzurrognole, sabbie argillose PQa

Si tratta di un complesso di sabbie argillose, argille e argille marnose grigio-azzurrognole, nonché di argille scistose che caratterizza la parte bassa dei rilievi del Tavoliere e va ad appoggiare, ad occidente, sulle varie formazioni del flysch dei Monti della Daunia. In generale rivelano una costante immersione verso oriente con inclinazioni massime di 5°.

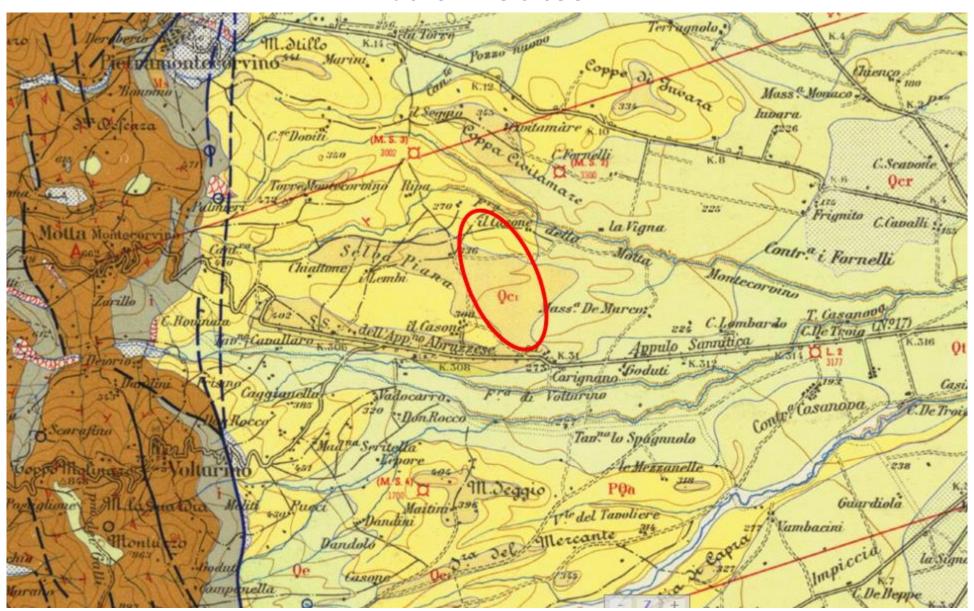
Il periodo di sedimentazione è Pliocene-Calabriano Inf.

4.2 Ciottolame con elementi di medie e grandi dimensioni, a volte cementati Qc1

I depositi distinti con questa sigla sono composti da ciottolame misto a sabbie sciolte o in puddinga, costituito da elementi di arenaria e di calcare detritico derivanti dal flysch, di dimensioni medie tra 10 e 30 cm di diametro, alternato con sabbie ad andamento lenticolare e talora a stratificazione incrociata. Superiormente si presentano con concrezioni e crostoni calcarei. Questo complesso raggiunge una potenza di 50 m e forma le superfici spianate dei terrazzi più alti del Tavoliere, fino a 400 m di quota s.l.m. (presso Troia).

Esso poggia con lieve discordanza sui sedimenti sottostanti, ma taluni affioramenti nei pressi di Troia mostrano continuità con le sottostanti sabbie marine attribuite al Calabriano.

Questi depositi vengono interpretati come accumuli deltizi formatisi in corrispondenza di fasi pluviali duranti le quali le capacità di trasporto dei corsi d'acqua ed i processi di denudamento sarebbero stati straordinariamente attivi.


Circa la loro età si ritiene probabile che essi corrispondano alla fine dell'oscillazione eustatica calabriana.

GREEN ENERGY 5 S.R.L.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

² Note Illustrative della Carta Geologica D'Italia alla scala 1:100.000 – Foglio 163 "Lucera" – A. Jacobacci, A Malatesta, G. Martelli, G. Stampanoni – 1967.

Fig. 5 - CARTA GEOLOGICA

RELAZIONE GEOLOGICA

LEGENDA

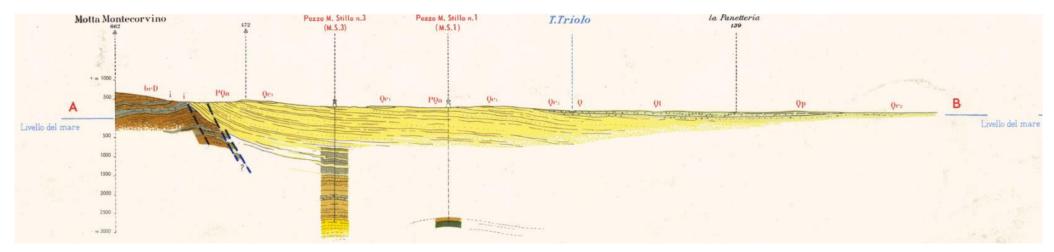
Ciottolame con elementi di medie e grandi dimensioni, a volte cementati, di rocce derivanti dai terreni dell' Appennino, talora con intercalazioni sabbiose. Fine Calabriano (?). Il complesso Oci poggia generalmente sulla superficie erosa della serie Pliopleistocenica.

Argille scistose, argille marnose grigio-azzurrognole, sabbie argillose con frequenti associazioni di *Bulimina*, *Bolivina*, *Cassidulina* (PQa).

Olistostromi di materiali pre-pliocenici in Pozzo M. S. nº 3 (Pol).

Sabbie ed arenarie con livelli di puddinghe ad Oriente di Castelluccio Valmaggiore (Ps).

UBICAZIONE DELL'AREA DI IMPIANTO



TRACCIA DI SEZIONE A-B

GREEN ENERGY 5 S.R.L.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

GREEN ENERGY 5 S.R.L.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

C.F e P.IVA: 12767930964 PEC: green.energy5.srl@legalmail.it

Pag. **13** di **34**

5. Inquadramento idrogeologico

Per quanto riguarda l'idrologia sotterranea si possono distinguere tre diversi tipi di acque: freatiche, artesiane e carsiche.

Tutta la porzione del Tavoliere racchiusa tra il promontorio del Gargano, il Golfo di Manfredonia e il fiume Ofanto è interessata da acque freatiche dolci e da acque salmastre, distribuite in modo saltuario e di difficile delimitazione.

Si può dire, grosso modo, che le acque dolci sono legate ai terreni sabbiosi e ciottolosi antichi, mentre le salmastre si riscontrano più facilmente nelle formazioni dell'Olocene.

La superficie freatica viene incontrata da pochi decimetri sotto il piano di campagna fino a profondità superiori ai 20 metri.

Le acque artesiane sono generalmente dolci, con portate che variano dai 5 ai 70 l/s e sono comprese entro sedimenti clastici, limitati alla base dalle argille plioceniche e al tetto dai sedimenti argillosi quaternari.

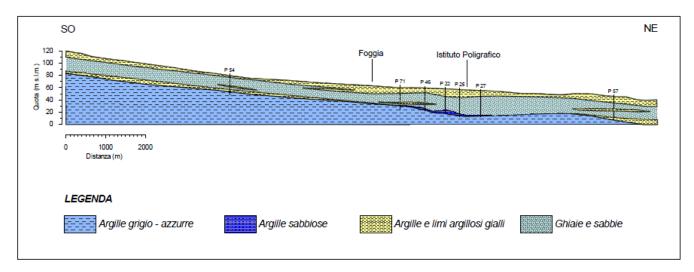


Fig. 6 - Sezione geolitologica del Tavoliere in corrispondenza del tratto medio-basso del bacino idrografico del Torrente Cervaro (da Sollitto, 2006).

L'insieme delle formazioni carbonatiche mesozoiche del Gargano e del substrato prepliocenico del Tavoliere costituiscono un vasto serbatoio idrico sotterraneo, caratterizzato da una permeabilità secondaria dovuta a fessurazione e carsismo.³

La circolazione idrica all'interno del substrato prepliocenico dell'avanfossa appenninica è testimoniata dalla presenza di numerosi pozzi per acqua, che si attestano nei calcari mesozoici, situati nella zona del Tavoliere ai piedi del promontorio garganico.

Dati derivanti dalla ricerca petrolifera, inoltre, indicano che calcari porosi e permeabili sono presenti anche più a W, a maggiori profondità, in tutto il substrato pre-pliocenico. Le caratteristiche della circolazione idrica in questo settore dell'acquifero, tuttavia, non sono ben

-

³ DPP_Nota di aggiornamento – Allegato_Relazione Geologica Preliminare – PUG Foggia. Marzo 2019.

RELAZIONE GEOLOGICA

definite; diversi autori ipotizzano, almeno per quanto riguarda l'area pedegarganica, l'esistenza di un flusso idrico da W a E, cioè verso il Gargano (Cotecchia & Magri, 1966; Maggiore & Mongelli, 1991; Grassi & Tadolini, 1991).

La situazione stratigrafica e strutturale del Tavoliere porta a riconoscere tre unità acquifere principali (Maggiore et al., 1996).

ACQUIFERO FESSURATO CARSICO PROFONDO

Situato in corrispondenza del substrato carbonatico prepliocenico del Tavoliere, esso costituisce l'unità acquifera più profonda. Le masse carbonatiche sepolte ospitano un esteso corpo idrico, localizzato a diverse profondità e collegato lateralmente alle falde idriche del Gargano e delle Murge. L' interesse per questo acquifero è, tuttavia, limitato alle zone dove il substrato si trova a profondità inferiori a qualche centinaio di metri, vale a dire in prossimità della fascia pedegarganica del Tavoliere e lungo il bordo ofantino delle Murge. La circolazione idrica sotterranea è fortemente condizionata dai caratteri strutturali ed in particolare dalla presenza delle numerose faglie che determinano direttrici di flusso preferenziali, nonché dalle caratteristiche idrauliche dell'acquifero chevariano da zona a zona in funzione dello stato di fratturazione e carsismo della roccia. Lungo la fascia pedegarganica, diversi Autori (Cotecchia & Magri, 1996; Mongelli & Ricchetti, 1970; Maggiore & Mongelli, 1991; Grassi & Tadolini, 1992) hanno riscontrato per le acque sotterranee valori piuttosto elevati delle temperature spiegabili attraverso un fenomeno di mixing tra acque connate profonde e acque di falda di origine meteorica.

ACQUIFERO POROSO PROFONDO

È costituito dai diversi livelli sabbiosi intercalati nella formazione pliopleistocenica delle "Argille grigio-azzurre". I livelli acquiferi sono costituiti da corpi discontinui di forma lenticolare, localizzati a profondità variabili tra i 150 m e i 3000 m dal piano campagna, il cui spessore non supera le poche decine di metri. Nelle lenti più profonde, si rinvengono acque connate, associate a idrocarburi, che si caratterizzano per i valori piuttosto elevati della temperatura (22-26°C) e per la ricorrente presenza di H2S (Cotecchia et al., 1995; Maggiore et al., 1996).

La falda è ovunque in pressione e presenta quasi sempre caratteri di artesianità. La produttività dei livelli idrici, pur essendo variabile da luogo a luogo, risulta sempre molto bassa con portate di pochi litri al secondo.

ACQUIFERO POROSO SUPERFICIALE

Corrisponde agli interstrati sabbioso-ghiaiosi dei depositi marini e continentali di età Pleistocene superiore-Olocene che ricoprono con notevole continuità laterale le sottostanti argille. Più dettagliatamente, le stratigrafie dei numerosi pozzi per acqua realizzati in zona, evidenziano l'esistenza di una successione di terreni sabbioso-ghiaioso-ciottolosi, permeabili

GREEN ENERGY 5 S.R.L.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

ed acquiferi, intercalati da livelli limo-argillosi a minore permeabilità. Questi, tuttavia, non costituiscono orizzonti separati ma idraulicamente interconnessi e danno luogo ad un unico sistema acquifero. In linea generale, si può affermare che i sedimenti più permeabili prevalgono nella zona di monte mentre, procedendo verso la costa, si fanno più frequenti ed aumentano di spessore le intercalazioni limoso-sabbiose che svolgono il ruolo di acquitardo.

Essendo le modalità di deflusso della falda fortemente influenzate da tali caratteristiche, risulta che l'acqua circola in condizioni freatiche nella fascia pedemontana ed in pressione nella zona medio-bassa, assumendo localmente il carattere di artesianità (Cotecchia, 1956).

Nell'alimentazione della falda superficiale, un contributo importante, oltre che dalle precipitazioni, proviene dai corsi d'acqua che solcano il Tavoliere (Colacicco, 1953; Cotecchia, 1956; Maggiore et al., 1996, De Girolamo et al., 2002). Per quanto riguarda la produttività dell'acquifero poroso superficiale, si è ormai ben lontani dalla condizione di acque freatiche segnalata da Colacicco (1951) con portate emungibili dell'ordine di 40-50 l/s.

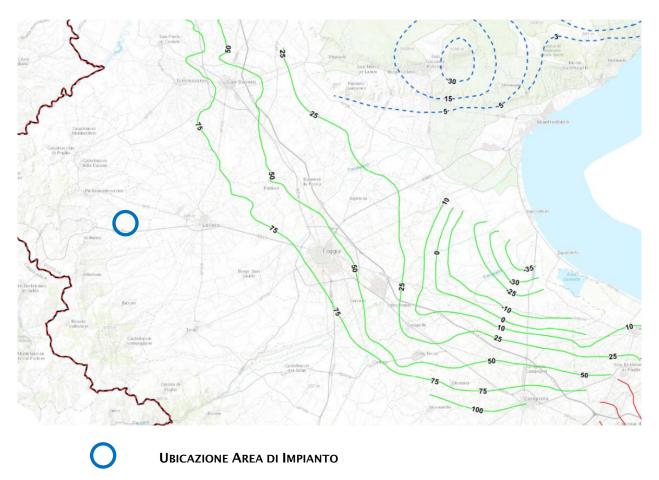
Attualmente, infatti, le portate di emungimento sono spesso così esigue (1-3 l/s) da rendere necessario l'utilizzo di vasche di accumulo. Lo stato attuale della falda risulta, pertanto, di gran lunga differente rispetto a cinquanta anni fa. L'introduzione in Capitanata di colture fortemente idroesigenti, intensificatasi agli inizi degli anni settanta, ha portato alla perforazione di un gran numero di pozzi (circa 3000 nel solo territorio comunale di Cerignola) che attingono alla falda idrica sotterranea. I volumi di acqua erogati per mezzo di fonti superficiali (invasi di Occhito, Marana-Capaciotti ed Osento) dal Consorzio per la bonifica della Capitanata, sono infatti insufficienti a soddisfare il fabbisogno irriguo (De Girolamo et al., 2002). Il massiccio attingimento ha comportato un progressivo esaurimento della falda ed innescato, contestualmente, un processo di degrado qualitativo per le acque sotterranee.

Nel corso delle indagini eseguite, non è stata riscontrata la presenza di una falda freatica. Ciononostante, non si esclude la possibilità di una presenza di modeste falde superficiali sospese, anche a carattere stagionale, in stretta connessione con il regime pluviometrico.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

FIG. 7 - CARTA DELLE ISOPIEZE SUPERFICIALI

Stralcio TAV. 060301 del PTA Regione Puglia



UBICAZIONE DEL SITO OGGETTO DEL PRESENTE STUDIO

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

FIG. 8 - PTA REGIONE PUGLIA – APPROVATO 2023

ELAB. C05 – DISTRIBUZIONE MEDIA DEI CARICHI PIEZOMETRICI DEGLI ACQUIFERI

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

6. Indagini eseguite

Come affermato in premessa, per il riconoscimento delle caratteristiche litostratigrafiche e geotecniche dei terreni di fondazione sono state eseguite (dalla GEOPROVE S.r.l., in aprile 2024) le seguenti indagini indirette:

- o n.5 profili sismici a rifrazione;
- o n.3 profili sismici con metodologia MASW per caratterizzazione sismica con individuazione delle Vs,eq.

6.1 Profili sismici a rifrazione

Per la ricostruzione stratigrafica e sismostratigrafica dell'area e per la caratterizzazione meccanica dei litotipi che si rinvengono nell'area sono stati eseguiti n.5 profili sismici a rifrazione (denominati SR1, SR2, SR3, SR4 e SR5) della lunghezza pari a 33 m.

La sismica a rifrazione consente di valutare, sulla base della misura delle velocità di propagazione delle onde elastiche, le caratteristiche strutturali e di deformabilità dei terreni.

Inoltre, permette di delimitare le coperture presenti (depositi eluvio-colluviali, materiale di riporto, ecc.).

L'indagine si basa sulla registrazione dei tempi di arrivo ad una serie di geofoni delle onde elastiche longitudinali generate da impatti sulla superficie del terreno.

Quando le onde sismiche incidono su di una superficie di discontinuità elastica (ovvero una superficie che separa due mezzi sovrapposti aventi natura e proprietà elastiche differenti) si verificano fenomeni di rifrazione e di riflessione. I raggi rifratti possono ritornare in superficie per cui, noti i tempi di percorrenza tra sorgente sonora e geofono, nonché la distanza tra questi due, è possibile calcolare la velocità di propagazione delle onde longitudinali in ciascun "mezzo sismico" attraversato e da questa risalire anche alle costanti elastiche.

L'elaborazione del profilo sismico è avvenuta mediante apposito algoritmo delle sezioni sismografiche. Tale metodo permette di individuare anomalie nella velocità di propagazione delle onde sismiche, con un elevato potere risolutivo offrendo la possibilità di ricostruire stratigraficamente situazioni complesse, non risolvibili con differenti tecniche di indagine.

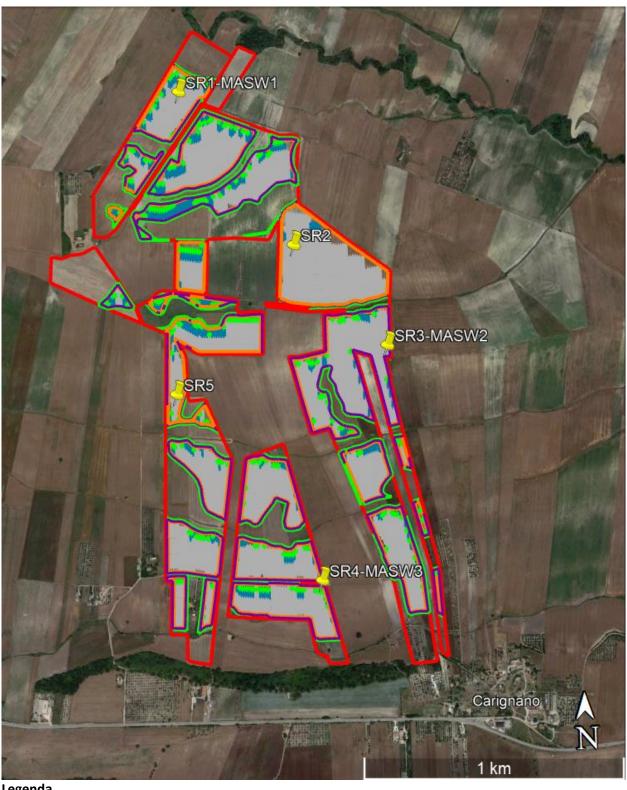
L'apparecchiatura adottata per l'esecuzione delle prospezioni è rappresentata da un sismografo 12 canali della *Geometrics* (Sismografo Modulare *GEODE*), costituito da una serie di geofoni di bassa frequenza regolarmente spaziati lungo un determinato stendimento e da un sistema che registra l'istante di partenza del treno d'onda ed i tempi di arrivo delle onde a ciascun geofono. L'energizzazione del terreno è stata ottenuta per mezzo di una massa battente del peso di 5 Kg.

L'analisi dei sismogrammi ha consentito di ricavare i tempi di primo arrivo delle onde sismiche longitudinali tramite i quali sono stati ricavati i diagrammi distanza-tempo (dromocrone) utilizzati sia per il calcolo analitico delle velocità di propagazione delle onde elastiche, sia per

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

l'interpretazione della struttura sotterranea e l'elaborazione della corrispondente sezione sismo-stratigrafica.


Per maggiori dettagli inerenti la tecnica utilizzata e la determinazione dei moduli elastici e delle caratteristiche meccaniche dei litotipi indagati si rimanda alla *Relazione conclusiva delle attività di indagine in sito* in *Allegati* al presente lavoro.

6.2 Profili sismici con metodologia MASW

Per la presentazione dell'indagine sismica con metodologia MASW si rimanda al Cap. 8 ed alla Relazione conclusiva delle attività di indagine in sito in Allegati.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

FIG. 9 - ORTOFOTO CON UBICAZIONE INDAGINI

Legenda

SR Profilo sismico tomografico a rifrazione

MASW Profilo sismico con metodologia MASW

RELAZIONE GEOLOGICA

7. Geolitologia e idrogeologia dell'area interessata dall'impianto agrivoltaico

7.1 Geolitologia e caratteristiche tecniche dei terreni

I profili sismici eseguiti in sito hanno permesso di ricostruire un modello che mette in evidenza i rapporti tra i diversi sismostrati in base ai tempi di arrivo delle onde sismiche.

In particolare i profili eseguiti, della lunghezza di 33 m ciascuno, hanno permesso di ricostruire un medesimo modello a due sismostrati:

- Il profilo sismico tomografico a rifrazione SR1 ha segnalato la presenza nel sottosuolo di due sismostrati, il primo con uno spessore compreso tra 1,5-1,8 m caratterizzato da una velocità V_p di 450 m/s; il secondo con una potenza di strato la cui litologia non varia fino alla profondità cui si è spinta la rilevazione strumentale del segnale, caratterizzato da una velocità media V_p di 1.450 m/s.
- <u>Il profilo sismico tomografico a rifrazione SR2</u> ha segnalato la presenza nel sottosuolo di due sismostrati, il primo con uno spessore compreso tra 1,0-2,1 m caratterizzato da una velocità V_p di 400 m/s; il secondo con una potenza di strato la cui litologia non varia fino alla profondità cui si è spinta la rilevazione strumentale del segnale, caratterizzato da una velocità media V_p di 1.400 m/s.
- <u>Il profilo sismico tomografico a rifrazione SR3</u> ha segnalato la presenza nel sottosuolo di due sismostrati, il primo con uno spessore compreso tra 0,8-1,5 m caratterizzato da una velocità V_p di 400 m/s; il secondo con una potenza di strato la cui litologia non varia fino alla profondità cui si è spinta la rilevazione strumentale del segnale, caratterizzato da una velocità media V_p di 1.050 m/s.
- <u>Il profilo sismico tomografico a rifrazione SR4</u> ha segnalato la presenza nel sottosuolo di due sismostrati, il primo con uno spessore compreso tra 1,0-1,2 m caratterizzato da una velocità V_p di 400 m/s; il secondo con una potenza di strato la cui litologia non varia fino alla profondità cui si è spinta la rilevazione strumentale del segnale, caratterizzato da una velocità media V_p di 1.100 m/s.
- <u>Il profilo sismico tomografico a rifrazione SR5</u> ha segnalato la presenza nel sottosuolo di due sismostrati, il primo con uno spessore medio di circa 2,0 m caratterizzato da una velocità V_p di 400 m/s; il secondo con una potenza di strato la cui litologia non varia fino alla profondità cui si è spinta la rilevazione strumentale del segnale, caratterizzato da una velocità media V_p di 1.050 m/s.

I profili sismici eseguiti in sito hanno consentito di ricostruire le sequenze stratigrafiche di massima, di seguito riportate, che si rinvengono nel sottosuolo.

GREEN ENERGY 5 S.R.L.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

Le quote indicate sono da considerarsi quali medie tra quelle emerse dall'osservazione delle sezioni sismostratigrafiche.

Colonna stratigrafica SR1

0,00 m ÷ 1,65 m terreno di copertura;

1,65 m ÷ prof. non indagata argille marnose passanti a marne argillose.

Colonna stratigrafica SR2

0,00 m ÷ 1,55 m terreno di copertura;

1,55 m ÷ prof. non indagata argille marnose passanti a marne argillose.

Colonna stratigrafica SR3

0,00 m ÷ 1,15 m terreno di copertura;

1,15 m ÷ prof. non indagata sabbie limose con ciottoli.

Colonna stratigrafica SR4

0,00 m ÷ 1,10 m terreno di copertura;

1,10 m ÷ prof. non indagata sabbie limose con ciottoli.

Colonna stratigrafica SR5

0,00 m ÷ 2,00 m terreno di copertura;

2,00 m ÷ prof. non indagata sabbie limose con ciottoli.

Per le ricostruzioni delle sezioni sismostratigrafiche si rimanda alla Relazione conclusiva delle attività di indagine in sito in Allegati.

Le caratteristiche fisiche e geomeccaniche dei livelli individuati con i profili sismici, riportate all'interno della *Relazione conclusiva delle attività di indagine in sito* in *Allegati*, mostrano parametri meccanici discretamente omogenei a parità di livello nelle prove 1-2 e nelle prove 3-4-5.

Nella tabella seguente vengono riportati i principali moduli e parametri desunti dalla misurazione delle velocità Vs e Vp nel corso dei profili sismici tomografici a rifrazione (cfr Relazione conclusiva delle attività di indagine in Allegati):

RELAZIONE GEOLOGICA

Profili 1-2

Strato	Vp (m/sec)	Vs	ф	С	γ	Е	η
		(m/sec)	(°)	(kg/cmq)	(gr/cmc)	(Kg/cmq)	
1	400-450	-	-	-	-	-	-
2	1400-1450	351	26.1	0.20	2.02	2550	0.37

Vp = vel. longit.; Vs = vel trasv.; $\phi = angolo di attrito; <math>C = coesione$ efficace; $\gamma = peso per unità di volume; <math>E = modulo elastico statico; \eta = coefficiente di poisson$

Profili 3-4-5

Strato	Vp (m/sec)	Vs	ф	С	γ	Е	η
		(m/sec)	(°)	(kg/cmq)	(gr/cmc)	(Kg/cmq)	
1	400	-	-	-	-	-	-
2	1050-1100	331	28.2	0.06	1.82	2040	0.30

Vp = vel. longit.; Vs = vel trasv.; ϕ = angolo di attrito; C = coesione efficace; γ = peso per unità di volume; E = modulo elastico statico; η = coefficiente di poisson

Tab. 1 - Parametri geotecnici e moduli correlati a Vp e Vs

In Figg. 10a e 10b si riportano le colonne stratigrafiche con i due livelli individuati rispettivamente nei profili sismici a rifrazione 1-2 e 3-4-5 eseguiti. Le quote riportate rappresentano le quote medie dei contatti individuati nelle diverse prove.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

Fig. 10a - COLONNA STRATIGRAFICA - PROFILI 1-2 Impianto Agrivoltaico "Volturino 63.3" Volturino (FG)

PROFONDITA'	COLONNA	DESCRIZIONE LITOSTRATIGRAFICA
DAL P.C.	STRATIGRAFICA	
	STRATIONALICA	
(m)		
0,00		Terreno di copertura
1,60		
		Argille marnose passanti a marne argillose

Fig. 10b - COLONNA STRATIGRAFICA - PROFILI 3-4-5 Impianto Agrivoltaico "Volturino 63.3" Volturino (FG)

PROFONDITA'	COLONNA	DESCRIZIONE LITOSTRATIGRAFICA
DAL P.C.	STRATIGRAFICA	DESCRIZIONE LITOSTRATIGNAFICA
	STRATIGRAFICA	
(m)		
1,40		Terreno di copertura
		Sabbie limose con ciottoli

RELAZIONE GEOLOGICA

8. Caratterizzazione sismica: individuazione della categoria di suolo a mezzo indagine sismica con la metodologia MASW

8.1 Classificazione sismica

L'Ordinanza del Presidente del Consiglio dei Ministri n.3274 del 20 marzo 2003, pubblicata in G.U. n. 105 del 8-5-2003 - Suppl. Ordinario n.72, stabilisce che in prima applicazione, sino alle deliberazioni delle Regioni, le zone sismiche sono individuate sulla base del documento "Proposta di riclassificazione sismica del territorio nazionale", elaborato dal Gruppo di Lavoro costituito sulla base della risoluzione della Commissione Nazionale di Previsione e Prevenzione dei Grandi Rischi nella seduta del 23 aprile 1997.

Tale "Proposta" individua le nuove zone sismiche (quattro) nelle quali è suddiviso l'intero territorio nazionale (ivi compreso il territorio regionale pugliese), classificando sismicamente ciascun comune in una delle quattro zone e comparando detta nuova classificazione con quella previgente. In proposito, si evidenzia che l'ordinanza 3274/03 attribuisce alle singole Regioni la facoltà di introdurre o meno l'obbligo della progettazione antisismica per quelle costruzioni da edificare sui rispettivi territori in zona sismica classificata 4 e per quegli edifici ed opere strategiche e rilevanti ai fini della protezione civile e dell'eventuale collasso degli stessi, da realizzare ex novo, di cui al DPCM 21/10/2003.

L'esercizio di tale ultima facoltà è consentito, grazie alle tante proroghe succedutesi, fino all'emanazione del D.M. 14/01/2008 "Approvazione delle nuove Norme Tecniche per le costruzioni" dove al comma 4 viene precisato che "le indicazioni di cui ai punti precedenti non operano per le verifiche tecniche e le nuove progettazioni degli interventi relativi agli edifici di interesse strategico ed a particolari opere infrastrutturali...". Dall'entrata in vigore del decreto, la progettazione dovrà essere elaborata esclusivamente sulla base delle nuove norme tecniche dallo stesso approvate.

La Regione Puglia ha recepito l'Ordinanza 3274/03 provvedendo alla prima, ancorché temporanea, riclassificazione sismica del territorio regionale pugliese, così come individuata nell'Allegato 1 alla Deliberazione della Giunta Regionale 2 marzo 2004 n.153, operata estrapolando dall'Allegato A all'ordinanza 3274/03 i comuni pugliesi ivi classificati, riservandosi di provvedere definitivamente alla predetta riclassificazione sismica, successivamente all'intervenuta elaborazione della nuova mappa nazionale del rischio sismico a cura della competente Amministrazione statale.

Secondo la suddetta riclassificazione il comune di Volturino (FG) ricade in zona 2.

Per il sito oggetto del presente studio, la caratterizzazione sismica è stata eseguita con la modalità riportata nel paragrafo seguente.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

8.2 Indagine sismica con metodologia MASW

Il metodo MASW (Multichannel Analysis of Surface Waves) è una tecnica di indagine non invasiva che permette di individuare il profilo di velocità delle onde di taglio Vs, sulla base della misura delle onde superficiali eseguita in corrispondenza di diversi sensori (geofoni nel caso specifico) posti sulla superficie del suolo.

Il contributo predominante alle onde superficiali è dato dalle onde di Rayleigh, che viaggiano con una velocità correlata alla rigidezza della porzione di terreno interessata dalla propagazione delle onde. In un mezzo stratificato le onde di Rayleigh sono dispersive, cioè onde con diverse lunghezze d'onda si propagano con diverse velocità di fase e velocità di gruppo (Achenbach, J.D., 1999, Aki, K. and Richards, P.G., 1980) o, detto in maniera equivalente, la velocità di fase (o di gruppo) apparente delle onde di Rayleigh dipende dalla frequenza di propagazione. La natura dispersiva delle onde superficiali è correlabile al fatto che onde ad alta frequenza con lunghezza d'onda corta si propagano negli strati più superficiali e quindi danno informazioni sulla parte più superficiale del suolo; onde a bassa frequenza si propagano negli strati più profondi e quindi interessano gli strati più profondi del suolo.

Il metodo di indagine MASW utilizzato è di tipo attivo in quanto le onde superficiali sono generate in un punto sulla superficie del suolo (tramite energizzazione con mazza battente allineata all'array geofonico) e misurate da uno stendimento lineare di sensori. Il metodo attivo generalmente consente di ottenere una velocità di fase (o curva di dispersione) sperimentale apparente nel range di frequenze compreso tra 5-10 Hz e 70-100 Hz, quindi fornisce informazioni sulla parte più superficiale del suolo, generalmente compresa nei primi 30-50m, in funzione della rigidezza del suolo e delle caratteristiche della sorgente.

La metodologia utilizzata consiste in quattro fasi:

- acquisizione dei dati di campagna energizzando a più riprese e alternativamente ai due estremi dello stendimento geofonico;
- determinazione dello spettro di velocità sperimentale dal campo di moto acquisito nel dominio spazio-tempo lungo lo stendimento;
- calcolo della curva di dispersione attraverso il picking o la modellazione diretta;
- inversione della curva di dispersione per l'individuazione del profilo di velocità delle onde di taglio verticali Vs e il parametro Vs,eq.

L'attrezzatura e la strumentazione utilizzata per l'indagine MASW sono costituite da:

- ✓ un sistema di energizzazione ad impatto verticale per le onde di Rayleigh costituito da una mazza battente verticalmente su piastra metallica posta direttamente sul piano di campagna per la generazione di onde Rayleigh;
- ✓ <u>un sistema di ricezione</u> costituito da 12 geofoni verticali;
- ✓ <u>un sistema di acquisizione dati</u>: costituito da un sismografo e da un notebook PC Windows XP con software di acquisizione dati;

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

✓ <u>un sistema di trigger</u>: consistente in un circuito elettrico che viene chiuso nell'istante in cui il grave colpisce la base di battuta, consentendo ad un condensatore di scaricare la carica precedentemente immagazzinata e di produrre un impulso che viene inviato a un sensore collegato al sistema di acquisizione dati.

8.3 Categoria del suolo di fondazione

Grazie alla tecnica descritta precedentemente è stato possibile giungere all'individuazione della categoria del sottosuolo per l'area indagata.

All'interno del lotto nel quale è prevista la realizzazione dell'impianto sono stati eseguiti n.3 profili di lunghezza pari a 33 m, di seguito denominati MASW1, MASW2 e MASW3.

La Vs,eq è stata calcolata con la seguente espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

Da tale relazione sono emersi i seguenti valori di Vs,eq.

MASW1: 352 m/s;

MASW2: 331 m/s;

MASW3: 353 m/s;

Per ogni categoria del suolo (A-B-C-D-E) è fissata una descrizione litostratigrafica, con ad essa associati i parametri di riferimento geotecnici e sismici.

Ai fini della definizione delle azioni sismiche secondo le nuove "Norme Tecniche per il progetto sismico di opere di fondazione e di sostegno dei terreni" il profilo stratigrafico dei terreni permette di classificare le zone oggetto di indagine come appartenenti a differenti categorie sismiche:

- ✓ Categoria A: Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m;
- ✓ Categoria B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s;
- ✓ Categoria C: Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s;

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

✓ Categoria D: Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati

da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità

equivalente compresi tra 100 e 180 m/s;

✓ Categoria E: Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle

definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

In questo caso si attribuisce al suolo di fondazione la categoria C, così definita (cfr *Relazione*

conclusiva delle attività di indagine in sito in Allegati):

MASW 1 - MASW2 - MASW3

Categoria C: Depositi di terreni a grana grossa mediamente addensati o terreni a grana

fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da

valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

Come premesso, con l'"Ordinanza" n° 3274 del 20 marzo 2003 della "Presidenza del Consiglio

dei Ministri" sono state emanate le norme che definiscono i criteri generali per l'individuazione

delle zone sismiche ai sensi dell'Art. n° 93, 1g del Decreto Legislativo 112/1998 ai fini della

formazione e dell'aggiornamento degli elenchi nelle medesime zone da parte delle Regioni, ai

sensi dell'Art. 94, 2a del medesimo decreto.

L' "Ordinanza Ministeriale" è stata recepita con "Deliberazione della Giunta Regionale" n° 153

del 02/03/2004.

Sulla base di tale "Deliberazione" il comune di Volturino risulta inserito in Zona Sismica 2:

"Zona 2 - Zona con pericolosità sismica media dove possono verificarsi forti terremoti.

Comprende 2.345 comuni."

Sulla base delle recenti disposizioni previste dalle "Norme Tecniche per le Costruzioni"

(17.01.2018) si definiscono, per l'opera in progetto, i seguenti parametri sismici:

Lotto ricadente nel comune di Volturino

Codice ISTAT 2001: 071062

Coordinate sito Progetto "Volturino 63.3": Longitudine = 15.195600° E;

Latitudine = 41.504328° N.

Nodi intorno al sito: 30107 30106 30328 30329

RELAZIONE GEOLOGICA

Vita nominale dell'opera: VN = 50 anni (due volte il periodo di resa dei panelli fotovoltaici).

Classe d'uso: Il (opera privata di rilevante importanza in zona sismica 2)

Valori dei parametri a₉, Fo, Tc* per i periodi di ritorno TR associati a ciascun Stato Limite:

Periodo di	ritorno Tr (anni)	
SLO	30	
SLD	50	
SLV	475	
SLC	975	

Parametri di pericolosità sismica						
	ag (g/10)	F0 (adim)	TC*(sec)			
SLO	0.50228869	2.36896158	0.31000000			
SLD	0.63734573	2.48042136	0.32433762			
SLV	1.55896301	2.57111545	0.40284750			
SLC	2.00383958	2.55127493	0.42524919			

Tab. 2 - Valori dei parametri ag, Fo, Tc* per i Periodi di ritorno TR associati a ciascun Stato Limite

Dai valori ottenuti è possibile ricavare gli spettri da utilizzare per l'analisi sismica della struttura.

Dove: SL = Stato Limite considerato; Tr = Tempo di ritorno (anni); $a_g = Accelerazione orizzontale massima al sito; <math>Fo = Valore$ massimo del fattore di amplificazione dello spettro in accelerazione orizzontale; $Tc^*=$ Periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Popolazione residente (Istat 2024)	1.525
Densità per Km² (Istat 2024)	26,14
Zona sismica (Ordinanza n.3274/2003)	2

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

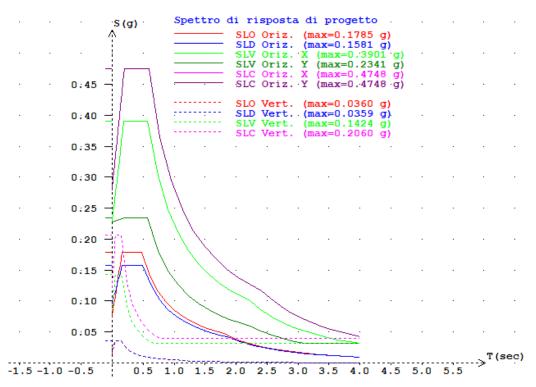


Fig. 11 - Spettri di risposta sismica di progetto - Volturino

Le elaborazioni riportate sono state effettuate con il software *Spettri ver. 2.3* della *Ingegneria Soft.com*.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

9. Conclusioni

La società proponente GREEN ENERGY 5 S.R.L., con Sede legale in Corso Europa 13 - 20122 - Milano (MI) - C.F e P.IVA: 12767930964 - PEC: green.energy5.srl@legalmail.it, ha affidato allo scrivente l'incarico per la redazione di una Relazione Geologica relativa al progetto di installazione di un impianto denominato *Impianto Agrivoltaico Volturino 63.3* della potenza di 74.360,16 kWp, in agro di Volturino nella Provincia di Foggia, realizzato con moduli fotovoltaici in silicio monocristallino, aventi una potenza di picco di 630Wp, mentre le opere di connessione attraversano anche i comuni di Lucera e San Severo.

La Società Proponente intende realizzare un impianto "agrivoltaico" nel Comune di Volturino (FG), ponendosi come obiettivo la produzione di energia elettrica da fonte rinnovabile coerentemente agli indirizzi stabiliti in ambito nazionale e internazionale volti alla riduzione delle emissioni dei gas serra ed alla promozione di un maggior contributo delle fonti energetiche rinnovabili alla produzione di elettricità nel relativo mercato italiano e comunitario e adottare anche soluzioni volte a preservare la continuità delle attività agricola e pastorale sul sito di installazione.

Al fine di ricostruire l'assetto litostratigrafico dell'area oggetto di studio e di pervenire ad una sua caratterizzazione geologica, si è proceduto:

- al rilevamento geologico di campagna di dettaglio;
- all'analisi di dati in possesso dello scrivente;
- all'analisi di dati e informazioni desunte da letteratura tecnica;
- all'esecuzione di un piano di investigazione costituito da
 - <u>indagini indirette</u>:
 - o n.5 profili sismici a rifrazione;
 - o n.3 profili sismici con metodologia MASW per caratterizzazione sismica con individuazione delle Vs.eq.

Lo studio ha evidenziato che:

- la successione stratigrafica dei terreni in sito può essere ricostruita nel seguente modo:

Colonna stratigrafica profili SR1-SR2

0,00 m ÷ 1,60 m terreno di copertura;

1,60 m ÷ prof. non indagata argille marnose passanti a marne argillose.

Colonna stratigrafica profili SR3-SR4-SR5

0,00 m ÷ 1,40 m terreno di copertura;

1,40 m ÷ prof. non indagata sabbie limose con ciottoli.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

RELAZIONE GEOLOGICA

- lo studio idrogeologico eseguito non ha evidenziato la presenza di una falda freatica.
 Ciononostante, non si esclude la possibilità di una presenza di modeste falde superficiali sospese, anche a carattere stagionale, in stretta connessione con il regime pluviometrico;
- ai fini della definizione delle azioni sismiche secondo le nuove "Norme Tecniche per il progetto sismico di opere di fondazione e di sostegno dei terreni", l'analisi dei profili sismici con metodologia MASW e le correlazioni relative, hanno permesso di assegnare ai terreni di fondazione, la seguente categoria di sottosuolo:

MASW 1 - MASW2 - MASW3

Categoria C: Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s;

- secondo la "Deliberazione della Giunta Regionale" n° 153 del 02/03/2004, il comune di Volturino, è inserito in Zona sismica 2.

Durante l'esecuzione degli scavi è necessaria l'adozione di strutture di sostegno partendo dal presupposto che le azioni dovute al terreno, all'acqua ed ai sovraccarichi anche transitori devono essere calcolate e composte in modo da pervenire di volta in volta alle condizioni più sfavorevoli.

Dovendo sempre supporre un certo grado di imprevedibilità che è proprio delle formazioni geolitologiche, il progettista e/o direttore dei lavori deve verificare, in fase esecutiva, la rispondenza tra quanto previsto e l'effettiva situazione riscontrata, differendo, in caso contrario, le soluzioni progettuali sulla scorta di ulteriori indagini.

Brindisi, aprile 2024

dott. geol. Francesco Caldarone

GREEN ENERGY 5 S.R.L.

Sede legale: Corso Europa 13 - 20122 - Milano (MI)

COMUNE DI VOLTURINO

(PROVINCIA DI FOGGIA)

COMMITTENTE: Dott. Geol. Francesco Caldarone

INDAGINI GEOGNOSTICHE ESEGUITE PRESSO UN SITO INTERESSATO DAL PROGETTO DI REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO

Ruffano, Aprile 2024

IL DIRETTORE TECNICO
Dott. Geol. Marcello DE DONATIS

Autorizzazione ministeriale ad effettuare e certificare prove su materiali da costruzione DM 275 del 12 giugno 2018.

Autorizzazione ministeriale ad effettuare e certificare prove su terre, rocce e prove in sito DM 278 del $14~{\rm giugno}~2018$.

INDICE

INDICE	1
PREMESSA	2
INDAGINE GEOGNOSTICA	3
Profili sismici a rifrazione	4
Sismica con metodologia MASW (Multichannel Analysis of Surface	
Waves)	21

PREMESSA

Nel mese di aprile 2024, la Società Geoprove S.r.l. di Ruffano, ha eseguito delle indagini allo scopo di ricostruire il modello geologicostratigrafico e di caratterizzare meccanicamente e sismicamente un'area interessata dal progetto di un impianto fotovoltaico situato in un agro a nord dell'abitato di Carignano (FG), frazione del Comune di Volturino (FG).

La campagna d'indagini è stata effettuata in conformità al D.M. 17.01.2018 ed è stata finalizzata alla raccolta di dati qualitativi e quantitativi occorrenti per la previsione del comportamento dell'opera in rapporto alle caratteristiche del terreno.

Sono stati pertanto eseguiti:

- n. 5 profili sismici a rifrazione (i profili nn.1, 2, 3, 4 e 5);
- n. 3 profili sismici con metodologia MASW (sulle stesse stese nn.1, 3 e 4).

INDAGINE GEOGNOSTICA

L'indagine è stata effettuata in conformità al D.M. 17.01.2018 ed è stata finalizzata alla raccolta di dati qualitativi e quantitativi di supporto alla progettazione.

L'indagine è consistita nell'esecuzione di:

- n.5 profili sismici a rifrazione;
- n.3 profili sismici con metodologia MASW.

Profili sismici a rifrazione

La sismica a rifrazione consiste nel provocare delle onde sismiche che si propagano nei terreni, con velocità che dipendono dalle caratteristiche di elasticità degli stessi. In presenza di particolari strutture, possono essere rifratte e ritornare in superficie, dove, tramite appositi sensori (geofoni), posti a distanza nota dalla sorgente lungo la linea retta, si misurano i tempi di arrivo delle onde longitudinali (onde P), al fine di determinare la velocità (Vp) con cui tali onde coprono le distanze tra la sorgente ed i vari ricevitori.

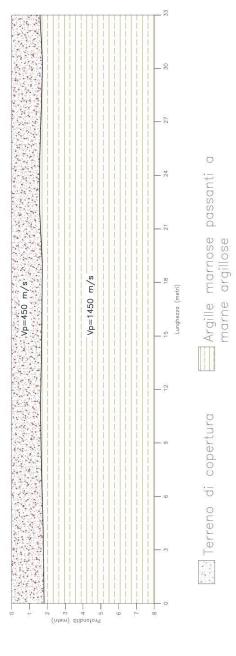
I dati così ottenuti si riportano su diagrammi cartesiani aventi in ascissa le distanze e in ordinata i tempi dei primi arrivi dell'onda proveniente dalla sorgente. In questo modo si ottengono delle curve (dromocrone) che, in base ad una metodologia interpretativa basata essenzialmente sulla legge di Snell, ci permettono di determinare la velocità di propagazione delle onde e le costanti elastiche dei terreni attraversati.

I profili sismici sono stati eseguiti adottando una distanza tra i geofoni di 3 metri; in totale sono stati eseguiti 5 profili così come riportati nella planimetria seguente.

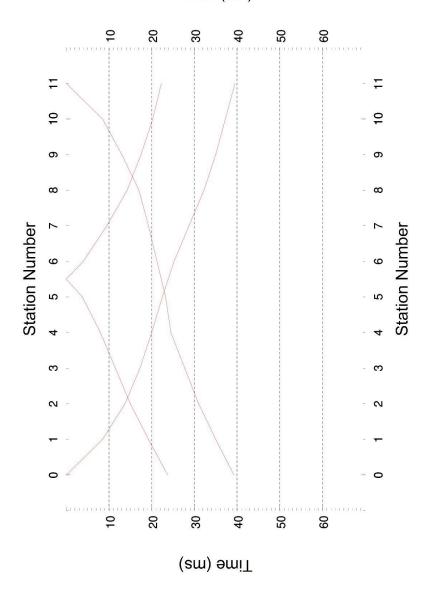
L'energizzazione è stata ottenuta utilizzando una massa battente del peso di 5 kg ed una piastra rettangolare.

Le onde così generate sono state registrate con un sismografo a 12 canali della GEOMETRICS mod. Geode, il quale consente di ottenere le misurazioni dei tempi di arrivo delle onde sismiche che si propagano nel sottosuolo.

Per quanto riguarda l'interpretazione dei dati di campagna, essa è stata eseguita tramite l'applicazione congiunta e computerizzata del metodo di Palmer e delle intercette.

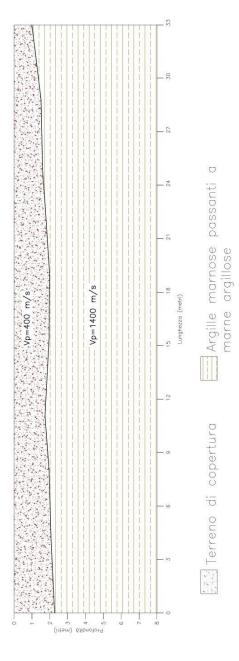

Il profilo sismico a rifrazione 1 ha permesso di ricostruire un modello a due sismostrati: in affioramento, per uno spessore di 1.5 - 1.8 metri si rinviene il primo sismostrato che caratterizzato da una velocità Vp di 450 m/sec è riconducibile a terreno di copertura; segue il secondo sismostrato che ha restituito delle velocità di Vp di 1450 m/sec; tali velocità sono da attribuire ad una litologia caratterizzata da argille marnose passanti a marne argillose.

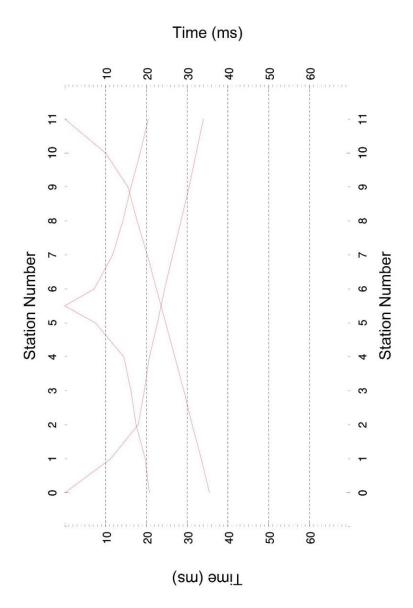
Esecuzione profilo sismico a rifrazione 1 e Masw n.1 sullo stesso stendimento



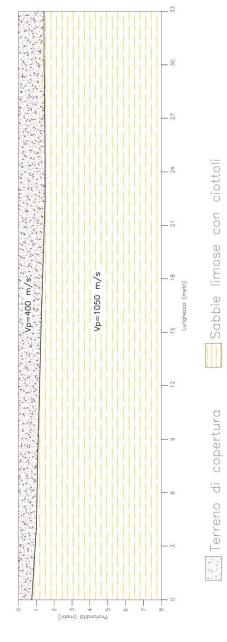
PROFILO SISMICO A RIFRAZIONE SR1 LOCALITA': VOLTURINO (FG)

Time (ms)

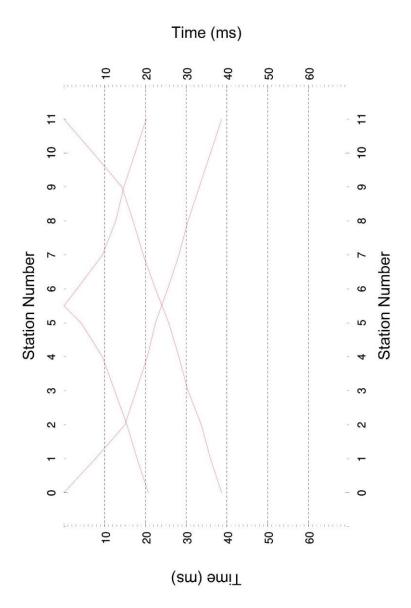

Il profilo sismico a rifrazione 2 ha permesso di ricostruire un modello a due sismostrati: in affioramento, per uno spessore di 1.0 - 2.1 metri si rinviene il primo sismostrato che caratterizzato da una velocità Vp di 400 m/sec è riconducibile a terreno di copertura; segue il secondo sismostrato che ha restituito delle velocità di Vp di 1400 m/sec; tali velocità sono da attribuire ad una litologia caratterizzata da argille marnose passanti a marne argillose.


Esecuzione profilo sismico a rifrazione 2

PROFILO SISMICO A RIFRAZIONE SR2 LOCALITA': VOLTURINO (FG)

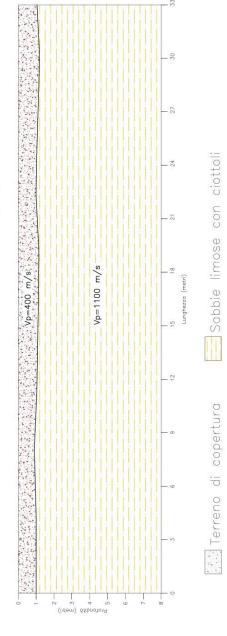


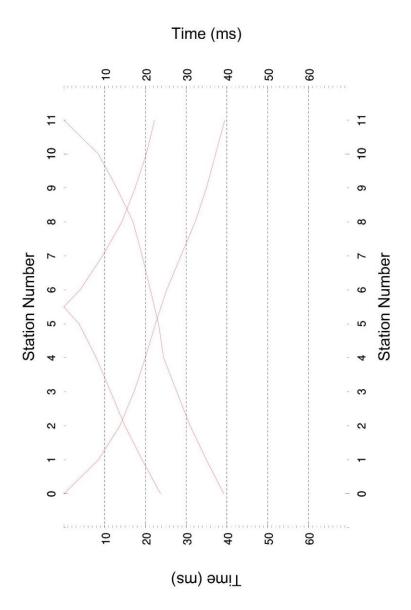
Il profilo sismico a rifrazione 3 ha permesso di ricostruire un modello a due sismostrati: in affioramento, per uno spessore di 0.8 - 1.5 metri si rinviene il primo sismostrato che caratterizzato da una velocità Vp di 400 m/sec è riconducibile a terreno di copertura; segue il secondo sismostrato che ha restituito delle velocità di Vp di 1050 m/sec; tali velocità sono da attribuire ad una litologia caratterizzata da sabbie limose con ciottoli.



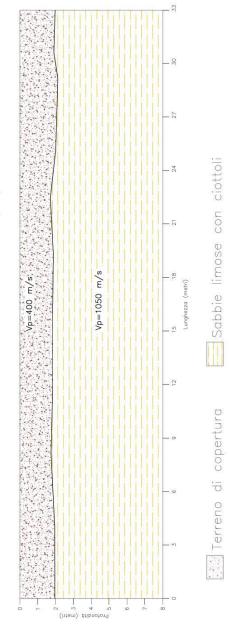
Esecuzione profilo sismico a rifrazione 3 e Masw n.2 sullo stesso stendimento

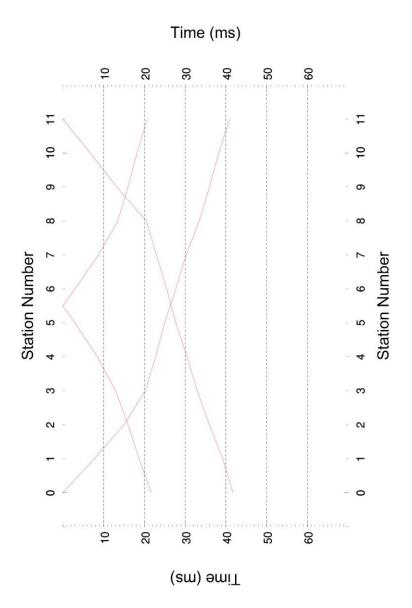
PROFILO SISMICO A RIFRAZIONE SR3 LOCALITA': VOLTURINO (FG)


Il profilo sismico a rifrazione 4 ha permesso di ricostruire un modello a due sismostrati: in affioramento, per uno spessore di 1.0 - 1.2 metri si rinviene il primo sismostrato che caratterizzato da una velocità Vp di 400 m/sec è riconducibile a terreno di copertura; segue il secondo sismostrato che ha restituito delle velocità di Vp di 1100 m/sec; tali velocità sono da attribuire ad una litologia caratterizzata da sabbie limose con ciottoli.


Esecuzione profilo sismico a rifrazione 4 e Masw n.3 sullo stesso stendimento

PROFILO SISMICO A RIFRAZIONE SR4 LOCALITA': VOLTURINO (FG)


Il profilo sismico a rifrazione 5 ha permesso di ricostruire un modello a due sismostrati: in affioramento, per uno spessore di circa 2.0 metri si rinviene il primo sismostrato che caratterizzato da una velocità Vp di 400 m/sec è riconducibile a terreno di copertura; segue il secondo sismostrato che ha restituito delle velocità di Vp di 1050 m/sec; tali velocità sono da attribuire ad una litologia caratterizzata da sabbie limose con ciottoli.


Esecuzione profilo sismico a rifrazione 5

PROFILO SISMICO A RIFRAZIONE SR5 LOCALITA': VOLTURINO (FG)

Dalla misurazione delle velocità Vp e Vs, si è risaliti ai seguenti parametri.

Profili 1-2

Strato	Vp (m/sec)	Vs	ф	С	γ	Е	η
		(m/sec)	(°)	(kg/cmq)	(gr/cmc)	(Kg/cmq)	
1	400-450	-	-	-	-	-	-
2	1400-1450	351	26.1	0.20	2.02	2550	0.37

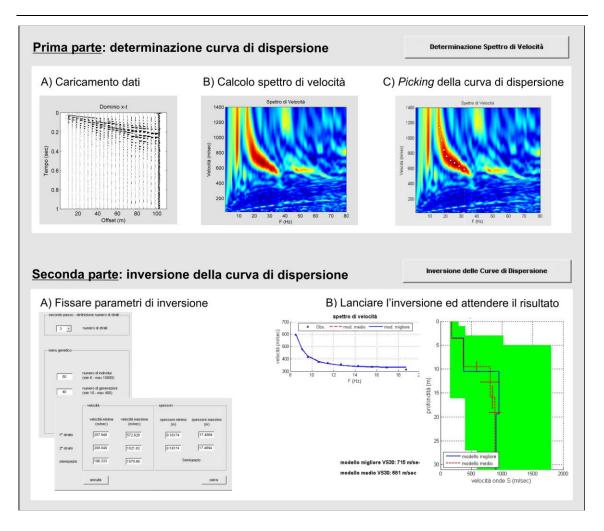
 $Vp = vel. longit.; Vs = vel trasv.; \phi = angolo di attrito; C = coesione efficace;$ γ = peso per unità di volume; E = modulo elastico statico; η = coefficiente di poisson

Profili 3-4-5

Strato	Vp (m/sec)	Vs	ф	С	γ	Е	η
		(m/sec)	(°)	(kg/cmq)	(gr/cmc)	(Kg/cmq)	
1	400	-	-	-	-	-	-
2	1050-1100	331	28.2	0.06	1.82	2040	0.30

 $Vp = vel. \ longit.; \ Vs = vel \ trasv.; \ \phi = angolo \ di \ attrito; \ C = coesione \ efficace;$ γ = peso per unità di volume; E = modulo elastico statico; η = coefficiente di poisson

Sismica con metodologia MASW (Multichannel Analysis of Surface Waves)


Per individuare la categoria sismica del suolo di fondazione dell'area investigata sono state eseguite delle indagini sismiche con metodologia MASW.

Il metodo MASW (Multichannel Analysis of Surface Waves) è una tecnica di indagine non invasiva (non è necessario eseguire perforazioni o scavi), che individua il profilo di velocità delle onde di taglio verticali Vs, basandosi sulla misura delle onde superficiali fatta in corrispondenza di diversi sensori (accelerometri o geofoni) posti sulla superficie del suolo. Le onde superficiali di Rayleigh, durante la loro propagazione vengono registrate lungo lo stendimento di geofoni (da 4.5 Hz) e vengono successivamente analizzate attraverso complesse tecniche computazionali basate su un approccio di riconoscimento di modelli multistrato di terreno.

La metodologia per la realizzazione di una indagine sismica MASW prevede almeno i seguenti passi:

- Acquisizioni multicanale dei segnali sismici, generati da una sorgente energizzante artificiale (maglio battente su piastra in alluminio), lungo uno stendimento rettilineo di sorgente-geofoni
- Estrazione dei modi dalle curve di dispersione della velocità di fase delle onde superficiali di Rayleigh;
- Inversione delle curve di dispersione per ottenere profili verticali delle VS.

Gli algoritmi genetici rappresentano un tipo di procedura di ottimizzazione appartenente alla classe degli algoritmi euristici (o anche global-search methods o soft computing).

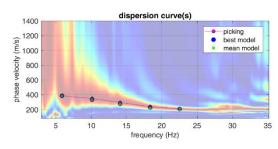
Rispetto ai comuni metodi di inversione lineare basati su metodi del gradiente (matrice Jacobiana), queste tecniche di inversione offrono un'affidabilità del risultato di gran lunga superiore per precisione e completezza.

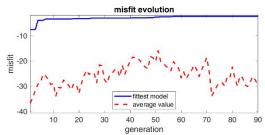
I comuni metodi lineari forniscono infatti soluzioni che dipendono pesantemente dal modello iniziale di partenza che l'utente deve necessariamente fornire. Per la natura del problema (inversione delle curve di dispersione), la grande quantità di minimi locali porta infatti ad attrarre il

modello iniziale verso un minimo locale che può essere significativamente diverso da quello reale (o globale).

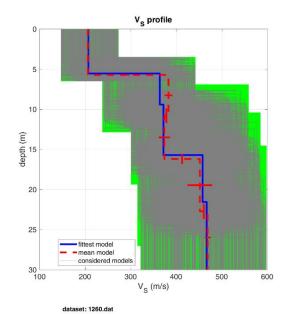
In altre parole, i metodi lineari richiedono che il modello di partenza sia già di per sé vicinissimo alla soluzione reale. In caso contrario il rischio è quello di fornire soluzioni erronee.

Gli genetici (come altri analoghi) algoritmi offrono invece un'esplorazione molto più ampia delle possibili soluzioni.

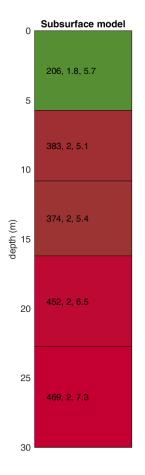

La Vs_{eq} è stata calcolata con la seguente espressione:

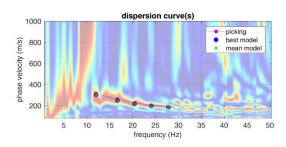

$$Vs_{eq} = \underline{H}$$

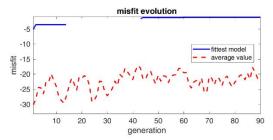
$$\Sigma hi/Vi$$

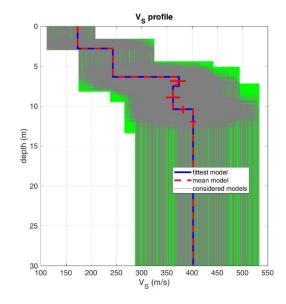


Profilo sismico Masw 1

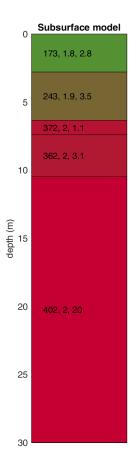



dispersion curve: p.cdp Vs30 & VsE (best model): 352 352 m/s Vs30 & VsE (mean model): 351 351 m/s

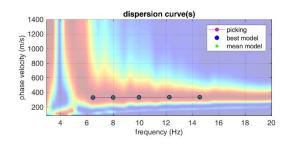


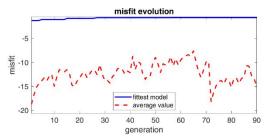

V_S density thickness
(m/s) (gr/cm³) (m)

Profilo sismico Masw 2

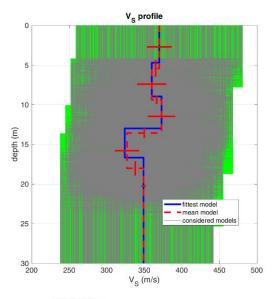


dispersion curve: p.cdp Vs30 & VsE (best model): 331 331 m/s Vs30 & VsE (mean model): 331 331 m/s

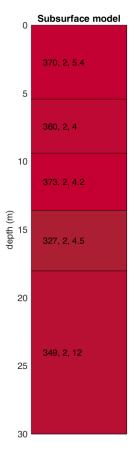




V_S density thickness (m/s) (gr/cm³) (m)



Profilo sismico Masw 3



dataset: 1238.dat dispersion curve: p.cdp Vs30 & VsE (best model): 353 353 m/s Vs30 & VsE (mean model): 354 354 m/s

V_S density thickness
(m/s) (gr/cm³) (m)

Le categorie di suolo individuate dal Decreto Ministeriale 17 Gennaio 2018, recante aggiornamento delle "Norme Tecniche per le costruzioni" sono le seguenti:

- A) Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m;
- B) Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalenti compresi tra 360 m/s e 800 m/s;
- C) Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalenti compresi tra 180 m/s e 360 m/s;
- D) Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s;

Terreni con caratteristiche e valori di velocità equivalenti E) riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Alla luce di quanto detto, avendo ottenuto un valore di Vseq di:

Masw 1 = 352 m/sec

Masw 2 = 331 m/sec

Masw 3 = 353 m/sec

Il sottosuolo oggetto di studio rientra nella categoria B con valori di velocità equivalenti compresi tra 360 m/s e 800 m/s.

Ruffano, aprile 2024

IL DIRETTORE TECNICO

Dott. Geol. Marcello DE DONATIS

