

Società Iniziative Nazionali Autostradali S.p.A.

Titolo		Documento no.	Rev	Pag.	di
PROGETTO DEFINITIVO		123.700 E1UCGS006	01	1	31
Piattaforma Logistica Magazzino Frigorifero – Relazione sulle Strutture		Autorità Portuale di Taranto			
Tipo doc.	Emesso da	Commessa no.	Progetto: Piastra Portuale di Taranto Legge obiettivo delibera CIPE 74/03		1/03
FR9	DTP	123-700	Responsabile del procedimento: Ing. D. Dar		raio

Proge	ettazio	one		Consuler	nti Progettis	sti		
SIN	A				PROFERTs.r.L. INGEGNERIA E SISTEMI progetti e ambiente Il Directore Te Dott. Ing. And			
Р	Α	L. Fiorito	L. Fiorito	A.Panizza	G.Geddo	01	Prima Emissione	29-09-2006
Р	Α	L. Fiorito	L. Fiorito	A.Panizza	G.Geddo	00	Emissione in bozza	31-05-2006
St.	Sc.	Redatto	Controllato	Controllato	Approvato	Rev.	Tipo di revisione	Data
SOCI	ΕΤΔ' Γ) PROGET	TO:					

SOCIETA' DI PROGETTO:

TARANTO LOGISTICA S.p.A.

Progetto
Piastra Portuale di Taranto – Piattaforma Logistica

Identificativo documento
123.700 E1UCGS006

Rev. Pagina
01
2
31

INDICE DEGLI ARGOMENTI

1. INTRODUZIONE	3
2. NORME TECNICHE DI RIFERIMENTO	4
3. MATERIALI	5
3.1.2. per elementi di fondazione e sottofondazione	6
3.1.3. Calcestruzzo per elementi in C.A. prefabbricato (precompresso)	7
3.1.4. Acciaio per barre di armatura ad aderenza migliorata	7
4. ANALISI DEI CARICHI	
5. DESCRIZIONE DELLA STRUTTURA	13
6. ANALISI STATICA DELLA STRUTTURA	16
6.1.2. Carichi variabili (Q)	16
6.1.3. Neve	16
6.1.4. Vento (W)	17
6.1.5. Sisma	19
6.2. Condizioni di carico elementari	25
6.3.2. Travi primarie	26
6.3.3. Pilastri	27
7. VERIFICA DELLE FONDAZIONI	28 29
7.3. Travi di collegamento	31

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	3	31

1. INTRODUZIONE

Oggetto del presente documento (Relazione di Calcolo) sono le verifiche delle strutture relative al Magazzino Frigorifero facente parte della Piastra Portuale di Taranto, ubicata in Italia in provincia di Taranto.

L'analisi strutturale è stata condotta con riferimento alla nuova normativa per le costruzioni civili, DM 12/09/2005 «Norme Tecniche per le Costruzioni», fatto salvo l'integrazione con altre norme tutt'ora in vigore (DM 16/01/1996, OPCM 20/03/2003 n.3274 e successive integrazioni).

Secondo la nuova normativa (DM12/09/2005) le costruzioni si suddividono secondo due differenti classi d'importanza, che caratterizzano il grado di sicurezza della progettazione strutturale. Infatti, la classe d'importanza della costruzione determina il valore delle azioni da considerare per il calcolo delle sollecitazioni nella struttura e di conseguenza si ripercuote sulle verifiche di resistenza. In funzione della classe di importanza della costruzione viene definito un periodo di tempo che rappresenta la vita utile minima che essa deve soddisfare.

Il seguente prospetto riassume la corrispondenza fra classe d'importanza della costruzione e vita utile della medesima (rif.§2.5 DM12/09/2005).

VITA UTILE DI PROGETTO	TIPOLOGIA DI STRUTTURA
(anni)	
10	Strutture provvisorie – Strutture in fase costruttiva
≥10	Componenti strutturali sostituibili (giunti, appoggi, ecc.)
50	Strutture di Classe 1
100 Strutture di Classe 2	

In particolare l'edificio oggetto della presente Relazione di Calcolo rientra nella classe d'importanza 2 in quanto risulta avere una funzione pubblica e strategica rilevante. Pertanto la sua vita utile è stabilita pari ad almeno 100 anni e il *periodo di ritorno* delle azioni ambientali (neve, vento, sisma) viene assunto pari ad almeno 1000 anni.

Le sollecitazioni negli elementi strutturali sono state calcolate secondo i criteri della Scienza delle Costruzioni.

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	4	31

2. NORME TECNICHE DI RIFERIMENTO

I calcoli delle strutture sono stati eseguiti in accordo con le indicazioni contenute nelle seguenti normative tecniche:

- [1] **LEGGE 5 novembre 1971 n.1086**: «Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica»;
- [2] **LEGGE 2 febbraio 1974, n. 64**: «Criteri generali per la verifica della sicurezza delle costruzioni e dei carichi e dei sovraccarichi»;
- [3] **CIRCOLARE MINISTERIALE 14 febbraio 1974**: «Istruzioni per l'applicazione della legge 5 Novembre 1971, n.1086»;
- [4] **DECRETO MINISTERIALE 20 novembre 1987**: «Norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento»;
- [5] CIRCOLARE MINISTERIALE 4 gennaio 1989: «Istruzioni in merito alle Norme Tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento»;
- [6] DECRETO MINISTERIALE 9 gennaio 1996: «Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche»;
- [7] **DECRETO MINISTERIALE 16 gennaio 1996:** «Norme tecniche relative ai "Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi"»;
- [8] CIRCOLARE 4 luglio 1996, n. 156 AA.GG./S.T.C.: «Istruzioni per l'applicazione delle "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi"» di cui al D.M. 16/1/96;
- [9] CIRCOLARE 15 ottobre 1996, n.252 AA.GG./S.T.C.: «Istruzioni per l'applicazione delle "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche"» di cui al D.M. 9/1/96;
- [10] ORDINANZA DEL PRESIDENTE DEL CONSIGLIO DEI MINISTRI 20 MARZO 2003 n. 3274 e n. 3431 del 2005: «Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per la costruzione in zona sismica»;
- [11] **DECRETO LEGISLATIVO 14 settembre 2005**: «Norme Tecniche per le Costruzioni».

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	5	31

3. MATERIALI

3.1. CALCESTRUZZO PER C.A. GETTATO IN OPERA

3.1.1. per elementi in elevazione

classe di re	sistenza Rck≥3	0	
caratteristica meccanica	sigla	valore	udm
resistenza cubica a compressione	R_{ck}	30	[MPa]
resistenza cilindrica a compressione	$f_{\text{ck}} = 0.83 \; R_{\text{ck}}$	25	[MPa]
resistenza a trazione	$f_{\rm ctm}$	2.6	[MPa]
resistenza a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	3.1	[MPa]
modulo di elasticità normale	$E_c = 5700$ $(R_{ck})^{0.5}$	31200	[MPa]
resistenza di calcolo a compressione	$f_{cd} = f_{ck} / \gamma_c$		
stati limite ultimi	$\gamma_c = 1.6$	16	[MPa]
stati limite d'esercizio	$\gamma_c = 1.0$	25	[MPa]
tensione ammissibile a compressione	$\sigma_{c,amm}$	9.8	[MPa]
tensione tangenziale ammissibile	$ au_{\mathrm{c0}}$	2.4	[MPa]
	$ au_{c1}$	5.7	[MPa]

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	6	31

3.1.2. per elementi di fondazione e sottofondazione

classe di re	sistenza Rck ≥ 2	 5	
caratteristica meccanica	sigla	valore	udm
resistenza cubica a compressione	R_ck	25	[MPa]
resistenza cilindrica a compressione	$f_{ck} = 0.83 R_{ck}$	20	[MPa]
resistenza a trazione	f _{ctm}	2.2	[MPa]
resistenza a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	2.6	[MPa]
modulo di elasticità normale	$E_c = 5700$ $(R_{ck})^{0.5}$	28500	[MPa]
resistenza di calcolo a compressione	$f_{cd} = f_{ck} / \gamma_c$		
stati limite ultimi	$\gamma_c = 1.6$	12	[MPa]
stati limite d'esercizio	$\gamma_c = 1.0$	20	[MPa]
tensione ammissibile a compressione	$\sigma_{c,amm}$	8.5	[MPa]
tensione tangenziale ammissibile	$ au_{c0}$	1.7	[MPa]
	$ au_{c1}$	4.3	[MPa]

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	7	31

3.1.3. Calcestruzzo per elementi in C.A. prefabbricato (precompresso)

classe di re	sistenza Rck≥4	0	
caratteristica meccanica	sigla	valore	udm
resistenza cubica a compressione	R _{ck}	40	[MPa]
resistenza cilindrica a compressione	$f_{ck} = 0.83 \; R_{ck}$	33	[MPa]
resistenza a trazione	f _{ctm}	3.1	[MPa]
resistenza a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	3.7	[MPa]
modulo di elasticità normale	$E_c = 5700$ $(R_{ck})^{0.5}$	36000	[MPa]
resistenza di calcolo a compressione	$f_{cd} = f_{ck} / \gamma_c$		
stati limite ultimi	$\gamma_c = 1.6$	21	[MPa]
stati limite d'esercizio	$\gamma_c = 1.0$	33	[MPa]
tensione ammissibile a compressione	$\sigma_{c,amm}$	12.3	[MPa]
tensione tangenziale ammissibile	$ au_{\mathrm{c0}}$	3.7	[MPa]
	$ au_{\mathrm{c}1}$	8.5	[MPa]

3.1.4. Acciaio per barre di armatura ad aderenza migliorata

acciaio tipo FeB44k controllato in stabilimento						
caratteristica meccanica	sigla	valore	udm			
tensione caratteristica di snervamento	f_{yk}	430	[MPa]			
tensione caratteristica a rottura per trazione	f _{tk}	540	[MPa]			
modulo di elasticità normale	Es	206000	[MPa]			
resistenza di calcolo a trazione	$f_{\text{sd}} = f_{\text{tk}} / \gamma_{\text{s}}$					
stati limite ultimi	$\gamma_s = 1.15$	374	[MPa]			
stati limite d'esercizio	$\gamma_s = 1.0$	430	[MPa]			
tensione ammissibile a trazione	$\sigma_{c,amm}$	255	[MPa]			

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	8	31

4. ANALISI DEI CARICHI

I carichi da considerare nel calcolo delle sollecitazioni agenti negli elementi strutturali dell'edificio sono i seguenti:

- Pesi propri strutturali (portanti);
- Pesi propri non strutturali (portati);
- Carico variabile copertura;
- Neve;
- Vento;
- Sisma.

4.1. PESI PROPRI STRUTTURALI

Il peso proprio degli elementi strutturali (travi e pilastri) viene computato con riferimento ad un peso specifico caratteristico del materiale pari 25.0 kN/m3, sulla base della geometria della sezione trasversale dell'elemento modellato.

solaio di copertura

carico		carico	udm
tegolo di copertura tipo "IPER" (L =240 cm ; H =109 cm)		5,0	kN/ml_
travi in C.A.P. tipo "IPER" (H =174 cm)		10,9	kN/ml
	$G_{\mathbf{k}}$	15,9	kN/mq
pilastri e plinti di fondazione			
pilastri a sez. rettangolare (55x50) in C.A.V. con pluviale incorporato		6,9	kN
plinto a bicchiere a sezione quadrata (200x200)		56,0	kN
sottofondazione gettata in opera a sezione quadrata (300x300x50)		112,5	kN
<u>tamponamento</u>			
carico		carico	udm
peso proprio pannelli rivestimento (s =28 cm)		5,25	kN/mq
	Gk	5,25	kN/mq

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	9	31

4.2. PESI PROPRI NON STRUTTURALI

Sono stati considerati carichi permanenti al fine di tenere conto di elementi quali il rivestimento della copertura e i lucernari realizzati con pannelli in fibrocemento del tipo ARCOPAN, valutati nell'ordine dei 1.1 kN/mq.

permanenti

<u>Copertura</u>

carico	carico	udm
peso proprio rivestimento copertura	1,0	kN/mq_
pannelli in fibrocemento tipo "ARCOPAN"	0,1	kN/mq_
G	Sk 1,1	kN/mq

Il peso degli impianti di raffreddamento è valutato in 1.50 kN/mq.

4.3. CARICO VARIABILE PER LE COPERTURE

Il carico variabile di esercizio per le coperture accessibili per la sola manutenzione viene stabilito dalla normativa vigente in 1.00 kN/mq.

accidentali

carico	carico	udm
Q1k=sovraccarico solaio (copertura accessibile per manutenzione)	1,00	kN/mq
carico	carico	udm
Q2k=carico neve per solaio di copertura	0,60	kN/mq

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	10	31

4.4. NEVE

Il calcolo del carico neve da applicare alla copertura è stato effettuato facendo riferimento alla norma vigente.

Per la zona III dove sorge la costruzione oggetto del presente documento il carico caratteristico di neve al suolo assume il seguente valore:

$$q_{sk} = 0.60 [kN/m^2]$$

per un'altitudine del sito inferiore a 200 m s.l.m.

Il coefficiente di forma per coperture piane assume il seguente valore:

μ = 0.8 per carico neve uniformemente distribuito sull'intera copertura;

 μ = 0.6/1.2 per carico neve distribuito linearmente solo su metà copertura;

4.5. VENTO

Il calcolo del carico vento da applicare alla copertura è stato effettuato facendo riferimento alla norma vigente.

Il carico vento sulla copertura e sulle pareti verticali è stato valutato assumendo i seguenti valori dei parametri di calcolo:

Società Iniziative Nazionali Autostradali S.p.A.

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	11	31

Calcolo della pressione del vento

Calcolo dei coefficienti

1 - Pressione cinetica di riferimento

regione puglia V -- 6,8 [m/s]2002 [m] [l/s] 500 altitudine s.l.m. del sito dove sorge la costruzione 0 [m] $\forall_{ee}(as) =$ **27.0** [m/s] periodo di ritorno т, 100 anni 0,2 0,5 K1 $alfa_r = [(1-K1^*ln(-ln(1-1/Tr)))/(1-K1^*ln(-ln(0,98)))]^n$ 1,038

per T _r = 500 anni	→	alfa,	=	1,122
per T _r = 1000 anni	→	alfa,	=	1,157

V_{rrf}(Tr) = **28.0** [m/s]

ro = 1,25 [kg/m^3] qref = 49,1 [daN/m^2]

classe di rugosità del sito D

2 - Coefficiente di esposizione

Categorie di esposizione del sito	k,	21	Zeie
Ifη	0,17	0,01	2
II (2)	0,19	0,05	4
III (3)	0,20	0,10	5
IV (4)	0,22	0,30	8
V (5)	0,23	0,70	12

H_... = 2 [m] categoria = 0,01 [m] k. = 0,17

coefficiente di topografia Ct = 1,0

2	c(z)	alfa(z)	Y=(2)	V,(2)	Ce(z)	q(2)
[m]				[m/s]		[daN/m^2]
0	1,37	5,30	25,3	38,5	1,88	92,53
2	1,37	5,30	25,3	38,5	1,88	92,53
2,85	1,44	5,65	26,3	40,3	2,07	101,56
3,7	1,43	5,91	28,2	41,7	2,21	108,44
4,55	1,52	6,12	29,2	42,7	2,32	114,03
5,4	1,55	6,29	30,0	43,6	2,42	118,75
6,25	1,58	6,44	30,7	44,3	2,50	122,85
7,1	1,60	6,57	31,3	45,0	2,57	126,47
7,95	1,62	6,68	31,8	45,6	2,64	129,72
8,8	1,64	6,78	32,3	46,1	2,70	132,67
9,65	1,66	6,87	32,8	46,5	2,76	135,37
10,5	1,68	6,96	33,2	47,0	2,81	137,87

	Ce_medio 2,38	me 14,67
omme	25,0	154,0
	2,4	25,0
	2,3	22,6
	2,3	20,2
	2,2 2,2	17,8
	2.2	15,5
	2,1	13,3
	2,1	11,1
	2,0	9,0
	1,9	6,3
	1,8	5,0
	3,0	1,5

 $c_r(a)^*Da = ce(a)^*Da^*a$

zeq = me/Ce_medio = 6,16 [m]

risultanti azioni rento alla base

coefficiente dinamico cd = 1,0

 W = qref*Ce_medio*cd*Hmax
 =
 1229 [daN]

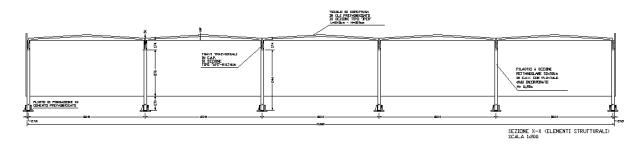
 HW = W*zeq
 =
 7569 [daNm]

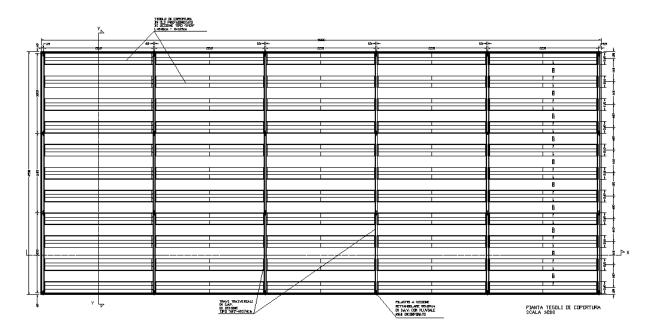
Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	12	31

4.6. SISMA

Secondo la nuova Classificazione Sismica Nazionale Taranto viene censita come zona 3, pertanto caratterizzata da una accelerazione sismica del suolo pari a:

$$ag/g = 0.15$$


Il fattore di importanza per l'edificio in oggetto è stato stabilito pari ad 1.4 di concerto con il Committente.



Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	13	31

5. DESCRIZIONE DELLA STRUTTURA

La struttura in C.A. prefabbricato oggetto della presente relazione di calcolo è riportata nelle figure seguenti (Sezione Longitudinale e Pianta Copertura).

Come si osserva la conformazione plano-altimetrica è regolare; le dimensioni in pianta sono pari a 113.00 m in lunghezza per 49.00 m in larghezza; l'altezza della struttura è pari a 10.50 m (sottotrave) e 12.24 m misurata dalla copertura al pavimento, con la quota del pavimento finito a +1.20, rispetto al piano stradale.

Gli elementi verticali resistenti sono costituti da pilastri che hanno la funzione di trasmettere alle fondazioni prevalentemente i carichi verticali.

Gli elementi di copertura sono rappresentati da tegoli del tipo IPER prefabbricate e precompresse disposte secondo la dimensione maggiore della pianta ad interasse di 22.18 m.

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	14	31

Gli elementi orizzontali sono rappresentati dalle travi della serie API CANALE con sezione trasversale costante e profilo a "I" in C.A. prefabbricate e precompresse disposte secondo la dimensione minore della pianta; si distinguono le travi interne e quelle di bordo. Questi elementi strutturali costituiscono con i pilastri un sistema resistente a telaio in virtù delle connessioni opportunamente progettate al fine di solidarizzare gli elementi orizzontali con quelli verticali e creare un tipico nodo rigido (con trasmissione integrale del momento). La funzione principale delle travi è quella di appoggio per il solaio di copertura formato da tegoli del tipo IPER in C.A. prefabbricati e precompressi. Questi elementi sono solidarizzati fra di loro in corrispondenza delle travi di appoggio, mediante la realizzazione di getti di calcestruzzo in opera previa disposizione di una opportuna orditura.

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	15	31

6. ANALISI STATICA DELLA STRUTTURA

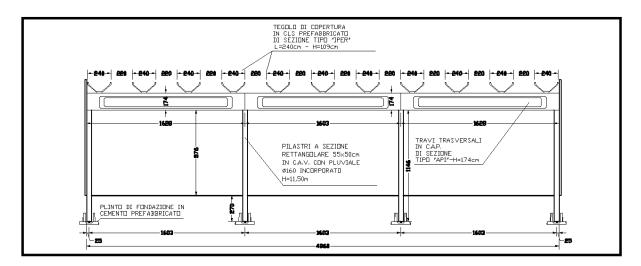
Il fabbricato oggetto della presente Relazione è composto da un solo piano fuori terra.

La struttura portante è in cemento armato precompresso.

Il solaio di copertura è realizzato con tegoli del tipo IPER in C.A.P. serie di riferimento è la S6R con spessore di falda 6 cm. su una luce (appoggio – appoggio) di 22.18 metri, ed un interasso tegolo – tegolo di 4.60 metri.

L'altezza utile del Magazzino Frigo sarà pari a 10.50 m mentre la quota della banchina di carico sarà a -1. 20 rispetto alla quota di riferimento del pavimento.

L'edificio presenta una manifesta regolarità geometrica e fisica, sia per quanto concerne la configurazione planimetrica, sia in elevazione.


I sistemi resistenti verticali (pilastri) si estendono per tutta l'altezza dell'edificio.

Gli elementi orizzontali sono rappresentati dalle travi della serie API CANALE con sezione trasversale costante e profilo a "I" in C.A. prefabbricate e precompresse disposte secondo la dimensione minore della pianta; questi elementi strutturali costituiscono con i pilastri un sistema resistente a telaio in virtù delle connessioni opportunamente progettate al fine di solidarizzare gli elementi orizzontali con quelli verticali e creare un tipico nodo rigido (con trasmissione integrale del momento).

Non sono presenti particolari restringimenti della sezione orizzontale dell'edificio.

Masse e rigidezze non hanno bruschi cambiamenti dalla base alla cima dell'edificio.

Da ciò deriva la possibilità di compiere un'analisi semplificata delle azioni sismiche sulla struttura operando su modelli di calcolo piani opportunamente definiti e assumendo come metodologia di calcolo l'analisi statica lineare.

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	16	31

6.1. CONDIZIONI DI CARICO ELEMENTARI

I carichi applicati agli elementi della struttura sono stati valutati sulla base della geometria della costruzione come segue.

6.1.1. Peso Proprio Strutturale

I pesi propri riferiti all'unità di lunghezza e di superficie sono riassunti nel seguente prospetto.

solaio di copertura

- Colored Colo			
carico		carico	udm
tegolo di copertura tipo "IPER" (L =240 cm ; H =109 cm)		5,0	kN/ml
travi in C.A.P. tipo "IPER" (H =174 cm)		10,9	kN/ml
	Gk	15,9	kN/mq
<u>pilastri e plinti di fondazione</u>			
pilastri a sez. rettangolare (55x50) in C.A.V. con pluviale incorporato		6,9	kN
plinto a bicchiere a sezione quadrata (200x200)		56,0	kN
sottofondazione gettata in opera a sezione quadrata (300x300x50)		112,5	kN
<u>tamponamento</u>			
carico		carico	udm
peso proprio pannelli rivestimento (s =28 cm)		5,25	kN/mq_
	Gk	5,25	kN/mq

6.1.2. Carichi variabili (Q)

I carichi variabili riferiti all'unità di superficie di solaio sono riassunti nel seguente prospetto.

accidentali

carico	carico	udm
Q1k=sovraccarico solaio (copertura accessibile per manutenzione)	1,00	kN/mq
carico	carico	udm
Q2k=carico neve per solaio di copertura	0,60	kN/mq

6.1.3. Neve

Il carico neve a mq di proiezione orizzontale di copertura è stato dedotto precedentemente tramite l'analisi dei carichi e vale 0.6 kN/m².

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	17	31

6.1.4. Vento (W)

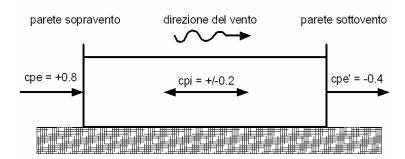
Nel precedente §4 è stata dedotta la pressione cinetica di riferimento sulla base dei parametri caratteristici del sito dove sorge la costruzione; adesso occorre considerare la sua conformazione geometrica al fine di ottenere le pressioni sui pannelli di facciata.

La pressione sulle facciate viene calcolata con la nota espressione:

$$p_w = c_e \cdot c_p \cdot c_d \cdot q_{ref}$$

dove:

 c_e = coefficiente di esposizione; c_p = coefficiente di pressione; c_d = coefficiente dinamico


La costruzione sorge in un sito la cui classe di rugosità può essere ragionevolmente assunta di tipo D; essendo inoltre il sito in zona 3 si desumono dalla normativa i seguenti valori dei parametri caratteristici per la valutazione del coefficiente di esposizione:

$$zmin$$
 = 2 [m]
 $z0$ = 0.01 [m]
 kr = 0.17

Il coefficiente di esposizione è fornito dalla seguente relazione:

$$\begin{split} c_e(z) &= k_r^2 \bullet c_t \bullet ln \! \left(\frac{z}{z_0} \right) \! \bullet \! \left[7 + c_t \bullet ln \! \left(\frac{z}{z_0} \right) \right], \text{per } z > z_{min} \\ c_e(z) &= c_e(z_{min}), \text{per } z \leq z_{min} \end{split}$$

La seguente figura mostra i valori assunti dal coefficiente di forma per un edificio a pianta rettangolare permeabile al vento (non stagno).

Il coefficiente dinamico viene assunto, cautelativamente, pari ad 1.0

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	18	31

Tenendo conto dell'interasse fra gli elementi di facciata che attraverso i pannelli L'altezza complessiva della costruzione fuori terra risulta pari a 10.50 m; pertanto si ottengono i seguenti valori del coefficiente di esposizione in funzione della quota (avendo assunto il coefficiente di topografia pari ad 1):

I carichi riferiti per m.l. di altezza dei pilastri di facciata sono valutati tenendo conto degli interassi fra questi elementi e sono riportati nella seguente tabella.

qref	=	49,1 [daN/mq]
cd	=	1,0
kr z0 zmin	= = =	0,17 0,01 [m] 2 [m]
ct	=	1,0
c1 c2	=	0,8 0,4

z	ce(z)	p(z)	p1(z)	p2(z)
[m]		[kN/mq]	[kN/mq]	[kN/mq]
0,0	1,883	92,46	73,97	36,98
0,5	1,883	92,46	73,97	36,98
1,0	1,883	92,46	73,97	36,98
1,5	1,883	92,46	73,97	36,98
2,0	1,883	92,46	73,97	36,98
2,5	1,998	98,10	78,48	39,24
3,0	2,094	102,82	82,26	41,13
3,5	2,177	106,88	85,50	42,75
4,0	2,250	110,45	88,36	44,18
4,5	2,315	113,64	90,91	45,46
5,0	2,373	116,53	93,23	46,61
5,5	2,427	119,17	95,34	47,67
6,0	2,477	121,61	97,29	48,64
6,5	2,523	123,86	99,09	49,55
7,0	2,566	125,97	100,78	50,39
7,5	2,606	127,94	102,36	51,18
8,0	2,644	129,80	103,84	51,92
8,5	2,679	131,56	105,25	52,62
9,0	2,713	133,23	106,58	53,29
9,5	2,746	134,81	107,85	53,93
10,0	2,776	136,32	109,06	54,53
10,5	2,806	137,77	110,22	55,11
11,0	2,834	139,15	111,32	55,66
11,5	2,861	140,48	112,38	56,19
12,0	2,887	141,76	113,41	56,70
12,5	2,912	142,99	114,39	57,19
13,0	2,936	144,17	115,34	57,67
13,5	2,960	145,32	116,25	58,13
14,0	2,982	146,42	117,14	58,57
14,5	3,004	147,50	118,00	59,00

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	19	31

6.1.5. Sisma

In base a quanto riportato al § 5.7.1.1 della norma [11] le azioni sismiche sono state valutate utilizzando le indicazioni riportate negli allegati 2 e 3 della [10].

Il fabbricato in oggetto di intervento è situato nel Comune di Taranto (TA), classificato zona sismica 3, ai sensi dell'Ord. 3274/2003 (Allegato 1).

Pertanto, per la verifica, si considera il valore dell'accelerazione massima del terreno ag = 0.15g. In base alle informazioni riguardanti le proprietà geomecacniche del terreno, contenute nella reazione geologica in allegato, sulla scorta di prove penetrometrice e stratigrafiche, si considera un suolo di fondazione di categoria D.

I parametri utilizzati per la valutazione delle azioni sismiche si possono dedurre osservando il seguente prospetto.

parametri sismici

(§5.1 OPCM 3274)

categoria del suolo di fondazione

cat

- A formazioni litoidi o terreni omogenei
- B depositi di sabbie o ghiaie molto addensate o argille molto consistenti
- C depositi di sabbie o ghiaie mediamente addensate, o di argille di media rigidezza
- D depositi di terreni granulari da sciolti a poco addensati oppure coesivi da poco a mediamente consistenti
- E profili di terreno costituiti da strati superficiali alluvionali

cat = D

zona sismica

zona	ag/g
1	0,35
2	0,25
3	0,15
4	0,05

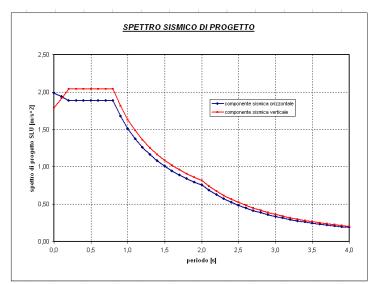
TB, TC, TD = periodi caratteristici dello spettro variabili in funzione del terreno S = fattore che tiene conto del profilo stratigrafico del suolo

cat	S	TB	TC	TD
Α	1,00	0,15	0,40	2,00
В	1,25	0,15	0,50	2,00
С	1,25	0,15	0,50	2,00
D	1,35	0,20	0,80	2,00
E	1,25	0,15	0,50	2,00

S	TB	TC	TD
	[s]	[s]	[s]
1,35	0,20	0,80	2,00

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	20	31

Il periodo fondamentale di vibrazione del fabbricato è stato valutato mediante l'espressione:


$$T = C \bullet H^{3/4}$$

Con:

H = altezza in metri dell'edificio

C = 0.050 per edifici con struttura in c.a. non intelaiati

Il valore ottenuto è pari a 0.293 secondi, con una frequenza pari a 3.41 Hz.

periodo fondamentale della struttura

Tfond =
$$0,293$$
 [s]

Lo spettro di risposta elastico introdotto dalla [10] al §3.2.3 è definito dalle seguenti relazioni:

T = periodo fondamentale dell'oscillatore

TB, TC, TD = periodi caratteristici dello spettro variabili in funzione del terreno

S = fattore che tiene conto del profilo stratigrafico del suolo

eta = fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente, csi, diverso da 5 (eta=1 per csi=5) essendo csi espresso in %

$$eta = radq(10/(5+csi) >= 0.55$$

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	21	31

Lo spettro di progetto per il calcolo allo stato limite ultimo introdotto dalla [10] al §3.2.5 è definito dalle seguenti relazioni:

 $\begin{array}{lll} 0 = < T < TB & Sd(T) = ag^*S^*(1 + T/TB^*(2.5/qs-1)) \\ TB = < T < TC & Sd(T) = ag^*S^*2.5/qs \\ TC = < T < TD & Sd(T) = ag^*S^*2.5/qs^*(TC/T) \\ T >= TD & Sd(T) = ag^*S^*2.5/qs^*(TC^*TD/T^2) \\ & (deve comunque risultare Sd(T) >= 0.2^*ag) \\ \end{array}$

T = periodo fondamentale dell'oscillatore

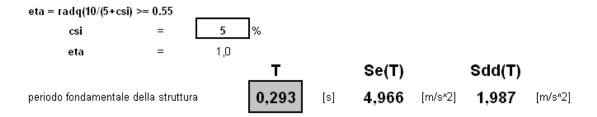
TB, TC, TD = periodi caratteristici dello spettro variabili in funzione del terreno

S = fattore che tiene conto del profilo stratigrafico del suolo

qs = fattore di duttilità della struttura

Lo spettro di progetto per il calcolo allo stato limite di danno è introdotto dalla [10] al §3.2.6 e risulta definito come lo spettro elastico diviso per il fattore pari a 2.5.

SPETTRO DI RISPOSTA ELASTICO ORIZZONTALE (§5.2.3 OPCM 3274)


0 = < T < TB Se(T) = ag*S*(1+T/TB*(2.5*eta-1)) TB = < T < TC Se(T) = ag*S*2.5*eta TC = < T < TD Se(T) = ag*S*2.5*eta*(TC/T) T > = TD Se(T) = ag*S*2.5*eta*(TC*TD/T^2)

T = periodo fondamentale dell'oscillatore

TB, TC, TD = periodi caratteristici dello spettro variabili in funzione del terreno

S = fattore che tiene conto del profilo stratigrafico del suolo

eta = fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente, csi, diverso da 5 (eta=1 per csi=5) essendo csi espresso in %

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	22	31

SPETTRO DI PROGETTO SLU

(§5.2.3 OPCM 3274)

0 = < T < TB Sd(T) = ag*S*(1+T/TB*(2.5/qs-1))

$$\begin{split} TB = < T < TC & Sd(T) = ag^*S^*2.5/qs \\ TC = < T < TD & Sd(T) = ag^*S^*2.5/qs^*(TC/T) \\ T >= TD & Sd(T) = ag^*S^*2.5/qs^*(TC^*TD/T^2) \end{split}$$

(deve comunque risultare $Sd(T) \ge 0.2*ag$)

T = periodo fondamentale dell'oscillatore

TB, TC, TD = periodi caratteristici dello spettro variabili in funzione del terreno

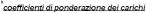
S = fattore che tiene conto del profilo stratigrafico del suolo

qs = fatto di duttilità della struttura

qs = qo*Kr*Kd

Kr fattore funzione dalla regolarità geometrica Kd fattore funzione dalla classe di duttilità (A-B) qo funzione della tipologia strutturale

periodo fondamentale della struttura


2,63

1,00 regolare in pianta e altezza 0,70 bassa duttilità CD"B"

3,75 prefabbricato con struttura monopiano con pilastri isostatici

T Sd(T)
0,293 [s] 1,892 [m/s^2]

Vengono di seguito valutati i pesi sismici considerati per il calcolo delle azioni sismiche

сорегига

φ1	1,0
Ψ0ι (SLD)	0,7
Ψ2ι (SLU)	0,2

Tabella 3.5 - Coefficienti o per edifici

kN

pesi SLU

<u>copertura</u>	tipologia superficie	internedio 5378,5 mq	Copertura Archivi Carichi correlati Carichi indipendenti	Cariclii ai piani
peso proprio strutture				

| Carico | estensione | quantità | peso | KN/ml | m | kN | travi in C.A.P. tipo "IPER" (H =174 cm) | 10,90 | 48,10 | 6 | 3145,74 | tegolo di copertura tipo "IPER" (L =240 cm ; H =109 cm) | 5,00 | 111,82 | 11 | 6150,10 | 9295,84

1,73 kN/mq 1,00 1,73 1,00 1,73 5378,5 permanenti 1,12 kN/mq 1,00 1,12 1,00 1,12 5378 5 accidentale (copertura accessibile per sola manutenzione) 1,00 kN/mq 0,20 0,20 0,7 0,70 5378,5 3,05 3,55 kN/mq kN/mq

totali livello 16396 kN 19085 kN

pesi SLD

superficie

<u>tamponatura</u>

carico inità di misura struttura completamente chiusa 55,44 KN/m altezza libera 10,56

<u>SLU</u>

 copertura
 16396
 kN
 1
 16396
 kN

 peso sismico totale
 Wt
 16396
 kN

 massa sismica totale
 Mt
 1671
 [t]

<u>SLD</u>

 copertura
 19085
 kN
 1
 19085
 kN

 peso sismico totale
 Wt
 19085
 kN

 massa sismica totale
 Mt
 1945
 [t]

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	23	31

Le forze sismiche sono state ricavate con il metodo dell'analisi statica lineare (§4.5.2 della [10]). La forza da applicare al livelli i-esimo della costruzione è fornita dalla seguente relazione:

$$F_i = F_h (z_i W_i) / \Sigma (z_j W_j)$$

dove:

Fi = forza statica equivalente da applicare al piano esimo;

Fh = $Sd(T) W \lambda$ forza sismica totale (taglio alla base);

Wi e Wi sono i pesi delle masse ai piani i e i rispettivamente;

zi e zj sono le altezze dei piani i e j rispettivamente;

Sd(T) è lo spettro di riposta di progetto

 λ è un coefficiente di ponderazione dello spettro, vale: λ = 1.00

Le azioni sismiche devono inoltre essere incrementate considerando il fattore di importanza:

<u>coefficiente di ponderazione dello spettro</u> λ =0.85 se la struttura ha almeno 3 livelli fuori terra e Tfond<2*TC; λ =1.0 altrimenti Tfond<2,5 Tc

categoria

lambda = 1,00 [s]

fattore di importanza

funzione edificio fattore di importanza

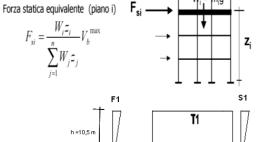
edifici la cui funzionalità durante il terremoto ha
importanza fondamentale per la protezione civile
(ospedali, caserme dei vigili del fuoco, municipi)

I importanza fondamentale per la protezione civile (ospedali, caserme dei vigili del fuoco, municipi)

II edifici importanti in relazione alle conseguenze di un eventuale collasso (scuole, teatri,...)

III edifici ordinari, non compresi nelle categorie precedenti

Vengono successivamente riportate le forze sismiche.


FORZE STATICHE EQUIVALENTI CON ANALISI ELASTICA LINEARE

<u>SLU</u>

forza sismica totale (= taglio alla base)

Ftot	3162	[kN]			
livello	quota [m]	peso sismico [kN]	W *z [kNm]	forze sismiche [kN]	forze sismiche incrementate [kN]
1	10,56	16396	173137	3162	4427
	somme	16396	173137	3162	4427

Modellazione della struttura e applicazione, in ciascuna delle due direzioni separatamente, di un sistema di forze statiche equivalenti (punto 4.5.3 – Analisi statica lineare) agenti nel baricentro di ciascun impalcato

<u>SLD</u>

forza sismica totale (= taglio alla base)

nou totulo (tagno ana base,	'			
3865	[kN]				
<i>quota</i> [m]	peso sismico [kN]	W *z [kNm]	forze sismiche [kN]	forze sismiche incrementate [kN]	
10,56 somme	19085 19085	201535 201535	3865 3865	5411 5411	
	3865 quota [m] 10,56	3865 [kN] quota peso sismico [m] [kN] 10,56 19085	quota peso sismico W*z [m] [kN] [kNm] 10,56 19085 201535	3865 [kN] quota peso sismico W*z forze sismiche [m] [kN] [kNm] [kN] 10,56 19085 201535 3865	3865 [kN]

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	24	31

6.2. CONDIZIONI DI CARICO ELEMENTARI

Le condizioni di carico elementari sono state combinate al fine di ottenere le sollecitazioni di progetto necessarie alla verifica degli elementi strutturali secondo quanto riportato nella tabella successiva.

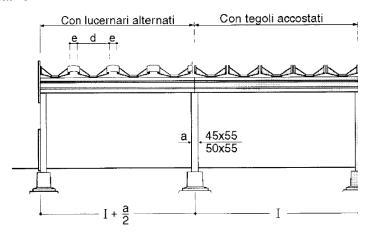
	SLE			SLU								
condizione di carico elementare	1	2	3	1	2	3	4	5	6	7	8	9
peso proprio struttura	1.00	1.00	1.00	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.00	1.00
permanenti	1.00	1.00	1.00	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.00	1.00
variabili d'esercizio	1.00	1.00	1.00	1.50	1.05	1.50	1.05	1.05	1.05	0.00	0.80	0.80
neve	0.00	1.00	1.00	1.05	1.50	1.05	1.50	0.00	1.05	0.00	0.20	0.20
vento	0.00	0.00	1.00	0.00	0.00	1.05	1.05	1.50	1.50	1.50	0.00	0.00
sisma	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.40	1.40

Sono state considerate tre combinazioni di carico in stato limite di esercizio (SLE) al fine di verificare la deformabilità strutturale; sono poi state considerate numerose combinazioni di carico allo stato limite ultimo (SLU) al fine di determinare le sollecitazioni di progetto maggiormente gravose per ciascun elemento strutturale. In particolare le ultime due combinazioni (8 e 9) contemplano la presenza dell'azione sismica.

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	25	31

6.3. VERIFICA DEGLI ELEMENTI STRUTTURALI

La verifica degli elementi strutturali viene condotta secondo i criteri della normativa vigente.


Si riportano di seguito i momenti massimi di esercizio, i carichi, le luci e gli interassi massimi per il dimensionamento del sistema costruttivo in esame.

I componenti strutturali principali del sistema costruttivo prefabbricato previsto per il Magazzino Frigorifero sono:

- plinti di fondazione a bicchiere a sezione quadrata;
- pilastri a sezione rettangolare (55x50 cm) in C.A.V. con pluviale Ø160 mm incorporato;
- travi primarie in C.A.P. tipo API serie H 174/55;
- tegoli membranali di copertura in C.A.P. tipo IPER S6R;
- Sistema di copertura Arcopan composto da un pannello sandwich curvo, isolante e portante nato quale elemento di copertura e raccordo di elementi prefabbricati in C.A.P.

6.3.1. Tegoli membranali di copertura

La particolare conformazione geometrica dei tegoli in c.a.p. del tipo IPER, falde piane ed inclinate derivate da paraboloide iperbolico, ne determina il comportamento statico di tipo membranale di elevata efficienza strutturale. La tipologia qui adottata è la S6R con spessore di falda 6 cm. su una luce (appoggio – appoggio) di 22.18 metri, ed un interasso tegolo – tegolo di 4.60 metri. L'impiego di elementi interposti tra i tegoli, pannello Arcopan, permette di alleggerire il carico (peso proprio) sulle travi principali e di rendere modulare la struttura di copertura. Si riporta qui di seguito lo schema rappresentativo.

LARGHEZZA TEGOLO

LARGHEZZA LUCERNARIO

d = 240 cm $e = 60 \div 260 \text{ cm}$

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	26	31

Si riporta qui di seguito i limiti prestazionali in funzione della tipologia adottata per i tegoli

Lunghezza Tegolo	Interasse massimo	Sovraccarico utile
Lunghezza regolo	micrasse massimo	Permanente+accidentale
[m]	[m]	[kN/mq]
22.18	5.00	1.20

Dall'analisi dei carichi si ottiene un valore del sovraccarico utile pari a:

 $(0.62 + 0.60 \times 0.8) = 1.1 \text{ kN/mq}$

6.3.2. Travi primarie

Le travi primarie in c.a.p. della serie API CANALE hanno sezione trasversale costante con profilo a "I". In prossimità dell'appoggio sui pilastri la sezione della trave, per una lunghezza di circa un metro, assume geometria rettangolare di base cm. 55 e riceve il pluviale in pvc con sistema a scomparsa.

Si riportane di seguito le caratteristiche geometriche della sezione trasversale:

- altezza:	174	cm
- peso proprio:	10.9	kN/m
- area:	4544	cm ²
- distanza del baricentro dal lembo inferiore:	82.53	cm
- momento d'inerzia:	15871687	cm ⁴
- modulo flessionale inferiore:	192314	cm ³
- modulo flessionale superiore:	173518	cm ³

Il momento massimo di esercizio è pari a 3690 kN/m.

Analisi dei carichi

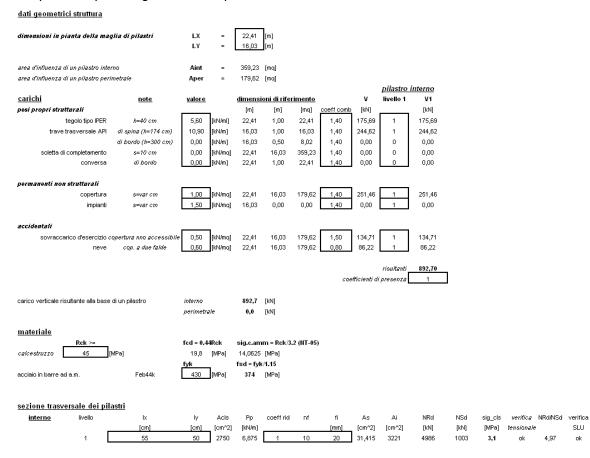
Carichi copertura = 236.5 [kN] Peso proprio struttura = 10.90 [kN/ml]

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	27	31

Momenti di progetto

La trave principale è stata calcolata come semplicemente appoggiata.

Il momento massimo è in mezzeria e vale $M= 1/8 \cdot q \cdot l^2$

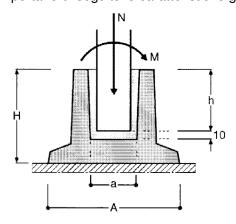

I = 16.03 m.

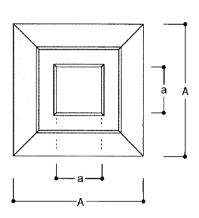
Momento di calcolo: $M_d = 3413.8$ [kN•m] Il momento massimo di esercizio è pari a $M_{max} = 3690$ [kN/m]

6.3.3. Pilastri

I pilastri hanno sezione rettangolare, con lato di 55 cm, pari alla dimensione di appoggio delle travi e l'altro lato di dimensione 50 cm in relazione alla entità dei carichi di competenza. Il pluviale incorporato per lo smaltimento delle acque ha un foro Ø160 mm incorporato e prevede l'uscita alla base del pilastro sotto la quota del pavimento finito.

Si riportano qui di seguito i calcoli per il suo dimensionamento:




Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	28	31

7. VERIFICA DELLE FONDAZIONI

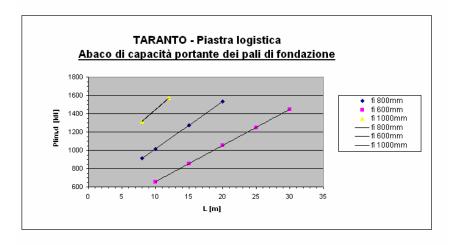
7.1. PLINTI DI FONDAZIONE A BICCHIERE

I plinti a base quadrata, specifici per le costruzioni in zona sismica, si caratterizzano per la simmetria della sezione nei due assi principali. I plinti hanno tutti sezione quadrata pari a 200x200 cm; si riportano di seguito le caratteristiche geometriche e prestazionali.

Tipo	Α	Н	a	h	Peso	N_{max}	M_{max}
	cm	cm	cm	cm	kN	kN	kNm
	200	145	75	100	56	1390	290

Si riportano qui di seguito i calcoli per il suo dimensionamento:

sezione trasv	ersale dei p	<u>linti</u>														
<u>interno</u>	livello	lx	ly	Acls	Pp	coeff rid	nf	fi	As	Ai	NRd	NSd	sig_cls	verifica	NRd/NSd	verifica
		[cm]	[cm]	[cm^2]	[kN]			[mm]	[cm^2]	[cm^2]	[kN]	[kN]	[MPa]	tensionale	,	SLU
	1	200	200	40000	56	I 1	10	20	31 415	40471	56615	1081	0.3	ok	52.35	ok



Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	29	31

7.2. PALI DI FONDAZIONE

Sulla base dei parametri geotecnici desunti dalla Relazione riepilogativa dei risultati delle indagini geognostiche, si è costruito il seguente abaco di capacità portante dei pali di fondazione, sulla base del quale, in funzione degli scarichi sui pali precedentemente riportati, si è effettuata la scelta della lunghezza e del diametro dei pali stessi.

ф	L	P _{lim,d}
[mm]	[m]	[kN]
600	10	656
600	15	854
600	20	1052
600	25	1249
600	30	1447
800	8	911
800	10	1015
800	15	1275
800	20	1534
1000	8	1316
1000	12	1572

Magazzino temperat	ura ambiente				
	comb.	P _{d,min} [kN]	comb.	P _{d,max} [kN]	Palo previsto
Pali plinti	1	207	1	884,2	fi 800 - L=12,0m

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	30	31

7.2.1. Capacità portante pali Ø 800 L=12.0 m

Quota piano campagna	5,1 m	Delta falda	4,6 m
Quota falda	0,5 m	Delta piano scavo (testa palo)	2,3 m
Quota fondo scavo (testa palo)	2,8 m	Delta interfaccia	7,05 m
Quota interfaccia strati	-1,95 m	Delta metà tratto palo nel primo strato	4,675 m
Quota base palo	-9,2 m	Delta metà tratto palo nel secondo strato	10,675 m
Diametro pali	80 cm	Delta base palo	14,3 m
Lunghezza palo	12 m		

PORTATA LATERALE

Strato 1: sabbia limosa

4,675

5,466666667

5,8625

Qualora il palo sia interamente nello strato 1, come spessore dello strato 1 dare quello corrispondente alla base del palo j(lunghezra palo-delta testa palo)

L	7,05	m	(spessore	strato rispetto piano campagna)
delta z	1,41	m	(spessore	sottostrati considerati)
fi'	30			
gamma	19	kN/m³		
gamma'	9	kN/m³		
Nspt	10	colpi/piede	(a metà de	l tratto di palo nello strato 1)
K0,nc	0,500			
Possibilità I: beta" sigma'v0				
z	sigma'v0	beta	fz	
m	kPa		kPa	
2,3	0	1,500	0,00	(inizio tratto palo nello strato 1)
3,4875	22,5625	1,233	27,82	(1/4 tratto palo nello strato 1)
3,883333333	30,08333	1,192	35,85	(1/3 tratto palo nello strato 1)

50,65

64,02

70,23

(metà tratto palo nello strato 1)

(2/3 tratto palo nello strato 1)

(3/4 tratto palo nello strato 1)

(fine tratto palo nello strato 1)

Possibilità 2: K sigma v0 tgdelta (approccio teorico)

45,125

60,16667

67,6875

88,75

1,122

1,064

1,038

sigma'p	88,075 kPa	(tensione di preconsolidazione a metà tratto di palo nel primo strato)
sigma'v0	45,125 kPa	(tensione verticale efficace a metà strato o a metà palo se il palo è più corto dello strato)
OCR	1,952	
k0,oc	0,699	
2/3*K0	0,461	
K	0,580	(coefficiente di spinta orizzontale assunto)
delta	30	(angolo di attrito palo terreno)
z media	4,675 m	
fz	15,11 kPa	
Possibilità 3: Reese (1978)		
fz	26 kPa	0.026*100 Nspt
Possibilità 4: Meyerhof (1976)		

0.010*100 Nspt

fl 1 fattore di mobilitazione della portata laterale Plat1 298 kN portata laterale tratto 1

10 kPa

30

Progetto	Identificativo documento	Rev.	Pagina	Di
Piastra Portuale di Taranto – Piattaforma Logistica	123.700 E1UCGS006	01	31	31

7.3. TRAVI DI COLLEGAMENTO

Verranno realizzati dei collegamenti orizzontali tra le fondazioni (plinti) per tener conto della presenza di spostamenti relativi del suolo sul piano orizzontale. Sulla base dei riferimenti normativi, Allegato 3 (§3.3.1) della [10], le travi di collegamento verranno dimensionate in modo da assorbire una quota parte della forza orizzontale.

Si riportano qui di seguito i calcoli per il suo dimensionamento:

Collegamenti orizzontali tra fondazioni (A.II.3 §3.3.1 OPCM 3274)

forza [kN] 43,78

Dimensionamento e verfica

a trazione 1,72 cmq a compressione 27,36 cmq

La trave di collegamento ha sezione rettangolare (40x50 cm), Ac =2000 cmq.