

COMMISSARIO DELEGATO PER L'EMERGENZA

DETERMINATASI NEL SETTORE DEL TRAFFICO E DELLA MOBILITÀ NEL

TERRITORIO DELLE PROVINCE DI TREVISO E VICENZA

SUPERSTRADA A PEDAGGIO PEDEMONTANA VENETA

COMMISSARIO DELEGATO PER L'EMERGENZA DETERMINATASI NEL SETTORE DEL TRAFFICO E DELLA MOBILITA' NEL TERRITORIO DELLE PROVINCE DI TREVISO E VICENZA

SUPERSTRADA A PEDAGGIO PEDEMONTANA VENETA

PROGETTO DEFINITIVO

OPERE D'ARTE MINORI: OPERE DI SOSTEGNO MURO PREFABBRICATO – MU.3C.014.N Relazione di calcolo del muro

SIS Scpa 1 di 147

INDICE

INDICE	2
1. DESCRIZIONE DELL'OPERA	3
2. ESAME DEI RISULTATI	4
2.1. TRATTO F	4
2.1.1. TIPO F1 - MURO TRATTO F CON ALTEZZA FUORI TERRA DI 2M	4
2.1.2. TIPO F2 - MURO TRATTO F CON ALTEZZA FUORI TERRA DI 3M	40
2.1.3. TIPO F3 - MURO TRATTO F CON ALTEZZA FUORI TERRA DI 4M	76
2.1.4 TIDO GETTATO IN ODEDA - ALTEZZA ELIODI TEDDA H > 5.50m	112

1. DESCRIZIONE DELL'OPERA

Nel presente elaborato sono riportati i calcoli statici (ottenuti mediante l'utilizzo del programma *MAX10.0*[©] Rel. 10.05a del 2010, distribuita dalla società AZTEC) delle strutture in calcestruzzo armato relativi alla realizzazione dei muri di controripa in c.a. compresi tra il km 74+075 e il Km 75+625 della tratta F del lotto 3C della Superstrada a pedaggio Pedemontana Veneta.

L'opera sarà realizzata mediante una piastra di fondazione sulla quale si innesteranno i paramenti verticali costituiti da lastre prefabbricate in cemento armato, a spessore costante, o in cemento armato gettato in opera, solidarizzate tramite un cordolo di collegamento in testa, secondo quanto indicato negli elaborati grafici di progetto.

SIS Scpa 3 di 147

2. ESAME DEI RISULTATI

2.1. TRATTO F

2.1.1. Tipo F1 - Muro tratto F con altezza fuori terra di 2m

Normativa

N.T.C. 2008 - Approccio 1

Cimbo	منم	adottata
Simpo	ınaıa.	agomata

 $\begin{array}{lll} \gamma_{\text{Gsfav}} & \bar{\text{Coefficiente parziale sfavorevole sulle azioni permanenti} \\ \gamma_{\text{Gsfav}} & \bar{\text{Coefficiente parziale favorevole sulle azioni permanenti} \\ \gamma_{\text{Osfav}} & \bar{\text{Coefficiente parziale sfavorevole sulle azioni variabili} \\ \gamma_{\text{Offav}} & \bar{\text{Coefficiente parziale favorevole sulle azioni variabili} \\ \gamma_{\text{Coefficiente parziale di riduzione dell'angolo di attrito drenato} \\ \gamma_{\text{cu}} & \bar{\text{Coefficiente parziale di riduzione della coesione drenata} \\ \gamma_{\text{cu}} & \bar{\text{Coefficiente parziale di riduzione della coesione non drenata} \\ \end{array}$

 γ_{qu} Coefficiente parziale di riduzione del carico ultimo

 γ_{γ} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Coemcienti parziali	per le azioni o per reile	ello delle azioni.				
Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	γGfav	1.00	1.00	0.90	0.90
Permanenti	Sfavorevole	γGsfav	1.30	1.00	1.10	1.30
Variabili	Favorevole	γQfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	γQsfav	1.50	1.30	1.50	1.50
Coefficienti parziali	per i parametri geoteci	nici del terreno:				
Parametri			M1	M2	M2	M1
Tangente dell'ango	lo di attrito	γ _{tanφ'}	1.00	1.25	1.25	1.00
Coesione efficace		$\gamma_{c'}$	1.00	1.25	1.25	1.00
Resistenza non dre	enata	γ_{cu}	1.00	1.40	1.40	1.00
Resistenza a comp	ressione uniassiale	γ_{qu}	1.00	1.60	1.60	1.00
Peso dell'unità di vo	olume	γ_{γ}	1.00	1.00	1.00	1.00
Coefficienti di par	tecipazione combinaz	ioni sismiche				
	per le azioni o per l'effe	<u>etto delle azioni:</u>				
Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	γGfav	1.00	1.00	1.00	0.90
Permanenti	Sfavorevole	$\gamma_{\sf Gsfav}$	1.00	1.00	1.00	1.30
Variabili	Favorevole	γQfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	γQsfav	1.00	1.00	1.00	1.50
Coefficienti parziali	per i parametri geoteci	<u>nici del terreno:</u>				
Parametri			M1	M2	M2	M1
Tangente dell'angolo di attrito		γ _{tanφ'}	1.00	1.25	1.25	1.00
Coesione efficace		γ _{c'}	1.00	1.25	1.25	1.00
Resistenza non drenata		γ_{cu}	1.00	1.40	1.40	1.00
Resistenza a comp	ressione uniassiale	γ_{qu}	1.00	1.60	1.60	1.00
Peso dell'unità di v	olume	γ_{γ}	1.00	1.00	1.00	1.00

FONDAZIONE SUPERFICIALE

Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica Coefficienti parziali R1 R2 R3

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 4 di 147

Muro prefabbricato – MU.3C.014.N – Relazione di Ca	lcolo			
Capacità portante della fondazione	1.00	1.00	1.40	
Scorrimento	1.00	1.00	1.10	
Resistenza del terreno a valle	1.00	1.00	1.40	
Stabilità globale		1.10		
Geometria muro e fondazione				

Descrizione	Muro a mensola in c.a.
Altezza del paramento Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno Lunghezza del muro	2.00 [m] 0.10 [m] 0.10 [m] 0.00 [°] 0.00 [°] 9.60 [m]
Fondazione	
Lunghezza mensola fondazione di valle Lunghezza mensola fondazione di monte Lunghezza totale fondazione Inclinazione piano di posa della fondazione Spessore fondazione Spessore magrone Contrafforti prefabbricati	0.50 [m] 0.90 [m] 1.50 [m] 0.00 [°] 0.50 [m] 0.10 [m]
Altezza contrafforti Spessore contrafforti Larghezza in sommità Larghezza alla base Larghezza elemento Numero contrafforti Posizione:	2.00 [m] 0.20 [m] 0.30 [m] 0.30 [m] 1.20 [m] 8 Monte
Materiali utilizzati per la struttura Calcestruzzo Peso specifico	25.000 [kN/mc]

Classe di Resistenza C25/30 Resistenza caratteristica a compressione R_{ck} 30.00 [MPa] Modulo elastico E 31447.048 [MPa] Acciaio Tipo B450C

Tensione di snervamento σ_{fa} 449.94 [MPa]

Geometria profilo terreno a monte del muro Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m] Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	Υ	Α
1	1.35	0.00	0.00
2	9.67	5.00	31.00
3	30.00	5.00	0.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale	0.00	[°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento	0.60	[m]
DV D SD AD MIL 2 C 014 001 N 001 D A 0		

SIS Scpa 5 di 147

Descrizione terreni

Simbologia adottata

Indice del terreno Descrizione Descrizione terreno

Peso di volume del terreno espresso in [kN/mc] Peso di volume saturo del terreno espresso in [kN/mc] Vs

Angolo d'attrito interno espresso in [°] ϕ Angolo d'attrito terra-muro espresso in [°]

Coesione espressa in [MPa] С

Adesione terra-muro espressa in [MPa]

Descrizione	γ	γ_{s}	ф	δ	С	Ca
AL1	18.50	18.50	38.00	25.33	0.0000	0.0000
AL1 - Paramento	18.50	18.50	38.00	25.33	0.0000	0.0000
AL1- Fondazione	18.50	18.50	38.00	38.00	0.0000	0.0000

Stratigrafia

Simbologia adottata

Indice dello strato Ν

Η Spessore dello strato espresso in [m]

Inclinazione espressa in [°] а

Costante di Winkler orizzontale espressa in Kg/cm²/cm Kw

Coefficiente di spinta Ks Terreno Terreno dello strato

Nr.	Н	а	Kw	Ks	Terreno
1	0.10	0.00	0.00	0.00	AL1
2	20.00	0.00	8.31	0.00	AL1- Fondazione

Terreno di riempimento

AL1 - Paramento

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m]

Componente orizzontale del carico concentrato espressa in [kN]

Componente verticale del carico concentrato espressa in [kN]

F_x F_y M X_i Q_i Momento espresso in [kNm]

Ascissa del punto iniziale del carico ripartito espressa in [m] Ascissa del punto finale del carico ripartito espressa in [m]

Intensità del carico per x=Xi espressa in [kN/m] Q_f Intensità del carico per x=X_f espressa in [kN/m]

Tipo carico : D=distribuito C=concentrato D/C

Condizione nº 1 (Vento)

M=6.0000Paramento X = 0.00Y = 0.00 $F_x = 3.0000$ $F_v = 0.0000$

Descrizione combinazioni di carico

Simbologia adottata

Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole) F/S

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione

Combinazione nº 1 - Caso A1-M1 (STR)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.30	1.00	1.30

Combinazione nº 2 - Caso A2-M2 (GEO)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 6 di 147

ologilo			
N – Relazione di	i Calcolo		
SFAV	1.00	1.00	1.00
U (SLU)			
S/F	γ	Ψ	γ*Ψ
			0.90
			0.90
SFAV	1.10	1.00	1.10
	<u>.B)</u>		
	γ		γ*Ψ
SFAV	1.00	1.00	1.00
SFAV	1.00	1.00	1.00
SFAV	1.00	1.00	1.00
M1 (STR)			
	γ	Ψ	γ*Ψ
			1.00
			1.00
			1.30
SFAV	1.50	1.00	1.50
M2 (GEO)			
S/F	γ	Ψ	γ*Ψ
SFAV		1.00	1.00
SFAV	1.00	1.00	1.00
			1.00
SFAV	1.30	1.00	1.30
U (SLU)			
S/F	γ	Ψ	γ*Ψ
FAV	0.90	1.00	0.90
FAV	0.90	1.00	0.90
			1.10
SFAV	1.50	1.00	1.50
•	<u>.B)</u>		
	γ	Ψ	γ*Ψ
SFAV	1.00	1.00	1.00
SFAV	1.00	1.00	1.00
SFAV	1.00		1.00
SFAV	1.30	1.00	1.30
M4 (QTD) Qie	sma Vort no	citivo	
	-		* \T/
			γ*Ψ
			1.00
			1.00
SFAV	1.00	1.00	1.00
I-M1 (STR) - S	isma Vert. n	egativo	
S/F		Ψ	γ*Ψ
		1.00	1.00
			1.00
SFAV	1.00	1.00	1.00
	-		4 3-
		_	γ*Ψ
			1.00
		4 00	4 00
SFAV	1.00	1.00	1.00
SFAV SFAV	1.00 1.00	1.00 1.00	1.00
	SFAV U (SLU) S/F FAV SFAV M2 (GEO-STA S/F SFAV SFAV	N - Relazione di Calcolo SFAV 1.00 U (SLU) S/F γ FAV 0.90 FAV 0.90 FAV 0.90 SFAV 1.10 M2 (GEO-STAB) S/F γ SFAV 1.00 SFAV 1.00 SFAV	N - Relazione di Calcolo SFAV 1.00 1.00

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 7 di 147

•				
Combinazione nº 12 - Caso A		Sisma Vert. n	<u>egativo</u>	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 13 - Caso E		-		
_	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 14 - Caso E	OLL (SLLI) - Sisi	ma Vert nec	ativo	
COMBINAZIONO II II GAGO E	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Spirita terrerio	SFAV	1.00	1.00	1.00
Combinazione n° 15 - Caso A	2-M2 (GEO-ST	AB) - Sisma	Vert. positivo	<u>)</u>
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
•				
Combinazione nº 16 - Caso A		<u>AB) - Sisma</u>	_	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
		_\		
Combinazione n° 17 - Quasi F		<u>.E)</u>		
_	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Vento	SFAV	1.00	1.00	1.00
Combinazione n° 18 - Frequei	oto (CLE)			
Combinazione ii 16 - Frequei)T(* 110
Dana anamia assum	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Vento	SFAV	1.00	1.00	1.00
Combinazione n° 19 - Rara (S	LE)			
	 S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Vento	SFAV	1.00	1.00	1.00
	SFAV	1.00	1.00	1.00
Impostazioni di analisi Metodo verifica sezioni			Stato	limita
Metodo verifica sezioni			Stato	mme
Impostazioni verifiche SLU				
Coefficienti parziali per resiste	enze di calcolo d	dei materiali		
Coefficiente di sicurezza calce			1.60	
Coefficiente di sicurezza calce			1.60	
Coefficiente di sicurezza acciaio			1.15	
Fattore riduzione da resistenz		drica	0.83	
			0.00	
PV_D_SR_AP_MU_3_C_0140	001_N_001_R_A	_0		

SIS Scpa 8 di 147

Fattore di riduzione per ca	arichi di lungo periodo	0.85
Coefficiente di sicurezza	per la sezione	1.00

Impostazioni verifiche SLE

Condizioni ambientali	Ordinarie
-----------------------	-----------

Armatura ad aderenza migliorata

Verifica fessurazione

Vernica ressurazioneSensibileSensibilità delle armatureSensibileValori limite delle aperture delle fessure $w_1 = 0.20$ $w_2 = 0.30$ $w_3 = 0.40$

Metodo di calcolo aperture delle fessure Circ. Min. 252 (15/10/1996)

Verifica delle tensioni

Combinazione di carico Rara $\sigma_c < 0.60 f_{ck} - \sigma_f < 0.80 f_{yk}$

Quasi permanente σ_c < 0.45 f_{ck}

Calcolo della portanza metodo di Vesic

Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLU): 1.00 Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLE): 1.00

Impostazioni avanzate

Componente verticale della spinta nel calcolo delle sollecitazioni

Influenza del terreno sulla fondazione di valle nelle verifiche e nel calcolo delle sollecitazioni Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione
Tipo Tipo combinazione
Sisma Combinazione sismica

CS_{SCO} Coeff. di sicurezza allo scorrimento CS_{RIB} Coeff. di sicurezza al ribaltamento COeff. di sicurezza a carico limite CS_{STAB} Coeff. di sicurezza a stabilità globale

С	Tipo	Sisma	CS _{sco}	CS _{rib}	CS qlim	CS _{stab}
1	A1-M1 - [1]		4.50		22.04	
2	A2-M2 - [1]		2.69		7.74	
3	EQU - [1]			3.52		
4	STAB - [1]					2.24
5	A1-M1 - [2]		3.63		13.23	
6	A2-M2 - [2]		2.33		4.56	
7	EQU - [2]			1.79		
8	STAB - [2]					2.24
9	A1-M1 - [3]	Orizzontale + Verticale positivo	2.64		10.81	
10	A1-M1 - [3]	Orizzontale + Verticale negativo	2.53		10.35	
11	A2-M2 - [3]	Orizzontale + Verticale positivo	1.35		1.58	
12	A2-M2 - [3]	Orizzontale + Verticale negativo	1.31		1.42	
13	EQU - [3]	Orizzontale + Verticale positivo		2.22		
14	EQU - [3]	Orizzontale + Verticale negativo		2.06		
15	STAB - [3]	Orizzontale + Verticale positivo				1.80
16	STAB - [3]	Orizzontale + Verticale negativo				1.76
17	SLEQ - [1]		4.69		19.85	
18	SLEF - [1]		4.69		19.85	
19	SLER - [1]		4.69		19.85	

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta metodo di Culmann
Calcolo del carico limite metodo di Vesic
Calcolo della stabilità globale metodo di Bishop
Calcolo della spinta in condizioni di Spinta attiva

Sisma

Combinazioni SLU

Accelerazione al suolo a _q	3.28 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.07
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β _m)	0.31
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g^*\beta_m^*St^*S) = 11.13$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 5.56$

Combinazioni SLE

Accelerazione al suolo a _a	1.27 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.20
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β _m)	0.24
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g^*\beta_m^*St^*S) = 3.74$
Coefficiente di intensità sismica verticale (percento)	$k_{v}=0.50 * k_{b}=1.87$

Forma diagramma incremento sismico	Stessa forma diagramma statico
Partecipazione spinta passiva (percento)	50.0
Lunghezza del muro	9.60 [m]

Peso muro	23.7500 [kN]
Baricentro del muro	X=0.11 Y=-1.99

Superficie di spinta

Punto inferiore superficie di spinta	X = 0.90	Y = -2.50
Punto superiore superficie di spinta	X = 0.90	Y = 0.00
Altezza della superficie di spinta	2.50 [m]	
Inclinazione superficie di spinta(rispetto alla verticale)	0.00 [°]	

COMBINAZIONE nº 1

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	23.7615 18.7316 14.6198 X = 0.90 37.97 50.47	[kN] [kN] [kN] [m] [°] [°]	Y = -1.73	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti	31.4500 X = 0.45 8	[kN] [m]	Y = -1.00	[m]
Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte	3.0000 2.5000 X = 0.15	[kN] [kN] [m]	Y = -1.00	[m]

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 10 di 147

Risul	tanti
, wou	tui iti

Risultante dei carichi applicati in dir. orizzontale	18.7316	[kN]
Risultante dei carichi applicati in dir. verticale	77.8698	[kN]
Resistenza passiva a valle del muro	-23.5252	[kN]
Sforzo normale sul piano di posa della fondazione	77.8698	[kN]
Sforzo tangenziale sul piano di posa della fondazione	18.7316	[kN]
Eccentricità rispetto al baricentro della fondazione	-0.03	[m]
Lunghezza fondazione reagente	1.50	[m]
Risultante in fondazione	80.0910	[kN]
Inclinazione della risultante (rispetto alla normale)	13.53	[°]
Momento rispetto al baricentro della fondazione	-2.2149	[kNm]
Carico ultimo della fondazione	1716.0879	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	1.50	[m]
Tensione terreno allo spigolo di valle	0.04601	[MPa]
Tensione terreno allo spigolo di monte	0.05782	[MPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_q = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.59$	$i_{q} = 0.60$	$i_{\gamma} = 0.45$
Fattori profondità	$d_c = 1.29$	$d_{q} = 1.17$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

N' - 16 02	N! _ 21 25	N! _ 25 17
$N'_{c} = 46.83$	$N'_{g} = 34.25$	$N'_{y} = 35.47$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 4.50
Coefficiente di sicurezza a carico ultimo 22.04

Sollecitazioni fondazione di valle

Combinazione nº 1

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.05	0.0240	0.9637
3	0.10	0.0967	1.9471
4	0.15	0.2190	2.9501
5	0.20	0.3920	3.9729
6	0.25	0.6167	5.0153
7	0.30	0.8939	6.0774
8	0.35	1.2247	7.1592
9	0.40	1.6101	8.2607
10	0.45	2.0511	9.3819
11	0.50	2.5487	10.5228

Sollecitazioni fondazione di monte

Combinazione nº 1

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

. ∽9	o poo o oo a	one releasing copieces in in t	
Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.09	-0.0122	-0.2821
3	0.18	-0.0527	-0.6281
4	0.27	-0.1272	-1.0378
5	0.36	-0.2414	-1.5113
6	0.45	-0.4011	-2.0486
PV_{-}	D_SR_AP_M	U_3_C_014001_N_001_F	R_A_0

SIS Scpa 11 di 147

7	0.54	-0.6121	-2.6496
8	0.63	-0.8800	-3.3145
9	0.72	-1.2106	-4.0432
10	0.81	-1.6096	-4.8356
11	0.90	-2.0829	-5.6918

Armature e tensioni nei materiali della fondazione

Combinazione n° 1

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] area di armatura in corrispondenza del lembo superiore in [mq]

N_u sforzo normale ultimo espresso in [kN]
M_u momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

CS coefficiente sicurezza sezione
VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	$N_{\rm u}$	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	005650.00	0565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	005650.00	0565	0.00	98.57	4105.45	173.53		
3	0.10	1.00, 0.500.00	005650.00	0565	0.00	98.57	1019.40	173.53		
4	0.15	1.00, 0.500.00	005650.00	0565	0.00	98.57	450.01	173.53		
5	0.20	1.00, 0.500.00	005650.00	0565	0.00	98.57	251.44	173.53		
6	0.25	1.00, 0.500.00	005650.00	0565	0.00	98.57	159.85	173.53		
7	0.30	1.00, 0.500.00	005650.00	0565	0.00	98.57	110.27	173.53		
8	0.35	1.00, 0.500.00	005650.00	0565	0.00	98.57	80.48	173.53		
9	0.40	1.00, 0.500.00	005650.00	0565	0.00	98.57	61.22	173.53		
10	0.45	1.00, 0.500.00	005650.00	0565	0.00	98.57	48.06	173.53		
11	0.50	1.00, 0.500.00	005650.00	0565	0.00	98.57	38.68	173.53		
Fonds	zione di	monte								

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	B, H	\mathbf{A}_{fs}	A_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	CS	\mathbf{V}_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	005650.00	00565	0.00	0.00	1000.00	173.53		
2	0.09	1.00, 0.500.00	005650.00	00565	0.00	-98.57	8068.09	173.53		
3	0.18	1.00, 0.500.00	005650.00	00565	0.00	-98.57	1870.53	173.53		
4	0.27	1.00, 0.500.00	005650.00	00565	0.00	-98.57	775.05	173.53		
5	0.36	1.00, 0.500.00	005650.00	00565	0.00	-98.57	408.32	173.53		
6	0.45	1.00, 0.500.00	005650.00	00565	0.00	-98.57	245.74	173.53		
7	0.54	1.00, 0.500.00	005650.00	00565	0.00	-98.57	161.05	173.53		
8	0.63	1.00, 0.500.00	005650.00	00565	0.00	-98.57	112.02	173.53		
9	0.72	1.00, 0.500.00	005650.00	00565	0.00	-98.57	81.43	173.53		
10	0.81	1.00, 0.500.00	005650.00	00565	0.00	-98.57	61.24	173.53		
11	0.90	1.00, 0.500.00	005650.00	00565	0.00	-98.57	47.32	173.53		

COMBINAZIONE n° 2

29.5739	[kN]		
25.0836	[kN]		
15.6662	[kN]		
X = 0.90	[m]	Y = -1.74	[m]
31.99	[°]		
39.07	[°]		
31.4500	[kN]		
X = 0.45	[m]	Y = -1.00	[m]
8			
	25.0836 15.6662 X = 0.90 31.99 39.07 31.4500 X = 0.45	25.0836 [kN] 15.6662 [kN] X = 0.90 [m] 31.99 [°] 39.07 [°] 31.4500 [kN] X = 0.45 [m]	25.0836 [kN] 15.6662 [kN] X = 0.90 [m] Y = -1.74 31.99 [°] 39.07 [°] 31.4500 [kN] X = 0.45 [m] Y = -1.00

SIS Scpa 12 di 147

Peso del singolo contrafforte	3.0000	[kN]		
Peso del contrafforte riferito ad un metro di muro	2.5000	[kN]		
Baricentro contrafforte	X = 0.15	[m]	Y = -1.00	[m]

Risultanti

Risultante dei carichi applicati in dir. orizzontale	25.0836	[kN]
Risultante dei carichi applicati in dir. verticale	78.9162	[kN]
Resistenza passiva a valle del muro	-18.2184	[kN]
Sforzo normale sul piano di posa della fondazione	78.9162	[kN]
Sforzo tangenziale sul piano di posa della fondazione	25.0836	[kN]
Eccentricità rispetto al baricentro della fondazione	0.02	[m]
Lunghezza fondazione reagente	1.50	[m]
Risultante in fondazione	82.8067	[kN]
Inclinazione della risultante (rispetto alla normale)	17.63	[°]
Momento rispetto al baricentro della fondazione	1.6093	[kNm]
Carico ultimo della fondazione	610.5288	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	1.50	[m]
Tensione terreno allo spigolo di valle	0.05690	[MPa]
Tensione terreno allo spigolo di monte	0.04832	[MPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_{q} = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.47$	$i_{q} = 0.49$	$i_{\gamma} = 0.33$
Fattori profondità	$d_c = 1.29$	$d_{q} = 1.20$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 46.83$$
 $N'_{q} = 34.25$ $N'_{\gamma} = 35.47$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.69
Coefficiente di sicurezza a carico ultimo 7.74

Sollecitazioni fondazione di valle

Combinazione nº 2

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.0415	1.6580
3	0.10	0.1656	3.3016
4	0.15	0.3714	4.9310
5	0.20	0.6584	6.5460
6	0.25	1.0258	8.1467
7	0.30	1.4728	9.7332
8	0.35	1.9989	11.3053
9	0.40	2.6031	12.8631
10	0.45	3.2849	14.4066
11	0.50	4.0436	15.9359

Sollecitazioni fondazione di monte

Combinazione nº 2

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т			
1	0.00	0.0000	0.0000			
2	0.09	-0.0041	-0.0831			
3	0.18	-0.0136	-0.1198			
PV_D_SR_AP_MU_3_C_014001_N_001_R_A_0						

SIS Scpa 13 di 147

4	0.27	-0.0243	-0.1102
5	0.36	-0.0320	-0.0542
6	0.45	-0.0326	0.0481
7	0.54	-0.0220	0.1967
8	0.63	0.0042	0.3917
9	0.72	0.0499	0.6331
10	0.81	0.1195	0.9208
11	\cap \circ \cap	0 2171	1 25/18

Armature e tensioni nei materiali della fondazione

Combinazione nº 2

Simbologia adottata

base della sezione espressa in [m] В altezza della sezione espressa in [m] Н

 A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] area di armatura in corrispondenza del lembo superiore in [mq] sforzo normale ultimo espresso in [kN]

 $\begin{matrix} A_{fs} \\ N_u \end{matrix}$ M_{u} momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

Aliquota di taglio assorbito dal cls, espresso in [kN] VRcd Aliquota di taglio assorbito dall'armatura, espresso in [kN] VRsd

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	N_{u}	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	005650.00	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	005650.00	00565	0.00	98.57	2374.74	173.53		
3	0.10	1.00, 0.500.00	005650.00	00565	0.00	98.57	595.40	173.53		
4	0.15	1.00, 0.500.00	005650.00	00565	0.00	98.57	265.38	173.53		
5	0.20	1.00, 0.500.00	005650.00	00565	0.00	98.57	149.71	173.53		
6	0.25	1.00, 0.500.00	005650.00	00565	0.00	98.57	96.09	173.53		
7	0.30	1.00, 0.500.00	005650.00	00565	0.00	98.57	66.93	173.53		
8	0.35	1.00, 0.500.00	0.05650	00565	0.00	98.57	49.31	173.53		
9	0.40	1.00, 0.500.00	005650.00	00565	0.00	98.57	37.87	173.53		
10	0.45	1.00, 0.500.00	005650.00	00565	0.00	98.57	30.01	173.53		
11	0.50	1.00, 0.500.00	005650.00	00565	0.00	98.57	24.38	173.53		
<u>Fonda</u>	azione di	<u>monte</u>								

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A_{fs}}$	A_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	1.00, 0.500.00	05650.00	00565	0.00	0.00	1000.00	173.53		
2	0.09	1.00, 0.500.00	05650.00	00565	0.00	-98.572	24123.25	173.53		
3	0.18	1.00, 0.500.00	05650.00	00565	0.00	-98.57	7267.22	173.53		
4	0.27	1.00, 0.500.00	05650.00	00565	0.00	-98.57	4062.82	173.53		
5	0.36	1.00, 0.500.00	05650.00	00565	0.00	-98.57	3079.50	173.53		
6	0.45	1.00, 0.500.00	05650.00	00565	0.00	-98.57	3020.52	173.53		
7	0.54	1.00, 0.500.00	05650.00	00565	0.00	-98.57	4487.52	173.53		
8	0.63	1.00, 0.500.00	05650.00	00565	0.00	98.572	23654.71	173.53		
9	0.72	1.00, 0.500.00	05650.00	00565	0.00	98.57	1973.97	173.53		
10	0.81	1.00, 0.500.00	05650.00	00565	0.00	98.57	824.79	173.53		
11	0.90	1.00, 0.500.00	05650.00	00565	0.00	98.57	454.11	173.53		
<u>COMI</u>	<u> BINAZIO</u>	NE n° 3								
		ointa statica				3	32.5313	[kN]		
		orizzontale della	•				27.5920	[kN]		
		∕erticale della sp		ca			17.2328	[kN]		
Punto	d'applic	azione della spi	nta			>	X = 0.90	[m]	Y = -1.74	[m]
Inclinaz. della spinta rispetto alla normale alla superficie					3	31.99	[°]			
Inclina	azione lir	nea di rottura in	condizior	i static	he	3	39.07	[°]		
Peso terrapieno gravante sulla fondazione a monte					2	28.3050	[kN]			
Baricentro terrapieno gravante sulla fondazione a monte						X = 0.45	[m]	Y = -1.00	[m]	
		_MU_3_C_014(,	0. 10	[]	. – 1.00	[]

14 di 147 SIS Scpa

Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte	8 2.7000 2.2500 X = 0.15	[kN] [kN] [m]	Y = -1.00	[m]
<u>Risultanti</u>				

Risultante dei carichi applicati in dir. orizzontale	27.5920	[kN]
Risultante dei carichi applicati in dir. verticale	74.1578	[kN]
Resistenza passiva a valle del muro	-16.3966	[kN]
Momento ribaltante rispetto allo spigolo a valle	20.9208	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	73.6370	[kNm]
Sforzo normale sul piano di posa della fondazione	74.1578	[kN]
Sforzo tangenziale sul piano di posa della fondazione	27.5920	[kN]
Eccentricità rispetto al baricentro della fondazione	0.04	[m]
Lunghezza fondazione reagente	1.50	[m]
Risultante in fondazione	79.1246	[kN]
Inclinazione della risultante (rispetto alla normale)	20.41	[°]
Momento rispetto al baricentro della fondazione	2.9022	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 3.52

Stabilità globale muro + terreno

Combinazione nº 4

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 1.82

Raggio del cerchio R[m]= 4.41

Ascissa a valle del cerchio Xi[m]= -3.03 Ascissa a monte del cerchio Xs[m]= 4.41

Larghezza della striscia dx[m]= 0.30

Coefficiente di sicurezza C= 2.24

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	409.04	79.42	402.08	1.62	32.01	0.000	0.000
2	929.79	64.36	838.22	0.69	32.01	0.000	0.000
3	1129.14	56.39	940.39	0.54	32.01	0.000	0.000
4	1253.63	49.89	958.85	0.46	32.01	0.000	0.000
5	1333.64	44.19	929.67	0.42	32.01	0.000	0.000
6	1382.13	39.01	869.96	0.38	32.01	0.000	0.000
7	1406.13	34.18	790.00	0.36	32.01	0.000	0.000
8	1409.95	29.62	696.86	0.34	32.01	0.000	0.000
9	1396.45	25.26	595.84	0.33	32.01	0.000	0.000
10	1367.60	21.05	491.16	0.32	32.01	0.000	0.000
11	1350.65	16.95	393.85	0.31	32.01	0.000	0.000
12	1411.60	12.95	316.30	0.31	32.01	0.000	0.000
13	1522.41	9.01	238.32	0.30	32.01	0.000	0.000

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 15 di 147

Opere a Arte M	mon – Opere di	Sosiegno					SFV - Federiic	mana ven	C
Muro prefabbrio	cato – MU.3C.0	14.N – Rela	zione di Calco	lo					
14	1543.12	5.11	137.37	0.30	32.01	0.000	0.000		
15	1624.05	1.23	34.91	0.30	32.01	0.000	0.000		
16	946.53	-2.64	-43.56	0.30	32.01	0.000	0.000		
17	734.56	-6.52	-83.41	0.30	32.01	0.000	0.000		
18 19	627.34 590.51	-10.43 -14.39	-113.59 -146.80	0.30 0.31	32.01 32.01	0.000	0.000 0.000		
20	541.22	-14.39	-171.10	0.31	32.01	0.000	0.000		
21	478.67	-22.56	-183.65	0.32	32.01	0.000	0.000		
22	401.71	-26.82	-181.26	0.33	32.01	0.000	0.000		
23	308.76	-31.25	-160.18	0.35	32.01	0.000	0.000		
24	197.58	-35.90	-115.86	0.37	32.01	0.000	0.000		
25	64.87	-40.84	-42.42	0.39	32.01	0.000	0.000		
$\Sigma W_i = 238.904$									
$\Sigma W_i \sin \alpha_i = 72.4$ $\Sigma W_i \tan \phi_i = 149$									
$\Sigma \tan \alpha_i \tan \phi_i = 6$									
COMBINAZIO									
	avorevole e P	eso terrap	ieno favore	vole					
Valore della s	ninta etatica				23.7615	[kN]			
	orizzontale de	lla sninta s	tatica		18.7316	[kN]			
	verticale della				14.6198	[kN]			
•	cazione della s	•			X = 0.90	[m] ๋	Y = -1.73	[m]	
	spinta rispetto			rficie	37.97	[°]			
Inclinazione li	nea di rottura i	in condizio	ni statiche		50.47	[°]			
Peso terrapie	no gravante sı	ılla fondazi	ione a monte	1	31.4500	[kN]			
	rapieno gravai				X = 0.45	[m]	Y = -1.00	[m]	
Numero contr					8				
	olo contraffort				3.0000	[kN]			
	rafforte riferito	ad un met	tro di muro		2.5000	[kN]			
Baricentro cor	ntrafforte				X = 0.15	[m]	Y = -1.00	[m]	
Risultanti cari									
Componente	dir. X				4.50	[kN]			
<u>Risultanti</u>									
Risultante dei	carichi applica	ati in dir. or	rizzontale		23.2316	[kN]			
	carichi applica		erticale		77.8698	[kN]			
	assiva a valle d		6		-23.5252	[kN]			
	le sul piano di	•		no	77.8698 23.2316	[kN]			
	iziale sul piano spetto al baric			i ie	0.23	[kN] [m]			
	ndazione reag		TOTIGAZIOTIC		1.50	[m]			
Risultante in f		, -			81.2613	[kN]			
	ella risultante				16.61	[°]			
	etto al baricen		ndazione		18.0351	[kNm]			
Carico ultimo	della fondazio	ne			1030.2283	[kN]			
Tensioni sul te	<u>erreno</u>								
Lunghezza fo	ndazione reag				1.50	[m]			
	eno allo spigol				0.10001	[MPa]			
	eno allo spigol				0.00382	[MPa]			
Coeff. capaci	<u>alcolo della ca</u> ità portante	расна рог	tante N _c = 61.35	5	$N_{q} = 48.9$)3	$N_{\gamma} = 7$	78 02	
Fattori forma	•		$s_c = 01.33$		$s_q = 40.8$		•	: 1.00	
Fattori inclina			$i_c = 0.51$		$i_q = 0.5$		•	0.36	
Fattori profo			$d_c = 1.29$		$d_{q} = 1.1$			1.00	
	Fattori inclinazione piano posa $b_c = 1.00$ $b_q = 1.00$ $b_{\gamma} = 1.00$								
	Fattori inclinazione piano posa $b_c = 1.00$ $b_q = 1.00$ $b_{\gamma} = 1.00$ Fattori inclinazione pendio $g_c = 1.00$ $g_q = 1.00$ $g_{\gamma} = 1.00$								
PV_D_SR_AP	_MU_3_C_014-	001_N_00)1_R_A_0						
									_

S/S Scpa 16 di 147

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 46.83$

 $N'_{\alpha} = 34.25$

 $N'_{\gamma} = 35.47$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo 3.63 13.23

Sollecitazioni fondazione di valle

Combinazione nº 5

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.0900	3.5737
3	0.10	0.3547	6.9871
4	0.15	0.7860	10.2401
5	0.20	1.3760	13.3329
6	0.25	2.1167	16.2653
7	0.30	2.9999	19.0374
8	0.35	4.0177	21.6492
9	0.40	5.1621	24.1007
10	0.45	6.4251	26.3919
11	0.50	7.7987	28.5228

Sollecitazioni fondazione di monte

Combinazione nº 5

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.09	-0.2222	-4.8505
3	0.18	-0.8575	-9.1817
4	0.27	-1.8593	-12.9934
5	0.36	-3.1807	-16.2857
6	0.45	-4.7751	-19.0586
7	0.54	-6.5957	-21.3120
8	0.63	-8.5957	-23.0461
9	0.72	-10.7284	-24.2608
10	0.81	-12.9471	-24.9560
11	0.90	-15.2049	-25.1318

Armature e tensioni nei materiali della fondazione

Combinazione nº 5

Simbologia adottata

B base della sezione espressa in [m] H altezza della sezione espressa in [m]

 $\begin{array}{ll} A_{\rm fi} & \text{area di armatura in corrispondenza del lembo inferiore in [mq]} \\ A_{\rm fs} & \text{area di armatura in corrispondenza del lembo superiore in [mq]} \end{array}$

N_u sforzo normale ultimo espresso in [kN]
M_u momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	N_u	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	\mathbf{V}_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	005650.0	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	005650.0	00565	0.00	98.57	1095.12	173.53		
3	0.10	1.00, 0.500.00	005650.0	00565	0.00	98.57	277.91	173.53		
4	0.15	1.00, 0.500.00	005650.0	00565	0.00	98.57	125.40	173.53		
PV_D	SR AP	MU 3 C 014-	001_N_00	1_R_A_0)					

SIS Scpa 17 di 147

Muro p	orefabbrio	ato – MU.3C.014.N – Relazione di C	Calcolo					
5	0.20	1.00, 0.500.0005650.000565	0.00	98.57	71.63	173.53		
6	0.25	1.00, 0.500.0005650.000565	0.00	98.57		173.53		
7	0.30	1.00, 0.500.0005650.000565	0.00	98.57	32.86	173.53		
8	0.35	1.00, 0.500.0005650.000565	0.00	98.57		173.53		
9	0.40	1.00, 0.500.0005650.000565	0.00	98.57		173.53		
10	0.45	1.00, 0.500.0005650.000565	0.00	98.57		173.53		
11 Fonda	0.50 azione di	1.00, 0.500.0005650.000565	0.00	98.57	12.64	173.53		
		essa in [m], è positiva verso valle con ori	aine in corris	spondenz	a dell'estremo	libero della	fondazione di m	nonte)
Nr.	Υ	$\mathbf{B}, \mathbf{H} \qquad \mathbf{A}_{fs} \qquad \mathbf{A}_{fi}$	N_u	M _t		V _{Rd}	V_{Rcd}	V_{Rsd}
1 2	0.00 0.09	1.00, 0.500.0005650.000565 1.00, 0.500.0005650.000565	0.00 0.00	0.00 -98.57		173.53 173.53		
3	0.09	1.00, 0.500.0005650.000565	0.00	-98.57		173.53		
4	0.10	1.00, 0.500.0005650.000565	0.00	-98.57		173.53		
5	0.36	1.00, 0.500.0005650.000565	0.00	-98.57		173.53		
6	0.45	1.00, 0.500.0005650.000565	0.00	-98.57		173.53		
7	0.54	1.00, 0.500.0005650.000565	0.00	-98.57		173.53		
8	0.63	1.00, 0.500.0005650.000565	0.00	-98.57	11.47	173.53		
9	0.72	1.00, 0.500.0005650.000565	0.00	-98.57	9.19	173.53		
10	0.81	1.00, 0.500.0005650.000565	0.00	-98.57		173.53		
11	0.90	1.00, 0.500.0005650.000565	0.00	-98.57	6.48	173.53		
COME	BINAZIO	NE n° 6						
\/alore	a dolla er	pinta statica			29.5739	[kN]		
		orizzontale della spinta statica			25.0836	[kN]		
		verticale della spinta statica			15.6662	[kN]		
Punto d'applicazione della spinta					X = 0.90	[m]	Y = -1.74	[m]
Inclinaz. della spinta rispetto alla normale alla superficie					31.99	[°]		
Inclinazione linea di rottura in condizioni statiche					39.07	[°]		
Peso	terrapier	no gravante sulla fondazione a m	onte		31.4500	[kN]		
Barice	entro terr	apieno gravante sulla fondazion	e a monte	X = 0.45		[m]	Y = -1.00	[m]
	ro contra				8			
Peso	del singo	olo contrafforte			3.0000	[kN]		
		afforte riferito ad un metro di mu	ro		2.5000	[kN]		
Barice	entro con	ıtrafforte			X = 0.15	[m]	Y = -1.00	[m]
		chi esterni			2.00	[LAI]		
·	onente d	JII. X			3.90	[kN]		
Risult		carichi applicati in dir. orizzontale	2		28.9836	[kN]		
		carichi applicati in dir. verticale	5		78.9162	[kN]		
		ssiva a valle del muro			-18.2184	[kN]		
		e sul piano di posa della fondazi	one		78.9162	[kN]		
		ziale sul piano di posa della fond			28.9836	[kN]		
	_	spetto al baricentro della fondazione			0.24	[m]		
		ndazione reagente			1.50	[m]		
		ondazione			84.0703	[kN]		
Inclina	azione de	ella risultante (rispetto alla norma	ale)		20.17	[°]		
		etto al baricentro della fondazion			19.1593	[kNm]		
Carico	ultimo	della fondazione			359.9364	[kN]		
Tensi	oni sul te	erreno						
<u>Tensioni sul terreno</u> Lunghezza fondazione reagente					1.50	[m]		
		eno allo spigolo di valle			0.10370	[MPa]		
		eno allo spigolo di monte			0.00152	[MPa]		
		alcolo della capacità portante				- -		
D\/ D	CD 45	MIL 2 C 044 004 N 004 D A	`					

S/S Scpa 18 di 147

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

19 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Coeff. capacità portante	$N_c = 61.35$	$N_q = 48.93$	$N_{y} = 78.02$
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.40$	$i_q = 0.43$	$i_{\gamma} = 0.27$
Fattori profondità	$d_c = 1.29$	$d_{q} = 1.20$	$d_{y} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{y} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{a} = 1.00$	$g_{v} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

> $N'_{c} = 46.83$ $N'_{a} = 34.25$ $N'_{\nu} = 35.47$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.33 Coefficiente di sicurezza a carico ultimo 4.56

Sollecitazioni fondazione di valle

Combinazione nº 6

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Taglio positivo se diretto verso l'alto, espresso in kN Nr. Momento positivo se tende le fibre inferiori, espresso in kNm

Х	M	T
0.00	0.0000	0.0000
0.05	0.0987	3.9200
0.10	0.3892	7.6696
0.15	0.8628	11.2490
0.20	1.5112	14.6580
0.25	2.3258	17.8967
0.30	3.2980	20.9652
0.35	4.4195	23.8633
0.40	5.6815	26.5911
0.45	7.0757	29.1486
0.50	8.5936	31.5359
	0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45	0.00 0.0000 0.05 0.0987 0.10 0.3892 0.15 0.8628 0.20 1.5112 0.25 2.3258 0.30 3.2980 0.35 4.4195 0.40 5.6815 0.45 7.0757

Sollecitazioni fondazione di monte

Combinazione nº 6

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	×	M	Т
1	0.00	0.0000	0.0000
2	0.09	-0.1860	-4.0424
3	0.18	-0.7111	-7.5329
4	0.27	-1.5254	-10.4717
5	0.36	-2.5794	-12.8587
6	0.45	-3.8234	-14.6939
7	0.54	-5.2078	-15.9774
8	0.63	-6.6828	-16.7090
9	0.72	-8.1988	-16.8888
10	0.81	-9.7062	-16.5169
11	0.90	-11.1553	-15.5932

Armature e tensioni nei materiali della fondazione

Combinazione nº 6

Simbologia adottata

base della sezione espressa in [m] R Н altezza della sezione espressa in [m]

area di armatura in corrispondenza del lembo inferiore in [mq] A_{fi} area di armatura in corrispondenza del lembo superiore in [mq]

 $\begin{matrix} A_{fs} \\ N_u \end{matrix}$ sforzo normale ultimo espresso in [kN] M_u momento ultimo espresso in [kNm] CŠ coefficiente sicurezza sezione

Aliquota di taglio assorbito dal cls, espresso in [kN] **VRcd** VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

Nr.	Υ	B, H	A_{fs}	A_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	005650.0	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	005650.0	00565	0.00	98.57	998.62	173.53		
3	0.10	1.00, 0.500.00	005650.0	00565	0.00	98.57	253.30	173.53		
4	0.15	1.00, 0.500.00	005650.0	00565	0.00	98.57	114.24	173.53		
5	0.20	1.00, 0.500.00	005650.0	00565	0.00	98.57	65.23	173.53		
6	0.25	1.00, 0.500.00	005650.0	00565	0.00	98.57	42.38	173.53		
7	0.30	1.00, 0.500.00	005650.0	00565	0.00	98.57	29.89	173.53		
8	0.35	1.00, 0.500.00	005650.0	00565	0.00	98.57	22.30	173.53		
9	0.40	1.00, 0.500.00	005650.0	00565	0.00	98.57	17.35	173.53		
10	0.45	1.00, 0.500.00	005650.0	00565	0.00	98.57	13.93	173.53		
11	0.50	1.00, 0.500.00	005650.0	00565	0.00	98.57	11.47	173.53		
Fonda	zione di	<i>monte</i>								

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

,					_						
2 3 4 5 6 7 8 9	Y 0.00 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.81 0.90 IAZIOI	1.00, 0 1.00, 0 1.00, 0 1.00, 0 1.00, 0 1.00, 0 1.00, 0 1.00, 0 1.00, 0	0.500.00 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00 0.500.00	A _{fs} 0565 0.00 0565 0.00 0565 0.00 0565 0.00 0565 0.00 0565 0.00 0565 0.00 0565 0.00	00565 00565 00565 00565 00565 00565 00565 00565	N _u 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 -98.57 -98.57 -98.57 -98.57 -98.57 -98.57 -98.57 -98.57	1000.00 529.83 138.62 64.62 38.21 25.78 18.93 14.75 12.02 10.16	V _{Rd} 173.53 173.53 173.53 173.53 173.53 173.53 173.53 173.53 173.53 173.53	V _{Rcd}	V _{Rsd}
	ente o ente v applica della s	rizzonta erticale azione d spinta ri	ale della della sp della spir ispetto a	inta stati nta Ila norma		•		32.5313 27.5920 17.2328 X = 0.90 31.99 39.07	[kN] [kN] [kN] [m] [°] [°]	Y = -1.74	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte					a monte	28.3050 [kN] X = 0.45 [m] 8 2.7000 [kN] 2.2500 [kN] X = 0.15 [m]		Y = -1.00 Y = -1.00	[m]		
Risultant Compon			<u>rni</u>					4.50	[kN]		
Risultant Resisten Momento Sforzo no Sforzo ta Eccentrio Lunghez Risultant Inclinazio Momento	te dei de dei dei	carichi a ssiva a cante ris lizzante sul piaziale sul petto al dazione indazione etto al batto al batt	applicati valle del spetto all e rispetto ano di po I piano d I baricen e reagen ne Itante (ris aricentro	o spigolo o allo spigosa della i posa de tro della te	rticale a valle jolo a vall fondazion ella fondaz fondazion a normale ndazione	ne zione ne		32.0920 74.1578 -16.3966 41.1708 73.6370 74.1578 32.0920 0.31 1.31 80.8039 23.40 23.1522	[kN] [kN] [kNm] [kNm] [kN] [kN] [kN] [m] [m] [kN]		

S/S Scpa 20 di 147

1.79

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento

hilità alabala mura i tarrana

Stabilità globale muro + terreno

Combinazione nº 8

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 1.82

Raggio del cerchio R[m]= 4.41

Ascissa a valle del cerchio Xi[m]= -3.03 Ascissa a monte del cerchio Xs[m]= 4.41

Larghezza della striscia dx[m]= 0.30 Coefficiente di sicurezza C= 2.24

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	Wsinα	b/cosα	ф	С	u
1	409.04	79.42	402.08	1.62	32.01	0.000	0.000
2	929.79	64.36	838.22	0.69	32.01	0.000	0.000
3	1129.14	56.39	940.39	0.54	32.01	0.000	0.000
4	1253.63	49.89	958.85	0.46	32.01	0.000	0.000
5	1333.64	44.19	929.67	0.42	32.01	0.000	0.000
6	1382.13	39.01	869.96	0.38	32.01	0.000	0.000
7	1406.13	34.18	790.00	0.36	32.01	0.000	0.000
8	1409.95	29.62	696.86	0.34	32.01	0.000	0.000
9	1396.45	25.26	595.84	0.33	32.01	0.000	0.000
10	1367.60	21.05	491.16	0.32	32.01	0.000	0.000
11	1350.65	16.95	393.85	0.31	32.01	0.000	0.000
12	1411.60	12.95	316.30	0.31	32.01	0.000	0.000
13	1522.41	9.01	238.32	0.30	32.01	0.000	0.000
14	1543.12	5.11	137.37	0.30	32.01	0.000	0.000
15	1624.05	1.23	34.91	0.30	32.01	0.000	0.000
16	946.53	-2.64	-43.56	0.30	32.01	0.000	0.000
17	734.56	-6.52	-83.41	0.30	32.01	0.000	0.000
18	627.34	-10.43	-113.59	0.30	32.01	0.000	0.000
19	590.51	-14.39	-146.80	0.31	32.01	0.000	0.000
20	541.22	-18.43	-171.10	0.31	32.01	0.000	0.000
21	478.67	-22.56	-183.65	0.32	32.01	0.000	0.000
22	401.71	-26.82	-181.26	0.33	32.01	0.000	0.000
23	308.76	-31.25	-160.18	0.35	32.01	0.000	0.000
24	197.58	-35.90	-115.86	0.37	32.01	0.000	0.000
25	64.87	-40.84	-42.42	0.39	32.01	0.000	0.000

 $\Sigma W_i = 238.9045 [kN]$

 $\Sigma W_i sin \alpha_i = 72.4912 [kN]$

 $\Sigma W_i tan \phi_i = 149.3221 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 6.73$

COMBINAZIONE nº 9

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

S/S Scpa 21 di 147

Muro prefabbricato – MU.3C.014.N – Relazione di Calcolo

Muro prefabbricato – MU.3C.014.N – Re	elazione di Calcolo				
Valore della spinta statica Componente orizzontale della spinta Componente verticale della spinta s Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla no Inclinazione linea di rottura in condiz	tatica rmale alla superficie	18.2781 14.4089 11.2460 X = 0.90 37.97 50.47	[kN] [kN] [kN] [m] [°] [°]	Y = -1.73	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento Inclinazione linea di rottura in condiz		17.3272 X = 0.90 38.97	[kN] [m] [°]	Y = -1.73	[m]
Peso terrapieno gravante sulla fonda Baricentro terrapieno gravante sulla Numero contrafforti Peso del singolo contrafforte		31.4500 X = 0.45 8 3.0000	[kN] [m] [kN]	Y = -1.00	[m]
Peso del contrafforte riferito ad un m Baricentro contrafforte Inerzia del muro Inerzia verticale del muro	netro di muro	2.5000 X = 0.15 2.6423 1.3212	[KN] [m] [kN] [kN]	Y = -1.00	[m]
Inerzia del terrapieno fondazione di Inerzia verticale del terrapieno fonda Inerzia del singolo contrafforte Inerzia del contrafforte riferita ad un	azione di monte metro di muro	3.4990 1.7495 0.3338 0.2781	[kN] [kN] [kN]		
Inerzia verticale del singolo contraffo Inerzia verticale del contrafforte rifer Risultanti		0.1669 0.1391	[kN] [kN]		
Risultante dei carichi applicati in dir. Risultante dei carichi applicati in dir. Resistenza passiva a valle del muro Sforzo normale sul piano di posa de	verticale Ila fondazione	35.1052 88.3667 -23.5252 88.3667	[kN] [kN] [kN] [kN]		
Sforzo tangenziale sul piano di posa Eccentricità rispetto al baricentro de Lunghezza fondazione reagente Risultante in fondazione	lla fondazione	35.1052 0.07 1.50 95.0844	[kN] [m] [m] [kN]		
Inclinazione della risultante (rispetto Momento rispetto al baricentro della Carico ultimo della fondazione		21.67 6.5487 955.4115	[°] [kNm] [kN]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di mor	nte	1.50 0.07637 0.04145	[m] [MPa] [MPa]		
Fattori per il calcolo della capacità p Coeff. capacità portante	$N_c = 61.35$	$N_{q} = 48.9$		$N_{\gamma} = 7$	
Fattori forma Fattori inclinazione	$s_c = 1.00$ $i_c = 0.38$	$s_q = 1.0$ $i_a = 0.3$			1.00 0.23
Fattori profondità	$d_c = 1.29$	$d_q = 1.1$		'	1.00
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.0$	00	$b_{\gamma}^{'} =$	1.00
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.0$			1.00
I coefficienti N' tengono conto dei fa	attori di forma, profondità,	inclinazione d	carico, inc	linazione pia	no di posa

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 46.83$$
 $N'_{q} = 34.25$ $N'_{\gamma} = 35.47$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.64 Coefficiente di sicurezza a carico ultimo 10.81

Sollecitazioni fondazione di valle

Combinazione nº 9

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.0655	2.6096
3	0.10	0.2600	5.1610
4	0.15	0.5806	7.6542
5	0.20	1.0244	10.0892
6	0.25	1.5886	12.4659
7	0.30	2.2701	14.7845
8	0.35	3.0660	17.0448
9	0.40	3.9736	19.2470
10	0.45	4.9898	21.3909
11	0.50	6.1117	23,4766

Sollecitazioni fondazione di monte

Combinazione nº 9

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M	Т
1	0.00	0.0000	0.0000
2	0.09	-0.0298	-0.6304
3	0.18	-0.1078	-1.0722
4	0.27	-0.2171	-1.3253
5	0.36	-0.3407	-1.3899
6	0.45	-0.4616	-1.2659
7	0.54	-0.5629	-0.9533
8	0.63	-0.6276	-0.4520
9	0.72	-0.6386	0.2378
10	0.81	-0.5791	1.1162
11	0.90	-0.4321	2.1833

Armature e tensioni nei materiali della fondazione

Combinazione nº 9

Simbologia adottata

base della sezione espressa in [m] Н altezza della sezione espressa in [m]

area di armatura in corrispondenza del lembo inferiore in [mq] A_{fi} $A_{\text{fs}} \\$ area di armatura in corrispondenza del lembo superiore in [mq]

 N_u sforzo normale ultimo espresso in [kN] Mu momento ultimo espresso in [kNm] CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] Aliquota di taglio assorbito dall'armatura, espresso in [kN] Resistenza al taglio, espresso in [kN] **VRsd**

VRd

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	cs	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	005650.0	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	005650.0	00565	0.00	98.57	1505.31	173.53		
3	0.10	1.00, 0.500.00	005650.0	00565	0.00	98.57	379.14	173.53		
4	0.15	1.00, 0.500.00	005650.0	00565	0.00	98.57	169.77	173.53		
5	0.20	1.00, 0.500.00	005650.0	00565	0.00	98.57	96.22	173.53		
6	0.25	1.00, 0.500.00	005650.0	00565	0.00	98.57	62.05	173.53		
7	0.30	1.00, 0.500.00	005650.0	00565	0.00	98.57	43.42	173.53		
8	0.35	1.00, 0.500.00	005650.0	00565	0.00	98.57	32.15	173.53		
9	0.40	1.00, 0.500.00	005650.0	00565	0.00	98.57	24.81	173.53		
10	0.45	1.00, 0.500.00	005650.0	00565	0.00	98.57	19.75	173.53		
11	0.50	1.00, 0.500.00	005650.0	00565	0.00	98.57	16.13	173.53		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	B, H	${\sf A_{fs}}$	A_fi	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
PV D SR	AP MII 3	C 014- 0	01 N 00	1 R A N						

SIS Scpa 23 di 147

opere di addicegno		•	or v i odomic	iliana voi
Muro prefabbricato – MU.3C.014.N – Relazione di Calcolo				
1 0.00 1.00, 0.500.0005650.000565 0.00 0.	00 1000.00	173.53		
	57 3309.80	173.53		
3 0.18 1.00, 0.500.000565 0.000565 0.00 -98.		173.53		
4 0.27 1.00, 0.500.0005650.000565 0.00 -98.		173.53		
5 0.36 1.00, 0.500.0005650.000565 0.00 -98.		173.53		
6 0.45 1.00, 0.500.0005650.000565 0.00 -98.		173.53		
7 0.54 1.00, 0.500.0005650.000565 0.00 -98.		173.53		
8 0.63 1.00, 0.500.0005650.000565 0.00 -98.		173.53		
9 0.72 1.00, 0.500.0005650.000565 0.00 -98.		173.53		
10 0.81 1.00, 0.500.0005650.000565 0.00 -98.4 11 0.90 1.00, 0.500.0005650.000565 0.00 -98.4		173.53 173.53		
COMBINAZIONE n° 10	37 220.13	173.33		
OOMBIT LIGHT II				
Valore della spinta statica	18.2781	[kN]		
Componente orizzontale della spinta statica	14.4089	[kN]		
Componente verticale della spinta statica	11.2460	[kN]		
Punto d'applicazione della spinta	X = 0.90	[m]	Y = -1.73	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	37.97	[°]		
Inclinazione linea di rottura in condizioni statiche	50.47	[°]		
Incremento sismico della spinta	16.6041	[kN]		
Punto d'applicazione dell'incremento sismico di spinta	X = 0.90	[m]	Y = -1.73	[m]
Inclinazione linea di rottura in condizioni sismiche	38.47	[°]		[]
Peso terrapieno gravante sulla fondazione a monte	31.4500	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.45	[m]	Y = -1.00	[m]
Numero contrafforti	8	FL-N IT		
Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro	3.0000 2.5000	[kN]		
Baricentro contrafforte	X = 0.15	[kN] [m]	Y = -1.00	[m]
Inerzia del muro	2.6423	[kN]	1 = 1.00	[]
Inerzia verticale del muro	-1.3212	[kN]		
Inerzia del terrapieno fondazione di monte	3.4990	[kN]		
Inerzia verticale del terrapieno fondazione di monte	-1.7495	[kN]		
Inerzia del singolo contrafforte	0.3338	[kN]		
Inerzia del contrafforte riferita ad un metro di muro	0.2781	[kN]		
Inerzia verticale del singolo contrafforte	-0.1669	[kN]		
Inerzia verticale del contrafforte riferita ad un metro di muro	-0.1391	[kN]		
Risultanti				
Risultante dei carichi applicati in dir. orizzontale	34.5351	[kN]		
Risultante dei carichi applicati in dir. verticale	81.5022	[kN]		
Resistenza passiva a valle del muro	-23.5252	[kN]		
Sforzo normale sul piano di posa della fondazione	81.5022	[kN]		
Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione	34.5351 0.09	[kN]		
Lunghezza fondazione reagente	1.50	[m] [m]		
Risultante in fondazione	88.5172	[kN]		
Inclinazione della risultante (rispetto alla normale)	22.96	[°]		
Momento rispetto al baricentro della fondazione	7.3823	[kNm]		
Carico ultimo della fondazione	843.7401	[kN]		
Tanaismi aud tamana				
Tensioni sul terreno	1.50	[m]		
Lunghezza fondazione reagente Tensione terreno allo spigolo di valle	0.07402	[m] [MPa]		
Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	0.07402	[MPa]		
Fattori per il calcolo della capacità portante	2130.00	[∞]		
Coeff. capacità portante $N_c = 61.35$	$N_{q} = 48.9$	93	$N_{\gamma} = 7$	78.02
Fattori forma $s_c = 1.00$	$s_q = 1.0$		•	1.00
Fattori inclinazione $i_c = 0.34$	$i_q = 0.3$	36	$i_{\gamma} =$	0.21
Fattori profondità $d_c = 1.29$	$d_{q} = 1.1$	17	$d_{\gamma} =$	1.00
PV_D_SR_AP_MU_3_C_014001_N_001_R_A_0				

S/S Scpa 24 di 147

Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{y} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$q_0 = 1.00$	$g_{y} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 46.83$$

$$N'_{q} = 34.25$$

$$N'_{\nu} = 35.47$$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.53 Coefficiente di sicurezza a carico ultimo 10.35

Sollecitazioni fondazione di valle

Combinazione nº 10

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.0625	2.4882
3	0.10	0.2477	4.9109
4	0.15	0.5525	7.2678
5	0.20	0.9734	9.5592
6	0.25	1.5073	11.7850
7	0.30	2.1508	13.9451
8	0.35	2.9007	16.0396
9	0.40	3.7537	18.0685
10	0.45	4.7065	20.0318
11	0.50	5.7558	21.9294

Sollecitazioni fondazione di monte

Combinazione nº 10

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.09	-0.0570	-1.2303
3	0.18	-0.2151	-2.2480
4	0.27	-0.4552	-3.0531
5	0.36	-0.7583	-3.6456
6	0.45	-1.1050	-4.0254
7	0.54	-1.4765	-4.1927
8	0.63	-1.8534	-4.1474
9	0.72	-2.2166	-3.8894
10	0.81	-2.5471	-3.4188
11	0.90	-2.8256	-2.7356

Armature e tensioni nei materiali della fondazione

Combinazione nº 10

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

Nu sforzo normale ultimo espresso in [kN]
Mu momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Muro p	orefabbrio	ato – MU.3C.014.N – Relazione di C	alcolo				
2	0.05	1.00, 0.500.0005650.000565	0.00	98.57	1577.67	173.53	
3	0.10	1.00, 0.500.0005650.000565	0.00	98.57	397.90	173.53	
4	0.15	1.00, 0.500.0005650.000565	0.00	98.57	178.42	173.53	
5	0.20	1.00, 0.500.0005650.000565	0.00	98.57	101.26	173.53	
6	0.25	1.00, 0.500.0005650.000565	0.00	98.57	65.40	173.53	
7	0.30	1.00, 0.500.0005650.000565	0.00	98.57	45.83	173.53	
8	0.35	1.00, 0.500.0005650.000565	0.00	98.57	33.98	173.53	
9	0.40	1.00, 0.500.0005650.000565	0.00	98.57	26.26	173.53	
10	0.45	1.00, 0.500.0005650.000565	0.00	98.57	20.94	173.53	
11	0.50	1.00, 0.500.0005650.000565	0.00	98.57	17.13	173.53	
<u>Fonda</u>	azione di	<u>monte</u>					

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	B , I		A _{fs}	A _{fi}	N_u	Μ ,		CS	V _{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1 2	0.00 0.09	1.00, 0.5 1.00, 0.5				0.00 0.00	0.00 -98.57		000.00 730.60	173.53 173.53		
3	0.18	1.00, 0.5				0.00	-98.57		458.31	173.53		
4	0.27	1.00, 0.5				0.00	-98.57		216.54	173.53		
5	0.36	1.00, 0.5				0.00	-98.57		130.00	173.53		
6 7	0.45 0.54	1.00, 0.5 1.00, 0.5				0.00 0.00	-98.57 -98.57		89.20 66.76	173.53 173.53		
8	0.63	1.00, 0.5				0.00	-98.57		53.19	173.53		
9	0.72	1.00, 0.5				0.00	-98.57	7	44.47	173.53		
10	0.81	1.00, 0.5				0.00	-98.57		38.70	173.53		
11 COME	0.90 RINAZIO	1.00, 0.5 <u>NE n° 11</u>	00.00	05650.0	00565	0.00	-98.57	7	34.89	173.53		
OOM	المرازين	INE II										
		ointa static						29	.5739	[kN]		
		rizzontale							.0836	[kN]		
		rerticale de azione del			ıca				.6662 = 0.90	[kN] [m]	Y = -1.74	[m]
		spinta risp			ale alla s	superficie			- 0.90 .99	[°]	11.74	[m]
		nea di rottu							.07	[°]		
Incren	nanto sis	mico della	e enint	a				32	.1370	[kN]		
		azione del			ismico di	spinta			= 0.90	[m]	Y = -1.74	[m]
		nea di rottu				•			.82	[°]		
Peso	terrapier	o gravant	e sulla	fondaz	one a m	onte		31	.4500	[kN]		
	entro terr ero contra	apieno gra afforti	avante	sulla fo	ndazione	e a monte		X = 8	= 0.45	[m]	Y = -1.00	[m]
		olo contraf	forte						0000	[kN]		
Peso	del contr	afforte rife		l un met	ro di mur	ro			5000	[kN]		
	entro con								= 0.15	[m]	Y = -1.00	[m]
	a del mu	ro le del mur	^						6423 3212	[kN] [kN]		
		apieno for		ne di mo	onte				1990	[kN]		
		e del terra				onte			7495	[kN]		
		golo contra							3338	[kN]		
		trafforte ri				uro			2781	[kN]		
		le del sing le del cont			_	etro di mi	ıro		1669 1391	[kN] [kN]		
1116121	a vertica	e dei com	ianort	e mema	au un m	ietio di ilic	110	0.	1001	[KIN]		
Risult												
		carichi app				9			.3781	[kN]		
		carichi ap _l ssiva a va			erticale				.1498 3.2184	[kN] [kN]		
		e sul piano			fondazio	one			.1498	[kN]		
Sforzo	tangen:	ziale sul pi	iano di	i posa d	ella fonda	azione		59	.3781	[kN]		
Eccer	tricità ris	spetto al ba	aricent	tro della	fondazio	ne		0.1	17	[m]		
PV_D	_SR_AP_	_MU_3_C_(0140	01_N_00	1_R_A_0	1						

S/S Scpa 26 di 147

27 di 147

Muro prefabbricato – MU.3C.014.N – Relazione di Calcolo

Lunghezza fondazione reagente	1.50	[m]
Risultante in fondazione	115.5701	[kN]
Inclinazione della risultante (rispetto alla normale)	30.92	[°]
Momento rispetto al baricentro della fondazione	16.5549	[kNm]
Carico ultimo della fondazione	156.2167	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	1.50	[m]
Tensione terreno allo spigolo di valle	0.11025	[MPa]
Tensione terreno allo spigolo di monte	0.02195	[MPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_q = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.15$	$i_q = 0.18$	$i_{\gamma} = 0.07$
Fattori profondità	$d_c = 1.29$	$d_{q} = 1.20$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$N'_{c} = 46.83$	$N'_{\alpha} = 34.25$	$N'_{\nu} = 35.47$
11 C - TO.00	1 1 a - 34.23	1 N y — 33.7

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.35 Coefficiente di sicurezza a carico ultimo 1.58

Sollecitazioni fondazione di valle

Combinazione nº 11

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	I
1	0.00	0.0000	0.0000
2	0.05	0.1071	4.2587
3	0.10	0.4234	8.3703
4	0.15	0.9417	12.3348
5	0.20	1.6544	16.1520
6	0.25	2.5544	19.8222
7	0.30	3.6342	23.3451
8	0.35	4.8865	26.7209
9	0.40	6.3038	29.9496
10	0.45	7.8790	33.0311
11	0.50	9.6045	35.9654

Sollecitazioni fondazione di monte

Combinazione nº 11

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.09	-0.1044	-2.2408
3	0.18	-0.3890	-4.0048
4	0.27	-0.8110	-5.2921
5	0.36	-1.3273	-6.1025
6	0.45	-1.8951	-6.4362
7	0.54	-2.4715	-6.2931
8	0.63	-3.0136	-5.6732
9	0.72	-3.4784	-4.5765
10	0.81	-3.8230	-3.0031
11	0.90	-4.0046	-0.9528

Armature e tensioni nei materiali della fondazione

Combinazione nº 11

Simbologia adottata

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

В base della sezione espressa in [m] Н altezza della sezione espressa in [m]

area di armatura in corrispondenza del lembo inferiore in [mq] $A_{\text{fi}} \\$ A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

 $N_{\text{u}} \\$ sforzo normale ultimo espresso in [kN] momento ultimo espresso in [kNm] coefficiente sicurezza sezione M_u

CS VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

 VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	${\sf A_{fs}}$	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	005650.00	0565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	005650.00	0565	0.00	98.57	920.53	173.53		
3	0.10	1.00, 0.500.00	005650.00	0565	0.00	98.57	232.80	173.53		
4	0.15	1.00, 0.500.00	005650.00	0565	0.00	98.57	104.68	173.53		
5	0.20	1.00, 0.500.00	005650.00	0565	0.00	98.57	59.58	173.53		
6	0.25	1.00, 0.500.00	005650.00	0565	0.00	98.57	38.59	173.53		
7	0.30	1.00, 0.500.00	005650.00	0565	0.00	98.57	27.12	173.53		
8	0.35	1.00, 0.500.00	005650.00	0565	0.00	98.57	20.17	173.53		
9	0.40	1.00, 0.500.00	005650.00	0565	0.00	98.57	15.64	173.53		
10	0.45	1.00, 0.500.00	005650.00	0565	0.00	98.57	12.51	173.53		
11	0.50	1.00, 0.500.00	005650.00	0565	0.00	98.57	10.26	173.53		
Fonda	zione di	monte								

Fondazione di monte

Υ

B, H

 A_{fs}

Nr.

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nu

 A_{fi}

CS

M_u

 V_{Rd}

 V_{Rcd}

 V_{Rsd}

INI.		١١, د	∽fs	∽ fi	ı v	IVIU	CS	¥Rd	V Rcd	¥ Rsd
1 0.0	0 1.00, 0	0.500.	0005650.	000565	0.00	0.00	1000.00	173.53		
2 0.0	9 1.00, 0	0.500.	0005650.	000565	0.00	-98.57	944.07	173.53		
3 0.1	8 1.00, 0	0.500.	0005650.	000565	0.00	-98.57	253.37	173.53		
4 0.2	7 1.00, 0	0.500.	0005650.	000565	0.00	-98.57	121.55	173.53		
5 0.3	6 1.00, 0	0.500.	0005650.	000565	0.00	-98.57	74.26	173.53		
6 0.4	5 1.00, 0	0.500.	0005650.	000565	0.00	-98.57	52.01	173.53		
7 0.5	4 1.00, 0	0.500.	0005650.	000565	0.00	-98.57	39.88	173.53		
8 0.6	3 1.00, 0	0.500.	0005650.	000565	0.00	-98.57	32.71	173.53		
9 0.7	2 1.00, 0	0.500.	0005650.	000565	0.00	-98.57	28.34	173.53		
10 0.8	1 1.00, 0	0.500.	0005650.	000565	0.00	-98.57	25.78	173.53		
11 0.9	0 1.00, 0	0.500.	0005650	000565	0.00	-98.57	24.61	173.53		
COMBINAZ	IONE n° 1	2								
Valore della Component Component Punto d'app	e orizzonta e verticale licazione d	ale del della della s	spinta sta pinta	atica		2 1)	29.5739 25.0836 15.6662 K = 0.90	[kN] [kN] [kN] [m]	Y = -1.74	[m]
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche						31.99 39.07	[°] [°]			
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche			•	>	29.7415 K = 0.90 34.32	[kN] [m] [°]	Y = -1.74	[m]		
Peso terrap Baricentro to Numero con Peso del sir Peso del co	errapieno (ntrafforti ngolo contr	gravar rafforte	nte sulla f e	ondazion	e a monte	3	31.4500 K = 0.45 8 3.0000 2.5000	[kN] [m] [kN] [kN]	Y = -1.00	[m]
Baricentro d Inerzia del r Inerzia verti Inerzia del t PV_D_SR_A	contrafforte nuro cale del m errapieno	e iuro fondaz	zione di n	nonte) 2 -	X = 0.15 2.6423 1.3212 3.4990	[KN] [m] [kN] [kN]	Y = -1.00	[m]

28 di 147 SIS Scpa

Inerzia verticale del terrapieno fondazione di monte	-1.7495	[kN]
Inerzia del singolo contrafforte	0.3338	[kN]
Inerzia del contrafforte riferita ad un metro di muro	0.2781	[kN]
Inerzia verticale del singolo contrafforte	-0.1669	[kN]
Inerzia verticale del contrafforte riferita ad un metro di muro	-0.1391	[kN]

Risultanti

Risultante dei carichi applicati in dir. orizzontale	57.3463	[kN]
Risultante dei carichi applicati in dir. verticale	91.4614	[kN]
Resistenza passiva a valle del muro	-18.2184	[kN]
Sforzo normale sul piano di posa della fondazione	91.4614	[kN]
Sforzo tangenziale sul piano di posa della fondazione	57.3463	[kN]
Eccentricità rispetto al baricentro della fondazione	0.18	[m]
Lunghezza fondazione reagente	1.50	[m]
Risultante in fondazione	107.9527	[kN]
Inclinazione della risultante (rispetto alla normale)	32.09	[°]
Momento rispetto al baricentro della fondazione	16.9046	[kNm]
Carico ultimo della fondazione	130.1106	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	1.50	[m]
Tensione terreno allo spigolo di valle	0.10605	[MPa]
Tensione terreno allo spigolo di monte	0.01590	[MPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_q = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.12$	$i_q = 0.16$	$i_{\gamma} = 0.06$
Fattori profondità	$d_c = 1.29$	$d_{q} = 1.20$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 46.83$ $N'_{q} = 34.25$ $N'_{\gamma} = 35.47$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.31 Coefficiente di sicurezza a carico ultimo 1.42

Sollecitazioni fondazione di valle

Combinazione nº 12

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

	p = 0	ito rereo raito, copreces iii	
Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1018	4.0475
3	0.10	0.4022	7.9448
4	0.15	0.8938	11.6918
5	0.20	1.5689	15.2885
6	0.25	2.4201	18.7350
7	0.30	3.4399	22.0312
8	0.35	4.6208	25.1772
9	0.40	5.9551	28.1728
10	0.45	7.4355	31.0183
11	0.50	9.0545	33.7134

Sollecitazioni fondazione di monte

Combinazione nº 12

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
$PV_{\underline{}}$	_D_SR_AP_MU	_3_C_014001_N_	001_R_A_0

SIS Scpa 29 di 147

2	0.09	-0.1288	-2.7810
3	0.18	-0.4860	-5.0751
4	0.27	-1.0277	-6.8824
5	0.36	-1.7102	-8.2028
6	0.45	-2.4896	-9.0364
7	0.54	-3.3221	-9.3831
8	0.63	-4.1640	-9.2430
9	0.72	-4.9713	-8.6160
10	0.81	-5.7003	-7.5022
11	0.90	-6.3071	-5.9015

Armature e tensioni nei materiali della fondazione

Combinazione nº 12

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

 $\begin{array}{lll} A_{ts} & \text{area di armatura in corrispondenza del} \\ N_u & \text{sforzo normale ultimo espresso in [kN]} \\ M_u & \text{momento ultimo espresso in [kNm]} \end{array}$

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.0	005650.0	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.0	005650.0	00565	0.00	98.57	968.16	173.53		
3	0.10	1.00, 0.500.0	005650.0	00565	0.00	98.57	245.05	173.53		
4	0.15	1.00, 0.500.0	005650.0	00565	0.00	98.57	110.29	173.53		
5	0.20	1.00, 0.500.0	005650.0	00565	0.00	98.57	62.83	173.53		
6	0.25	1.00, 0.500.0	005650.0	00565	0.00	98.57	40.73	173.53		
7	0.30	1.00, 0.500.0	005650.0	00565	0.00	98.57	28.66	173.53		
8	0.35	1.00, 0.500.0	005650.0	00565	0.00	98.57	21.33	173.53		
9	0.40	1.00, 0.500.0	005650.0	00565	0.00	98.57	16.55	173.53		
10	0.45	1.00, 0.500.0	005650.0	00565	0.00	98.57	13.26	173.53		
11	0.50	1.00, 0.500.0	005650.0	00565	0.00	98.57	10.89	173.53		
<u>Fonda</u>	azione di	<u>monte</u>								

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	$M_{\rm u}$	cs	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.0	005650.0	00565	0.00	0.00	1000.00	173.53		
2	0.09	1.00, 0.500.0	005650.0	00565	0.00	-98.57	765.34	173.53		
3	0.18	1.00, 0.500.0	005650.0	00565	0.00	-98.57	202.83	173.53		
4	0.27	1.00, 0.500.0	005650.0	00565	0.00	-98.57	95.91	173.53		
5	0.36	1.00, 0.500.0	005650.0	00565	0.00	-98.57	57.64	173.53		
6	0.45	1.00, 0.500.0	005650.0	00565	0.00	-98.57	39.59	173.53		
7	0.54	1.00, 0.500.0	005650.0	00565	0.00	-98.57	29.67	173.53		
8	0.63	1.00, 0.500.0	005650.0	00565	0.00	-98.57	23.67	173.53		
9	0.72	1.00, 0.500.0	005650.0	00565	0.00	-98.57	19.83	173.53		
10	0.81	1.00, 0.500.0	005650.0	00565	0.00	-98.57	17.29	173.53		
11	0.90	1.00, 0.500.0	005650.0	00565	0.00	-98.57	15.63	173.53		

COMBINAZIONE nº 13

Valore della spinta statica	29.5739	[kN]		
Componente orizzontale della spinta statica	25.0836	[kN]		
Componente verticale della spinta statica	15.6662	[kN]		
Punto d'applicazione della spinta	X = 0.90	[m]	Y = -1.74	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	31.99	[°]		
Inclinazione linea di rottura in condizioni statiche	39.07	[°]		
PV D SR AP MIL 3 C 01/L 001 N 001 R A 0				

SIS Scpa 30 di 147

Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	32.1370 X = 0.90 34.82	[kN] [m] [°]	Y = -1.74	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti	31.4500 X = 0.45 8	[kN] [m]	Y = -1.00	[m]
Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte Inerzia del singolo contrafforte Inerzia del contrafforte riferita ad un metro di muro Inerzia verticale del singolo contrafforte Inerzia verticale del contrafforte riferita ad un metro di muro	3.0000 2.5000 X = 0.15 2.6423 1.3212 3.4990 1.7495 0.3338 0.2781 0.1669 0.1391	[kN] [kN] [m] [kN] [kN] [kN] [kN] [kN] [kN] [kN]	Y = -1.00	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione	59.3781 99.1498 -18.2184 47.2017 105.0092 99.1498 59.3781 0.17 1.50 115.5701 30.92 16.5549	[kN] [kN] [kNm] [kNm] [kN] [kN] [kN] [m] [m] [m] [kN]		
COEFFICIENTI DI SICUREZZA Coefficiente di sicurezza a ribaltamento COMBINAZIONE n° 14	2.22			
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	29.5739 25.0836 15.6662 X = 0.90 31.99 39.07	[kN] [kN] [kN] [m] [°] [°]	Y = -1.74	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	29.7415 X = 0.90 34.32	[kN] [m] [°]	Y = -1.74	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte	31.4500 X = 0.45 8 3.0000	[kN] [m] [kN]	Y = -1.00	[m]
Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte Inerzia del singolo contrafforte Inerzia del contrafforte riferita ad un metro di muro PV_D_SR_AP_MU_3_C_014001_N_001_R_A_0	2.5000 X = 0.15 2.6423 -1.3212 3.4990 -1.7495 0.3338 0.2781	[kN] [m] [kN] [kN] [kN] [kN] [kN]	Y = -1.00	[m]

S/S Scpa 31 di 147

Inerzia verticale del singolo contrafforte	-0.1669	[kN]
Inerzia verticale del contrafforte riferita ad un metro di muro	-0.1391	[kN]
<u>Risultanti</u>		

Risultante dei carichi applicati in dir. orizzontale	57.3463	[kN]
Risultante dei carichi applicati in dir. verticale	91.4614	[kN]
Resistenza passiva a valle del muro	-18.2184	[kN]
Momento ribaltante rispetto allo spigolo a valle	48.5378	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	100.2292	[kNm]
Sforzo normale sul piano di posa della fondazione	91.4614	[kN]
Sforzo tangenziale sul piano di posa della fondazione	57.3463	[kN]
Eccentricità rispetto al baricentro della fondazione	0.18	[m]
Lunghezza fondazione reagente	1.50	[m]
Risultante in fondazione	107.9527	[kN]
Inclinazione della risultante (rispetto alla normale)	32.09	[°]
Momento rispetto al baricentro della fondazione	16.9046	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 2.06

Stabilità globale muro + terreno

Combinazione nº 15 Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

peso della striscia espresso in [kN]

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [MPa] C

larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce

Cerchio critico

X[m] = 0.00Coordinate del centro Y[m] = 1.82

Raggio del cerchio R[m] = 4.41

Ascissa a valle del cerchio Xi[m] = -3.03Ascissa a monte del cerchio Xs[m] = 4.41

Larghezza della striscia dx[m]= 0.30 Coefficiente di sicurezza C = 1.80

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	$Wsin\alpha$	b/cosα	ф	С	u
1	409.04	79.42	402.08	1.62	32.01	0.000	0.000
2	929.79	64.36	838.22	0.69	32.01	0.000	0.000
3	1129.14	56.39	940.39	0.54	32.01	0.000	0.000
4	1253.63	49.89	958.85	0.46	32.01	0.000	0.000
5	1333.64	44.19	929.67	0.42	32.01	0.000	0.000
6	1382.13	39.01	869.96	0.38	32.01	0.000	0.000
7	1406.13	34.18	790.00	0.36	32.01	0.000	0.000
8	1409.95	29.62	696.86	0.34	32.01	0.000	0.000
9	1396.45	25.26	595.84	0.33	32.01	0.000	0.000
10	1367.60	21.05	491.16	0.32	32.01	0.000	0.000
11	1350.65	16.95	393.85	0.31	32.01	0.000	0.000
12	1411.60	12.95	316.30	0.31	32.01	0.000	0.000
13	1522.41	9.01	238.32	0.30	32.01	0.000	0.000
14	1543.12	5.11	137.37	0.30	32.01	0.000	0.000
15	1624.05	1.23	34.91	0.30	32.01	0.000	0.000

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 32 di 147

16	946.53	-2.64	-43.56	0.30	32.01	0.000	0.000
17	734.56	-6.52	-83.41	0.30	32.01	0.000	0.000
18	627.34	-10.43	-113.59	0.30	32.01	0.000	0.000
19	590.51	-14.39	-146.80	0.31	32.01	0.000	0.000
20	541.22	-18.43	-171.10	0.31	32.01	0.000	0.000
21	478.67	-22.56	-183.65	0.32	32.01	0.000	0.000
22	401.71	-26.82	-181.26	0.33	32.01	0.000	0.000
23	308.76	-31.25	-160.18	0.35	32.01	0.000	0.000
24	197.58	-35.90	-115.86	0.37	32.01	0.000	0.000
25	64.87	-40.84	-42.42	0.39	32.01	0.000	0.000

 $\Sigma W_i = 238.9045 [kN]$

 $\Sigma W_i \sin \alpha_i = 72.4912 [kN]$

 $\Sigma W_i tan \phi_i = 149.3221 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 6.73$

Stabilità globale muro + terreno

Combinazione nº 16

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)
W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]=0.00 Y[m]=1.82

Raggio del cerchio R[m]= 4.41

Ascissa a valle del cerchio Xi[m]= -3.03 Ascissa a monte del cerchio Xs[m]= 4.41

Larghezza della striscia dx[m]= 0.30 Coefficiente di sicurezza C= 1.76 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	Wsin α	b/cosα	ф	С	u
1	409.04	79.42	402.08	1.62	32.01	0.000	0.000
2	929.79	64.36	838.22	0.69	32.01	0.000	0.000
3	1129.14	56.39	940.39	0.54	32.01	0.000	0.000
4	1253.63	49.89	958.85	0.46	32.01	0.000	0.000
5	1333.64	44.19	929.67	0.42	32.01	0.000	0.000
6	1382.13	39.01	869.96	0.38	32.01	0.000	0.000
7	1406.13	34.18	790.00	0.36	32.01	0.000	0.000
8	1409.95	29.62	696.86	0.34	32.01	0.000	0.000
9	1396.45	25.26	595.84	0.33	32.01	0.000	0.000
10	1367.60	21.05	491.16	0.32	32.01	0.000	0.000
11	1350.65	16.95	393.85	0.31	32.01	0.000	0.000
12	1411.60	12.95	316.30	0.31	32.01	0.000	0.000
13	1522.41	9.01	238.32	0.30	32.01	0.000	0.000
14	1543.12	5.11	137.37	0.30	32.01	0.000	0.000
15	1624.05	1.23	34.91	0.30	32.01	0.000	0.000
16	946.53	-2.64	-43.56	0.30	32.01	0.000	0.000
17	734.56	-6.52	-83.41	0.30	32.01	0.000	0.000
18	627.34	-10.43	-113.59	0.30	32.01	0.000	0.000
19	590.51	-14.39	-146.80	0.31	32.01	0.000	0.000
20	541.22	-18.43	-171.10	0.31	32.01	0.000	0.000

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 33 di 147

21	478.67	-22.56	-183.65	0.32	32.01	0.000	0.000
22	401.71	-26.82	-181.26	0.33	32.01	0.000	0.000
23	308.76	-31.25	-160.18	0.35	32.01	0.000	0.000
24	197.58	-35.90	-115.86	0.37	32.01	0.000	0.000
25	64.87	-40.84	-42.42	0.39	32.01	0.000	0.000

 $\Sigma W_i = 238.9045 [kN]$

 $\Sigma W_i \sin \alpha_i = 72.4912 [kN]$

 $\Sigma W_{i} \tan \phi_{i} = 149.3221 [kN]$

 $\Sigma \tan \alpha_i \tan \phi_i = 6.73$

Sollecitazioni fondazione di valle

Combinazione nº 17

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.0668	2.6553
3	0.10	0.2640	5.2173
4	0.15	0.5869	7.6860
5	0.20	1.0310	10.0615
6	0.25	1.5915	12.3438
7	0.30	2.2638	14.5328
8	0.35	3.0433	16.6286
9	0.40	3.9252	18.6312
10	0.45	4.9048	20.5405
11	0.50	5.9776	22.3565

Sollecitazioni fondazione di monte

Combinazione n° 17

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.09	-0.1081	-2.3518
3	0.18	-0.4143	-4.4015
4	0.27	-0.8913	-6.1491
5	0.36	-1.5120	-7.5945
6	0.45	-2.2493	-8.7379
7	0.54	-3.0758	-9.5791
8	0.63	-3.9644	-10.1182
9	0.72	-4.8880	-10.3552
10	0.81	-5.8193	-10.2901
11	0.90	-6.7312	-9.9229

Armature e tensioni nei materiali della fondazione

Combinazione nº 17

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

 $A_{\text{fi}} \hspace{1cm} \text{area di armatura in corrispondenza del lembo inferiore in [mq]} \\$

A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

 σ_c tensione nel calcestruzzo espressa in [MPa]

τ_c tensione tangenziale nel calcestruzzo espressa in [MPa]

 $\sigma_{\!\scriptscriptstyle fi}$ tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]

σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	A_fs	A_{fi}	σ_{c}	$ au_{ extsf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 0.500.	0005650.0	00565	0.000	0.000	0.000	0.000
2	0.05	1.00, 0.500.	0005650.0	00565	0.004	0.007	0.273	-0.026
3	0.10	1.00, 0.500.	0005650.0	00565	0.014	0.013	1.078	-0.103
PV_D_SR_AP_MU_3_C_014001_N_001_R_A_0								

SIS Scpa 34 di 147

4	0.15	1.00, 0.500.0005650.000565	0.032	0.020	2.397	-0.229
5	0.20	1.00, 0.500.0005650.000565	0.056	0.026	4.210	-0.403
6	0.25	1.00, 0.500.0005650.000565	0.087	0.032	6.499	-0.622
7	0.30	1.00, 0.500.0005650.000565	0.123	0.037	9.244	-0.885
8	0.35	1.00, 0.500.0005650.000565	0.166	0.043	12.427	-1.189
9	0.40	1.00, 0.500.0005650.000565	0.214	0.048	16.028	-1.534
10	0.45	1.00, 0.500.0005650.000565	0.267	0.053	20.029	-1.917
11	0.50	1.00, 0.500.0005650.000565	0.326	0.057	24.410	-2.336

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ m c}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 0.500.0	005650.0	00565	0.000	0.000	0.000	0.000
2	0.09	1.00, 0.500.0	005650.0	00565	0.006	-0.006	-0.042	0.441
3	0.18	1.00, 0.500.0	005650.0	00565	0.023	-0.011	-0.162	1.692
4	0.27	1.00, 0.500.0	005650.0	00565	0.049	-0.016	-0.348	3.640
5	0.36	1.00, 0.500.0	005650.0	00565	0.082	-0.019	-0.591	6.174
6	0.45	1.00, 0.500.0	005650.0	00565	0.122	-0.022	-0.879	9.185
7	0.54	1.00, 0.500.0	005650.0	00565	0.168	-0.024	-1.202	12.560
8	0.63	1.00, 0.500.0	005650.0	00565	0.216	-0.026	-1.549	16.189
9	0.72	1.00, 0.500.0	005650.0	00565	0.266	-0.026	-1.910	19.960
10	0.81	1.00, 0.500.0	005650.0	00565	0.317	-0.026	-2.274	23.763
11	0.90	1.00, 0.500.0	005650.0	00565	0.367	-0.025	-2.631	27.487

Verifiche a fessurazione

Combinazione nº 17

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro A_{fs} area di armatura in corrispondenza del lembo di monte in [mq]

 A_{fi} area di armatura in corrispondenza del lembo di valle in [mq]

Momento di prima fessurazione espressa in [kNm] Momento agente nella sezione espressa in [kNm] M_{pf}

M

deformazione media espressa in [%] ϵ_{m}

Distanza media tra le fessure espressa in [mm] Apertura media della fessura espressa in [mm]

Verifica fessurazione fondazione

N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	€ _m	S _m	w
1	-0.60	0.000565	0.000565	-57.95	0.00	0.0000	0.00	0.000
2	-0.55	0.000565	0.000565	57.95	0.07	0.0000	0.00	0.000
3	-0.50	0.000565	0.000565	57.95	0.26	0.0000	0.00	0.000
4	-0.45	0.000565	0.000565	57.95	0.59	0.0000	0.00	0.000
5	-0.40	0.000565	0.000565	57.95	1.03	0.0000	0.00	0.000
6	-0.35	0.000565	0.000565	57.95	1.59	0.0000	0.00	0.000
7	-0.30	0.000565	0.000565	57.95	2.26	0.0000	0.00	0.000
8	-0.25	0.000565	0.000565	57.95	3.04	0.0000	0.00	0.000
9	-0.20	0.000565	0.000565	57.95	3.93	0.0000	0.00	0.000
10	-0.15	0.000565	0.000565	57.95	4.90	0.0000	0.00	0.000
11	-0.10	0.000565	0.000565	57.95	5.98	0.0000	0.00	0.000
12	0.00	0.000565	0.000565	-57.95	-6.73	0.0000	0.00	0.000
13	0.09	0.000565	0.000565	-57.95	-5.82	0.0000	0.00	0.000
14	0.18	0.000565	0.000565	-57.95	-4.89	0.0000	0.00	0.000
15	0.27	0.000565	0.000565	-57.95	-3.96	0.0000	0.00	0.000
16	0.36	0.000565	0.000565	-57.95	-3.08	0.0000	0.00	0.000
17	0.45	0.000565	0.000565	-57.95	-2.25	0.0000	0.00	0.000
18	0.54	0.000565	0.000565	-57.95	-1.51	0.0000	0.00	0.000
19	0.63	0.000565	0.000565	-57.95	-0.89	0.0000	0.00	0.000
20	0.72	0.000565	0.000565	-57.95	-0.41	0.0000	0.00	0.000
21	0.81	0.000565	0.000565	-57.95	-0.11	0.0000	0.00	0.000
22	0.90	0.000565	0.000565	-57.95	0.00	0.0000	0.00	0.000

Sollecitazioni fondazione di valle

Combinazione nº 18

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 35 di 147

36 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.0668	2.6553
3	0.10	0.2640	5.2173
4	0.15	0.5869	7.6860
5	0.20	1.0310	10.0615
6	0.25	1.5915	12.3438
7	0.30	2.2638	14.5328
8	0.35	3.0433	16.6286
9	0.40	3.9252	18.6312
10	0.45	4.9048	20.5405
11	0.50	5.9776	22.3565

Sollecitazioni fondazione di monte

Combinazione nº 18

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.09	-0.1081	-2.3518
3	0.18	-0.4143	-4.4015
4	0.27	-0.8913	-6.1491
5	0.36	-1.5120	-7.5945
6	0.45	-2.2493	-8.7379
7	0.54	-3.0758	-9.5791
8	0.63	-3.9644	-10.1182
9	0.72	-4.8880	-10.3552
10	0.81	-5.8193	-10.2901
11	0.90	-6.7312	-9.9229

Armature e tensioni nei materiali della fondazione

Combinazione n° 18

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

 σ_c tensione nel calcestruzzo espressa in [MPa]

τ_c tensione tangenziale nel calcestruzzo espressa in [MPa]

σ_{fi} tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]

σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	B, H	A_{fs}	A_{fi}	σ_{c}	$ au_{c}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	1.00, 0.500.0	005650.0	00565	0.000	0.000	0.000	0.000
2	0.05	1.00, 0.500.0	005650.0	00565	0.004	0.007	0.273	-0.026
3	0.10	1.00, 0.500.0	005650.0	00565	0.014	0.013	1.078	-0.103
4	0.15	1.00, 0.500.0	005650.0	00565	0.032	0.020	2.397	-0.229
5	0.20	1.00, 0.500.0	005650.0	00565	0.056	0.026	4.210	-0.403
6	0.25	1.00, 0.500.0	005650.0	00565	0.087	0.032	6.499	-0.622
7	0.30	1.00, 0.500.0	005650.0	00565	0.123	0.037	9.244	-0.885
8	0.35	1.00, 0.500.0	005650.0	00565	0.166	0.043	12.427	-1.189
9	0.40	1.00, 0.500.0	005650.0	00565	0.214	0.048	16.028	-1.534
10	0.45	1.00, 0.500.0	005650.0	00565	0.267	0.053	20.029	-1.917
11	0.50	1.00, 0.500.0	005650.0	00565	0.326	0.057	24.410	-2.336

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

S/S Scpa

37 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Nr.	Х	B, H	${\sf A_{fs}}$	A_fi	σ_{c}	$ au_{c}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 0.500.0	005650.0	00565	0.000	0.000	0.000	0.000
2	0.09	1.00, 0.500.0	005650.0	00565	0.006	-0.006	-0.042	0.441
3	0.18	1.00, 0.500.0	005650.0	00565	0.023	-0.011	-0.162	1.692
4	0.27	1.00, 0.500.0	005650.0	00565	0.049	-0.016	-0.348	3.640
5	0.36	1.00, 0.500.0	005650.0	00565	0.082	-0.019	-0.591	6.174
6	0.45	1.00, 0.500.0	005650.0	00565	0.122	-0.022	-0.879	9.185
7	0.54	1.00, 0.500.0	005650.0	00565	0.168	-0.024	-1.202	12.560
8	0.63	1.00, 0.500.0	005650.0	00565	0.216	-0.026	-1.549	16.189
9	0.72	1.00, 0.500.0	005650.0	00565	0.266	-0.026	-1.910	19.960
10	0.81	1.00, 0.500.0	005650.0	00565	0.317	-0.026	-2.274	23.763
11	0.90	1.00. 0.500.0	005650.0	00565	0.367	-0.025	-2.631	27.487

Verifiche a fessurazione

Combinazione nº 18

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

area di armatura in corrispondenza del lembo di monte in [mq] area di armatura in corrispondenza del lembo di valle in [mq]

 $A_{\text{fi}} \\$ M_{pf} Momento di prima fessurazione espressa in [kNm]

M Momento agente nella sezione espressa in [kNm]

deformazione media espressa in [%] ϵ_{m}

Distanza media tra le fessure espressa in [mm] S_{m} Apertura media della fessura espressa in [mm]

Verifica fessurazione fondazione

N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	ε _m	Sm	w
1	-0.60	0.000565	0.000565	-57.95	0.00	0.0000	0.00	0.000
2	-0.55	0.000565	0.000565	57.95	0.07	0.0000	0.00	0.000
3	-0.50	0.000565	0.000565	57.95	0.26	0.0000	0.00	0.000
4	-0.45	0.000565	0.000565	57.95	0.59	0.0000	0.00	0.000
5	-0.40	0.000565	0.000565	57.95	1.03	0.0000	0.00	0.000
6	-0.35	0.000565	0.000565	57.95	1.59	0.0000	0.00	0.000
7	-0.30	0.000565	0.000565	57.95	2.26	0.0000	0.00	0.000
8	-0.25	0.000565	0.000565	57.95	3.04	0.0000	0.00	0.000
9	-0.20	0.000565	0.000565	57.95	3.93	0.0000	0.00	0.000
10	-0.15	0.000565	0.000565	57.95	4.90	0.0000	0.00	0.000
11	-0.10	0.000565	0.000565	57.95	5.98	0.0000	0.00	0.000
12	0.00	0.000565	0.000565	-57.95	-6.73	0.0000	0.00	0.000
13	0.09	0.000565	0.000565	-57.95	-5.82	0.0000	0.00	0.000
14	0.18	0.000565	0.000565	-57.95	-4.89	0.0000	0.00	0.000
15	0.27	0.000565	0.000565	-57.95	-3.96	0.0000	0.00	0.000
16	0.36	0.000565	0.000565	-57.95	-3.08	0.0000	0.00	0.000
17	0.45	0.000565	0.000565	-57.95	-2.25	0.0000	0.00	0.000
18	0.54	0.000565	0.000565	-57.95	-1.51	0.0000	0.00	0.000
19	0.63	0.000565	0.000565	-57.95	-0.89	0.0000	0.00	0.000
20	0.72	0.000565	0.000565	-57.95	-0.41	0.0000	0.00	0.000
21	0.81	0.000565	0.000565	-57.95	-0.11	0.0000	0.00	0.000
22	0.90	0.000565	0.000565	-57.95	0.00	0.0000	0.00	0.000

Sollecitazioni fondazione di valle

Combinazione nº 19

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.0668	2.6553
3	0.10	0.2640	5.2173
4	0.15	0.5869	7.6860
5	0.20	1.0310	10.0615
6	0.25	1.5915	12.3438
7	0.30	2.2638	14.5328

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

8	0.35	3.0433	16.6286
9	0.40	3.9252	18.6312
10	0.45	4.9048	20.5405
11	0.50	5.9776	22.3565

Sollecitazioni fondazione di monte

Combinazione nº 19

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.09	-0.1081	-2.3518
3	0.18	-0.4143	-4.4015
4	0.27	-0.8913	-6.1491
5	0.36	-1.5120	-7.5945
6	0.45	-2.2493	-8.7379
7	0.54	-3.0758	-9.5791
8	0.63	-3.9644	-10.1182
9	0.72	-4.8880	-10.3552
10	0.81	-5.8193	-10.2901
11	0.90	-6.7312	-9.9229

Armature e tensioni nei materiali della fondazione

Combinazione nº 19

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

σ_c tensione nel calcestruzzo espressa in [MPa]

 τ_c tensione tangenziale nel calcestruzzo espressa in [MPa]

σ_{fi} tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]

 σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	B, H	A_fs	A_{fi}	σ_{c}	$ au_{ extsf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 0.500.0	005650.0	00565	0.000	0.000	0.000	0.000
2	0.05	1.00, 0.500.0	005650.0	00565	0.004	0.007	0.273	-0.026
3	0.10	1.00, 0.500.0	005650.0	00565	0.014	0.013	1.078	-0.103
4	0.15	1.00, 0.500.0	005650.0	00565	0.032	0.020	2.397	-0.229
5	0.20	1.00, 0.500.0	005650.0	00565	0.056	0.026	4.210	-0.403
6	0.25	1.00, 0.500.0	005650.0	00565	0.087	0.032	6.499	-0.622
7	0.30	1.00, 0.500.0	005650.0	00565	0.123	0.037	9.244	-0.885
8	0.35	1.00, 0.500.0	005650.0	00565	0.166	0.043	12.427	-1.189
9	0.40	1.00, 0.500.0	005650.0	00565	0.214	0.048	16.028	-1.534
10	0.45	1.00, 0.500.0	005650.0	00565	0.267	0.053	20.029	-1.917
11	0.50	1.00, 0.500.0	005650.0	00565	0.326	0.057	24.410	-2.336
Fonda.	Fondazione di monte							

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	${\sf A}_{\sf fs}$	A_{fi}	σ_{c}	$ au_{ m c}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 0.500.0	005650.	000565	0.000	0.000	0.000	0.000
2	0.09	1.00, 0.500.0	005650.	000565	0.006	-0.006	-0.042	0.441
3	0.18	1.00, 0.500.0	005650.	000565	0.023	-0.011	-0.162	1.692
4	0.27	1.00, 0.500.0	005650.	000565	0.049	-0.016	-0.348	3.640
5	0.36	1.00, 0.500.0	005650.	000565	0.082	-0.019	-0.591	6.174
6	0.45	1.00, 0.500.0	005650.	000565	0.122	-0.022	-0.879	9.185
7	0.54	1.00, 0.500.0	005650.	000565	0.168	-0.024	-1.202	12.560
8	0.63	1.00, 0.500.0	005650.	000565	0.216	-0.026	-1.549	16.189
9	0.72	1.00, 0.500.0	005650.	000565	0.266	-0.026	-1.910	19.960
PV D	SR AP	MU 3 C 014-	001 N 0	01 R A 0				

SIS Scpa 38 di 147

1.00, 0.500.0005650.000565 -0.026 -2.274 10 0.317 23.763 0.90 1.00, 0.500.0005650.000565 11 0.367 -0.025 -2.631 27.487

Verifiche a fessurazione

Combinazione n° 19

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

 $A_{\text{fs}} \\$ area di armatura in corrispondenza del lembo di monte in [mq]

area di armatura in corrispondenza del lembo di valle in [mq]
Momento di prima fessurazione espressa in [kNm]
Momento agente nella sezione espressa in [kNm] A_{fi} M_{pf} M

deformazione media espressa in [%] ϵ_{m}

Distanza media tra le fessure espressa in [mm] \mathbf{S}_{m} Apertura media della fessura espressa in [mm]

Verifica fessurazione fondazione

N°	Υ	A_fs	${\sf A_{fi}}$	M_{pf}	M	ϵ_{m}	S _m	W
1	-0.60	0.000565	0.000565	-57.95	0.00	0.0000	0.00	0.000
2	-0.55	0.000565	0.000565	57.95	0.07	0.0000	0.00	0.000
3	-0.50	0.000565	0.000565	57.95	0.26	0.0000	0.00	0.000
4	-0.45	0.000565	0.000565	57.95	0.59	0.0000	0.00	0.000
5	-0.40	0.000565	0.000565	57.95	1.03	0.0000	0.00	0.000
6	-0.35	0.000565	0.000565	57.95	1.59	0.0000	0.00	0.000
7	-0.30	0.000565	0.000565	57.95	2.26	0.0000	0.00	0.000
8	-0.25	0.000565	0.000565	57.95	3.04	0.0000	0.00	0.000
9	-0.20	0.000565	0.000565	57.95	3.93	0.0000	0.00	0.000
10	-0.15	0.000565	0.000565	57.95	4.90	0.0000	0.00	0.000
11	-0.10	0.000565	0.000565	57.95	5.98	0.0000	0.00	0.000
12	0.00	0.000565	0.000565	-57.95	-6.73	0.0000	0.00	0.000
13	0.09	0.000565	0.000565	-57.95	-5.82	0.0000	0.00	0.000
14	0.18	0.000565	0.000565	-57.95	-4.89	0.0000	0.00	0.000
15	0.27	0.000565	0.000565	-57.95	-3.96	0.0000	0.00	0.000
16	0.36	0.000565	0.000565	-57.95	-3.08	0.0000	0.00	0.000
17	0.45	0.000565	0.000565	-57.95	-2.25	0.0000	0.00	0.000
18	0.54	0.000565	0.000565	-57.95	-1.51	0.0000	0.00	0.000
19	0.63	0.000565	0.000565	-57.95	-0.89	0.0000	0.00	0.000
20	0.72	0.000565	0.000565	-57.95	-0.41	0.0000	0.00	0.000
21	0.81	0.000565	0.000565	-57.95	-0.11	0.0000	0.00	0.000
22	0.90	0.000565	0.000565	-57.95	0.00	0.0000	0.00	0.000

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 39 di 147

2.1.2. Tipo F2 - Muro tratto F con altezza fuori terra di 3m

Normativa

N.T.C. 2008 - Approccio 1

O: 1		
Simpol	α	adottata
SILLIDO	ogia	auvilaia

Coefficiente parziale sfavorevole sulle azioni permanenti Coefficiente parziale favorevole sulle azioni permanenti γGfav Coefficiente parziale sfavorevole sulle azioni variabili γQsfav Coefficiente parziale favorevole sulle azioni variabili γ_{Qfav} Coefficiente parziale di riduzione dell'angolo di attrito drenato $\gamma_{tan\phi'}$ Coefficiente parziale di riduzione della coesione drenata $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione non drenata γ_{cu} Coefficiente parziale di riduzione del carico ultimo γ_{qu}

Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali	per le azioni o per l'effe	etto delle azioni:				
Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	γGfav	1.00	1.00	0.90	0.90
Permanenti	Sfavorevole	γGsfav	1.30	1.00	1.10	1.30
Variabili	Favorevole	γQfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	γ̈́Qsfav	1.50	1.30	1.50	1.50
Coefficienti parziali	per i parametri geotecn	ici del terreno:				
Parametri			M1	M2	M2	M1
Tangente dell'angol	lo di attrito	γ _{tanφ'}	1.00	1.25	1.25	1.00
Coesione efficace		$\gamma_{c'}$	1.00	1.25	1.25	1.00
Resistenza non dre	nata	$\gamma_{ m cu}$	1.00	1.40	1.40	1.00
Resistenza a comp	ressione uniassiale	$\gamma_{ m qu}$	1.00	1.60	1.60	1.00
Peso dell'unità di vo		γ_{γ}	1.00	1.00	1.00	1.00
Coefficienti di part	tecipazione combinaz	ioni sismiche				
Coefficienti nov-ieli		نمونده والمواد				
Coemcienti parziali Carichi	per le azioni o per l'effe Effetto	etto delle azioni:	A1	A2	EQU	HYD
Permanenti	Favorevole	٠,	1.00	1.00	1.00	0.90
Permanenti	Sfavorevole	γGfav	1.00	1.00	1.00	1.30
Variabili	Favorevole	γGsfav	0.00	0.00	0.00	0.00
Variabili Variabili	Sfavorevole	γQfav	1.00	1.00	1.00	1.50
	per i parametri geotecn	γQsfav	1.00	1.00	1.00	1.50
Parametri	per i parameth geotech	iici dei terrerio.	M1	M2	M2	M1
Tangente dell'angol	lo di attrito	2/	1.00	1.25	1.25	1.00
Coesione efficace	io di attitto	γ _{tanφ'}	1.00	1.25	1.25	1.00
Resistenza non dre	γ _{c'}	1.00	1.40	1.40	1.00	
Resistenza a comp	γcu	1.00	1.40	1.40	1.00	
•	$\gamma_{ m qu}$	1.00	1.00	1.00	1.00	
Peso dell'unità di volume γ_{γ} FONDAZIONE SUPERFICIALE			1.00	1.00	1.00	1.00
I CHUALIONE 301	LIXI ICIALL					

Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Coefficienti parziali			
	R1	R2	R3	
Capacità portante della fondazione	1.00	1.00	1.40	
Scorrimento	1.00	1.00	1.10	
Resistenza del terreno a valle	1.00	1.00	1.40	
Stabilità globale		1.10		

Geometria muro e fondazione

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 40 di 147

41 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Descrizione	Muro a mensola in c.a.
Altezza del paramento Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno Lunghezza del muro	3.00 [m] 0.10 [m] 0.10 [m] 0.00 [°] 0.00 [°] 9.60 [m]
<u>Fondazione</u>	
Lunghezza mensola fondazione di valle Lunghezza mensola fondazione di monte Lunghezza totale fondazione Inclinazione piano di posa della fondazione Spessore fondazione Spessore magrone Contrafforti prefabbricati	0.50 [m] 1.55 [m] 2.15 [m] 0.00 [°] 0.50 [m] 0.10 [m]
Altezza contrafforti Spessore contrafforti Larghezza in sommità Larghezza alla base Larghezza elemento Numero contrafforti Posizione:	3.00 [m] 0.20 [m] 0.30 [m] 0.30 [m] 1.20 [m] 8 Monte

Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 25.000 [kN/mc]
Classe di Resistenza C25/30
Resistenza caratteristica a compressione R_{ck} 30.00 [MPa]
Modulo elastico E 31447.048 [MPa]
Acciaio
Tipo B450C

Tensione di snervamento σ_{fa} 449.94 [MPa]

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	Υ	Α
1	1.35	0.00	0.00
2	9.67	5.00	31.00
3	30.00	5.00	0.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0.60 [m]

Descrizione terreni

Simbologia adottata

Nr. Indice del terreno
Descrizione Descrizione terreno

 γ Peso di volume del terreno espresso in [kN/mc] γ_s Peso di volume saturo del terreno espresso in [kN/mc]

φ Angolo d'attrito interno espresso in [°]

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

Angolo d'attrito terra-muro espresso in [°]

Coesione espressa in [MPa] С

Adesione terra-muro espressa in [MPa]

Descrizione	γ	γs	ф	δ	С	Ca
AL1	18.50	18.50	38.00	25.33	0.0000	0.0000
AL1 - Paramento	18.50	18.50	38.00	25.33	0.0000	0.0000
AL1 - Fondazione	18.50	18.50	38.00	38.00	0.0000	0.0000

Stratigrafia

Simbologia adottata

Ν Indice dello strato

Spessore dello strato espresso in [m] Н

Inclinazione espressa in [°] а

Costante di Winkler orizzontale espressa in Kg/cm²/cm Kw

Coefficiente di spinta Ks Terreno dello strato Terreno

Nr.	Н	а	Kw	Ks	Terreno
1	0.10	0.00	0.00	0.00	AL1
2	20.00	0.00	9.48	0.00	AL1 - Fondazione

Terreno di riempimento

AL1 - Paramento

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m]

Componente orizzontale del carico concentrato espressa in [kN]

Componente verticale del carico concentrato espressa in [kN]

X F_x F_y Momento espresso in [kNm]

X_i X_f Q_i Ascissa del punto iniziale del carico ripartito espressa in [m]

Ascissa del punto finale del carico ripartito espressa in [m]

Intensità del carico per x=X_i espressa in [kN/m]

Intensità del carico per x=X_f espressa in [kN/m]

Tipo carico: D=distribuito C=concentrato

Condizione n° 1 (Vento)

\sim	Paramento	X = 0.00	Y = 0.00	$F_{v}=3.0000$	$F_{\nu}=0.0000$	M=6.0000

Descrizione combinazioni di carico

Simbologia adottata

Spinta terreno

Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

Coefficiente di partecipazione della condizione

Ψ Coefficiente di combinazione della condizione

Combinazione nº 1 - Caso A1-M1 (STR)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.30	1.00	1.30
Combinazione nº 2 - Caso A2	2-M2 (GEO)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 3 - Caso EC	QU (SLU)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	0.90	1.00	0.90
Peso proprio terrapieno	FAV	0.90	1.00	0.90

Combinazione nº 4 - Caso A2-M2 (GEO-STAB)

γ*Ψ S/F Ψ γ

SFAV

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 42 di 147

1.00

1.10

1.10

opere a filte million opere ar si	Jacogno			
Muro prefabbricato – MU.3C.014	.N – Relazione d	i Calcolo		
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 5 - Caso A1				d. 3=6
Peso proprio muro	S/F FAV	γ 1.00	Ψ 1.00	γ * Ψ 1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.30	1.00	1.30
Vento	SFAV	1.50	1.00	1.50
Combinazione nº 6 - Caso A2	-M2 (GEO)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Vento	SFAV	1.30	1.00	1.30
Combinazione nº 7 - Caso EC				
_	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	0.90	1.00	0.90
Peso proprio terrapieno	FAV	0.90	1.00	0.90
Spinta terreno	SFAV	1.10	1.00	1.10
Vento	SFAV	1.50	1.00	1.50
Combinazione nº 8 - Caso A2)T/	* >=
Dana manais muse	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno Spinta terreno	SFAV SFAV	1.00 1.00	1.00 1.00	1.00 1.00
Vento	SFAV	1.30	1.00	1.30
Combinazione n° 9 - Caso A1	-M1 (STR) - Sis	sma Vert. po:	sitivo	
<u> </u>	S/F	γ	<u>συ</u> Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 10 - Caso A	1-M1 (STR) - S	sisma Vert. n	egativo	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 11 - Caso A		Sisma Vert. p	<u>ositivo</u>	
_	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione nº 12 - Caso A				
D	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 13 - Caso E		-		
D	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
PV_D_SR_AP_MU_3_C_0140	001_N_001_R_A	_0		

S/S Scpa 43 di 147

Opere d'Arte Minori – Opere di sost	tegno			
Muro prefabbricato – MU.3C.014.N	– Relazione d	i Calcolo		
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 14 - Caso EQI		_		4 374
Dana manada mana	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 15 - Caso A2-	•		•	
Dana manada mana	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 16 - Caso A2-			_	
D	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 17 - Quasi Pe		<u>-E)</u>		
_	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Vento	SFAV	1.00	1.00	1.00
Combinazione n° 18 - Frequente)T(4)T (
Dana manufa maruna	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Vento	SFAV	1.00	1.00	1.00
Combinazione nº 19 - Rara (SLI)T(+ >=(
D	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno	 CEA\/	1.00	1.00	1.00
Vento Impostazioni di analisi	SFAV	1.00	1.00	1.00
Metodo verifica sezioni			Stato	limite
Impostazioni verifiche SLU				
Coefficienti parziali per resistenz	ze di calcolo d	dei materiali		
Coefficiente di sicurezza calcest			1.60	
Coefficiente di sicurezza calcest			1.60	
Coefficiente di sicurezza acciaio		5110	1.15	
Fattore riduzione da resistenza		drica	0.83	
Fattore di riduzione per carichi d			0.85	
Coefficiente di sicurezza per la s		uo	1.00	
Impostazioni verifiche SLE				
Condizioni ambientali			Ordina	arie
Armatura ad aderenza migliorata	а		Ordina	4110
Verifica fessurazione	u			
Sensibilità delle armature			Sensik	ماند
Valori limite delle aperture delle	faccura		$W_1 = 0$	
•		•	$w_1 = 0$.20
PV_D_SR_AP_MU_3_C_01400	1_N_001_R_A	_0		

S/S Scpa 44 di 147

 $W_2 = 0.30$ $W_3 = 0.40$

Metodo di calcolo aperture delle fessure

Verifica delle tensioni

Combinazione di carico

Rara σ_c < 0.60 f_{ck} - σ_f < 0.80 f_{yk} Quasi permanente σ_c < 0.45 f_{ck}

Circ. Min. 252 (15/10/1996)

Calcolo della portanza metodo di Vesic

Coefficiente correttivo su N_γ per effetti cinematici (combinazioni sismiche SLU): 1.00 Coefficiente correttivo su N_γ per effetti cinematici (combinazioni sismiche SLE): 1.00

Impostazioni avanzate

Componente verticale della spinta nel calcolo delle sollecitazioni Influenza del terreno sulla fondazione di valle nelle verifiche e nel calcolo delle sollecitazioni Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione Sisma Combinazione sismica

CS_{SCO} Coeff. di sicurezza allo scorrimento
CS_{RIB} Coeff. di sicurezza al ribaltamento
CS_{GLIM} Coeff. di sicurezza a carico limite
CS_{STAB} Coeff. di sicurezza a stabilità globale

С	Tipo	Sisma	CS sco	CS rib	CS qlim	CS _{stab}
1	A1-M1 - [1]		3.13		15.00	
2	A2-M2 - [1]		1.98		4.53	
3	EQU - [1]			2.68		
4	STAB - [1]					1.78
5	A1-M1 - [2]		2.87		11.76	
6	A2-M2 - [2]		1.86		3.59	
7	EQU - [2]			2.07		
8	STAB - [2]					1.78
9	A1-M1 - [3]	Orizzontale + Verticale positivo	2.08		6.82	
10	A1-M1 - [3]	Orizzontale + Verticale negativo	2.00		6.66	
11	A2-M2 - [3]	Orizzontale + Verticale positivo	1.22		1.18	
12	A2-M2 - [3]	Orizzontale + Verticale negativo	1.19		1.12	
13	EQU - [3]	Orizzontale + Verticale positivo		1.98		
14	EQU - [3]	Orizzontale + Verticale negativo		1.86		
15	STAB - [3]	Orizzontale + Verticale positivo				1.48
16	STAB - [3]	Orizzontale + Verticale negativo				1.46
17	SLEQ - [1]		3.60		16.45	
18	SLEF - [1]		3.60		16.45	
19	SLER - [1]		3.60		16.45	

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta Calcolo del carico limite Calcolo della stabilità globale Calcolo della spinta in condizioni di metodo di Culmann metodo di Vesic metodo di Bishop Spinta attiva

45 di 147

Sisma

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

Combinazioni SLU Accelerazione al suolo a_g Coefficiente di amplificazione per tipo di sottosuolo (S) Coefficiente di amplificazione topografica (St) Coefficiente riduzione (β_m) Rapporto intensità sismica verticale/orizzontale Coefficiente di intensità sismica orizzontale (percento) Coefficiente di intensità sismica verticale (percento)	3.28 [m/s^2] 1.07 1.00 0.31 0.50 $k_h=(a_g/g^*\beta_m^*St^*S)=11.13$ $k_v=0.50 * k_h=5.56$
Combinazioni SLE Accelerazione al suolo a_g Coefficiente di amplificazione per tipo di sottosuolo (S) Coefficiente di amplificazione topografica (St) Coefficiente riduzione (β_m) Rapporto intensità sismica verticale/orizzontale Coefficiente di intensità sismica orizzontale (percento) Coefficiente di intensità sismica verticale (percento)	1.27 [m/s^2] 1.20 1.00 0.24 0.50 $k_h=(a_g/g^*\beta_m^*St^*S)=3.74$ $k_v=0.50 * k_h=1.87$
Forma diagramma incremento sismico Partecipazione spinta passiva (percento) Lunghezza del muro	Stessa forma diagramma statico 50.0 [m]
Peso muro Baricentro del muro	34.3750 [kN] X=0.36 Y=-2.87
Superficie di spinta Punto inferiore superficie di spinta Punto superiore superficie di spinta Altezza della superficie di spinta Inclinazione superficie di spinta(rispetto alla verticale) COMBINAZIONE n° 1 Peso muro favorevole e Peso terrapieno favorevole	X = 1.55 Y = -3.50 X = 1.55 Y = 0.12 3.62 [m] 0.00 [°]
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	61.7302 [kN] 48.6962 [kN] 37.9381 [kN] X = 1.55 [m] Y = -2.29 [m] 37.92 [°] 50.09 [°]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro	83.4724 [kN] X = 0.78 [m] Y = -1.50 [m] 8 4.5000 [kN] 3.7500 [kN]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	X = 0.15 [m] Y = -1.50 [m] 48.6962 [kN] 165.0855 [kN] -23.5252 [kN] 165.0855 [kN] 48.6962 [kN] 0.02 [m] 2.15 [m] 172.1178 [kN] 16.43 [°] 2.6649 [kNm] 2477.0134 [kN]

S/S Scpa 46 di 147

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

47 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Tensioni sul terreno

Lunghezza fondazione reagente	2.15	[m]
Tensione terreno allo spigolo di valle	0.08024	[MPa]
Tensione terreno allo spigolo di monte	0.07332	[MPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_{q} = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.52$	$i_q = 0.53$	$i_{\gamma} = 0.37$
Fattori profondità	$d_c = 1.20$	$d_{q} = 1.12$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_c = 38.44$ $N'_q = 28.99$ $N'_{\gamma} = 29.15$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.13
Coefficiente di sicurezza a carico ultimo 15.00

Sollecitazioni fondazione di valle

Combinazione nº 1

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.0666	2.6616
3	0.10	0.2660	5.3152
4	0.15	0.5980	7.9607
5	0.20	1.0620	10.5982
6	0.25	1.6577	13.2277
7	0.30	2.3846	15.8491
8	0.35	3.2424	18.4625
9	0.40	4.2307	21.0678
10	0.45	5.3491	23.6650
11	0.50	6.5971	26.2543

Sollecitazioni fondazione di monte

Combinazione nº 1

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.16	-0.1598	-1.9912
3	0.31	-0.5985	-3.6452
4	0.47	-1.2856	-5.2073
5	0.62	-2.2088	-6.6922
6	0.78	-3.3562	-8.0997
7	0.93	-4.7157	-9.4299
8	1.08	-6.2754	-10.6828
9	1.24	-8.0234	-11.8584
10	1.40	-9.9476	-12.9567
11	1.55	-12.0360	-13.9777

Armature e tensioni nei materiali della fondazione

Combinazione nº 1

Simbologia adottata

B base della sezione espressa in [m] H altezza della sezione espressa in [m]

 A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

N_u sforzo normale ultimo espresso in [kN] momento ultimo espresso in [kNm] CS coefficiente sicurezza sezione

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] Aliquota di taglio assorbito dall'armatura, espresso in [kN] Resistenza al taglio, espresso in [kN] VRsd

VRd

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	00.007700	0565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	00.007700	0565	0.00	98.56	1480.52	173.53		
3	0.10	1.00, 0.500.00	00.007700	0565	0.00	98.56	370.50	173.53		
4	0.15	1.00, 0.500.00	00.007700	0565	0.00	98.56	164.83	173.53		
5	0.20	1.00, 0.500.00	00.007700	0565	0.00	98.56	92.81	173.53		
6	0.25	1.00, 0.500.00	00.007700	0565	0.00	98.56	59.46	173.53		
7	0.30	1.00, 0.500.00	00.007700	0565	0.00	98.56	41.33	173.53		
8	0.35	1.00, 0.500.00	00.007700	0565	0.00	98.56	30.40	173.53		
9	0.40	1.00, 0.500.00	00.007700	0565	0.00	98.56	23.30	173.53		
10	0.45	1.00, 0.500.00	00.007700	0565	0.00	98.56	18.43	173.53		
11	0.50	1.00, 0.500.00	00.007700	0565	0.00	98.56	14.94	173.53		
Fonda	zione di	monte								

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	0.007700	00565	0.00	0.00	1000.00	173.53		
2	0.16	1.00, 0.500.00	0.007700	00565	0.00	-133.13	833.13	173.53		
3	0.31	1.00, 0.500.00	0.007700	00565	0.00	-133.13	222.43	173.53		
4	0.47	1.00, 0.500.00	0.007700	00565	0.00	-133.13	103.56	173.53		
5	0.62	1.00, 0.500.00	0.007700	00565	0.00	-133.13	60.27	173.53		
6	0.78	1.00, 0.500.0	0.007700	00565	0.00	-133.13	39.67	173.53		
7	0.93	1.00, 0.500.00	0.007700	00565	0.00	-133.13	28.23	173.53		
8	1.08	1.00, 0.500.00	0.007700	00565	0.00	-133.13	21.21	173.53		
9	1.24	1.00, 0.500.00	0.007700	00565	0.00	-133.13	16.59	173.53		
10	1.40	1.00, 0.500.00	0.007700	00565	0.00	-133.13	13.38	173.53		
11	1.55	1.00, 0.500.00	0.007700	00565	0.00	-133.13	11.06	173.53		

COMBINAZIONE n° 2

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	72.4037 61.4481 38.2940 X = 1.55 31.93 43.32	[kN] [kN] [kN] [m] [°] [°]	Y = -2.24	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti	83.4724 X = 0.78 8	[kN] [m]	Y = -1.50	[m]
Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte	4.5000 3.7500 X = 0.15	[kN] [kN] [m]	Y = -1.50	[m]

<u>Risultanti</u>

Risultante dei carichi applicati in dir. orizzontale	61.4481	[kN]
Risultante dei carichi applicati in dir. verticale	165.4414	[kN]
Resistenza passiva a valle del muro	-18.2184	[kN]
Sforzo normale sul piano di posa della fondazione	165.4414	[kN]
Sforzo tangenziale sul piano di posa della fondazione	61.4481	[kN]
Eccentricità rispetto al baricentro della fondazione	0.12	[m]
Lunghezza fondazione reagente	2.15	[m]
Risultante in fondazione	176.4843	[kN]
Inclinazione della risultante (rispetto alla normale)	20.38	[°]

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 48 di 147

49 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Momento rispetto al baricentro della fondazione	20.5860	[kNm]
Carico ultimo della fondazione	749.7141	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	2.15	[m]
Tensione terreno allo spigolo di valle	0.10367	[MPa]
Tensione terreno allo spigolo di monte	0.05023	[MPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_q = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.40$	$i_{q} = 0.43$	$i_{\gamma} = 0.27$
Fattori profondità	$d_c = 1.20$	$d_{q} = 1.14$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$N'_{c} = 38.44$ $N'_{g} = 28.99$ $N'_{y} = 38.44$	29	Э.	١.																				,	١,	١,	,	,	,	١.	١.	l,																,	١,	١,	١,	١,				١,	١,				١,	١,	١,		,	١.))	J)))))))))))	9))))))	2	2	2	٥	ί	((<u> </u>	2	2)	2	1		:	=	=	=		,	ν	,	ľ	Į	١	ľ																									9	9	9	. (8.	28	2	=	=	a
--	----	----	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----	----	---	---	---	----	----	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----	----	----	----	--	--	--	----	----	--	--	--	----	----	----	--	---	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----------	---	---	---	---	---	--	---	---	---	---	--	---	---	---	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	-----	----	----	---	---	---	---

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.98
Coefficiente di sicurezza a carico ultimo 4.53

Sollecitazioni fondazione di valle

Combinazione nº 2

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.0996	3.9724
3	0.10	0.3962	7.8827
4	0.15	0.8868	11.7309
5	0.20	1.5683	15.5169
6	0.25	2.4375	19.2408
7	0.30	3.4913	22.9025
8	0.35	4.7267	26.5021
9	0.40	6.1405	30.0395
10	0.45	7.7296	33.5148
11	0.50	9.4909	36.9280

Sollecitazioni fondazione di monte

Combinazione nº 2

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.16	-0.2179	-2.6670
3	0.31	-0.7846	-4.5371
4	0.47	-1.5933	-5.7987
5	0.62	-2.5513	-6.4631
6	0.78	-3.5660	-6.5303
7	0.93	-4.5449	-6.0004
8	1.08	-5.3953	-4.8733
9	1.24	-6.0247	-3.1490
10	1.40	-6.3406	-0.8275
11	1.55	-6.2504	2.0911

Armature e tensioni nei materiali della fondazione

Combinazione nº 2

Simbologia adottata

B base della sezione espressa in [m] H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq]

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

area di armatura in corrispondenza del lembo superiore in [mq]

N_u M_u CS sforzo normale ultimo espresso in [kN] momento ultimo espresso in [kNm] coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

Resistenza al taglio, espresso in [kN] VRd

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_fs	A_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	0.007700	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	0.007700	00565	0.00	98.56	989.90	173.53		
3	0.10	1.00, 0.500.00	0.007700	00565	0.00	98.56	248.77	173.53		
4	0.15	1.00, 0.500.00	0.007700	00565	0.00	98.56	111.14	173.53		
5	0.20	1.00, 0.500.00	0.007700	00565	0.00	98.56	62.85	173.53		
6	0.25	1.00, 0.500.00	0.007700	00565	0.00	98.56	40.44	173.53		
7	0.30	1.00, 0.500.00	0.007700	00565	0.00	98.56	28.23	173.53		
8	0.35	1.00, 0.500.00	0.007700	00565	0.00	98.56	20.85	173.53		
9	0.40	1.00, 0.500.00	0.007700	00565	0.00	98.56	16.05	173.53		
10	0.45	1.00, 0.500.00	0.007700	00565	0.00	98.56	12.75	173.53		
11	0.50	1.00, 0.500.00	0.007700	00565	0.00	98.56	10.39	173.53		
Fonda	azione di	monte								

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

(L ascis	sa A, espi	essa in [iii], e positiv	a veiso va	ane con ong	girie ili con	isportueriza	a dell'estremo	libero della	ionuazione ui n	ione)
Nr.	Υ	В, Н	\mathbf{A}_{fs}	${\sf A}_{\sf fi}$	N_{u}	$M_{\rm u}$		\mathbf{V}_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	1.00, 0.500.00			0.00	0.00		173.53		
2	0.16	1.00, 0.500.00			0.00	-133.13		173.53		
3	0.31	1.00, 0.500.00			0.00	-133.13		173.53		
4	0.47	1.00, 0.500.00			0.00	-133.13		173.53		
5	0.62	1.00, 0.500.00			0.00	-133.13		173.53		
6	0.78	1.00, 0.500.00			0.00	-133.13		173.53		
7	0.93	1.00, 0.500.00			0.00	-133.13		173.53		
8	1.08	1.00, 0.500.00			0.00	-133.13		173.53		
9	1.24	1.00, 0.500.00			0.00	-133.13		173.53		
10	1.40	1.00, 0.500.00			0.00	-133.13		173.53		
11	1.55	1.00, 0.500.00	07700.0	00565	0.00	-133.13	21.30	173.53		
COME	<u> BINAZIO</u>	NE n° 3								
Comp Comp Punto Inclina Inclina Peso d Barice Nume Peso d Peso d	onente on	pinta statica prizzontale della preticale della spi azione della spi spinta rispetto a nea di rottura in no gravante sulla rapieno gravante afforti plo contrafforte rafforte riferito ac ntrafforte	ninta stati nta Ila normi condizion a fondazi s sulla fo	ica ale alla s ni staticho one a mo ndazione	e onte a monte	e	79.6441 67.5929 42.1234 X = 1.55 31.93 43.32 75.1251 X = 0.78 8 4.0500 3.3750 X = 0.15	[kN] [kN] [kN] [m] [°] [kN] [m] [kN] [kN] [kN]	Y = -2.24 $Y = -1.50$ $Y = -1.50$	[m] [m]
Risulta Risulta Risulta Resist Mome Mome Sforzo	anti ante dei ante dei tenza pa ento ribal ento stab o normal	carichi applicati carichi applicati ssiva a valle del Itante rispetto all vilizzante rispetto e sul piano di po ziale sul piano d	in dir. ve muro o spigolo allo spi osa della	erticale o a valle golo a va fondazio	lle one		67.5929 156.5560 -16.3966 84.9323 227.4936 156.5560 67.5929	[kN] [kN] [kN] [kNm] [kNm] [kN] [kN]	1 = -1.50	[,,,]

SIS Scpa 50 di 147

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Eccentricità rispetto al baricentro della fondazione	0.16	[m]
Lunghezza fondazione reagente	2.15	[m]
Risultante in fondazione	170.5244	[kN]
Inclinazione della risultante (rispetto alla normale)	23.35	[°]
Momento rispetto al baricentro della fondazione	25.7365	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 2.68

Stabilità globale muro + terreno

Combinazione nº 4

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

 α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 2.61

Raggio del cerchio R[m]= 6.31

Ascissa a valle del cerchio Xi[m]= -3.84 Ascissa a monte del cerchio Xs[m]= 6.30

Larghezza della striscia dx[m]= 0.41 Coefficiente di sicurezza C= 1.78

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Strise	cia W	α(°)	Wsin α	b/cosα	ф	С	u
1	1178.72	77.93	1152.66	1.94	32.01	0.000	0.000
2	2046.27	64.76	1850.93	0.95	32.01	0.000	0.000
3	2428.01	57.05	2037.42	0.75	32.01	0.000	0.000
4	2670.59	50.75	2068.02	0.64	32.01	0.000	0.000
5	2830.22	45.22	2008.91	0.58	32.01	0.000	0.000
6	2931.08	40.19	1891.55	0.53	32.01	0.000	0.000
7	2986.37	35.52	1734.85	0.50	32.01	0.000	0.000
8	3004.20	31.10	1551.78	0.47	32.01	0.000	0.000
9	2989.98	26.88	1351.97	0.45	32.01	0.000	0.000
10	2947.46	22.82	1143.05	0.44	32.01	0.000	0.000
11	2879.34	18.87	931.35	0.43	32.01	0.000	0.000
12	2827.29	15.02	732.60	0.42	32.01	0.000	0.000
13	2867.94	11.23	558.62	0.41	32.01	0.000	0.000
14	2915.48	7.50	380.31	0.41	32.01	0.000	0.000
15	2946.15	3.79	194.78	0.41	32.01	0.000	0.000
16	2741.29	0.10	4.88	0.41	32.01	0.000	0.000
17	1111.70	-3.59	-69.54	0.41	32.01	0.000	0.000
18	948.80	-7.29	-120.39	0.41	32.01	0.000	0.000
19	897.75	-11.02	-171.67	0.41	32.01	0.000	0.000
20	826.56	-14.81	-211.24	0.42	32.01	0.000	0.000
21	733.23	-18.66	-234.56	0.43	32.01	0.000	0.000
22	616.36	-22.60	-236.83	0.44	32.01	0.000	0.000
23	474.01	-26.65	-212.64	0.45	32.01	0.000	0.000
24	303.54	-30.86	-155.71	0.47	32.01	0.000	0.000
25	101.26	-35.27	-58.46	0.50	32.01	0.000	0.000
2111	400 F000 [LAI]						

 $\Sigma W_i = 482.5299 [kN]$

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 51 di 147

 $N'_{\nu} = 29.15$

Muro prefabbricato – MU.3C.014.N – Relazione di Calcolo

 $\Sigma W_i \sin \alpha_i = 177.7252 \text{ [kN]}$ $\Sigma W_i \tan \phi_i = 301.5949 \text{ [kN]}$

 $\Sigma tan\alpha_i tan\phi_i \text{= } 7.16$

COMBINAZIONE n° 5

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	61.7302 48.6962 37.9381 X = 1.55 37.92 50.09	[kN] [kN] [kN] [m] [°] [°]	Y = -2.29	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti	83.4724 X = 0.78 8	[kN] [m]	Y = -1.50	[m]
Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte	4.5000 3.7500 X = 0.15	[kN] [kN] [m]	Y = -1.50	[m]

Risultanti carichi esterni

Componente dir. X 4.50 [kN]

Risultanti

rtioditariti		
Risultante dei carichi applicati in dir. orizzontale	53.1962	[kN]
Risultante dei carichi applicati in dir. verticale	165.0855	[kN]
Resistenza passiva a valle del muro	-23.5252	[kN]
Sforzo normale sul piano di posa della fondazione	165.0855	[kN]
Sforzo tangenziale sul piano di posa della fondazione	53.1962	[kN]
Eccentricità rispetto al baricentro della fondazione	0.17	[m]
Lunghezza fondazione reagente	2.15	[m]
Risultante in fondazione	173.4447	[kN]
Inclinazione della risultante (rispetto alla normale)	17.86	[°]
Momento rispetto al baricentro della fondazione	27.4149	[kNm]
Carico ultimo della fondazione	1941.3577	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	2.15	[m]
Tensione terreno allo spigolo di valle	0.11237	[MPa]
Tensione terreno allo spigolo di monte	0.04120	[MPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_q = 48.93$	$N_{y} = 78.02$
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.48$	$i_{q} = 0.49$	$i_{\gamma} = 0.33$
Fattori profondità	$d_c = 1.20$	$d_{q} = 1.12$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 38.44$ $N'_{q} = 28.99$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.87 Coefficiente di sicurezza a carico ultimo 11.76

Sollecitazioni fondazione di valle

Combinazione nº 5

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr. X M T 1 0.00 0.0000 0.0000 PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 52 di 147

2	0.05	0.1061	4.2305
3	0.10	0.4217	8.3783
4	0.15	0.9426	12.4434
5	0.20	1.6646	16.4257
6	0.25	2.5837	20.3252
7	0.30	3.6958	24.1419
8	0.35	4.9966	27.8760
9	0.40	6.4820	31.5272
10	0.45	8.1479	35.0957
11	0.50	9.9902	38.5815

Sollecitazioni fondazione di monte

Combinazione nº 5

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.16	-0.5272	-6.6116
3	0.31	-1.9938	-12.1682
4	0.47	-4.2580	-16.9148
5	0.62	-7.1963	-20.8662
6	0.78	-10.6854	-24.0223
7	0.93	-14.6021	-26.3832
8	1.08	-18.8231	-27.9487
9	1.24	-23.2251	-28.7190
10	1.40	-27.6849	-28.6940
11	1.55	-32.0792	-27.8738

Armature e tensioni nei materiali della fondazione

Combinazione nº 5

Simbologia adottata

base della sezione espressa in [m] В Н altezza della sezione espressa in [m]

 A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq]

 $\begin{matrix} A_{fs} \\ N_u \end{matrix}$ area di armatura in corrispondenza del lembo superiore in [mq]

sforzo normale ultimo espresso in [kN] M_{u} momento ultimo espresso in [kNm]

CŠ coefficiente sicurezza sezione

Aliquota di taglio assorbito dal cls, espresso in [kN] VRcd

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	007700.00	0565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	00.007700	0565	0.00	98.56	928.90	173.53		
3	0.10	1.00, 0.500.00	00.007700	0565	0.00	98.56	233.74	173.53		
4	0.15	1.00, 0.500.00	00.007700	0565	0.00	98.56	104.57	173.53		
5	0.20	1.00, 0.500.00	00.007700	0565	0.00	98.56	59.21	173.53		
6	0.25	1.00, 0.500.00	00.007700	0565	0.00	98.56	38.15	173.53		
7	0.30	1.00, 0.500.00	00.007700	0565	0.00	98.56	26.67	173.53		
8	0.35	1.00, 0.500.00	00.007700	0565	0.00	98.56	19.73	173.53		
9	0.40	1.00, 0.500.00	00.007700	0565	0.00	98.56	15.21	173.53		
10	0.45	1.00, 0.500.00	00.007700	0565	0.00	98.56	12.10	173.53		
11	0.50	1.00, 0.500.00	00.007700	0565	0.00	98.56	9.87	173.53		
	_:!:									

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	B, H	A_fs	A_fi	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	CS	V_Rd	V_Rcd	V_Rsd
1	0.00	1.00, 0.500.00	0.07700	00565	0.00	0.00	1000.00	173.53		

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 53 di 147

- p a a p a g	-					_			
Muro prefabbricato – MU.3C.014.N – R	elazione di Ca	lcolo							
2 0.16 1.00 0.500.000770	0.000565	0.00	-133.1	2	252.55	173.53			
2 0.16 1.00, 0.500.000770 3 0.31 1.00, 0.500.000770			-133.1		252.55 66.77	173.53			
4 0.47 1.00, 0.500.000770			-133.1		31.27	173.53			
5 0.62 1.00, 0.500.000770			-133.1		18.50	173.53			
6 0.78 1.00, 0.500.000770			-133.1		12.46	173.53			
7 0.93 1.00, 0.500.000770			-133.1		9.12	173.53			
8 1.08 1.00, 0.500.000770			-133.1		7.07	173.53			
9 1.24 1.00, 0.500.000770			-133.1		5.73	173.53			
10 1.40 1.00, 0.500.000770			-133.1		4.81	173.53			
11 1.55 1.00, 0.500.000770		0.00	-133.1	3	4.15	173.53			
•									
COMBINAZIONE n° 6									
Valore della spinta statica				72.	.4037	[kN]			
Componente orizzontale della spinta	a statica				.4481	[kN]			
Componente verticale della spinta s					.2940	[kN]			
Punto d'applicazione della spinta				X =	= 1.55	[m]	Y = -2.24	[m]	
Inclinaz. della spinta rispetto alla no	rmale alla su	perficie)	31.	.93	[°]			
Inclinazione linea di rottura in condi				43.	.32	[°]			
Peso terrapieno gravante sulla fond					.4724	[kN]			
Baricentro terrapieno gravante sulla	fondazione a	a monte	Э		= 0.78	[m]	Y = -1.50	[m]	
Numero contrafforti				8		F1 A 13			
Peso del singolo contrafforte					0000	[kN]			
Peso del contrafforte riferito ad un n	netro ai muro				7500	[kN]	V 4.50	[mail	
Baricentro contrafforte				λ =	= 0.15	[m]	Y = -1.50	[m]	
Risultanti carichi esterni									
Componente dir. X				3.9	00	[kN]			
·									
<u>Risultanti</u>									
Risultante dei carichi applicati in dir					.3481	[kN]			
Risultante dei carichi applicati in dir					5.4414	[kN]			
Resistenza passiva a valle del muro					3.2184	[kN]			
Sforzo normale sul piano di posa de					5.4414	[kN]			
Sforzo tangenziale sul piano di posa					.3481	[kN]			
Eccentricità rispetto al baricentro de	elia fondazion	е		0.2		[m]			
Lunghezza fondazione reagente Risultante in fondazione				2.1		[m]			
Inclinazione della risultante (rispetto	alla normale	.)		21.	7.8798 55	[kN] [°]			
Momento rispetto al baricentro della		7)			.0360	LJ [kNm]			
Carico ultimo della fondazione	i ioiidazione				4.6728	[kN]			
Carlos ditimo della foridazione				55.	4.0720	[KIN]			
Tensioni sul terreno									
Lunghezza fondazione reagente				2.1	5	[m]			
Tensione terreno allo spigolo di valle	e				3151	[MPa]			
Tensione terreno allo spigolo di moi					2239	[MPa]			
Fattori per il calcolo della capacità p									
Coeff. capacità portante	$N_c = 61.$	35		١	$N_{\rm q} = 48.9$	93	$N_{\gamma} = 7$	78.02	
Fattori forma	$s_c = 1$.				$s_{q} = 1.0$			1.00	
Fattori inclinazione	$i_c = 0$.				$i_{q} = 0.4$		•	0.24	
Fattori profondità	$d_{c} = 1$.				$d_{q}^{q} = 1.1$,	1.00	
Fattori inclinazione piano posa	$b_c = 1$.				$b_{q} = 1.0$			1.00	
Fattori inclinazione pendio	$g_c = 1$.				$g_{q} = 1.0$,	1.00	
I coefficienti N' tengono conto dei fa			ndità, ii	nclin					sa,
inclinazione pendio.			,			,	•		•
	$N'_{c} = 38.$	44		Ν	$J'_{q} = 28.9$	9	$N'_{\gamma} = 2$	29.15	
COEFFICIENTI DI SICUREZZA					_		•		
Coefficiente di sicurezza a scorrime				1.8					
Coefficiente di sicurezza a carico ul	timo			3.5	59				
PV_D_SR_AP_MU_3_C_014001_N	_001_R_A_0								

S/S Scpa 54 di 147

Sollecitazioni fondazione di valle

Combinazione n° 6

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1338	5.3322
3	0.10	0.5311	10.5374
4	0.15	1.1855	15.6158
5	0.20	2.0906	20.5673
6	0.25	3.2401	25.3919
7	0.30	4.6276	30.0896
8	0.35	6.2469	34.6605
9	0.40	8.0916	39.1044
10	0.45	10.1553	43.4214
11	0.50	12.4316	47.6116

Sollecitazioni fondazione di monte

Combinazione nº 6

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

X	M	Т
0.00	0.0000	0.0000
0.16	-0.5362	-6.6714
0.31	-1.9938	-11.9236
0.47	-4.1694	-15.9452
0.62	-6.8738	-18.7473
0.78	-9.9180	-20.3300
0.93	-13.1131	-20.6932
1.08	-16.2699	-19.8371
1.24	-19.1996	-17.7616
1.40	-21.7130	-14.4666
1.55	-23.6212	-9.9522
	0.00 0.16 0.31 0.47 0.62 0.78 0.93 1.08 1.24 1.40	0.00 0.0000 0.16 -0.5362 0.31 -1.9938 0.47 -4.1694 0.62 -6.8738 0.78 -9.9180 0.93 -13.1131 1.08 -16.2699 1.24 -19.1996 1.40 -21.7130

Armature e tensioni nei materiali della fondazione

Combinazione nº 6

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq]
A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

Nu sforzo normale ultimo espresso in [kN]
Nu momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	0.007700	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	0.007700	00565	0.00	98.56	736.47	173.53		
3	0.10	1.00, 0.500.00	0.007700	00565	0.00	98.56	185.58	173.53		
4	0.15	1.00, 0.500.00	0.007700	00565	0.00	98.56	83.14	173.53		
5	0.20	1.00, 0.500.00	0.007700	00565	0.00	98.56	47.15	173.53		
6	0.25	1.00, 0.500.00	0.007700	00565	0.00	98.56	30.42	173.53		
7	0.30	1.00, 0.500.00	0.007700	00565	0.00	98.56	21.30	173.53		
8	0.35	1.00, 0.500.00	0.007700	00565	0.00	98.56	15.78	173.53		
9	0.40	1.00, 0.500.00	0.007700	00565	0.00	98.56	12.18	173.53		
10	0.45	1.00, 0.500.00	0.007700	00565	0.00	98.56	9.71	173.53		

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 55 di 147

11	0.50	1.00, 0.500.0007700.000565	0.00	98.56	7.93	173.53	
Fond	lazione d	li monte					

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr. 1 2 3 4 5 6 7 8 9 10 11 COMB	Y 0.00 0.16 0.31 0.47 0.62 0.78 0.93 1.08 1.24 1.40 1.55 INAZIO	1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00,	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	.0007 .0007 .0007 .0007 .0007 .0007 .0007 .0007	700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0	A _{fi} 100565 100565 100565 100565 100565 100565 100565 100565	N _u 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	M ₁ 0.00 -133.13 -133.13 -133.13 -133.13 -133.13 -133.13 -133.13	1000.00 248.27 66.77 31.93 19.37 13.42 10.15 8.18 6.93 6.13	V _{Rd} 173.53 173.53 173.53 173.53 173.53 173.53 173.53 173.53 173.53 173.53	V _{Rcd}	V _{Rsd}
Componente verticale della spinta statica 42.1234 Punto d'applicazione della spinta $X = 1.55$ Inclinaz. della spinta rispetto alla normale alla superficie 31.93									67.5929 42.1234 X = 1.55	[kN] [kN] [kN] [m] [°]	Y = -2.24	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte							9	75.1251 [kN] X = 0.78 [m] 8 4.0500 [kN] 3.3750 [kN] X = 0.15 [m]		Y = -1.50 Y = -1.50	[m]	
	<i>nti caric</i> onente d		<u>erni</u>						4.50	[kN]		
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione							72.0929 156.5560 -16.3966 109.6823 227.4936 156.5560 72.0929 0.32 2.15 172.3577 24.73 50.4865	[kN] [kN] [kNm] [kNm] [kN] [kN] [kN] [m] [m] [kN]				

2.07

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento

Stabilità globale muro + terreno

Combinazione nº 8

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

peso della striscia espresso in [kN]

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

angolo d'attrito del terreno lungo la base della striscia φ

coesione del terreno lungo la base della striscia espressa in [MPa]

larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [MPa]

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 2.61

Raggio del cerchio R[m]= 6.31

Ascissa a valle del cerchio Xi[m]= -3.84 Ascissa a monte del cerchio Xs[m]= 6.30

Larghezza della striscia dx[m]= 0.41 Coefficiente di sicurezza C= 1.78

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Stris	cia W	α(°)	Wsinα	b/cosα	ф	С	u
1	1178.72	77.93	1152.66	1.94	32.01	0.000	0.000
2	2046.27	64.76	1850.93	0.95	32.01	0.000	0.000
3	2428.01	57.05	2037.42	0.75	32.01	0.000	0.000
4	2670.59	50.75	2068.02	0.64	32.01	0.000	0.000
5	2830.22	45.22	2008.91	0.58	32.01	0.000	0.000
6	2931.08	40.19	1891.55	0.53	32.01	0.000	0.000
7	2986.37	35.52	1734.85	0.50	32.01	0.000	0.000
8	3004.20	31.10	1551.78	0.47	32.01	0.000	0.000
9	2989.98	26.88	1351.97	0.45	32.01	0.000	0.000
10	2947.46	22.82	1143.05	0.44	32.01	0.000	0.000
11	2879.34	18.87	931.35	0.43	32.01	0.000	0.000
12	2827.29	15.02	732.60	0.42	32.01	0.000	0.000
13	2867.94	11.23	558.62	0.41	32.01	0.000	0.000
14	2915.48	7.50	380.31	0.41	32.01	0.000	0.000
15	2946.15	3.79	194.78	0.41	32.01	0.000	0.000
16	2741.29	0.10	4.88	0.41	32.01	0.000	0.000
17	1111.70	-3.59	-69.54	0.41	32.01	0.000	0.000
18	948.80	-7.29	-120.39	0.41	32.01	0.000	0.000
19	897.75	-11.02	-171.67	0.41	32.01	0.000	0.000
20	826.56	-14.81	-211.24	0.42	32.01	0.000	0.000
21	733.23	-18.66	-234.56	0.43	32.01	0.000	0.000
22	616.36	-22.60	-236.83	0.44	32.01	0.000	0.000
23	474.01	-26.65	-212.64	0.45	32.01	0.000	0.000
24	303.54	-30.86	-155.71	0.47	32.01	0.000	0.000
25	101.26	-35.27	-58.46	0.50	32.01	0.000	0.000
2141	400 E000 [LN]						

 $\Sigma W_i = 482.5299 [kN]$

 $\Sigma W_i sin\alpha_i = 177.7252 \; [kN]$

 $\Sigma W_i tan \phi_i = 301.5949 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 7.16$

COMBINAZIONE nº 9

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	47.4848 37.4586 29.1832 X = 1.55 37.92 50.09	[kN] [kN] [kN] [m] [°] [°]	Y = -2.29	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	37.9017 X = 1.55 42.90	[kN] [m] [°]	Y = -2.29	[m]
Peso terrapieno gravante sulla fondazione a monte	83.4724	[kN]		

 $PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0$

SIS Scpa 57 di 147

Muro prefabbricato -	MU 3C 014 N -	- Relazione di Calcolo
IVIUI O DI CIADDITUALO -	· MO.30.014.M =	- Neiaziulie ul Galculu

Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti	X = 0.78 8	[m]	Y = -1.50	[m]
	-	[LAN]]		
Peso del singolo contrafforte	4.5000	[kN]		
Peso del contrafforte riferito ad un metro di muro	3.7500	[kN]		
Baricentro contrafforte	X = 0.15	[m]	Y = -1.50	[m]
Inerzia del muro	3.8244	[kN]		
Inerzia verticale del muro	1.9122	[kN]		
Inerzia del terrapieno fondazione di monte	9.2868	[kN]		
Inerzia verticale del terrapieno fondazione di monte	4.6434	[kN]		
Inerzia del singolo contrafforte	0.5007	[kN]		
Inerzia del contrafforte riferita ad un metro di muro	0.4172	[kN]		
Inerzia verticale del singolo contrafforte	0.2503	[kN]		
Inerzia verticale del contrafforte riferita ad un metro di muro	0.2086	[kN]		
Risultanti				

Risultante dei carichi applicati in dir. orizzontale	81.5034	[kN]
Risultante dei carichi applicati in dir. verticale	186.3884	[kN]
Resistenza passiva a valle del muro	-23.5252	[kN]
Sforzo normale sul piano di posa della fondazione	186.3884	[kN]
Sforzo tangenziale sul piano di posa della fondazione	81.5034	[kN]
Eccentricità rispetto al baricentro della fondazione	0.17	[m]
Lunghezza fondazione reagente	2.15	[m]
Risultante in fondazione	203.4292	[kN]
Inclinazione della risultante (rispetto alla normale)	23.62	[°]
Momento rispetto al baricentro della fondazione	30.8509	[kNm]
Carico ultimo della fondazione	1271.1777	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	2.15	[m]
Tensione terreno allo spigolo di valle	0.12674	[MPa]
Tensione terreno allo spigolo di monte	0.04665	[MPa]

	1 3	
Fattori per i	l calcolo della capacità portante	

Coeff. capacità portante	$N_c = 61.35$	$N_q = 48.93$	$N_{y} = 78.02$
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.34$	$i_q = 0.35$	$i_{\gamma} = 0.20$
Fattori profondità	$d_c = 1.20$	$d_{q} = 1.12$	$d_{y} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 38.44$ $N'_{q} = 28.99$ $N'_{\gamma} = 29.15$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.08 Coefficiente di sicurezza a carico ultimo 6.82

Sollecitazioni fondazione di valle

Combinazione nº 9

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1281	5.1103
3	0.10	0.5095	10.1274
4	0.15	1.1393	15.0514
5	0.20	2.0131	19.8823
6	0.25	3.1260	24.6201
7	0.30	4.4735	29.2647
8	0.35	6.0509	33.8163
9	0.40	7.8536	38.2746
10	0.45	9.8768	42.6399

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 58 di 147

11 0.50 12.1160 46.9120

Sollecitazioni fondazione di monte

Combinazione nº 9

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.16	-0.2532	-3.0732
3	0.31	-0.8951	-5.0516
4	0.47	-1.7728	-6.1239
5	0.62	-2.7473	-6.3011
6	0.78	-3.6799	-5.5835
7	0.93	-4.4319	-3.9708
8	1.08	-4.8646	-1.4633
9	1.24	-4.8393	1.9392
10	1.40	-4.2172	6.2367
11	1.55	-2.8597	11.4291

Armature e tensioni nei materiali della fondazione

Combinazione nº 9

Simbologia adottata

B base della sezione espressa in [m] H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

N_u sforzo normale ultimo espresso in [kN] M_u momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	N_{u}	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	0.00770	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	0.007700	00565	0.00	98.56	769.16	173.53		
3	0.10	1.00, 0.500.00	0.007700	00565	0.00	98.56	193.46	173.53		
4	0.15	1.00, 0.500.00	0.007700	00565	0.00	98.56	86.51	173.53		
5	0.20	1.00, 0.500.00	0.007700	00565	0.00	98.56	48.96	173.53		
6	0.25	1.00, 0.500.00	0.007700	00565	0.00	98.56	31.53	173.53		
7	0.30	1.00, 0.500.00	0.007700	00565	0.00	98.56	22.03	173.53		
8	0.35	1.00, 0.500.00	0.007700	00565	0.00	98.56	16.29	173.53		
9	0.40	1.00, 0.500.00	0.007700	00565	0.00	98.56	12.55	173.53		
10	0.45	1.00, 0.500.00	0.007700	00565	0.00	98.56	9.98	173.53		
11	0.50	1.00, 0.500.00	0.007700	00565	0.00	98.56	8.14	173.53		
Eanda	ziono di	monto								

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	${\sf A_{fs}}$	A_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.0	007700.0	00565	0.00	0.00	1000.00	173.53		
2	0.16	1.00, 0.500.0	007700.0	00565	0.00	-133.13	525.83	173.53		
3	0.31	1.00, 0.500.0	007700.0	00565	0.00	-133.13	148.73	173.53		
4	0.47	1.00, 0.500.0	007700.0	00565	0.00	-133.13	75.10	173.53		
5	0.62	1.00, 0.500.0	007700.0	00565	0.00	-133.13	48.46	173.53		
6	0.78	1.00, 0.500.0	007700.0	00565	0.00	-133.13	36.18	173.53		
7	0.93	1.00, 0.500.0	007700.0	00565	0.00	-133.13	30.04	173.53		
8	1.08	1.00, 0.500.0	007700.0	00565	0.00	-133.13	27.37	173.53		
9	1.24	1.00, 0.500.0	007700.0	00565	0.00	-133.13	27.51	173.53		
10	1.40	1.00, 0.500.0	007700.0	00565	0.00	-133.13	31.57	173.53		

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 59 di 147

Muro prefabbricato – MU.3C.014.N – Relaz	rione di Calcolo					
11 1.55 1.00, 0.500.0007700.00	0.00	-133.13	46.56	173.53		
COMBINAZIONE n° 10						
Valore della spinta statica Componente orizzontale della spinta st Componente verticale della spinta stati Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla norma Inclinazione linea di rottura in condizion	ca ale alla superfici	3° 29 X e 3°	7.4848 7.4586 9.1832 = 1.55 7.92 0.09	[kN] [kN] [kN] [m] [°] [°]	Y = -2.29	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento si Inclinazione linea di rottura in condizion		Х	3.7050 = 1.55 2.34	[kN] [m] [°]	Y = -2.29	[m]
Peso terrapieno gravante sulla fondaziona Baricentro terrapieno gravante sulla for Numero contrafforti Peso del singolo contrafforte		te X 8	3.4724 = 0.78 3	[kN] [m] [kN]	Y = -1.50	[m]
Peso del contrafforte riferito ad un metr Baricentro contrafforte Inerzia del muro Inerzia verticale del muro		X 3. -1	.7500 = 0.15 .8244 I.9122	[kN] [m] [kN] [kN]	Y = -1.50	[m]
Inerzia del terrapieno fondazione di mo Inerzia verticale del terrapieno fondazio Inerzia del singolo contrafforte Inerzia del contrafforte riferita ad un me Inerzia verticale del singolo contrafforte	etro di muro	-4 0. 0.	.2868 1.6434 .5007 .4172).2503	[kN] [kN] [kN] [kN] [kN]		
Inerzia verticale del contrafforte riferita		muro -C).2086	[kN]		
Risultanti Risultante dei carichi applicati in dir. ori Risultante dei carichi applicati in dir. ve Resistenza passiva a valle del muro Sforzo normale sul piano di posa della Sforzo tangenziale sul piano di posa della Sforzo tangenziale sul piano di posa della Eccentricità rispetto al baricentro della Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto all Momento rispetto al baricentro della for Carico ultimo della fondazione	rticale fondazione ella fondazione fondazione a normale)	1: -2: 1: 7: 0. 2: 1: 24: 3:	8.1929 70.2807 23.5252 70.2807 8.1929 .19 .15 87.3757 4.66 1.8481 134.8848	[kN] [kN] [kN] [kN] [m] [m] [m] [kN] [kN] [sh] [sh] [kNm] [kN]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte Fattori per il calcolo della capacità porta	<u>ante</u>	0.	.15 .12054 .03786	[m] [MPa] [MPa]		
Coeff. capacità portante Fattori forma Fattori inclinazione Fattori profondità	$N_c = 61.35$ $s_c = 1.00$ $i_c = 0.31$ $d_c = 1.20$		$N_q = 48.9$ $s_q = 1.0$ $i_q = 0.3$ $d_q = 1.1$	00 3	i_{γ} =	78.02 1.00 0.18 1.00
Fattori inclinazione piano posa Fattori inclinazione pendio I coefficienti N' tengono conto dei fatto inclinazione pendio.	$b_c = 1.00$ $g_c = 1.00$	ondità, incli	$b_{q} = 1.0$ $g_{q} = 1.0$	0 0	$b_{\gamma} = g_{\gamma} = 0$	1.00 1.00
COEFFICIENTI DI SICUREZZA	$N'_{c} = 38.44$		$N'_{q} = 28.9$	9	$N'_{\gamma} = 2$	29.15
Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo)		.00 .66			
PV_D_SR_AP_MU_3_C_014001_N_00	1_R_A_0					

SIS Scpa 60 di 147

Sollecitazioni fondazione di valle

Combinazione nº 10

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1204	4.7989
3	0.10	0.4783	9.5016
4	0.15	1.0689	14.1083
5	0.20	1.8875	18.6187
6	0.25	2.9292	23.0331
7	0.30	4.1892	27.3513
8	0.35	5.6627	31.5734
9	0.40	7.3449	35.6993
10	0.45	9.2311	39.7291
11	0.50	11.3163	43.6627

Sollecitazioni fondazione di monte

Combinazione nº 10

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	М	Т
1	0.00	0.0000	0.0000
2	0.16	-0.3580	-4.4206
3	0.31	-1.3113	-7.7175
4	0.47	-2.7025	-10.0793
5	0.62	-4.3882	-11.5172
6	0.78	-6.2251	-12.0312
7	0.93	-8.0701	-11.6214
8	1.08	-9.7800	-10.2877
9	1.24	-11.2116	-8.0301
10	1.40	-12.2216	-4.8486
11	1.55	-12.6669	-0.7433

Armature e tensioni nei materiali della fondazione

Combinazione nº 10

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

 $\begin{array}{ll} A_{fi} & \text{area di armatura in corrispondenza del lembo inferiore in [mq]} \\ A_{fs} & \text{area di armatura in corrispondenza del lembo superiore in [mq]} \end{array}$

 $\begin{array}{ll} N_u & \text{sforzo normale ultimo espresso in [kN]} \\ M_u & \text{momento ultimo espresso in [kNm]} \\ \text{CS} & \text{coefficiente sicurezza sezione} \end{array}$

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	${\sf A_{fs}}$	A_{fi}	N_u	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	07700.00	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	07700.00	00565	0.00	98.56	818.82	173.53		
3	0.10	1.00, 0.500.00	07700.00	00565	0.00	98.56	206.08	173.53		
4	0.15	1.00, 0.500.00	07700.00	00565	0.00	98.56	92.21	173.53		
5	0.20	1.00, 0.500.00	07700.00	00565	0.00	98.56	52.22	173.53		
6	0.25	1.00, 0.500.00	07700.00	00565	0.00	98.56	33.65	173.53		
7	0.30	1.00, 0.500.00	07700.00	00565	0.00	98.56	23.53	173.53		
8	0.35	1.00, 0.500.00	07700.00	00565	0.00	98.56	17.41	173.53		
9	0.40	1.00, 0.500.00	0.007700	00565	0.00	98.56	13.42	173.53		

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 61 di 147

Y = -1.50

[m]

Muro p	orefabbrio	ato – MU.3C.014.N – Relazione di C	alcolo				
10	0.45	1.00, 0.500.0007700.000565	0.00	98.56	10.68	173.53	
11	0.50	1.00, 0.500.0007700.000565	0.00	98.56	8.71	173.53	
<u>Fonda</u>	azione di	<u>i monte</u>					

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)										
Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	Mu	cs	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	0.007700	00565	0.00	0.00	1000.00	173.53		
2	0.16	1.00, 0.500.00	0.007700	00565	0.00	-133.13	371.90	173.53		
3	0.31	1.00, 0.500.00	0.007700	00565	0.00	-133.13	101.53	173.53		
4	0.47	1.00, 0.500.00	0.007700.0	00565	0.00	-133.13	49.26	173.53		
5	0.62	1.00, 0.500.00	0.007700	00565	0.00	-133.13	30.34	173.53		
6	0.78	1.00, 0.500.00	0.007700	00565	0.00	-133.13	21.39	173.53		
7	0.93	1.00, 0.500.00	0.007700.0	00565	0.00	-133.13	16.50	173.53		
8	1.08	1.00, 0.500.00	0.007700	00565	0.00	-133.13	13.61	173.53		
9	1.24	1.00, 0.500.00	007700.0	00565	0.00	-133.13	11.87	173.53		
10	1.40	1.00, 0.500.00	0.007700.0	00565	0.00	-133.13	10.89	173.53		
11	1.55	1.00, 0.500.00	007700.0	00565	0.00	-133.13	10.51	173.53		
COMBINAZIONE n° 11										
Valore della spinta statica 72.4037 [kN] Componente orizzontale della spinta statica 61.4481 [kN]										
Comp	onente v	∕erticale della sp	ointa stat	ica		;	38.2940	[kN]		
Punto d'applicazione della spinta						X = 1.55	[m]	Y = -2.24	[m]	
Inclinaz. della spinta rispetto alla normale alla superficie						31.93	[°]			
Inclinazione linea di rottura in condizioni statiche 43.32 [°]										
Increm	Incremento sismico della spinta 47.5943 [kN]									

Inclinazione linea di rottura in condizioni statiche	43.32	[°]		
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	47.5943 X = 1.55 38.63	[kN] [m] [°]	Y = -2.24	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte	83.4724 X = 0.78 8 4.5000	[kN] [m] [kN]	Y = -1.50	[m]

rumoro contramora	•	
Peso del singolo contrafforte	4.5000	[kN]
Peso del contrafforte riferito ad un metro di muro	3.7500	[kN]
Baricentro contrafforte	X = 0.15	[m]
Inerzia del muro	3.8244	[kN]
Inerzia verticale del muro	1.9122	[kN]
Inerzia del terrapieno fondazione di monte	9.2868	[kN]
Inerzia verticale del terrapieno fondazione di monte	4.6434	[kN]
Inerzia del singolo contrafforte	0.5007	[kN]
Inerzia del contrafforte riferita ad un metro di muro	0.4172	[kN]
Inerzia verticale del singolo contrafforte	0.2503	[kN]
Inerzia verticale del contrafforte riferita ad un metro di mu	ro 0.2086	[kN]

<u>Risultanti</u>

Risultante dei carichi applicati in dir. orizzontale	115.9866	[kN]
Risultante dei carichi applicati in dir. verticale	197.3780	[kN]
Resistenza passiva a valle del muro	-18.2184	[kN]
Sforzo normale sul piano di posa della fondazione	197.3780	[kN]
Sforzo tangenziale sul piano di posa della fondazione	115.9866	[kN]
Eccentricità rispetto al baricentro della fondazione	0.33	[m]
Lunghezza fondazione reagente	2.15	[m]
Risultante in fondazione	228.9344	[kN]
Inclinazione della risultante (rispetto alla normale)	30.44	[°]
Momento rispetto al baricentro della fondazione	65.5207	[kNm]
Carico ultimo della fondazione	233.7882	[kN]

Tensioni sul terreno

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 62 di 147

63 di 147

Muro prefabbricato – MU.3C.014.N – Relazione di Calcolo

Lunghezza fondazione reagente	2.15	[m]
Tensione terreno allo spigolo di valle	0.17685	[MPa]
Tensione terreno allo spigolo di monte	0.00676	[MPa]
Fattori per il calcolo della capacità portante		
	- 11 101	

Coeff. capacità portante	$N_c = 61.35$	$N_{q} = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.16$	$i_{q} = 0.20$	$i_{\gamma} = 0.08$
Fattori profondità	$d_c = 1.20$	$d_{q} = 1.14$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 38.44$ $N'_{q} = 28.99$ $N'_{\gamma} = 29.15$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.22 Coefficiente di sicurezza a carico ultimo 1.18

Sollecitazioni fondazione di valle

Combinazione nº 11

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

0.0000 7.5636
7.5636
14.9294
22.0974
29.0677
35.8401
42.4148
48.7917
54.9708
60.9522
66.7357

Sollecitazioni fondazione di monte

Combinazione nº 11

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.16	-0.7064	-8.7533
3	0.31	-2.6040	-15.4061
4	0.47	-5.3839	-20.1469
5	0.62	-8.7513	-22.9871
6	0.78	-12.4117	-23.9265
7	0.93	-16.0703	-22.9654
8	1.08	-19.4327	-20.1035
9	1.24	-22.2042	-15.3410
10	1.40	-24.0902	-8.6777
11	1.55	-24.7961	-0.1139

Armature e tensioni nei materiali della fondazione

Combinazione nº 11

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

 A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

N_u sforzo normale ultimo espresso in [kN]
M_u momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] Aliquota di taglio assorbito dall'armatura, espresso in [kN] Resistenza al taglio, espresso in [kN] VRsd

VRd

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	N_{u}	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	007700.00	0565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	007700.00	0565	0.00	98.56	518.99	173.53		
3	0.10	1.00, 0.500.00	007700.00	0565	0.00	98.56	130.88	173.53		
4	0.15	1.00, 0.500.00	007700.00	0565	0.00	98.56	58.68	173.53		
5	0.20	1.00, 0.500.00	007700.00	0565	0.00	98.56	33.30	173.53		
6	0.25	1.00, 0.500.00	007700.00	0565	0.00	98.56	21.51	173.53		
7	0.30	1.00, 0.500.00	007700.00	0565	0.00	98.56	15.07	173.53		
8	0.35	1.00, 0.500.00	007700.00	0565	0.00	98.56	11.17	173.53		
9	0.40	1.00, 0.500.00	007700.00	0565	0.00	98.56	8.63	173.53		
10	0.45	1.00, 0.500.00	007700.00	0565	0.00	98.56	6.89	173.53		
11	0.50	1.00, 0.500.00	007700.00	0565	0.00	98.56	5.63	173.53		
Fonda	zione di	monte								

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	A_fs	A_{fi}	$N_{\rm u}$	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.0	007700.0	00565	0.00	0.00	1000.00	173.53		
2	0.16	1.00, 0.500.0	007700.0	00565	0.00	-133.13	188.47	173.53		
3	0.31	1.00, 0.500.0	007700.0	00565	0.00	-133.13	51.13	173.53		
4	0.47	1.00, 0.500.0	007700.0	00565	0.00	-133.13	24.73	173.53		
5	0.62	1.00, 0.500.0	007700.0	00565	0.00	-133.13	15.21	173.53		
6	0.78	1.00, 0.500.0	007700.0	00565	0.00	-133.13	10.73	173.53		
7	0.93	1.00, 0.500.0	007700.0	00565	0.00	-133.13	8.28	173.53		
8	1.08	1.00, 0.500.0	007700.0	00565	0.00	-133.13	6.85	173.53		
9	1.24	1.00, 0.500.0	007700.0	00565	0.00	-133.13	6.00	173.53		
10	1.40	1.00, 0.500.0	007700.0	00565	0.00	-133.13	5.53	173.53		
11	1.55	1.00, 0.500.0	007700.0	00565	0.00	-133.13	5.37	173.53		

COMBINAZIONE nº 12

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	72.4037 61.4481 38.2940 X = 1.55 31.93 43.32	[kN] [kN] [kN] [m] [°] [°]	Y = -2.24	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	40.2416 X = 1.55 38.01	[kN] [m] [°]	Y = -2.24	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	83.4724 X = 0.78 8 4.5000 3.7500 X = 0.15 3.8244 -1.9122 9.2868 -4.6434	[kN] [m] [kN] [kN] [kN] [kN] [kN]	Y = -1.50 Y = -1.50	[m]
Inerzia del singolo contrafforte Inerzia del contrafforte riferita ad un metro di muro Inerzia verticale del singolo contrafforte	0.5007 0.4172 -0.2503	[kN] [kN] [kN]		

SIS Scpa 64 di 147

Muro prefabbricato – I	MU.3C.014.N -	Relazione di Calcolo
------------------------	---------------	----------------------

mare prefabblicate me.ce.cri.iv The	idziono di Galobio			
Inerzia verticale del contrafforte riferi	ta ad un metro di muro	-0.2086	[kN]	
<u>Risultanti</u>				
Risultante dei carichi applicati in dir.	orizzontale	109.7465	[kN]	
Risultante dei carichi applicati in dir.	verticale	179.9608	[kN]	
Resistenza passiva a valle del muro		-18.2184	[kN]	
Sforzo normale sul piano di posa del	la fondazione	179.9608	[kN]	
Sforzo tangenziale sul piano di posa	della fondazione	109.7465	[kN]	
Eccentricità rispetto al baricentro del	la fondazione	0.36	[m]	
Lunghezza fondazione reagente		2.15	[m]	
Risultante in fondazione		210.7846	[kN]	
Inclinazione della risultante (rispetto	•	31.38	[°]	
Momento rispetto al baricentro della	fondazione	64.0896	[kNm]	
Carico ultimo della fondazione		201.0742	[kN]	
Tensioni sul terreno				
Lunghezza fondazione reagente		2.15	[m]	
Tensione terreno allo spigolo di valle		0.16689	[MPa]	
Tensione terreno allo spigolo di mon	te	0.00051	[MPa]	
Fattori per il calcolo della capacità po	<u>ortante</u>			
Coeff. capacità portante	$N_c = 61.35$	$N_{q} = 48.9$	93	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.0$	00	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.14$	$i_{q} = 0.7$	18	$i_{\gamma} = 0.07$
Fattori profondità	$d_c = 1.20$	$d_{q} = 1.7$	14	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.0$	00	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_0 = 1.00$		$g_{y} = 1.00$

Fattori inclinazione pendio $g_c = 1.00$ $g_q = 1.00$ $g_{\gamma} = 1.00$ I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 38.44$ $N'_{q} = 28.99$ $N'_{\gamma} = 29.15$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.19
Coefficiente di sicurezza a carico ultimo 1.12

Sollecitazioni fondazione di valle

Combinazione nº 12

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.05	0.1775	7.0678
3	0.10	0.7036	13.9422
4	0.15	1.5685	20.6231
5	0.20	2.7626	27.1105
6	0.25	4.2763	33.4045
7	0.30	6.0999	39.5050
8	0.35	8.2236	45.4120
9	0.40	10.6378	51.1256
10	0.45	13.3329	56.6458
11	0.50	16.2992	61.9724

Sollecitazioni fondazione di monte

Combinazione nº 12

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.16	-0.7825	-9.7418
3	0.31	-2.9126	-17.4246
4	0.47	-6.0878	-23.2369
5	0.62	-10.0200	-27.1901
$PV_{}$	_D_SR_AP_ML	J_3_C_014001_N_0	01_R_A_0

SIS Scpa 65 di 147

6	0.78	-14.4207	-29.2842
7	0.93	-19.0020	-29.5191
8	1.08	-23.4756	-27.8948
9	1.24	-27.5533	-24.4113
10	1.40	-30.9470	-19.0687
11	1.55	-33.3686	-11.8670

Armature e tensioni nei materiali della fondazione

Combinazione nº 12

Simbologia adottata

В base della sezione espressa in [m] altezza della sezione espressa in [m]

 A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] area di armatura in corrispondenza del lembo superiore in [mq]

 A_{fs} sforzo normale ultimo espresso in [kN] N_{u} momento ultimo espresso in [kNm]

 M_{u} CŠ

coefficiente sicurezza sezione Aliquota di taglio assorbito dal cls, espresso in [kN] VRcd VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

Resistenza al taglio, espresso in [kN] VRd

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	${\sf A_{fs}}$	A_{fi}	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	0.007700	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	0.007700	00565	0.00	98.56	555.29	173.53		
3	0.10	1.00, 0.500.00	0.007700	00565	0.00	98.56	140.09	173.53		
4	0.15	1.00, 0.500.00	0.007700	00565	0.00	98.56	62.84	173.53		
5	0.20	1.00, 0.500.00	0.007700	00565	0.00	98.56	35.68	173.53		
6	0.25	1.00, 0.500.00	0.007700	00565	0.00	98.56	23.05	173.53		
7	0.30	1.00, 0.500.00	0.007700	00565	0.00	98.56	16.16	173.53		
8	0.35	1.00, 0.500.00	0.007700	00565	0.00	98.56	11.99	173.53		
9	0.40	1.00, 0.500.00	0.007700	00565	0.00	98.56	9.27	173.53		
10	0.45	1.00, 0.500.00	0.007700	00565	0.00	98.56	7.39	173.53		
11	0.50	1.00, 0.500.00	0.007700	00565	0.00	98.56	6.05	173.53		
<u>Fonda</u>	azione di	<i>monte</i>								

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ		В, Н	\mathbf{A}_{fs}	\mathbf{A}_{fi}	N_{u}	\mathbf{M}_{u}	cs	V_{Rd}	\mathbf{V}_{Rcd}	\mathbf{V}_{Rsd}
1	0.00			0.007700		0.00	0.00	1000.00	173.53		
2	0.16	,		0.007700		0.00	-133.13	170.15	173.53		
3	0.31			0.007700		0.00	-133.13	45.71	173.53		
4	0.47	1.00,	0.500.0	0.007700	00565	0.00	-133.13	21.87	173.53		
5	0.62	1.00,	0.500.0	0.007700	00565	0.00	-133.13	13.29	173.53		
6	0.78	1.00,	0.500.0	0.007700	00565	0.00	-133.13	9.23	173.53		
7	0.93	1.00,	0.500.0	0.007700.0	00565	0.00	-133.13	7.01	173.53		
8	1.08	1.00,	0.500.0	0.007700.0	00565	0.00	-133.13	5.67	173.53		
9	1.24	1.00,	0.500.0	0.007700.0	00565	0.00	-133.13	4.83	173.53		
10	1.40	1.00,	0.500.0	0.007700.0	00565	0.00	-133.13	4.30	173.53		
11	1.55	1.00,	0.500.0	0.007700	00565	0.00	-133.13	3.99	173.53		
COM	BINAZIO	NE n°	<u>13</u>								
Comp Comp Punto Inclin	oonente v o d'applic az. della	orizzoni verticalo azione spinta	tale del e della della s rispetto	la spinta s spinta stat pinta alla norm n condizio	tica ale alla	•		72.4037 61.4481 88.2940 K = 1.55 31.93 43.32	[kN] [kN] [kN] [m] [°]	Y = -2.24	[m]
Incremento sismico della spinta 47.5943 Punto d'applicazione dell'incremento sismico di spinta X = 1.55 Inclinazione linea di rottura in condizioni sismiche 38.63						[kN] [m] [°]	Y = -2.24	[m]			

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 66 di 147

Muro prefabbricato – MU.3C.014.N – Relazione di Calcolo				
Peso terrapieno gravante sulla fondazione a monte	83.4724	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.78	[m]	Y = -1.50	[m]
Numero contrafforti	8			
Peso del singolo contrafforte	4.5000	[kN]		
Peso del contrafforte riferito ad un metro di muro	3.7500	[kN]		
Baricentro contrafforte	X = 0.15	[m]	Y = -1.50	[m]
Inerzia del muro Inerzia verticale del muro	3.8244 1.9122	[kN]		
Inerzia verticale dei muro Inerzia del terrapieno fondazione di monte	9.2868	[kN] [kN]		
Inerzia dei terrapierio fondazione di monte	4.6434	[kN]		
Inerzia del singolo contrafforte	0.5007	[kN]		
Inerzia del contrafforte riferita ad un metro di muro	0.4172	[kN]		
Inerzia verticale del singolo contrafforte	0.2503	[kN]		
Inerzia verticale del contrafforte riferita ad un metro di muro	0.2086	[kN]		
Risultanti				
Risultante dei carichi applicati in dir. orizzontale	115.9866	[kN]		
Risultante dei carichi applicati in dir. verticale	197.3780	[kN]		
Resistenza passiva a valle del muro	-18.2184	[kN]		
Momento ribaltante rispetto allo spigolo a valle	150.3209	[kNm]		
Momento stabilizzante rispetto allo spigolo a valle	296.9815	[kNm]		
Sforzo normale sul piano di posa della fondazione	197.3780	[kN]		
Sforzo tangenziale sul piano di posa della fondazione	115.9866	[kN]		
Eccentricità rispetto al baricentro della fondazione	0.33	[m]		
Lunghezza fondazione reagente Risultante in fondazione	2.15	[m]		
Inclinazione della risultante (rispetto alla normale)	228.9344 30.44	[kN] [°]		
Momento rispetto al baricentro della fondazione	65.5207	[kNm]		
momorito hopotto di banconti o dolla fortadzione	00.0201	[KI VIII]		
COEFFICIENTI DI SICUREZZA				
Coefficiente di sicurezza a ribaltamento	1.98			
COMBINAZIONE n° 14				
Valore della spinta statica	72.4037	[kN]		
Componente orizzontale della spinta statica	61.4481	[kN]		
Componente verticale della spinta statica	38.2940	[kN]		
Punto d'applicazione della spinta	X = 1.55	[m]	Y = -2.24	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	31.93	[°]		
Inclinazione linea di rottura in condizioni statiche	43.32	[°]		
Incremento sismico della spinta	40.2416	[kN]		
Punto d'applicazione dell'incremento sismico di spinta	X = 1.55	[m]	Y = -2.24	[m]
Inclinazione linea di rottura in condizioni sismiche	38.01	[°]		
Door torronione groupate culle feedering a group	00 4704	FIZN 17		
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	83.4724 X = 0.78	[kN] [m]	Y = -1.50	[m]
Numero contrafforti	8	נייין	1 = -1.50	נייין
Peso del singolo contrafforte	4.5000	[kN]		
Peso del contrafforte riferito ad un metro di muro	3.7500	[kN]		
Baricentro contrafforte	X = 0.15	[m] ๋	Y = -1.50	[m]
Inerzia del muro	3.8244	[kN]		
Inerzia verticale del muro	-1.9122	[kN]		
Inerzia del terrapieno fondazione di monte	9.2868	[kN]		
Inerzia verticale del terrapieno fondazione di monte	-4.6434	[kN]		
Inerzia del singolo contrafforte	0.5007	[kN]		
Inerzia del contrafforte riferita ad un metro di muro	0.4172	[kN]		
Inerzia verticale del singolo contrafforte Inerzia verticale del contrafforte riferita ad un metro di muro	-0.2503 -0.2086	[kN] [kN]		
morzia verticale dei contialione illenta ad dii illetto di illulo	-0.2000	[1/14]		
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	109.7465	[kN]		
PV_D_SR_AP_MU_3_C_014001_N_001_R_A_0				

S/S Scpa 67 di 147

Risultante dei carichi applicati in dir. verticale	179.9608	[kN]
Resistenza passiva a valle del muro	-18.2184	[kN]
Momento ribaltante rispetto allo spigolo a valle	150.8662	[kNm]
Momento stabilizzante rispetto allo spigolo a valle	280.2344	[kNm]
Sforzo normale sul piano di posa della fondazione	179.9608	[kN]
Sforzo tangenziale sul piano di posa della fondazione	109.7465	[kN]
Eccentricità rispetto al baricentro della fondazione	0.36	[m]
Lunghezza fondazione reagente	2.15	[m]
Risultante in fondazione	210.7846	[kN]
Inclinazione della risultante (rispetto alla normale)	31.38	[°]
Momento rispetto al baricentro della fondazione	64.0896	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento

amento 1.86

Stabilità globale muro + terreno

Combinazione nº 15

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra) W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 2.61

Raggio del cerchio R[m]= 6.31

Ascissa a valle del cerchio Xi[m]=-3.84Ascissa a monte del cerchio Xs[m]=6.30

Larghezza della striscia dx[m]= 0.41 Coefficiente di sicurezza C= 1.48

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	Wsin α	b/cosα	ф	С	u
1	1178.72	77.93	1152.66	1.94	32.01	0.000	0.000
2	2046.27	64.76	1850.93	0.95	32.01	0.000	0.000
3	2428.01	57.05	2037.42	0.75	32.01	0.000	0.000
4	2670.59	50.75	2068.02	0.64	32.01	0.000	0.000
5	2830.22	45.22	2008.91	0.58	32.01	0.000	0.000
6	2931.08	40.19	1891.55	0.53	32.01	0.000	0.000
7	2986.37	35.52	1734.85	0.50	32.01	0.000	0.000
8	3004.20	31.10	1551.78	0.47	32.01	0.000	0.000
9	2989.98	26.88	1351.97	0.45	32.01	0.000	0.000
10	2947.46	22.82	1143.05	0.44	32.01	0.000	0.000
11	2879.34	18.87	931.35	0.43	32.01	0.000	0.000
12	2827.29	15.02	732.60	0.42	32.01	0.000	0.000
13	2867.94	11.23	558.62	0.41	32.01	0.000	0.000
14	2915.48	7.50	380.31	0.41	32.01	0.000	0.000
15	2946.15	3.79	194.78	0.41	32.01	0.000	0.000
16	2741.29	0.10	4.88	0.41	32.01	0.000	0.000
17	1111.70	-3.59	-69.54	0.41	32.01	0.000	0.000
18	948.80	-7.29	-120.39	0.41	32.01	0.000	0.000
19	897.75	-11.02	-171.67	0.41	32.01	0.000	0.000
20	826.56	-14.81	-211.24	0.42	32.01	0.000	0.000

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 68 di 147

21	733.23	-18.66	-234.56	0.43	32.01	0.000	0.000
22	616.36	-22.60	-236.83	0.44	32.01	0.000	0.000
23	474.01	-26.65	-212.64	0.45	32.01	0.000	0.000
24	303.54	-30.86	-155.71	0.47	32.01	0.000	0.000
25	101.26	-35.27	-58.46	0.50	32.01	0.000	0.000

 $\Sigma W_i = 482.5299 [kN]$

 $\Sigma W_i \sin \alpha_i = 177.7252 [kN]$

 $\Sigma W_i \tan \phi_i = 301.5949 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 7.16$

Stabilità globale muro + terreno

Combinazione nº 16 Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

peso della striscia espresso in [kN]

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) α

angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [MPa] С

larghezza della striscia espressa in [m] b

pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce

Cerchio critico

Coordinate del centro X[m] = 0.00Y[m] = 2.61

Raggio del cerchio R[m] = 6.31

Ascissa a valle del cerchio Xi[m] = -3.84Ascissa a monte del cerchio Xs[m] = 6.30

Larghezza della striscia dx[m]= 0.41 Coefficiente di sicurezza C = 1.46

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	Wsin α	b/cosα	ф	С	u	
1	1178.72	77.93	1152.66	1.94	32.01	0.000	0.000	
2	2046.27	64.76	1850.93	0.95	32.01	0.000	0.000	
3	2428.01	57.05	2037.42	0.75	32.01	0.000	0.000	
4	2670.59	50.75	2068.02	0.64	32.01	0.000	0.000	
5	2830.22	45.22	2008.91	0.58	32.01	0.000	0.000	
6	2931.08	40.19	1891.55	0.53	32.01	0.000	0.000	
7	2986.37	35.52	1734.85	0.50	32.01	0.000	0.000	
8	3004.20	31.10	1551.78	0.47	32.01	0.000	0.000	
9	2989.98	26.88	1351.97	0.45	32.01	0.000	0.000	
10	2947.46	22.82	1143.05	0.44	32.01	0.000	0.000	
11	2879.34	18.87	931.35	0.43	32.01	0.000	0.000	
12	2827.29	15.02	732.60	0.42	32.01	0.000	0.000	
13	2867.94	11.23	558.62	0.41	32.01	0.000	0.000	
14	2915.48	7.50	380.31	0.41	32.01	0.000	0.000	
15	2946.15	3.79	194.78	0.41	32.01	0.000	0.000	
16	2741.29	0.10	4.88	0.41	32.01	0.000	0.000	
17	1111.70	-3.59	-69.54	0.41	32.01	0.000	0.000	
18	948.80	-7.29	-120.39	0.41	32.01	0.000	0.000	
19	897.75	-11.02	-171.67	0.41	32.01	0.000	0.000	
20	826.56	-14.81	-211.24	0.42	32.01	0.000	0.000	
21	733.23	-18.66	-234.56	0.43	32.01	0.000	0.000	
22	616.36	-22.60	-236.83	0.44	32.01	0.000	0.000	
23	474.01	-26.65	-212.64	0.45	32.01	0.000	0.000	
24	303.54	-30.86	-155.71	0.47	32.01	0.000	0.000	
25	101.26	-35.27	-58.46	0.50	32.01	0.000	0.000	
PV_D_SR_AP_MU_3_C_014001_N_001_R_A_0								

SIS Scpa 69 di 147

 $\Sigma W_i = 482.5299 [kN]$

 $\Sigma W_{i} \sin \alpha_{i} = 177.7252 [kN]$

 $\Sigma W_i tan \phi_i = 301.5949 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 7.16$

Sollecitazioni fondazione di valle

Combinazione nº 17

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.05	0.0853	3.4053
3	0.10	0.3398	6.7655
4	0.15	0.7611	10.0803
5	0.20	1.3471	13.3500
6	0.25	2.0954	16.5744
7	0.30	3.0037	19.7536
8	0.35	4.0700	22.8876
9	0.40	5.2918	25.9764
10	0.45	6.6669	29.0199
11	0.50	8.1930	32.0182

Sollecitazioni fondazione di monte

Combinazione n° 17

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	T
1	0.00	0.0000	0.0000
2	0.16	-0.1856	-2.2778
3	0.31	-0.6723	-3.9210
4	0.47	-1.3785	-5.1185
5	0.62	-2.2366	-5.8813
6	0.78	-3.1792	-6.2094
7	0.93	-4.1391	-6.1030
8	1.08	-5.0487	-5.5619
9	1.24	-5.8408	-4.5862
10	1.40	-6.4480	-3.1759
11	1.55	-6.8029	-1.3310
_			

Armature e tensioni nei materiali della fondazione

Combinazione nº 17

Simbologia adottata

В base della sezione espressa in [m]

altezza della sezione espressa in [m] н

area di armatura in corrispondenza del lembo inferiore in [mq] A_{fi}

 A_{fs} area di armatura in corrispondenza del lembo superiore in [mg]

tensione nel calcestruzzo espressa in [MPa]

tensione tangenziale nel calcestruzzo espressa in [MPa] τ_c

tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]

tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ extsf{c}}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	1.00, 0.500.0	0.007700	00565	0.000	0.000	0.000	0.000
2	0.05	1.00, 0.500.0	0.007700	00565	0.005	0.009	0.348	-0.032
3	0.10	1.00, 0.500.0	0.007700	00565	0.018	0.017	1.388	-0.128
4	0.15	1.00, 0.500.0	0.007700	00565	0.041	0.026	3.109	-0.287
5	0.20	1.00, 0.500.0	0.007700	00565	0.072	0.034	5.502	-0.508
6	0.25	1.00, 0.500.0	0.007700	00565	0.112	0.042	8.558	-0.791
7	0.30	1.00, 0.500.0	0.007700	00565	0.161	0.051	12.268	-1.133

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

70 di 147 SIS Scpa

8	0.35	1.00. 0.500.0007700.000565	0.218	0.059	16.623	-1.536		
9		1.00. 0.500.0007700.000565						
3	0.40	1.00, 0.300.0007700.000303	0.203	0.000	21.014	-1.330		
10	0.45	1.00, 0.500.0007700.000565	0.357	0.074	27.230	-2.515		
11	0.50	1.00, 0.500.0007700.000565	0.438	0.082	33.463	-3.091		
Fond	Fondazione di monte							

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Χ	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{ extsf{c}}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	1.00, 0.500.0	0.007700	00565	0.000	0.000	0.000	0.000
2	0.16	1.00, 0.500.0	0.007700	00565	0.009	-0.006	-0.073	0.561
3	0.31	1.00, 0.500.0	0.007700	00565	0.032	-0.010	-0.263	2.033
4	0.47	1.00, 0.500.0	0.007700	00565	0.066	-0.013	-0.540	4.169
5	0.62	1.00, 0.500.0	0.007700	00565	0.107	-0.015	-0.876	6.764
6	0.78	1.00, 0.500.0	0.007700	00565	0.152	-0.016	-1.245	9.615
7	0.93	1.00, 0.500.0	0.007700	00565	0.198	-0.016	-1.621	12.517
8	1.08	1.00, 0.500.0	0.007700	00565	0.241	-0.014	-1.977	15.268
9	1.24	1.00, 0.500.0	0.007700	00565	0.279	-0.012	-2.287	17.664
10	1.40	1.00, 0.500.0	0.007700	00565	0.308	-0.008	-2.525	19.500
11	1.55	1.00, 0.500.0	0.007700	00565	0.325	-0.003	-2.664	20.573

Verifiche a fessurazione

Combinazione nº 17

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

A_{fs} area di armatura in corrispondenza del lembo di monte in [mq]

 $A_{fi} \hspace{1cm} \text{area di armatura in corrispondenza del lembo di valle in } [mq] \\$

M_{pf} Momento di prima fessurazione espressa in [kNm] M Momento agente nella sezione espressa in [kNm]

 $\varepsilon_{\rm m}$ deformazione media espressa in [%]

s_m Distanza media tra le fessure espressa in [mm]

w Apertura media della fessura espressa in [mm]

Verifica fessurazione fondazione

N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	ε _m	S _m	w
1	-0.60	0.000770	0.000565	-58.79	0.00	0.0000	0.00	0.000
2	-0.55	0.000770	0.000565	58.12	0.09	0.0000	0.00	0.000
3	-0.50	0.000770	0.000565	58.12	0.34	0.0000	0.00	0.000
4	-0.45	0.000770	0.000565	58.12	0.76	0.0000	0.00	0.000
5	-0.40	0.000770	0.000565	58.12	1.35	0.0000	0.00	0.000
6	-0.35	0.000770	0.000565	58.12	2.10	0.0000	0.00	0.000
7	-0.30	0.000770	0.000565	58.12	3.00	0.0000	0.00	0.000
8	-0.25	0.000770	0.000565	58.12	4.07	0.0000	0.00	0.000
9	-0.20	0.000770	0.000565	58.12	5.29	0.0000	0.00	0.000
10	-0.15	0.000770	0.000565	58.12	6.67	0.0000	0.00	0.000
11	-0.10	0.000770	0.000565	58.12	8.19	0.0000	0.00	0.000
12	0.00	0.000770	0.000565	-58.79	-6.80	0.0000	0.00	0.000
13	0.15	0.000770	0.000565	-58.79	-6.45	0.0000	0.00	0.000
14	0.31	0.000770	0.000565	-58.79	-5.84	0.0000	0.00	0.000
15	0.46	0.000770	0.000565	-58.79	-5.05	0.0000	0.00	0.000
16	0.62	0.000770	0.000565	-58.79	-4.14	0.0000	0.00	0.000
17	0.78	0.000770	0.000565	-58.79	-3.18	0.0000	0.00	0.000
18	0.93	0.000770	0.000565	-58.79	-2.24	0.0000	0.00	0.000
19	1.08	0.000770	0.000565	-58.79	-1.38	0.0000	0.00	0.000
20	1.24	0.000770	0.000565	-58.79	-0.67	0.0000	0.00	0.000
21	1.40	0.000770	0.000565	-58.79	-0.19	0.0000	0.00	0.000
22	1.55	0.000770	0.000565	-58.79	0.00	0.0000	0.00	0.000

Sollecitazioni fondazione di valle

Combinazione nº 18

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 71 di 147

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.0853	3.4053
3	0.10	0.3398	6.7655
4	0.15	0.7611	10.0803
5	0.20	1.3471	13.3500
6	0.25	2.0954	16.5744
7	0.30	3.0037	19.7536
8	0.35	4.0700	22.8876
9	0.40	5.2918	25.9764
10	0.45	6.6669	29.0199
11	0.50	8.1930	32.0182

Sollecitazioni fondazione di monte

Combinazione nº 18

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.16	-0.1856	-2.2778
3	0.31	-0.6723	-3.9210
4	0.47	-1.3785	-5.1185
5	0.62	-2.2366	-5.8813
6	0.78	-3.1792	-6.2094
7	0.93	-4.1391	-6.1030
8	1.08	-5.0487	-5.5619
9	1.24	-5.8408	-4.5862
10	1.40	-6.4480	-3.1759
11	1.55	-6.8029	-1.3310

Armature e tensioni nei materiali della fondazione

Combinazione n° 18

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

 $\sigma_{c} \hspace{1cm} \text{tensione nel calcestruzzo espressa in [MPa]} \hspace{1cm}$

 τ_{c} tensione tangenziale nel calcestruzzo espressa in [MPa]

 $\sigma_{\!\scriptscriptstyle fi} \qquad \quad \text{tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]}$

tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Χ	В, Н	A_fs	A_{fi}	σ_{c}	$ au_{c}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 0.500.0	0.007700	00565	0.000	0.000	0.000	0.000
2	0.05	1.00, 0.500.0	0.007700	00565	0.005	0.009	0.348	-0.032
3	0.10	1.00, 0.500.0	0.007700	00565	0.018	0.017	1.388	-0.128
4	0.15	1.00, 0.500.0	0.007700	00565	0.041	0.026	3.109	-0.287
5	0.20	1.00, 0.500.0	0.007700	00565	0.072	0.034	5.502	-0.508
6	0.25	1.00, 0.500.0	0.007700	00565	0.112	0.042	8.558	-0.791
7	0.30	1.00, 0.500.0	0.007700	00565	0.161	0.051	12.268	-1.133
8	0.35	1.00, 0.500.0	0.007700	00565	0.218	0.059	16.623	-1.536
9	0.40	1.00, 0.500.0	0.007700	00565	0.283	0.066	21.614	-1.996
10	0.45	1.00, 0.500.0	0.007700	00565	0.357	0.074	27.230	-2.515
11	0.50	1.00, 0.500.0	0007700.0	00565	0.438	0.082	33.463	-3.091

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 72 di 147

Nr.	Х	В, Н	A_fs	A_fi	σ_{c}	$ au_{ extsf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 0.500.0	007700.0	00565	0.000	0.000	0.000	0.000
2	0.16	1.00, 0.500.0	007700.0	00565	0.009	-0.006	-0.073	0.561
3	0.31	1.00, 0.500.0	007700.0	00565	0.032	-0.010	-0.263	2.033
4	0.47	1.00, 0.500.0	007700.0	00565	0.066	-0.013	-0.540	4.169
5	0.62	1.00, 0.500.0	007700.0	00565	0.107	-0.015	-0.876	6.764
6	0.78	1.00, 0.500.0	007700.0	00565	0.152	-0.016	-1.245	9.615
7	0.93	1.00, 0.500.0	007700.0	00565	0.198	-0.016	-1.621	12.517
8	1.08	1.00, 0.500.0	007700.0	00565	0.241	-0.014	-1.977	15.268
9	1.24	1.00, 0.500.0	007700.0	00565	0.279	-0.012	-2.287	17.664
10	1.40	1.00, 0.500.0	007700.0	00565	0.308	-0.008	-2.525	19.500
11	1.55	1.00, 0.500.0	007700.0	00565	0.325	-0.003	-2.664	20.573

Verifiche a fessurazione

Combinazione n° 18
L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro
Afs area di armatura in corrispondenza del lembo di monte in [mq] area di armatura in corrispondenza del lembo di valle in [mq] A_{fi}

 M_{pf} Momento di prima fessurazione espressa in [kNm] Momento agente nella sezione espressa in [kNm] M

deformazione media espressa in [%] ϵ_{m}

Distanza media tra le fessure espressa in [mm] $\boldsymbol{s}_{\text{m}}$

Apertura media della fessura espressa in [mm]

Verifica fessurazione fondazione

N°	Υ	A_{fs}	A_fi	M_{pf}	M	ε _m	S _m	w
1	-0.60	0.000770	0.000565	-58.79	0.00	0.0000	0.00	0.000
2	-0.55	0.000770	0.000565	58.12	0.09	0.0000	0.00	0.000
3	-0.50	0.000770	0.000565	58.12	0.34	0.0000	0.00	0.000
4	-0.45	0.000770	0.000565	58.12	0.76	0.0000	0.00	0.000
5	-0.40	0.000770	0.000565	58.12	1.35	0.0000	0.00	0.000
6	-0.35	0.000770	0.000565	58.12	2.10	0.0000	0.00	0.000
7	-0.30	0.000770	0.000565	58.12	3.00	0.0000	0.00	0.000
8	-0.25	0.000770	0.000565	58.12	4.07	0.0000	0.00	0.000
9	-0.20	0.000770	0.000565	58.12	5.29	0.0000	0.00	0.000
10	-0.15	0.000770	0.000565	58.12	6.67	0.0000	0.00	0.000
11	-0.10	0.000770	0.000565	58.12	8.19	0.0000	0.00	0.000
12	0.00	0.000770	0.000565	-58.79	-6.80	0.0000	0.00	0.000
13	0.15	0.000770	0.000565	-58.79	-6.45	0.0000	0.00	0.000
14	0.31	0.000770	0.000565	-58.79	-5.84	0.0000	0.00	0.000
15	0.46	0.000770	0.000565	-58.79	-5.05	0.0000	0.00	0.000
16	0.62	0.000770	0.000565	-58.79	-4.14	0.0000	0.00	0.000
17	0.78	0.000770	0.000565	-58.79	-3.18	0.0000	0.00	0.000
18	0.93	0.000770	0.000565	-58.79	-2.24	0.0000	0.00	0.000
19	1.08	0.000770	0.000565	-58.79	-1.38	0.0000	0.00	0.000
20	1.24	0.000770	0.000565	-58.79	-0.67	0.0000	0.00	0.000
21	1.40	0.000770	0.000565	-58.79	-0.19	0.0000	0.00	0.000
22	1.55	0.000770	0.000565	-58.79	0.00	0.0000	0.00	0.000

Sollecitazioni fondazione di valle

Combinazione nº 19

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

. ∽9	agno poomito de anomo teres ramo, copresso mina						
Nr.	X	M	T				
1	0.00	0.0000	0.0000				
2	0.05	0.0853	3.4053				
3	0.10	0.3398	6.7655				
4	0.15	0.7611	10.0803				
5	0.20	1.3471	13.3500				
6	0.25	2.0954	16.5744				
7	0.30	3.0037	19.7536				
8	0.35	4.0700	22.8876				
PV_{-}	D_SR_AP_M	U_3_C_014001_N_001_	_R_A_0				

SIS Scpa 73 di 147

9	0.40	5.2918	25.9764
10	0.45	6.6669	29.0199
11	0.50	8.1930	32.0182

Sollecitazioni fondazione di monte

Combinazione nº 19

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.16	-0.1856	-2.2778
3	0.31	-0.6723	-3.9210
4	0.47	-1.3785	-5.1185
5	0.62	-2.2366	-5.8813
6	0.78	-3.1792	-6.2094
7	0.93	-4.1391	-6.1030
8	1.08	-5.0487	-5.5619
9	1.24	-5.8408	-4.5862
10	1.40	-6.4480	-3.1759
11	1.55	-6.8029	-1.3310

Armature e tensioni nei materiali della fondazione

Combinazione nº 19

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

 $A_{\text{fi}} \hspace{1cm} \text{area di armatura in corrispondenza del lembo inferiore in [mq]} \\$

A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

 $\sigma_{c} \hspace{1cm} \text{tensione nel calcestruzzo espressa in [MPa]} \\$

 au_c tensione tangenziale nel calcestruzzo espressa in [MPa]

 σ_{fi} tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa] σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Х	В. Н	A_{fe}	A_{fi}	•	~	~	~ .
141.		,	13		σ_{c}	$ au_{ extsf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 0.500.0	007700.0	00565	0.000	0.000	0.000	0.000
2	0.05	1.00, 0.500.0	007700.0	00565	0.005	0.009	0.348	-0.032
3	0.10	1.00, 0.500.0	007700.0	00565	0.018	0.017	1.388	-0.128
4	0.15	1.00, 0.500.0	007700.0	00565	0.041	0.026	3.109	-0.287
5	0.20	1.00, 0.500.0	007700.0	00565	0.072	0.034	5.502	-0.508
6	0.25	1.00, 0.500.0	007700.0	00565	0.112	0.042	8.558	-0.791
7	0.30	1.00, 0.500.0	007700.0	00565	0.161	0.051	12.268	-1.133
8	0.35	1.00, 0.500.0	007700.0	00565	0.218	0.059	16.623	-1.536
9	0.40	1.00, 0.500.0	007700.0	00565	0.283	0.066	21.614	-1.996
10	0.45	1.00, 0.500.0	007700.0	00565	0.357	0.074	27.230	-2.515
11	0.50	1.00, 0.500.0	007700.0	00565	0.438	0.082	33.463	-3.091
Fonds	-iono di	monto						

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Χ	В, Н	A_fs	A_{fi}	σ_{c}	$ au_{ extsf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 0.500.	0007700.0	000565	0.000	0.000	0.000	0.000
2	0.16	1.00, 0.500.	0007700.0	000565	0.009	-0.006	-0.073	0.561
3	0.31	1.00, 0.500.	0007700.0	000565	0.032	-0.010	-0.263	2.033
4	0.47	1.00, 0.500.	0007700.0	000565	0.066	-0.013	-0.540	4.169
5	0.62	1.00, 0.500.	0007700.0	000565	0.107	-0.015	-0.876	6.764
6	0.78	1.00, 0.500.	0007700.0	000565	0.152	-0.016	-1.245	9.615
7	0.93	1.00, 0.500.	0007700.0	000565	0.198	-0.016	-1.621	12.517
8	1.08	1.00, 0.500.	0007700.0	000565	0.241	-0.014	-1.977	15.268
9	1.24	1.00, 0.500.	0007700.0	000565	0.279	-0.012	-2.287	17.664

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 74 di 147

Verifiche a fessurazione

Combinazione nº 19

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

 A_{fs} area di armatura in corrispondenza del lembo di monte in [mq] A_{fi} area di armatura in corrispondenza del lembo di valle in [mq]

M_{pf} Momento di prima fessurazione espressa in [kNm] M Momento agente nella sezione espressa in [kNm]

 $\varepsilon_{\rm m}$ deformazione media espressa in [%]

s_m Distanza media tra le fessure espressa in [mm] w Apertura media della fessura espressa in [mm]

Verifica fessurazione fondazione

N°	Υ	A_fs	A_fi	M_{pf}	M	ϵ_{m}	Sm	W
1	-0.60	0.000770	0.000565	-58.79	0.00	0.0000	0.00	0.000
2	-0.55	0.000770	0.000565	58.12	0.09	0.0000	0.00	0.000
3	-0.50	0.000770	0.000565	58.12	0.34	0.0000	0.00	0.000
4	-0.45	0.000770	0.000565	58.12	0.76	0.0000	0.00	0.000
5	-0.40	0.000770	0.000565	58.12	1.35	0.0000	0.00	0.000
6	-0.35	0.000770	0.000565	58.12	2.10	0.0000	0.00	0.000
7	-0.30	0.000770	0.000565	58.12	3.00	0.0000	0.00	0.000
8	-0.25	0.000770	0.000565	58.12	4.07	0.0000	0.00	0.000
9	-0.20	0.000770	0.000565	58.12	5.29	0.0000	0.00	0.000
10	-0.15	0.000770	0.000565	58.12	6.67	0.0000	0.00	0.000
11	-0.10	0.000770	0.000565	58.12	8.19	0.0000	0.00	0.000
12	0.00	0.000770	0.000565	-58.79	-6.80	0.0000	0.00	0.000
13	0.15	0.000770	0.000565	-58.79	-6.45	0.0000	0.00	0.000
14	0.31	0.000770	0.000565	-58.79	-5.84	0.0000	0.00	0.000
15	0.46	0.000770	0.000565	-58.79	-5.05	0.0000	0.00	0.000
16	0.62	0.000770	0.000565	-58.79	-4.14	0.0000	0.00	0.000
17	0.78	0.000770	0.000565	-58.79	-3.18	0.0000	0.00	0.000
18	0.93	0.000770	0.000565	-58.79	-2.24	0.0000	0.00	0.000
19	1.08	0.000770	0.000565	-58.79	-1.38	0.0000	0.00	0.000
20	1.24	0.000770	0.000565	-58.79	-0.67	0.0000	0.00	0.000
21	1.40	0.000770	0.000565	-58.79	-0.19	0.0000	0.00	0.000
22	1.55	0.000770	0.000565	-58.79	0.00	0.0000	0.00	0.000

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 75 di 147

1.00

1.00

1.60

1.00

2.1.3. Tipo F3 - Muro tratto F con altezza fuori terra di 4m

Normativa

N.T.C. 2008 - Approccio 1

\sim .		
Simhol	กดเล	ı adottata
OILLIDO	ogia	additata

Coefficiente parziale sfavorevole sulle azioni permanenti Coefficiente parziale favorevole sulle azioni permanenti γGfav Coefficiente parziale sfavorevole sulle azioni variabili γQsfav Coefficiente parziale favorevole sulle azioni variabili γ_{Qfav} Coefficiente parziale di riduzione dell'angolo di attrito drenato $\gamma_{tan\phi'}$

Coefficiente parziale di riduzione della coesione drenata $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione non drenata γ_{cu}

Coefficiente parziale di riduzione del carico ultimo γ_{qu}

Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Occinioloria parzian	por lo azioni o por rone	tio dono deloini	<u>-</u>			
Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	γGfav	1.00	1.00	0.90	0.90
Permanenti	Sfavorevole	γGsfav	1.30	1.00	1.10	1.30
Variabili	Favorevole	γQfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	γ̈Qsfav	1.50	1.30	1.50	1.50
Coefficienti parziali	per i parametri geotecr	nici del terreno:				
Parametri			M1	<i>M</i> 2	M2	M1
Tangente dell'ango	lo di attrito	γ _{tanφ'}	1.00	1.25	1.25	1.00
Coesione efficace		γ _{c'}	1.00	1.25	1.25	1.00
Resistenza non dre	enata	$\gamma_{ m cu}$	1.00	1.40	1.40	1.00
Resistenza a comp	ressione uniassiale	$\gamma_{ m qu}$	1.00	1.60	1.60	1.00
Peso dell'unità di v	olume	γ_{γ}	1.00	1.00	1.00	1.00
Coefficienti di par	tecipazione combinaz	ioni sismiche				
0 # - - -						
-	per le azioni o per l'effe	etto delle azioni:		40	5011	100
Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	$\gamma_{\sf Gfav}$	1.00	1.00	1.00	0.90
Permanenti	Sfavorevole	$\gamma_{\sf Gsfav}$	1.00	1.00	1.00	1.30
Variabili	Favorevole	γQfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	γ̈Qsfav	1.00	1.00	1.00	1.50
Coefficienti parziali	per i parametri geotecr					
Parametri			M1	<i>M</i> 2	M2	M1
Tangente dell'ango	lo di attrito	γ _{tanφ'}	1.00	1.25	1.25	1.00
Coesione efficace			1.00	1.25	1.25	1.00
Resistenza non dre	γ _{cu}	1.00	1.40	1.40	1.00	

 γ_{qu}

 γ_{γ}

1.00

1.00

1.60

1.00

FONDAZIONE SUPERFICIALE

Peso dell'unità di volume

Resistenza a compressione uniassiale

Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Coefficienti parziali			
	R1	R2	R3	
Capacità portante della fondazione	1.00	1.00	1.40	
Scorrimento	1.00	1.00	1.10	
Resistenza del terreno a valle	1.00	1.00	1.40	
Stabilità globale		1.10		

Geometria muro e fondazione

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 76 di 147

77 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Descrizione	Muro a mensola in c.a.
Altezza del paramento Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno Lunghezza del muro	4.00 [m] 0.15 [m] 0.15 [m] 0.00 [°] 0.00 [°] 9.60 [m]
<u>Fondazione</u>	
Lunghezza mensola fondazione di valle Lunghezza mensola fondazione di monte Lunghezza totale fondazione Inclinazione piano di posa della fondazione Spessore fondazione Spessore magrone Contrafforti prefabbricati	0.50 [m] 2.15 [m] 2.80 [m] 0.00 [°] 0.50 [m] 0.10 [m]
Altezza contrafforti Spessore contrafforti Larghezza in sommità Larghezza alla base Larghezza elemento Numero contrafforti Posizione:	4.00 [m] 0.20 [m] 0.20 [m] 0.63 [m] 1.20 [m] 8 Monte

Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 25.000 [kN/mc]
Classe di Resistenza C25/30
Resistenza caratteristica a compressione R_{ck} 30.00 [N/mmq]
Modulo elastico E 31447.048 [N/mmq]
Acciaio

Tipo B450C

Tensione di snervamento σ_{fa} 449.94 [N/mmq]

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	Υ	Α
1	1.35	0.00	0.00
2	9.67	5.00	31.00
3	30.00	5.00	0.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0.60 [m]

Descrizione terreni

Simbologia adottata

Nr. Indice del terreno
Descrizione Descrizione terreno

 γ Peso di volume del terreno espresso in [kN/mc] γ_s Peso di volume saturo del terreno espresso in [kN/mc]

φ Angolo d'attrito interno espresso in [°]

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Angolo d'attrito terra-muro espresso in [°]

Coesione espressa in [N/mmq] С

Adesione terra-muro espressa in [N/mmq]

Descrizione	γ	γ_{s}	ф	δ	C	Ca
AL1	18.50	18.50	38.00	25.33	0.0000	0.0000
A1 - Paramento	18.50	18.50	38.00	25.33	0.0000	0.0000
A1 - Fondazione	18.50	18.50	38.00	38.00	0.0000	0.0000

Stratigrafia

Simbologia adottata

Ν Indice dello strato

Н Spessore dello strato espresso in [m]

Inclinazione espressa in [°] а

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Coefficiente di spinta Ks Terreno dello strato Terreno

Nr.	Н	а	Kw	Ks	Terreno
1	0.10	0.00	0.00	0.00	AL1
2	20.00	0.00	10.68	0.00	A1 - Fondazione

Terreno di riempimento

A1 - Paramento

Ψ

ν * Ψ

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m]

Componente orizzontale del carico concentrato espressa in [kN]

Componente verticale del carico concentrato espressa in [kN]

F_x F_y M Momento espresso in [kNm]

X_i X_f Q_i Ascissa del punto iniziale del carico ripartito espressa in [m]

Ascissa del punto finale del carico ripartito espressa in [m]

Intensità del carico per x=Xi espressa in [kN/m]

Intensità del carico per x=X_f espressa in [kN/m]

Tipo carico: D=distribuito C=concentrato

Condizione n° 1 (Vento)

\sim	Paramento	X = 0.00	Y = 0.00	$F_{v}=3.0000$	$F_{\nu}=0.0000$	M=6.0000

Descrizione combinazioni di carico

Simbologia adottata

Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

Coefficiente di partecipazione della condizione

Ψ Coefficiente di combinazione della condizione

Combinazione nº 1 - Caso A1-M1 (STR)

Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.30	1.00	1.30
Combinazione n° 2 - Caso A2	2-M2 (GEO)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 3 - Caso EC	OU (SLU)			

S/F

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	0.90	1.00	0.90
Peso proprio terrapieno	FAV	0.90	1.00	0.90
Spinta terreno	SFAV	1.10	1.00	1.10

Combinazione n° 4 - Caso A2-M2 (GEO-STAB)

S/F	γ	Ψ	γ*Ψ

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 78 di 147

opere a fate million opere ar se	ostogrio			
Muro prefabbricato – MU.3C.014	.N – Relazione d	i Calcolo		
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
·				
Combinazione n° 5 - Caso A1	-M1 (STR) S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.30	1.00	1.30
Vento	SFAV	1.50	1.00	1.50
Combinazione n° 6 - Caso A2	-M2 (GEO)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Vento	SFAV	1.30	1.00	1.30
Combinazione n° 7 - Caso EC	OU (SLU)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	0.90	1.00	0.90
Peso proprio terrapieno	FAV	0.90	1.00	0.90
Spinta terreno	SFAV	1.10	1.00	1.10
Vento	SFAV	1.50	1.00	1.50
Combinazione n° 8 - Caso A2	<u>-M2 (GEO-STA</u> S/F		Ψ	* \T(
Dogo proprio muro	SFAV	γ 1.00	Ψ 1.00	γ * Ψ 1.00
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno Spinta terreno	SFAV	1.00	1.00	1.00
Vento	SFAV	1.30	1.00	1.30
vento	SFAV	1.30	1.00	1.30
Combinazione nº 9 - Caso A1				* >=<
D	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione nº 10 - Caso A		isma Vert. ne	<u>egativo</u>	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 11 - Caso A	2-M2 (GEO) - S	Sisma Vert. p	<u>ositivo</u>	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 12 - Caso A	2-M2 (GEO) - S	Sisma Vert. n	egativo	
	S/F	γ	одан го Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 13 - Caso E		ma Vert noc	itivo	
COMBINAZIONE II 13 - CASO E	<u>QU (SLU) - SIS</u> S/F	<u>ma ven. pos</u> γ	<u>ιιινο</u> Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
			1.00	1.00
PV_D_SR_AP_MU_3_C_0140	JU I_IN_UU1_K_A	_U		

SIS Scpa 79 di 147

Opere d'Arte Minori – Opere di sos	tegno			
Muro prefabbricato – MU.3C.014.N	– Relazione d	i Calcolo		
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione nº 14 - Caso EQ		_		4 374
Dana manaria mana	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione nº 15 - Caso A2-	•		•	
Dana annania mana	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione nº 16 - Caso A2-			_	
D	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 17 - Quasi Pe		<u>-E)</u>		
_	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00
Vento	SFAV	1.00	1.00	1.00
Combinazione n° 18 - Frequent)T(4)T (
Daga nagaria mayara	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Vento	SFAV	1.00	1.00	1.00
Combinazione nº 19 - Rara (SL)T(+ >=(
D	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno	 CEAV	1.00	1.00	1.00
Vento Impostazioni di analisi	SFAV	1.00	1.00	1.00
Metodo verifica sezioni			Stato	limite
Impostazioni verifiche SLU				
Coefficienti parziali per resisten	ze di calcolo d	dei materiali		
Coefficiente di sicurezza calces			1.60	
Coefficiente di sicurezza calces			1.60	
Coefficiente di sicurezza acciaio		5110	1.15	
Fattore riduzione da resistenza		drica	0.83	
Fattore di riduzione per carichi d			0.85	
Coefficiente di sicurezza per la	1.00			
Impostazioni verifiche SLE				
Condizioni ambientali			Ordina	arie
Armatura ad aderenza migliorat	a		Ordina	ai IO
Verifica fessurazione	u			
Sensibilità delle armature			Sensik	ماند
Valori limite delle aperture delle	faccura		$W_1 = 0$	
·			$\mathbf{w}_1 = 0$.20
PV_D_SR_AP_MU_3_C_01400	1_N_001_R_A	_0		

S/S Scpa 80 di 147

 $w_2 = 0.30$ $w_3 = 0.40$

Metodo di calcolo aperture delle fessure

Verifica delle tensioni

Combinazione di carico

Rara σ_c < 0.60 f_{ck} - σ_f < 0.80 f_{yk} Quasi permanente σ_c < 0.45 f_{ck}

Circ. Min. 252 (15/10/1996)

Calcolo della portanza metodo di Vesic

Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLU): 1.00 Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLE): 1.00

Impostazioni avanzate

Componente verticale della spinta nel calcolo delle sollecitazioni Influenza del terreno sulla fondazione di valle nelle verifiche e nel calcolo delle sollecitazioni Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione Sisma Combinazione sismica

CS_{SCO} Coeff. di sicurezza allo scorrimento
CS_{RIB} Coeff. di sicurezza al ribaltamento
CS_{QLIM} Coeff. di sicurezza a carico limite
CS_{STAB} Coeff. di sicurezza a stabilità globale

С	Tipo	Sisma	CS _{sco}	CS rib	CS qlim	CS _{stab}
1	A1-M1 - [1]		2.73		11.42	
2	A2-M2 - [1]		1.84		3.61	
3	EQU - [1]			2.44		
4	STAB - [1]					1.62
5	A1-M1 - [2]		2.60		10.01	
6	A2-M2 - [2]		1.77		3.17	
7	EQU - [2]			2.14		
8	STAB - [2]					1.62
9	A1-M1 - [3]	Orizzontale + Verticale positivo	1.96		5.67	
10	A1-M1 - [3]	Orizzontale + Verticale negativo	1.89		5.62	
11	A2-M2 - [3]	Orizzontale + Verticale positivo	1.20		1.07	
12	A2-M2 - [3]	Orizzontale + Verticale negativo	1.17		1.02	
13	EQU - [3]	Orizzontale + Verticale positivo		1.88		
14	EQU - [3]	Orizzontale + Verticale negativo		1.77		
15	STAB - [3]	Orizzontale + Verticale positivo				1.37
16	STAB - [3]	Orizzontale + Verticale negativo				1.34
17	SLEQ - [1]		3.22		13.84	
18	SLEF - [1]		3.22		13.84	
19	SLER - [1]		3.22		13.84	

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta Calcolo del carico limite Calcolo della stabilità globale Calcolo della spinta in condizioni di metodo di Culmann metodo di Vesic metodo di Bishop Spinta attiva

81 di 147

Sisma

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

3.28 [m/s^2] 1.07 1.00 0.31 0.50 $k_h=(a_g/g^*\beta_m^*St^*S)=11.13$ $k_v=0.50^*k_h=5.56$
1.27 [m/s^2] 1.20 1.00 0.24 0.50 $k_h=(a_g/g^*\beta_m^*St^*S)=3.74$ $k_v=0.50^*k_h=1.87$
Stessa forma diagramma statico 50.0 9.60 [m]
50.0000 [kN] X=0.50 Y=-3.58
X = 2.15 X = 2.15 Y = -4.50 Y = 0.48 4.98 [m] 0.00 [°]
116.6495 [kN] 92.1990 [kN] 71.4594 [kN] X = 2.15 [m] Y = -2.83 [m] 37.78 [°] 50.47 [°]
157.5394 [kN] X = 1.09 [m] Y = -1.95 [m] 8
8.3000 [kN] 6.9167 [kN] X = 0.23 [m] Y = -2.35 [m]
92.1990 [kN] 291.4655 [kN] -23.5252 [kN] 291.4655 [kN] 92.1990 [kN] 0.08 [m] 2.80 [m] 305.7005 [kN] 17.55 [°] 22.0912 [kNm] 3328.5839 [kN]

S/S Scpa 82 di 147

 $PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0$

83 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Tensioni sul terreno

2.80	[m]
0.12100	[N/mmq]
0.08719	[N/mmq]
	0.12100

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_q = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.50$	$i_q = 0.51$	$i_{\gamma} = 0.35$
Fattori profondità	$d_c = 1.16$	$d_{q} = 1.09$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 35.43$ $N'_{q} = 27.18$ $N'_{\gamma} = 27.17$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.73 Coefficiente di sicurezza a carico ultimo 11.42

Sollecitazioni fondazione di valle

Combinazione nº 1

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1173	4.6885
3	0.10	0.4683	9.3468
4	0.15	1.0515	13.9748
5	0.20	1.8653	18.5727
6	0.25	2.9083	23.1405
7	0.30	4.1789	27.6780
8	0.35	5.6756	32.1853
9	0.40	7.3969	36.6624
10	0.45	9.3413	41.1094
11	0.50	11.5073	45.5261

Sollecitazioni fondazione di monte

Combinazione nº 1

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Χ	M	Т
1	0.00	0.0000	0.0000
2	0.21	-0.7205	-6.4978
3	0.43	-2.7062	-11.7693
4	0.65	-5.6934	-15.8145
5	0.86	-9.4190	-18.6593
6	1.07	-13.6679	-20.7724
7	1.29	-18.3111	-22.3272
8	1.50	-23.2286	-23.3238
9	1.72	-28.3004	-23.7622
10	1.93	-33.4063	-23.6424
11	2.15	-38.4266	-22.9643

Armature e tensioni nei materiali della fondazione

Combinazione nº 1

Simbologia adottata

B base della sezione espressa in [m] H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

Nu sforzo normale ultimo espresso in [kN]
Mu momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Aliquota di taglio assorbito dal cls, espresso in [kN] Aliquota di taglio assorbito dall'armatura, espresso in [kN] Resistenza al taglio, espresso in [kN] VRcd VRsd

VRd

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	N_{u}	\mathbf{M}_{u}	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.0	000000.00	0565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.0	000000.00	0565	0.00	98.61	840.39	173.53		
3	0.10	1.00, 0.500.0	010050.00	0565	0.00	98.55	210.43	173.53		
4	0.15	1.00, 0.500.0	010050.00	0565	0.00	98.55	93.73	173.53		
5	0.20	1.00, 0.500.0	010050.00	0565	0.00	98.55	52.84	173.53		
6	0.25	1.00, 0.500.0	010050.00	0565	0.00	98.55	33.89	173.53		
7	0.30	1.00, 0.500.0	010050.00	0565	0.00	98.55	23.58	173.53		
8	0.35	1.00, 0.500.0	010050.00	0565	0.00	98.55	17.36	173.53		
9	0.40	1.00, 0.500.0	010050.00	0565	0.00	98.55	13.32	173.53		
10	0.45	1.00, 0.500.0	010050.00	0565	0.00	98.55	10.55	173.53		
11	0.50	1.00, 0.500.0	010050.00	0565	0.00	98.55	8.56	173.53		
Fonda	zione di	monte								

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	$N_{\rm u}$	Mu	cs	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	00000.00	0565	0.00	0.00	1000.00	173.53		
2	0.21	1.00, 0.500.00	10050.00	0565	0.00	-172.73	239.74	173.53		
3	0.43	1.00, 0.500.00			0.00	-172.73		173.53		
4	0.65	1.00, 0.500.00				-172.73		173.53		
5	0.86	1.00, 0.500.00			0.00	-172.73		173.53		
6	1.07	1.00, 0.500.00			0.00	-172.73		173.53		
7	1.29	1.00, 0.500.00			0.00	-172.73		173.53		
8	1.50	1.00, 0.500.00				-172.73		173.53		
9	1.72	1.00, 0.500.00				-172.73		173.53		
10	1.93	1.00, 0.500.00			0.00	-172.73		173.53		
11	2.15	1.00, 0.500.00	10050.00	00565	0.00	-172.73	4.50	173.53		
COMB	INAZIO	NE n° 2								
Compo Compo Punto Inclina	onente o onente v d'applic z. della	ointa statica orizzontale della verticale della spi azione della spir spinta rispetto a nea di rottura in c	inta statio nta Ila norma	ca ile alla si			126.1612 107.2533 66.4333 X = 2.15 31.77 46.51	[kN] [kN] [kN] [m] [°] [°]	Y = -2.73	[m]
Barice Numer Peso d Peso d	ntro terr o contra del singo del contr	no gravante sulla apieno gravante afforti olo contrafforte rafforte riferito ad trafforte	sulla fon	idazione	a monte	e	157.5394 X = 1.09 8 8.3000 6.9167 X = 0.23	[kN] [m] [kN] [kN] [m]	Y = -1.95 Y = -2.35	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione PV_D_SR_AP_MU_3_C_014001_N_001_R_A_0				107.2533 286.4393 -18.2184 286.4393 107.2533 0.23 2.80 305.8607 20.53 65.2553	[kN] [kN] [kN] [kN] [m] [m] [kN] [kNm]					

84 di 147 SIS Scpa

85 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Tensioni sul terreno

Lunghezza fondazione reagente	2.80	[m]
Tensione terreno allo spigolo di valle	0.15224	[N/mmq]
Tensione terreno allo spigolo di monte	0.05236	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_q = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.41$	$i_q = 0.44$	$i_{\gamma} = 0.27$
Fattori profondità	$d_c = 1.16$	$d_{q} = 1.11$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 35.43$ $N'_{q} = 27.18$ $N'_{\gamma} = 27.17$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.84 Coefficiente di sicurezza a carico ultimo 3.61

Sollecitazioni fondazione di valle

Combinazione nº 2

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Х	M	
0.00	0.0000	0.0000
0.05	0.1601	6.3874
0.10	0.6373	12.6856
0.15	1.4271	18.8947
0.20	2.5252	25.0146
0.25	3.9271	31.0453
0.30	5.6283	36.9868
0.35	7.6243	42.8391
0.40	9.9107	48.6023
0.45	12.4830	54.2763
0.50	15.3368	59.8611
	0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45	0.00 0.0000 0.05 0.1601 0.10 0.6373 0.15 1.4271 0.20 2.5252 0.25 3.9271 0.30 5.6283 0.35 7.6243 0.40 9.9107 0.45 12.4830

Sollecitazioni fondazione di monte

Combinazione nº 2

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.21	-0.9171	-8.1711
3	0.43	-3.3585	-14.1793
4	0.65	-6.8592	-18.0246
5	0.86	-10.9545	-19.7272
6	1.07	-15.2168	-19.6473
7	1.29	-19.2847	-17.9184
8	1.50	-22.8036	-14.5406
9	1.72	-25.4190	-9.5139
10	1.93	-26.7764	-2.8383
11	2.15	-26.5213	5.4862

Armature e tensioni nei materiali della fondazione

Combinazione nº 2

Simbologia adottata

B base della sezione espressa in [m] H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

N_u sforzo normale ultimo espresso in [kN]

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

M_u momento ultimo espresso in [kNm] CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	0.00000	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	0.00000.00	00565	0.00	98.61	616.09	173.53		
3	0.10	1.00, 0.500.00	010050.00	00565	0.00	98.55	154.65	173.53		
4	0.15	1.00, 0.500.00	010050.00	00565	0.00	98.55	69.06	173.53		
5	0.20	1.00, 0.500.00	010050.00	00565	0.00	98.55	39.03	173.53		
6	0.25	1.00, 0.500.00	010050.00	00565	0.00	98.55	25.10	173.53		
7	0.30	1.00, 0.500.00	010050.00	00565	0.00	98.55	17.51	173.53		
8	0.35	1.00, 0.500.00	010050.00	00565	0.00	98.55	12.93	173.53		
9	0.40	1.00, 0.500.00	010050.00	00565	0.00	98.55	9.94	173.53		
10	0.45	1.00, 0.500.00	010050.00	00565	0.00	98.55	7.90	173.53		
11	0.50	1.00, 0.500.00	010050.00	00565	0.00	98.55	6.43	173.53		
<u>Fonda</u>	azione di	<u>monte</u>								

Momento ribaltante rispetto allo spigolo a valle

Momento stabilizzante rispetto allo spigolo a valle

Sforzo normale sul piano di posa della fondazione

Eccentricità rispetto al baricentro della fondazione

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Sforzo tangenziale sul piano di posa della fondazione

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.0	0.000000.0	00565	0.00	0.00	1000.00	173.53		
2	0.21	1.00, 0.500.0	010050.0	00565	0.00	-172.73	188.34	173.53		
3	0.43	1.00, 0.500.0	010050.0	00565	0.00	-172.73	51.43	173.53		
4	0.65	1.00, 0.500.0	010050.0	00565	0.00	-172.73	25.18	173.53		
5	0.86	1.00, 0.500.0	010050.0	00565	0.00	-172.73	15.77	173.53		
6	1.07	1.00, 0.500.0	010050.0	00565	0.00	-172.73	11.35	173.53		
7	1.29	1.00, 0.500.0	010050.0	00565	0.00	-172.73	8.96	173.53		
8	1.50	1.00, 0.500.0	010050.0	00565	0.00	-172.73	7.57	173.53		
9	1.72	1.00, 0.500.0	010050.0	00565	0.00	-172.73	6.80	173.53		
10	1.93	1.00, 0.500.0	010050.0	00565	0.00	-172.73	6.45	173.53		
11	2.15	1.00, 0.500.0	010050.0	00565	0.00	-172.73	6.51	173.53		

COMBINAZIONE n° 3

O M D M L I O M L I O				
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	138.7773 117.9786 73.0766 X = 2.15 31.77 46.51	[kN] [kN] [kN] [m] [°] [°]	Y = -2.73	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte	141.7854 X = 1.09 8 7.4700 6.2250 X = 0.23	[kN] [m] [kN] [kN] [m]	Y = -1.95 Y = -2.35	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro	117.9786 271.0820 -16.3966	[kN] [kN] [kN]		

SIS Scpa 86 di 147

208.8527

510.2659

271.0820

117.9786

0.29

[kNm]

[kNm]

[kN]

[kN]

[m]

Lunghezza fondazione reagente	2.80	[m]
Risultante in fondazione	295.6424	[kN]
Inclinazione della risultante (rispetto alla normale)	23.52	[°]
Momento rispetto al baricentro della fondazione	78.1017	[kNm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 2.44

Stabilità globale muro + terreno

Combinazione nº 4

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [N/mmq]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 3.41

Raggio del cerchio R[m]= 8.20

Ascissa a valle del cerchio Xi[m]= -4.58Ascissa a monte del cerchio Xs[m]= 8.18

Larghezza della striscia dx[m]= 0.51
Coefficiente di sicurezza C= 1.62
Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Stris	cia W	α(°)	Wsinα	b/cosα	ф	С	u
1	2190.16	77.64	2139.38	2.38	32.01	0.000	0.000
2	3543.37	65.05	3212.67	1.21	32.01	0.000	0.000
3	4161.49	57.50	3509.70	0.95	32.01	0.000	0.000
4	4558.57	51.32	3558.83	0.82	32.01	0.000	0.000
5	4823.67	45.91	3464.35	0.73	32.01	0.000	0.000
6	4995.30	40.98	3275.91	0.68	32.01	0.000	0.000
7	5094.53	36.40	3023.32	0.63	32.01	0.000	0.000
8	5134.37	32.08	2726.96	0.60	32.01	0.000	0.000
9	5123.48	27.96	2401.95	0.58	32.01	0.000	0.000
10	5067.92	23.99	2060.19	0.56	32.01	0.000	0.000
11	4972.06	20.13	1711.53	0.54	32.01	0.000	0.000
12	4870.54	16.38	1373.24	0.53	32.01	0.000	0.000
13	4840.50	12.69	1063.32	0.52	32.01	0.000	0.000
14	4696.16	9.06	739.17	0.52	32.01	0.000	0.000
15	4737.24	5.46	450.64	0.51	32.01	0.000	0.000
16	4768.78	1.88	156.68	0.51	32.01	0.000	0.000
17	2947.13	-1.69	-86.69	0.51	32.01	0.000	0.000
18	1348.94	-5.26	-123.68	0.51	32.01	0.000	0.000
19	1237.08	-8.86	-190.46	0.52	32.01	0.000	0.000
20	1144.43	-12.49	-247.46	0.52	32.01	0.000	0.000
21	1018.83	-16.17	-283.75	0.53	32.01	0.000	0.000
22	858.59	-19.92	-292.60	0.54	32.01	0.000	0.000
23	661.41	-23.77	-266.60	0.56	32.01	0.000	0.000
24	424.14	-27.73	-197.38	0.58	32.01	0.000	0.000
25	142.47	-31.85	-75.18	0.60	32.01	0.000	0.000

 $\Sigma W_i = 817.5067 [kN]$

 $\Sigma W_{i} \sin \alpha_{i} = 324.6452 [kN]$

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 87 di 147

 $\Sigma W_{i} tan \phi_{i} = 510.9650 [kN]$

 $\Sigma \tan \alpha_i \tan \phi_i = 7.63$

COMBINAZIONE n° 5

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	116.6495 92.1990 71.4594 X = 2.15 37.78 50.47	[kN] [kN] [kN] [m] [°] [°]	Y = -2.83	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro	157.5394 X = 1.09 8 8.3000 6.9167	[kN] [m] [kN]	Y = -1.95	[m]
Baricentro contrafforte	X = 0.23	[m]	Y = -2.35	[m]
Risultanti carichi esterni Componente dir. X	4.50	[kN]		
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	96.6990 291.4655 -23.5252 291.4655 96.6990 0.18 2.80 307.0876 18.35 51.3412 2916.7987	[kN] [kN] [kN] [kN] [m] [m] [kN] [kN] [kN] [kNm]		

Tensioni sul terreno

Lunghezza fondazione reagente	2.80	[m]
Tensione terreno allo spigolo di valle	0.14339	[N/mmq]
Tensione terreno allo spigolo di monte	0.06480	[N/mmq]
l'ensione terreno allo spigolo di monte	0.06480	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_{q} = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.48$	$i_q = 0.49$	$i_{\gamma} = 0.33$
Fattori profondità	$d_c = 1.16$	$d_{q} = 1.09$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{y} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 35.43$ $N'_{q} = 27.18$ $N'_{\gamma} = 27.17$

88 di 147

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.60 Coefficiente di sicurezza a carico ultimo 10.01

Sollecitazioni fondazione di valle

Combinazione nº 5

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1450	5.7877
PV_D	D_SR_AP_MU	J_3_C_014001_N_00)1_R_A_0

3	0.10	0.5776	11.5053
4	0.15	1.2943	17.1527
5	0.20	2.2917	22.7300
6	0.25	3.5662	28.2371
7	0.30	5.1142	33.6740
8	0.35	6.9324	39.0408
9	0.40	9.0172	44.3374
10	0.45	11.3650	49.5638
11	0.50	13.9724	54.7201

Sollecitazioni fondazione di monte

Combinazione nº 5

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	T
1	0.00	0.0000	0.0000
2	0.21	-1.2114	-10.9411
3	0.43	-4.5638	-19.9167
4	0.65	-9.6347	-26.9269
5	0.86	-16.0020	-31.9977
6	1.07	-23.2918	-35.5976
7	1.29	-31.2160	-37.9001
8	1.50	-39.4958	-38.9053
9	1.72	-47.8523	-38.6132
10	1.93	-56.0065	-37.0237
11	2.15	-63.6795	-34.1369

Armature e tensioni nei materiali della fondazione

Combinazione nº 5

Simbologia adottata

base della sezione espressa in [m] altezza della sezione espressa in [m] В Н

 A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq]

area di armatura in corrispondenza del lembo superiore in [mq]

 $\begin{matrix} A_{fs} \\ N_u \end{matrix}$ sforzo normale ultimo espresso in [kN] M_{u} momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

Aliquota di taglio assorbito dal cls, espresso in [kN] VRcd

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	0.00000.00	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	0.00000	00565	0.00	98.61	680.13	173.53		
3	0.10	1.00, 0.500.00	010050.00	00565	0.00	98.55	170.63	173.53		
4	0.15	1.00, 0.500.00	010050.00	00565	0.00	98.55	76.14	173.53		
5	0.20	1.00, 0.500.00	010050.00	00565	0.00	98.55	43.00	173.53		
6	0.25	1.00, 0.500.00	010050.00	00565	0.00	98.55	27.64	173.53		
7	0.30	1.00, 0.500.00	010050.00	00565	0.00	98.55	19.27	173.53		
8	0.35	1.00, 0.500.00	010050.00	00565	0.00	98.55	14.22	173.53		
9	0.40	1.00, 0.500.00	010050.00	00565	0.00	98.55	10.93	173.53		
10	0.45	1.00, 0.500.00	010050.00	00565	0.00	98.55	8.67	173.53		
11	0.50	1.00, 0.500.00	010050.00	00565	0.00	98.55	7.05	173.53		
<u>Fonda</u>	zione di	<u>monte</u>								

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.0	0.00000.0	00565	0.00	0.00	1000.00	173.53		
2	0.21	1.00, 0.500.0	010050.0	00565	0.00	-172.73	142.59	173.53		
3	0.43	1.00. 0.500.0	010050.0	00565	0.00	-172.73	37.85	173.53		

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 89 di 147

90 di 147

Muro prefabbricato – MU.3C.014.N – Relazione di Calo	colo					
4 0.65 1.00 0.500.0010050.000565	0.00	170.7	17.00	170 F0		
4 0.65 1.00, 0.500.0010050.000565 5 0.86 1.00, 0.500.0010050.000565		-172.73 -172.73		173.53 173.53		
5 0.86 1.00, 0.500.0010050.000565 6 1.07 1.00, 0.500.0010050.000565		-172.7		173.53		
7 1.29 1.00, 0.500.0010050.000565		-172.7		173.53		
8 1.50 1.00, 0.500.0010050.000565		-172.7		173.53		
9 1.72 1.00, 0.500.0010050.000565		-172.7		173.53		
10 1.93 1.00, 0.500.0010050.000565		-172.7		173.53		
11 2.15 1.00, 0.500.0010050.000565		-172.73		173.53		
<u>COMBINAZIONE nº 6</u>	0.00	172.7	2.71	170.00		
COMBINAZIONE II O						
Valore della spinta statica			126.1612	[kN]		
Componente orizzontale della spinta statica			107.2533	[kN]		
Componente verticale della spinta statica			66.4333	[kN]		
Punto d'applicazione della spinta			X = 2.15	[m]	Y = -2.73	[m]
Inclinaz. della spinta rispetto alla normale alla sup	erficie	2	31.77	[°]	1 – 2.70	[]
Inclinazione linea di rottura in condizioni statiche	Cilioic	•	46.51	[°]		
memazione inica di fottara in condizioni statione			40.51	[]		
Peso terrapieno gravante sulla fondazione a mon	te		157.5394	[kN]		
Baricentro terrapieno gravante sulla fondazione a		-	X = 1.09	[m]	Y = -1.95	[m]
Numero contrafforti			8	[]		[]
Peso del singolo contrafforte			8.3000	[kN]		
Peso del contrafforte riferito ad un metro di muro			6.9167	[kN]		
Baricentro contrafforte		X = 0.23	[m]	Y = -2.35	[m]	
Dancomic contranents			7. – 0.20	[]	1 – 2.00	[]
Risultanti carichi esterni						
Componente dir. X			3.90	[kN]		
				[]		
<u>Risultanti</u>						
Risultante dei carichi applicati in dir. orizzontale			111.1533	[kN]		
Risultante dei carichi applicati in dir. verticale			286.4393	[kN]		
Resistenza passiva a valle del muro			-18.2184	[kN]		
Sforzo normale sul piano di posa della fondazione	j.		286.4393	[kN]		
Sforzo tangenziale sul piano di posa della fondazi			111.1533	[kN]		
Eccentricità rispetto al baricentro della fondazione			0.32	[m]		
Lunghezza fondazione reagente	•		2.80	[m]		
Risultante in fondazione			307.2499	[kN]		
Inclinazione della risultante (rispetto alla normale)			21.21	[°]		
Momento rispetto al baricentro della fondazione	,		90.6053	L J [kNm]		
Carico ultimo della fondazione			909.1580	[kN]		
Canco ditimo della fondazione			909.1300	[ניוא]		
Tensioni sul terreno						
Lunghezza fondazione reagente			2.80	[m]		
Tensione terreno allo spigolo di valle			0.17164	[N/mmq]		
Tensione terreno allo spigolo di monte			0.03296	[N/mmq]		
Fattori per il calcolo della capacità portante			0.00200	[,		
Coeff. capacità portante $N_c = 61.3$	35		$N_{q} = 48.9$	93	$N_{\gamma} = 7$	78 02
Fattori forma $s_c = 1.0$			$s_q = 1.0$		•	1.00
Fattori inclinazione $i_c = 0.3$			$i_q = 0.4$			0.26
Fattori profondità $d_c = 0.5$			$d_{q} = 0.5$			1.00
Fattori inclinazione piano posa $b_c = 1.0$			$b_q = 1.0$,	1.00
Fattori inclinazione pendio $g_c = 1.0$			$g_q = 1.0$,	1.00
I coefficienti N' tengono conto dei fattori di forma		ndità ir				
inclinazione pendio.	, proid	muna, II	ioni iazionie (Janiou, IIIOI	mazionie pia	no di posa,
$N'_c = 35.4$	13		$N'_{q} = 27.7$	18	$N'_{\gamma} = 2$	77 17
COEFFICIENTI DI SICUREZZA	1 0		$\mathbf{N}_{q} - \mathbf{Z}I$.	10	$i \mathbf{v}_{\gamma} = \mathbf{z}_{\gamma}$	-1.11
Coefficiente di sicurezza a scorrimento			1.77			
Coefficiente di sicurezza a sconimento Coefficiente di sicurezza a carico ultimo			3.17			
Sollogitazioni fondazione di vollo			J. 17			

Sollecitazioni fondazione di valle

Combinazione nº 6

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.05	0.1840	7.3401
3	0.10	0.7319	14.5564
4	0.15	1.6376	21.6489
5	0.20	2.8948	28.6175
6	0.25	4.4973	35.4624
7	0.30	6.4389	42.1834
8	0.35	8.7136	48.7805
9	0.40	11.3149	55.2539
10	0.45	14.2369	61.6034
11	0.50	17.4732	67.8291

Sollecitazioni fondazione di monte

Combinazione nº 6

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.21	-1.3426	-12.0219
3	0.43	-4.9685	-21.2404
4	0.65	-10.2750	-27.6554
5	0.86	-16.6598	-31.2871
6	1.07	-23.5575	-32.4958
7	1.29	-30.4689	-31.4149
8	1.50	-36.9018	-28.0446
9	1.72	-42.3640	-22.3848
10	1.93	-46.3632	-14.4355
11	2.15	-48.4072	-4.1967

Armature e tensioni nei materiali della fondazione

Combinazione nº 6

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

Nu sforzo normale ultimo espresso in [kN]
Mu momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	${\sf A_{fs}}$	A_{fi}	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	CS	\mathbf{V}_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	00.00000	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	00.0000.00	00565	0.00	98.61	535.86	173.53		
3	0.10	1.00, 0.500.00	010050.00	00565	0.00	98.55	134.65	173.53		
4	0.15	1.00, 0.500.00	010050.00	00565	0.00	98.55	60.18	173.53		
5	0.20	1.00, 0.500.00	010050.00	00565	0.00	98.55	34.05	173.53		
6	0.25	1.00, 0.500.00	010050.00	00565	0.00	98.55	21.91	173.53		
7	0.30	1.00, 0.500.00	010050.00	00565	0.00	98.55	15.31	173.53		
8	0.35	1.00, 0.500.00	010050.00	00565	0.00	98.55	11.31	173.53		
9	0.40	1.00, 0.500.00	010050.00	00565	0.00	98.55	8.71	173.53		
10	0.45	1.00, 0.500.00	010050.00	00565	0.00	98.55	6.92	173.53		
11	0.50	1.00, 0.500.00	010050.00	00565	0.00	98.55	5.64	173.53		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 91 di 147

92 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Nr.	Y	B, H 1.00, 0.500.000	A _{fs} A _{fi}	$N_{\rm u}$	Μ ι		V _{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1 2	0.00 0.21	1.00, 0.500.000		0.00 0.00	-172.73	1000.00 128.66	173.53 173.53		
3	0.43	1.00, 0.500.00		0.00	-172.73 -172.73		173.53		
4 5	0.65 0.86	1.00, 0.500.00° 1.00, 0.500.00°		0.00	-172.73 -172.73		173.53 173.53		
6	1.07	1.00, 0.500.00	10050.000565	0.00	-172.73	7.33	173.53		
7	1.29	1.00, 0.500.00		0.00	-172.73		173.53		
8 9	1.50 1.72	1.00, 0.500.00° 1.00, 0.500.00°		0.00	-172.73 -172.73		173.53 173.53		
10	1.93	1.00, 0.500.00		0.00	-172.73		173.53		
11	2.15	1.00, 0.500.00	10050.000565	0.00	-172.73	3.57	173.53		
COMB	INAZIO	NE n° 7							
Compo Compo Punto Inclina	onente conente vonente	vinta statica vizzontale della verticale della spi azione della spin spinta rispetto al ea di rottura in c	138.7773 117.9786 73.0766 X = 2.15 31.77 46.51	[kN] [kN] [kN] [m] [°] [°]	Y = -2.73	[m]			
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti						141.7854 X = 1.09 8	[kN] [m]	Y = -1.95	[m]
Peso o	lel singo lel contr	lo contrafforte afforte riferito ad trafforte	l un metro di mu	ro		7.4700 6.2250 X = 0.23	[kN] [kN] [m]	Y = -2.35	[m]
	a <i>nti cario</i> onente c	<u>rhi esterni</u> lir. X				4.50	[kN]		
Risulta Resiste Mome Sforzo Sforzo Eccent Lunghe Risulta Inclina	inte dei inte dei enza parto ribalinto stab normale tangenziricità risezza for inte in fozione dei	carichi applicati i carichi applicati i ssiva a valle del tante rispetto alle dizzante rispetto e sul piano di po ziale sul piano di petto al baricenti dazione reageni endazione ella risultante (ris	in dir. verticale muro o spigolo a valle allo spigolo a va sa della fondazio posa della fond ro della fondazio te spetto alla norma		122.4786 271.0820 -16.3966 238.1027 510.2659 271.0820 122.4786 0.40 2.80 297.4668 24.31 107.3517	[kN] [kN] [kNm] [kNm] [kN] [kN] [kN] [m] [m] [m] [kN]			
0055			_						

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 2.14

Stabilità globale muro + terreno

Combinazione n° 8

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 3.41

Raggio del cerchio R[m]= 8.20

Ascissa a valle del cerchio Xi[m]=-4.58Ascissa a monte del cerchio Xs[m]=8.18

Larghezza della striscia dx[m]= 0.51 Coefficiente di sicurezza C= 1.62 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	Wsin α	b/cosα	ф	С	u
1	2190.16	77.64	2139.38	2.38	32.01	0.000	0.000
2	3543.37	65.05	3212.67	1.21	32.01	0.000	0.000
3	4161.49	57.50	3509.70	0.95	32.01	0.000	0.000
4	4558.57	51.32	3558.83	0.82	32.01	0.000	0.000
5	4823.67	45.91	3464.35	0.73	32.01	0.000	0.000
6	4995.30	40.98	3275.91	0.68	32.01	0.000	0.000
7	5094.53	36.40	3023.32	0.63	32.01	0.000	0.000
8	5134.37	32.08	2726.96	0.60	32.01	0.000	0.000
9	5123.48	27.96	2401.95	0.58	32.01	0.000	0.000
10	5067.92	23.99	2060.19	0.56	32.01	0.000	0.000
11	4972.06	20.13	1711.53	0.54	32.01	0.000	0.000
12	4870.54	16.38	1373.24	0.53	32.01	0.000	0.000
13	4840.50	12.69	1063.32	0.52	32.01	0.000	0.000
14	4696.16	9.06	739.17	0.52	32.01	0.000	0.000
15	4737.24	5.46	450.64	0.51	32.01	0.000	0.000
16	4768.78	1.88	156.68	0.51	32.01	0.000	0.000
17	2947.13	-1.69	-86.69	0.51	32.01	0.000	0.000
18	1348.94	-5.26	-123.68	0.51	32.01	0.000	0.000
19	1237.08	-8.86	-190.46	0.52	32.01	0.000	0.000
20	1144.43	-12.49	-247.46	0.52	32.01	0.000	0.000
21	1018.83	-16.17	-283.75	0.53	32.01	0.000	0.000
22	858.59	-19.92	-292.60	0.54	32.01	0.000	0.000
23	661.41	-23.77	-266.60	0.56	32.01	0.000	0.000
24	424.14	-27.73	-197.38	0.58	32.01	0.000	0.000
25	142.47	-31.85	-75.18	0.60	32.01	0.000	0.000

 $\Sigma W_i = 817.5067 [kN]$

 $\Sigma W_i \sin \alpha_i = 324.6452 [kN]$

 $\Sigma W_i tan \phi_i = 510.9650 [kN]$

 $\Sigma \tan \alpha_i \tan \phi_i = 7.63$

COMBINAZIONE nº 9

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	89.7304 70.9223 54.9688 X = 2.15 37.78 50.47	[kN] [kN] [kN] [m] [°] [°]	Y = -2.83	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	56.9059 X = 2.15 45.84	[kN] [m] [°]	Y = -2.83	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte	157.5394 X = 1.09 8 8.3000	[kN] [m] [kN]	Y = -1.95	[m]

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 93 di 147

[m]

94 di 147

Muro pre	efabbricato –	MU.3C.014.I	N – Relazione	di Calcolo
----------	---------------	-------------	---------------	------------

Peso del contrafforte riferito ad un metro di muro	6.9167	[kN]	
Baricentro contrafforte	X = 0.23	[m]	Y = -2.35
Inerzia del muro	5.5628	[kN]	
Inerzia verticale del muro	2.7814	[kN]	
Inerzia del terrapieno fondazione di monte	17.5272	[kN]	
Inerzia verticale del terrapieno fondazione di monte	8.7636	[kN]	
Inerzia del singolo contrafforte	0.9234	[kN]	
Inerzia del contrafforte riferita ad un metro di muro	0.7695	[kN]	
Inerzia verticale del singolo contrafforte	0.4617	[kN]	
Inerzia verticale del contrafforte riferita ad un metro di muro	0.3848	[kN]	

Risultanti

Risultante dei carichi applicati in dir. orizzontale	140.3773	[kN]
Risultante dei carichi applicati in dir. verticale	321.7651	[kN]
Resistenza passiva a valle del muro	-23.5252	[kN]
Sforzo normale sul piano di posa della fondazione	321.7651	[kN]
Sforzo tangenziale sul piano di posa della fondazione	140.3773	[kN]
Eccentricità rispetto al baricentro della fondazione	0.27	[m]
Lunghezza fondazione reagente	2.80	[m]
Risultante in fondazione	351.0535	[kN]
Inclinazione della risultante (rispetto alla normale)	23.57	[°]
Momento rispetto al baricentro della fondazione	85.7251	[kNm]
Carico ultimo della fondazione	1824.8007	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	2.80	[m]
Tensione terreno allo spigolo di valle	0.18052	[N/mmq]
Tensione terreno allo spigolo di monte	0.04931	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_q = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.35$	$i_q = 0.36$	$i_{\gamma} = 0.20$
Fattori profondità	$d_c = 1.16$	$d_{q} = 1.09$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 35.43$$
 $N'_{g} = 27.18$ $N'_{\gamma} = 27.17$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.96 Coefficiente di sicurezza a carico ultimo 5.67

Sollecitazioni fondazione di valle

Combinazione nº 9

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1952	7.7875
3	0.10	0.7768	15.4579
4	0.15	1.7390	23.0111
5	0.20	3.0760	30.4472
6	0.25	4.7818	37.7661
7	0.30	6.8506	44.9679
8	0.35	9.2766	52.0525
9	0.40	12.0539	59.0199
10	0.45	15.1766	65.8702
11	0.50	18.6390	72.6033

Sollecitazioni fondazione di monte

Combinazione nº 9

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.21	-0.9691	-8.5680
3	0.43	-3.4922	-14.4560
4	0.65	-6.9931	-17.6638
5	0.86	-10.8960	-18.2116
6	1.07	-14.6619	-16.4597
7	1.29	-17.8184	-12.5416
8	1.50	-19.8996	-6.4573
9	1.72	-20.4398	1.7931
10	1.93	-18.9733	12.2098
11	2.15	-15.0343	24.7925

Armature e tensioni nei materiali della fondazione

Combinazione nº 9

Simbologia adottata

B base della sezione espressa in [m] H altezza della sezione espressa in [m]

 A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

A_{fs} area di armatura in corrispondenza del N_u sforzo normale ultimo espresso in [kN] M_u momento ultimo espresso in [kNm] CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_{u}	$\mathbf{M}_{\mathbf{u}}$	cs	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	00.00000	0565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	00.00000	0565	0.00	98.61	505.23	173.53		
3	0.10	1.00, 0.500.00	010050.00	0565	0.00	98.55	126.87	173.53		
4	0.15	1.00, 0.500.00	010050.00	0565	0.00	98.55	56.67	173.53		
5	0.20	1.00, 0.500.00	010050.00	0565	0.00	98.55	32.04	173.53		
6	0.25	1.00, 0.500.00	010050.00	0565	0.00	98.55	20.61	173.53		
7	0.30	1.00, 0.500.00	010050.00	0565	0.00	98.55	14.39	173.53		
8	0.35	1.00, 0.500.00	010050.00	0565	0.00	98.55	10.62	173.53		
9	0.40	1.00, 0.500.00	010050.00	0565	0.00	98.55	8.18	173.53		
10	0.45	1.00, 0.500.00	010050.00	0565	0.00	98.55	6.49	173.53		
11	0.50	1.00, 0.500.00	010050.00	0565	0.00	98.55	5.29	173.53		
Eanda	ziono di	monto								

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	N_u	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.0	0.00000	00565	0.00	0.00	1000.00	173.53		
2	0.21	1.00, 0.500.0	010050.0	00565	0.00	-172.73	178.24	173.53		
3	0.43	1.00, 0.500.0	010050.0	00565	0.00	-172.73	49.46	173.53		
4	0.65	1.00, 0.500.0	010050.0	00565	0.00	-172.73	24.70	173.53		
5	0.86	1.00, 0.500.0	010050.0	00565	0.00	-172.73	15.85	173.53		
6	1.07	1.00, 0.500.0	010050.0	00565	0.00	-172.73	11.78	173.53		
7	1.29	1.00, 0.500.0	010050.0	00565	0.00	-172.73	9.69	173.53		
8	1.50	1.00, 0.500.0	010050.0	00565	0.00	-172.73	8.68	173.53		
9	1.72	1.00, 0.500.0	010050.0	00565	0.00	-172.73	8.45	173.53		
10	1.93	1.00, 0.500.0	010050.0	00565	0.00	-172.73	9.10	173.53		
11	2.15	1.00, 0.500.0	010050.0	00565	0.00	-172.73	11.49	173.53		
COMB	INAZIO	NF nº 10								

COMBINAZIONE n° 10

Valore della spinta statica 89.7304 [kN]

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 95 di 147

Y = -2.35

[m]

96 di 147

Muro prefabbricato – MU.3C.014.N – Relazione di Calcolo
Componente orizzontale della spinta statica

Componente verticale della spinta statica	54.9688	[kN]		
Punto d'applicazione della spinta	X = 2.15	[m]	Y = -2.83	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	37.78	[°]		
Inclinazione linea di rottura in condizioni statiche	50.47	[°]		
Incremento sismico della spinta	48.0064	[kN]		
Punto d'applicazione dell'incremento sismico di spinta	X = 2.15	[m]	Y = -2.83	[m]

70.9223

-0.3848

[kN]

[kN]

Inclinazione linea di rottura in condizioni sismiche	45.28	[°]	1 – 2.00	[]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	157.5394 X = 1.09	[kN] [m]	Y = -1.95	[m]

Numero contrafforti	8	
Peso del singolo contrafforte	8.3000	[kN]
Peso del contrafforte riferito ad un metro di muro	6.9167	[kN]
Baricentro contrafforte	X = 0.23	[m]
Inerzia del muro	5.5628	[kN]
Inerzia verticale del muro	-2.7814	[kN]
Inerzia del terrapieno fondazione di monte	17.5272	[kN]
Inerzia verticale del terrapieno fondazione di monte	-8.7636	[kN]
Inerzia del singolo contrafforte	0.9234	[kN]
Inerzia del contrafforte riferita ad un metro di muro	0.7695	[kN]
Inerzia verticale del singolo contrafforte	-0.4617	[kN]

Inerzia verticale del contrafforte riferita ad un metro di muro

Risultanti

<u>Risultanti</u>		
Risultante dei carichi applicati in dir. orizzontale	133.3432	[kN]
Risultante dei carichi applicati in dir. verticale	292.4537	[kN]
Resistenza passiva a valle del muro	-23.5252	[kN]
Sforzo normale sul piano di posa della fondazione	292.4537	[kN]
Sforzo tangenziale sul piano di posa della fondazione	133.3432	[kN]
Eccentricità rispetto al baricentro della fondazione	0.29	[m]
Lunghezza fondazione reagente	2.80	[m]
Risultante in fondazione	321.4181	[kN]
Inclinazione della risultante (rispetto alla normale)	24.51	[°]
Momento rispetto al baricentro della fondazione	85.8548	[kNm]
Carico ultimo della fondazione	1642.4362	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	2.80	[m]
Tensione terreno allo spigolo di valle	0.17015	[N/mmq]
Tensione terreno allo spigolo di monte	0.03874	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_{g} = 48.93$	$N_{v} = 78.02$
Fattori forma	$s_c = 1.00$	$s_{a} = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.33$	$i_{q} = 0.34$	$i_{\gamma} = 0.18$
Fattori profondità	$d_c = 1.16$	$d_{q} = 1.09$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$N'_{c} = 35.43$	$N'_{q} = 27.18$	$N'_{\gamma} = 27.17$
------------------	------------------	-----------------------

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.89
Coefficiente di sicurezza a carico ultimo 5.62

Sollecitazioni fondazione di valle

Combinazione nº 10

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm Taglio positivo se diretto verso l'alto, espresso in kN

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1822	7.2690
3	0.10	0.7249	14.4206
4	0.15	1.6223	21.4550
5	0.20	2.8685	28.3719
6	0.25	4.4576	35.1716
7	0.30	6.3837	41.8539
8	0.35	8.6410	48.4189
9	0.40	11.2236	54.8666
10	0.45	14.1257	61.1969
11	0.50	17 3414	67 4099

Sollecitazioni fondazione di monte

Combinazione nº 10

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.21	-1.2132	-10.8384
3	0.43	-4.4682	-18.9935
4	0.65	-9.1881	-24.4652
5	0.86	-14.7963	-27.2735
6	1.07	-20.7533	-27.7789
7	1.29	-26.5858	-26.1148
8	1.50	-31.8272	-22.2812
9	1.72	-36.0112	-16.2782
10	1.93	-38.6714	-8.1058
11	2.15	-39.3412	2.2361

Armature e tensioni nei materiali della fondazione

Combinazione nº 10

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] area di armatura in corrispondenza del lembo superiore in [mq]

N_u sforzo normale ultimo espresso in [kN] momento ultimo espresso in [kNm] CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	N_{u}	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.00	00.0000.00	0565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.00	00.0000.00	0565	0.00	98.61	541.17	173.53		
3	0.10	1.00, 0.500.00	010050.00	0565	0.00	98.55	135.95	173.53		
4	0.15	1.00, 0.500.00	010050.00	00565	0.00	98.55	60.75	173.53		
5	0.20	1.00, 0.500.00	010050.00	00565	0.00	98.55	34.36	173.53		
6	0.25	1.00, 0.500.00	010050.00	00565	0.00	98.55	22.11	173.53		
7	0.30	1.00, 0.500.00	010050.00	00565	0.00	98.55	15.44	173.53		
8	0.35	1.00, 0.500.00	010050.00	00565	0.00	98.55	11.41	173.53		
9	0.40	1.00, 0.500.00	010050.00	00565	0.00	98.55	8.78	173.53		
10	0.45	1.00, 0.500.00	010050.00	0565	0.00	98.55	6.98	173.53		
11	0.50	1.00, 0.500.00	010050.00	00565	0.00	98.55	5.68	173.53		
Fondazione di monto										

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

SIS Scpa 97 di 147

- h - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2			_		
Muro prefabbricato – MU.3C.014.N – Relazione di	Calcolo				
1 0 00 1 00 0 500 000000 000565	0.00	00 1000 00	170 F0		
1 0.00 1.00, 0.500.0000000.000565 2 0.21 1.00, 0.500.0010050.000565	0.00 0.0 0.00 -172.7	00 1000.00 73 142.37	173.53 173.53		
3 0.43 1.00, 0.500.0010050.000565	0.00 -172.7		173.53		
4 0.65 1.00, 0.500.0010050.000565	0.00 -172.7		173.53		
5 0.86 1.00, 0.500.0010050.000565	0.00 -172.7		173.53		
6 1.07 1.00, 0.500.0010050.000565	0.00 -172.7		173.53		
7 1.29 1.00, 0.500.0010050.000565	0.00 -172.7		173.53		
8 1.50 1.00, 0.500.0010050.000565	0.00 -172.7		173.53		
9 1.72 1.00, 0.500.0010050.000565	0.00 -172.7		173.53		
10 1.93 1.00, 0.500.0010050.000565	0.00 -172.7	73 4.47	173.53		
11 2.15 1.00, 0.500.0010050.000565	0.00 -172.7	73 4.39	173.53		
COMBINAZIONE n° 11					
		100 1010	F1 A 17		
Valore della spinta statica		126.1612	[kN]		
Componente orizzontale della spinta statica		107.2533	[kN]		
Componente verticale della spinta statica		66.4333 V = 2.15	[kN]	Y = -2.73	[m]
Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla	cuparficia	X = 2.15 31.77	[m] [°]	1 = -2.73	[m]
Inclinazione linea di rottura in condizioni static		46.51	[°]		
inclinazione linea di fottura in condizioni static	i i C	40.51	LJ		
Incremento sismico della spinta		66.5143	[kN]		
Punto d'applicazione dell'incremento sismico	di spinta	X = 2.15	[m]	Y = -2.73	[m]
Inclinazione linea di rottura in condizioni sismi		41.51	[°]		
Peso terrapieno gravante sulla fondazione a n		157.5394	[kN]		
Baricentro terrapieno gravante sulla fondazion	e a monte	X = 1.09	[m]	Y = -1.95	[m]
Numero contrafforti		8	FI 5 13		
Peso del singolo contrafforte		8.3000	[kN]		
Peso del contrafforte riferito ad un metro di mi	ıro	6.9167	[kN]	V 225	[.ee.]
Baricentro contrafforte Inerzia del muro		X = 0.23 5.5628	[m] [kN]	Y = -2.35	[m]
Inerzia del muro		2.7814	[kN]		
Inerzia del terrapieno fondazione di monte		17.5272	[kN]		
Inerzia verticale del terrapieno fondazione di n	nonte	8.7636	[kN]		
Inerzia del singolo contrafforte		0.9234	[kN]		
Inerzia del contrafforte riferita ad un metro di r	nuro	0.7695	[kN]		
Inerzia verticale del singolo contrafforte		0.4617	[kN]		
Inerzia verticale del contrafforte riferita ad un r	netro di muro	0.3848	[kN]		
Risultanti		400.0704	FL 8-17		
Risultante dei carichi applicati in dir. orizzonta	е	188.2761	[kN]		
Risultante dei carichi applicati in dir. verticale		333.3938 -18.2184	[kN]		
Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondaz	one	333.3938	[kN] [kN]		
Sforzo tangenziale sul piano di posa della fondaz		188.2761	[kN]		
Eccentricità rispetto al baricentro della fondazi		0.50	[m]		
Lunghezza fondazione reagente	One	2.70	[m]		
Risultante in fondazione		382.8829	[kN]		
Inclinazione della risultante (rispetto alla norm	ale)	29.45	[°]		
Momento rispetto al baricentro della fondazion		166.1519	[kNm]		
Carico ultimo della fondazione		356.2540	[kN]		
<u>Tensioni sul terreno</u>		0.70			
Lunghezza fondazione reagente		2.70	[m]	1	
Tensione terreno allo spigolo di valle		0.24651	[N/mmq		
Tensione terreno allo spigolo di monte		0.00000	[N/mmq	1	
Fattori per il calcolo della capacità portante Coeff. capacità portante N _c = 0	61.35	N - 19 0	33	$N_{\gamma} = 1$	78 N2
	: 1.00	$N_q = 48.9$ $s_q = 1.0$		•	1.00
ŭ .	0.19	$s_q = 1.0$ $i_q = 0.2$: 0.10
· ·	1.16	$d_q = 0.2$ $d_q = 1.2$			1.00
PV_D_SR_AP_MU_3_C_014001_N_001_R_A_		u _q – 1.		$u_{\gamma} =$	1.00
	-				

SIS Scpa 98 di 147

Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{y} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$q_0 = 1.00$	$g_{y} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 35.43$ $N'_{q} = 27.18$ $N'_{\gamma} = 27.17$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.20 Coefficiente di sicurezza a carico ultimo 1.07

Sollecitazioni fondazione di valle

Combinazione n° 11

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.05	0.2767	11.0316
3	0.10	1.0994	21.8354
4	0.15	2.4565	32.4113
5	0.20	4.3367	42.7594
6	0.25	6.7286	52.8797
7	0.30	9.6209	62.7721
8	0.35	13.0020	72.4367
9	0.40	16.8607	81.8735
10	0.45	21.1856	91.0824
11	0.50	25.9652	100.0635

Sollecitazioni fondazione di monte

Combinazione n° 11

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.21	-2.1602	-19.5977
3	0.43	-8.1013	-34.8808
4	0.65	-16.8202	-45.4373
5	0.86	-27.3010	-51.2872
6	1.07	-38.5649	-52.7909
7	1.29	-49.6992	-50.0818
8	1.50	-59.7982	-43.1601
9	1.72	-67.9561	-32.0256
10	1.93	-73.2673	-16.6784
11	2.15	-74.8259	2.8814

Armature e tensioni nei materiali della fondazione

Combinazione nº 11

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

 A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] area di armatura in corrispondenza del lembo superiore in [mq]

 $\begin{array}{ll} N_u & \text{sforzo normale ultimo espresso in [kN]} \\ M_u & \text{momento ultimo espresso in [kNm]} \\ \text{CS} & \text{coefficiente sicurezza sezione} \end{array}$

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_fs	A_{fi}	N_u	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.0	0.000000	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.0	0.00000.0	00565	0.00	98.61	356.32	173.53		

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 99 di 147

Opere	d'Arte M	inori – Opere di sostegno				(SPV – Pedem	ontana Ve
Muro p	orefabbrio	cato – MU.3C.014.N – Relazione di C	Calcolo					
3	0.10	1.00, 0.500.0010050.000565	0.00	98.55	89.65	173.53		
4	0.15	1.00, 0.500.0010050.000565	0.00	98.55		173.53		
5	0.20	1.00, 0.500.0010050.000565	0.00	98.55		173.53		
6	0.25	1.00, 0.500.0010050.000565	0.00	98.55	14.65	173.53		
7	0.30	1.00, 0.500.0010050.000565	0.00	98.55		173.53		
8	0.35	1.00, 0.500.0010050.000565	0.00	98.55		173.53		
9	0.40	1.00, 0.500.0010050.000565	0.00	98.55		173.53		
10	0.45	1.00, 0.500.0010050.000565	0.00	98.55		173.53		
11 <i>Fonda</i>	0.50 azione di	1.00, 0.500.0010050.000565 <u>i monte</u>	0.00	98.55	3.80	173.53		
(L'ascis	ssa X, espi	ressa in [m], è positiva verso valle con ori	gine in cor	rispondenz	a dell'estremo	o libero della	fondazione di r	nonte)
Nr.	Υ	B, H A _{fs} A _{fi}	N_u	M		V_{Rd}	\mathbf{V}_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.0000000.000565	0.00	0.00		173.53		
2 3	0.21 0.43	1.00, 0.500.0010050.000565 1.00, 0.500.0010050.000565	0.00	-172.73 -172.73		173.53 173.53		
4	0.43	1.00, 0.500.0010050.000565	0.00	-172.73		173.53		
5	0.86	1.00, 0.500.0010050.000565	0.00	-172.73		173.53		
6	1.07	1.00, 0.500.0010050.000565	0.00	-172.73		173.53		
7	1.29	1.00, 0.500.0010050.000565	0.00	-172.73		173.53		
8	1.50	1.00, 0.500.0010050.000565	0.00	-172.73		173.53		
9	1.72	1.00, 0.500.0010050.000565	0.00	-172.73		173.53		
10	1.93	1.00, 0.500.0010050.000565	0.00	-172.73	2.36	173.53		
11	2.15	1.00, 0.500.0010050.000565	0.00	-172.73	2.31	173.53		
COME	<u> BINAZIO</u>	NE n° 12						
Valore	e della si	ointa statica			126.1612	[kN]		
		orizzontale della spinta statica			107.2533	[kN]		
		verticale della spinta statica			66.4333	[kN]		
Punto	d'applic	azione della spinta			X = 2.15	[m]	Y = -2.73	[m]
		spinta rispetto alla normale alla s		Э	31.77	[°]		
Inclina	azione lir	nea di rottura in condizioni statich	ne		46.51	[°]		
Incren	nento sis	smico della spinta			53.5234	[kN]		
		azione dell'incremento sismico d			X = 2.15	[m]	Y = -2.73	[m]
Inclina	azione lir	nea di rottura in condizioni sismic	he		40.88	[°]		
Peso	terrapier	no gravante sulla fondazione a m	onte		157.5394	[kN]		
Barice	entro terr	apieno gravante sulla fondazione	e a mont	е	X = 1.09	[m]	Y = -1.95	[m]
	ro contra				8			
	_	olo contrafforte			8.3000	[kN]		
		rafforte riferito ad un metro di mu	ro		6.9167	[kN]		
		ntrafforte			X = 0.23	[m]	Y = -2.35	[m]
	a del mu				5.5628	[kN]		
		le del muro rapieno fondazione di monte			-2.7814 17.5272	[kN]		
		le del terrapieno fondazione di m	onte		-8.7636	[kN] [kN]		
		golo contrafforte	Onto		0.9234	[kN]		
		ntrafforte riferita ad un metro di m	uro		0.7695	[kN]		
		le del singolo contrafforte			-0.4617	[kN]		
		le del contrafforte riferita ad un m	netro di n	nuro	-0.3848	[kN]		
Risult								
		carichi applicati in dir. orizzontale	Э		177.2321	[kN]		
		carichi applicati in dir. verticale			302.6936	[kN]		
	•	ssiva a valle del muro			-18.2184	[kN]		
		e sul piano di posa della fondazio			302.6936	[kN]		
		ziale sul piano di posa della fond			177.2321	[kN]		
		spetto al baricentro della fondazion ndazione reagente	nie		0.53 2.61	[m] [m]		
Lungi	1022a 101	idazione reagente			2.01	נייין		

SIS Scpa 100 di 147

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Risultante in fondazione	350.7629	[kN]
Inclinazione della risultante (rispetto alla normale)	30.35	[°]
Momento rispetto al baricentro della fondazione	160.4044	[kNm]
Carico ultimo della fondazione	309.2518	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	2.61	[m]
Tensione terreno allo spigolo di valle	0.23193	[N/mmq]
Tensione terreno allo spigolo di monte	0.00000	[N/mmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_{q} = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.17$	$i_q = 0.21$	$i_{\gamma} = 0.09$
Fattori profondità	$d_c = 1.16$	$d_{q} = 1.11$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$N'_{c} = 35.43$	$N'_{\alpha} = 27.18$	$N'_{\nu} = 27.17$
11 _C = 00.10	1 q - 21.10	ι τη — Ει. ι ι

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.17
Coefficiente di sicurezza a carico ultimo 1.02

Sollecitazioni fondazione di valle

Combinazione nº 12

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	IVI	ı
1	0.00	0.0000	0.0000
2	0.05	0.2586	10.3054
3	0.10	1.0268	20.3886
4	0.15	2.2937	30.2497
5	0.20	4.0481	39.8887
6	0.25	6.2789	49.3055
7	0.30	8.9749	58.5002
8	0.35	12.1252	67.4727
9	0.40	15.7185	76.2232
10	0.45	19.7438	84.7515
11	0.50	24.1900	93.0576
_			

Sollecitazioni fondazione di monte

Combinazione nº 12

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

X	M	Т
0.00	0.0000	0.0000
0.21	-2.1861	-20.2245
0.43	-8.4666	-37.4278
0.65	-17.9489	-50.0099
0.86	-29.6400	-57.9908
1.07	-42.5837	-61.7309
1.29	-55.8900	-61.3637
1.50	-68.6757	-56.8893
1.72	-80.0580	-48.3076
1.93	-89.1537	-35.6186
2.15	-95.0797	-18.8224
	0.00 0.21 0.43 0.65 0.86 1.07 1.29 1.50 1.72 1.93	0.00 0.0000 0.21 -2.1861 0.43 -8.4666 0.65 -17.9489 0.86 -29.6400 1.07 -42.5837 1.29 -55.8900 1.50 -68.6757 1.72 -80.0580 1.93 -89.1537

Armature e tensioni nei materiali della fondazione

Combinazione nº 12

Simbologia adottata

base della sezione espressa in [m]

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Н altezza della sezione espressa in [m]

 $A_{\text{fi}} \\$ area di armatura in corrispondenza del lembo inferiore in [mq] area di armatura in corrispondenza del lembo superiore in [mq] sforzo normale ultimo espresso in [kN] $A_{\text{fs}} \\$

 N_{u} $M_{\text{u}} \\$ momento ultimo espresso in [kNm] CS coefficiente sicurezza sezione

Aliquota di taglio assorbito dal cls, espresso in [kN] VRcd Aliquota di taglio assorbito dall'armatura, espresso in [kN] VRsd

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 0.500.0	0.00000.0	00565	0.00	0.00	1000.00	173.53		
2	0.05	1.00, 0.500.0	0.00000.0	00565	0.00	98.61	381.38	173.53		
3	0.10	1.00, 0.500.0	010050.0	00565	0.00	98.55	95.98	173.53		
4	0.15	1.00, 0.500.0	010050.0	00565	0.00	98.55	42.97	173.53		
5	0.20	1.00, 0.500.0	010050.0	00565	0.00	98.55	24.35	173.53		
6	0.25	1.00, 0.500.0	010050.0	00565	0.00	98.55	15.70	173.53		
7	0.30	1.00, 0.500.0	010050.0	00565	0.00	98.55	10.98	173.53		
8	0.35	1.00, 0.500.0	010050.0	00565	0.00	98.55	8.13	173.53		
9	0.40	1.00, 0.500.0	010050.0	00565	0.00	98.55	6.27	173.53		
10	0.45	1.00, 0.500.0	010050.0	00565	0.00	98.55	4.99	173.53		
11	0.50	1.00, 0.500.0	010050.0	00565	0.00	98.55	4.07	173.53		
Fonda	zione di	monte								

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ		B, H	A_{fs}	A_{f}	i N _u	M	u CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	1.00,	0.500.	0000000	0.000565	0.00	0.00	1000.00	173.53		
2	0.21	,		0010050							
3	0.43			0010050							
4	0.65			0010050							
5	0.86			0010050							
6	1.07			0010050							
7	1.29			0010050							
8	1.50			0010050							
9	1.72			0010050							
10	1.93			0010050							
11	2.15			0010050	0.000565	0.00	-172.73	3 1.82	173.53		
COME	BINAZIO	NE n°	<u>13</u>								
Valore	della s	ninta st	atica					126.1612	[kN]		
				lla spinta	statica			107.2533			
				spinta st				66.4333	[kN]		
	d'applic							X = 2.15	[m]	Y = -2.73	[m]
					male alla	a superfici	Э	31.77	[°]		[]
				in condiz			-	46.51	[°]		
	nento sis							66.5143	[kN]		
						di spinta		X = 2.15	[m]	Y = -2.73	[m]
Inclina	azione lir	nea di r	rottura	in condiz	ioni sism	niche		41.51	[°]		
Peso t	terrapier	no arav	ante si	ulla fonda	azione a	monte		157.5394	[kN]		
						ne a mont	e	X = 1.09	[m]	Y = -1.95	[m]
	ro contra		9					8	[]		[]
	del singo		traffort	е				8.3000	[kN]		
	_			ad un m	etro di n	nuro		6.9167	[kN]		
Barice	ntro cor	ntraffor	te					X = 0.23	[m]	Y = -2.35	[m]
Inerzia	a del mu	ro						5.5628	[kN]		
	a vertica		nuro					2.7814	[kN]		
Inerzia	a del teri	rapienc	fonda	zione di	monte			17.5272	[kN]		
PV D	SR AP	MU 3	C 014	001_N_	001 R A	. 0					

102 di 147 SIS Scpa

Opere d'Arte Millon – Opere di Sostegno		•	SPV - Pedemo	nilana v
Muro prefabbricato – MU.3C.014.N – Relazione di Calcolo				
Inerzia verticale del terrapieno fondazione di monte	8.7636	[kN]		
Inerzia del singolo contrafforte	0.9234	[kN]		
Inerzia del contrafforte riferita ad un metro di muro	0.7695	[kN]		
Inerzia verticale del singolo contrafforte	0.4617	[kN]		
Inerzia verticale del contrafforte riferita ad un metro di muro	0.3848	[kN]		
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	188.2761	[kN]		
Risultante dei carichi applicati in dir. verticale	333.3938	[kN]		
Resistenza passiva a valle del muro Momento ribaltante rispetto allo spigolo a valle	-18.2184 341.9105	[kN] [kNm]		
Momento stabilizzante rispetto allo spigolo a valle	642.5099	[kNm]		
Sforzo normale sul piano di posa della fondazione	333.3938	[kN]		
Sforzo tangenziale sul piano di posa della fondazione	188.2761	[kN]		
Eccentricità rispetto al baricentro della fondazione	0.50	[m]		
Lunghezza fondazione reagente Risultante in fondazione	2.70 382.8829	[m] [kN]		
Inclinazione della risultante (rispetto alla normale)	29.45	[°]		
Momento rispetto al baricentro della fondazione	166.1519	[kNm]		
COEFFICIENTI DI SICUREZZA				
Coefficiente di sicurezza a ribaltamento	1.88			
COMBINAZIONE n° 14				
Valore della spinta statica	126.1612	[kN]		
Componente orizzontale della spinta statica	107.2533	[kN]		
Componente verticale della spinta statica	66.4333	[kN]		
Punto d'applicazione della spinta	X = 2.15	[m]	Y = -2.73	[m]
Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	31.77 46.51	[°] [°]		
moinazione imea di fottura in condizioni statiche	40.51	[]		
Incremento sismico della spinta	53.5234	[kN]	\/ 0.70	
Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	X = 2.15 40.88	[m]	Y = -2.73	[m]
inclinazione linea di fottura in condizioni sismiche	40.00	[°]		
Peso terrapieno gravante sulla fondazione a monte	157.5394	[kN]		
Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti	X = 1.09 8	[m]	Y = -1.95	[m]
Peso del singolo contrafforte	8.3000	[kN]		
Peso del contrafforte riferito ad un metro di muro	6.9167	[kN]		
Baricentro contrafforte	X = 0.23	[m]	Y = -2.35	[m]
Inerzia del muro	5.5628	[kN]		
Inerzia del terreniano fondazione di mente	-2.7814 17.5272	[kN]		
Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	-8.7636	[kN] [kN]		
Inerzia del singolo contrafforte	0.9234	[kN]		
Inerzia del contrafforte riferita ad un metro di muro	0.7695	[kN]		
Inerzia verticale del singolo contrafforte	-0.4617	[kN]		
Inerzia verticale del contrafforte riferita ad un metro di muro	-0.3848	[kN]		
<u>Risultanti</u>				
Risultante dei carichi applicati in dir. orizzontale	177.2321	[kN]		
Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro	302.6936 -18.2184	[kN] [kN]		
Momento ribaltante rispetto allo spigolo a valle	341.1745	[kNm]		
Momento stabilizzante rispetto allo spigolo a valle	604.5411	[kNm]		
Sforzo normale sul piano di posa della fondazione	302.6936	[kN]		
Sforzo tangenziale sul piano di posa della fondazione	177.2321	[kN]		
Eccentricità rispetto al baricentro della fondazione	0.53 2.61	[m]		
Lunghezza fondazione reagente Risultante in fondazione	2.61 350.7629	[m] [kN]		
PV_D_SR_AP_MU_3_C_014001_N_001_R_A_0	000.1023	fizi 41		
· ·_5_6_/\\ _\\\0_\0_\0\\1+_0__\0\\				

S/S Scpa 103 di 147

[°] [kNm] Inclinazione della risultante (rispetto alla normale) 30.35 Momento rispetto al baricentro della fondazione 160.4044

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 1.77

Stabilità globale muro + terreno

Combinazione nº 15

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

peso della striscia espresso in [kN]

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) α

angolo d'attrito del terreno lungo la base della striscia φ

coesione del terreno lungo la base della striscia espressa in [N/mmq] С

b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce

Cerchio critico

Coordinate del centro X[m] = -0.38Y[m] = 3.41

Raggio del cerchio R[m] = 8.31

Ascissa a valle del cerchio Xi[m] = -5.14Xs[m] = 7.92Ascissa a monte del cerchio

Larghezza della striscia dx[m]= 0.52 Coefficiente di sicurezza C = 1.37

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	$Wsin\alpha$	b/cosα	ф	С	u
1	2015.26	78.28	1973.25	2.57	32.01	0.000	0.000
2	3501.32	65.09	3175.60	1.24	32.01	0.000	0.000
3	4149.72	57.46	3498.13	0.97	32.01	0.000	0.000
4	4564.23	51.23	3558.36	0.83	32.01	0.000	0.000
5	4839.70	45.76	3467.45	0.75	32.01	0.000	0.000
6	5016.88	40.80	3277.99	0.69	32.01	0.000	0.000
7	5117.97	36.18	3021.51	0.65	32.01	0.000	0.000
8	5156.65	31.83	2719.53	0.61	32.01	0.000	0.000
9	5142.03	27.67	2388.02	0.59	32.01	0.000	0.000
10	5080.44	23.67	2039.55	0.57	32.01	0.000	0.000
11	4976.46	19.79	1684.54	0.56	32.01	0.000	0.000
12	5000.07	16.00	1377.80	0.54	32.01	0.000	0.000
13	4855.72	12.28	1032.40	0.53	32.01	0.000	0.000
14	4900.65	8.61	733.52	0.53	32.01	0.000	0.000
15	4962.04	4.98	430.42	0.52	32.01	0.000	0.000
16	3511.48	1.36	83.60	0.52	32.01	0.000	0.000
17	1531.26	-2.24	-59.91	0.52	32.01	0.000	0.000
18	1426.03	-5.86	-145.54	0.53	32.01	0.000	0.000
19	1356.55	-9.50	-223.83	0.53	32.01	0.000	0.000
20	1253.21	-13.18	-285.65	0.54	32.01	0.000	0.000
21	1114.66	-16.91	-324.23	0.55	32.01	0.000	0.000
22	938.99	-20.72	-332.24	0.56	32.01	0.000	0.000
23	723.56	-24.63	-301.56	0.57	32.01	0.000	0.000
24	464.74	-28.67	-222.95	0.60	32.01	0.000	0.000
25	157.62	-32.87	-85.54	0.62	32.01	0.000	0.000

 $\Sigma W_i = 801.7774 [kN]$

 $\Sigma W_{i} \sin \alpha_{i} = 318.5274 \text{ [kN]}$

 $\Sigma W_{i} tan \phi_{i} = 501.1337 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 7.65$

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 104 di 147

Stabilità globale muro + terreno

Combinazione nº 16

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [N/mmq]

b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [N/mmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -0.38 Y[m]= 3.41

Raggio del cerchio R[m]= 8.31

Ascissa a valle del cerchio Xi[m]=-5.14Ascissa a monte del cerchio Xs[m]=7.92

Larghezza della striscia dx[m]= 0.52 Coefficiente di sicurezza C= 1.34

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Stris	cia W	α(°)	Wsinα	b/cosα	ф	С	u
1	2015.26	78.28	1973.25	2.57	32.01	0.000	0.000
2	3501.32	65.09	3175.60	1.24	32.01	0.000	0.000
3	4149.72	57.46	3498.13	0.97	32.01	0.000	0.000
4	4564.23	51.23	3558.36	0.83	32.01	0.000	0.000
5	4839.70	45.76	3467.45	0.75	32.01	0.000	0.000
6	5016.88	40.80	3277.99	0.69	32.01	0.000	0.000
7	5117.97	36.18	3021.51	0.65	32.01	0.000	0.000
8	5156.65	31.83	2719.53	0.61	32.01	0.000	0.000
9	5142.03	27.67	2388.02	0.59	32.01	0.000	0.000
10	5080.44	23.67	2039.55	0.57	32.01	0.000	0.000
11	4976.46	19.79	1684.54	0.56	32.01	0.000	0.000
12	5000.07	16.00	1377.80	0.54	32.01	0.000	0.000
13	4855.72	12.28	1032.40	0.53	32.01	0.000	0.000
14	4900.65	8.61	733.52	0.53	32.01	0.000	0.000
15	4962.04	4.98	430.42	0.52	32.01	0.000	0.000
16	3511.48	1.36	83.60	0.52	32.01	0.000	0.000
17	1531.26	-2.24	-59.91	0.52	32.01	0.000	0.000
18	1426.03	-5.86	-145.54	0.53	32.01	0.000	0.000
19	1356.55	-9.50	-223.83	0.53	32.01	0.000	0.000
20	1253.21	-13.18	-285.65	0.54	32.01	0.000	0.000
21	1114.66	-16.91	-324.23	0.55	32.01	0.000	0.000
22	938.99	-20.72	-332.24	0.56	32.01	0.000	0.000
23	723.56	-24.63	-301.56	0.57	32.01	0.000	0.000
24	464.74	-28.67	-222.95	0.60	32.01	0.000	0.000
25	157.62	-32.87	-85.54	0.62	32.01	0.000	0.000
2111	004 7774 [[4]]						

 $\Sigma W_i = 801.7774 [kN]$

 $\Sigma W_i \sin \alpha_i = 318.5274 [kN]$

 $\Sigma W_{i} tan \phi_{i} = 501.1337 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 7.65$

Sollecitazioni fondazione di valle

Combinazione nº 17

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 105 di 147

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1209	4.8277
3	0.10	0.4821	9.6154
4	0.15	1.0817	14.3633
5	0.20	1.9178	19.0712
6	0.25	2.9882	23.7392
7	0.30	4.2910	28.3674
8	0.35	5.8243	32.9556
9	0.40	7.5859	37.5039
10	0.45	9.5740	42.0123
11	0.50	11.7865	46.4808

Sollecitazioni fondazione di monte

Combinazione nº 17

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Χ	M	Т
0.00	0.0000	0.0000
0.21	-0.4067	-3.5743
0.43	-1.4472	-5.8969
0.65	-2.8526	-6.9677
0.86	-4.3540	-6.8067
1.07	-5.7197	-5.7743
1.29	-6.7841	-4.0041
1.50	-7.3886	-1.4961
1.72	-7.3745	1.7499
1.93	-6.5833	5.7336
2.15	-4.8562	10.4552
	0.00 0.21 0.43 0.65 0.86 1.07 1.29 1.50 1.72 1.93	0.00 0.0000 0.21 -0.4067 0.43 -1.4472 0.65 -2.8526 0.86 -4.3540 1.07 -5.7197 1.29 -6.7841 1.50 -7.3886 1.72 -7.3745 1.93 -6.5833

Armature e tensioni nei materiali della fondazione

Combinazione nº 17

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq]

A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

 $\sigma_c \qquad \qquad \text{tensione nel calcestruzzo espressa in [N/mmq]}$

 τ_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]

 $\sigma_{\text{fi}} \hspace{1cm} \text{tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]} \\$

tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

0.000
0.000
0.000
-0.175
-0.392
-0.695
-1.084
-1.556
-2.112
-2.751
-3.472
-4.274

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 106 di 147

2	0.21	1.00, 0.500.0010050.000565	0.017	-0.009	-0.156	0.949
3	0.43	1.00, 0.500.0010050.000565	0.062	-0.015	-0.556	3.377
4	0.65	1.00, 0.500.0010050.000565	0.122	-0.018	-1.095	6.657
5	0.86	1.00, 0.500.0010050.000565	0.187	-0.017	-1.672	10.161
6	1.07	1.00, 0.500.0010050.000565	0.245	-0.015	-2.197	13.348
7	1.29	1.00, 0.500.0010050.000565	0.291	-0.010	-2.605	15.832
8	1.50	1.00, 0.500.0010050.000565	0.317	-0.004	-2.837	17.243
9	1.72	1.00, 0.500.0010050.000565	0.316	0.004	-2.832	17.210
10	1.93	1.00, 0.500.0010050.000565	0.282	0.015	-2.528	15.363
11	2.15	1.00, 0.500,0010050,000565	0.208	0.027	-1.865	11.333

Verifiche a fessurazione

Combinazione nº 17

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro A_{fs} area di armatura in corrispondenza del lembo di monte in [mq]

area di armatura in corrispondenza del lembo di valle in [mq] Momento di prima fessurazione espressa in [kNm]

 A_{fi} M_{pf} M Momento agente nella sezione espressa in [kNm]

deformazione media espressa in [%] ϵ_{m}

Distanza media tra le fessure espressa in [mm] S_{m} Apertura media della fessura espressa in [mm]

Verifica fessurazione fondazione

N°	Υ	A_{fs}	A_{fi}	$M_{\rm pf}$	M	ε _m	Sm	w
1	-0.65	0.000000	0.000565	-55.61	0.00	0.0000	0.00	0.000
2	-0.60	0.000000	0.000565	57.47	0.12	0.0000	0.00	0.000
3	-0.55	0.001005	0.000565	58.31	0.48	0.0000	0.00	0.000
4	-0.50	0.001005	0.000565	58.31	1.08	0.0000	0.00	0.000
5	-0.45	0.001005	0.000565	58.31	1.92	0.0000	0.00	0.000
6	-0.40	0.001005	0.000565	58.31	2.99	0.0000	0.00	0.000
7	-0.35	0.001005	0.000565	58.31	4.29	0.0000	0.00	0.000
8	-0.30	0.001005	0.000565	58.31	5.82	0.0000	0.00	0.000
9	-0.25	0.001005	0.000565	58.31	7.59	0.0000	0.00	0.000
10	-0.20	0.001005	0.000565	58.31	9.57	0.0000	0.00	0.000
11	-0.15	0.001005	0.000565	58.31	11.79	0.0000	0.00	0.000
12	0.00	0.001005	0.000565	-59.76	-4.86	0.0000	0.00	0.000
13	0.21	0.001005	0.000565	-59.76	-6.58	0.0000	0.00	0.000
14	0.43	0.001005	0.000565	-59.76	-7.37	0.0000	0.00	0.000
15	0.65	0.001005	0.000565	-59.76	-7.39	0.0000	0.00	0.000
16	0.86	0.001005	0.000565	-59.76	-6.78	0.0000	0.00	0.000
17	1.07	0.001005	0.000565	-59.76	-5.72	0.0000	0.00	0.000
18	1.29	0.001005	0.000565	-59.76	-4.35	0.0000	0.00	0.000
19	1.50	0.001005	0.000565	-59.76	-2.85	0.0000	0.00	0.000
20	1.72	0.001005	0.000565	-59.76	-1.45	0.0000	0.00	0.000
21	1.94	0.001005	0.000565	-59.76	-0.41	0.0000	0.00	0.000
22	2.15	0.000000	0.000565	-55.61	0.00	0.0000	0.00	0.000
~								

Sollecitazioni fondazione di valle

Combinazione nº 18

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т				
1	0.00	0.0000	0.0000				
2	0.05	0.1209	4.8277				
3	0.10	0.4821	9.6154				
4	0.15	1.0817	14.3633				
5	0.20	1.9178	19.0712				
6	0.25	2.9882	23.7392				
7	0.30	4.2910	28.3674				
8	0.35	5.8243	32.9556				
9	0.40	7.5859	37.5039				
10	0.45	9.5740	42.0123				
$PV_{\underline{}}$	PV_D_SR_AP_MU_3_C_014001_N_001_R_A_0						

107 di 147 SIS Scpa

11 0.50 11.7865 46.4808

Sollecitazioni fondazione di monte

Combinazione nº 18

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.21	-0.4067	-3.5743
3	0.43	-1.4472	-5.8969
4	0.65	-2.8526	-6.9677
5	0.86	-4.3540	-6.8067
6	1.07	-5.7197	-5.7743
7	1.29	-6.7841	-4.0041
8	1.50	-7.3886	-1.4961
9	1.72	-7.3745	1.7499
10	1.93	-6.5833	5.7336
11	2.15	-4.8562	10.4552

Armature e tensioni nei materiali della fondazione

Combinazione nº 18

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

 $A_{\text{fi}} \hspace{1cm} \text{area di armatura in corrispondenza del lembo inferiore in [mq]} \\$

A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

 $\sigma_c \qquad \quad \text{tensione nel calcestruzzo espressa in [N/mmq]}$

τ_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]

 $\sigma_{\!\scriptscriptstyle fi} \qquad \quad \text{tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq]}$

 σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	A_fs	A_fi	σ_{c}	$ au_{ extsf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 0.500.0	0.00000.00	00565	0.000	0.000	0.000	0.000
2	0.05	1.00, 0.500.0	0.00000.00	00565	0.007	0.012	0.493	0.000
3	0.10	1.00, 0.500.0	010050.00	00565	0.025	0.025	1.970	-0.175
4	0.15	1.00, 0.500.0	010050.00	00565	0.057	0.037	4.419	-0.392
5	0.20	1.00, 0.500.0	010050.00	00565	0.101	0.049	7.835	-0.695
6	0.25	1.00, 0.500.0	010050.00	00565	0.157	0.061	12.208	-1.084
7	0.30	1.00, 0.500.0	010050.00	00565	0.225	0.073	17.531	-1.556
8	0.35	1.00, 0.500.0	010050.00	00565	0.305	0.084	23.795	-2.112
9	0.40	1.00, 0.500.0	010050.00	00565	0.398	0.096	30.992	-2.751
10	0.45	1.00, 0.500.0	010050.00	00565	0.502	0.107	39.114	-3.472
11	0.50	1.00, 0.500.0	010050.00	00565	0.618	0.119	48.154	-4.274
Fonda	Fondazione di monte							

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Χ	В, Н	A_{fs}	A_{fi}	σ_{c}	$ au_{\mathbf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 0.500.0	0.000000.0	00565	0.000	0.000	0.000	0.000
2	0.21	1.00, 0.500.0	0.05000	00565	0.017	-0.009	-0.156	0.949
3	0.43	1.00, 0.500.0	0.05000	00565	0.062	-0.015	-0.556	3.377
4	0.65	1.00, 0.500.0	0010050.0	00565	0.122	-0.018	-1.095	6.657
5	0.86	1.00, 0.500.0	0010050.0	00565	0.187	-0.017	-1.672	10.161
6	1.07	1.00, 0.500.0	0.05000	00565	0.245	-0.015	-2.197	13.348
7	1.29	1.00, 0.500.0	0.05000	00565	0.291	-0.010	-2.605	15.832
8	1.50	1.00, 0.500.0	0.05000	00565	0.317	-0.004	-2.837	17.243
9	1.72	1.00, 0.500.0	0.05000	00565	0.316	0.004	-2.832	17.210
10	1.93	1.00, 0.500.0	0010050.0	00565	0.282	0.015	-2.528	15.363
11	2.15	1.00, 0.500.0	0010050.0	00565	0.208	0.027	-1.865	11.333

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

S/S Scpa 108 di 147

Verifiche a fessurazione

Combinazione nº 18

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

 A_{fs} area di armatura in corrispondenza del lembo di monte in [mq] A_{fi} area di armatura in corrispondenza del lembo di valle in [mq]

M_{pf} Momento di prima fessurazione espressa in [kNm]

M Momento agente nella sezione espressa in [kNm]

ε_m deformazione media espressa in [%]

s_m Distanza media tra le fessure espressa in [mm] w Apertura media della fessura espressa in [mm]

Verifica fessurazione fondazione

N°	Υ	A_fs	A_{fi}	M_{pf}	M	ε _m	Sm	w
1	-0.65	0.000000	0.000565	-55.61	0.00	0.0000	0.00	0.000
2	-0.60	0.000000	0.000565	57.47	0.12	0.0000	0.00	0.000
3	-0.55	0.001005	0.000565	58.31	0.48	0.0000	0.00	0.000
4	-0.50	0.001005	0.000565	58.31	1.08	0.0000	0.00	0.000
5	-0.45	0.001005	0.000565	58.31	1.92	0.0000	0.00	0.000
6	-0.40	0.001005	0.000565	58.31	2.99	0.0000	0.00	0.000
7	-0.35	0.001005	0.000565	58.31	4.29	0.0000	0.00	0.000
8	-0.30	0.001005	0.000565	58.31	5.82	0.0000	0.00	0.000
9	-0.25	0.001005	0.000565	58.31	7.59	0.0000	0.00	0.000
10	-0.20	0.001005	0.000565	58.31	9.57	0.0000	0.00	0.000
11	-0.15	0.001005	0.000565	58.31	11.79	0.0000	0.00	0.000
12	0.00	0.001005	0.000565	-59.76	-4.86	0.0000	0.00	0.000
13	0.21	0.001005	0.000565	-59.76	-6.58	0.0000	0.00	0.000
14	0.43	0.001005	0.000565	-59.76	-7.37	0.0000	0.00	0.000
15	0.65	0.001005	0.000565	-59.76	-7.39	0.0000	0.00	0.000
16	0.86	0.001005	0.000565	-59.76	-6.78	0.0000	0.00	0.000
17	1.07	0.001005	0.000565	-59.76	-5.72	0.0000	0.00	0.000
18	1.29	0.001005	0.000565	-59.76	-4.35	0.0000	0.00	0.000
19	1.50	0.001005	0.000565	-59.76	-2.85	0.0000	0.00	0.000
20	1.72	0.001005	0.000565	-59.76	-1.45	0.0000	0.00	0.000
21	1.94	0.001005	0.000565	-59.76	-0.41	0.0000	0.00	0.000
22	2.15	0.000000	0.000565	-55.61	0.00	0.0000	0.00	0.000

Sollecitazioni fondazione di valle

Combinazione nº 19

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1209	4.8277
3	0.10	0.4821	9.6154
4	0.15	1.0817	14.3633
5	0.20	1.9178	19.0712
6	0.25	2.9882	23.7392
7	0.30	4.2910	28.3674
8	0.35	5.8243	32.9556
9	0.40	7.5859	37.5039
10	0.45	9.5740	42.0123
11	0.50	11.7865	46.4808

Sollecitazioni fondazione di monte

Combinazione nº 19

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.21	-0.4067	-3.5743

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 109 di 147

3	0.43	-1.4472	-5.8969
4	0.65	-2.8526	-6.9677
5	0.86	-4.3540	-6.8067
6	1.07	-5.7197	-5.7743
7	1.29	-6.7841	-4.0041
8	1.50	-7.3886	-1.4961
9	1.72	-7.3745	1.7499
10	1.93	-6.5833	5.7336
11	2.15	-4.8562	10.4552

Armature e tensioni nei materiali della fondazione

Combinazione nº 19

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq]
A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

 σ_c tensione nel calcestruzzo espressa in [N/mmq]

τ_c tensione tangenziale nel calcestruzzo espressa in [N/mmq]

 σ_{fi} tensione nell'armatura disposta in corrispondenza del lembo inferiore in [N/mmq] tensione nell'armatura disposta in corrispondenza del lembo superiore in [N/mmq]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Χ	B, H	A_{fs}	A_{fi}	σ_{c}	$ au_{ extsf{c}}$	$\sigma_{\rm fi}$	σ_{fs}
1	0.00	1.00, 0.500.0	0.000000	00565	0.000	0.000	0.000	0.000
2	0.05	1.00, 0.500.0	0.000000	00565	0.007	0.012	0.493	0.000
3	0.10	1.00, 0.500.0	010050.0	00565	0.025	0.025	1.970	-0.175
4	0.15	1.00, 0.500.0	010050.0	00565	0.057	0.037	4.419	-0.392
5	0.20	1.00, 0.500.0	010050.0	00565	0.101	0.049	7.835	-0.695
6	0.25	1.00, 0.500.0	010050.0	00565	0.157	0.061	12.208	-1.084
7	0.30	1.00, 0.500.0	010050.0	00565	0.225	0.073	17.531	-1.556
8	0.35	1.00, 0.500.0	010050.0	00565	0.305	0.084	23.795	-2.112
9	0.40	1.00, 0.500.0	010050.0	00565	0.398	0.096	30.992	-2.751
10	0.45	1.00, 0.500.0	010050.0	00565	0.502	0.107	39.114	-3.472
11	0.50	1.00, 0.500.0	010050.0	00565	0.618	0.119	48.154	-4.274
C1	!							

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	B, H	${\sf A_{fs}}$	A_{fi}	σ_{c}	$ au_{c}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 0.500.0	0.00000.0	000565	0.000	0.000	0.000	0.000
2	0.21	1.00, 0.500.0	010050.0	000565	0.017	-0.009	-0.156	0.949
3	0.43	1.00, 0.500.0	010050.0	000565	0.062	-0.015	-0.556	3.377
4	0.65	1.00, 0.500.0	010050.0	000565	0.122	-0.018	-1.095	6.657
5	0.86	1.00, 0.500.0	010050.0	000565	0.187	-0.017	-1.672	10.161
6	1.07	1.00, 0.500.0	010050.0	00565	0.245	-0.015	-2.197	13.348
7	1.29	1.00, 0.500.0	0.0050.0	000565	0.291	-0.010	-2.605	15.832
8	1.50	1.00, 0.500.0	010050.0	000565	0.317	-0.004	-2.837	17.243
9	1.72	1.00, 0.500.0	010050.0	00565	0.316	0.004	-2.832	17.210
10	1.93	1.00, 0.500.0	010050.0	000565	0.282	0.015	-2.528	15.363
11	2.15	1.00, 0.500.0	010050.0	000565	0.208	0.027	-1.865	11.333

Verifiche a fessurazione

Combinazione nº 19

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

A_{fs} area di armatura in corrispondenza del lembo di monte in [mq] A_{fi} area di armatura in corrispondenza del lembo di valle in [mq]

 M_{pf} Momento di prima fessurazione espressa in [kNm]

M Momento agente nella sezione espressa in [kNm]

 ϵ_{m} deformazione media espressa in [%]

S_m Distanza media tra le fessure espressa in [mm]w Apertura media della fessura espressa in [mm]

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

S/S Scpa 110 di 147

Verifica fessurazione fondazione

N°	Υ	${\sf A_{fs}}$	A_{fi}	M_{pf}	M	ε _m	Sm	W
1	-0.65	0.000000	0.000565	-55.61	0.00	0.0000	0.00	0.000
2	-0.60	0.000000	0.000565	57.47	0.12	0.0000	0.00	0.000
3	-0.55	0.001005	0.000565	58.31	0.48	0.0000	0.00	0.000
4	-0.50	0.001005	0.000565	58.31	1.08	0.0000	0.00	0.000
5	-0.45	0.001005	0.000565	58.31	1.92	0.0000	0.00	0.000
6	-0.40	0.001005	0.000565	58.31	2.99	0.0000	0.00	0.000
7	-0.35	0.001005	0.000565	58.31	4.29	0.0000	0.00	0.000
8	-0.30	0.001005	0.000565	58.31	5.82	0.0000	0.00	0.000
9	-0.25	0.001005	0.000565	58.31	7.59	0.0000	0.00	0.000
10	-0.20	0.001005	0.000565	58.31	9.57	0.0000	0.00	0.000
11	-0.15	0.001005	0.000565	58.31	11.79	0.0000	0.00	0.000
12	0.00	0.001005	0.000565	-59.76	-4.86	0.0000	0.00	0.000
13	0.21	0.001005	0.000565	-59.76	-6.58	0.0000	0.00	0.000
14	0.43	0.001005	0.000565	-59.76	-7.37	0.0000	0.00	0.000
15	0.65	0.001005	0.000565	-59.76	-7.39	0.0000	0.00	0.000
16	0.86	0.001005	0.000565	-59.76	-6.78	0.0000	0.00	0.000
17	1.07	0.001005	0.000565	-59.76	-5.72	0.0000	0.00	0.000
18	1.29	0.001005	0.000565	-59.76	-4.35	0.0000	0.00	0.000
19	1.50	0.001005	0.000565	-59.76	-2.85	0.0000	0.00	0.000
20	1.72	0.001005	0.000565	-59.76	-1.45	0.0000	0.00	0.000
21	1.94	0.001005	0.000565	-59.76	-0.41	0.0000	0.00	0.000
	22 2	.150.000000	0.000565	-55.61	0.00	0.0000	0.00	0.000

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 111 di 147

2.1.4. Tipo Gettato in opera - Altezza fuori terra H < 5.50m

Normativa

N.T.C. 2008 - Approccio 1

\sim .			
Simho	α	200112	ナヘ
\sim	UUIIA	adotta	а

 $\begin{array}{lll} \gamma_{\text{Gsfav}} & \text{Coefficiente parziale sfavorevole sulle azioni permanenti} \\ \gamma_{\text{Gfav}} & \text{Coefficiente parziale favorevole sulle azioni permanenti} \\ \gamma_{\text{Osfav}} & \text{Coefficiente parziale sfavorevole sulle azioni variabili} \\ \gamma_{\text{Otav}} & \text{Coefficiente parziale favorevole sulle azioni variabili} \\ \gamma_{\text{tan}\phi'} & \text{Coefficiente parziale di riduzione dell'angolo di attrito drenato} \\ \gamma_{\text{CI}} & \text{Coefficiente parziale di riduzione della coesione drenata} \\ \gamma_{\text{CII}} & \text{Coefficiente parziale di riduzione della coesione non drenata} \\ \end{array}$

γ_{qu} Coefficiente parziale di riduzione del carico ultimo

Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali	per le azioni o per l'effe	tto delle azioni:					
Carichi	Effetto		A1	A2	EQU	HYD	
Permanenti	Favorevole	γGfav	1.00	1.00	0.90	0.90	
Permanenti	Sfavorevole	γGsfav	1.30	1.00	1.10	1.30	
Variabili	Favorevole	γQfav	0.00	0.00	0.00	0.00	
Variabili	Sfavorevole	γ̈Qsfav	1.50	1.30	1.50	1.50	
Coefficienti parziali	per i parametri geotecn	<u>ici del terreno:</u>					
Parametri			M1	M2	M2	M1	
Tangente dell'ango	lo di attrito	$\gamma_{tan_{\phi'}}$	1.00	1.25	1.25	1.00	
Coesione efficace		$\gamma_{c'}$	1.00	1.25	1.25	1.00	
Resistenza non dre		γ _{cu}	1.00	1.40	1.40	1.00	
Resistenza a comp		γ_{qu}	1.00	1.60	1.60	1.00	
Peso dell'unità di vo		γ_{γ}	1.00	1.00	1.00	1.00	
Coefficienti di par	tecipazione combinaz	ioni sismiche					
0		#					
Coemcienti parziali Carichi	per le azioni o per l'effe Effetto	tto delle azioni:	A1	A2	EQU	HYD	
Permanenti	Favorevole		1.00	1.00	1.00	0.90	
	Sfavorevole	γGfav	1.00	1.00	1.00	1.30	
Permanenti Variabili	Favorevole	γGsfav	0.00	0.00	0.00	0.00	
Variabili	Sfavorevole	γQfav	1.00	1.00	1.00	1.50	
	per i parametri geotecn	γQsfav	1.00	1.00	1.00	1.50	
Parametri	per i parametri geotech	iici dei terrerio.	M1	M2	M2	М1	
Tangente dell'ango	lo di attrito	γ _{tanφ'}	1.00	1.25	1.25	1.00	
Coesione efficace			1.00	1.25	1.25	1.00	
Resistenza non dre	nata	γc' γ _{cu}	1.00	1.40	1.40	1.00	
Resistenza a compressione uniassiale γ_{qu}			1.00	1.60	1.60	1.00	
Peso dell'unità di volume γ_{γ}			1.00	1.00	1.00	1.00	
FONDAZIONE SUI		17			1.00	1.00	
Coefficienti parziali γ _R per le verifiche agli stati limite ultimi STR e GEO							
Verifica				efficienti parz	ziali		
			R1	R2	R3		
Capacità portante d	lella fondazione		1.00	1.00	1.40		
Scorrimento			1.00	1.00	1.10		
Resistenza del terre	eno a valle		1.00	1.00	1.40		
Stabilità globale		1.10					

Descrizione Muro a mensola in c.a.

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Geometria muro e fondazione

SIS Scpa 112 di 147

113 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Altezza del paramento	5.50 [m]
Spessore in sommità	0.50 [m]
Spessore all'attacco con la fondazione	0.50 [m]
Inclinazione paramento esterno	0.00 [°]
Inclinazione paramento interno	0.00 [°]
Lunghezza del muro	9.60 [m]

Fondazione

Lunghezza mensola fondazione di valle	0.50 [m]
Lunghezza mensola fondazione di monte	8.35 [m]
Lunghezza totale fondazione	9.35 [m]
Inclinazione piano di posa della fondazione	0.00 [°]
Spessore fondazione	1.80 [m]
Spessore magrone	0.10 [m]

Materiali utilizzati per la struttura

Calcestruzzo

 $\begin{array}{lll} \mbox{Peso specifico} & 25.000 \ [\mbox{kN/mc}] \\ \mbox{Classe di Resistenza} & \mbox{C28/35} \\ \mbox{Resistenza caratteristica a compressione R}_{\mbox{ck}} & 35.00 \ [\mbox{MPa}] \\ \mbox{Modulo elastico E} & 32587.986 \ [\mbox{MPa}] \end{array}$

Acciaio

Tipo B450C Tensione di snervamento σ_{fa} 449.94 [MPa]

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	X	Υ	Α
1	1.35	0.00	0.00
2	9.67	5.00	31.00
3	30.00	5.00	0.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0.60 [m]

Descrizione terreni

Simbologia adottata

Nr. Indice del terreno
Descrizione Descrizione terreno

 $\begin{array}{ll} \gamma & \text{Peso di volume del terreno espresso in [kN/mc]} \\ \gamma_{\text{s}} & \text{Peso di volume saturo del terreno espresso in [kN/mc]} \end{array}$

 $\begin{array}{ll} \phi & \text{Angolo d'attrito interno espresso in [°]} \\ \delta & \text{Angolo d'attrito terra-muro espresso in [°]} \end{array}$

c Coesione espressa in [MPa]

c_a Adesione terra-muro espressa in [MPa]

Descrizione	γ	γs	ф	δ	С	Ca
AL1	18.50	18.50	38.00	25.33	0.0000	0.0000
A1 - Paramento	18.50	18.50	38.00	25.33	0.0000	0.0000
Al 1 - Fondazione	18 50	18.50	38 00	38 00	0.0000	0.0000

Stratigrafia

Simbologia adottata

N Indice dello strato

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Н Spessore dello strato espresso in [m]

Inclinazione espressa in [°] а

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Coefficiente di spinta Ks Terreno Terreno dello strato

Nr.	Н	а	Kw	Ks	Terreno
1	0.10	0.00	13.68	0.00	AL1
2	20.00	0.00	28.63	0.00	AL1 - Fondazione

Terreno di riempimento

A1 - Paramento

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m]

Componente orizzontale del carico concentrato espressa in [kN]

Componente verticale del carico concentrato espressa in [kN]

Momento espresso in [kNm]

X F_x F_y M X_i X_f Q_i Ascissa del punto iniziale del carico ripartito espressa in [m]

Ascissa del punto finale del carico ripartito espressa in [m]

Intensità del carico per x=X_i espressa in [kN/m] Q_f Intensità del carico per x=X_f espressa in [kN/m]

Tipo carico : D=distribuito C=concentrato D/C

Condizione n° 1 (Vento)

1	С	Paramento	X = 0.00	Y =0.00	$F_x = 3.0000$	$F_v = 0.0000$	M=6.0000
---	---	-----------	----------	----------------	----------------	----------------	----------

Descrizione combinazioni di carico

Simbologia adottata

Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole) F/S

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione

Combinazione nº 1 - Caso A1-M1 (STR)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.30	1.00	1.30
•				
Combinazione nº 2 - Caso A2-N	И2 (GEO)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 3 - Caso EQL	J (SLU)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	0.90	1.00	0.90
Peso proprio terrapieno	FAV	0.90	1.00	0.90
Spinta terreno	SFAV	1.10	1.00	1.10
Combinazione n° 4 - Caso A2-N		<u>.B)</u>		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 5 - Caso A1-N				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.30	1.00	1.30
Vento	SFAV	1.50	1.00	1.50

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

114 di 147 SIS Scpa

•				
Combinazione n° 6 - Caso A2-M				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Vento	SFAV	1.30	1.00	1.30
Combinazione nº 7 - Caso EQU	(SLU)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	0.90	1.00	0.90
Peso proprio terrapieno	FAV	0.90	1.00	0.90
Spinta terreno	SFAV	1.10	1.00	1.10
Vento	SFAV	1.50	1.00	1.50
Combinazione nº 8 - Caso A2-M	2 (GEO-STA	AB)		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Vento	SFAV	1.30	1.00	1.30
Vento	OI AV	1.50	1.00	1.00
Combinazione nº 9 - Caso A1-M	11 (STR) - Sig	sma Vert nos	sitivo	
COMBINAZIONE N 9 CASO AT IVI	S/F	-	Ψ	γ*Ψ
Poco proprio muro	SFAV	γ 1.00	1.00	1.00
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno				
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione nº 10 Cose A1 I	M4 (CTD) C	iomo Vort na	agotivo.	
Combinazione nº 10 - Caso A1-I				+)T(
D	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Complianciana no 44 Cons ACI	MO (OEO) (): \/	141	
Combinazione nº 11 - Caso A2-I				
_	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
0 11 1 010 0 101	(0=0)			
Combinazione nº 12 - Caso A2-I		<u>Sisma Vert. n</u>	-	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 13 - Caso EQL		<u>ma Vert. pos</u>		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione nº 14 - Caso EQL	J (SLU) - Sis	ma Vert. neg	<u>ativo</u>	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
•				
Combinazione nº 15 - Caso A2-I	M2 (GEO-ST	AB) - Sisma	Vert. positivo	1
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
•				
PV_D_SR_AP_MU_3_C_014001	I_N_001_R_A	_0		

SIS Scpa 115 di 147

Opere d'Arte Minori – Opere di so	ostegno				SPV – Pedemo	
Muro prefabbricato – MU.3C.014	.N – Relazione di	Calcolo				
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
0 1: : 040 0 4	0.M0 (0F0.0T	A.D.) O:				
Combinazione n° 16 - Caso A	<u>2-M2 (GEO-ST)</u> S/F		<u>Vert. negativ</u> Ψ	<u>ο</u> γ*Ψ		
Peso proprio muro	SFAV	γ 1.00	1.00	γ Υ 1.00		
Peso proprio terrapieno	SFAV	1.00	1.00	1.00		
Spinta terreno	SFAV	1.00	1.00	1.00		
Combinazione n° 17 - Quasi F	Permanente (SI	F)				
Gomenia II II Quaei I	S/F	<u>· /</u> γ	Ψ	γ*Ψ		
Peso proprio muro		1.00	1.00	1.00		
Peso proprio terrapieno		1.00	1.00	1.00		
Spinta terreno		1.00	1.00	1.00		
Vento	SFAV	1.00	1.00	1.00		
Combinazione n° 18 - Freque	nte (SLE)					
•	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro		1.00	1.00	1.00		
Peso proprio terrapieno		1.00	1.00	1.00		
Spinta terreno		1.00	1.00	1.00		
Vento	SFAV	1.00	1.00	1.00		
Combinazione n° 19 - Rara (S	SLE)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro		1.00	1.00	1.00		
Peso proprio terrapieno		1.00	1.00	1.00		
Spinta terreno	 OEA)/	1.00	1.00	1.00		
Vento	SFAV	1.00	1.00	1.00		
Impostazioni di analisi Metodo verifica sezioni		Stato limite				
Impostazioni verifiche SLU						
Coefficienti parziali per resiste	enze di calcolo d	dei materiali				
Coefficiente di sicurezza calce			1.60			
Coefficiente di sicurezza calce		one	1.60			
Coefficiente di sicurezza accia			1.15			
Fattore riduzione da resistenz			0.83			
Fattore di riduzione per carich	• •	10	0.85			
Coefficiente di sicurezza per la	a sezione		1.00			
Impostazioni verifiche SLE						
Condizioni ambientali			Ordina	arie		
Armatura ad aderenza miglior	ata		0.0			
Verifica fessurazione						
Sensibilità delle armature			Sensib	_		
Valori limite delle aperture del	le fessure		$w_1 = 0$			
			$W_2 = 0$			
Motodo di colcolo constituto de	llo foccure		$W_3 = 0$		/10/1006\	
Metodo di calcolo aperture de Verifica delle tensioni	iic icssuic		CIIC. N	/lin. 252 (15	/ 10/ 1990)	
Combinazione di carico			Rara d	$\sigma_{\rm c} < 0.60 {\rm f_{ch}}$	- $\sigma_{\rm f}$ < 0.80 $f_{\rm yk}$	
					0 1 5 1 5 1 yk	

Coefficiente correttivo su N_{γ} per effetti cinematici (combinazioni sismiche SLU): 1.00 Coefficiente correttivo su N_{γ} per effetti cinematici (combinazioni sismiche SLE): 1.00

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Calcolo della portanza metodo di Vesic

S/S Scpa 116 di 147

Quasi permanente σ_c < 0.45 f_{ck}

117 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Impostazioni avanzate

Componente verticale della spinta nel calcolo delle sollecitazioni

Influenza del terreno sulla fondazione di valle nelle verifiche e nel calcolo delle sollecitazioni Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione Sisma Combinazione sismica

Sisma Combinazione sismica CS_{SCO} Coeff. di sicurezza allo s

CS_{SCO} Coeff. di sicurezza allo scorrimento CS_{RIB} Coeff. di sicurezza al ribaltamento Coeff. di sicurezza a carico limite CS_{STAB} Coeff. di sicurezza a stabilità globale

С	Tipo	Sisma	CS _{sco}	CS _{rib}	CS qlim	CS _{stab}
1	A1-M1 - [1]		4.80		27.87	
2	A2-M2 - [1]		3.68		11.91	
3	EQU - [1]			6.33		
4	STAB - [1]					2.20
5	A1-M1 - [2]		4.73		27.83	
6	A2-M2 - [2]		3.64		11.90	
7	EQU - [2]			6.16		
8	STAB - [2]					2.20
9	A1-M1 - [3]	Orizzontale + Verticale positivo	3.12		21.09	
10	A1-M1 - [3]	Orizzontale + Verticale negativo	2.98		22.16	
11	A2-M2 - [3]	Orizzontale + Verticale positivo	2.10		7.22	
12	A2-M2 - [3]	Orizzontale + Verticale negativo	2.02		7.54	
13	EQU - [3]	Orizzontale + Verticale positivo		4.31		
14	EQU - [3]	Orizzontale + Verticale negativo		3.61		
15	STAB - [3]	Orizzontale + Verticale positivo				1.77
16	STAB - [3]	Orizzontale + Verticale negativo				1.73
17	SLEQ - [1]		6.00		31.30	
18	SLEF - [1]		6.00		31.30	
19	SLER - [1]		6.00		31.30	

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta metodo di Culmann
Calcolo del carico limite metodo di Vesic
Calcolo della stabilità globale metodo di Bishop
Calcolo della spinta in condizioni di Spinta attiva

<u>Sisma</u>

Combinazioni SLU

Accelerazione al suolo a_g 3.28 [m/s^2] Coefficiente di amplificazione per tipo di sottosuolo (S) 1.07 Coefficiente di amplificazione topografica (St) 1.00 Coefficiente riduzione (β_m) 0.31 Rapporto intensità sismica verticale/orizzontale 0.50

Coefficiente di intensità sismica orizzontale (percento) $k_h=(a_g/g^*\beta_m^*St^*S)=11.13$ Coefficiente di intensità sismica verticale (percento) $k_v=0.50 * k_h=5.56$

Combinazioni SLE

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

Muro prefabbricato -	MIL3C 014 N -	Relazione di Calcolo

Muro prefabbricato – MU.3C.014.N – Re	elazione di Calcolo				
Accelerazione al suolo a _g Coefficiente di amplificazione per tip Coefficiente di amplificazione topogi Coefficiente riduzione (β _m) Rapporto intensità sismica verticale. Coefficiente di intensità sismica verticale. Coefficiente di intensità sismica verticale.	1.27 [m/s^2] 1.20 1.00 0.24 0.50 $k_h=(a_g/g^*\beta_m^*St^*S$ $k_v=0.50^*k_h=1.8$				
Forma diagramma incremento sismi Partecipazione spinta passiva (perc Lunghezza del muro		Stessa forma dia 50.0 9.60 [m]	gramma statico		
Peso muro Baricentro del muro		489.5000 [kN] X=3.12 Y=-5.89)		
Superficie di spinta Punto inferiore superficie di spinta Punto superiore superficie di spinta Altezza della superficie di spinta Inclinazione superficie di spinta(risp COMBINAZIONE n° 1 Peso muro favorevole e Peso terr	,		⟨ = -7.30		
Valore della spinta statica Componente orizzontale della spinta Componente verticale della spinta s Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla no Inclinazione linea di rottura in condiz	tatica rmale alla superficie	400.7175 [kN] 324.8857 [kN] 234.5716 [kN] X = 8.35 [m] 35.83 [°] 59.03 [°]			
Peso terrapieno gravante sulla fond Baricentro terrapieno gravante sulla		1121.9983 [kN] X = 4.62 [m]	Y = -1.74 [m]		
Risultanti Risultante dei carichi applicati in dir. Risultante dei carichi applicati in dir. Resistenza passiva a valle del muro Sforzo normale sul piano di posa de Sforzo tangenziale sul piano di posa Eccentricità rispetto al baricentro de Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto Momento rispetto al baricentro della Carico ultimo della fondazione	verticale Illa fondazione a della fondazione Illa fondazione alla normale)	324.8857 [kN] 1851.6199 [kN] -111.9878 [kN] 1851.6199 [kN] 324.8857 [kN] -0.29 [m] 9.35 [m] 1879.9061 [kN] 9.95 [°] -532.2506 [kNr 51610.7904 [kN]	m]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di mor Fattori per il calcolo della capacità p	nte	9.35 [m] 0.16150 [MP 0.23456 [MP	-		
Coeff. capacità portante Fattori forma Fattori inclinazione Fattori profondità Fattori inclinazione piano posa Fattori inclinazione pendio	$N_c = 61.35$ $s_c = 1.00$ $i_c = 0.74$ $d_c = 1.10$ $b_c = 1.00$ $g_c = 1.00$	$\begin{array}{lll} N_q = 48.93 & N_\gamma = 78.02 \\ s_q = 1.00 & s_\gamma = 1.00 \\ i_q = 0.75 & i_\gamma = 0.62 \\ d_q = 1.06 & d_\gamma = 1.00 \\ b_q = 1.00 & b_\gamma = 1.00 \\ g_q = 1.00 & g_\gamma = 1.00 \end{array}$			
I coefficienti N' tengono conto dei fa inclinazione pendio.	attori di forma, profondità,	inclinazione carico,	, inclinazione piano di posa,		

 $N'_{q} = 38.76$

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

 $N'_c = 50.23$

 $N'_{\gamma} = 48.11$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 4.80 Coefficiente di sicurezza a carico ultimo 27.87

Sollecitazioni fondazione di valle

Combinazione nº 1

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1278	5.1135
3	0.10	0.5117	10.2465
4	0.15	1.1527	15.3991
5	0.20	2.0519	20.5712
6	0.25	3.2102	25.7629
7	0.30	4.6285	30.9740
8	0.35	6.3079	36.2047
9	0.40	8.2493	41.4550
10	0.45	10.4537	46.7248
11	0.50	12.9221	52.0141

Sollecitazioni fondazione di monte

Combinazione nº 1

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	Х	M	
1	0.00	0.0000	0.0000
2	0.83	-14.6540	-34.3279
3	1.67	-56.0391	-64.0266
4	2.50	-120.2900	-89.0963
5	3.34	-203.5414	-109.5368
6	4.17	-301.9281	-125.3483
7	5.01	-411.5846	-136.5306
8	5.84	-528.6458	-143.0839
9	6.68	-649.2463	-145.0081
10	7.51	-769.8499	-144.2198
11	8.35	-891.5308	-148.1395

Armature e tensioni nei materiali della fondazione

Combinazione nº 1

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

 $\begin{array}{ll} A_{fi} & \text{area di armatura in corrispondenza del lembo inferiore in [mq]} \\ A_{fs} & \text{area di armatura in corrispondenza del lembo superiore in [mq]} \end{array}$

 $\begin{array}{ll} N_u & \text{sforzo normale ultimo espresso in [kN]} \\ M_u & \text{momento ultimo espresso in [kNm]} \\ \text{CS} & \text{coefficiente sicurezza sezione} \end{array}$

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 1.800.00	37170.0	03717	0.00	0.00	1000.00	518.73		
2	0.05	1.00, 1.800.00	37170.0	03717	0.00	2489.23	19484.21	518.73		
3	0.10	1.00, 1.800.00	37170.0	03717	0.00	2489.23	4864.85	518.73		
4	0.15	1.00, 1.800.00	37170.0	03717	0.00	2489.23	2159.41	518.73		
5	0.20	1.00, 1.800.00	37170.0	03717	0.00	2489.23	1213.13	518.73		
6	0.25	1.00, 1.800.00	37170.0	03717	0.00	2489.23	775.42	518.73		
7	0.30	1.00, 1.800.00	37170.0	03717	0.00	2489.23	537.80	518.73		
8	0.35	1.00, 1.800.00	37170.0	03717	0.00	2489.23	394.62	518.73		
PV_D	_SR_AP_	_MU_3_C_0140	01_N_00	1_R_A_0						

SIS Scpa 119 di 147

Muro	nrefahhricato _	MU.3C.014.N -	Relazione	di Calcolo
iviui O	prerabblicato –	1010.30.014.11 -	Neiazione	ui Caicoio

9	0.40	1.00, 1.800.0037170.003717	0.00 2489.23	301.75	518.73	
10	0.45	1.00, 1.800.0037170.003717	0.00 2489.23	238.12	518.73	
11	0.50	1.00, 1.800.0037170.003717	0.00 2489.23	192.63	518.73	

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

,	,		. 1, - 1 -				5							,
Nr.	Υ		B, H		A_{fs}	A_{fi}	N	u	Mι	1	CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00		-			003717	0.0				00.00	518.73		
2	0.83	1.00,	1.800.	0037	170.0	003717	0.0	0 -	-2489.23	16	9.87	518.73		
3	1.67	1.00,	1.800.	0037	<mark>'</mark> 170.0	003717	0.0	0 -	-2489.23	4	14.42	518.73		
4	2.50	1.00,	1.800.	0037	<mark>'</mark> 170.0	003717	0.0	0 -	-2489.23		20.69	518.73		
5	3.34					003717	0.0	0 -	-2489.23	1	2.23	518.73		
6	4.17	1.00,	1.800.	0037	170.0	003717	0.0	0 -	-2489.23		8.24	518.73		
7	5.01					003717			-2489.23		6.05	518.73		
8	5.84					003717	0.0	0 -	-2489.23		4.71	518.73		
9	6.68					003717	0.0	0 -	-2489.23		3.83	518.73		
10	7.51					003717			-2489.23		3.23	518.73		
11	8.35			0037	'170.0	003717	0.0	0 -	-2489.23		2.79	518.73		
<u>COMB</u>	<u>INAZIO</u>	NE n°	<u>2</u>											
Compo Compo Punto Inclina		orizzon vertical azione spinta	tale de e della della s rispetto	spin spinta alla	ta sta a norm			cie		381.9 330.7 191.0 X = 8 30.0 55.38	7434 0608 3.35 1	[kN] [kN] [kN] [m] [°] [°]	Y = -3.19	[m]
						ione a m ondazion		nte	Э	1121 X = 4	.9983 1.62	[kN] [m]	Y = -1.74	[m]
Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione -30					1808 -86.7 1808 330.7 -0.17 9.35 1838 10.37 -303.	3.1091 7434 7 3.1103	[kN] [kN] [kN] [kN] [m] [m] [m] [kN] [kN] [kN] [s] [kNm] [kNm]							
Lunghe Tension Tension Fattori	o <u>ni sul te</u> ezza for one terre one terre i per il ca	ndazior eno allo eno allo alcolo o	spigol spigol della ca	o di ı o di ı	monte	<u>rtante</u>				9.35 0.172 0.214	423	[m] [MPa] [MPa]		
	capaci	tà port	tante			$N_c = 6$					= 48.9			78.02
Fattor	i forma					$s_c =$	1.00			S	$s_{q} = 1.0$	0	S _γ =	= 1.00

Tattori per il calcolo della capacità portante					
Coeff. capacità portante	$N_c = 61.35$	$N_q = 48.93$	$N_{\gamma} = 78.02$		
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{\gamma} = 1.00$		
Fattori inclinazione	$i_c = 0.73$	$i_{q} = 0.74$	$i_{\gamma} = 0.60$		
Fattori profondità	$d_c = 1.10$	$d_{q} = 1.07$	$d_{\gamma} = 1.00$		
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{y} = 1.00$		
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$		

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 50.23$ $N'_{q} = 38.76$ $N'_{\gamma} = 48.11$

120 di 147

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.68
Coefficiente di sicurezza a carico ultimo 11.91

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

Sollecitazioni fondazione di valle

Combinazione nº 2

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1456	5.8273
3	0.10	0.5829	11.6658
4	0.15	1.3124	17.5154
5	0.20	2.3346	23.3762
6	0.25	3.6502	29.2481
7	0.30	5.2596	35.1312
8	0.35	7.1635	41.0254
9	0.40	9.3624	46.9308
10	0.45	11.8568	52.8473
11	0.50	14.6473	58.7749

Sollecitazioni fondazione di monte

Combinazione nº 2

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.83	-2.9615	-6.3195
3	1.67	-9.2614	-7.9963
4	2.50	-15.0231	-5.0304
5	3.34	-16.3699	2.5783
6	4.17	-9.4252	14.8296
7	5.01	9.6878	31.7237
8	5.84	44.8457	53.2605
9	6.68	99.9251	79.4400
10	7.51	178.5497	108.7879
11	8.35	280.7963	135.5962

Armature e tensioni nei materiali della fondazione

Combinazione nº 2

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] area di armatura in corrispondenza del lembo superiore in [mq]

Mu sforzo normale ultimo espresso in [kN]
Mu momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	${\sf A_{fs}}$	A_{fi}	N_u	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 1.800.00	37170.0	03717	0.00	0.00	1000.00	518.73		
2	0.05	1.00, 1.800.00	37170.0	03717	0.00	2489.23	17092.02	518.73		
3	0.10	1.00, 1.800.00	37170.0	03717	0.00	2489.23	4270.28	518.73		
4	0.15	1.00, 1.800.00	37170.0	03717	0.00	2489.23	1896.69	518.73		
5	0.20	1.00, 1.800.00	37170.0	03717	0.00	2489.23	1066.21	518.73		
6	0.25	1.00, 1.800.00	37170.0	03717	0.00	2489.23	681.94	518.73		
7	0.30	1.00, 1.800.00	37170.0	03717	0.00	2489.23	473.27	518.73		
8	0.35	1.00, 1.800.00	37170.0	03717	0.00	2489.23	347.49	518.73		
9	0.40	1.00, 1.800.00	37170.0	03717	0.00	2489.23	265.88	518.73		
10	0.45	1.00, 1.800.00	37170.0	03717	0.00	2489.23	209.94	518.73		
11	0.50	1.00, 1.800.00	37170.0	03717	0.00	2489.23	169.94	518.73		
PV_D	SR_AP_	_MU_3_C_0140	001_N_00	1_R_A_0)					

S/S Scpa 121 di 147

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	Υ	В	3, H	A_{fs}	A_{fi}	, N _t	ı	$\mathbf{M}_{\mathbf{u}}$	cs	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	,			0.003717			0.00	1000.00	518.73		
2	0.83				0.003717			89.23	840.54	518.73		
3	1.67	,			0.003717			89.23	268.78	518.73		
4	2.50				0.003717			89.23	165.69	518.73		
5	3.34	,			0.003717			89.23	152.06	518.73		
6	4.17				0.003717			89.23	264.10	518.73		
7	5.01	,			0.003717			89.23	256.94	518.73		
8	5.84	,			0.003717			89.23	55.51	518.73		
9	6.68	,			0.003717			89.23	24.91	518.73		
10	7.51				0.003717			89.23	13.94	518.73		
11	8.35			0037170	0.003717	0.00	24	89.23	8.86	518.73		
COME	<u> BINAZIO</u>	NE n° 3										
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte						3 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	420.1589 363.8178 210.1668 K = 8.35 30.01 55.38 1009.7985 K = 4.62	[kN] [kN] [kN] [m] [°] [°] [kN] [m]	Y = -3.19 Y = -1.74	[m]		
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione					- - - - - -	363.8178 1665.5103 178.0531 1493.4939 9460.2072 1665.5103 363.8178 0.11 9.35 1704.7839 12.32 180.4525	[kN] [kN] [kNm] [kNm] [kN] [kN] [kN] [kN] [m] [m] [kN] [kN]					

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 6.33

Stabilità globale muro + terreno

Combinazione nº 4

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

 α angolo fra la base della striscia e l'orizzontale espresso in $[\circ]$ (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 7.74

Raggio del cerchio R[m]= 17.21

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

S/S Scpa 122 di 147

Ascissa a valle del cerchio Xi[m]= -11.68
Ascissa a monte del cerchio Xs[m]= 16.99

Larghezza della striscia dx[m]= 1.15 Coefficiente di sicurezza C= 2.20

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	Wsin α	b/cosα	ф	C	u
1	4289.22	73.87	4120.33	4.13	32.01	0.000	0.000
2	10998.69	62.86	9787.73	2.51	32.01	0.000	0.000
3	15211.50	55.31	12508.06	2.02	32.01	0.000	0.000
4	18433.31	49.04	13920.58	1.75	32.01	0.000	0.000
5	21039.61	43.49	14481.16	1.58	32.01	0.000	0.000
6	23200.76	38.42	14418.37	1.46	32.01	0.000	0.000
7	24728.35	33.69	13716.52	1.38	32.01	0.000	0.000
8	25504.57	29.21	12444.77	1.31	32.01	0.000	0.000
9	26014.15	24.91	10957.57	1.26	32.01	0.000	0.000
10	25569.54	20.76	9064.43	1.23	32.01	0.000	0.000
11	24921.59	16.73	7172.30	1.20	32.01	0.000	0.000
12	24084.53	12.77	5324.94	1.18	32.01	0.000	0.000
13	23068.54	8.88	3561.71	1.16	32.01	0.000	0.000
14	21978.28	5.03	1927.55	1.15	32.01	0.000	0.000
15	22583.58	1.20	474.47	1.15	32.01	0.000	0.000
16	14460.27	-2.62	-660.59	1.15	32.01	0.000	0.000
17	9613.16	-6.45	-1080.30	1.15	32.01	0.000	0.000
18	9247.05	-10.32	-1655.89	1.17	32.01	0.000	0.000
19	8706.69	-14.23	-2139.84	1.18	32.01	0.000	0.000
20	7984.05	-18.21	-2494.80	1.21	32.01	0.000	0.000
21	7067.58	-22.28	-2679.90	1.24	32.01	0.000	0.000
22	5941.17	-26.48	-2649.17	1.28	32.01	0.000	0.000
23	4582.43	-30.84	-2349.11	1.34	32.01	0.000	0.000
24	2959.82	-35.41	-1714.88	1.41	32.01	0.000	0.000
25	1027.53	-40.25	-663.97	1.50	32.01	0.000	0.000

 $\Sigma W_i = 3758.1247 [kN]$

 $\Sigma W_i \sin \alpha_i = 1135.5500 [kN]$

 $\Sigma W_i tan \phi_i = 2348.9351 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 5.39$

COMBINAZIONE nº 5

Peso muro favorevole e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	400.7175 324.8857 234.5716 X = 8.35 35.83 59.03	[kN] [kN] [kN] [m] [°] [°]	Y = -3.20	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	1121.9983 X = 4.62	[kN] [m]	Y = -1.74	[m]
Risultanti carichi esterni Componente dir. X	4.50	[kN]		
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione	329.3857 1851.6199 -111.9878 1851.6199 329.3857	[kN] [kN] [kN] [kN]		

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

S/S Scpa 123 di 147

124 di 147

Muro prefabbricato – MU.3C.014.N – Relazione di Calcolo

Eccentricità rispetto al baricentro della fondazione	-0.26	[m]
Lunghezza fondazione reagente	9.35	[m]
Risultante in fondazione	1880.6890	[kN]
Inclinazione della risultante (rispetto alla normale)	10.09	[°]
Momento rispetto al baricentro della fondazione	-490.4006	[kNm]
Carico ultimo della fondazione	51538.7761	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	9.35	[m]
Tensione terreno allo spigolo di valle	0.16438	[MPa]
Tensione terreno allo spigolo di monte	0.23169	[MPa]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 61.35$	$N_q = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.74$	$i_q = 0.74$	$i_{\gamma} = 0.61$
Fattori profondità	$d_c = 1.10$	$d_{q} = 1.06$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$11_{c} = 30.23$ $11_{q} = 30.70$ $11_{\gamma} = 40.$	$N'_{c} = 50.23$	$N'_{q} = 38.76$	$N'_{\gamma} = 48.1'$
---	------------------	------------------	-----------------------

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 4.73 Coefficiente di sicurezza a carico ultimo 27.83

Sollecitazioni fondazione di valle

Combinazione nº 5

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

X	M	Т
0.00	0.0000	0.0000
0.05	0.1313	5.2563
0.10	0.5259	10.5307
0.15	1.1847	15.8230
0.20	2.1085	21.1334
0.25	3.2983	26.4617
0.30	4.7550	31.8081
0.35	6.4794	37.1724
0.40	8.4725	42.5547
0.45	10.7352	47.9551
0.50	13.2684	53.3734
	0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45	0.00 0.0000 0.05 0.1313 0.10 0.5259 0.15 1.1847 0.20 2.1085 0.25 3.2983 0.30 4.7550 0.35 6.4794 0.40 8.4725 0.45 10.7352

Sollecitazioni fondazione di monte

Combinazione nº 5

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.83	-15.5957	-36.5120
3	1.67	-59.5674	-67.9666
4	2.50	-127.6922	-94.3636
5	3.34	-215.7470	-115.7032
6	4.17	-319.5089	-131.9854
7	5.01	-434.7549	-143.2101
8	5.84	-557.2621	-149.3773
9	6.68	-682.8074	-150.4870
10	7.51	-807.4968	-148.4560
11	8.35	-932.0470	-150.7046

Armature e tensioni nei materiali della fondazione

Combinazione n° 5

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

Simbologia adottata

B base della sezione espressa in [m] H altezza della sezione espressa in [m]

 A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

Nu sforzo normale ultimo espresso in [kN]
Mu momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	A_{fs}	A_{fi}	$N_{\rm u}$	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 1.800.00	37170.00	3717	0.00	0.00	1000.00	518.73		
2	0.05	1.00, 1.800.00	37170.00	3717	0.00	2489.23	18953.46	518.73		
3	0.10	1.00, 1.800.00	37170.00	3717	0.00	2489.23	4732.96	518.73		
4	0.15	1.00, 1.800.00	37170.00	3717	0.00	2489.23	2101.14	518.73		
5	0.20	1.00, 1.800.00	37170.00	3717	0.00	2489.23	1180.55	518.73		
6	0.25	1.00, 1.800.00	37170.00	3717	0.00	2489.23	754.69	518.73		
7	0.30	1.00, 1.800.00	37170.00	3717	0.00	2489.23	523.50	518.73		
8	0.35	1.00, 1.800.00	37170.00	3717	0.00	2489.23	384.17	518.73		
9	0.40	1.00, 1.800.00	37170.00	3717	0.00	2489.23	293.80	518.73		
10	0.45	1.00, 1.800.00	37170.00	3717	0.00	2489.23	231.87	518.73		
11	0.50	1.00, 1.800.00	37170.00	3717	0.00	2489.23	187.61	518.73		
Fonda.	zione di	monte								

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

v	рυ	٨	۸	K I	R.A	ce	17	V	v
								V Rcd	V_{Rsd}
	,								
	,								
	,								
	•								
5.01							518.73		
5.84	1.00, 1.800.00	037170.00	3717	0.00	-2489.23	4.47	518.73		
6.68	1.00, 1.800.00	37170.00	3717	0.00	-2489.23	3.65	518.73		
7.51	1.00, 1.800.00	37170.00	3717	0.00	-2489.23	3.08	518.73		
8.35	1.00, 1.800.00	037170.00	3717	0.00	-2489.23	2.67	518.73		
<u> SINAZIO</u>	NE n° 6								
onente d onente v d'applic	orizzontale della verticale della sp azione della spi	ointa statio nta	a	ıperficie		330.7434 191.0608 X = 8.35	[kN] [kN] [kN] [m] [°]	Y = -3.19	[m]
							[°]		
							[m]	Y = -1.74	[m]
onente d						3.90	[kN]		
ante dei enza pa normal tangen	carichi applicati ssiva a valle de e sul piano di pe ziale sul piano d	in dir. ver I muro osa della f di posa de	ticale ondazior lla fonda:			1808.1091 -86.7256 1808.1091	[kN] [kN] [kN] [kN] [kN]		
	5.84 6.68 7.51 8.35 SINAZIO della sponente o d'applicatione lire errapier ntro terre anti cariconente o dente	0.00 1.00, 1.800.00 0.83 1.00, 1.800.00 1.67 1.00, 1.800.00 2.50 1.00, 1.800.00 3.34 1.00, 1.800.00 4.17 1.00, 1.800.00 5.01 1.00, 1.800.00 5.84 1.00, 1.800.00 6.68 1.00, 1.800.00 7.51 1.00, 1.800.00 8.35 1.00, 1.800.00 8.35 1.00, 1.800.00 8.35 1.00, 1.800.00 sinazione della spidapplicazione della spinta rispetto a zione linea di rottura in errapieno gravante sulla ntro terrapieno gravante sulla ntro	0.00 1.00, 1.800.0037170.00 0.83 1.00, 1.800.0037170.00 1.67 1.00, 1.800.0037170.00 2.50 1.00, 1.800.0037170.00 3.34 1.00, 1.800.0037170.00 4.17 1.00, 1.800.0037170.00 5.01 1.00, 1.800.0037170.00 5.84 1.00, 1.800.0037170.00 6.68 1.00, 1.800.0037170.00 7.51 1.00, 1.800.0037170.00 8.35 1.00, 1.800.0037170.00 8.35 1.00, 1.800.0037170.00 8.35 1.00, 1.800.0037170.00 6.68 spinta statica conente orizzontale della spinta statica conente verticale della spinta statica conente verticale della spinta z. della spinta rispetto alla norma zione linea di rottura in condizion errapieno gravante sulla fondazio ntro terrapieno gravante sulla fondazio entro terrapieno gravante sulla fondazio ntro terrapieno gravante sulla fondazio entre dei carichi applicati in dir. oriz ente dei carichi applicati in dir. oriz	0.00 1.00, 1.800.0037170.003717 0.83 1.00, 1.800.0037170.003717 1.67 1.00, 1.800.0037170.003717 2.50 1.00, 1.800.0037170.003717 3.34 1.00, 1.800.0037170.003717 4.17 1.00, 1.800.0037170.003717 5.01 1.00, 1.800.0037170.003717 5.84 1.00, 1.800.0037170.003717 6.68 1.00, 1.800.0037170.003717 7.51 1.00, 1.800.0037170.003717 8.35 1.00, 1.800.0037170.003717 8.35 1.00, 1.800.0037170.003717 8.10AZIONE n° 6 della spinta statica conente verticale della spinta statica d'applicazione della spinta z. della spinta rispetto alla normale alla su zione linea di rottura in condizioni statiche errapieno gravante sulla fondazione amontro terrapieno gravante sulla fondazione amontro terrapieno gravante sulla fondazione anti carichi esterni conente dir. X anti carichi esterni onente dei carichi applicati in dir. orizzontale ante dei carichi applicati in dir. verticale enza passiva a valle del muro normale sul piano di posa della fondazione normale sul piano di posa della fondazione	0.00 1.00, 1.800.0037170.003717 0.00 0.83 1.00, 1.800.0037170.003717 0.00 1.67 1.00, 1.800.0037170.003717 0.00 2.50 1.00, 1.800.0037170.003717 0.00 3.34 1.00, 1.800.0037170.003717 0.00 4.17 1.00, 1.800.0037170.003717 0.00 5.01 1.00, 1.800.0037170.003717 0.00 5.84 1.00, 1.800.0037170.003717 0.00 6.68 1.00, 1.800.0037170.003717 0.00 7.51 1.00, 1.800.0037170.003717 0.00 8.35 1.00, 1.800.0037170.003717 0.00 8.00 1.800.0037170.003717 0.00 8.10AZIONE n° 6 della spinta statica conente verticale della spinta statica d'applicazione della spinta z. della spinta rispetto alla normale alla superficie zione linea di rottura in condizioni statiche errapieno gravante sulla fondazione a monte ntro terrapieno gravante sulla fondazione a monte entri carichi esterni conente dir. X anti conente dei carichi applicati in dir. orizzontale conente dei carichi applicati in dir. verticale conente dei carichi applicati in dir. verticale conente sul piano di posa della fondazione tangenziale sul piano di posa della fondazione tangenziale sul piano di posa della fondazione	0.00 1.00, 1.800.0037170.003717 0.00 0.00 0.83 1.00, 1.800.0037170.003717 0.00 -2489.23 1.67 1.00, 1.800.0037170.003717 0.00 -2489.23 2.50 1.00, 1.800.0037170.003717 0.00 -2489.23 3.34 1.00, 1.800.0037170.003717 0.00 -2489.23 4.17 1.00, 1.800.0037170.003717 0.00 -2489.23 5.01 1.00, 1.800.0037170.003717 0.00 -2489.23 5.84 1.00, 1.800.0037170.003717 0.00 -2489.23 6.68 1.00, 1.800.0037170.003717 0.00 -2489.23 7.51 1.00, 1.800.0037170.003717 0.00 -2489.23 8.35 1.00, 1.800.0037170.003717 0.00 -2489.23 8.35 1.00, 1.800.0037170.003717 0.00 -2489.23 8.1NAZIONE n° 6 della spinta statica conente verticale della spinta statica d'applicazione della spinta z. della spinta rispetto alla normale alla superficie zione linea di rottura in condizioni statiche errapieno gravante sulla fondazione a monte ntro terrapieno gravante sulla fondazione a monte entri carichi esterni conente dir. X anti canti dei carichi applicati in dir. orizzontale ente dei carichi applicati in dir. verticale enza passiva a valle del muro normale sul piano di posa della fondazione tangenziale sul piano di posa della fondazione tangenziale sul piano di posa della fondazione	0.00 1.00, 1.800.0037170.003717 0.00 0.00 1000.00 0.83 1.00, 1.800.0037170.003717 0.00 -2489.23 159.61 1.67 1.00, 1.800.0037170.003717 0.00 -2489.23 41.79 2.50 1.00, 1.800.0037170.003717 0.00 -2489.23 19.49 3.34 1.00, 1.800.0037170.003717 0.00 -2489.23 7.79 5.01 1.00, 1.800.0037170.003717 0.00 -2489.23 7.79 5.01 1.00, 1.800.0037170.003717 0.00 -2489.23 5.73 5.84 1.00, 1.800.0037170.003717 0.00 -2489.23 3.65 7.51 1.00, 1.800.0037170.003717 0.00 -2489.23 3.65 7.51 1.00, 1.800.0037170.003717 0.00 -2489.23 3.65 7.51 1.00, 1.800.0037170.003717 0.00 -2489.23 3.08 8.35 1.00, 1.800.0037170.003717 0.00 -2489.23 2.67 SINAZIONE n° 6 della spinta statica 381.9626 conente orizzontale della spinta statica 330.7434 conente verticale della spinta statica 330.7434 conente verticale della spinta statica 330.7434 conente verticale della spinta statica 30.01 cinne linea di rottura in condizioni statiche 55.38 errapieno gravante sulla fondazione a monte 1121.9983 ntro terrapieno gravante sulla fondazione a monte X = 4.62 conente dir. X 3.90 conti carichi esterni onente dir. X 3.90 conti carichi applicati in dir. orizzontale ante dei carichi applicati in dir. orizzontale ante dei carichi applicati in dir. verticale enza passiva a valle del muro -86.7256 conormale sul piano di posa della fondazione 1808.1091 tangenziale sul piano di posa della fondazione 334.6434	0.00 1.00, 1.800.0037170.003717 0.00 -0.00 1000.00 518.73 0.83 1.00, 1.800.0037170.003717 0.00 -2489.23 159.61 518.73 1.67 1.00, 1.800.0037170.003717 0.00 -2489.23 41.79 518.73 2.50 1.00, 1.800.0037170.003717 0.00 -2489.23 19.49 518.73 3.34 1.00, 1.800.0037170.003717 0.00 -2489.23 11.54 518.73 4.17 1.00, 1.800.0037170.003717 0.00 -2489.23 7.79 518.73 5.01 1.00, 1.800.0037170.003717 0.00 -2489.23 5.73 518.73 5.84 1.00, 1.800.0037170.003717 0.00 -2489.23 5.73 518.73 5.84 1.00, 1.800.0037170.003717 0.00 -2489.23 3.65 518.73 6.68 1.00, 1.800.0037170.003717 0.00 -2489.23 3.65 518.73 7.51 1.00, 1.800.0037170.003717 0.00 -2489.23 3.08 518.73 8.35 1.00, 1.800.0037170.003717 0.00 -2489.23 3.08 518.73 8.35 1.00, 1.800.0037170.003717 0.00 -2489.23 2.67 518.73 8.1NAZIONE n° 6 della spinta statica 381.9626 [kN] conente verticale della spinta statica 191.0608 [kN] d'applicazione della spinta statica 330.7434 [kN] conente verticale della spinta statica 191.0608 [kN] d'applicazione della spinta statica 30.01 [°] zione linea di rottura in condizioni statiche 55.38 [°] errapieno gravante sulla fondazione a monte 1121.9983 [kN] errapieno gravante sulla fondazione a monte X = 4.62 [m] errapieno gravante sulla fondazione a monte X = 4.62 [m] errapieno gravante sulla fondazione a monte X = 4.62 [m] errapieno gravante sulla fondazione a monte X = 4.62 [m] errapieno gravante sulla fondazione a monte X = 4.62 [kN] conente dir. X 3.90 [kN] errapieno gravante sulla fondazione a monte X = 4.62 [kN] conente dir. X 3.90 [kN] errapieno gravante sulla fondazione a monte X = 4.62 [kN] conente dir. X 3.90 [kN] errapieno gravante sulla fondazione 1808.1091 [kN] conente dir. X 3.90 [kN] conente	0.00

SIS Scpa 125 di 147

126 di 147

Muro prefabbricato – MU.3C.014.N – Relazione di Calcolo

Eccentricità rispetto al baricentro della fondazione	-0.15	[m]
Lunghezza fondazione reagente	9.35	[m]
Risultante in fondazione	1838.8161	[kN]
Inclinazione della risultante (rispetto alla normale)	10.49	[°]
Momento rispetto al baricentro della fondazione	-267.4578	[kNm]
Carico ultimo della fondazione	21514.9616	[kN]

Tensioni sul terreno

Lunghezza fondazione reagente	9.35	[m]
Tensione terreno allo spigolo di valle	0.17502	[MPa]
Tensione terreno allo spigolo di monte	0.21174	[MPa]

Fattori per il calcolo della capacità portante

Cooff consoità portante	N - 61.25	N = 40.02	N _ 79.02
Coeff. capacità portante	$N_c = 61.35$	$N_{q} = 48.93$	$N_{\gamma} = 78.02$
Fattori forma	$s_c = 1.00$	$s_{q} = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.72$	$i_q = 0.73$	$i_{\gamma} = 0.60$
Fattori profondità	$d_c = 1.10$	$d_{q} = 1.07$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$N'_{c} = 50.23$ $N'_{g} = 38.76$ $N'_{y} = 4$	₽8.1	1
--	------	---

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 3.64
Coefficiente di sicurezza a carico ultimo 11.90

Sollecitazioni fondazione di valle

Combinazione nº 6

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1487	5.9511
3	0.10	0.5953	11.9121
4	0.15	1.3401	17.8828
5	0.20	2.3837	23.8634
6	0.25	3.7266	29.8538
7	0.30	5.3693	35.8540
8	0.35	7.3122	41.8640
9	0.40	9.5558	47.8839
10	0.45	12.1007	53.9135
11	0.50	14.9474	59.9530

Sollecitazioni fondazione di monte

Combinazione nº 6

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.83	-3.7776	-8.2124
3	1.67	-12.3192	-11.4109
4	2.50	-21.4383	-9.5954
5	3.34	-26.9480	-2.7660
6	4.17	-24.6619	9.0775
7	5.01	-10.3931	25.9349
8	5.84	20.0449	47.8062
9	6.68	70.8389	74.6916
10	7.51	145.9223	105.1165
11	8.35	245.6822	133.3731

Armature e tensioni nei materiali della fondazione

Combinazione n° 6

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

Simbologia adottata

B base della sezione espressa in [m] H altezza della sezione espressa in [m]

 A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

Nu sforzo normale ultimo espresso in [kN]
Mu momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	N_{u}	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 1.800.00	37170.0	03717	0.00	0.00	1000.00	518.73		
2	0.05	1.00, 1.800.00	37170.0	03717	0.00	2489.23	16735.73	518.73		
3	0.10	1.00, 1.800.00	37170.0	03717	0.00	2489.23	4181.63	518.73		
4	0.15	1.00, 1.800.00	37170.0	03717	0.00	2489.23	1857.48	518.73		
5	0.20	1.00, 1.800.00	37170.0	03717	0.00	2489.23	1044.26	518.73		
6	0.25	1.00, 1.800.00	37170.0	03717	0.00	2489.23	667.96	518.73		
7	0.30	1.00, 1.800.00	37170.0	03717	0.00	2489.23	463.61	518.73		
8	0.35	1.00, 1.800.00	37170.0	03717	0.00	2489.23	340.42	518.73		
9	0.40	1.00, 1.800.00	37170.0	03717	0.00	2489.23	260.49	518.73		
10	0.45	1.00, 1.800.00	37170.0	03717	0.00	2489.23	205.71	518.73		
11	0.50	1.00, 1.800.00	37170.0	03717	0.00	2489.23	166.53	518.73		
Fonda	zione di	monte								

TOTIGAZIONE ULTIONIE

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

NI.	v	р и		Α.	A.I	8.4	00	17	V	W
Nr. 1	Y 0.00	B, H 1.00, 1.800.00	A fs 137170 00	A fi 13717	N _u 0.00	M ս 0.00		V _{Rd} 518.73	V _{Rcd}	V_{Rsd}
2	0.83	1.00, 1.800.00				-2489.23		518.73		
3	1.67	1.00, 1.800.00				-2489.23		518.73		
4	2.50	1.00, 1.800.00				-2489.23		518.73		
5	3.34	1.00, 1.800.00				-2489.23		518.73		
6	4.17	1.00, 1.800.00				-2489.23		518.73		
7	5.01	1.00, 1.800.00				-2489.23		518.73		
8	5.84	1.00, 1.800.00				2489.23		518.73		
9	6.68	1.00, 1.800.00				2489.23		518.73		
10	7.51	1.00, 1.800.00				2489.23		518.73		
11	8.35	1.00, 1.800.00				2489.23		518.73		
COMB	INAZIO	NE n° 7								
Compo Compo Punto Inclina Inclina Peso t Barice	onente on	pinta statica prizzontale della perticale della spi azione della spi spinta rispetto a nea di rottura in no gravante sulla apieno gravante chi esterni dir. X	ointa statio inta alla norma condizion a fondazio	ca le alla su i statiche one a mor	nte	e	420.1589 363.8178 210.1668 X = 8.35 30.01 55.38 1009.7985 X = 4.62	[kN] [kN] [kN] [m] [°] [kN] [m]	Y = -3.19 Y = -1.74	[m]
Risulta Resiste Mome	ante dei ante dei enza pa nto ribal nto stab	carichi applicati carichi applicati ssiva a valle de tante rispetto al ilizzante rispetto _MU_3_C_014(i in dir. ver Il muro Ilo spigolo o allo spig	ticale a valle olo a valle	е		368.3178 1665.5103 -78.0531 1535.3439 9460.2072	[kN] [kN] [kN] [kNm] [kNm]		

SIS Scpa 127 di 147

Sforzo normale sul piano di posa della fondazione	1665.5103	[kN]
Sforzo tangenziale sul piano di posa della fondazione	368.3178	[kN]
Eccentricità rispetto al baricentro della fondazione	-0.08	[m]
Lunghezza fondazione reagente	9.35	[m]
Risultante in fondazione	1705.7499	[kN]
Inclinazione della risultante (rispetto alla normale)	12.47	[°]
Momento rispetto al baricentro della fondazione	-138.6025	[kNm]

6.16

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento

Stabilità globale muro + terreno

Combinazione nº 8

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

 α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 7.74

Raggio del cerchio R[m]= 17.21

Ascissa a valle del cerchio Xi[m]= -11.68 Ascissa a monte del cerchio Xs[m]= 16.99

Larghezza della striscia dx[m]= 1.15 Coefficiente di sicurezza C= 2.20

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	Wsin α	b/cosα	ф	С	u
1	4289.22	73.87	4120.33	4.13	32.01	0.000	0.000
2	10998.69	62.86	9787.73	2.51	32.01	0.000	0.000
3	15211.50	55.31	12508.06	2.02	32.01	0.000	0.000
4	18433.31	49.04	13920.58	1.75	32.01	0.000	0.000
5	21039.61	43.49	14481.16	1.58	32.01	0.000	0.000
6	23200.76	38.42	14418.37	1.46	32.01	0.000	0.000
7	24728.35	33.69	13716.52	1.38	32.01	0.000	0.000
8	25504.57	29.21	12444.77	1.31	32.01	0.000	0.000
9	26014.15	24.91	10957.57	1.26	32.01	0.000	0.000
10	25569.54	20.76	9064.43	1.23	32.01	0.000	0.000
11	24921.59	16.73	7172.30	1.20	32.01	0.000	0.000
12	24084.53	12.77	5324.94	1.18	32.01	0.000	0.000
13	23068.54	8.88	3561.71	1.16	32.01	0.000	0.000
14	21978.28	5.03	1927.55	1.15	32.01	0.000	0.000
15	22583.58	1.20	474.47	1.15	32.01	0.000	0.000
16	14460.27	-2.62	-660.59	1.15	32.01	0.000	0.000
17	9613.16	-6.45	-1080.30	1.15	32.01	0.000	0.000
18	9247.05	-10.32	-1655.89	1.17	32.01	0.000	0.000
19	8706.69	-14.23	-2139.84	1.18	32.01	0.000	0.000
20	7984.05	-18.21	-2494.80	1.21	32.01	0.000	0.000
21	7067.58	-22.28	-2679.90	1.24	32.01	0.000	0.000
22	5941.17	-26.48	-2649.17	1.28	32.01	0.000	0.000
23	4582.43	-30.84	-2349.11	1.34	32.01	0.000	0.000
24	2959.82	-35.41	-1714.88	1.41	32.01	0.000	0.000

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 128 di 147

opere di vitte inimeni. Opere di dedicegne		Ci v i cacinontana veneta
Muro prefabbricato – MU.3C.014.N – Relazione di Calcolo		
25 1027.53 -40.25 -663.97 1.50 ΣW_i = 3758.1247 [kN] ΣW_i sin α_i = 1135.5500 [kN] ΣW_i tan ϕ_i = 2348.9351 [kN] Σ tan α_i tan ϕ_i = 5.39	32.01 0.000	0.000
COMBINAZIONE n° 9		
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	308.2442 [kN] 249.9121 [kN] 180.4397 [kN] X = 8.35 [m] 35.83 [°] 59.03 [°]	Y = -3.20 [m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	118.1316 [kN] X = 8.35 [m] 53.65 [°]	Y = -3.20 [m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	1121.9983 [kN] X = 4.62 [m] 54.4598 [kN] 27.2299 [kN] 124.8290 [kN] 62.4145 [kN]	Y = -1.74 [m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	525.5947 [kN] 1956.2842 [kN] -111.9878 [kN] 1956.2842 [kN] 525.5947 [kN] 0.11 [m] 9.35 [m] 2025.6598 [kN] 15.04 [°] 210.7911 [kNm] 41255.7934 [kN]	
<u>Tensioni sul terreno</u> Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte <u>Fattori per il calcolo della capacità portante</u>	9.35 [m] 0.22370 [MPa] 0.19476 [MPa]	
Coeff. capacità portante N _c = 61.35	$N_q = 48.93$	$N_{\gamma} = 78.02$
Fattori forma $s_c = 1.00$ Fattori inclinazione $i_c = 0.62$	$s_q = 1.00$ $i_q = 0.62$	$s_{\gamma} = 1.00$ $i_{\gamma} = 0.46$
Fattori profondità $d_c = 0.02$	$d_{q} = 0.02$ $d_{q} = 1.06$	$d_{\gamma} = 0.40$ $d_{\gamma} = 1.00$
Fattori inclinazione piano posa $b_c = 1.00$	$b_q = 1.00$	$b_{y} = 1.00$
Fattori inclinazione pendio $g_c = 1.00$	$g_q = 1.00$ $g_q = 1.00$	$g_{\gamma} = 1.00$ $g_{\gamma} = 1.00$
I coefficienti N' tengono conto dei fattori di forma, profondità,		
inclinazione pendio.	momuzione canco, ii	iomiaziono piano di posa,
$N'_{c} = 50.23$	$N'_{q} = 38.76$	$N'_{\nu} = 48.11$
COEFFICIENTI DI SICUREZZA	11 q = 30.70	11γ – το. 11
Coefficiente di sicurezza a scorrimento	3.12	
Coefficiente di sicurezza a carico ultimo	21.09	
Sollecitazioni fondazione di valle		
Combinazione nº 0		

Combinazione nº 9
L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm Taglio positivo se diretto verso l'alto, espresso in kN

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.2094	8.3759
3	0.10	0.8375	16.7441
4	0.15	1.8837	25.1045
5	0.20	3.3478	33.4572
6	0.25	5.2293	41.8021
7	0.30	7.5279	50.1393
8	0.35	10.2431	58.4688
9	0.40	13.3746	66.7906
10	0.45	16.9220	75.1046
11	0.50	20.8849	83.4108

Sollecitazioni fondazione di monte

Combinazione nº 9

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.83	-9.0143	-19.9395
3	1.67	-30.5409	-29.9698
4	2.50	-56.3059	-30.0910
5	3.34	-78.0348	-20.3029
6	4.17	-87.4536	-0.6056
7	5.01	-76.2881	29.0009
8	5.84	-36.2640	68.5166
9	6.68	40.8927	117.9415
10	7.51	163.2032	175.8012
11	8.35	335.1420	236.3878

Armature e tensioni nei materiali della fondazione

Combinazione nº 9

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq] A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

N_u sforzo normale ultimo espresso in [kN] M_u momento ultimo espresso in [kNm] CS coefficiente sicurezza sezione

CS coefficiente sicurezza sezione
VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	N_{u}	$M_{\rm u}$	cs	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 1.800.00	37170.00	03717	0.00	0.00	1000.00	518.73		
2	0.05	1.00, 1.800.00	37170.00	03717	0.00	2489.23	11885.74	518.73		
3	0.10	1.00, 1.800.00	37170.00	03717	0.00	2489.23	2972.35	518.73		
4	0.15	1.00, 1.800.00	37170.00	03717	0.00	2489.23	1321.45	518.73		
5	0.20	1.00, 1.800.00	37170.00	03717	0.00	2489.23	743.55	518.73		
6	0.25	1.00, 1.800.00	37170.00	03717	0.00	2489.23	476.02	518.73		
7	0.30	1.00, 1.800.00	37170.00	03717	0.00	2489.23	330.67	518.73		
8	0.35	1.00, 1.800.00	37170.00	03717	0.00	2489.23	243.02	518.73		
9	0.40	1.00, 1.800.00	37170.00	03717	0.00	2489.23	186.12	518.73		
10	0.45	1.00, 1.800.00	37170.00	03717	0.00	2489.23	147.10	518.73		
11	0.50	1.00, 1.800.00	37170.00	03717	0.00	2489.23	119.19	518.73		
Comdo	-:	:								

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

 $\label{eq:Nr.} \textbf{Nr.} \qquad \textbf{Y} \qquad \textbf{B}, \textbf{H} \qquad \textbf{A}_{fs} \qquad \textbf{A}_{fi} \qquad \textbf{N}_{u} \qquad \textbf{M}_{u} \qquad \textbf{CS} \qquad \textbf{V}_{Rd} \qquad \textbf{V}_{Rcd} \qquad \textbf{V}_{Rsd}$

 $PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0$

SIS Scpa 130 di 147

Muro prefabbricato – MU.3C.014.N – Relazione di Cal	lcolo				
1 0.00 1.00, 1.800.0037170.003717 2 0.83 1.00, 1.800.0037170.003717 3 1.67 1.00, 1.800.0037170.003717 4 2.50 1.00, 1.800.0037170.003717 5 3.34 1.00, 1.800.0037170.003717 6 4.17 1.00, 1.800.0037170.003717 7 5.01 1.00, 1.800.0037170.003717 8 5.84 1.00, 1.800.0037170.003717 9 6.68 1.00, 1.800.0037170.003717 10 7.51 1.00, 1.800.0037170.003717 11 8.35 1.00, 1.800.0037170.003717 COMBINAZIONE n° 10	0.00 0.00 0.00 -2489.23 0.00 -2489.23 0.00 -2489.23 0.00 -2489.23 0.00 -2489.23 0.00 -2489.23 0.00 2489.23 0.00 2489.23 0.00 2489.23	3 81.50 3 44.21 3 31.90 3 28.46 3 32.63 3 68.64 3 60.87 3 15.25	518.73 518.73 518.73 518.73 518.73 518.73 518.73 518.73 518.73 518.73	 	
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla su Inclinazione linea di rottura in condizioni statiche	perficie	308.2442 249.9121 180.4397 X = 8.35 35.83 59.03	[kN] [kN] [kN] [m] [°] [°]	Y = -3.20	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di s Inclinazione linea di rottura in condizioni sismiche		85.5546 X = 8.35 52.97	[kN] [m] [°]	Y = -3.20	[m]
Peso terrapieno gravante sulla fondazione a mor Baricentro terrapieno gravante sulla fondazione a Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di mor	1121.9983 X = 4.62 54.4598 -27.2299 124.8290 -62.4145	[kN] [m] [kN] [kN] [kN] [kN]	Y = -1.74	[m]	
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazion Sforzo tangenziale sul piano di posa della fondaz Eccentricità rispetto al baricentro della fondazion Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	zione e	499.1826 1757.9254 -111.9878 1757.9254 499.1826 0.16 9.35 1827.4258 15.85 279.8096 38949.7445	[°] [kNm]		
Tensioni sul terrenoLunghezza fondazione reagenteTensione terreno allo spigolo di valleTensione terreno allo spigolo di monteFattori per il calcolo della capacità portanteCoeff. capacità portante $N_c = 61$.Fattori forma $s_c = 1$.Fattori inclinazione $i_c = 0$.Fattori profondità $d_c = 1$.Fattori inclinazione piano posa $b_c = 1$.Fattori inclinazione pendio $g_c = 1$.	00 60 10 00 00	9.35 0.20722 0.16881 $N_q = 48.9$ $s_q = 1.0$ $i_q = 0.6$ $d_q = 1.0$ $g_q = 1.0$	00 60 06 00	$i'_{\gamma} = d_{\gamma} = d_{\gamma} = g_{\gamma} = g_{\gamma}$	1.00 0.43 1.00 1.00 1.00
I coefficienti N' tengono conto dei fattori di forma inclinazione pendio. N'c = 50. COEFFICIENTI DI SICUREZZA Coefficiente di sicurezza a scorrimento		N' _q = 38.7		linazione pia N' _γ = 4	

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

Coefficiente di sicurezza a carico ultimo

Sollecitazioni fondazione di valle

Combinazione nº 10

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

22.16

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.05	0.1888	7.5507
3	0.10	0.7549	15.0912
4	0.15	1.6978	22.6214
5	0.20	3.0169	30.1413
6	0.25	4.7117	37.6510
7	0.30	6.7818	45.1504
8	0.35	9.2266	52.6395
9	0.40	12.0456	60.1183
10	0.45	15.2382	67.5869
11	0.50	18.8041	75.0452

Sollecitazioni fondazione di monte

Combinazione nº 10

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.83	-17.9631	-41.2560
3	1.67	-65.9428	-71.8963
4	2.50	-135.0752	-91.9210
5	3.34	-216.4962	-101.3300
6	4.17	-301.3417	-100.1234
7	5.01	-380.7475	-88.3011
8	5.84	-445.8498	-65.8631
9	6.68	-487.7843	-32.8095
10	7.51	-497.9400	9.3854
11	8.35	-471.2527	55.0136

Armature e tensioni nei materiali della fondazione

Combinazione nº 10

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

 $\begin{array}{ll} A_{fi} & \text{area di armatura in corrispondenza del lembo inferiore in [mq]} \\ A_{fs} & \text{area di armatura in corrispondenza del lembo superiore in [mq]} \end{array}$

 $\begin{array}{ll} N_u & \text{sforzo normale ultimo espresso in [kN]} \\ M_u & \text{momento ultimo espresso in [kNm]} \\ \text{CS} & \text{coefficiente sicurezza sezione} \end{array}$

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	В, Н	\mathbf{A}_{fs}	A_{fi}	N_{u}	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 1.800.00	37170.0	03717	0.00	0.00	1000.00	518.73		
2	0.05	1.00, 1.800.00	37170.0	03717	0.00	2489.23	13183.69	518.73		
3	0.10	1.00, 1.800.00	37170.0	03717	0.00	2489.23	3297.42	518.73		
4	0.15	1.00, 1.800.00	37170.0	03717	0.00	2489.23	1466.18	518.73		
5	0.20	1.00, 1.800.00	37170.0	03717	0.00	2489.23	825.10	518.73		
6	0.25	1.00, 1.800.00	37170.0	03717	0.00	2489.23	528.31	518.73		
7	0.30	1.00, 1.800.00	37170.0	03717	0.00	2489.23	367.05	518.73		
8	0.35	1.00, 1.800.00	37170.0	03717	0.00	2489.23	269.79	518.73		
9	0.40	1.00, 1.800.00	37170.0	03717	0.00	2489.23	206.65	518.73		
10	0.45	1.00, 1.800.00	37170.0	03717	0.00	2489.23	163.35	518.73		
PV D	SR AP	MU 3 C 014- 0	001 N 00	1 R A 0)					

S/S Scpa 132 di 147

11 0.50 1.00, 1.800.0037170.003717 0.00 2489.23 132.38 518.73 -- *Fondazione di monte*

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

(, 1	(), · , · · · ·	3						,
Nr.	Υ		A_{fs} A_{fi}	N_{u}	M		V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	1.00, 1.800.0037		0.00	0.00		518.73		
2	0.83 1.67	1.00, 1.800.0037 1.00, 1.800.0037			-2489.23 -2489.23		518.73 518.73		
4	2.50	1.00, 1.800.0037			-2489.23		518.73		
5	3.34	1.00, 1.800.0037			-2489.23		518.73		
6	4.17	1.00, 1.800.0037			-2489.23		518.73		
7	5.01	1.00, 1.800.0037		0.00	-2489.23		518.73		
8	5.84	1.00, 1.800.0037		0.00	-2489.23		518.73		
9	6.68	1.00, 1.800.0037			-2489.23		518.73		
10	7.51	1.00, 1.800.0037			-2489.23		518.73		
11	8.35	1.00, 1.800.0037	170.003717	0.00	-2489.23	5.28	518.73		
COIVIE	<u> INAZIOI</u>	<u>NE nº 11</u>							
\/alore	dalla en	inta statica				381.9626	[kN]		
		rizzontale della sp	ointa statica			330.7434	[kN]		
		erticale della spin				191.0608	[kN]		
		azione della spinta				X = 8.35	[m]	Y = -3.19	[m]
		spinta rispetto alla		erficie		30.01	[°]		
		ea di rottura in co				55.38	[°]		
		mico della spinta				132.4104	[kN]		
		azione dell'increm				X = 8.35	[m]	Y = -3.19	[m]
inclina	zione iin	ea di rottura in co	naizioni sismicne)		49.51	[°]		
Peso t	erranien	o gravante sulla fo	nndazione a mon	tο		1121.9983	[kN]		
		apieno gravante s			e	X = 4.62	[m]	Y = -1.74	[m]
	del mur		ana fortaazione e			54.4598	[kN]	1 - 1.7 -	[]
		e del muro				27.2299	[kN]		
		apieno fondazione	e di monte			124.8290	[kN]		
		e del terrapieno fo		ite		62.4145	[kN]		
Risulta							F1 A 13		
		carichi applicati in				625.3046	[kN]		
		carichi applicati in				1963.9862	[kN]		
		ssiva a valle del m		_		-86.7256	[kN]		
		e sul piano di posa				1963.9862 625.3046	[kN] [kN]		
	-	riale sul piano di p petto al baricentro				0.30			
		dazione reagente		5		9.35	[m] [m]		
		ndazione				2061.1278	[kN]		
		lla risultante (risp	etto alla normale)		17.66	[°]		
		tto al baricentro d		,		585.2302	[kNm]		
		lella fondazione				14180.2319			
	ni sul te								
		dazione reagente				9.35	[m]		
		no allo spigolo di v				0.25022	[MPa]		
		no allo spigolo di i				0.16989	[MPa]		
	-	<u>lcolo della capaci</u> à portanto	-	25		N = 40 0	2	NI ·	70 02
	capacit i forma	à portante	$N_c = 61.3$			$N_q = 48.9$		•	78.02
	i iorma i inclina	zione	$s_c = 1.0$ $i_c = 0.0$			$s_q = 1.0$ $i_q = 0.5$			= 1.00 = 0.38
	i monna i profon		$d_c = 0.5$ $d_c = 1.5$			$d_{q} = 0.50$ $d_{q} = 1.00$			= 0.36 = 1.00
	-	uita zione piano posa				$b_{q} = 1.0$			= 1.00
		zione piano posa zione pendio	$g_c = 1.0$			$g_q = 1.0$			1.00
		MU_3_C_014001	•			9q - 1.0	•	9γ -	1.00
_ r v_D_	_ON_AP_	IVIO_3_C_014001	_IN_UU I _R_A_U						

S/S Scpa 133 di 147

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 50.23$

 $N'_{\alpha} = 38.76$

 $N'_{\nu} = 48.11$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo 2.10 7.22

Sollecitazioni fondazione di valle

Combinazione nº 11

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

X	M	Т
0.00	0.0000	0.0000
0.05	0.2425	9.6951
0.10	0.9692	19.3688
0.15	2.1790	29.0210
0.20	3.8709	38.6517
0.25	6.0438	48.2609
0.30	8.6966	57.8487
0.35	11.8283	67.4149
0.40	15.4378	76.9597
0.45	19.5239	86.4830
0.50	24.0857	95.9849
	0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45	0.00 0.0000 0.05 0.2425 0.10 0.9692 0.15 2.1790 0.20 3.8709 0.25 6.0438 0.30 8.6966 0.35 11.8283 0.40 15.4378 0.45 19.5239

Sollecitazioni fondazione di monte

Combinazione nº 11

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.83	-17.1526	-38.7937
3	1.67	-60.9606	-63.8455
4	2.50	-119.9497	-75.1554
5	3.34	-182.6454	-72.7235
6	4.17	-237.5732	-56.5497
7	5.01	-273.2587	-26.6341
8	5.84	-278.2273	17.0234
9	6.68	-241.0048	74.4228
10	7.51	-150.3696	144.0897
11	8.35	1.3530	220.3161

Armature e tensioni nei materiali della fondazione

Combinazione nº 11

Simbologia adottata

В base della sezione espressa in [m] altezza della sezione espressa in [m] Н

 A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq]

 $A_{\text{fs}} \\$ area di armatura in corrispondenza del lembo superiore in [mq]

 N_{u} sforzo normale ultimo espresso in [kN] momento ultimo espresso in [kNm] M_{u}

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Υ	B, H	A_{fs}	A_{fi}	$N_{\rm u}$	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 1.800.00	037170.0	03717	0.00	0.00	1000.00	518.73		
2	0.05	1.00, 1.800.00	037170.0	03717	0.00	2489.23	10266.21	518.73		
3	0.10	1.00, 1.800.00	037170.0	03717	0.00	2489.23	2568.45	518.73		
4	0.15	1.00, 1.800.00	037170.0	03717	0.00	2489.23	1142.38	518.73		
5	0.20	1.00, 1.800.00	037170.0	03717	0.00	2489.23	643.06	518.73		
PV_D	SR AP	MU 3 C 014-	001_N_00	1_R_A_0						

SIS Scpa 134 di 147

6	0.25	1.00, 1.800.0037170.003717	0.00 2489.23	411.86	518.73	
7	0.30	1.00, 1.800.0037170.003717	0.00 2489.23	286.23	518.73	
8	0.35	1.00, 1.800.0037170.003717	0.00 2489.23	210.45	518.73	
9	0.40	1.00, 1.800.0037170.003717	0.00 2489.23	161.24	518.73	
10	0.45	1.00, 1.800.0037170.003717	0.00 2489.23	127.50	518.73	
11	0.50	1.00, 1.800.0037170.003717	0.00 2489.23	103.35	518.73	
<u>Fonda</u>	azione di	monte				

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

(L'ascissa X, espressa in [m], e positiva verso	valle con origine in corr	rispondenza	dell'estremo	libero della i	rondazione di m	ionte)
Nr. Y B, H A _{fs} 1 0.00 1.00, 1.800.0037170 2 0.83 1.00, 1.800.0037170 3 1.67 1.00, 1.800.0037170 4 2.50 1.00, 1.800.0037170 5 3.34 1.00, 1.800.0037170 6 4.17 1.00, 1.800.0037170 7 5.01 1.00, 1.800.0037170 8 5.84 1.00, 1.800.0037170 9 6.68 1.00, 1.800.0037170 10 7.51 1.00, 1.800.0037170 11 8.35 1.00, 1.800.0037170 COMBINAZIONE n° 12	.003717	Mu 0.00 -2489.23 -2489.23 -2489.23 -2489.23 -2489.23 -2489.23 -2489.23 -2489.23	CS 1000.00 145.12 40.83 20.75 13.63 10.48 9.11 8.95 10.33 16.55 1839.76	V _{Rd} 518.73 518.73 518.73 518.73 518.73 518.73 518.73 518.73 518.73 518.73	V _{Rcd}	V _{Rsd}
Valore della spinta statica Componente orizzontale della spinta Componente verticale della spinta st Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla nor Inclinazione linea di rottura in condiz	atica male alla superficie	3 1 X 3	881.9626 630.7434 91.0608 (= 8.35 60.01 65.38	[kN] [kN] [kN] [m] [°] [°]	Y = -3.19	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento Inclinazione linea di rottura in condiz		Х	01.8219 (= 8.35 8.76	[kN] [m] [°]	Y = -3.19	[m]
Peso terrapieno gravante sulla fonda Baricentro terrapieno gravante sulla Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di r Inerzia verticale del terrapieno fonda	e X 5 -2 1	121.9983 (= 4.62 64.4598 27.2299 24.8290 62.4145	[kN] [m] [kN] [kN] [kN]	Y = -1.74	[m]	
Risultanti Risultante dei carichi applicati in dir. Risultante dei carichi applicati in dir. Resistenza passiva a valle del muro Sforzo normale sul piano di posa del Sforzo tangenziale sul piano di posa Eccentricità rispetto al baricentro del Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto Momento rispetto al baricentro della Carico ultimo della fondazione	verticale la fondazione della fondazione la fondazione alla normale)	1 -{ 1 5 0 9 1 1 6	690.1588 764.3947 86.7256 764.3947 690.1588 0.35 0.35 860.4774 8.49 624.0734 3307.5503	[kN] [kN] [kN] [kN] [m] [m] [kN] [kN] [kN]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di moni Fattori per il calcolo della capacità po Coeff. capacità portante PV_D_SR_AP_MU_3_C_014001_N_0	te <u>ortante</u> N _c = 61.35	0	0.35 0.23154 0.14587 N _q = 48.9	[m] [MPa] [MPa] 3	$N_{\gamma} = 1$	78.02

S/S Scpa 135 di 147

136 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Fattori forma	$s_c = 1.00$	$s_q = 1.00$	$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0.52$	$i_{q} = 0.54$	$i_{\gamma} = 0.36$
Fattori profondità	$d_c = 1.10$	$d_{q} = 1.07$	$d_{\gamma} = 1.00$
Fattori inclinazione piano posa	$b_c = 1.00$	$b_{q} = 1.00$	$b_{\gamma} = 1.00$
Fattori inclinazione pendio	$g_c = 1.00$	$g_{q} = 1.00$	$g_{\gamma} = 1.00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 50.23$ $N'_{q} = 38.76$ $N'_{\gamma} = 48.11$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 2.02 Coefficiente di sicurezza a carico ultimo 7.54

Sollecitazioni fondazione di valle

Combinazione nº 12

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.2191	8.7604
3	0.10	0.8757	17.4979
4	0.15	1.9685	26.2125
5	0.20	3.4965	34.9041
6	0.25	5.4585	43.5729
7	0.30	7.8534	52.2188
8	0.35	10.6800	60.8417
9	0.40	13.9372	69.4418
10	0.45	17.6238	78.0190
11	0.50	21.7387	86.5732

Sollecitazioni fondazione di monte

Combinazione nº 12

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	. X	M	Т
1	0.00	0.0000	0.0000
2	0.83	-25.4683	-58.6454
3	1.67	-94.0023	-103.1513
4	2.50	-193.7956	-133.5178
5	3.34	-313.0416	-149.7448
6	4.17	-439.9340	-151.8324
7	5.01	-562.6663	-139.7805
8	5.84	-669.4320	-113.5892
9	6.68	-748.4247	-73.2584
10	7.51	-788.0912	-20.2625
11	8.35	-780.4245	39.6905

Armature e tensioni nei materiali della fondazione

Combinazione nº 12

Simbologia adottata

B base della sezione espressa in [m] H altezza della sezione espressa in [m]

 $\begin{array}{ll} A_{fi} & \text{area di armatura in corrispondenza del lembo inferiore in [mq]} \\ A_{fs} & \text{area di armatura in corrispondenza del lembo superiore in [mq]} \end{array}$

Nu sforzo normale ultimo espresso in [kN]
Mu momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

Nr.	Υ	В, Н	A_{fs}	A_{fi}	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0.00	1.00, 1.800.00	37170.00	03717	0.00	0.00	1000.00	518.73		
2	0.05	1.00, 1.800.00	37170.00	03717	0.00	2489.23	11360.88	518.73		
3	0.10	1.00, 1.800.00	37170.00	03717	0.00	2489.23	2842.70	518.73		
4	0.15	1.00, 1.800.00	37170.00	03717	0.00	2489.23	1264.52	518.73		
5	0.20	1.00, 1.800.00	37170.00	03717	0.00	2489.23	711.92	518.73		
6	0.25	1.00, 1.800.00	37170.00	03717	0.00	2489.23	456.02	518.73		
7	0.30	1.00, 1.800.00	37170.00	03717	0.00	2489.23	316.96	518.73		
8	0.35	1.00, 1.800.00	37170.00	03717	0.00	2489.23	233.07	518.73		
9	0.40	1.00, 1.800.00	37170.00	03717	0.00	2489.23	178.60	518.73		
10	0.45	1.00, 1.800.00	37170.00	03717	0.00	2489.23	141.24	518.73		
11	0.50	1.00, 1.800.00	37170.00	03717	0.00	2489.23	114.51	518.73		
Fonda:	zione di	monte								

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

,	•	_			•		·				
Nr.	Υ		В, Н	A_{fs}	A_{fi}	N_{u}	Mι	, CS	V_{Rd}	V_{Rcd}	\mathbf{V}_{Rsd}
1	0.00	1.00,	1.800.00)3717	0.00	0.00		518.73		
2	0.83	1.00,	1.800.00	37170.00)3717	0.00	-2489.23	97.74	518.73		
3	1.67	1.00,	1.800.00	37170.00)3717	0.00	-2489.23	26.48	518.73		
4	2.50	1.00,	1.800.00	37170.00)3717	0.00	-2489.23	12.84	518.73		
5	3.34	1.00,	1.800.00	37170.00)3717	0.00	-2489.23	7.95	518.73		
6	4.17	1.00,	1.800.00	37170.00)3717	0.00	-2489.23	5.66	518.73		
7	5.01		1.800.00			0.00	-2489.23	4.42	518.73		
8	5.84	1.00,	1.800.00	37170.00)3717	0.00	-2489.23	3.72	518.73		
9	6.68	1.00,	1.800.00	37170.00)3717	0.00	-2489.23	3.33	518.73		
10	7.51	1.00,	1.800.00	37170.00)3717	0.00	-2489.23	3.16	518.73		
11	8.35		1.800.00			0.00	-2489.23	3.19	518.73		
COMB	INAZIO	NE n°	<u>13</u>								
Valore	della sp	inta st	atica					381.9626	[kN]		
			tale della	spinta sta	atica			330.7434	[kN]		
			e della sp					191.0608	[kN]		
Punto	d'applica	azione	della spir	nta				X = 8.35	[m]	Y = -3.19	[m]
Inclina	z. della :	spinta i	rispetto a	lla norma	ile alla su	perficie)	30.01	[°]		
					i statiche			55.38	[°]		
Increm	nento sis	mico d	lella spint	а				132.4104	[kN]		
					smico di s	spinta		X = 8.35	[m]	Y = -3.19	[m]
Inclina	zione lin	ea di r	ottura in o	condizion	i sismich	e e		49.51	[°]		
Peso t	errapien	o grava	ante sulla	a fondazio	one a mor	nte		1121.9983	[kN]		
					dazione a		е	X = 4.62	[m]	Y = -1.74	[m]
	del mui							54.4598	[kN]		
Inerzia	vertical	e del n	nuro					27.2299	[kN]		
Inerzia	del terr	apieno	fondazio	ne di mo	nte			124.8290	[kN]		
					ne di moi	nte		62.4145	[kN]		
			•								
Risulta	anti										
		carichi	applicati	in dir. ori	zzontale			625.3046	[kN]		
			applicati					1963.9862	[kN]		
			valle del					-86.7256	[kN]		
			spetto all		a valle			2600.4197	[kNm]		
					olo a vall	е		11196.8251			
					fondazion			1963.9862	[kN]		
					lla fondaz			625.3046	[kN]		
					ondazion			0.30	[m]		
			ie reagen		J.10021011	. •		9.35	[m]		
_	ante in fo		_					2061.1278	[kN]		
				spetto alla	a normale	ر د		17.66	[°]		
			paricentro			•)		585.2302	[kNm]		
	•							000.2002	[izi airi]		
PV_D_	_SR_AP_	MU_3_	C_0140	01_N_001	I_R_A_0						

S/S Scpa 137 di 147

COEFFICIENTI DI SICUREZZA Coefficiente di sicurezza a ribaltamento COMBINAZIONE n° 14	4.31			
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	381.9626 330.7434 191.0608 X = 8.35 30.01 55.38	[kN] [kN] [kN] [m] [°]	Y = -3.19	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	91.8219 X = 8.35 48.76	[kN] [m] [°]	Y = -3.19	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	1121.9983 X = 4.62 54.4598 -27.2299 124.8290 -62.4145	[kN] [m] [kN] [kN] [kN] [kN]	Y = -1.74	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione	590.1588 1764.3947 -86.7256 2919.3339 10543.8058 1764.3947 590.1588 0.35 9.35 1860.4774 18.49 624.0734	[kN] [kN] [kNm] [kNm] [kN] [kN] [m] [m] [kN]		

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento

Stabilità globale muro + terreno

Combinazione nº 15

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 7.74

Raggio del cerchio R[m]= 17.21

Ascissa a valle del cerchio Xi[m] = -11.68Ascissa a monte del cerchio Xs[m] = 16.99

Larghezza della striscia dx[m]= 1.15 Coefficiente di sicurezza C= 1.77

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

S/S Scpa 138 di 147

3.61

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	Wsin α	b/cosα	ф	С	u
1	4289.22	73.87	4120.33	4.13	32.01	0.000	0.000
2	10998.69	62.86	9787.73	2.51	32.01	0.000	0.000
3	15211.50	55.31	12508.06	2.02	32.01	0.000	0.000
4	18433.31	49.04	13920.58	1.75	32.01	0.000	0.000
5	21039.61	43.49	14481.16	1.58	32.01	0.000	0.000
6	23200.76	38.42	14418.37	1.46	32.01	0.000	0.000
7	24728.35	33.69	13716.52	1.38	32.01	0.000	0.000
8	25504.57	29.21	12444.77	1.31	32.01	0.000	0.000
9	26014.15	24.91	10957.57	1.26	32.01	0.000	0.000
10	25569.54	20.76	9064.43	1.23	32.01	0.000	0.000
11	24921.59	16.73	7172.30	1.20	32.01	0.000	0.000
12	24084.53	12.77	5324.94	1.18	32.01	0.000	0.000
13	23068.54	8.88	3561.71	1.16	32.01	0.000	0.000
14	21978.28	5.03	1927.55	1.15	32.01	0.000	0.000
15	22583.58	1.20	474.47	1.15	32.01	0.000	0.000
16	14460.27	-2.62	-660.59	1.15	32.01	0.000	0.000
17	9613.16	-6.45	-1080.30	1.15	32.01	0.000	0.000
18	9247.05	-10.32	-1655.89	1.17	32.01	0.000	0.000
19	8706.69	-14.23	-2139.84	1.18	32.01	0.000	0.000
20	7984.05	-18.21	-2494.80	1.21	32.01	0.000	0.000
21	7067.58	-22.28	-2679.90	1.24	32.01	0.000	0.000
22	5941.17	-26.48	-2649.17	1.28	32.01	0.000	0.000
23	4582.43	-30.84	-2349.11	1.34	32.01	0.000	0.000
24	2959.82	-35.41	-1714.88	1.41	32.01	0.000	0.000
25	1027.53	-40.25	-663.97	1.50	32.01	0.000	0.000

 $\Sigma W_i = 3758.1247 [kN]$

 $\Sigma W_i sin \alpha_i = 1135.5500 [kN]$

 $\Sigma W_i tan \phi_i = 2348.9351 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 5.39$

Stabilità globale muro + terreno

Combinazione nº 16

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra) W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]=0.00 Y[m]=7.74

Raggio del cerchio R[m]= 17.21

Ascissa a valle del cerchio Xi[m]=-11.68Ascissa a monte del cerchio Xs[m]=16.99

Larghezza della striscia dx[m]= 1.15 Coefficiente di sicurezza C= 1.73

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α(°)	$\text{Wsin}\alpha$	b/cosα	ф	С	u
DV D SD AD MII	2 C 014	001 N 001	РΛΩ				

SIS Scpa 139 di 147

1	4289.22	73.87	4120.33	4.13	32.01	0.000	0.000
2	10998.69	62.86	9787.73	2.51	32.01	0.000	0.000
3	15211.50	55.31	12508.06	2.02	32.01	0.000	0.000
4	18433.31	49.04	13920.58	1.75	32.01	0.000	0.000
5	21039.61	43.49	14481.16	1.58	32.01	0.000	0.000
6	23200.76	38.42	14418.37	1.46	32.01	0.000	0.000
7	24728.35	33.69	13716.52	1.38	32.01	0.000	0.000
8	25504.57	29.21	12444.77	1.31	32.01	0.000	0.000
9	26014.15	24.91	10957.57	1.26	32.01	0.000	0.000
10	25569.54	20.76	9064.43	1.23	32.01	0.000	0.000
11	24921.59	16.73	7172.30	1.20	32.01	0.000	0.000
12	24084.53	12.77	5324.94	1.18	32.01	0.000	0.000
13	23068.54	8.88	3561.71	1.16	32.01	0.000	0.000
14	21978.28	5.03	1927.55	1.15	32.01	0.000	0.000
15	22583.58	1.20	474.47	1.15	32.01	0.000	0.000
16	14460.27	-2.62	-660.59	1.15	32.01	0.000	0.000
17	9613.16	-6.45	-1080.30	1.15	32.01	0.000	0.000
18	9247.05	-10.32	-1655.89	1.17	32.01	0.000	0.000
19	8706.69	-14.23	-2139.84	1.18	32.01	0.000	0.000
20	7984.05	-18.21	-2494.80	1.21	32.01	0.000	0.000
21	7067.58	-22.28	-2679.90	1.24	32.01	0.000	0.000
22	5941.17	-26.48	-2649.17	1.28	32.01	0.000	0.000
23	4582.43	-30.84	-2349.11	1.34	32.01	0.000	0.000
24	2959.82	-35.41	-1714.88	1.41	32.01	0.000	0.000
25	1027.53	-40.25	-663.97	1.50	32.01	0.000	0.000
-144	00 404-5111						

 $\Sigma W_i = 3758.1247 [kN]$

 $\Sigma W_{i} \sin \alpha_{i} = 1135.5500 [kN]$

 $\Sigma W_i tan \phi_i = 2348.9351 [kN]$

 $\Sigma tan\alpha_i tan\phi_i = 5.39$

Sollecitazioni fondazione di valle

Combinazione nº 17

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

ragine positive de amente reres raite, depreses in this								
X	M	Т						
0.00	0.0000	0.0000						
0.05	0.1224	4.8999						
0.10	0.4903	9.8203						
0.15	1.1048	14.7611						
0.20	1.9668	19.7225						
0.25	3.0774	24.7045						
0.30	4.4376	29.7069						
0.35	6.0484	34.7298						
0.40	7.9109	39.7732						
0.45	10.0261	44.8372						
0.50	12.3950	49.9216						
	X 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45	X M 0.00 0.0000 0.05 0.1224 0.10 0.4903 0.15 1.1048 0.20 1.9668 0.25 3.0774 0.30 4.4376 0.35 6.0484 0.40 7.9109 0.45 10.0261						

Sollecitazioni fondazione di monte

Combinazione nº 17

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

X	M	Т
0.00	0.0000	0.0000
0.83	2.3823	6.0447
1.67	10.6602	14.1212
2.50	26.5302	24.2294
3.34	51.6888	36.3694
4.17	87.8326	50.5412
5.01	136.6581	66.7447
5.84	199.8618	84.9800
	0.00 0.83 1.67 2.50 3.34 4.17 5.01	0.00 0.0000 0.83 2.3823 1.67 10.6602 2.50 26.5302 3.34 51.6888 4.17 87.8326 5.01 136.6581

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 140 di 147

9	6.68	279.1403	105.2471
10	7.51	375.9369	126.0716
11	8 35	488 1486	141 7455

Armature e tensioni nei materiali della fondazione

Combinazione nº 17

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

A_{fi} area di armatura in corrispondenza del lembo inferiore in [mq]

 A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

 σ_c tensione nel calcestruzzo espressa in [MPa]

 τ_c tensione tangenziale nel calcestruzzo espressa in [MPa]

σ_{fi} tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]

σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	B, H	A_{fs}	A_{fi}	σ_{c}	$ au_{ extsf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 1.800.0	037170.0	03717	0.000	0.000	0.000	0.000
2	0.05	1.00, 1.800.0	037170.0	03717	0.000	0.003	0.020	-0.004
3	0.10	1.00, 1.800.0	037170.0	03717	0.001	0.007	0.079	-0.017
4	0.15	1.00, 1.800.0	037170.0	03717	0.003	0.010	0.179	-0.039
5	0.20	1.00, 1.800.0	037170.0	03717	0.005	0.013	0.319	-0.070
6	0.25	1.00, 1.800.0	037170.0	03717	0.008	0.017	0.499	-0.110
7	0.30	1.00, 1.800.0	037170.0	03717	0.012	0.020	0.719	-0.158
8	0.35	1.00, 1.800.0	037170.0	03717	0.016	0.023	0.980	-0.216
9	0.40	1.00, 1.800.0	037170.0	03717	0.021	0.027	1.282	-0.282
10	0.45	1.00, 1.800.0	037170.0	03717	0.027	0.030	1.625	-0.357
11	0.50	1.00, 1.800.0	037170.0	03717	0.033	0.033	2.009	-0.442

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	B, H	A_fs	A_fi	σ_{c}	$ au_{ extsf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 1.800.0	037170.0	03717	0.000	0.000	0.000	0.000
2	0.83	1.00, 1.800.0	037170.0	03717	0.006	0.004	0.386	-0.085
3	1.67	1.00, 1.800.0	037170.0	03717	0.029	0.009	1.728	-0.380
4	2.50	1.00, 1.800.0	037170.0	03717	0.071	0.016	4.300	-0.946
5	3.34	1.00, 1.800.0	037170.0	03717	0.139	0.024	8.377	-1.843
6	4.17	1.00, 1.800.0	037170.0	03717	0.236	0.034	14.235	-3.132
7	5.01	1.00, 1.800.0	037170.0	03717	0.367	0.045	22.149	-4.873
8	5.84	1.00, 1.800.0	037170.0	03717	0.536	0.057	32.393	-7.126
9	6.68	1.00, 1.800.0	037170.0	03717	0.749	0.070	45.242	-9.953
10	7.51	1.00, 1.800.0	037170.0	03717	1.009	0.084	60.930	-13.404
11	8.35	1.00, 1.800.0	037170.0	03717	1.310	0.095	79.117	-17.405

Verifiche a fessurazione

Combinazione nº 17

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

A_{fs} area di armatura in corrispondenza del lembo di monte in [mq]
A_{fi} area di armatura in corrispondenza del lembo di valle in [mq]

M_{pf} Momento di prima fessurazione espressa in [kNm] M Momento agente nella sezione espressa in [kNm]

 $\epsilon_{m} \hspace{1cm} \text{deformazione media espressa in [\%]}$

s_m Distanza media tra le fessure espressa in [mm] w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	${\sf A_{fs}}$	A_{fi}	M_{pf}	M	ε _m	Sm	w
1	0.00	0.003660	0.001005	-78.08	-6.00	0.0000	0.00	0.000
2	0.28	0.003660	0.001005	-78.08	-6.80	0.0000	0.00	0.000
3	0.55	0.003660	0.001005	-78.08	-7.55	0.0000	0.00	0.000
4	0.83	0.003660	0.001005	-78.08	-11.75	0.0000	0.00	0.000

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 141 di 147

Muro	prefabbric	ato – MU.3C.0	014.N – Relazio	ne di Calcolo				
5	1.10	0.003660	0.001005	-78.08	-22.73	0.0000	0.00	0.000
6	1.38	0.003660	0.001005	-78.08	-35.90	0.0000	0.00	0.000
7	1.65	0.003660	0.001005	-78.08	-49.07	0.0000	0.00	0.000
8	1.93	0.003660	0.001005	-78.08	-62.37	0.0000	0.00	0.000
9	2.20	0.003660	0.001005	-78.08	-75.95	0.0000	0.00	0.000
10	2.48	0.003660	0.001005	-78.08	-90.03	0.0158	103.47	0.028
11	2.75	0.003660	0.001005	-78.08	-104.88	0.0210	103.47	0.037
12	3.03	0.003660	0.001005	-78.08	-120.68	0.0272	103.47	0.048
13	3.30	0.003660	0.001005	-78.08	-137.62	0.0335	103.47	0.059
14	3.58	0.003660	0.001005	-78.08	-155.77	0.0400	103.47	0.070
15	3.85	0.003660	0.001005	-78.08	-175.29	0.0468	103.47	0.082
16	4.13	0.003660	0.001005	-78.08	-196.42	0.0540	103.47	0.095
17	4.40	0.003660	0.001005	-78.08	-219.31	0.0616	103.47	0.108
18	4.68	0.003660	0.001005	-78.08	-243.98	0.0698	103.47	0.123
19	4.95	0.003660	0.001005	-78.08	-270.55	0.0785	103.47	0.138
20	5.23	0.003660	0.001005	-78.08	-299.21	0.0878	103.47	0.154
21	5.50	0.003660	0.001005	-78.08	-330.08	0.0978	103.47	0.172
<u>Verifi</u>	<u>ca fessur</u>	azione fonda	<u>zione</u>					
N°	Υ	A_{fs}	A_fi	M_{pf}	М	ε _m	S _m	w
1	-1.00	0.003717	0.003717	-881.78	0.00	0.0000	0.00	0.000
2	-0.95	0.003717	0.003717	881.78	0.12	0.0000	0.00	0.000
3	-0.90	0.003717	0.003717	881.78	0.49	0.0000	0.00	0.000
4	-0.85	0.003717	0.003717	881.78	1.10	0.0000	0.00	0.000
5	-0.80	0.003717	0.003717	881.78	1.97	0.0000	0.00	0.000
6	-0.75	0.003717	0.003717	881.78	3.08	0.0000	0.00	0.000
7	-0.70	0.003717	0.003717	881.78	4.44	0.0000	0.00	0.000
8	-0.65	0.003717	0.003717	881.78	6.05	0.0000	0.00	0.000
9	-0.60	0.003717	0.003717	881.78	7.91	0.0000	0.00	0.000
10	-0.55	0.003717	0.003717	881.78	10.03	0.0000	0.00	0.000
11	-0.50	0.003717	0.003717	881.78	12.39	0.0000	0.00	0.000
12	0.00	0.003717	0.003717	881.78	488.15	0.0000	0.00	0.000
13	0.83	0.003717	0.003717	881.78	375.94	0.0000	0.00	0.000
14	1.67	0.003717	0.003717	881.78	279.14	0.0000	0.00	0.000
15	2.50	0.003717	0.003717	881.78	199.86	0.0000	0.00	0.000
16	3.34	0.003717	0.003717	881.78	136.66	0.0000	0.00	0.000
17	4.17	0.003717	0.003717	881.78	87.83	0.0000	0.00	0.000
18	5.01	0.003717	0.003717	881.78	51.69	0.0000	0.00	0.000
19	5.84	0.003717	0.003717	881.78	26.53	0.0000	0.00	0.000
20	6.68	0.003717	0.003717	881.78	10.66	0.0000	0.00	0.000
21	7.51	0.003717	0.003717	881.78	2.38	0.0000	0.00	0.000
22	8.35	0.003717	0.003717	-881.78	0.00	0.0000	0.00	0.000
0-11		ni fandazia	مالمیر نام ممر					

Sollecitazioni fondazione di valle

Combinazione nº 18

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.05	0.1224	4.8999
3	0.10	0.4903	9.8203
4	0.15	1.1048	14.7611
5	0.20	1.9668	19.7225
6	0.25	3.0774	24.7045
7	0.30	4.4376	29.7069
8	0.35	6.0484	34.7298
9	0.40	7.9109	39.7732
10	0.45	10.0261	44.8372
11	0.50	12.3950	49.9216

Sollecitazioni fondazione di monte

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa 142 di 147

143 di 147

Muro prefabbricato - MU.3C.014.N - Relazione di Calcolo

Combinazione nº 18

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	` X	M	Т
1	0.00	0.0000	0.0000
2	0.83	2.3823	6.0447
3	1.67	10.6602	14.1212
4	2.50	26.5302	24.2294
5	3.34	51.6888	36.3694
6	4.17	87.8326	50.5412
7	5.01	136.6581	66.7447
8	5.84	199.8618	84.9800
9	6.68	279.1403	105.2471
10	7.51	375.9369	126.0716
11	8.35	488.1486	141.7455

Armature e tensioni nei materiali della fondazione

Combinazione nº 18

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

 $A_{\text{fi}} \hspace{1cm} \text{area di armatura in corrispondenza del lembo inferiore in [mq]} \\$

A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

 σ_c tensione nel calcestruzzo espressa in [MPa]

 τ_c tensione tangenziale nel calcestruzzo espressa in [MPa]

τ_{ii} tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa] tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	В, Н	${\sf A_{fs}}$	A_{fi}	σ_{c}	$ au_{ extsf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 1.800.0	037170.0	03717	0.000	0.000	0.000	0.000
2	0.05	1.00, 1.800.0	037170.0	03717	0.000	0.003	0.020	-0.004
3	0.10	1.00, 1.800.0	037170.0	03717	0.001	0.007	0.079	-0.017
4	0.15	1.00, 1.800.0	037170.0	03717	0.003	0.010	0.179	-0.039
5	0.20	1.00, 1.800.0	037170.0	03717	0.005	0.013	0.319	-0.070
6	0.25	1.00, 1.800.0	037170.0	03717	0.008	0.017	0.499	-0.110
7	0.30	1.00, 1.800.0	037170.0	03717	0.012	0.020	0.719	-0.158
8	0.35	1.00, 1.800.0	037170.0	03717	0.016	0.023	0.980	-0.216
9	0.40	1.00, 1.800.0	037170.0	03717	0.021	0.027	1.282	-0.282
10	0.45	1.00, 1.800.0	037170.0	03717	0.027	0.030	1.625	-0.357
11	0.50	1.00, 1.800.0	037170.0	03717	0.033	0.033	2.009	-0.442

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	A_fs	A_{fi}	σ_{c}	$ au_{\mathbf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 1.800.0	0.037170	003717	0.000	0.000	0.000	0.000
2	0.83	1.00, 1.800.0	0.037170	003717	0.006	0.004	0.386	-0.085
3	1.67	1.00, 1.800.0	0.037170	003717	0.029	0.009	1.728	-0.380
4	2.50	1.00, 1.800.0	0.037170	003717	0.071	0.016	4.300	-0.946
5	3.34	1.00, 1.800.0	0.037170	003717	0.139	0.024	8.377	-1.843
6	4.17	1.00, 1.800.0	0.037170	003717	0.236	0.034	14.235	-3.132
7	5.01	1.00, 1.800.0	0.037170	003717	0.367	0.045	22.149	-4.873
8	5.84	1.00, 1.800.0	0.037170	003717	0.536	0.057	32.393	-7.126
9	6.68	1.00, 1.800.0	0.037170	003717	0.749	0.070	45.242	-9.953
10	7.51	1.00, 1.800.0	0.037170	003717	1.009	0.084	60.930	-13.404
11	8.35	1.00, 1.800.0	0.037170	003717	1.310	0.095	79.117	-17.405

Verifiche a fessurazione

Combinazione nº 18

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

A_{fs} area di armatura in corrispondenza del lembo di monte in [mq]

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

SIS Scpa

A_{fi} area di armatura in corrispondenza del lembo di valle in [mq]

M_{pf} Momento di prima fessurazione espressa in [kNm] M Momento agente nella sezione espressa in [kNm]

 ε_m deformazione media espressa in [%]

s_m Distanza media tra le fessure espressa in [mm] w Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	A_{fi}	M_{pf}	M	ε _m	Sm	w
1	0.00	0.003660	0.001005	-78.08	-6.00	0.0000	0.00	0.000
2	0.28	0.003660	0.001005	-78.08	-6.80	0.0000	0.00	0.000
3	0.55	0.003660	0.001005	-78.08	-7.55	0.0000	0.00	0.000
4	0.83	0.003660	0.001005	-78.08	-11.75	0.0000	0.00	0.000
5	1.10	0.003660	0.001005	-78.08 -70.00	-22.73	0.0000	0.00	0.000
6 7	1.38 1.65	0.003660 0.003660	0.001005 0.001005	-78.08 -78.08	-35.90 -49.07	0.0000 0.0000	0.00 0.00	0.000 0.000
8	1.03	0.003660	0.001005	-78.08 -78.08	-49.07 -62.37	0.0000	0.00	0.000
9	2.20	0.003660	0.001005	-78.08	-75.95	0.0000	0.00	0.000
10	2.48	0.003660	0.001005	-78.08	-90.03	0.0158	103.47	0.028
11	2.75	0.003660	0.001005	-78.08	-104.88	0.0210	103.47	0.037
12	3.03	0.003660	0.001005	-78.08	-120.68	0.0272	103.47	0.048
13	3.30	0.003660	0.001005	-78.08	-137.62	0.0335	103.47	0.059
14	3.58	0.003660	0.001005	-78.08	-155.77	0.0400	103.47	0.070
15	3.85	0.003660	0.001005	-78.08	-175.29	0.0468	103.47	0.082
16	4.13	0.003660	0.001005	-78.08	-196.42	0.0540	103.47	0.095
17	4.40	0.003660	0.001005	-78.08	-219.31	0.0616	103.47	0.108
18	4.68	0.003660	0.001005	-78.08	-243.98	0.0698	103.47	0.123
19	4.95	0.003660	0.001005	-78.08 -78.08	-270.55	0.0785	103.47	0.138 0.154
20 21	5.23 5.50	0.003660 0.003660	0.001005 0.001005	-78.08 -78.08	-299.21 -330.08	0.0878 0.0978	103.47 103.47	0.154
				-70.00	-330.00	0.0976	103.47	0.172
Verifica fessurazione fondazione								
N°	Υ	A_{fs}	${\sf A}_{\sf fi}$	$M_{ m pf}$	М	ϵ_{m}	S _m	w
1	-1.00	0.003717	0.003717	-881.78	0.00	0.0000	0.00	0.000
1 2	-1.00 -0.95	0.003717 0.003717	0.003717 0.003717	-881.78 881.78	0.00 0.12	0.0000 0.0000	0.00 0.00	0.000 0.000
1 2 3	-1.00 -0.95 -0.90	0.003717 0.003717 0.003717	0.003717 0.003717 0.003717	-881.78 881.78 881.78	0.00 0.12 0.49	0.0000 0.0000 0.0000	0.00 0.00 0.00	0.000 0.000 0.000
1 2 3 4	-1.00 -0.95 -0.90 -0.85	0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10	0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000
1 2 3 4 5	-1.00 -0.95 -0.90 -0.85 -0.80	0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97	0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7 8	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44 6.05	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7 8 9 10 11	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.65 -0.60 -0.55 -0.50	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44 6.05 7.91 10.03 12.39	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7 8 9 10 11 12	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44 6.05 7.91 10.03 12.39 488.15	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7 8 9 10 11 12 13	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.65 -0.60 -0.55 -0.50 0.00 0.83	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44 6.05 7.91 10.03 12.39 488.15 375.94	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7 8 9 10 11 12 13 14	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 0.00 0.83 1.67	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44 6.05 7.91 10.03 12.39 488.15 375.94 279.14	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.65 -0.60 -0.55 -0.50 0.00 0.83 1.67 2.50	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44 6.05 7.91 10.03 12.39 488.15 375.94 279.14 199.86	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.65 -0.60 -0.55 -0.50 0.00 0.83 1.67 2.50 3.34	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44 6.05 7.91 10.03 12.39 488.15 375.94 279.14 199.86 136.66	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.65 -0.60 -0.55 -0.50 0.00 0.83 1.67 2.50 3.34 4.17	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44 6.05 7.91 10.03 12.39 488.15 375.94 279.14 199.86 136.66 87.83	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.65 -0.60 -0.55 -0.50 0.00 0.83 1.67 2.50 3.34 4.17 5.01	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44 6.05 7.91 10.03 12.39 488.15 375.94 279.14 199.86 136.66 87.83 51.69	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.60 -0.55 -0.50 0.00 0.83 1.67 2.50 3.34 4.17 5.01 5.84	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44 6.05 7.91 10.03 12.39 488.15 375.94 279.14 199.86 136.66 87.83 51.69 26.53	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.60 -0.55 -0.50 0.00 0.83 1.67 2.50 3.34 4.17 5.01 5.84 6.68	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44 6.05 7.91 10.03 12.39 488.15 375.94 279.14 199.86 136.66 87.83 51.69	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.60 -0.55 -0.50 0.00 0.83 1.67 2.50 3.34 4.17 5.01 5.84	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717 0.003717	-881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78 881.78	0.00 0.12 0.49 1.10 1.97 3.08 4.44 6.05 7.91 10.03 12.39 488.15 375.94 279.14 199.86 136.66 87.83 51.69 26.53 10.66	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sollecitazioni fondazione di valle

Combinazione nº 19

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

PV_D_SR_AP_MU_3_C_014-_001_N_001_R_A_0

S/S Scpa 144 di 147

Nr.	X	M	Т
1	0.00	0.0000	0.0000
2	0.05	0.1224	4.8999
3	0.10	0.4903	9.8203
4	0.15	1.1048	14.7611
5	0.20	1.9668	19.7225
6	0.25	3.0774	24.7045
7	0.30	4.4376	29.7069
8	0.35	6.0484	34.7298
9	0.40	7.9109	39.7732
10	0.45	10.0261	44.8372
11	0.50	12.3950	49.9216

Sollecitazioni fondazione di monte

Combinazione nº 19

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr.	X	M	T
1	0.00	0.0000	0.0000
2	0.83	2.3823	6.0447
3	1.67	10.6602	14.1212
4	2.50	26.5302	24.2294
5	3.34	51.6888	36.3694
6	4.17	87.8326	50.5412
7	5.01	136.6581	66.7447
8	5.84	199.8618	84.9800
9	6.68	279.1403	105.2471
10	7.51	375.9369	126.0716
11	8.35	488.1486	141.7455

Armature e tensioni nei materiali della fondazione

Combinazione nº 19

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

 $A_{\text{fi}} \hspace{1cm} \text{area di armatura in corrispondenza del lembo inferiore in [mq]} \\$

A_{fs} area di armatura in corrispondenza del lembo superiore in [mq]

 σ_{c} $\,$ tensione nel calcestruzzo espressa in [MPa]

 τ_c tensione tangenziale nel calcestruzzo espressa in [MPa]

 $\sigma_{\!\scriptscriptstyle fi}$ tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]

tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	X	B, H	A_{fs}	A_{fi}	σ_{c}	$ au_{ extsf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 1.800.0	037170.0	03717	0.000	0.000	0.000	0.000
2	0.05	1.00, 1.800.0	037170.0	03717	0.000	0.003	0.020	-0.004
3	0.10	1.00, 1.800.0	037170.0	03717	0.001	0.007	0.079	-0.017
4	0.15	1.00, 1.800.0	037170.0	03717	0.003	0.010	0.179	-0.039
5	0.20	1.00, 1.800.0	037170.0	03717	0.005	0.013	0.319	-0.070
6	0.25	1.00, 1.800.0	037170.0	03717	0.008	0.017	0.499	-0.110
7	0.30	1.00, 1.800.0	037170.0	03717	0.012	0.020	0.719	-0.158
8	0.35	1.00, 1.800.0	037170.0	03717	0.016	0.023	0.980	-0.216
9	0.40	1.00, 1.800.0	037170.0	03717	0.021	0.027	1.282	-0.282
10	0.45	1.00, 1.800.0	037170.0	03717	0.027	0.030	1.625	-0.357
11	0.50	1.00, 1.800.0	037170.0	03717	0.033	0.033	2.009	-0.442

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Nr.	X	В, Н	A_fs	A_fi	σ_{c}	$ au_{ extsf{c}}$	σ_{fi}	σ_{fs}
1	0.00	1.00, 1.800.0	0037170.00)3717	0.000	0.000	0.000	0.000
2	0.83	1.00, 1.800.0	0037170.00)3717	0.006	0.004	0.386	-0.085
PV_D	_SR_AP_	_MU_3_C_014-	_001_N_00 ²	I_R_A_0				

SIS Scpa 145 di 147

3	1.67	1.00, 1.800.0037170.003717	0.029	0.009	1.728	-0.380
4	2.50	1.00, 1.800.0037170.003717	0.071	0.016	4.300	-0.946
5	3.34	1.00, 1.800.0037170.003717	0.139	0.024	8.377	-1.843
6	4.17	1.00, 1.800.0037170.003717	0.236	0.034	14.235	-3.132
7	5.01	1.00, 1.800.0037170.003717	0.367	0.045	22.149	-4.873
8	5.84	1.00, 1.800.0037170.003717	0.536	0.057	32.393	-7.126
9	6.68	1.00, 1.800.0037170.003717	0.749	0.070	45.242	-9.953
10	7.51	1.00, 1.800.0037170.003717	1.009	0.084	60.930	-13.404
11	8.35	1.00, 1.800.0037170.003717	1.310	0.095	79.117	-17.405

Verifiche a fessurazione

Combinazione nº 19

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro A_{fs} area di armatura in corrispondenza del lembo di monte in [mq]

area di armatura in corrispondenza del lembo di valle in [mq] A_{fi}

Momento di prima fessurazione espressa in [kNm] Momento agente nella sezione espressa in [kNm] M_{pf}

M

deformazione media espressa in [%] ϵ_{m}

Distanza media tra le fessure espressa in [mm] S_{m} Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Υ	A_{fs}	A_fi	M_{pf}	М	ε _m	Sm	w	
1	0.00	0.003660	0.001005	-78.08	-6.00	0.0000	0.00	0.000	
2	0.28	0.003660	0.001005	-78.08	-6.80	0.0000	0.00	0.000	
3	0.55	0.003660	0.001005	-78.08	-7.55	0.0000	0.00	0.000	
4	0.83	0.003660	0.001005	-78.08	-11.75	0.0000	0.00	0.000	
5	1.10	0.003660	0.001005	-78.08	-22.73	0.0000	0.00	0.000	
6	1.38	0.003660	0.001005	-78.08	-35.90	0.0000	0.00	0.000	
7	1.65	0.003660	0.001005	-78.08	-49.07	0.0000	0.00	0.000	
8	1.93	0.003660	0.001005	-78.08	-62.37	0.0000	0.00	0.000	
9	2.20	0.003660	0.001005	-78.08	-75.95	0.0000	0.00	0.000	
10	2.48	0.003660	0.001005	-78.08	-90.03	0.0158	103.47	0.028	
11	2.75	0.003660	0.001005	-78.08	-104.88	0.0210	103.47	0.037	
12	3.03	0.003660	0.001005	-78.08	-120.68	0.0272	103.47	0.048	
13	3.30	0.003660	0.001005	-78.08	-137.62	0.0335	103.47	0.059	
14	3.58	0.003660	0.001005	-78.08	-155.77	0.0400	103.47	0.070	
15	3.85	0.003660	0.001005	-78.08	-175.29	0.0468	103.47	0.082	
16	4.13	0.003660	0.001005	-78.08	-196.42	0.0540	103.47	0.095	
17	4.40	0.003660	0.001005	-78.08	-219.31	0.0616	103.47	0.108	
18	4.68	0.003660	0.001005	-78.08	-243.98	0.0698	103.47	0.123	
19	4.95	0.003660	0.001005	-78.08	-270.55	0.0785	103.47	0.138	
20	5.23	0.003660	0.001005	-78.08	-299.21	0.0878	103.47	0.154	
21	5.50	0.003660	0.001005	-78.08	-330.08	0.0978	103.47	0.172	
<u>Verifica fessurazione fondazione</u>									
N°	Υ	${\sf A_{fs}}$	A_fi	M_{pf}	М	ϵ_{m}	S _m	w	
1	-1.00	0.003717	0.003717	-881.78	0.00	0.0000	0.00	0.000	
2	-0.95	0.003717	0.003717	881.78	0.12	0.0000	0.00	0.000	
3	-0.90	0.003717	0.003717	881.78	0.49	0.0000	0.00	0.000	
4	-0.85	0.003717	0.003717	881.78	1.10	0.0000	0.00	0.000	
5	-0.80	0.003717	0.003717	881.78	1.97	0.0000	0.00	0.000	
6	-0.75	0.003717	0.003717	881.78	3.08	0.0000	0.00	0.000	
7	-0.70	0.003717	0.003717	881.78	4.44	0.0000	0.00	0.000	
8	-0.65	0.003717	0.003717	881.78	6.05	0.0000	0.00	0.000	
9	-0.60	0.003717	0.003717	881.78	7.91	0.0000	0.00	0.000	
10	-0.55	0.003717	0.003717	881.78	10.03	0.0000	0.00	0.000	
11	-0.50	0.003717	0.003717	881.78	12.39	0.0000	0.00	0.000	
12	0.00	0.003717	0.003717	881.78	488.15	0.0000	0.00	0.000	
13	0.83	0.003717	0.003717	881.78	375.94	0.0000	0.00	0.000	
14	1.67	0.003717	0.003717	881.78	279.14	0.0000	0.00	0.000	
15	2.50	0.003717	0.003717	881.78	199.86	0.0000	0.00	0.000	
PV_[PV_D_SR_AP_MU_3_C_014001_N_001_R_A_0								

146 di 147 SIS Scpa

147 di 147

Muro prefabbricato – MU.3C.014.N – Relazione di Calcolo										
16	3.34	0.003717	0.003717	881.78	136.66	0.0000	0.00	0.000		
17	4.17	0.003717	0.003717	881.78	87.83	0.0000	0.00	0.000		
18	5.01	0.003717	0.003717	881.78	51.69	0.0000	0.00	0.000		
19	5.84	0.003717	0.003717	881.78	26.53	0.0000	0.00	0.000		
20	6.68	0.003717	0.003717	881.78	10.66	0.0000	0.00	0.000		
21	7.51	0.003717	0.003717	881.78	2.38	0.0000	0.00	0.000		
22	8.35	0.003717	0.003717	-881.78	0.00	0.0000	0.00	0.000		

SIS Scpa