

SOGGETTO ATTUATORE - Art.7 D.L. 11 novembre 2016, n. 205 (già art.15 ter del D.L. 17 ottobre 2016, n.189, convertito dalla L. 15 dicembre 2016, n.229)

ex OCDPC 408/2016 - art.4
OCDPC 475/2017 - art.3

PNC - PNRR: Piano Nazionale Complementare al Piano Nazionale di Ripresa e Resilienza nei territori colpiti dal sisma 2009-2016, Sub-misura A4,"Investimenti sulla rete stradale statale"

Lavori di adeguamento e/o miglioramento tecnico funzionale della sezione stradale in t.s. e potenziamento delle intersezioni - 1° Stralcio lungo la S.S. n. 210 "Fermana Faleriense" - Amandola - Servigliano"

PROGETTO DEFINITIVO

PROGETTISTA E RESPONSABILE DELL'INTEGRAZIONE
DELLE PRESTAZIONI SPECIALISTICHE
Ing. Eugenio Moroni

Ordine Roma n° 10020

IL GEOLOGO

Dott.ssa Geol. Maria Bruno Ordine dei Geologi del Lazio al n° 668

COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE

Ing. Francesco M. La Camera Ordine Roma nº 7290 IMPRESA CONCORRENTE A.T.I.:

Mandataria

Mandante:

RTP DI PROGETTAZIONE:

Mandataria:

S.T.E. s.r.l.

Structure and Transport Engineering

Mandanti:

E.D.IN. s.r.l.

Dott. Geol. M. BRUNO

Direttore Tecnico Ing. E. Moroni Ordine Ing. Roma N. 10020

Direttore Tecnico Ing. G. Grimaldi Ordine Ing. Roma N. 17703

Ordine Geologi Lazio N. 668

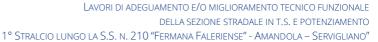
OPERE D'ARTE MINORI

Opere di attraversamento idraulico TM12- 4,0x3,0m - VS13.b alla prg. 0+024,00 Relazione di calcolo

CODICE PROGETTO PROGETTO LIV.PROG. ANNO		NOME FILE T03_TM12_STR_RE01_A			REVISIONE	SCALA
A N 2 6 6		CODICE T 0 3 T M 1 2 S	TRRE	0 1	A	_
D						
С						
В						
Α	EMISSIONE		Dic. 2023	DEL VECCHIO	GRIMALDI	MORONI
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Sommario

1	PREMESSA	3
2	QUADRO NORMATIVO	6
3	CARATTERISTICHE DEI MATERIALI	7
3.1	MATERIALI UTILIZATI	7
3.2	CARATTERISTICHE DEL CALCESTRUZZO AI FINI DELLA DURABILITÀ	8
3.3	COPRIFERRO MINIMO E COPRIFERRO NOMINALE	11
4	PARAMETRI GEOTECNICI	13
4.1	REGIME IDRAULICO	16
5	METODO DI CALCOLO	17
5. 5.	METODO SEMI-PROBABILISTICO AGLI STATI LIMITE 1.1 STATO LIMITE ULTIMO (S.L.U.) 1.2 STATO LIMITE DI ESERCIZIO (S.L.E.) 1.3 STATI LIMITE SISMICI	17 17 19 19
5.2	VITA NOMINALE	22
5.3	CLASSE D'USO	22
5.4	PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA	22
5.5	VALUTAZIONE DELL'ACCELERAZIONE ATTESA MASSIMA AL SUOLO	23
6	DESCRIZIONE MODELLO DI CALCOLO	24
6.1	CALCOLO DELLA PRESSIONE IN CALOTTA	27
6.2	ANGOLO DI DIFFUSIONE DEI SOVRACCARICHI	30
6.	CALCOLO DELLE SPINTE SUI PARAMENTI VERTICALI 3.1. SPINTE IN CONDIZIONI STATICHE 3.1.1 SPINTE ATTIVE 3.1.2 SPINTE A RIPOSO	30 33 33 34


6.	3.2	SPINTE IN PRESENZA DI SISMA	34
7	ANALI	SI DEI CARICHI	36
7.1	PESO	PROPRIO	36
7.2	CARIC	HI PERMANENTI	36
7.3	SPINT	A STATICA DELLE TERRE	36
7.4	CARIC	HI VARIABILI DA TRAFFICO	38
7.5	CARIC	HI DA FRENAMENTO	41
7.6	SPINT	E SULLE PARETI DOVUTE AI CARICHI VARIABILI	41
7.7	VARIA	ZIONI TERMICHE	41
7.8	RITIRO		43
7.9	EFFET	TI DELLE AZIONI SISMICHE	46
7.10) INCRE	MENTO SISMICO SPINTE DEL TERRENO	48
8	COME	BINAZIONI DI CARICO	50
9	SOLLE	ECITAZIONI	51
10	VERIF	CHE STRUTTURALI	57
10.1	DEFIN	IZIONE SEZIONI DI CALCOLO	57
10.2	SOLET	TA DI FONDAZIONE	59
10.3	SOLET	TA DI COPERTURA	67
10.4	PIEDR	ІТТІ	74

Pag. 2 DI 79

Sanas GRUPPO ES ITALIANE

T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

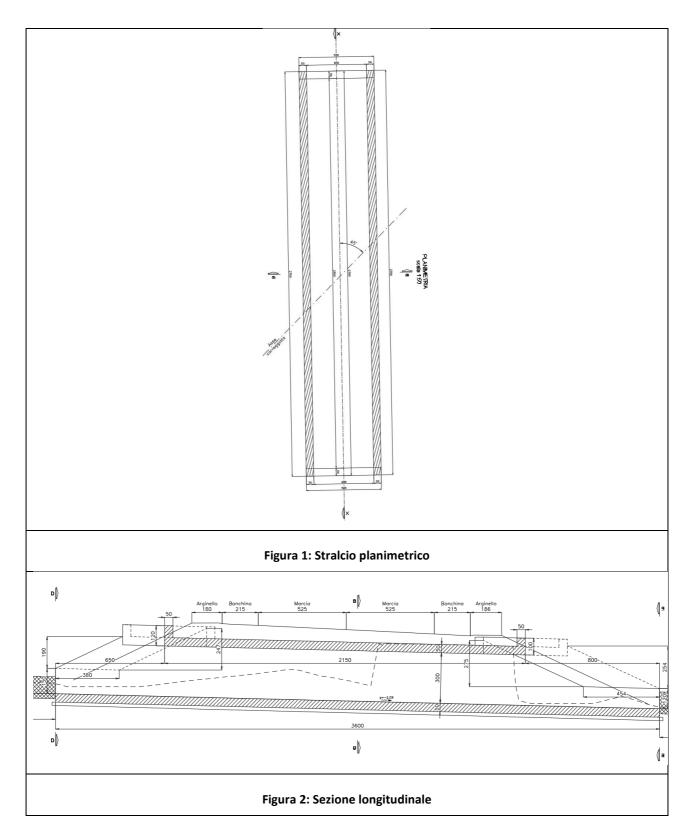
1 PREMESSA

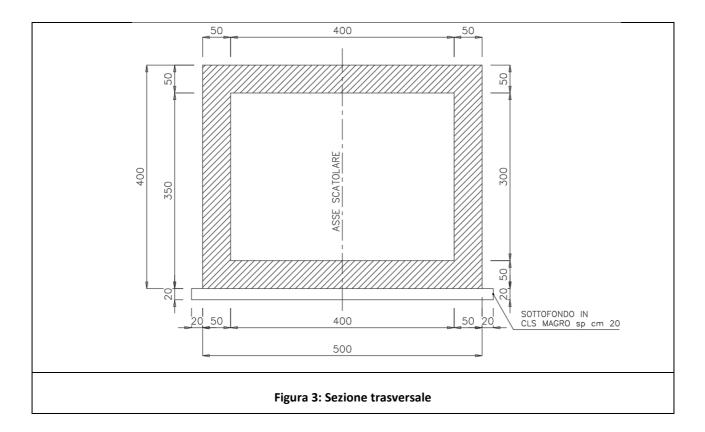
La presente relazione di calcolo ha per oggetto l'analisi e le relative verifiche dell'opera di attraversamento idraulico TM12 da realizzarsi al km 0+024.00.

L'opera in oggetto rientra nell'ambito del Progetto Definitivo per la S.S. n. 210 "Fermana Faleriense" nel tratto Amandola-Servigliano, dove saranno previsti interventi di adeguamento e/o miglioramento tecnico funzionale della sezione stradale in t.s. e potenziamento delle intersezioni.

Lo scatolare in c.a. gettato in opera a singola canna ha una lunghezza complessiva pari a circa 36.00 m in asse, una larghezza interna netta pari a 4.00 m e un'altezza interna netta pari a 3.00 m. La soletta di fondazione, quella di copertura e i piedritti hanno uno spessore di 0.50 m.

A seguire uno stralcio planimetrico e la sezione longitudinale dell'opera in oggetto:





T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

L'elaborazione dei calcoli statici e le verifiche di stabilità, in ottemperanza al metodo degli stati limite, sono state condotte con l'ausilio del programma di calcolo Midas Gen 2022.

PROGETTISTA RTP:

2 QUADRO NORMATIVO

Si fa riferimento alla legislazione vigente con particolare riferimento alle seguenti norme:

- D. M. Min. II. TT. del 17 gennaio 2018 Norme tecniche per le costruzioni;
- CIRCOLARE 21 gennaio 2019, n.7 "Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 17 gennaio 2018;
- UNI EN 1990:2006 13/04/2006 Eurocodice 0 Criteri generali di progettazione strutturale;
- UNI EN 1991-1-1:2004 01/08/2004 Eurocodice 1 Azioni sulle strutture Parte 1-1:
 Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici;
- UNI EN 1991-2:2005 27/01/2009 Eurocodice 1 Azioni sulle strutture Parte 2: "Carico da traffico sui ponti";
- UNI EN 1992-1-1:2005 24/11/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo -Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1997-1:2005 01/02/2005 Eurocodice 7 Progettazione geotecnica -Parte 1: Regole generali;
- UNI EN 1998-1:2005 01/03/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- UNI EN 1998-5:2005 01/01/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica - Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici;
- UNI EN 206-1-2001 Calcestruzzo, "Specificazione, prestazione, produzione e conformità".
- Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici – Servizio Tecnico Centrale;

- UNI EN 197-1 giugno 2001 "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni;
- UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità";
- Istruzioni complementari per l'applicazione delle EN 206-1.

CARATTERISTICHE DEI MATERIALI

MATERIALI UTILIZATI

CALCESTRUZZO

 R_{ck} = Resistenza caratteristica cubica

 f_{ck} = Resistenza caratteristica cilindrica = $R_{ck} \times 0.83$

 f'_{cd} = Resistenza di calcolo cilindrica = α_{cc} f_{ck}/γ_{c}

 α_{cc} = coefficiente riduttivo = 0.85

 \mathbf{v}_{c} = coefficiente di sicurezza = 1.5

Cls fondazioni ed elevazioni scatolare idraulico

Classe del calcestruzzo		C28/35	
Resistenza caratteristica cubica	R_{ck}	≥ 35.00	[MPa]
Resistenza caratteristica	f_{ck}	= 29.75	[MPa]
Resistenza media a trazione semplice	f _{ctm}	= 37.75	[MPa]
Resistenza di calcolo a compressione	$f'_{cd} = \alpha_{cc} f_{ck} / \gamma_{cd}$	= 16.86	[MPa]
Modulo elastico	Ec	= 32308	[MPa]
Copriferro c		= 45.00	[mm]
Classe di esposizione		XC4	

ACCIAIO

f_{vk} = Tensione caratteristica di snervamento

 f_{vd} = Resistenza di calcolo f_{vk}/γ_s

 γ_s = coefficiente di sicurezza = 1.15

Acciaio per armatura ordinaria

B450C (ex Fe B 44k)

Tensione caratteristica di rottura $f_{tk} \ge 540.00 \text{ [MPa]}$

Tensione caratteristica di snervamento $f_{vk} \ge 450.00 \text{ [MPa]}$

Resistenza di calcolo $f_{yd} = f_{yk} / \gamma_s = 391.30 \text{ [MPa]}$

Modulo elastico Es = 210000 [MPa]

3.2 CARATTERISTICHE DEL CALCESTRUZZO AI FINI DELLA DURABILITÀ

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Al fine di ottenere la prestazione richiesta in funzione delle condizioni ambientali, nonché per la definizione della relativa classe, si fa riferimento alle indicazioni contenute nelle Linee Guida sul calcestruzzo strutturale edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici ovvero alle norme UNI EN 206:2016 ed UNI 11104:2016.

Per la verifica a fessurazione si fa riferimento ad una condizione ambientale di tipo ordinario, aggressivo e molto aggressivo a seconda delle classi di esposizione (ved. par. 4.1.2.2.4 D.M.17/01/2018).

Le tabelle 4.1.III e 4.1.IV indicano le condizioni ambientali relativamente alle classi di esposizione dei materiali e i criteri di scelta dello stato limite di fessurazione con riferimento a

T03_TM12_STR_RE01_A **RELAZIONE DI CALCOLO**

dette condizioni e tipologia di armatura (sensibile: acciaio da precompresso; poco sensibile: acciai ordinari):

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

Gruppi Gr		Combinazione di	Armatura					
		azioni Sensibile			Poco sensibile			
Gr			Stato limite	w _k	Stato limite	w _k		
	Ordinarie	frequente	apertura fessure	$\leq w_2$	apertura fessure	≤ w ₃		
A Ordinarie	Ordinarie	quasi permanente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂		
D	A	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂		
B Aggressive		quasi permanente	decompressione	-	apertura fessure	≤ w ₁		
С	Molto	frequente	formazione fessure	-	apertura fessure	$\leq w_1$		
	aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$		

con

w1 = 0.2 mm

w2 = 0.3 mm

La classe di esposizione prevista per le strutture in oggetto è stata individuata tenendo conto che le condizioni ambientali in cui verrà realizzata l'opera sono da definirsi "aggressive", considerando che i fattori preminenti in grado di influenzare la durabilità del calcestruzzo per le diverse parti d'opera sono:

Scatolari di attraversamento idrico: corrosione indotta dalla carbonatazione e dai cloruri esclusi quelli provenienti dall'acqua di mare - XC4

Le classi di esposizione ambientale determinano la scelta delle caratteristiche minime dei calcestruzzi, la dimensione dei copriferri e la verifica dello stato limite di fessurazione; in accordo alle normative di riferimento, si riepilogano di seguito le specifiche adottate:

Classe di resistenza	C28/35				
Classe di esposizione	XC4				
Condizioni ambientali	Aggressive				
Copriferro minimo	45.00				
Tipologia di armatura	Poco sensibile				
Apertura fessure [mm]	frequente \leq w2 = 0.3 mm				
	g. perm. ≤ w1 = 0.2 mm				

COPRIFERRO MINIMO E COPRIFERRO NOMINALE

Ai fini di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale". Il copriferro nominale è somma di due contributi, il copriferro minimo e la tolleranza di posizionamento.

Nel caso in oggetto, si hanno i seguenti parametri:

Classe di esposizione: XC4

Classe di resistenza caratteristica a compressione: C28/35

Il valore del copriferro minimo è valutato secondo quanto riportato al punto C4.1.6.1.3 della Circolare 2019. Nel caso in esame la classe di esposizione ambientale è aggressiva e si pone, come da tabella C4.1.IV un copriferro minimo pari a 35 mm (Cmin \leq C \leq C₀). La tolleranza di posa è pari a 10 mm.

Si ottiene pertanto un copriferro nominale pari a 45 mm.

Tabella C4.1.IV Copriferri minimi in mm

		barre da c.a.		barre da c.a.		cavi da c.a.p.		cavi da c.a.p.		
		elementi a piastra altri		i elementi elemen		lementi a piastra		altri elementi		
C _{min}	C _o	ambiente	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	$C_{min} \le C \le C_o$	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>

T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

RELAZIONE DI CALCOLO

PARAMETRI GEOTECNICI

Il modello geotecnico è stato definito in conformità alle indicazioni riportate negli elaborati geotecnici di progetto, ai quali si rimanda per ulteriori dettagli.

Nello specifico, il profilo geotecnico in corrispondenza della progressiva dell'opera (0+024.00) ha evidenziato in superficie la presenza dell'unità ec; di seguito si riporta la caratterizzazione geotecnica dei terreni interessati dall'opera:

Stratigrafia da piano	Unità Geotecnica	γ	C'	φ′
[m]		(kN/m3)	(kPa)	(°)
0.00 ÷ 4.65	ес	18	15	30

In fase di modellazione delle opere sono stati assunti quindi i seguenti valori:

TERRENO BASE

Litotipo strato ec – Limi argillosi con inclusi lapidei (Coltre)

 $= 18 \text{ kN/m}^3$ peso di volume naturale γ

angolo di attrito = 30

coesione drenata = 15 kPa

T03_TM12_STR_RE01_A

RELAZIONE DI CALCOLO

TERRENO DI RINFIANCO

peso di volume naturale γ = 20 kN/m³

angolo di attrito $\Phi' = 35$ ° (*)

coesione drenata c' = 0 kPa

modulo di spinta a riposo $K_0 = 0.426$

RILEVATO STRADALE (Ricoprimento in calotta)

peso di volume naturale γ = 20 kN/m³

angolo di attrito $\Phi' = 35^{\circ}$

coesione drenata c' = 0 kPa

modulo di spinta a riposo $K_0 = 0.426$

La modellazione del terreno è stata condotta secondo lo schema alla Winkler, mediante cioè un letto di molle lineari che presentano una rigidezza rappresentata dalla costante kw. Per la stima del coefficiente di sottofondo si è fatto riferimento all'analisi semplificata indicata nella relazione geotecnica:

$$k_w = \frac{E}{(1 - v^2) \cdot B \cdot c_t}$$

In cui

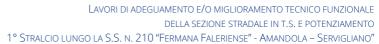
E= modulo elastico del terreno, che può essere adottato nell'ambito delle deformazioni attese per le fondazioni superficiali pari a E0/5

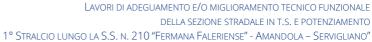
ν = coefficiente di Poisson del terreno di fondazione

B= larghezza della fondazione

c= fattore di forma, coefficiente adimensionale ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (vedasi tabella seguente).

Fondazione Rigida	ct			
- rettangolare con L/B≤10	$c_t = 0.853 + 0.534 \ln(L/B)$			
- rettangolare con L/B>10	c _t = 2 + 0.0089 (L/B)			
dove L é il lato maggiore della fondazione.				


Il valore della costante elastica relativa alle molle è stato assunto pari a $k_w = 20000 \text{ kN/m}^3$



4.1 **REGIME IDRAULICO**

Dal profilo geotecnico, in corrispondenza della prog. 0+024.00, non si ha evidenza della presenza della falda.

PROGETTISTA RTP:

T03_TM12_STR_RE01_A **RELAZIONE DI CALCOLO**

5 METODO DI CALCOLO

5.1 METODO SEMI-PROBABILISTICO AGLI STATI LIMITE

Per quanto riguarda il calcolo, si farà riferimento a quanto indicato nelle nuove Norme Tecniche delle Costruzioni (D.M. del 17/01/2018), in base alla quale le strutture devono possedere requisiti di sicurezza nei confronti di stati limite ultimi (SLU) e di esercizio (SLE), attraverso il confronto tra la resistenza e l'effetto delle azioni e controllando aspetti di funzionalità e stati tensionali.

STATO LIMITE ULTIMO (S.L.U.)

Le azioni sulla struttura devono essere cumulate in modo da determinare condizioni di carico tali da risultare più sfavorevoli ai fini delle singole verifiche, tenendo conto della probabilità ridotta di intervento simultaneo di tutte le azioni con i rispettivi valori più sfavorevoli (rif. punto 2.5 NTC18):

$$\gamma_{G1}$$
 G1 + γ_{G2} G2 + γ_P P + γ_{Q1} Q_{k1} + $\Sigma_{i=2}$ γ_{Qi} (ψ_{0i} Q_{ki})

con:

G₁ = valore caratteristico del peso proprio di tutti gli elementi strutturali

G₂ = valore caratteristico del peso proprio di tutti gli elementi non strutturali

= valore caratteristico della pretensione e precompressione

Q_{k1} = valore caratteristico dell'azione variabile di base di ogni combinazione

Qki = valore caratteristico delle azioni variabili tra loro indipendenti

 ψ_{0i} = valore raro dei coefficienti di combinazione per le azioni variabili per ponti stradali e pedonali (rif. tabella 5.1.VI delle NTC18)

Tab. 5.1.VI - Coefficienti y per le azioni variabili per ponti stradali e pedonali

Tab. 5.1. v1 - Chefficienti & per te azioni bartabat per ponti stratati e pedimar							
Azioni	Gruppo di azioni	Coefficiente	Coefficiente	Coefficiente Ψ ₂			
	(Tab. 5.1.IV)	ψ ₀ di combi-	ψ ₁ (valori	(valori quasi			
		nazione	frequenti)	permanenti)			
	Schema 1 (carichi tandem)	0,75	0,75	0,0			
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0			
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0			
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0			
	2	0,0	0,0	0,0			
	3	0,0	0,0	0,0			
	4 (folla)		0,75	0,0			
	5	0,0	0,0	0,0			
	a ponte scarico SLU e SLE	0,6	0,2	0,0			
Vento	in esecuzione	0,8	0,0	0,0			
	a ponte carico SLU e SLE	0,6	0,0	0,0			
Neve	SLU e SLE	0,0	0,0	0,0			
	in esecuzione	0,8	0,6	0,5			
Temperatura	SLU e SLE	0,6	0,6	0,5			

I valori dei coefficienti parziali di sicurezza γ, utilizzati per il calcolo, sono riportati nella tabella 5.1.V delle NTC18 in funzione dell'effetto favorevole o sfavorevole e delle verifiche considerate.

Tab. 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽ⁱ⁾	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	Yg2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	Ϋ́Q	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	YQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Ye2 Ye3 Ye4	0,00 1,20	0,00 1,20	0,00 1,00

MANDANTI:

Gli stati limite ultimi delle opere interrate si riferiscono allo sviluppo di meccanismi di collasso, determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono l'opera.

SLU di tipo strutturale (STR) raggiungimento della resistenza negli elementi strutturali.

5.1.2 STATO LIMITE DI ESERCIZIO (S.L.E.)

Ai fini delle verifiche degli stati limite di esercizio (fessurazione/stato tensionale) si definiscono le seguenti combinazioni:

I valori dei coefficienti di combinazione sono dedotti dalla tabella 5.1.VI del D.M. 17 Gennaio 2018

5.1.3 STATI LIMITE SISMICI

L'effetto dell'azione sismica di progetto sull'opera nel suo complesso, includendo il volume significativo di terreno, la struttura di fondazione, gli elementi strutturali e non strutturali, nonché gli impianti, deve rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, i cui requisiti di sicurezza sono indicati nel § 7.1 della norma (NTC 2018).

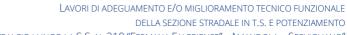
Il rispetto degli stati limite si considera conseguito quando:

Nei confronti degli stati limite di esercizio siano rispettate le verifiche relative al solo Stato Limite di Danno;

LAVORI DI ADEGUAMENTO E/O MIGLIORAMENTO TECNICO FUNZIONALE DELLA SEZIONE STRADALE IN T.S. E POTENZIAMENTO

1° STRALCIO LUNGO LA S.S. N. 210 "FERMANA FALERIENSE" - AMANDOLA – SERVIGLIANO"

T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO


Nei confronti degli stati limite ultimi siano rispettate le indicazioni progettuali e costruttive riportate nel § 7 e siano soddisfatte le verifiche relative al solo Stato Limite di salvaguardia della Vita.

Per Stato Limite di Danno (SLD) s'intende che l'opera, nel suo complesso, a seguito del terremoto, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non provocare rischi agli utenti e non compromette significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali e orizzontali. Lo stato limite di esercizio comporta la verifica delle tensioni di lavoro, in conformità al § 4.1.2.2.5 (NTC).

Per Stato Limite di salvaguardia della Vita (SLV) si intende che l'opera a seguito del terremoto subisce rotture e crolli dei componenti non strutturali e impiantistici e significativi danni di componenti strutturali, cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali (creazione di cerniere plastiche secondo il criterio della gerarchia delle resistenze), mantenendo ancora un margine di sicurezza (resistenza e rigidezza) nei confronti delle azioni verticali.

Gli stati limite, sia di esercizio sia ultimi, sono individuati riferendosi alle prestazioni che l'opera a realizzarsi deve assolvere durante un evento sismico; per la funzione che l'opera deve espletare nella sua vita utile, è significativo calcolare lo Stato Limite di Danno (SLD) per l'esercizio e lo Stato Limite di Salvaguardia della Vita (SLV) per lo stato limite ultimo.

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

Sanas GRUPPO ES ITALIANE

1° STRALCIO LUNGO LA S.S. N. 210 "FERMANA FALERIENSE" - AMANDOLA – SERVIGLIANO"

T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

 $G_1+G_2+\Sigma \psi_{2i}\cdot Q_{ki}$

5.2 VITA NOMINALE

La vita nominale di un'opera strutturale, così come definita al punto 2.4.1 del DM 17/01/2018, è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata. Nel caso in oggetto, l'opera ricade nella definizione di "Costruzioni con livelli di prestazioni ordinarie".

La vita nominale viene pertanto assunta: $V_N = 50$ anni.

5.3 CLASSE D'USO

Il DM 17/01/2018 al punto 2.4.2. attribuisce alle costruzioni, in funzione della loro destinazione d'uso e quindi delle conseguenze di una interruzione di operatività o di un'eventuale collasso in conseguenza di un evento sismico, diverse classi d'uso. Nel caso in oggetto si fa riferimento alla Classe IV: "Costruzioni con funzioni pubbliche o strategiche importanti". Il coefficiente d'uso risulta pertanto: $C_U = 2.0$.

5.4 PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U .

Si ottiene pertanto il periodo di riferimento: $V_R = V_N \times C_U = 50 \times 2.0 = 100$ anni

5.5 VALUTAZIONE DELL'ACCELERAZIONE ATTESA MASSIMA AL SUOLO

L'opera è situata in corrispondenza delle seguenti coordinate geografiche:

Long: 13.468695, Lat: 43.055045

Siccome le opere prese in esame risultano immersa nel terreno, si adotta un criterio pseudo-statico. Cautelativamente si prende in considerazione la massima accelerazione attesa al sito fra quelle ottenute per tutte le opere considerate, pari a:

(SLV)
$$a_{max} = S_S S_T ag = 1.364 \cdot 1 \cdot 0.225 = 0.307 g$$

(SLD)
$$a_{max} = S_S S_T ag = 1.5 \cdot 1 \cdot 0.095 = 0.143 g$$

Valori dei parametri a_g , F_o , T_c^{*} per i periodi di ritorno T_R associati a ciascuno

SLATO LIMITE	T _R [anni]	a _g [g]	F _o [-]	T _c * [s]
SLO	60	0.076	2.452	0.295
SLD	101	0.095	2.440	0.315
SLV	949	0.225	2.485	0.345
SLC	1950	0.286	2.521	0.353

6 DESCRIZIONE MODELLO DI CALCOLO

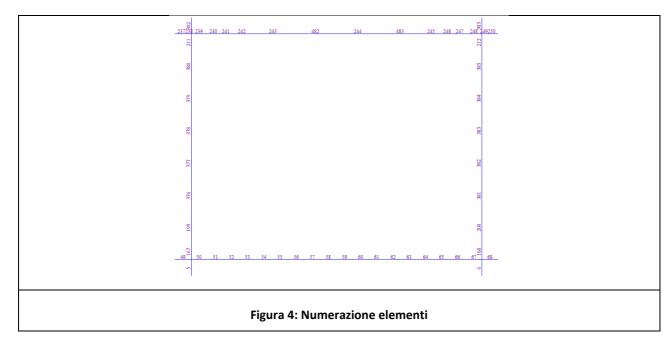
Il manufatto scatolare è stato modellato mediante l'utilizzo di elementi finiti di tipo "beam". Visto lo sviluppo longitudinale, si è ritenuto ragionevole assumere che le sollecitazioni si concentrino principalmente in direzione trasversale, e per questo motivo si adotta un modello 2D piano di profondità pari a 1 m.

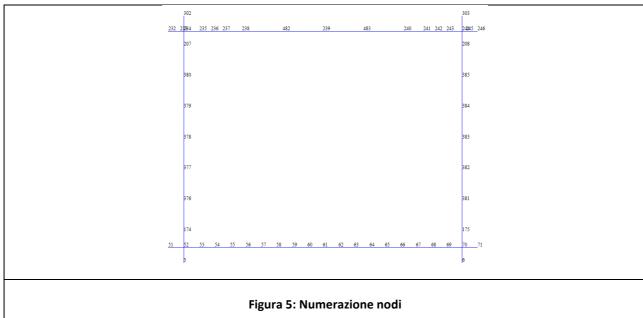
Il modello è vincolato mediante molle lineari alla Winkler poste cautelativamente in corrispondenza della sola fondazione, che permettono di simulare il supporto fornito dal terreno.

Sulla base delle indagini geotecniche effettuate, per le quali si rimanda alla specifica relazione, si ottiene un valore di costante elastica delle molle pari a:

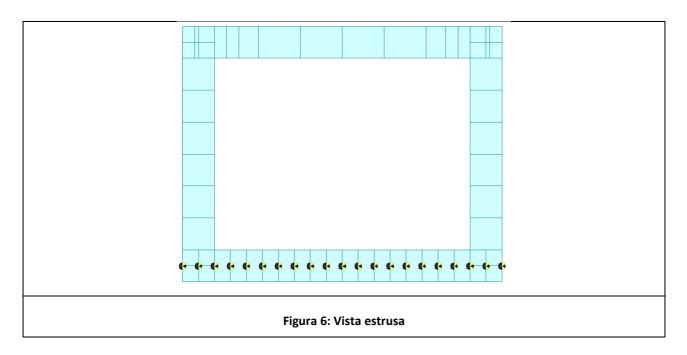
 $K_7 = 20000 \text{ kN/m}^3$

Di seguito si riportano alcune viste del modello.





T03_TM12_STR_RE01_A **RELAZIONE DI CALCOLO**



T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

CALCOLO DELLA PRESSIONE IN CALOTTA

I metodi di calcolo che il software mette a disposizione per modellare i carichi agenti in corrispondenza del piano passante per il trasverso dello scatolare sono i seguenti:

Pressione Geostatica:

Con questo metodo la massa di terreno sovrastante la calotta si considera su di essa agente con il suo peso. Quindi la pressione in calotta è fornita dalla seguente relazione:

$$P_{v} = \mathbf{y} H$$

Se sul profilo del piano campagna sono presenti dei sovraccarichi, concentrati e/o distribuiti, la diffusione di questi nel terreno avviene secondo un angolo, rispetto alla verticale, pari ad un valore definito dall' utente.

dove

è il peso specifico del terreno dello strato superiore;

Н è lo spessore dello strato superiore di terreno.

Terzaghi:

Nei riguardi della forma del diagramma di carico, cioè della modalità di applicazione delle spinte del terreno, il metodo di Terzaghi considera che il carico sul traverso si manifesti come semplice peso di una massa parabolica o ellittica di distacco.

Più in dettaglio Terzaghi fornisce due espressioni differenti della pressione a seconda della maggiore o minore altezza del ricoprimento H₀. Le due espressioni sono:

Per basse profondità, cioè per H0 ≤ 5 B1

$$p_{\mathbf{v}} = \frac{\gamma B_1 - C}{K t g \varphi} \left(1 - e^{-K \frac{H_1}{B_1} t g \varphi} \right)$$

nella quale K è un coefficiente sperimentale, che, secondo misure eseguite dallo stesso Autore è circa uguale ad 1. Inoltre:

T03_TM12_STR_RE01_A **RELAZIONE DI CALCOLO**

$$B_1 = \frac{b}{2} + h \ tg\varphi \left(45^\circ - \frac{\varphi}{2}\right)$$

In questa espressione b ed h sono la larghezza e l'altezza dello scatolare e □ è l'angolo d'attrito del terreno di rinfianco.

Per grandi profondità, cioè per H0>5B1:

$$p_{\mathbf{v}} = \frac{\gamma B_1 - C}{K \operatorname{tg} \boldsymbol{\varphi}} \left(1 - e^{-K \frac{H_1}{B_1} \operatorname{tg} \mathbf{v}} \right) + \gamma H_2 e^{-K \frac{H_1}{B_1} \operatorname{tg} \mathbf{v}}$$

essendo H₁ la distanza, misurata dal piano orizzontale sul quale agisce la pressione, alla quale si estende l'effetto volta e H₂ la residua distanza sino al piano campagna. La somma H₁ + H₂ è l'altezza del ricoprimento H0.

<u>Caquot-Kerisel</u>:

Il metodo di Caquot-Kerisel adotta le stesse ipotesi di base del metodo di Terzaghi.

Nei riguardi della forma del diagramma di carico, cioè della modalità di applicazione delle spinte del terreno, il metodo di Caquot-Kerisel considera che il carico sul traverso (calotta nel caso di scatolare di forma circolare o a galleria) si manifesti come semplice peso di una massa parabolica o ellittica di distacco.

Il valore del suddetto carico è fornito dalla seguente espressione:

$$p_{\mathbf{v}} = \frac{\gamma H}{\lambda_{\mathbf{p}} - 2} \left[\frac{r_0}{H} - \left(\frac{r_0}{H} \right)^{\lambda_{\mathbf{p}} - 1} \right] - \frac{C}{tg\varphi} \left[1 - \left(\frac{r_0}{H} \right)^{\lambda_{\mathbf{p}} - 1} \right]$$

In questa espressione:

- H, profondità dell'asse dello scatolare rispetto al piano campagna
- r₀, raggio del cerchio inscritto nella struttura;
- C, coesione del terreno dello strato di ricoprimento;

- Φ, angolo d'attrito del terreno dello strato di ricoprimento;
- K_p , coefficiente di spinta passiva espresso da K_p = tan 2 (45+ Φ /2).

6.2 ANGOLO DI DIFFUSIONE DEI SOVRACCARICHI

Tale valore rappresenta l'angolo, rispetto alla verticale, secondo il quale i sovraccarichi presenti sul terreno vengono riportati sul piano orizzontale passante per il traverso. La scelta di questo parametro è eseguita attraverso pulsanti di selezione relativi ai valori seguenti:

- Angolo d'attrito del terreno di ricoprimento;
- Angolo di spinta attiva (45 Φ / 2);
- Angolo di spinta passiva (45 + Φ / 2);
- Valore direttamente inputato da utente.

Indicato con S lo spessore dello strato di ricoprimento e con Φ l'angolo di diffusione del sovraccarico, un carico Q, agente sul piano campagna, si ripartirà su una superficie di ampiezza pari 2 x S x tg(α) sul piano passante per il traverso.

Se sul piano campagna agisce un carico distribuito su un tratto di ampiezza pari a L lo stesso carico sarà diffuso, sul piano passante per il traverso, su un tratto di ampiezza pari:

$$L' = L + 2 S tg(\alpha)$$

6.3 CALCOLO DELLE SPINTE SUI PARAMENTI VERTICALI

In generale occorre considerare, di volta in volta, le spinte più appropriate a seconda della deformabilità della parete.

Nel caso di muri per i quali si possano accettare significative deformazioni, è possibile assumere, sia in condizioni statiche sia in condizioni sismiche, un regime di spinte attive. Altrimenti è, in genere, necessario assumere condizioni di spinta a riposo.

In presenza di sisma

è consentito l'approccio pseudo-statico, secondo il quale il complesso muro+terreno mobilitato è pensato soggetto ad un'accelerazione sismica uniforme avente le seguenti componenti:

Orizzontale = k_h g Verticale = k_v g = \pm 0.5 k_h g

RELAZIONE DI CALCOLO

Come nel caso statico, anche in condizioni sismiche è necessario distinguere tra:

- Muri indeformabili:
- Muri deformabili;
- Muri molto deformabili;

Nella categoria dei **Muri Indeformabili** possono essere inclusi i manufatti aventi pareti adeguatamente contrastate, quali, ad esempio, gli scatolari. In questo caso è opportuno adottare spinte sismiche secondo la teoria di *Wood* (1973), come meglio indicato nei paragrafi a seguire.

Nella categoria dei **Muri Deformabili** si possono includere le pareti sufficientemente deformabili grazie alla loro snellezza ma tuttavia sostanzialmente vincolate, in qualche modo, ad altre strutture, come ad esempio le pareti di manufatti a U. In questo caso potranno essere considerate spinte comprese tra valori a riposo e attive, in ragione della deformabilità. Queste ultime (sismiche attive) saranno valutate assumendo:

$$k_h = \beta_m \cdot a_{max}/g$$
, con $\beta_m = 1$

Nella categoria dei **Muri molto Deformabili** per i quali possono essere ipotizzati significativi spostamenti relativi tra muro e terreno, si possono includere, ad esempio, i muri di sostegno fondati su fondazioni dirette. In questo caso si assumeranno certamente spinte attive, da valutarsi, introducendo nel caso sismico un coefficiente β_m in accordo con il paragrafo 7.11.6.2.1 delle NTC2018.

Seguono ora i criteri generali di valutazione delle spinte, applicabili a geometrie ordinarie.

6.3.1 SPINTE IN CONDIZIONI STATICHE

6.3.1.1 SPINTE ATTIVE

Ad una generica profondità z, nel caso di terreno puramente granulare, lo sforzo orizzontale totale $\sigma_A(z)$ sulla parete è dato da:

$$\sigma_A(z) = K_A \cdot [\sigma_V(z) - u(z)] + u(z)$$

In cui

- $\sigma_{v}(z)$ = sforzo verticale totale alla generica profondità, ossia il peso della colonna di terreno e di acqua soprastante la quota z.
- u(z) = pressione dell'acqua alla generica profondità.

Il coefficiente di spinta attiva KA può, in genere, essere assunto pari a

$$K_A = \tan^2\left(\frac{\pi}{4} - \frac{\phi}{2}\right)$$

È possibile, tuttavia, mettere in conto l'angolo d'attrito δ tra terra e muro, assumendo quindi che la spinta sia inclinata, rispetto alla normale alla superficie di contatto tra muro e terreno, di un angolo δ .

In questo caso il coefficiente di spinta attiva può essere valutato con le note formule derivate dalla teoria di Coulomb e sviluppate da Muller-Breslau.

CONDIZIONI DI SPINTA ATTIVA – Teoria di Coulomb
$$K_{A} = \frac{sen^{2}(\psi + \phi)}{\operatorname{sen}^{2}\psi \operatorname{sen}(\psi - \delta) \left[1 + \sqrt{\frac{sen(\phi + \delta)sen(\phi - \beta)}{sen(\psi - \delta)sen(\psi + \beta)}}\right]^{2}} \tag{4-3}$$

NOTA: Operando nell'ambito del metodo agli stati limite, nelle formule precedenti, va introdotto l'angolo d'attrito di calcolo, cioè $\tan(\Phi_{\text{d}}) = \tan(\Phi_{\text{K}}) / \gamma_{\text{K}}$, con valore di γ_{K} relativo alla combinazione GEO o STRU che si sta considerando.

dove Φ è l'angolo d'attrito del terreno, Ψ rappresenta l'angolo che la parete forma con l'orizzontale (Ψ = 90° per parete verticale), δ è l'angolo d'attrito terreno-parete, β è l'inclinazione del terrapieno rispetto all'orizzontale. La spinta risulta inclinata dell'angolo d'attrito terreno/parete δ rispetto alla normale alla parete.

6.3.1.2 SPINTE A RIPOSO

Ad una generica profondità z, nel caso di terreno puramente granulare, lo sforzo orizzontale totale $\sigma_0(z)$ sulla parete è dato da:

$$\sigma_A(z) = K_0 \cdot [\sigma_V(z) - u(z)] + u(z)$$

In cui, nel caso di piano campagna orizzontale, il coefficiente di spinta a riposo K_0 se non diversamente definito, può essere assunto pari a:

$$K_0 = (1-\sin(\phi))$$

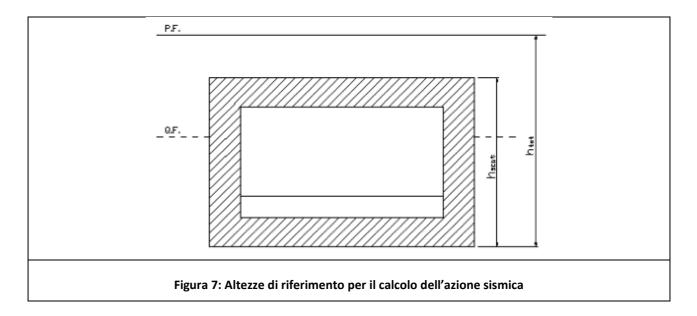
6.3.2 SPINTE IN PRESENZA DI SISMA

L'opera in oggetto rientra in due distinte categorie precedentemente illustrate. La struttura scatolare rientra nella categoria dei "muri indeformabili" (strutture rigide), ovvero per il calcolo delle spinte si è fatto riferimento alla teoria di Wood

Formula di Wood

Nel caso di strutture rigide completamente vincolate, in modo tale che non può svilupparsi nel terreno uno stato di spinta attiva, nonché nel caso di muri verticali con terrapieno a superficie orizzontale, l'incremento dinamico di spinta del terreno può essere calcolato come:

$$\Delta P_d = k_h \cdot \gamma \cdot H^2 = E$$


1° Stralcio lungo la S.S. n. 210 "Fermana Faleriense" - Amandola – Servigliano"

T03_TM12_STR_RE01_A **RELAZIONE DI CALCOLO**

$$k_h = \frac{a_g}{g} \cdot \beta_m \cdot S_T \cdot S_S$$

dove H è l'altezza sulla quale agisce la spinta; questa spinta è applicata come una distribuzione uniforme lungo l'altezza.

Entrando nel dettaglio delle analisi eseguite dal software, l'incremento sismico viene determinato come differenza tra la spinta sismica e spinta statica. La spinta sismica è il prodotto della pressione sismica per l'altezza dello scatolare (h_{scat}); a sua volta la pressione sismica è funzione dell'altezza h_{tot}, ovvero dell'altezza dalla fondazione dello scatolare al piano stradale.

Tale distribuzione si sommerà alla spinta statica G delle terre secondo la combinazione allo stato limite ultimo, con coefficiente yı.

ANALISI DEI CARICHI

7.1 PESO PROPRIO

Il peso proprio della struttura in calcestruzzo armato è valutato in ragione di 25 kN/m³.

7.2 CARICHI PERMANENTI

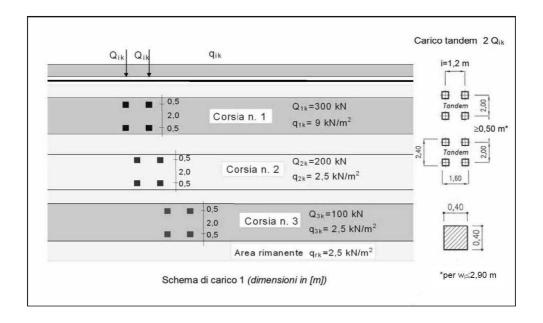
Per i tombini TM04, TM05, TM06 e TM12 di dimensioni interne nette pari a 4x3m, si considera il ricoprimento massimo di altezza 2.30m. Di seguito viene riportato il calcolo riguardante i carichi permanenti portati sulle diverse sezioni dell'opera:

CARICHI PERN	h(m)	γ(kN/m3)	kN/m2
Soletta superiore	2.30	20	46

7.3 SPINTA STATICA DELLE TERRE

La spinta statica delle terre è calcolata con un peso di volume del terreno di 20 kN/m3 e un angolo di attrito di 35°. Il coefficiente di spinta a riposo è pari a 0.426.


SPINTA STATICA DELLE TERRE	Prof. h (m)	kN/m2
Spinta estradosso soletta superiore	2.30	19.6
Spinta in asse soletta superiore	2.55	21.7
Spinta in asse soletta inferiore	6.05	51.6
Spinta intradosso soletta inferiore	6.30	53.7



RELAZIONE DI CALCOLO

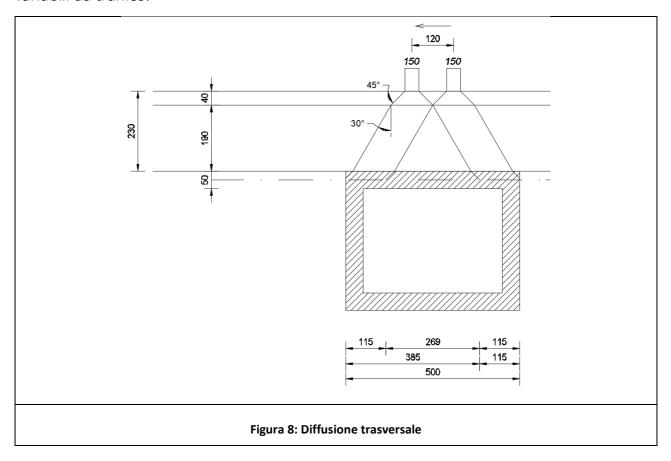
7.4 CARICHI VARIABILI DA TRAFFICO

Secondo quanto riportato nelle Norme Tecniche 2018 (D.M. 17/01/2018) si considerano i carichi mobili da traffico $q_{1,a}$ (mezzo convenzionale a due assi disposti come indicato nello schema in figura).

Il numero di colonne di carichi mobili e la loro disposizione sono quelli massimi compatibili con la larghezza della carreggiata considerata.

Si ipotizza l'applicazione di carichi tandem applicati su un'impronta rettangolare pari a $0.4 \times 0.4 \text{ m}$, associati a carichi uniformemente distribuiti considerati prudenzialmente pari a $q_{1k} = 9 \text{ kN/m}^2$ per la colonna di carico relative alla prima corsia e $q_{2k} = 2.5 \text{ kN/m}^2$ relativa alla seconda corsia.

I carichi tandem vengono diffusi sia in direzione longitudinale che trasversale partendo dall'estradosso del piano stradale fino al piano medio della soletta superiore. Si assume che la diffusione avvenga con un angolo di 30° attraverso il rilevato stradale (in accordo al

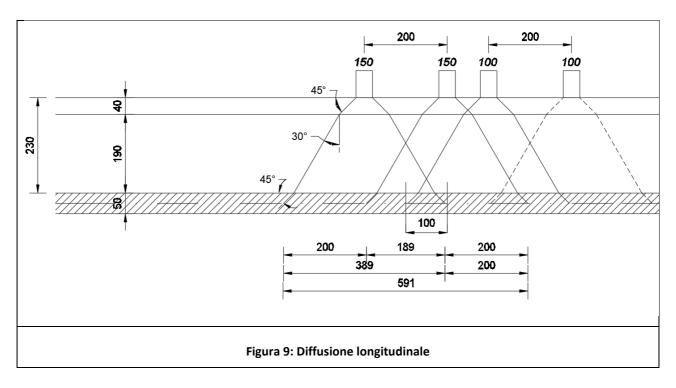

Structure and Transport Engine

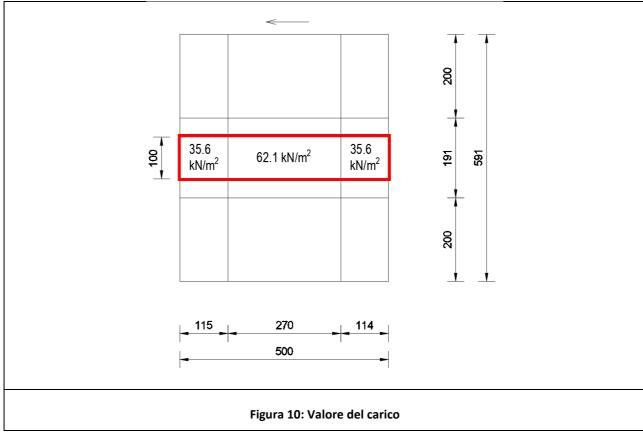
PROGETTISTA RTP

1° STRALCIO LUNGO LA S.S. N. 210 "FERMANA FALERIENSE" - AMANDOLA – SERVIGLIANO"

T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

punto C5.1.3.3.5.1 della circolare ministeriale del 21/01/2019) e con un angolo di 45° nella soletta superiore del tombino. Di seguito si riportano gli schemi di diffusione dei carichi variabili da traffico.





PROGETTISTA RTP:

7.5 CARICHI DA FRENAMENTO

La forza di frenamento è calcolata funzione di un asse del carico verticale agente sulla prima corsia convenzionale:

$$180 \text{ kN} \le \text{q3} = 0.6 \text{ (Q1k)} + 0.10 \text{ q1k w1 L} \le 900 \text{ kN}$$

In cui L = la larghezza totale dello scatolare.

Si ottiene dunque che:

$$F = 0.6 \times 300 + 0.10 \times 9 \times 3 \times 5.00 = 193.5 \text{ kN}$$

L'azione viene poi diffusa longitudinalmente e si ottiene un valore pari a:

$$F_{fren} = F/3.78 \times 5.00 = 9.95 \text{ kN/mg}$$

Il carico verrà applicato con un'eccentricità pari alla distanza che intercorre tra l'asse della soletta superiore e l'estradosso del piano viario, pari a 2.55m.

7.6 SPINTE SULLE PARETI DOVUTE AI CARICHI VARIABILI

L'azione è calcolata moltiplicando il coefficiente di spinta a riposo k0 per il massimo carico variabile di 62.10 kN/mq, ottenendo un carico uniformemente distribuito di 0.426 x 62.10 = 26.50 kN/mq.

7.7 VARIAZIONI TERMICHE

La variazione termica uniforme si considera presente solo sulla soletta di copertura, di entità pari a +/- 15°C. Il coefficiente di dilatazione termica è pari a α = 10x10-6 Si considera una variazione termica differenziale con un gradiente di 5°C tra intradosso ed estradosso.

1° STRALCIO LUNGO LA S.S. N. 210 "FERMANA FALERIENSE" - AMANDOLA – SERVIGLIANO"

T03_TM12_STR_RE01_A **RELAZIONE DI CALCOLO**

Le azioni termiche elementari si combinano tra di loro secondo la tabella seguente.

Combina-	Uniforme	Differenziale
zione	ΔT = 15.00°C	ΔT = 5.00°C
DT1	1	0
DT2	-1	0
DT3	0	1
DT4	0	-1
DT5	1	1
DT6	1	-1
DT7	-1	1
DT8	-1	-1

È stato creato un inviluppo che include tutte le combinazioni sopra elencate.

7.8 RITIRO

Gli effetti del ritiro del calcestruzzo sono valutati impiegando i coefficienti indicati nelle NTC2018.

La deformazione totale da ritiro è data dalla somma della deformazione per ritiro da essiccamento e della deformazione da ritiro autogeno. Il ritiro è stato applicato mediante una variazione termica equivalente pari a Δ Trit = -7.41°.

Cls a t=0

cls tipo =

28 Mpa $f_{ck} =$ 36 MPa $f_{cm} =$ $\alpha =$ 0.00001 32308250 kN/m² Ecm =

N 1 coef. di correzione di Ecm

32308250 kN/m² Ecm =

Tempo e ambiente

ts = 2 gg età del calcestruzzo in giorni, all'inizio del ritiro per essiccamento to = 7 gg età del calcestruzzo in giorni al momento del carico 25550 gg età del calcestruzzo in giorni ho = 2Ac/u =1000 mm dimensione fittizia dell'elemento di cls 500000 mmq sezione dell'elemento Ac =1000 mm perimetro a contatto con l'atmosfera u = RH = 80 % umidità relativa percentuale

Coefficiente di viscosità φ (t,to) e modulo elastico ECt a tempo "t"

φο=φRH βχ(fcm) βχ (to)= 2.123 coefficiente nominale di viscosità

$$\varphi_{\rm RH} = 1 + \left[\frac{1 - RH/100}{0.1 \cdot \sqrt[3]{h_0}}\alpha_1\right]\alpha_2 =$$
 1.195 coefficiente che tiene conto dell'umidità

$$\alpha_1 = \begin{cases} (35/f_{em})^{0.7} per \ f_{em} > 35MPa \\ 1 \ per \ f_{em} \le 35MPa \end{cases} =$$

0.980 coeff. per la resistenza del cls

$$\alpha_2 = \begin{cases} \left(35/f_{cm}\right)^{0.2} per \ f_{cm} > 35MPa \\ 1 \ per \ f_{cm} \le 35MPa \end{cases} =$$

0.994 coeff. per la resistenza del cls

$$\beta_c(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} =$$

2.8 coefficiente che tiene conto della resistenza del cls

$$\beta_c(t_0) = \frac{1}{(0.1 + t_0^{0.20})} =$$

0.635 coefficiente per l'evoluzione della viscosità nel

$$t_o = t_0 \left(\frac{9}{2 + t_0^{1.2}} + 1 \right)^{\alpha} \ge 0.5 =$$

 $t_o = t_0 \left(\frac{9}{2 + t_0^{1.2}} + 1 \right)^{\alpha} \ge 0.5 =$ 7.00 tempo to corretto in funzione della tipologia di cemento

coefficiente per il tipo di cemento (-1 per Classe S, 0 per Classe N, 1 per Classe R)

coeff. per la variabilità della viscosità nel tempo

S	-1
N	0
R	1

$$\beta_c(t, t_0) = \left[\frac{(t - t_0)}{(\beta_H + t - t_0)}\right]^{0.3} = 0.983$$

 $\beta_H = 1.5 \left[1 + (0.012 \cdot RH)^{18} \right] h_0 + 250 \cdot \alpha_3 \le 1500 \cdot \alpha_3 =$

coefficiente che tiene

$$\alpha_3 = \begin{cases} (35/f_{cm})^{0.5} per \ f_{cm} > 35MPa \\ 1 \ per \ f_{cm} < 35MPa \end{cases}$$

conto dell'umidità relativa

$$\alpha_{3} = \begin{cases} (35/f_{cm})^{0.5} per \ f_{cm} > 35MPa \\ 1 \ per \ f_{cm} \le 35MPa \end{cases} = 0.986$$

coeff. per la resistenza del calcestruzzo

Il modulo elastico al tempo "t" è pari a:

$$E_{cm}(t, t_0) = \frac{E_{cm}}{1 + \varphi(t, t_0)} = 10463079 \text{ kN/m}^2$$

Deformazione di Ritiro

$$\varepsilon_s(t,t_o) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t) =$$

0.000229 deformazione di ritiro $\epsilon(t,to)$

$$\varepsilon_{cd}(t) = \beta_{ds}(t,t_s) K_b \varepsilon_{cd,0} =$$

0.000184 deformazione dovuta al ritiro per essiccamento

$$\beta_{ds}(t, t_s) = \left[\frac{(t - t_s)}{(t - t_s) + 0.04\sqrt{h_0^3}} \right] = 0.952825$$

0.7

parametro che dipende da ho secondo il prospetto seguente

Valori di k

h _o	K h
100	1,0
200	0,85
300	0,75
≥500	0,70

Valori di Kh intermedi a quelli del prospetto vengono calcolati tramite interpolazione lineare.

$$\varepsilon_{cd,0} = 0.85 \left[\left(220 + 110 \alpha_{ds1} \right) \cdot \exp(-\alpha_{ds2} \frac{f_{cm}}{f_{cm0}}) \right] 10^{-6} \beta_{\rm RH} = -0.000275 \ {\rm deformazione} \ {\rm diag} \ {\rm base}$$

$$\beta_{RH} = 1.55 \left[1 - \left(\frac{RH}{RH0} \right)^3 \right] = 0.756$$

$$\mathbf{f}_{cm0} = 1$$
 10 MPa

$$\alpha_{ds1} = 4$$
coefficiente per il tipo di cemento (3 per Classe S, 4 per Classe N, 6 per Classe R)

$$\alpha_{ds2}$$
 = 0.12 coefficiente per il tipo di cemento (0.13 per Classe S, 0.12 per Classe N, 0.11 per Classe R)

$$\varepsilon_{ca}(t) = \beta_{as}(t) \varepsilon_{caoo} = 0.000045$$
 deformazione dovuta al ritiro autogeno

$$\beta_{as}(t) = 1 - \exp(-0.2t^{0.5}) = 1$$

$$\varepsilon_{\text{caoo}} = 2.5 \text{ (f}_{\text{ck}} - 10) \ 10^{-6} = 0.000045$$

Variazione termica uniforme equivalente agli effetti del ritiro:

$$\Delta \mathbf{T}_{\mathrm{citizo}} = -\frac{\varepsilon_{z}\left(t,t_{0}\right) \cdot E_{\mathit{cm}}}{\left(1 + \varphi(t,t_{0})\right) \cdot E_{\mathit{cm}} \cdot \alpha} = -7.41 \ ^{\circ}\mathrm{C}$$

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura.

IMPRESA A.T.I.:

PROGETTISTA RTP:

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura ed applicati nel modello come una variazione termica uniforme equivalente agli effetti del ritiro: $\Delta Trit = \varepsilon S / [(1+\varphi) \times \alpha T] = -7.41$ °C.

7.9 EFFETTI DELLE AZIONI SISMICHE

Le sollecitazioni sismiche risultanti sono valutate pseudo-staticamente essendo la struttura immersa nel terreno.

Si assume come direzione orizzontale più gravosa quella trasversale, concorde con le spinte del terreno. Per il sisma in direzione verticale si utilizza un coefficiente pari a metà di quello orizzontale.

Nelle verifiche allo Stato Limite Ultimo i valori dei coefficienti sismici orizzontali kh e verticale kv possono essere valutati mediante le espressioni:

$$\frac{a \max}{g}$$
 kh= β m· kv= \pm 0.5* kh

dove:

a_{max}= accelerazione orizzontale massima attesa al sito; g= accelerazione di gravità;

Il valore del coefficiente di amplificazione stratigrafico risulta:

$$S_S(SLV)=1,7 - 0,6*F0*ag/g = 1.364 \le 1,5$$

L'accelerazione massima è valutata con la relazione:

 $a_{max}(SLV) = S \cdot ag = S_s \cdot ag = 1,364*0,225g = 0,307 g$

Essendo lo scatolare una struttura che non ammette spostamenti relativi rispetto al terreno, il coefficiente β m, assume il valore: β m=1

Pertanto, i due coefficienti sismici valgono:

(SLV)
$$kh = \beta m \cdot \frac{a \max}{g} = 0.307$$
 $kv = \pm 0.5* kh = 0.154$

Allo SLD si fanno valutazioni analoghe ottenendo S_S pari a 1.50:

(SLD)
$$kh = \beta m \cdot \frac{a \max}{g} = 0.143$$
 $kv = \pm 0.5* kh = 0.0715$

- Azioni sismiche: inerzie dei pesi propri, carichi permanenti e variabili

Oltre il peso proprio e i carichi permanenti, si considera in fase sismica il 20 % dei carichi dovuti al traffico.

Il calcolo delle azioni orizzontali e verticali all'SLD e all'SLV risulta pertanto:

$$Fh = kh \cdot (g1 + g2 + 20\% Q)$$

$$Fv = kv \cdot (g1 + g2 + 20\% Q)$$

7.10 INCREMENTO SISMICO SPINTE DEL TERRENO

Viene calcolata, per stati di spinta a riposo, secondo la teoria di J.H.Wood (Earthquake induced soil pressure on structures – California Institute of Tecnology – Pasadena, 08/1973). Sulle pareti si ottiene un diagramma uniforme di pressioni pari a:

	h(m)	y(kN/m3)	k _h (SLD)	kN/m2
--	------	----------	----------------------	-------

PROGETTISTA RTP

SOVRASPINTA				
WOOD				
Δρ	6.30	20	0.143	17.96

1° STRALCIO LUNGO LA S.S. N. 210 "FERMANA FALERIENSE" - AMANDOLA – SERVIGLIANO"

T03_TM12_STR_RE01_A **RELAZIONE DI CALCOLO**

COMBINAZIONI DI CARICO

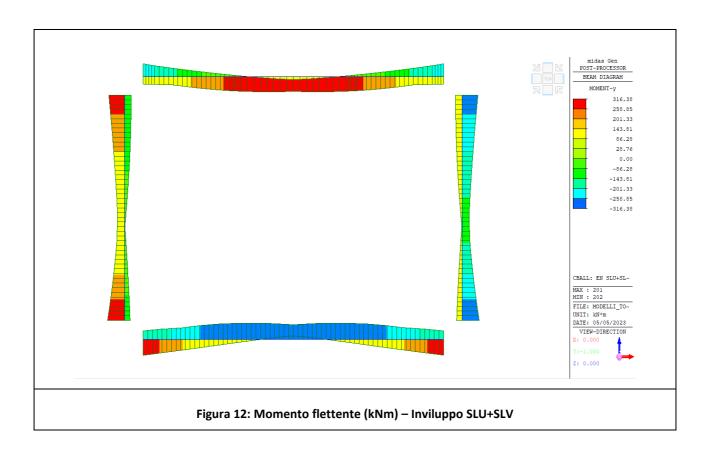
Le condizioni di carico precedenti sono combinate per ottenere le sollecitazioni di verifica totali.

Si nota quanto segue:

- Si assume che il valore quasi permanente dei carichi da traffico da traffico nelle combinazioni sismiche sia pari a Ψ 2 = 0.2.
- I carichi sismici sono stati inseriti nel modello con i valori corrispondenti all'SLD. Per le combinazioni SLV tali carichi sono moltiplicati per il rapporto tra le accelerazioni (amax SLV / amax SLD).

No	Name	Active	Туре	G1(ST)	G2(ST)	Ritiro(ST)	SPTSX(ST)	SPTDX(ST)	SPACCSX(ST)	SPACCDX(ST)	Fren(ST)	Fh(ST)	Fv(ST)	Wsx(ST)	Wdx(ST)	Qvk-Sup(CB)	AvvFrCb(CB)	TERM(CB)
7	SLU01	Active	Add		1.5000		1.3500	1.3500	1.3500	1.3500						1.3500	1.3500	
8	SLU02	Active	Add	1.3500	1.5000	1.2000	1.3500	1.3500	1.3500				1			1.3500	1.3500	0.9000
9	SLU03	Active	Add	1.3500	1.5000	1.2000	1.3500	1.3500		1.3500						1.3500	1.3500	0.9000
10	RARA01	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000						1.0000	1.0000	0.6000
11	RARA02	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000							1.0000	1.0000	0.6000
12	RARA03	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000		1.0000						1.0000	1.0000	0.6000
13	FREQ_01	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000	0.7500	0.7500						0.7500	0.6000	0.6000
14	FREQ_02	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000	0.7500							0.7500	0.6000	0.6000
15	FREQ_03	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000		0.7500						0.7500	0.6000	0.6000
16	QP01	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000	0.2000	0.2000					,	0.2000	0.2000	0.5000
17	QP02	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000	0.2000							0.2000	0.2000	0.5000
18	QP03	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000		0.2000						0.2000	0.2000	0.5000
19	SLD_E1	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000	0.2000			1.0000	0.3000	1.0000		0.2000	0.2000	0.5000
20	SLD_E2	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000	0.2000			1.0000	-0.300	1.0000		0.2000	0.2000	0.5000
21	SLD_E3	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000		0.2000		-1.000	0.3000		1.0000	0.2000	0.2000	0.5000
22	SLD_E4	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000	0.2000	0.2000		-1.000	-0.300		1.0000	0.2000	0.2000	0.5000
23	SLD_E5	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000	0.2000			0.3000	1.0000	0.3000		0.2000	0.2000	0.5000
24	SLD_E6	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000	0.2000			0.3000	-1.000	0.3000		0.2000	0.2000	0.5000
25	SLD_E7	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000		0.2000		-0.300	1.0000		0.3000	0.2000	0.2000	0.5000
-	SLD_E8	Active	Add	The state of the s	1.0000	1.0000	1.0000	1.0000		0.2000		-0.300	-1.000		0.3000	0.2000	0.2000	0.5000
	SLV_E1	Active	Add		1.0000	1.0000	1.0000	1.0000	0.2000			2.1630	100000000000000000000000000000000000000	2.1630		0.2000	0.2000	0.5000
28	SLV_E2	Active	Add		1.0000	1.0000	1.0000	1.0000	0.2000			2.1630	-0.648	2.1630		0.2000	0.2000	0.5000
-	SLV_E3	Active	Add	TO A LEGISLANCE	1.0000	1.0000	1.0000	1.0000		0.2000			0.6480		2.1630	0.2000	0.2000	0.5000
30	SLV_E4	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000	0.2000	0.2000		-2.163	-0.648		2.1630	0.2000	0.2000	0.5000
	SLV_E5	Active	Add		1.0000	1.0000	1.0000	1.0000	0.2000			0.6480		0.6480		0.2000	0.2000	0.5000
-	SLV_E6	Active	Add	1.0000			1.0000	1.0000	0.2000			0.6480	-2.163	0.6480		0.2000	0.2000	0.5000
-	SLV_E7	Active	Add		1.0000	1.0000	1.0000	1.0000		0.2000			2.1630		0.6480	0.2000	0.2000	0.5000
34	SLV_E8	Active	Add	1.0000	1.0000	1.0000	1.0000	1.0000		0.2000		-0.648	-2.163		0.6480	0.2000	0.2000	0.5000

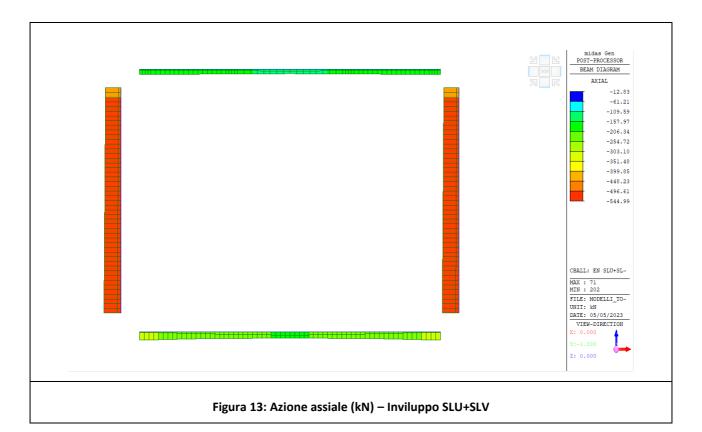
Figura 11: Combinazioni di carico


PROGETTISTA RTP:

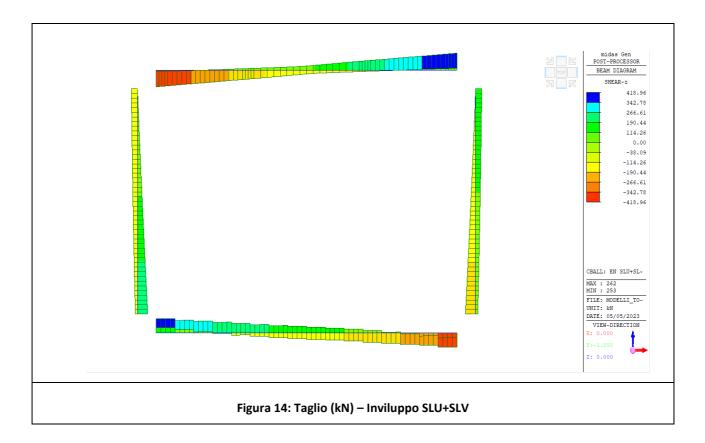
SOLLECITAZIONI

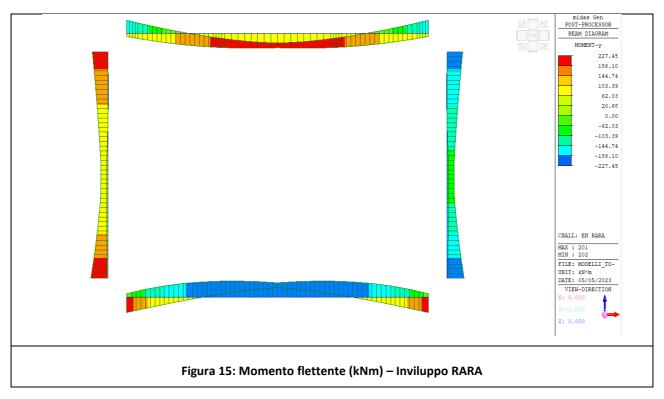
Di seguito vengono riportati i diagrammi di momento flettente e taglio per le combinazioni di carico sopra descritte e riferite a tutte le sezioni che compongono l'opera.

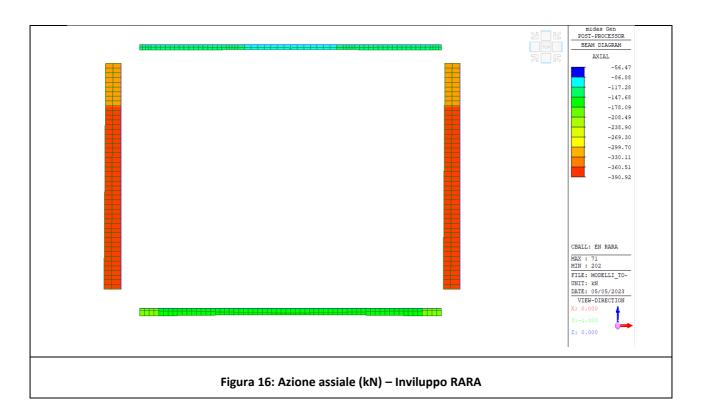
Si escludono dai diagrammi e dalle verifiche le zone dei nodi solette-piedritti, considerate rigide.

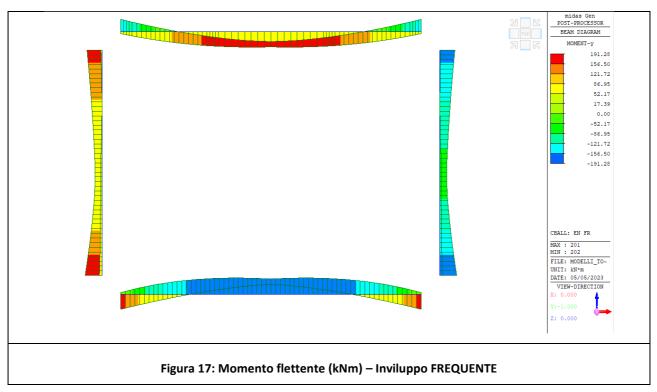


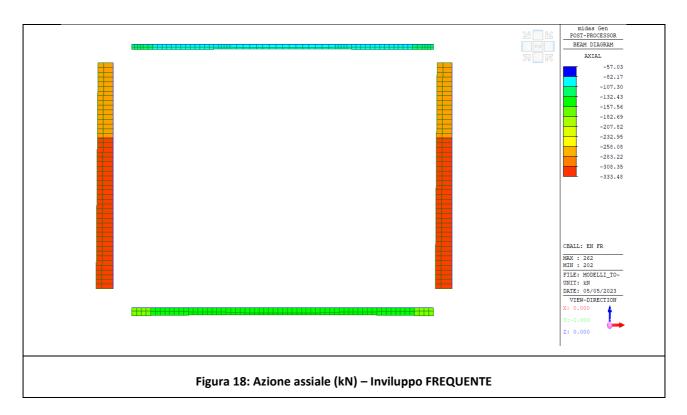
PROGETTISTA RTP:

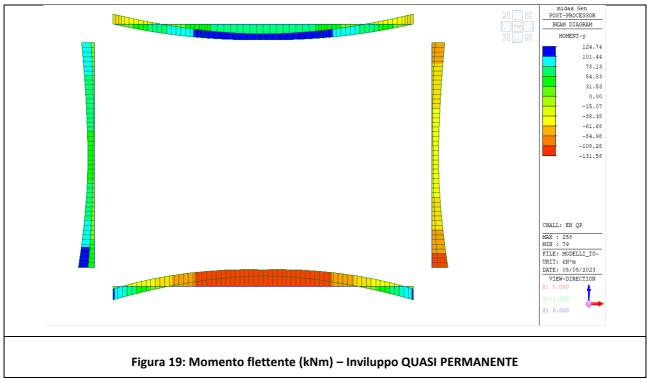


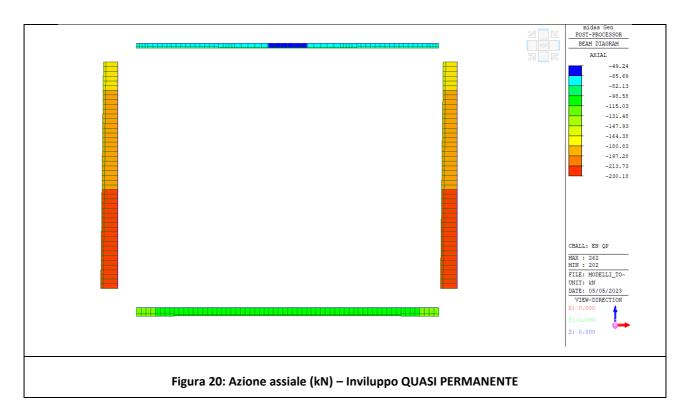



1° STRALCIO LUNGO LA S.S. N. 210 "FERMANA FALERIENSE" - AMANDOLA – SERVIGLIANO"


T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

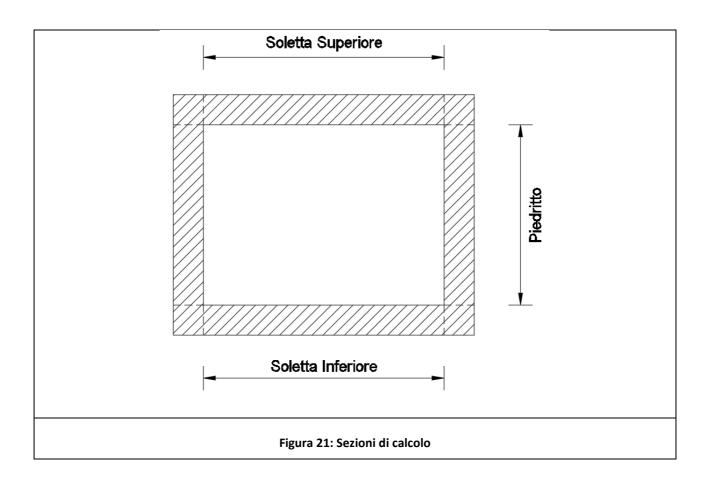

PROGETTISTA RTP: MANDATARIA:





Progettista RTP: Mandataria:

1° STRALCIO LUNGO LA S.S. N. 210 "FERMANA FALERIENSE" - AMANDOLA – SERVIGLIANO"

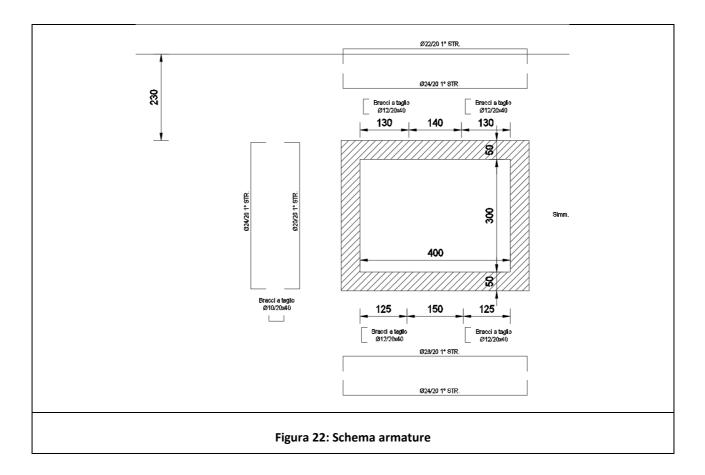

T03_TM12_STR_RE01_A **RELAZIONE DI CALCOLO**

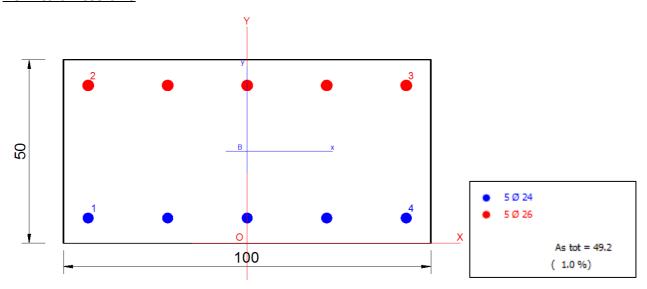
10 VERIFICHE STRUTTURALI

Vengono riportate le schede di verifica relative alla flessione e il taglio per le sezioni che compongono l'opera.

10.1 DEFINIZIONE SEZIONI DI CALCOLO

Di seguito si riporta una vista delle sezioni dell'opera che saranno oggetto di verifica e lo schema delle armature.





10.2 SOLETTA DI FONDAZIONE

La platea di fondazione dello spessore di 0.5m, è armata con armatura longitudinale Φ26/20 sul lembo superiore, Φ24/20 sul lembo inferiore. L'armatura a taglio è composta da bracci verticali Φ12/20"x40".

Verifica a flessione

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: TM05 Fond 0.5

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C28/35 Resis. compr. di progetto fcd: MPa 15.9 Def.unit. max resistenza ec2: 0.0020

Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32308.0

MPa Resis. media a trazione fctm: 2.76 MPa Coeff. Omogen. S.L.E.: 15.00

1° STRALCIO LUNGO LA S.S. N. 210 "FERMANA FALERIENSE" - AMANDOLA – SERVIGLIANO"

T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

	Sc limite S.L.E. comb. Rare:	16.8	MPa
	Sc limite S.L.E. comb. Frequenti:	16.8	MPa
	Ap.Fessure limite S.L.E. comb. Frequenti:	0.300	mm
	Sc limite S.L.E. comb. Q.Permanenti:	12.6	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do	Poligonale	
Classe Calces	C28/35	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	50.0
3	50.0	50.0
<i>J</i>	50.0 50.0	30.0 0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.1	7.0	24
2	-43.1	43.1	26
3	43.1	43.1	26
4	43.1	7.0	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato alla Numero della barra ini Numero della barra fin Numero di barre genei Diametro in mm delle l	ce la generazione e la generazione cui si riferisce la generazione	
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	24
2	2	3	3	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate Ν Mx

con verso positivo se tale da comprimere il lembo sup. della sez.

PROGETTISTA RTP:

IMPRESA A.T.I.:

V	v Com	ponente del Taglio	[kN] par	allela all'asse \	Y di riferimento delle coordinate

N°Comb.	N	Mx	Vy
1	0.00	-319.00	0.00
2	0.00	308.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	-224.00	0.00
2	0.00	218.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) N

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν My 0.00 (0.00) 1 0.00 -196.00 (-142.61) 0.00 180.00 (140.44) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Μx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx -140.00 (-142.61) 0.00 (0.00) 1 0.00 2 113.00 (140.44) 0.00 (0.00) 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

5.6 cm Copriferro netto minimo barre longitudinali: Interferro netto minimo barre longitudinali: 19.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.45)NTC] As Tesa

N°Comb Ver N Mx N Res Mx Res Mis.Sic. As Tesa

IMPRESA A T I

1	S	0.00	-319.00	0.00	-412.29	1.29	26.5(6.9)
2	S	0.00	308.00	0.00	355.21	<mark>1.15</mark>	22.6(6.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.172	-50.0	0.0	0.00019	-43.1	7.0	-0.01686	43.1	43.1
2	0.00350	0.160	-50.0	50.0	0.00000	-43.1	43.1	-0.01832	-43.1	7.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000472420	0.003500000	0.172	0.700
2	0.000000000	0.000507464	-0.021873202	0.160	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Xc max, Yc max Ss min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure Ye may Ve may Se min Ye min Ve min

IN COMB	ver	Sc max	xc max i	c max	SS Min	AS MIN	rs min	Ас еп.	AS en.
1	S	6.91	-50.0	0.0	-221.7	21.6	43.1	1200	26.5
2	S	7.02	-50.0	50.0	-252.4	21.6	7.0	1250	22.6

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver.	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Cf

Copriferro [mm] netto calcolato con riferimento alla barra più tesa

IMPRESA A T I

PROGETTISTA RTP:

RELAZIONE DI CALCOLO

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00137	0.00000	0.500	26.0	56	0.00068 (0.00067)	390	0.267 (990.00)	-142.61	0.00
2	S	-0.00155	0.00000	0.500	24.0	58	0.00076 (0.00076)	423	0.320 (990.00)	140.44	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	6.04	-50.0	0.0	-194.0	21.6	43.1	1200	26.5
2	S	5.79	-50.0	50.0	-208.4	21.6	7.0	1250	22.6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00120	0.00000	0.500	26.0	56	0.00058 (0.00058)	390	0.227 (0.30)	-142.61	0.00
2	S	-0.00128	0.00000	0.500	24.0	58	0.00063 (0.00063)	423	0.264 (0.30)	140.44	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
	-		-50.0						
2	S	3.64	-50.0	50.0	-130.8	21.6	7.0	1250	22.6

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1 2	S S	-0.00086 -0.00081	0.00000 0.00000	0.500 0.500		56 58	0.00042 (0.00042) 0.00039 (0.00039)		` '		0.00 0.00

<u>Verifica a taglio – Sezione appoggio</u>

Caratteristiche dei materiali:

Resistenza caratteristica a compressione cubica cls	R _{ck}	=	35	N/mm ²
Resistenza caratteristica a compressione cilindrica cls	f _{ck}	=	29	N/mm²
Resistenza di calcolo a compressone del cls	f _{cd}	=	16.46	N/mm²
Resistenza di calcolo a trazione dell'acciaio	f _{yd}	=	391.30	N/mm²

Sollecitazioni di verifica (S.L.U.):

Valore di calcolo dello sforzo di taglio agente	V_{Ed}	=	357.00	kN
Valore di calcolo della forza assiale associata a V _{Ed}	N (V _{Ed})	=	0.00	kN
Valore di calcolo del momento flettente associato a V _{Ed}	M (V _{Ed})	=	0.00	kNm

Caratteristiche geometriche della sezione:

Altezza utile della sezione	d	=	431	mm
Larghezza minima della sezione	b _w	=	1000	mm
Armatura della sezione in zona tesa:				
Diametro ferri longitudinali	Ø	=	24	mm
Numero tondini longitudinali utilizzati	n	=	5	
Area totale di armatura longitudinale in zona tesa	A _{sl}	=	2260	$\mathrm{mm^2}$
Rapporto geometrico dell'armatura longitudinale (≤ 0.02)	ρι	=	0.0052	

VERIFICA SENZA ARMATURA TRASVERSALE RESISTENTE A TAGLIO

Resistenza ultima a taglio (V _{Rd} ≥ V _{Rd,min})	V_{Rd}	=	215.54	kN
Resistenza ultima a taglio minima	$V_{Rd,min}$	=	177.23	kN
Tensione media di compressione nella sezione (≤ 0.2×f _{cd})	σср	=	0.00	N/mm²
Tensione dipendente dal fattore k e dalla resistenza del cls	V _{min}	=	0.41	N/mm²
Fattore dipendente dall'altezza utile della sezione (≤ 2)	k	=	1.68	

VERIFICA NON SODDISFATTA:

occorre procedere al dimensionamento dell'armatura trasversale resistente a taglio.

VERIFICA CON ARMATURA TRASVERSALE RESISTENTE A TAGLIO

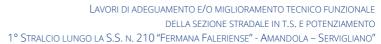
Armatura aggiuntiva resistente a taglio:

α	=	90	0
$\emptyset_{\sf sw}$	=	12	mm
n_{sw}	=	2.5	
S	=	200	mm
\mathbf{A}_{sw}	=	283	$\rm mm^2$
0.55	<	8.23	SI
θ	=	21.81	0
f 'cd	=	8.23	N/mm ²
	Ø _{sw} n _{sw} s A _{sw} 0.55	$ \emptyset_{sw} = n_{sw} = s = A_{sw} = 0.55 < \theta = 0.55 $	

Tensione media di compressione nella sezione 0.00 N/mm² σ_{cp} Coefficiente maggiorativo per membrature compresse 1.00 --

Resistenza di calcolo a "taglio trazione" dell'armatura 535.76 kN V_{Rsd} Resistenza di calcolo a "taglio compressione" del cls V_{Rcd} 1101.29 kN Resistenza ultima a taglio 535.76 kN

VERIFICA SODDISFATTA.



<u>Verifica a taglio – Sezione mezzeria</u>

_			
Caratt	eristiche	dei ma	toriali.
Juliati	<i></i>	· uci iiia	william.

Resistenza caratteristica a compressione cubica cls Resistenza caratteristica a compressione cilindrica cls Resistenza di calcolo a compressone del cls Resistenza di calcolo a trazione dell'acciaio	R _{ck} f _{ck} f _{cd} f _{yd}	= = = =	35 29 16.46 391.30	N/mm ² N/mm ² N/mm ²
Sollecitazioni di verifica (S.L.U.):				
Valore di calcolo dello sforzo di taglio agente	V_{Ed}	=	206.00	kN
Valore di calcolo della forza assiale associata a V _{Ed}	$N(V_{Ed})$	=	0.00	kN
Valore di calcolo del momento flettente associato a V _{Ed}	$M(V_{Ed})$	=	0.00	kNm
Caratteristiche geometriche della sezione:				
Altezza utile della sezione	d	=	430	mm
Larghezza minima della sezione	$\mathbf{b}_{\mathbf{w}}$	=	1000	mm
Armatura della sezione in zona tesa:				
Diametro ferri longitudinali	Ø	=	26	mm
Numero tondini longitudinali utilizzati	n	=	5	
Area totale di armatura longitudinale in zona tesa	A_{sl}	=	2655	$\mathrm{mm^2}$
Rapporto geometrico dell'armatura longitudinale (≤ 0.02)	ρι	=	0.0062	

VERIFICA SENZA ARMATURA TRASVERSALE RESISTENTE A TAGLIO

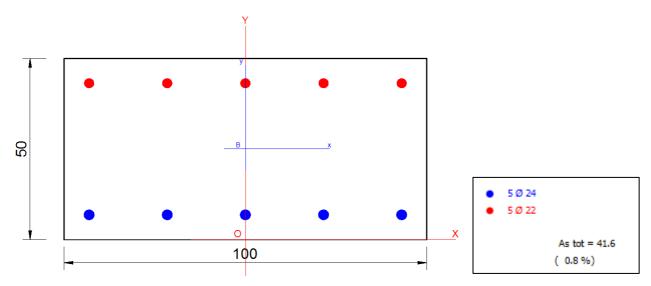
Fattore dipendente dall'altezza utile della sezione (≤ 2) Tensione dipendente dal fattore k e dalla resistenza del cls Tensione media di compressione nella sezione (≤ 0.2×fcd) Resistenza ultima a taglio minima

Resistenza ultima a taglio ($V_{Rd} \ge V_{Rd,min}$)

VERIFICA SODDISFATTA:

non occorre armatura trasversale resistente a taglio.

V_{Rd}	=	227.19	kN
$\textbf{V}_{\text{Rd,min}}$	=	176.95	kN
$\sigma_{\sf cp}$	=	0.00	N/mm²
\mathbf{V}_{min}	=	0.41	N/mm²
k	=	1.68	



10.3 SOLETTA DI COPERTURA

La soletta superiore dello spessore di 0.5m, è armata con armatura longitudinale Φ22/20 sul lembo superiore, Φ24/20 sul lembo inferiore. L'armatura a taglio è composta da bracci verticali Φ12/20"x40".

Verifica a flessione

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: TM05_Soletta_sup_0.5

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Sezione generica di Trave Tipologia sezione:

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di progetto fcd:	15.9	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.76	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	16.8	MPa

1° Stralcio lungo la S.S. n. 210 "Fermana Faleriense" - Amandola – Servigliano"

T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

c limite S.L.E. comb. Frequenti:	16.8	MPa
p.Fessure limite S.L.E. comb. Frequenti:	0.300	mm
c limite S.L.E. comb. Q.Permanenti:	12.6	MPa
p.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
po:	B450C	
esist. caratt. snervam. fyk:	450.0	MPa
esist. caratt. rottura ftk:	450.0	MPa
esist. snerv. di progetto fyd:	391.3	MPa
esist. ultima di progetto ftd:	391.3	MPa
eform. ultima di progetto Epu:	0.068	
odulo Elastico Ef	2000000	daN/cm²
agramma tensione-deformaz.:	Bilineare finito	
peff. Aderenza istantaneo ß1*ß2:	1.00	
peff. Aderenza differito ß1*ß2:	0.50	
limite S.L.E. Comb. Rare:	360.00	MPa
	c limite S.L.E. comb. Frequenti: b.Fessure limite S.L.E. comb. Frequenti: c limite S.L.E. comb. Q.Permanenti: b.Fess.limite S.L.E. comb. Q.Perm.: po: esist. caratt. snervam. fyk: esist. caratt. rottura ftk: esist. snerv. di progetto fyd: esist. ultima di progetto ftd: eform. ultima di progetto Epu: odulo Elastico Ef agramma tensione-deformaz.: beff. Aderenza istantaneo ß1*ß2: ceff. Aderenza differito ß1*ß2: i limite S.L.E. Comb. Rare:	D. Fessure limite S.L.E. comb. Frequenti: 0.300 c limite S.L.E. comb. Q.Permanenti: 12.6 D. Fess. limite S.L.E. comb. Q.Perm.: 0.200 po: B450C esist. caratt. snervam. fyk: 450.0 esist. caratt. rottura ftk: 450.0 esist. snerv. di progetto fyd: 391.3 esist. ultima di progetto ftd: 391.3 eform. ultima di progetto Epu: 0.068 odulo Elastico Ef 2000000 agramma tensione-deformaz.: Bilineare finito peff. Aderenza istantaneo ß1*ß2: 1.00 poeff. Aderenza differito ß1*ß2: 0.50

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Classe Calcestruzzo:		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	50.0
3	50.0	50.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.1	6.9	24
2	-43.1	43.2	22
3	43.1	43.2	22
4	43.1	6.9	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione			
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø	
1	1	4	3	24	

3

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
	con verso positivo se tale da comprimere il lembo sup. della sez.
Vy	Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

2

22

N°Comb.	N	Mx	Vy
1	0.00	283.00	0.00
2	0.00	-236.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Mx	Momento flettente	N applicato nel Baricentro (+ [kNm] intorno all'asse X di ri se tale da comprimere il lem	ferimento (tra parentesi Mom	.Fessurazione)
N°Comb.	N	Mx	Му	

N°Comb.	N	Mx	Му
1	0.00	200.00	0.00
2	0.00	-170.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Momento flettente	l] applicato nel Baricentro (+ [kNm] intorno all'asse X di ri se tale da comprimere il lem	erimento (tra parentesi Mom.Fessi	urazione)
N°Comb.	N	Mx	Му	

N°Comb.	N	Mx	Му
1	0.00	175.00 (138.62)	0.00 (0.00)
2	0.00	-134.00 (-136.75)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessura: con verso positivo se tale da comprimere il lembo superiore della sezione			
N°Comb.	N	Mx	Му	
1	0.00	122.00 (138.62)	0.00 (0.00)	
2	0.00	-75.00 (-136.75)	0.00 (0.00)	

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.7 cm 19.2 cm Interferro netto minimo barre longitudinali:

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

ver	S = combinazione verificata / N = combin. non verificata
N.I.	Of any angular and a second of NII and beginning Described as the Association of the second of the s

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mx Res Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.45)NTC]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	0.00	283.00	0.00	355 96	1.26	22 6(6 9)

2 S 0.00 -236.00	0.00	-305.00	1.29	19.0(6.9)
------------------	------	---------	------	-----------

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.159	-50.0	50.0	0.00002	-43.1		-0.01856	-43.1	6.9
2	0.00350	0.151	-50.0	0.0	-0.00021	-43.1		-0.01971	43.1	43.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff, di riduz, momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000511892	-0.022094583	0.159	0.700
2	0.00000000	-0 000537234	0.003500000	0.151	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	6.64	-50.0	50.0	-230.6	-21.6	6.9	1250	22.6
2	S	5.92	-50.0	0.0	-231.5	21.6	43.2	1250	19.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
o2	Minima deformazione unitaria di trazione nel calcostruzzo (trazione) valutata in sezione fessurata

Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4

= 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Mx f My f		Componente			entesi			
omh	\/or	1م	۵2	k2	α	Cf	a sm - a cm sr may	wk

Comb.	Ver	e1	e2	k2	Ø	Ct	e sm - e cm sr max	c wk	Mx tess	My tess
1	S	-0.00142	0.00000	0.500	24.0	57	0.00069 (0.00069) 419	0.290 (990.00)	138.62	0.00
2	S	-0.00141	0.00000	0.500	22.0	57	0.00069 (0.00069) 440	0.305 (990.00)	-136.75	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max \	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.81	-50.0	50.0	-201.8	-21.6	6.9	1250	22.6
2	S	4.67	-50.0	0.0	-182.4	21.6	43.2	1250	19.0

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00124	0.00000	0.500	24.0	57	0.00061 (0.00061)	419	0.254 (0.30)	138.62	0.00
2	S	-0.00111	0.00000	0.500	22.0	57	0.00055 (0.00055)	440	0.241 (0.30)	-136.75	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max `	rc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.05	-50.0	50.0	-140.7	-43.1	6.9	1250	22.6
2	S	2.61	-50.0	0.0	-102.1	21.6	43.2	1250	19.0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00086	0.00000	0.500	24.0	57	0.00042 (0.00042)	419	0.177 (0.20)	138.62	0.00
2	S	-0.00062	0.00000	0.500	22.0	57	0.00031 (0.00031)	440	0.135 (0.20)	-136.75	0.00

Verifica a taglio – Sezione appoggio

Caratteristiche dei materiali:

Resistenza caratteristica a compressione cubica cls	R _{ck}	=	35	N/mm²
Resistenza caratteristica a compressione cilindrica cls	f _{ck}	=	29	N/mm²
Resistenza di calcolo a compressone del cls	f _{cd}	=	16.46	N/mm²
Resistenza di calcolo a trazione dell'acciaio	f _{yd}	=	391.30	N/mm²

Sollecitazioni di verifica (S.L.U.):

Valore di calcolo dello sforzo di taglio agente	V_{Ed}	=	419.00	kN
Valore di calcolo della forza assiale associata a V_{Ed}	N (V _{Ed})	=	0.00	kN
Valore di calcolo del momento flettente associato a V _{Ed}	M (V _{Ed})	=	0.00	kNm

Caratteristiche geometriche della sezione:

Altezza utile della sezione **432** mm

Larghezza minima della sezione	b _w	=	1000	mm
Armatura della sezione in zona tesa:				
Diametro ferri longitudinali	Ø	=	22	mm
Numero tondini longitudinali utilizzati	n	=	5	
Area totale di armatura longitudinale in zona tesa	A _{sl}	=	1900	$\mathrm{mm^2}$
Rapporto geometrico dell'armatura longitudinale (≤ 0.02)	ρι	=	0.0044	

VERIFICA SENZA ARMATURA TRASVERSALE RESISTENTE A TAGLIO

Fattore dipendente dall'altezza utile della sezione (≤ 2) k 1.68 Tensione dipendente dal fattore k e dalla resistenza del cls V_{min} 0.41 N/mm² Tensione media di compressione nella sezione (≤ 0.2×fcd) 0.00 N/mm² σ_{cp} Resistenza ultima a taglio minima $\textbf{V}_{\text{Rd,min}}$ 177.52 kΝ Resistenza ultima a taglio ($V_{Rd} \ge V_{Rd,min}$) V_{Rd} 203.65 kN

VERIFICA NON SODDISFATTA:

occorre procedere al dimensionamento dell'armatura trasversale resistente a taglio.

VERIFICA CON ARMATURA TRASVERSALE RESISTENTE A TAGLIO

Armatura	aggiuntiva	resistente a	taalio:

Angolo di inclinazione armatura trasv. su asse dell'ele- mento	α	=	90	0
Diametro ferri a taglio	\emptyset_{sw}	=	12	mm
Numero dei bracci in sezione trasversale	n _{sw}	=	2.5	
Passo in direzione asse elemento	s	=	200	mm
Area totale di armatura a taglio	Asw	=	283	$\rm mm^2$
Fattori di resistenza a compressione:				
Controllo duttilità (SI = duttile)	0.55	<	8.23	SI
Angolo di inclinazione dei puntoni di cls	θ	=	21.81	0
Resistenza a compressione ridotta del cls d'anima	f 'cd	=	8.23	N/mm²
Tensione media di compressione nella sezione	$\sigma_{\sf cp}$	=	0.00	N/mm²
Coefficiente maggiorativo per membrature compresse	α_{c}	=	1.00	
Resistenza di calcolo a "taglio trazione" dell'armatura	V_{Rsd}	=	537.01	kN
Resistenza di calcolo a "taglio compressione" del cls	V_{Rcd}	=	1103.85	kN

Resistenza ultima a taglio VERIFICA SODDISFATTA.

537.01 kN

1° Stralcio lungo la S.S. n. 210 "Fermana Faleriense" - Amandola – Servigliano"

T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

Verifica a taglio - Sezione mezzeria

_				
(`arai	Harietici	ומא ממ	materia	
- Cai ai	uciouci	ie uei	matema	

Resistenza caratteristica a compressione cubica cls Resistenza caratteristica a compressione cilindrica cls Resistenza di calcolo a compressone del cls Resistenza di calcolo a trazione dell'acciaio	R _{ck} f _{ck} f _{cd} f _{yd}	= = = =	35 29 16.46 391.30	N/mm ² N/mm ² N/mm ²
Sollecitazioni di verifica (S.L.U.):				
Valore di calcolo dello sforzo di taglio agente	V_{Ed}	=	215.00	kN
Valore di calcolo della forza assiale associata a V_{Ed}	N (V _{Ed})	=	0.00	kN
Valore di calcolo del momento flettente associato a V_{Ed}	M (V _{Ed})	=	0.00	kNm
Caratteristiche geometriche della sezione:				
Altezza utile della sezione	d	=	431	mm
Larghezza minima della sezione	\mathbf{b}_{w}	=	1000	mm
Armatura della sezione in zona tesa:				
Diametro ferri longitudinali	Ø	=	24	mm
Numero tondini longitudinali utilizzati	n	=	5	
Area totale di armatura longitudinale in zona tesa	A_{sl}	=	2260	mm^2
Rapporto geometrico dell'armatura longitudinale (≤ 0.02)	ρι	=	0.0052	

VERIFICA SENZA ARMATURA TRASVERSALE RESISTENTE A TAGLIO

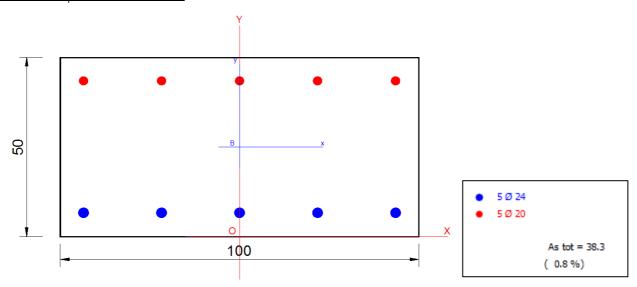
Fattore dipendente dall'altezza utile della sezione (≤ 2) Tensione dipendente dal fattore k e dalla resistenza del cls Tensione media di compressione nella sezione (≤ 0.2×fcd) Resistenza ultima a taglio minima

Resistenza ultima a taglio ($V_{Rd} \ge V_{Rd,min}$)

VERIFICA SODDISFATTA:

non occorre armatura trasversale resistente a taglio.

V_{Rd}	=	215.54	kN
$\textbf{V}_{\text{Rd,min}}$	=	177.23	kN
$\sigma_{\sf cp}$	=	0.00	N/mm²
\mathbf{V}_{min}	=	0.41	N/mm²
k	=	1.68	



10.4 PIEDRITTI

I piedritti dello spessore di 0.5m, sono armati con armatura verticale Φ24/20 sul lembo esterno, Φ20/20 su quello interno e armatura a taglio composta da spilli Φ10/20"x40".

Verifica a presso-flessione

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: TM05_Piedritto_0.5

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Sezione generica di Trave Tipologia sezione:

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di progetto fcd:	15.9	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.76	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	16.8	MPa
	Sc limite S.L.E. comb. Frequenti:	16.8	MPa

Ap.Fessure limite S.L.E. comb. Frequenti:

mm

0.300

1° STRALCIO LUNGO LA S.S. N. 210 "FERMANA FALERIENSE" - AMANDOLA – SERVIGLIANO"

T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

	Sc limite S.L.E. comb. Q.Permanenti:	12.6	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Classe Calcestruzzo:		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 50.0
3	50.0	50.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.5	6.7	24
2	-43.5	43.5	20
3	43.5	43.5	20
4	43.5	6.7	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
	•
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generazione
Ø	Diametro in mm delle barre della generazione
	•

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	24
2	2	3	3	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
	con verso positivo se tale da comprimere il lembo sup. della sez.
Vy	Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb. Mx

PROGETTISTA RTP:

MANDANTI:

Pag. **75** DI **79**

RELAZIONE DI CALCOLO

1	76.00	332.00	0.00
2	76.00	-127.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro	(+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	184.00	238.00	0.00
2	184.00	-10.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sf	orzo normale [kN] applicato nel Bari	centro (+ se di compressione)
------	--------------------------------------	-------------------------------

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	184.00	202.00 (150.04)	0.00 (0.00)
2	184.00	-5.00 (-136.75)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	S	forzo normale [kΝ] applicato ne	l Baricentro (+ se d	i compressio	ne)
---	---	-----------------	----	----------------	----------------	--------	--------------	-----

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	159.00	133.00 (154.16)	0.00 (0.00)
2	159.00	-1.00 (-136.75)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.3 cm Interferro netto minimo barre longitudinali: 19.4 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mχ N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.45)NTC] As Tesa

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	76.00	332.00	76.06	371.96	<mark>1.12</mark>	22.6(8.0)
	S	76.00	-127.00	76.03	-273.00	2.15	15.7(8.0)

IMPRESA A T I

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.160	-50.0	50.0	0.00022	-43.5	43.5	-0.01834	-43.5	6.7
2	0.00350	0.144	-50.0	0.0	-0.00025	-43.5	6.7	-0.02082	43.5	43.5

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. di	peff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. app. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 peff. di riduz. momenti per sola flessione in travi continue					
N°Comb	а	b	С	x/d	C.Rid.		
1	0.000000000	0.000504395	-0.021719737	0.160	0.700		
2	0.000000000	-0.000559136	0.003500000	0 144	0.700		

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure N°Comb Ver Xc max Yc max Ss min Xs min Ys min As eff. Sc max Ac eff

		00	, 10	0 111071	• • • • • • • • • • • • • • • • • • • •		. •		
1	S	8.14	-50.0	50.0	-233.8	21.8	6.7	1150	22.6
2	S	0.52	-50.0	0.0	2.8	21.8	43.5		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre tessurata anche nel caso in cui la trazione minima del calcestruzzo sia interiore a fotm
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq. (7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]

Structure and Transport Engineering

PROGETTISTA RTP:

1° STRALCIO LUNGO LA S.S. N. 210 "FERMANA FALERIENSE" - AMANDOLA – SERVIGLIANO"

T03_TM12_STR_RE01_A RELAZIONE DI CALCOLO

My fes	SS.	Compor	nente moment	o di prima fes	surazio	ne intorno	o all'asse \	Y [kNm]					
Comb.	Ver	e1	e2	k2	Ø	Cf	:	6	e sm - e cm	sr max	wk	Mx fess	My fess
1 2	S S	-0.00144 -0.00141		0.500	24.0	55 		0.00070	0 (0.00070)		0.277 (990.00) 0.000 (990.00)	148.12 -136.75	0.00 0.00
COMBIN	AZION	I FREQUEN	ITI IN ESER	CIZIO - MA	ASSIMI	E TENSI	IONI NOF	RMALI ED A	PERTURA	FESSU	RE (NTC/EC2)		
N°Comb	Ver	Sc max	Xc max Yc	max S	s min	Xs min	Ys min	Ac eff.	As eff.				
1 2	S S	6.93 0.42	-50.0 -50.0	50.0 - 0.0	192.7 3.9	21.8 21.8	6.7 43.5	1150	22.6				
COMBIN	AZION	I FREQUEN	ITI IN ESER	CIZIO - AP	ERTU	RA FESS	SURE [§	7.3.4 EC2]					
Comb.	Ver	e1	e2	k2	Ø	Cf	:	6	e sm - e cm	sr max	wk	Mx fess	My fess
1 2	S S	-0.00119 -0.00111		0.500	24.0	55 		0.00058	3 (0.00058) 	394 	0.228 (0.30) 0.000 (0.30)	150.04 -136.75	0.00 0.00
COMBIN	AZION	I QUASI PE	RMANENTI	IN ESERCI	ZIO -	MASSIN	ME TENS	IONI NORM	IALI ED AP	ERTUR	A FESSURE (NT	C/EC2)	
N°Comb	Ver	Sc max	Xc max Yc	max S	s min	Xs min	Ys min	Ac eff.	As eff.				
1 2	S S	4.59 0.29	-50.0 -50.0	50.0 - 0.0	119.1 4.2	21.8 21.8	6.7 43.5	1150	22.6				
COMBIN	AZION	I QUASI PE	RMANENTI	IN ESERCI	ZIO - A	APERTU	RA FESS	SURE [§ 7.3	.4 EC2]				
Comb.	Ver	e1	e2	k2	Ø	Cf	:	6	e sm - e cm	sr max	wk	Mx fess	My fess
1 2	S S	-0.00074 -0.00062		0.500	24.0	55 		0.00036	6 (0.00036)	394 	0.141 (0.20) 0.000 (0.20)	154.16 -136.75	0.00 0.00

Verifica a taglio

Caratteristiche dei materiali:

Resistenza caratteristica a compressione cubica cls	R _{ck}	=	35	N/mm²
Resistenza caratteristica a compressione cilindrica cls	f _{ck}	=	29	N/mm ²
Resistenza di calcolo a compressone del cls	f _{cd}	=	16.46	N/mm ²
Resistenza di calcolo a trazione dell'acciaio	f _{yd}	=	391.30	N/mm²
Sollecitazioni di verifica (S.L.U.):				
Valore di calcolo dello sforzo di taglio agente	V_{Ed}	=	257.00	kN
Valore di calcolo della forza assiale associata a V _{Ed}	N (V _{Ed})	=	0.00	kN
Valore di calcolo del momento flettente associato a V_{Ed}	M (V _{Ed})	=	0.00	kNm
Caratteristiche geometriche della sezione:				
Altezza utile della sezione	d	=	433	mm
Larghezza minima della sezione	b _w	=	1000	mm

Pag. **78** DI **79**

T03_TM12_STR_RE01_A

RELAZIONE DI CALCOLO

Armatura della sezione in zona tesa:

Diametro ferri longitudinali	Ø	=	24	mm
Numero tondini longitudinali utilizzati	n	=	5	
Area totale di armatura longitudinale in zona tesa	A _{sl}	=	2260	$\mathrm{mm^2}$
Rapporto geometrico dell'armatura longitudinale (≤ 0.02)	ρι	=	0.0052	

VERIFICA SENZA ARMATURA TRASVERSALE RESISTENTE A TAGLIO

Fattore dipendente dall'altezza utile della sezione (≤ 2) 1.68 --Tensione dipendente dal fattore k e dalla resistenza del cls 0.41 N/mm² = Tensione media di compressione nella sezione (≤ 0.2×fcd) 0.00 N/mm² σ_{cp} Resistenza ultima a taglio minima $\textbf{V}_{\text{Rd,min}}$ 177.81 kΝ = Resistenza ultima a taglio ($V_{Rd} \ge V_{Rd,min}$) V_{Rd} 216.01 kN

VERIFICA NON SODDISFATTA:

occorre procedere al dimensionamento dell'armatura trasversale resistente a taglio.

VERIFICA CON ARMATURA TRASVERSALE RESISTENTE A TAGLIO

Armatura aggiuntiva resistente a taglio:

Angolo di inclinazione armatura trasv. su asse dell'elemento	α	=	90	0
Diametro ferri a taglio	Øsw	=	10	mm
Numero dei bracci in sezione trasversale	n _{sw}	=	2.5	
Passo in direzione asse elemento	s	=	200	mm
Area totale di armatura a taglio	A _{sw}	=	198	$\mathrm{mm^2}$

Fattori di resistenza a compressione:

Controllo duttilità (SI = duttile)	0.39	<	8.23	SI
Angolo di inclinazione dei puntoni di cls	θ	=	21.81	0
Resistenza a compressione ridotta del cls d'anima	f 'cd	=	8.23	N/mm²
Tensione media di compressione nella sezione	$\sigma_{\sf cp}$	=	0.00	N/mm²
Coefficiente maggiorativo per membrature compresse	α_{c}	=	1.00	
	-			
Resistenza di calcolo a "taglio trazione" dell'armatura	V_{Rsd}	=	376.30	kN

Resistenza di calcolo a "taglio trazione" dell'armatura V_{Rsd} Resistenza di calcolo a "taglio compressione" del cls V_{Rcd} = 1106.40 kN Resistenza ultima a taglio

VERIFICA SODDISFATTA.

MANDANTI:

376.30 kN