

PROGETTO ESECUTIVO

TITOLO ELABORATO

CALCOLI ESECUTIVI DELLE STRUTTURE COPERTURA FOSSO MELARA

CODICE ELABORATO

21 08 PE R416 00

Rev.	Data	Causale
0	05/05/2023	Emissione finale per verificatore
1		
2		
3		

IL COMMITTENTE

LSCT S.p.a. Viale San Bartolomeo, 20 19126 - La Spezia (SP) C.F.00072960115 - P.IVA 00859620114

IL PROGETTISTA

Modimar Project S.r.l.

Modimar Project S.r.l. Via Asmara, 72 - 00199 Roma (RM) P. IVA 16016151009

GES - Geotechnital Engineering Service S.r.l. Via Sandro Totti, 7/A - 60131 Ancona (AN) P. IVA 02528430420

Levequipe

GeoEquipe - Studio Tecnico Associato Via Sandro Pertini, 55 - 62029 Tolentino (MC) P. IVA 00817500432

Dimensioni foglio:

A4

Redatto:	Controllato:	Approvato:	
Defina	Sanzone	Tartaglini	

Note: Ing. M. Defina - MITING stpas, Via Maravegia n.3 - 30173 Mestre (VE)

REGIONE LIGURIA

COMUNE DI LA SPEZIA

PORTO MERCANTILE DELLA SPEZIA IMPALCATO DI COPERTURA DEL PROLUNGAMENTO DEL FOSSO MELARA

RELAZIONE DI CALCOLO DELLE TRAVI PREFABBRICATE DELL'IMPALCATO DI COPERTURA

Rev.	Data	Emesso per	Autore	Approvato
0	Aprile 2022	Costruzione	M. Defina – Poltek Bau	M. Defina
1	25 Novembre 2022	Costruzione	M. Defina - MITING	M. Defina - MITING
2	5 Dicembre 2022	Costruzione	M. Defina - MITING	M. Defina - MITING

SOMMARIO

PKE	MESSA – OGGETTO E CONTENUTO DEL PRESENTE ELABORATO	4
1	RELAZIONE GENERALE	5
2	NORME DI RIFERIMENTO	8
2.1	NORME VIGENTI	8
2.2	RIFERIMENTI BIBLIOGRAFICI NORMATIVI	8
3	CLASSIFICAZIONE DELLE OPERE	9
3.1 SISN	CLASSE D'USO, PERIODO DI RIFERIMENTO PER LA COSTRUZIONE PER L'AZ MICA	IONE 9
3.2	LIVELLI DI SICUREZZA E PRESTAZIONI RICHIESTI	9
4	RELAZIONE DI CALCOLO DELLE STRUTTURE	10
4.1	METODO DI ANALISI E VERIFICA DEGLI ELEMENTI STRUTTURALI	10
4.2	CRITERI DI CALCOLO DELLE STRUTTURE	10
4.3	CARATTERISTICHE DEI MATERIALI	10
4.4	AZIONI DI CALCOLO SULLE OPERE	13
4.4.1	DEFINIZIONE DELLE CATEGORIE DELLE AZIONI DI BASE	13
4.4.2	AZIONI DI PROGETTO PER LE OPERE	14
4.4.3	COMBINAZIONI DI CARICO	24
4.5	VERIFICA IMPALCATO COPERTURA	29
4.5.1	RAPPRESENTAZIONE DELLE STRUTTURE	29
4.5.2	LASTRE PRECOMPRESSE – LASTRA TIPO 1	30
4.5.3	LASTRE PRECOMPRESSE – LASTRA TIPO 4	45
4.5.4	LASTRE PRECOMPRESSE – LASTRA TIPO 6	63
4.5.5	LASTRE PRECOMPRESSE – LASTRA TIPO 7	82
4.5.6	LASTRE PRECOMPRESSE – LASTRA TIPO 11 – BORDO GRIGLIATO	100
4.5.7	TRAVE PRECOMPRESSA – TR1	115
4.5.8	VERIFICA SOLETTA SUPERIORE	126
4.5.9	GIUNTO TECNICO	129
4.5.1	0 CONTINUITA' CON I CORDOLI SUI DIAFRAMMI DI TESTA	130
4.5.1	1 TRAVI DI SUPPORTO DEI GRIGLIATI	141
4.5.1	2 VERIFICA DEI GRIGLIATI DI COPERTURA	148
5	CONCLUSIONI	150
6	ADDENDUM	151
6.1	PREMESSA – OGGETTO E CONTENUTO DEL PRESENTE ADDENDUM	151
6.2	SEQUENZA DELLE VERIFICHE DI CALCOLO	152
6.2.1	VARO DELLE LASTRE	152

Progetto Esecutivo

6.2.2	GETTO IN OPERA DELLA SOLETTA STRUTTURALE DI COMPLETAMENTO 153
6.2.3	SOVRACCARICO PERMANENTE 154
6.2.4	SOVRACCARICHI VARIABILI155
6.3	OPERATIVE DI COSTRUZIONE

Progetto Esecutivo

PREMESSA – OGGETTO E CONTENUTO DEL PRESENTE ELABORATO

Il documento raccoglie le verifiche strutturali di progetto per la copertura del tratto terminale del fosso Melara.

Il presente elaborato si compone di una *Relazione Generale* e della *Relazione di Calcolo delle Strutture*, i cui rispettivi contenuti sono specificati di seguito. Vengono verificate le lastre prefabbricate precompresse che realizzano l'impalcato soggetto ai carichi previsti a progetto e i getti in opera di completamento dell'impalcato.

Nella <u>Relazione Generale</u> viene data una descrizione delle opere in progetto, vengono indicate le norme di riferimento adottate e viene riportata la classificazione delle opere, precisando i livelli di sicurezza e le prestazioni attese per le strutture in oggetto.

Nella <u>Relazione di Calcolo delle Strutture</u> vengono esposti il metodo di analisi, le caratteristiche dei materiali, i criteri di calcolo, le azioni di progetto, i risultati dell'analisi strutturale e le verifiche relative alle opere oggetto del presente elaborato.

Per l'analisi e la verifica delle strutture in esame sono stati utilizzati sia metodi di calcolo manuale che *codici di calcolo* con elaborazione dei dati eseguita da calcolatore elettronico.

I metodi di calcolo manuale saranno descritti in fase di esposizione delle analisi e delle verifiche.

Codice di calcolo utilizzato

per l'elaborazione mediante

procedure di calcolo automatico : AxisVM, ver. 13 Release 4j

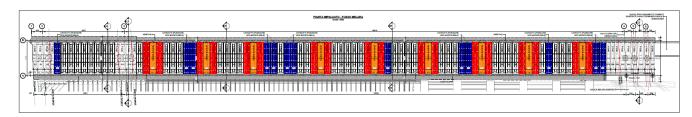
http://www.stadata.com/

Inter-CAD Ltd.

Estremi licenza d'uso : codice utente 206015

Intestata a: ETRA SRL P. IVA 03288000270

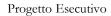
Calle Seconda del Campiello, 7 – 30026 Portogruaro (VE)



1 RELAZIONE GENERALE

Vengono verificate le lastre prefabbricate che realizzano un impalcato continuo di copertura del nuovo tratto terminale del fosso Melara, che viene prolungato fino al limite massimo fronte mare.

La figura seguente individua il contesto in cui si colloca l'oggetto:



L'impalcato è a campata unica in continuità strutturale con i cordoli che sormontano i diaframmi di riva.

La copertura in oggetto ha tracciato in retto e presenta larghezza (luce netta) di 11.15m. La lunghezza totale, in asse impalcato, è di circa 231,7 m con 4 giunti tecnici.

Le lastre sono suddivise in 11 tipologie: lastre tipo 1 standard, lastre a trapezio tipo 2, 5 e 9, che assicurano alcune compensazioni delle dimensioni in pianta dettate dall'inclinazione di binari e vie di corsa, lastra tipo 3 di testa fronte mare, lastre tipo 4 e 6 porta binari gru, lastra tipo 7 e 8 porta binari ferrovia, tipo 10 porta cavidotti e

tipo 11a e 11b porta grigliati. Vengono verificate singolarmente le tipologie principali 1, 4, 6, 7, 10 e 11 potendo le altre essere ricondotte alle prime.

La struttura presenta uno spessore costante di 80cm di lastra alleggerita, prefabbricata e precompressa, su cui viene eseguito in opera un getto dello spessore di 20 cm come soletta di ripartizione, compresi traversi di ridistribuzione in campata e cordoli di tesata per la continuità strutturale in seconda fase con i diaframmi.

Le lastre sono pertanto isostatiche per il peso proprio e per il getto della soletta di continuità; in seguito, realizzati i cordoli di testata, la struttura diventa iperstatica per i successivi carichi permanenti e per i carichi di servizio.

Il getto in opera comprende in un'unica fase la realizzazione della soletta, dei cordoli di testata, dei traversi interni e delle nervature di giunzione tra le lastre accostate.

Si realizza in tal modo un impalcato monolitico a comportamento ortotropo, plurinervato sia in direzione longitudinale che trasversale e chiuso sia inferiormente che superiormente, con grande beneficio in termini di deformabilità e di ridistribuzione degli sforzi.

Le lastre, costruite nello stabilimento di prefabbricazione, vengono successivamente trasportate a piè d'opera e varate. Il sistema di precompressione è del tipo a fili aderenti. I trefoli che costituiscono l'armatura di precompressione vengono tesati sino alla tensione di calcolo prevista nella presente relazione.

Disposta l'armatura lenta per gli sforzi di taglio, ultimata la tesatura e fissata la casseratura, si procede al getto del calcestruzzo.

Una volta raggiunta la resistenza Rckj prevista, si procede all'allentamento delle testate di tesatura, al taglio dei trefoli e alla movimentazione e stoccaggio del manufatto.

Sopra la soletta gettata in opera graveranno infine i carichi permanenti dati dal ricoprimento e dalle opere di completamento e i carichi variabili di progetto.

Le lastre sono autoportanti: non necessitano quindi di rompitratta o puntellamento provvisorio durante l'esecuzione dell'impalcato.

Si distinguono due fasi successive di lavoro:

Prima fase:

Le lastre semplicemente appoggiate alle teste sopportano il peso proprio e quello della soletta gettata in opera.

Seconda fase:

Il sistema misto lastre precompresse e soletta gettata in opera, divenuto solidale dopo la maturazione del calcestruzzo, è in grado di portare il peso delle sovrastrutture e dei carichi variabili.

Per gli effetti della continuità con le strutture portanti vengono comunque aggiunte le armature a momento negativo verso i diaframmi e integrate quelle a taglio.

Progetto Esecutivo

Naturalmente, per il calcolo delle armature al negativo alle teste, di continuità con i cordoli di bordo, le lastre in seconda fase vanno considerate con vincolo ad incastro elasticamente cedevole, come indicato nella relazione generale.

Vengono utilizzate le seguenti unità di misura:

lunghezze: cm
pesi: daN
tensioni: MPa
diametri barre di armatura: mm
diametri trefoli acciaio armonico: pollici

Le tensioni sono positive se di compressione e negative se di trazione.

Progetto Esecutivo

2 NORME DI RIFERIMENTO

2.1 NORME VIGENTI

- Legge 5 novembre 1971 n° 1086 Norma per la disciplina delle opere in conglomerato cementizio, normale, precompresso ed a struttura metallica
- Legge 2 febbraio 1974, n° 64 Provvedimenti per le costruzioni con particolari prescrizioni per le zone sism iche
- D.P.R. 6 giugno 2001 n° 380 Testo unico delle disposizioni legislative e regolamenti in materia edilizia (in particolare: Parte II Normativa tecnica per l'edilizia)
- NTC2018 Decreto 17 gennaio 2018 Ministero delle Infrastrutture Norme tecniche per le costruzioni

2.2 RIFERIMENTI BIBLIOGRAFICI NORMATIVI

Si elencano di seguito alcuni riferimenti normativi cui potrà essere fatto riferimento per i casi in cui le norme *cogenti* – ovvero quelle applicate in via transitoria – non fornissero indicazioni.

Riferimenti per l'edilizia in zona sismica

• EC8 – UNI EN 1998 EuroCodice 8 Indicazioni progettuali per la resistenza sismica delle strutture

Riferimenti per le strutture in calcestruzzo

• EC 2 – UNI EN 1992 EuroCodice 2 Progettazione delle strutture di calcestruzzo

Riferimenti per le strutture in acciaio

• EC 3 – UNI EN 1993 EuroCodice 3 Progettazione delle strutture in acciaio

Progetto Esecutivo

3 CLASSIFICAZIONE DELLE OPERE

L'intervento si caratterizza come Costruzioni con livelli di prestazioni ordinari.

Coerentemente con la normativa di riferimento, si attribuisce alle strutture una Vita **Nominale** pari a 50 anni e una classe d'uso III:

"Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso."

3.1 CLASSE D'USO, PERIODO DI RIFERIMENTO PER LA COSTRUZIONE PER L'AZIONE SISMICA

L'evento sismico che deve essere verificato è legato alla vita nominale dell'opera, amplificata dal coefficiente d'uso C_U .

Nel caso in esame abbiamo:

3.2 LIVELLI DI SICUREZZA E PRESTAZIONI RICHIESTI

Le opere in oggetto non presentano caratteristiche peculiari che le distinguano dalla generalità delle opere rispondenti ai parametri di classificazione riportati al paragrafo precedente, né sono state avanzate dalla Committente particolari richieste prestazionali. Pertanto i *Livelli di Sicurezza Richiesti* e le *Prestazioni Richieste* sono quelli ordinari previsti dalle Norme di Riferimento.

Più esplicitamente:

- Va garantita la *sicurezza nei confronti di stati limite ultimi (SLU)*, quali crolli, perdite di equilibrio e dissesti gravi che possano compromettere l'incolumità delle persone ovvero la perdita di beni, ovvero provocare gravi danni ambientali e sociali;
- Va garantita la *sicurezza nei confronti di stati limite di esercizio (SLE)*, per garantire le prestazioni nelle condizioni di esercizio;
- Va garantita la *robustezza*, per evitare danni sproporzionati rispetto all'entità delle cause innescanti *azioni eccezionali*, quali incendio, esplosioni, urti ed impatti;
- Va garantita la durabilità, cioè la conservazione delle caratteristiche fisiche e meccaniche dei materiali e delle strutture, affinché i livelli di sicurezza vengano garantiti durante tutta la vita dell'opera.

Progetto Esecutivo

4 RELAZIONE DI CALCOLO DELLE STRUTTURE

Nel presente paragrafo *Relazione di Calcolo delle Strutture* vengono esposti il metodo di analisi, le caratteristiche dei materiali, i criteri di calcolo, le azioni di progetto agenti.

4.1 METODO DI ANALISI E VERIFICA DEGLI ELEMENTI STRUTTURALI

Il metodo di analisi e verifica delle strutture e delle fondazioni, è *il metodo semi-probabilistico agli stati limite*, per come questo è inteso dalle normative di riferimento.

Tutte le strutture in esame sono state studiate con *modelli a comportamento elastico lineare*, salvo diversa specifica.

4.2 CRITERI DI CALCOLO DELLE STRUTTURE

Per l'analisi e la verifica delle strutture in esame sono stati utilizzati sia metodi di calcolo manuale che *codici di calcolo* con elaborazione dei dati eseguita da *calcolatore elettronico*.

I metodi di calcolo manuale saranno descritti in fase di esposizione delle analisi o verifiche.

4.3 CARATTERISTICHE DEI MATERIALI

CALCESTRUZZO PER ELEMENTI PREFABRICATI PRECOMPRESSI:

• Calcestruzzo – C45/55 (Rck 55) – XC4-XD3-XF1; rapporto a/c = 0.45 max;

A 28 giorni di maturazione: $R_{ck} \ge 55 \text{ MPa}$

 $f_{ck} = 0.83 R_{ck} = 45.6 MPa$

 $\alpha_{cc} = 0.85$; $\gamma_c = 1.4$ (prefabb. in CdQ)

 $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 27.7 \text{ MPa}$

Al rilascio dei trefoli di precompressione: $R_{cki} \ge 40 \text{ MPa}$

 $f_{ckj} = 0.83 R_{ckj} = 33.2 MPa$

 $\alpha_{ccj} = 1.0;$ $\gamma_c = 1.4$ (prefabb. in CdQ)

 $f_{cdj} = \alpha_{ccj} f_{ckj} / \gamma_c = 23.7 \text{ MPa}$

Per le verifiche a rottura si utilizza il diagramma parabola-rettangolo con valore massimo di tensione pari a:

• $f_{cd} = 27.7 \text{ MPa}$

Per gli stati limite di esercizio, nell'ipotesi di ambiente ordinario, si hanno i seguenti limiti delle tensioni:

Tensioni di compressione in esercizio, a tempo finale:

Combinazione di azioni rara: $\sigma_c \le 0.60 \text{ f}_{ck} = 27.4 \text{ MPa}$

Combinazione di azioni quasi permanente:..... $\sigma_c \le 0.45 \; f_{ck} = 20.5 \; MPa$

Progetto Esecutivo

 $\sigma_c \leq f_{ctd} = f_{ctk} \ / \ \gamma_c \qquad \quad f_{ctk} = 0.7 \ f_{ctm} = 2.68 \ MPa$

Combinazione di azioni rara: $\gamma_c = 3.2$ $\sigma_c \le -0.8$ MPa

Con armatura sussidiaria: $\gamma_c = 1.6$ $\sigma_c \le -1.6$ MPa

Tensioni di compressione al taglio dei trefoli: $\sigma_c \le 0.7 \; f_{ckj} = 23.2 \; MPa$

Tensioni di trazione al taglio dei trefoli: $\sigma_c \le -0.7 \; f_{ctkj} = -1.72 \; MPa$

Con armatura sussidiaria: $\sigma_c \le -1.4 \text{ f}_{ctkj} = -3.44 \text{ MPa}$

CALCESTRUZZO PER GETTI IN OPERA DI SOLETTA E DI UNIONE PREFABRICATI:

• Calcestruzzo – C35/45 (R_{ck} 45) – XS3; rapporto a/c = 0.50 max;

A 28 giorni di maturazione: Rck \geq 45 MPa

fck = 0.83 Rck = 37.35 MPa

 $\alpha_{cc} = 0.85; \quad \gamma_{c} = 1.5$

 $f_{cd} = \alpha_{cc} \; f_{ck} / \gamma_c = 21.17 \; MPa$

Per le verifiche a rottura si utilizza il diagramma parabola-rettangolo con valore massimo di tensione pari a:

• 0.85 fcd = 17.99 MPa

Per gli stati limite di esercizio, nell'ipotesi di ambiente ordinario, si hanno i seguenti limiti delle tensioni:

Tensioni di compressione in esercizio, a tempo finale $\sigma c \leq Rck / (\gamma m, c \times \gamma Ec)$:

Combinazione di azioni quasi permanente: ... $\gamma m, c = 1.5$; $\gamma Ec = 1.8$ $\sigma c \le = 16.81$ MPa

ACCIAIO PER CEMENTO ARMATO

Per le opere in oggetto si prevede l'utilizzo di un acciaio per cemento armato laminato a caldo saldabile conforme ai parametri forniti dal Decreto 17 gennaio 2018 Ministero delle Infrastrutture e dei Trasporti – "Norme tecniche per le costruzioni", per la classe indicata come *B450C*.

Descrizione:

Acciaio per cemento armato ad aderenza migliorata, laminato a caldo, saldabile, conforme alla UNI EN 10080, del tipo **B450C**, classificabile anche come Fe B 44 k, in barre sciolte e reti elettrosaldate, con diametro delle barre Ø compreso fra 6 e 40 mm.

Tensione nominale di snervamento...... $f_{v nom} = 450 N/mm^2$

Tensione caratteristica di rottura..... $f_{t nom} = 540 \ N/mm^2$

Tensione caratteristica di snervamento...... $f_{vk} \ge f_{v nom} = 450 \ N/mm^2$

Tensione caratteristica di rottura..... $f_{tk} \ge f_{t nom} = 540 \ N/mm^2$

Progetto Esecutivo

Rapporto di sovraresistenza caratteristico... $(f_t / f_y)_k \ge 1,13$

 $(f_t / f_y)_k \le 1,35$

Fattore di sicurezza effettivo caratteristico... $(f_y / f_{y \text{ nom}})_k \le 1,25$

Allungamento A_{gt} caratteristico...... $(A_{gt})_k \geq 7.5 \%$

Tensione caratteristica di snervamento

di progetto..... $f_{yk} = f_{y nom} = 450 N/mm^2$

Coefficiente di sicurezza del materiale...... $\gamma_S = 1,15$

Resistenza di calcolo:

Tensione caratteristica di snervamento di calcolo....... $f_{yk} = 450 \ N/mm^2$

Modulo di elasticità di calcolo..... $E_S = 210\ 000\ N/mm^2$

ACCIAIO ARMONICO PER PRECOMPRESSIONE:

L'acciaio usato per la precompressione di lastre e piastre e' trefolo da 0.6" stabilizzato a basso rilassamento.

Carico di rottura: $f_{ptk} \ge 1860 \text{ MPa}$

Carico caratteristico all'1%..... $f_{plk} \ge 1670 \text{ MPa}$

Tensione di tesatura al martinetto:..... $\sigma_{spi} \le f_{p1k}/\gamma_{m,s} = 1670/1.12 = 1490 \text{ MPa}$

Si stabilisce: $\sigma_{spi} = 1440 \text{ MPa}$

Perdita al martinetto per rientro dei cunei:..... 3%

Tensione di tesatura applicata iniziale:..... $\sigma_{\text{spi,c}} = 1397 \text{ MPa}$

Cadute di tensione per rilassamento per $\sigma_{spi} = 0.75 f_{ptk}$:

- a 1000 ore:................................ 2.20 %

Nel calcolo a rottura si utilizza il diagramma triangolo-rettangolo con tensione massima pari a:

• fptk / γ s = 1860 / 1.15 = 1617 MPa

Progetto Esecutivo

4.4 AZIONI DI CALCOLO SULLE OPERE

4.4.1 DEFINIZIONE DELLE CATEGORIE DELLE AZIONI DI BASE

Carichi permanenti – G

Peso proprio degli elementi strutturali – G_1

Comprende il peso proprio di tutti gli elementi strutturali.

Sovraccarichi permanenti – G_2

Comprende il peso proprio di tutti gli elementi non-strutturali e tutti gli altri carichi di natura permanente.

Azioni di pretensione e precompressione – $\varepsilon 1$

Comprendono le azioni di pretensione e precompressione applicate alle strutture.

Effetti reologici – $\varepsilon 2$, $\varepsilon 3$

Comprendono gli effetti di ritiro e viscosità.

Carichi variabili - Q

Carichi mobili - q1

Comprendono i carichi mobili associati alla categoria di impiego della struttura.

Azioni sismiche – E

Comprendono le azioni associate sia ai moti sismici orizzontali sia ai moti sismici verticali, nel caso le caratteristiche dell'elemento preso in esame rendano opportuno considerare anche questi ultimi.

Entità delle azioni di calcolo

Allo scopo di fornire tutti i dati necessari alla valutazione dell'entità dei carichi, prima di indicare i valori specifici delle azioni di progetto agenti sulle opere, si riportano i parametri fondamentali che definiscono le varie voci di carico.

Si precisa che i valori indicati qui di seguito per le diverse voci di carico, sono da intendersi come valori caratteristici e che per brevità di notazione, ai simboli rappresentanti i carichi non verrà posposto il pedice k.

4.4.2 AZIONI DI PROGETTO PER LE OPERE

Di seguito si precisano i dati fondamentali che definiscono le specifiche azioni di progetto applicate alle opere;

4.4.2.1 Carichi permanenti – G

Si precisa che di seguito si indicano separatamente il peso proprio degli elementi strutturali (G_1) , e i sovraccarichi permanenti (G_2) . Ciò perché alle due sottoclassi possono corrispondere coefficienti di sicurezza diversi.

Qui si riportano le voci di carico più significative; altre voci potranno essere specificate in seguito in fase di analisi di singoli elementi o sotto-sistemi strutturali.

Pesi unitari dei materiali

Elementi strutturali:

Calcestruzzo $w_c = 25,00 \text{ kN}/\text{m}^3$ Acciaio $w_s = 78,50 \text{ kN}/\text{m}^3$

Elementi non-strutturali:

Polistirolo (EPS) $w_{eps} = 0.10 \text{ kN} / \text{m}^3$ Pavimentazione stradale $w_p = 3.00 \text{ kN} / \text{m}^2$

• Carichi permanenti – G1-1 – peso elementi prefabbricati

Peso lastra tipo 1 (h 80cm)	$6,39 \text{ kN} / \text{m}^2$
Peso lastra tipo 4 (h 80cm)	$8,57 \text{ kN} / \text{m}^2$
Peso lastra tipo 6 (h 80cm)	$9,29 \text{ kN} / \text{m}^2$
Peso lastra tipo 7 (h 80cm)	$14,71 \text{ kN} / \text{m}^2$
Peso lastra tipo 11 (h 80cm)	$7,05 \text{ kN} / \text{m}^2$
Trave TR1 (h 80cm)	55,65 kN / m

• Carichi permanenti – G1-2 – peso getto integrativo – soletta e nervature

Su lastra tipo 1 (h 20cm)	$6,00 \text{ kN} / \text{m}^2$
Su lastra tipo 4 (h 20cm)	$6,87 \text{ kN} / \text{m}^2$
Su lastra tipo 6 (h 20cm)	$7,35 \text{ kN} / \text{m}^2$
Su lastra tipo 7 (h 20cm)	$10,60 \text{ kN} / \text{m}^2$
Su lastra tipo 11 (h 20cm)	$6,70 \text{ kN} / \text{m}^2$

• Sovraccarichi permanenti – G2:

Zona corrente	$p_{G,2} = 3,00 \text{ kN} / \text{m}^2$
Zona ferrovia	$p_{G,2} = 6,60 \text{ kN} / \text{m}^2$

4.4.2.2 Azioni di pretensione e precompressione – $\varepsilon 1$

Vengono utilizzati trefoli da 0.6" in acciaio armonico stabilizzato, pretensionati a 1440 MPa (tensione al martinetto). La precompressione totale varia da elemento ad elemento, in funzione del numero e della posizione dei trefoli rispetto ai baricentri dei singoli elementi prefabbricati. Per ogni elemento verificato vengono specificate le caratteristiche di precompressione.

4.4.2.3 Effetti reologici di ritiro e viscosità ε2, ε3

Le perdite di precompressione vengono suddivise in tre tempi:

21_08_PE_R416_0	Calcoli esecutivi delle strutture – Copertura Fosso Melara	Pag. 14 di 156

- perdite elastiche e reologiche al momento del trasferimento della precompressione;
- perdite reologiche al momento del varo dei prefabbricati e del getto in opera della soletta;
- perdite reologiche a tempo infinito.

Gli effetti vengono calcolati separatamente, assieme al rilassamento dell'acciaio armonico e composti in combinazione tra loro.

4.4.2.4 Carichi variabili – Q - categoria E

4.4.2.4.1 Sovraccarichi verticali uniformemente distribuiti

Sulla copertura al di fuori del fascio di binari è stato considerato un carico uniforme distribuito di 40 kN/m², in grado di portare sia carichi stradali di prima categoria sia il peso di containers come previsto sulle altre strutture di copertura dei canali sotto il terminal, sicuramente più gravoso dei carichi stradali.

Facendo riferimento alle Linee Guida Pianc e Br. Standard si ha:

Stacking	Reduction	Contact Stress		Load on Pavement For Each Stacking Arrangement					
Height	In Gross Weight			Sin	gly	Ro	ws	Bloc	ks
		(N/mm²)	(lb./in²)	(kN)	(kips)	(kN)	(kips)	(kN)	(kips)
1	0	2.6	375.7	76.2	17.1	152.4	34.3	304.8	68.5
2	10 %	4.7	677.3	137.2	30.8	274.3	61.7	548.6	123.3
3	20 %	6.2	903.6	182.9	41.1	365.7	82.2	731.5	164.4
4	30 %	7.3	1,054.4	213.4	48.0	426.7	95.9	853.4	191.9
5	40 %	7.8	1,128.4	228.6	51.4	457.2	102.8	914.4	205.6
6	40 %	9.3	1,353.2	274.3	61.7	548.6	123.3	1,097.2	246.7
7	40 %	10.9	1,580.9	320.0	71.9	640.1	143.9	1,280.1	287.8
8	40 %	12.5	1,813.0	365.7	82.2	731.5	164.4	1,463.0	328.9
Note: Usin	Note: Using 31,080 kg (68,520 lb.) container with equal distribution								

Stacking Height	Reduction in Gross Weight	Contact Stress (N/mm²)	Load on Pavement (kN) each stacking arrangem		
			Singly	Rows	Blocks
1	0	2.59	76.2	152.4	304.8
2	10%	4.67	137.2	274.3	548.6
3	20%	6.23	182.9	365.8	731.5
4	30%	7.27	213.4	426.7	853.4
5	40%	7.78	228.6	457.2	914.4
6	40%	9.33	274.3	548.6	1097
7	40%	10.9	320.0	640.0	1280
8	40%	12.5	365.8	731.6	1463

Le norme Pianc al paragrafo 6.6.2 nella sezione riguardante Weight (max, full load probability in stack) definiscono i pesi massimi lordi per i container da 20 e da 40 ft:

20ft container – 24000 kg 40ft container – 30480 kg

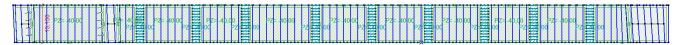
Considerando una distribuzione volumetrica di 50% container da 20 ft e 50% da 40 ft è possibile ricavare analiticamente la pressione equivalente al suolo dovuta ai container:

Carico per piedino container 5 fila: 228.6 kN

Dimensioni container 20 ft: 6 x 2.5 m

Progetto Esecutivo

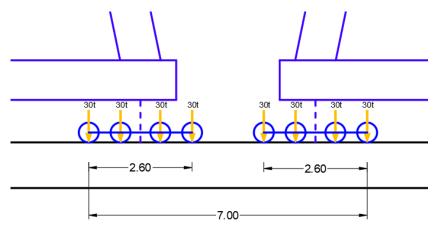
Dimensioni container 40 ft: 12 x 2.5 m


$$A20' = 6 \cdot 2.5 = 15 \text{ m2}$$

 $A40' = 12 \cdot 2.5 = 30 \text{ m2}$

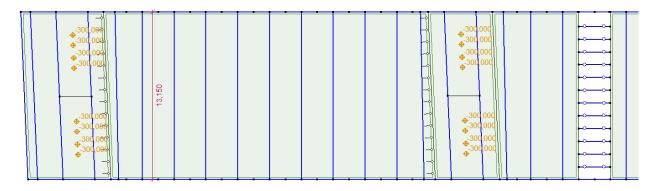
A, media =
$$(A20' + A40)/2 = 22.5 \text{ m}^2$$

 $Q = (228.6 \cdot 4) / A,media = 40.64 kN/m2 \approx 40 kN/m^2$


La copertura del canale è inserita in un'area adibita a terminal container e, ad esclusione dei grigliati, è soggetta quindi a un carico distribuito pari a 40 kN/m².

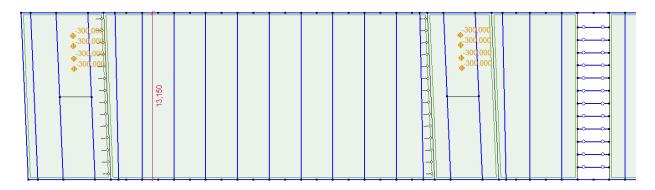
4.4.2.4.2 Sovraccarichi verticali concentrati

Passaggio gru su binari ASC A 4 RUOTE – 4x4 ruote x 30 kN/ ruota

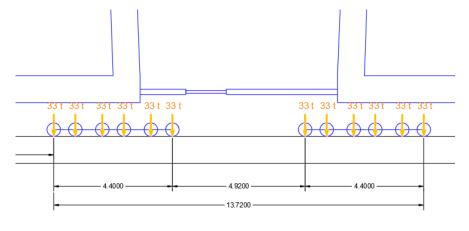


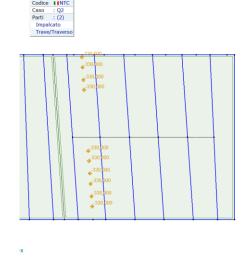
4x4 ruote x 30 kN/ ruota

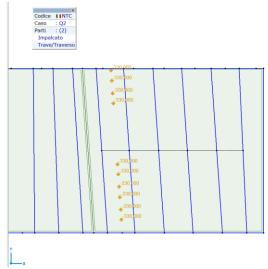
Progetto Esecutivo



Progetto Esecutivo


4x4 ruote x 30 kN/ ruota





Passaggio gru su binari ASC A 6 RUOTE:

- 4x4 ruote x 25 t / ruota max. statico
- 4x4 ruote x 33 t / ruota max. dinamico

Caso 5 – Carico ferroviario – viene impegnato il modello di carico LM71

5.2.2.2.1.1 Modello di carico LM 71

Questo modello di carico schematizza gli effetti statici prodotti dal traffico ferroviario normale come mostrato nella Fig. 5.2.1 e risulta costituito da:

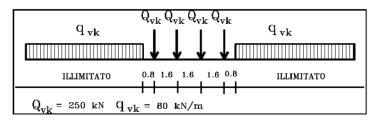


Fig. 5.2.1 - Modello di carico LM71

- quattro assi da 250 kN disposti ad interasse di 1,60 m;
- carico distribuito di 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata.

I carichi da traffico ferroviario vengano amplificati per tener conto sia del coefficiente di adattamento "α" che degli effetti dinamici.

Il valore del coefficiente di adattamento "α" da adottarsi per il modello di carico LM71 nella progettazione di ferrovie ordinarie è pari a 1,1.

Le sollecitazioni e gli spostamenti determinati sulle strutture del ponte dall'applicazione statica dei modelli di carico debbono essere incrementati per tenere conto della natura dinamica del transito dei convogli.

Il coeficiente dinamico Φ per la linee con ridotto standard manutentivo vale:

$$\Phi_3 = \frac{2,16}{\sqrt{L_h} - 0,2} + 0,73$$
 con la limitazione $1,00 \le \Phi_3 \le 2,00$

Dove:

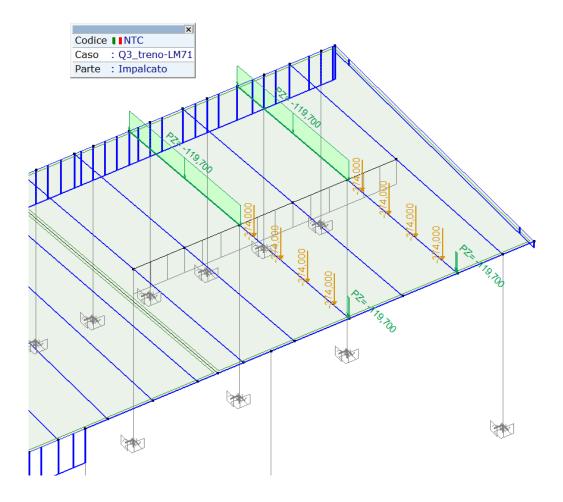
TRAVI	TRAVI PRINCIPALI				
	5.1 Travi e solette semplicemente appoggiate	luce nella direzione delle travi principali			
	(compresi i solettoni a travi incorporate)				

 $L_{\Phi} = 13,35$ m la lunghezza caratteristica in metri

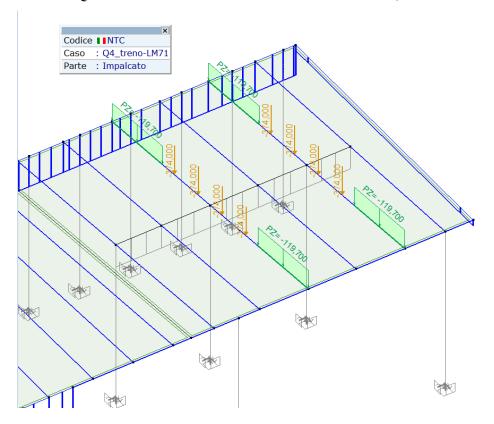
$$\Phi = 1.36$$

I carichi amplificati da utilizzare per le verifiche sono pertanto:

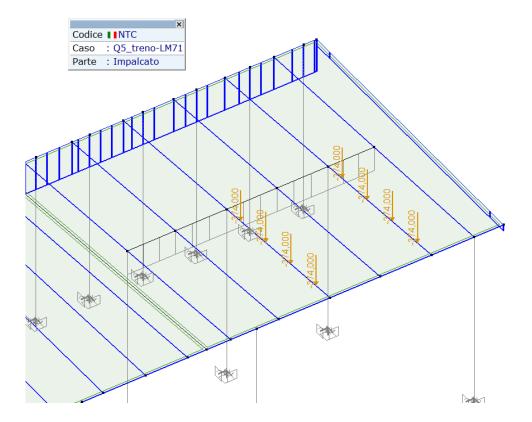
$$q_{rk} = 80 \times 1,1 \times 1,36 = 119,7 \text{ kN/m}$$


$$Q_{vk} = 250 \times 1,1 \times 1,36 = 374 \text{ kN}$$

Progetto Esecutivo


Di seguito vengono indicati tutte gli schemi di analisi:

Schema Q1 -4 assi da 374 kN + carico distribuito da 119,70 kN/m



Schema Q2 – 4 assi da 374 kN + carico distribuito da 119,70 kN/m

Schema Q3 – 4 assi da 374 kN

Progetto Esecutivo

4.4.2.5 Azioni sismiche – E

Stati Limite di progetto per le azioni sismiche

Le opere in oggetto sono da considerarsi appartenenti alla Classe d'Uso III.

Stati Limite di progetto:

SLV - Stato Limite di salvaguardia della Vita

Tipo di analisi

Tenuto conto delle caratteristiche sismiche delle strutture, si sceglie di utilizzare per tutti gli stati limite di progetto, il metodo di analisi *ordinario*, cioè una *analisi dinamica in campo lineare*, di tipo *modale*, con *spettri di risposta* valutati facendo uso di un *fattore di struttura*. Si precisa che non verranno introdotte *ridistribuzioni* delle azioni sismiche. Riassumendo, il metodo di analisi utilizzato è il seguente.

Metodo di analisi sismica: Analisi dinamica in campo lineare, di tipo modale, con spettri di risposta e fattore di struttura, senza ridistribuzioni

L'analisi sismica è stata eseguita per mezzo di codice di calcolo con il *Modello Globale*, già richiamato in precedenza, e utilizzato anche per l'analisi di tutte le altre azioni di calcolo

• Fattore di struttura

Si è optato per ottenere una **risposta elastica anche in presenza di sismi distruttivi (SLV)**. Pertanto si è adottato un fattore di struttura q = 1 per le componenti sismiche orizzontali e un fattore di struttura $q_{\nu} = 1$ per la componente verticale.

Fattore di struttura per le componenti sismiche orizzontali...... q = 1

Di seguito si riportano i parametri di base per la valutazione delle azioni sismiche; gli spettri di risposta verranno definiti in seguito, dopo avere caratterizzato sismicamente la struttura.

Comune amministrativo.....LA SPEZIA

Parametri di pericolosità sismica

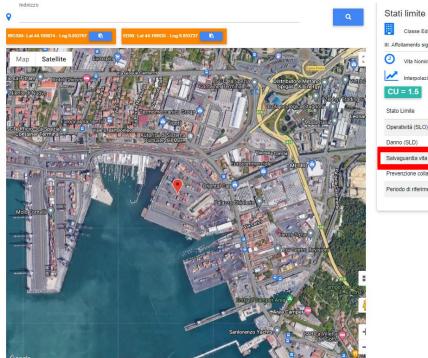
Definizione dei tempi di ritorno per i diversi Stati Limite :

Dati di base:

I dati che seguono sono quelli già indicati al § 1.3 Classificazione delle opere.

Vita Nominale...... $V_N = 50 \ anni$

Coefficiente d'Uso..... $C_U = 1.5$


Tempi di ritorno di progetto:

SLV..... $T_{R,V} = 712 \ anni$

Progetto Esecutivo

Parametri sismici di base di progetto (Le accelerazioni a_g sono espresse in m/s^2).

Caratteristiche del suolo di fondazione

Categoria suolo di fondazione:

Categoria suolo di fondazione......

Coefficiente di amplificazione relativo al suolo di fondazione:

Categoria topografica...... T1 – Superficie pianeggiante (incl. < 15°)

Coefficiente di amplificazione topografica.. $S_T = 1$

Identificativo delle azioni sismiche

Nel prosieguo ci si riferirà alle azioni sismiche complessive ed alle singole componenti con gli identificativi di seguito riportati.

Azioni sismiche allo *Stato Limite di salvaguardia della Vita* (*SLV*) – *E* :

Azioni sismiche allo SLV - E:

Azioni sismiche complessive..... E

Componente // Direzione x..... E_x

Componente // Direzione y..... E_y

Componente verticale..... E

Progetto Esecutivo

Masse sismiche

Criteri di valutazione delle masse sismiche

Le masse sismiche sono quelle associate ai carichi medi associati alle situazioni sismiche, che saranno indicati come G_E .

Carichi medi di calcolo in presenza di sisma:

Per la determinazione degli effetti di tali azioni si farà di regola riferimento alle sole masse corrispondenti ai pesi propri ed ai sovraccarichi permanenti, considerando nullo il valore quasi permanente delle masse corrispondenti ai carichi da traffico.

4.4.3 COMBINAZIONI DI CARICO

Le combinazioni indicate di seguito sono valide per tutte le verifiche, salvo diversa specifica che si rendesse necessaria od opportuna in particolari situazioni o per particolari elementi; ogni variazione rispetto alle seguenti combinazioni sarà segnalata.

Si precisa che nelle espressioni riportate in seguito, i coefficienti di combinazione ψ – per ciascuna verifica – assumono i valori che determinano la condizione più gravosa.

4.4.3.1 Criteri di combinazione

Combinazioni fondamentali agli Stati Limite Ultimi

Si definiscono combinazioni *fondamentali* agli *Stati Limite Ultimi* quelle che comprendono i carichi permanenti e quelli variabili e non includono le azioni eccezionali e le azioni sismiche. Tali combinazioni comprendono i carichi *statici* o *pseudo–statici* e vengono quindi indicate anche come *combinazioni agli Stati Limite Ultimi Statiche*, ed identificate come *SLU*

Progetto Esecutivo

Coefficienti di sicurezza sulle azioni – carichi ponti stradali:

Tab. 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

,, ,		Coefficiente	EQU®	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli γG2		0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2· Υε3· Υε 4	0,00 1,20	0,00 1,20	0,00 1,00

Tab. 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi- nazione	Coefficiente Ψ ₁ (valori frequenti)	Coefficiente Ψ ₂ (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)	-	0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Coefficienti di sicurezza sulle azioni – carichi ponti ferroviari:

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	nte		EQU(1)	A1	A2
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast ⁽³⁾	favorevoli	ΥВ	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γQ	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli	~	1,45	1,45	1,25
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00
	sfavorevoli	~	1,50	1,50	1,30
Precompressione	favorevole	γP	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00(6)	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	ΥCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

Nella Tab. 5.2.V il significato dei simboli è il seguente:

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		Ψ_0	Ψ1	ψ 2
Azioni singole	Carico sul rilevato a tergo delle	0,80	0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	$T_{\mathtt{k}}$	0,60	0,60	0,50

⁽¹⁾ 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

 $[\]gamma_{\text{GI}}$ coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua, quando pertinente;

 $[\]gamma_{\text{G2}}$ coefficiente parziale dei pesi propri degli elementi non strutturali;

γ_B coefficiente parziale del peso proprio del ballast;

 $[\]gamma_Q$ coefficiente parziale delle azioni variabili da traffico;

 $[\]gamma_{Qi}$ coefficiente parziale delle azioni variabili

 $[\]gamma_{\mathbb{P}}$ coefficiente parziale delle azioni di precompressione

 $[\]gamma_{\text{Ced}}$ coefficiente parziale delle azioni di ritiro, viscosità e cedimenti non imposti appositamente.

⁽²⁾Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Progetto Esecutivo

Tab. 5.2.VII - Ulteriori coefficienti di combinazione ψ delle azioni

	Azioni	Ψ0	ψ_1	Ψ2
	Treno di carico LM 71	0,80 ⁽³⁾	(1)	þ,o
	Treno di carico SW /0	0,80 ⁽³⁾	0,80	0,0
Azioni singole	Treno di carico SW/2	0,00 ⁽³⁾	0,80	0,0
da traffico	Treno scarico	1,00 ⁽³⁾	-	-
	Centrifuga	(2) (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00 ⁽³⁾	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Espressione generale delle combinazioni.... $SLU_{ST,i} = \gamma_{G1} G_1 + \gamma_{G2} G_2 + \gamma_P P +$

 $+ \gamma_Q (Q_i + \Sigma_{j \neq i} \psi_{0,Q_j} Q_j)$

Combinazioni sismiche

Si definiscono combinazioni *sismiche* quelle che comprendono le azioni sismiche, i carichi permanenti con il proprio valore *caratteristico*, quelli variabili con il proprio valore *medio*, e che non includono e le azioni eccezionali.

Si distingue fra combinazioni sismiche agli stati limite ultimi e agli stati limite di esercizio. Come precisato al precedente § *Stati Limite di progetto per le azioni sismiche*, nel caso specifico gli stati limite da considerarsi sono i seguenti:

SLV - Stato Limite di salvaguardia della Vita

I criteri di combinazione delle azioni sismiche con le altre azioni sono riportati di seguito. I coefficienti di combinazione da usarsi per tutte le combinazioni sismiche sono i seguenti.

Premesse

Carichi medi di calcolo in presenza di sisma:

Per carichi medi di calcolo in presenza di sisma si intende l'insieme dei carichi da considerare compresenti alle azioni sismiche. Tali carichi vengono identificati come G_E , e sono definiti di seguito.

Carichi medi di calcolo in pres. di sisma..... $G_E = G_1 + G_2 + P + \sum_i \psi_{2E,Oi} Q_i$

• Identificativi delle azioni sismiche

Come indicato al precedente § *Definizione delle azioni sismiche di progetto* le azioni sismiche di calcolo sono identificate come indicato di seguito.

⁽²⁾ Si usano gli stessi coefficienti y adottati per i carichi che provocano dette azioni.

[🕮] Quando come azione di base venga assunta quella del vento, i coefficienti ψο relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Progetto Esecutivo

Azioni sismiche allo Stato Limite di salvaguardia della Vita: E

• Combinazioni sismiche di calcolo

Azioni sismiche di calcolo allo Stato Limite di salvaguardia della Vita

Combinazioni fondamentali agli Stati Limite di Esercizio

Si definiscono combinazioni *fondamentali* agli *Stati Limite di Esercizio* quelle che comprendono i carichi permanenti e quelli variabili e non includono le azioni eccezionali e le azioni sismiche.

• Combinazioni rare – SLE_R

Combinazioni rare:

Espressione generale delle combinazioni..... $SLE_{R,i} = G_1 + G_2 + P + (Q_i + \Sigma_{j \neq i} \psi_{0,Q_j} Q_j)$

• Combinazioni frequenti – SLE F

Combinazioni frequenti:

Espressione generale delle combinazioni.... $SLE_{F,i} = G_I + G_2 + P + (\psi_{I,Qi} Q_i + \Sigma_{j \neq i} \psi_{2,Qj} Q_j)$

• Combinazioni quasi permanenti – SLE QP

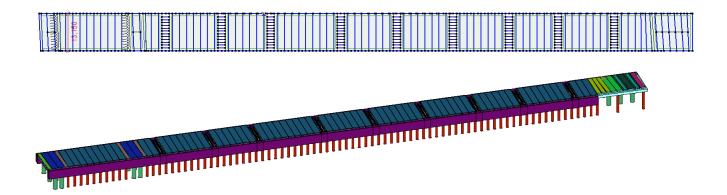
Combinazioni quasi permanenti:

Progetto Esecutivo

4.5 VERIFICA IMPALCATO COPERTURA

Le lastre in c.a.p. presentano sezioni scatolari chiuse che, una volta completati i getti in opera, vengono a formare un impalcato a sezione pluricellulare. Tale tipologia offre una grande rigidezza torsionale e una notevole capacità ridistributiva dei carichi mobili in senso trasversale, grazie alla quale non sono necessari traversi intermedi. Questi vengono comunque realizzati, in stabilimento entro le singole travi e in opera tra le travi stesse al fine di contrastare la "perdita di forma" della sezione chiusa.

4.5.1 RAPPRESENTAZIONE DELLE STRUTTURE


L'analisi della struttura è stata eseguita prevalentemente con l'utilizzo di codici di calcolo elaborati per mezzo di calcolatore elettronico. L'affidabilità dei citati codici e l'attendibilità dei risultati è stata verificata dallo scrivente progettista delle strutture. E' stato costruito il Modello Numerico già descritto in precedenza, che comprende gli elementi strutturali principali; sono stati inoltre utilizzati alcuni altri modelli locali, allo scopo di analizzare singoli elementi o sottosistemi strutturali esclusi dal Modello Numerico, ovvero quello di fornire un'analisi di maggior dettaglio o con ipotesi di calcolo più cautelative. Tali modelli locali nei casi più semplici saranno analizzati con un calcolo manuale, in altri casi di maggiore complessità potranno essere elaborati con codici di calcolo.

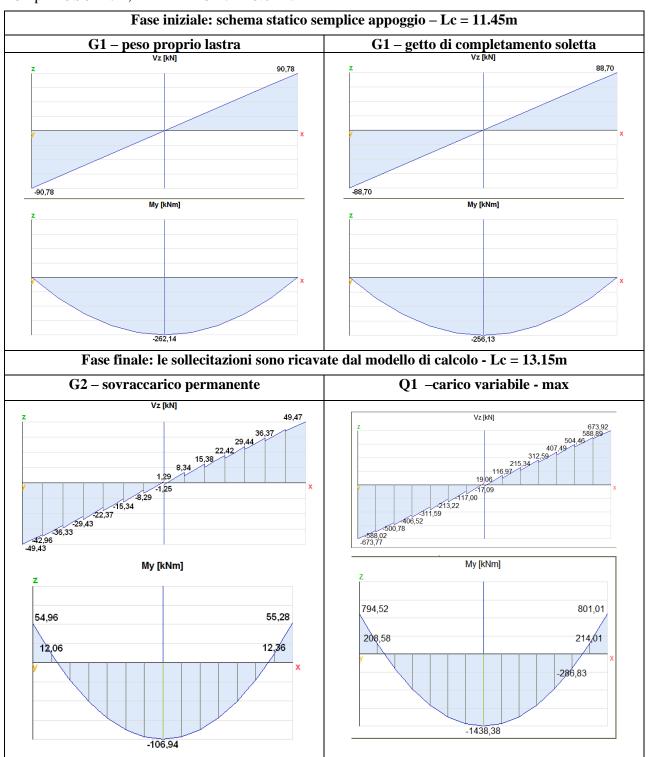
Rappresentazione grafica dei Modelli Numerici - fase iniziale e finale

Vengono scelte per le verifiche le quattro classi principali con le lastre più prestanti, rappresentative di tutte le tipologie previste a progetto.

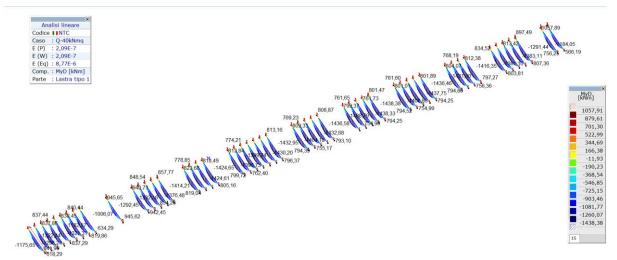
In fase finale viene analizzata la struttura completa e collaborante dell'impalcato. Nelle analisi i valori meccanici, per le travi longitudinali a sezione collaborante.

In fase finale si sono introdotti opportuni elementi beam (a massa nulla e rigidezza opportuna) atti a schematizzare il comportamento della soletta nella ripartizione trasversale dei carichi tra le travi d'impalcato.

Rappresentazione grafica del Modello Numerico - fase finale



4.5.2 LASTRE PRECOMPRESSE – LASTRA TIPO 1


4.5.2.1 Sollecitazioni di calcolo per ciascun carico

L'analisi è condotta sulla lastra da 2.50m di larghezza.

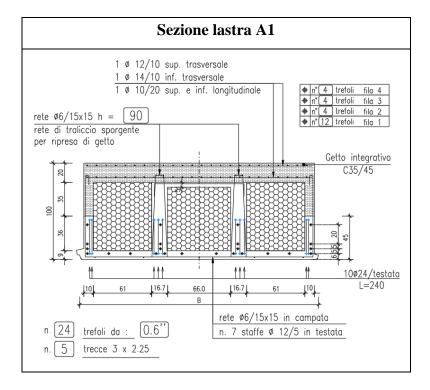
G1-p = 15.98 kN/m; G1-s = 15.0 kN/m

Q1 – carico variabile

• $\varepsilon 1$ – Precompressione

Tipo acciaio armonico: trefolo 0.6" stabilizzato.

Numero trefoli : 24


I trefoli vengono sistemati su 4 livelli:

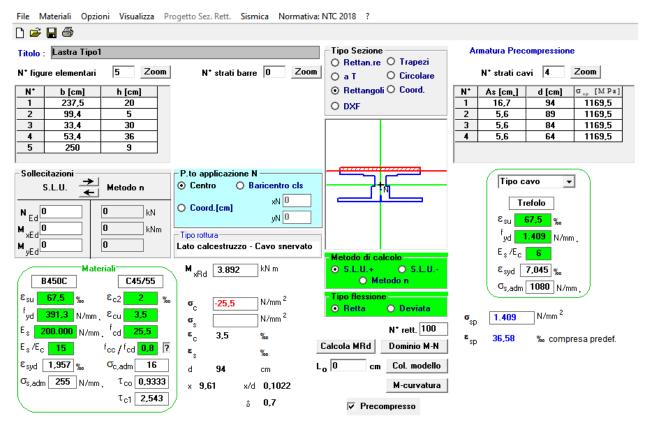
- n° 12 trefoli a 60 mm dall'intradosso soletta;
- n° 4 trefoli a 110 mm dall'intradosso soletta;
- n° 4 trefoli a 160 mm dall'intradosso soletta;
- n° 4 trefoli a 360 mm dall'intradosso soletta;

La tensione nei trefoli a tempo infinito è di 1091.4 Mpa.

 $Np = 1169.5 \times 139 \times 24 = 390156 \text{ daN}$

 $Mp = -Np \times (Ygci-Ygi) = -390156 \times (0,278-0,135) = -55902,94 daNm$

4.5.2.2 Verifiche allo S.L.U.


La verifica viene eseguita sulla sezione equivalente a rettangoli sovrapposti, costituita dal sistema lastra+soletta. Le dimensioni della soletta vengono ridotte del coefficiente di omogeneizzazione 0,95: 250 x 0,95= 237,5 cm. (Ec,soletta/Ec,lastra)

 $M_{Ed}\text{:}\quad \gamma_{G1}M_{G1}+\gamma_{G2}M_{G2}+\gamma_{Q}M_{Q}$

con: $\gamma_{G1}=1,3$ $\gamma_{G2}=1,5$ $\gamma_{Q}=1,5$

d	G1-1	G1-2	G2	q1	SLU
m	kNm	kNm	kNm	kNm	kNm
Mezzeria	262,14	256,13	106,94	1438,38	2991,73

sezione di mezzeria

 $M_{Rd} = 3892 \text{ kNm} > 2991,73 \text{ kNm} => \text{verifica soddisfatta}$

4.5.2.3 Verifiche allo S.L.U. per taglio e torsione

Taglio sollecitante ultimo:

 $V_{Ed}\text{:}\quad \gamma_{G1}V_{G1}+\gamma_{G2}V_{G2}+\gamma_{Q}V_{Q}$

con: $\gamma_{G1}=1,3$ $\gamma_{G2}=1,5$ $\gamma_{Q}=1,5$

Il momento torcente, dovuto solo a disuniformità dei carichi permanenti portati e ad eventuale presenza di carichi mobili, rappresenta una sollecitazione minore e non essenziale all'equilibrio della struttura; viene pertanto trascurata.

d F1	d F2	G1-p	G1-g G2		Qk	SLU
r	n	kN	kN	kN	kN	kN
0	0,7	90,78	88,70	43,78	606,52	1208,8
0,5	1,2	90,78	81,02	40,68	547,50	1105,6
1,8	2,5	62,49	61,06	30,12	436,00	859,8
2	2,7	59,34	57,98	28,10	409,17	808,4

Caratteristiche Calcestruzzo:			
Classe di resistenza :			C45/55
Resistenza caratt.:	R_{ck}	=	55 N/mm ²
Coefficienti di sicurezza e parametri di riduzione della resis	stenza:		
Coeff. di sicurezza :	γ с	=	1,50
Coeff. di sic. addizionale per compressione centrata:	η_{cc}	=	1,25
Coeff. riduttivo per rottura a termine :	β	=	0,85
Resistenze di calcolo:			
Res. caratt. a compressione:	$f_{ck} = 0.83 \cdot R_{ck}$	=	45,65 N/mm ²
Res. a compressione di calcolo:	$f_{cd} = \beta \cdot f_{ck} / \gamma_c$	=	25,87 N/mm ²
Res. media. a compressione:	$f_{cm} = f_{ck} + 8N/mm^2$	=	53,65 N/mm ²
Res. a trazione media di progetto:	$f_{ctm} = 0.30 f_{ck}^{2/3}$	=	3,83 N/mm²
Res. a trazione caratt. di progetto:	$f_{ctk} = 0.70 f_{ctm}$	=	2,68 N/mm²
Res. tangenziale caratt. di aderenza di progetto:	$f_{bk} = 2,25f_{ctk}$	=	6,04 N/mm ²
Res. a trazione di calcolo:	$f_{ctd} = f_{ctk}/\gamma_c$	=	1,79 N/mm²
Acciaio per cemento armato:			
Classe dell'acciaio:			B450C
Coeff. di sicurezza :	γs	=	1,15
Resistenze di calcolo:			
Tensione carat. di snervamento:	f_{yk}	=	450 N/mm ²
Resistenza di calcolo:	$f_{yd} = f_{yk} / \gamma_s$	=	391,3 N/mm ²

Progetto Esecutivo

_						
Sezione	di	testa	Y	- (ገ	

altezza utile					t	1000 mm
base equivalente				bw	V	2500 mm
Armature resistenti per le	verifiche	a taglio	:			
Diametro, numero bracci, pas	so medi	o, inclina	zione, ai	ea resistente e rapporto di armat	tura :	
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	Swi			
	[-]	[mm]	[cm]			
staffe/molle:	6	8	7,5	A _{sw}	1 =	3,02 cm ²
tralicci	6	6	15	A _{sw}	2 =	1,70 cm ²
				A _s ,	w =	4,71 cm ²
		V_{Ro}	$_{\rm cd} = 0.9$	$d \cdot b_w \cdot f'_{cd} \cdot \alpha_c \cdot ctg\theta/(1+ctg^2\theta)$) =	14550,9 kN
			7	$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} \cdot ctge$	θ =	1814,5 <i>kN</i>
				V_{R}	d =	1814,5 <i>kN</i>
	•	•		V_{S}	d =	1208,8 kN
	•	•		ŀ	s =	66,62%

Sezione di testa x = 0,5

1	2	fase	1

0,8 fase 1

altezza utile					d	1000 mm
base equivalente				b	W	1280 mm
Armature resistenti per le v	verifiche	a taglio	:			
Diametro, numero bracci, pas	sso medi	o, inclina	zione, ar	ea resistente e rapporto di arma	itura :	
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	Swi			
	[-]	[mm]	[cm]			
staffe/molle:	6	8	7,5	A _s	v1 =	3,02 cm ²
tralicci	6	6	15	A _s	w2 =	1,70 cm ²
				A _s	sw =	4,71 cm ²
		V_{Ro}	$_{\rm ed} = 0.9$	$d \cdot b_w \cdot f'_{cd} \cdot \alpha_c \cdot ctg\theta / (1 + ctg^2 \theta)$	9) =	7450,1 kN
			7	$V_{\rm Rsd} = 0.9 \cdot d \cdot (A_{\rm sw}/s) \cdot f_{\rm vd} \cdot {\rm ctg}$	$\theta = \theta$	1814,5 kN
				$V_{\rm I}$	Rd =	1814,5 <i>kN</i>
					sd =	1105,6 kN
	•		•		ls =	60,93%

Sezione di testa x = 1,8	2,6	fase 1			
altezza utile				d	1000 mm
base equivalente				bw	620 mm
Armature resistenti per le	verifiche	a taglio	:		
Diametro, numero bracci, pas	sso medi	o, inclina	zione, ai	rea resistente e rapporto di armatura :	
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	S _{wi}		
	[-]	[mm]	[cm]		
staffe/molle:	6	8	7,5	A _{sw1} =	3,02 cm ²
tralicci	6	6	15	A _{sw2} =	1,70 cm ²
				A _{sw} =	4,71 cm ²
		V_{Ro}	$_{\rm cd} = 0.9$	$d \cdot b_w \cdot f'_{cd} \cdot \alpha_c \cdot ctg\theta/(1+ctg^2\theta) =$	3608,6 kN
			7	$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{vd} \cdot ctg\theta =$	1814,5 <i>kN</i>
				•	
				V_{Rd} =	1814,5 <i>kN</i>
				V _{Sd} =	859,8 kN
				ls =	47,39%

Sezione di testa x = 270cm (200 fase 0)

altezza utile d =	1000 mm
base equivalente $b_w =$	620 mm
$f_{ctd} =$	1,79 MPa
$N_p =$	606818 daN
A _c =	5571 cm ²
$\sigma_{\rm cp} = N_{\rm p} / A_{\rm c} =$	10,89 <i>MPa</i>
$\sigma_{cp} = N_p / A_c = V_{Rd} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = V_{Rd} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd}^2)^{1/2} = 0.7 \cdot d \cdot $	2214,3 kN
V_{Sd} =	1569,9 <i>kN</i>
ls =	70,90%

Verifiche allo S.L.U. armatura all'appoggio

Si verifica lo stato tensionale dell'armatura longitudinale inferiore all'appoggio che garantisce il funzionamento del modello a traliccio in quella zona del manufatto, soggetta alla forza concentrata rappresentata dalla reazione dell'appoggio.

La verifica viene eseguita nelle ipotesi che lo sforzo longitudinale inferiore sia pari al taglio e che tale sforzo sia mitigato dalla presenza dello sforzo di compressione longitudinale esercitato dai trefoli attivi (non inguainati).

Per valutare la compressione data dai trefoli si ipotizza una legge lineare di trasferimento del carico dai trefoli al calcestruzzo per una lunghezza di 75 cm a partire dalla testata della trave, per cui all'appoggio la precompressione è ancora molto bassa. Si adotta prudenzialmente un coefficiente riduttivo per tale compressione pari a 0.7.

Verifiche allo S.L.U. armatura all'appoggio

verificile allo 3.L.O. almatui	ia aii ap	poggio		
Taglio totale di calcolo			V _{Ed} =	1208,8 <i>kN</i>
Numero di trefoli attivi	24]	Tensione finale trefoli = Compressione totale =	1170 <i>MPa</i> 619,03 kN < V _{Ed}
L'armatura longitudinale	n _i	Фі		-
	[-]	[mm]		
si predispongono ad testata	10	24	A _s =	45,24 cm ²
			$V_{Rd} = A_s x f_{yd} =$	1770,2 kN
		·	ls =	68,28%

Progetto Esecutivo

4.5.2.4 Verifiche SLE – verifica delle tensioni

Tensioni iniziali nel calcestruzzo

$$\sigma_c < 0.70 f_{cki}$$

essendo f_{ckj} la resistenza caratteristica del calcestruzzo all'atto del tiro.

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:

 $\sigma_c < 0.60 \; f_{ck}$ - per combinazione caratteristica (rara)

 $\sigma_c < 0{,}45~f_{ck}$ - per combinazione quasi permanente.

Nella zona di ancoraggio delle armature si possono tollerare compressioni locali σ_c prodotte dagli apparecchi di ancoraggio pari a: $\sigma_c < 0.90 \; f_{ckj}$.

Tensioni limite per gli acciai da precompressione

$$\sigma_{spi} < 0.90 \; f_{p(0,1)k} \qquad \qquad \sigma_{spi} < 0.80 \; f_{ptk} \; \text{- per armatura pre-tesa.}$$

Progetto Esecutivo

Verifiche SLE – stato di tensione sezione di mezzeria

geometria della trav	geometria della trave di solo calcestruzzo							
Altezza lastra Ht = 80 cm								
Larghezza totale	b =	250	cm					
Sezione lastra	Ac =	5671	cmq					
Baricentro da intrad.	Ygc =	28,3	cm					
Momento di inerzia	Jc =	3786684	cm ⁴					

sezione lastra omog	eneizzata		
Altezza lastra	Ht =	80	cm
Sezione ideale lastra	Ac' =	5870	cmq
Baricentro da intrad.	Ygc' =	27,8	cmq
Momento di inerzia id.	Jc' =	3828823	cm^4
Modulo resistenza sup	Ws' =	73389	cm/3
Modulo resistenza inf.	Wi' =	137587	cm/3

sezione omogeneizz	ata comple	eta del getto	di soletta
E(getto)/E(lastra)	n" =	0,95	
Altezza lastra	Ht=	80	cm
Spessore soletta	Hs =	20	cm
Sezione ideale totale	Ac" =	11576	cmq
Baricentro da intrad.	Ygc" =	56,2	cm

precompressione				
Tensione trefoli a tem	po infinito:	σspf =	1170	Мра
Sezione trefoli	24	da 0.6")	33,4	cmq
Baricentro da intrados	SO SO		13,5	cmq
precompressione				
Tensione iniziale di te	satura	σspt =	1440	Мра
Perdita di tensione al	martinetto 3%	Δσspm =	43	Мра
Perdita per accorciam	ento elastico	Δσspe =	44	MPa
Tensione iniziale nei t	refoli	σspi =	1353	Мра
Sforzo iniziale di prec	omp.: N0 =	σspi x Ai =	4514	kN
momento in. di precoi	mp.: $M0 = N0 \times ($	Yp-Yt') =	64682	kNcm

Cadute di	tensione				
Fluage			2 x Δσspe =	87	Мра
Ritiro εr =	0,00025		εr x Ep =	50	Мра
Rilassame	nto (2.8+3x	0.046 σspi =	62	Мра	
Rilassame	nto ridotto	Ril x (1-2.5x(Flu+F	Rit)/ospi) =	46	MPa
Tensione fi	nale nei tre	foli	σspf =	1170	MPa

essore soletta	Hs =	20	cm				
zione ideale totale	Ac" =	11576	cmq		suddivisione delle c	adute di tensione nelle varie	fasi
ricentro da intrad.	Ygc" =	56,2	cm	Мра	al taglio dei trefoli	al getto della soletta	a tempo infinito
mento di inerzia tot	Jc" =	14278385	cm ⁴	Fluage	0	33%	67%
dulo resistenza sol.	Wss" =	342952	cm^3	Rilassam.	40%	30%	30%
odulo resistenza sup	Ws" =	600265	cm^3	Ritiro	25%	25%	50%
odulo resistenza inf.	Wi" =	254004	cm^3	perdite	31	55	97

Distanz	a della sezior	ne di verif	ica dalla sezior	ne di app	oggio	x =	658 cn	n	
fase 0	[Mpa]	N	М	σss	σs	бі	Ac' =	5870	cmq
peso pro	prio	0	2662960,892		3,63	-1,94	Ws'=	73389	cm^3
precomp	ressione	451428	-6468216		-1,12	12,39	Wi' =	137587	cm^3
caduta d	di tensione	-10371	148598		0,03	-0,28			
totale fa	ase 0	441057	-3656657		2,53	10,17	•		
fase 1	[Mpa]	N	М	σSS	σs	σi			
getto int	egrativo	0	2501713,758		3,41	-1,82			
caduta d	di tensione	-18420	263931		0,05	-0,51			
totale fa	ase 0+1	422637	-891013		5,99	7,85	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	11576	cmq
carico p	ermanente	0	1054100	0,31	0,18	-0,41	Wss" =	342952	cm^3
carichi n	nobili	0	14383800	4,19	2,40	-5,66	Ws" =	600265	cm^3
totale fa	ase 0+1+2	422637	14546887	4,50	8,56	1,77	Wi" =	254004	cm^3
fase 3	[Mpa]	N	М	σss	σs	бі			
caduta d	di tensione	-32481	1387349	0,12	-0,05	-0,83			
totale fa	ase 0+1+2+3	390156	15934236	4,63	8,51	0,94	·		

La sezione è sempre compressa σ lastra $< 0.6 f_{ck} = 27.39 MPa$

 $\sigma \ lastra < 0.6 \ f_{ck} = 27.39 \ MPa \qquad \qquad \sigma \ getto \ in \ opera < 0.6 \ f_{ck} = 22.41 \ MPa$

Verifiche SLE – stato di tensione sezione a 4.2m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempo	infinito:	σspf =	1170	Mpa
Larghezza totale	b =	250	cm		Sezione trefoli	24	da 0.6")	33,4	cmq
Sezione lastra	Ac =	5671	cmq		Baricentro da intradoss	0		13,5	cmq
Baricentro da intrad.	Ygc =	28,3	cm						
Momento di inerzia	Jc =	3786684	cm^4		Tensione iniziale di tes	atura	σspt =	1440	Mpa
					Perdita di tensione al m	artinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciame	nto elastico	Δσspe =	44	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tre	foli	σspi =	1353	Mpa
Sezione ideale lastra	Ac' =	5870	cmq		Sforzo iniziale di precoi	np.: N0 =	σspi x Ai =	4514	kN
Baricentro da intrad.	Ygc' =	27,8	cmq		momento in. di precom	o.: $M0 = N0$	((Yp-Yt') =	64682	kNcm
Momento di inerzia id.	Jc' =	3828823	cm^4						
Modulo resistenza sup	Ws' =	73389	cm/3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	137587	cm/3		Fluage		2 x Δσspe =	87	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2	2.8-2.2))%σspi	0.046 σspi =	62	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto F	il x (1-2.5x(Flu-	+Rit)/σspi) =	46	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefo	li	σspf =	1170	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	11576	cmq		suddivisione delle cadu	te di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	56,2	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	14278385	cm/4	Fluage	0	339	%	6	37%
Modulo resistenza sol.	Wss" =	342952	cm^3	Rilassam.	40%	309	%	3	30%
Modulo resistenza sup	Ws" =	600265	cm^3	Ritiro	25%	259	%	5	50%
Modulo resistenza inf.	Wi" =	254004	cm^3	perdite	31	55	5		97

Distanza della sezio	ne di verif	ica dalla sezior	ne di app	oggio	x =	420 cn	n	
fase 0 [Mpa]	N	М	σSS	σs	σi	Ac' =	5870	cmq
peso proprio	0	2212571,618		3,01	-1,61	Ws'=	73389	cm^3
precompressione	451428	-6468216		-1,12	12,39	Wi' =	137587	cm^3
caduta di tensione	-10371	148598		0,03	-0,28			
totale fase 0	441057	-4107047		1,92	10,50	•		
fase 1 [Mpa]	N	М	σSS	σs	σi			
getto integrativo	0	2078596,375		2,83	-1,51			
caduta di tensione	-18420	263931		0,05	-0,51			
totale fase 0+1	422637	-1764520		4,80	8,48	•		
fase 2 [Mpa]	N	М	σss	σs	σi	Ac" =	11576	cmq
carico permanente	0	835100	0,24	0,14	-0,33	Wss" =	342952	cm^3
carichi mobili	0	11320100	3,30	1,89	-4,46	Ws" =	600265	cm^3
totale fase 0+1+2	422637	10390680	3,54	6,82	3,70	Wi" =	254004	cm^3
fase 3 [Mpa]	N	М	σss	σs	σi			
caduta di tensione	-32481	1387349	0,12	-0,05	-0,83			
totale fase 0+1+2+3	390156	11778030	3,67	6,77	2,87	•		

 $\label{eq:lambda} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

Verifiche SLE – stato di tensione sezione a 2.2m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempo	infinito:	σspf =	1170	Mpa
Larghezza totale	b =	250	cm		Sezione trefoli	24	da 0.6")	33,4	cmq
Sezione lastra	Ac =	5671	cmq		Baricentro da intradoss	0		13,5	cmq
Baricentro da intrad.	Ygc =	28,3	cm						
Momento di inerzia	Jc =	3786684	cm^4		Tensione iniziale di tes	atura	σspt =	1440	Mpa
					Perdita di tensione al m	artinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciame	nto elastico	Δσspe =	44	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tre	foli	σspi =	1353	Mpa
Sezione ideale lastra	Ac' =	5870	cmq		Sforzo iniziale di precoi	np.: N0 =	σspi x Ai =	4514	kN
Baricentro da intrad.	Ygc' =	27,8	cmq		momento in. di precom	o.: $M0 = N0$	((Yp-Yt') =	64682	kNcm
Momento di inerzia id.	Jc' =	3828823	cm^4						
Modulo resistenza sup	Ws' =	73389	cm/3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	137587	cm/3		Fluage		2 x Δσspe =	87	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2	2.8-2.2))%σspi	0.046 σspi =	62	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto F	il x (1-2.5x(Flu-	+Rit)/σspi) =	46	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefo	li	σspf =	1170	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	11576	cmq		suddivisione delle cadu	te di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	56,2	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	14278385	cm/4	Fluage	0	339	%	6	37%
Modulo resistenza sol.	Wss" =	342952	cm^3	Rilassam.	40%	309	%	3	30%
Modulo resistenza sup	Ws" =	600265	cm^3	Ritiro	25%	259	%	5	50%
Modulo resistenza inf.	Wi" =	254004	cm^3	perdite	31	55	5		97

Distanza della	sezione di veri	fica dalla sezior	ne di app	oggio	x =	220 cn	n	
fase 0 [Mpa] N	М	σss	σs	σi	Ac' =	5870	cmq
peso proprio	0	1134631,638		1,55	-0,82	Ws' =	73389	cm^3
precompressione	e 451428	-6468216		-1,12	12,39	Wi' =	137587	cm^3
caduta di tensior	ne -10371	148598		0,03	-0,28			
totale fase 0	441057	-5184987		0,45	11,28	-		
fase 1 [Mpa] N	М	σss	σs	σi			
getto integrativo	0	1065927,625		1,45	-0,77			
caduta di tensior	ne -18420	263931		0,05	-0,51			
totale fase 0+1	422637	-3855128		1,95	10,00	-		
fase 2 [Mpa] N	М	σss	σs	σi	Ac" =	11576	cmq
carico permanen	te 0	330500	0,10	0,06	-0,13	Wss" =	342952	cm^3
carichi mobili	0	4318500	1,26	0,72	-1,70	Ws" =	600265	cm^3
totale fase 0+1-	+2 422637	793872	1,36	2,72	8,17	Wi" =	254004	cm^3
fase 3 [Mpa] N	М	σss	σs	σi			
caduta di tensior	ne -32481	1387349	0,12	-0,05	-0,83	_		
totale fase 0+1-	+2+3 390156	2181221	1,48	2,67	7,35	-		

 $\label{eq:lambda} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

Verifiche SLE – stato di tensione sezione a 1.5m dall'asse appoggio

geometria della trave Altezza lastra	u. 5515 5u Ht =	80	cm		precompressione Tensione trefoli a tempo inf	inito:	σspf =	1170	Мра
Larghezza totale	b =	250	cm		Sezione trefoli	12	da 0.6")	16.7	cma
Sezione lastra	Ac =	9530	•		Baricentro da intradosso	12	ua 0.6)	19,3	
Baricentro da intrad.	Yac =	32.0	cmq		Bancentro da mitradosso			19,3	cmq
	3	- ,-	cm		Tanaiana iniciala di tanatun	_		4.440	M
Momento di inerzia	Jc =	4849973	cm ⁴		Tensione iniziale di tesatur		σspt =	1440	Мра
					Perdita di tensione al marti		Δσspm =	43	Мра
sezione lastra omoger					Perdita per accorciamento	elastico	∆ospe =	44	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei trefoli		σspi =	1353	Мра
Sezione ideale lastra	Ac' =	9630	cmq		Sforzo iniziale di precomp.:		σspi x Ai =	2257	kN
Baricentro da intrad.	Ygc' =	31,9	cmq		momento in. di precomp.:	M0 = N0 x	(Yp-Yt') =	28326	kNcm
Momento di inerzia id.	Jc' =	4865753	cm^4						
Modulo resistenza sup	Ws'=	101123	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	152613	cm^3		Fluage		2 x Δσspe =	87	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizzat	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-2	2.2))%σspi	0.046 σspi =	62	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto Ril x	(1-2.5x(Flu+	-Rit)/σspi) =	46	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefoli		σspf =	1170	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	18171	cmq		suddivisione delle cadute d	i tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	53,1	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	16361279	cm ⁴	Fluage	0	33%			67%
Modulo resistenza sol.	Wss" =	366735	cm^3	Rilassam.	40%	30%	6	3	30%
Modulo resistenza sup	Ws" =	746393	cm^3	Ritiro	25%	25%	6	5	50%
Modulo resistenza inf.	Wi" =	308241	cm^3	perdite	31	55	i		97

Distanz	a della sezior	ne di verif	ica dalla sezior	ne di app	oggio	x =	150 cn	n	
fase 0	[Mpa]	N	М	σSS	σs	σі	Ac' =	9630	cmq
peso pr	oprio	0	606441,048		0,60	-0,40	Ws'=	101123	cm^3
precom	oressione	225714	-2832625		-0,46	4,20	Wi' =	152613	cm^3
caduta	di tensione	-5185	65075		0,01	-0,10			
totale f	ase 0	220528	-2161109		0,15	3,71	•		
fase 1	[Mpa]	N	М	σss	σs	σi			
getto in	tegrativo	0	569719,9375		0,56	-0,37			
caduta	di tensione	-9210	115583		0,02	-0,17			
totale f	ase 0+1	211318	-1475806		0,74	3,16			
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	18171	cmq
carico p	ermanente	0	82000	0,02	0,01	-0,03	Wss" =	366735	cm^3
carichi ı	mobili	0	898500	0,24	0,12	-0,29	Ws" =	746393	cm^3
totale f	ase 0+1+2	211318	-495306	0,27	0,87	2,84	Wi" =	308241	cm^3
fase 3	[Mpa]	N	М	σss	σs	σi			
caduta	di tensione	-16240	548048	0,06	-0,02	-0,27			
totale f	ase 0+1+2+3	195078	52742	0,33	0,85	2,58			

$$\label{eq:lambda} \begin{split} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa \end{split}$$

 σ getto in opera $< 0.6 \; f_{ck} = 22.41 \; MPa$

Verifiche SLE – stato di tensione sezione a 1.0m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	45	cm		Tensione trefoli a tempo i	nfinito:	σspf =	1170	Mpa
Larghezza totale	b =	250	cm		Sezione trefoli	12	da 0.6")	16,7	cmq
Sezione lastra	Ac =	6548	cmq		Baricentro da intradosso			19,3	cmq
Baricentro da intrad.	Ygc =	19,3	cm						
Momento di inerzia	Jc =	1227101	cm^4		Tensione iniziale di tesatu	ıra	σspt =	1440	Мра
					Perdita di tensione al martinetto 3% Δσspm			43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciament	o elastico	$\Delta \sigma spe =$	44	MPa
Altezza lastra	Ht =	45	cm		Tensione iniziale nei trefo	li	σspi =	1353	Мра
Sezione ideale lastra	Ac' =	6648	cmq		Sforzo iniziale di precomp	o.: N0 =	σspi x Ai =	2257	kN
Baricentro da intrad.	Ygc' =	19,3	cmq		momento in. di precomp.:	M0 = N0 x	(Yp-Yt') =	-143	kNcm
Momento di inerzia id.	Jc' =	1227101	cm^4						
Modulo resistenza sup	Ws'=	47692	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	63679	cm/3		Fluage		2 x Δσspe =	87	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8	3-2.2))%σspi	0.046 σspi =	62	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto Ril	x (1-2.5x(Flu+	-Rit)/σspi) =	46	MPa
Altezza lastra	Ht=	45	cm		Tensione finale nei trefoli		σspf =	1170	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	15661	cmq		suddivisione delle cadute	di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	52,5	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	infinito
Momento di inerzia tot	Jc" =	16272330	cm ⁴	Fluage	0	33%	%	6	67%
Modulo resistenza sol.	Wss" =	360281	cm/3	Rilassam.	40%	30%	%	3	30%
Modulo resistenza sup	Ws" =	-2170022	cm^3	Ritiro	25%	25%	%	5	50%
Modulo resistenza inf.	Wi" =	309957	cm^3	perdite	31	55	5		97

Distanza	a della sezior	ne di verifi	ica dalla sezior	ne di app	oggio	x =	100 cr	n	
fase 0	[Mpa]	N	М	σSS	σs	σi	Ac' =	6648	cmq
peso pro	prio	0	181253,6114		0,38	-0,28	Ws' =	47692	cm^3
precomp	ressione	225714	14281		3,43	3,37	Wi' =	63679	cm^3
caduta c	di tensione	-5185	-328		-0,08	-0,08			
totale fa	ase 0	220528	195207		3,73	3,01	•		
fase 1	[Mpa]	N	М	σss	σs	σi			
getto int	egrativo	0	170278,375		0,36	-0,27			
caduta c	di tensione	-9210	-583		-0,14	-0,14			
totale fa	ase 0+1	211318	364902		3,94	2,61	•		
fase 2	[Mpa]	N	М	σSS	σs	σі	Ac" =	15661	cmq
carico pe	ermanente	0	-110900	-0,03	0,01	0,04	Wss" =	360281	cm/3
carichi n	nobili	0	-1751300	-0,49	0,08	0,57	Ws" =	-2170022	cm/3
totale fa	ase 0+1+2	211318	-1497298	-0,52	4,03	3,21	Wi" =	309957	cm^3
fase 3	[Mpa]	N	М	σss	σs	σi			
caduta c	di tensione	-16240	538615	0,05	-0,13	-0,28	_		
totale fa	ase 0+1+2+3	195078	-958683	-0,47	3,90	2,93			

 $\label{eq:lambda} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

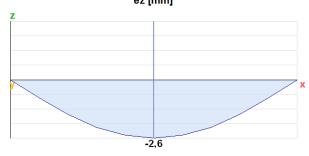
Verifiche SLE – stato di tensione sezione di appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	45	cm		Tensione trefoli a temp	oo infinito:	σspf =	1170	Мра
Larghezza totale	b =	250	cm		Sezione trefoli	12	da 0.6")	16,7	cmq
Sezione lastra	Ac =	11250	cmq		Baricentro da intrados	so		19,3	cmq
Baricentro da intrad.	Ygc =	22,5	cm						
Momento di inerzia	Jc =	1898438	cm/4		Tensione iniziale di tes	satura	σspt =	1440	Мра
					Perdita di tensione al	martinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciam	ento elastico	Δσspe =	44	MPa
Altezza lastra	Ht =	45	cm		Tensione iniziale nei tr	efoli	σspi =	1353	Мра
Sezione ideale lastra	Ac' =	11349	cmq		Sforzo iniziale di preco	omp.: N0 =	σspi x Ai =	2257	kN
Baricentro da intrad.	Ygc' =	22,5	cmq		momento in. di precon	np.: $M0 = N0 x$	(Yp-Yt') =	7085	kNcm
Momento di inerzia id.	Jc' =	1899423	cm ⁴						
Modulo resistenza sup	Ws'=	84315	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	84523	cm^3		Fluage		2 x Δσspe =	87	Мра
					Ritiro $\epsilon r = 0,00025$		εrx Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x	(2.8-2.2))%σspi	0.046 ospi =	62	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto	Ril x (1-2.5x(Flu-	+Rit)/σspi) =	46	MPa
Altezza lastra	Ht=	45	cm		Tensione finale nei tref	foli	σspf =	1170	MPa
Spessore soletta	Hs =	20	cm				•		
Sezione ideale totale	Ac" =	24423	cmq		suddivisione delle cad	ute di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	49,3	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	infinito
Momento di inerzia tot	Jc" =	20400232	cm ⁴	Fluage		339	%		67%
Modulo resistenza sol.	Wss" =	422785	cm^3	Rilassam.	40%	309	%	3	30%
Modulo resistenza sup	Ws" =	-4797096	cm^3	Ritiro	25%	259	%	5	50%
Modulo resistenza inf.	Wi" =	414196	cm^3	perdite	31	55	5		97

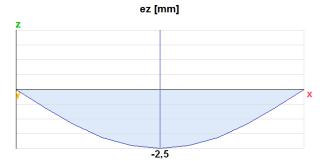
Distanza	distanza della sezione di verifica dalla sezione di appoggio			oggio	x =	80 cı	n		
fase 0	[Mpa]	N	М	σss	σs	σi	Ac' =	11349	cmq
peso prop	rio	0	0		0,00	0,00	Ws' =	84315	cm^3
precompre	essione	225714	-708516		1,15	2,83	Wi' =	84523	cm^3
caduta di	tensione	-5185	16277		-0,03	-0,06			
totale fas	se 0	220528	-692239		1,12	2,76	<u>-</u>		
fase 1	[Mpa]	N	М	σss	σs	σi			
getto integ	grativo	0	0		0,00	0,00			
caduta di	tensione	-9210	28910		-0,05	-0,12			
totale fas	se 0+1	211318	-663328		1,08	2,65	<u>-</u>		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	24423	cmq
carico per	manente	0	-244500	-0,06	0,01	0,06	Wss" =	422785	cm^3
carichi mo	obili	0	-3578500	-0,85	0,07	0,86	Ws" =	-4797096	cm^3
totale fas	se 0+1+2	211318	-4486328	-0,90	1,15	3,57	Wi" =	414196	cm^3
fase 3	[Mpa]	N	М	σss	σs	σi			
caduta di	tensione	-16240	485898	0,05	-0,08	-0,18			
totale fas	se 0+1+2+3	195078	-4000430	-0,86	1,08	3,39	<u>-</u> '		

La sezione è sempre compressa

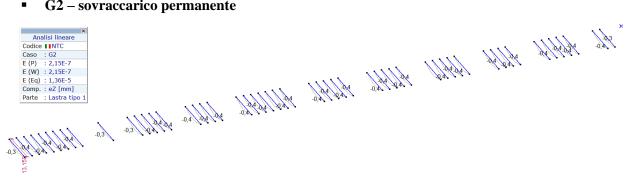
 $\sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa \qquad \qquad \sigma \; getto \; in \; opera < 0.6 \; f_{ck} = 22.41 \; MPa \label{eq:sigma}$


4.5.2.4.1 Verifiche SLE – fessurazione

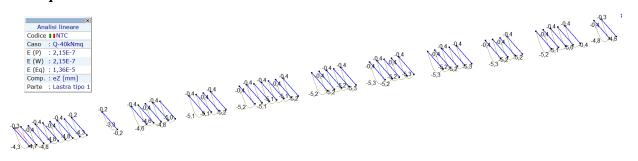
Le sezioni di calcestruzzo delle lastre risultano sempre compresse; non si ha mai apertura delle fessure.


4.5.2.5 Verifica delle deformazioni

Calcolo delle frecce nelle diverse ipotesi


G1 – peso proprio lastra ez [mm]

G1 – peso getto di completamento soletta



G2 – sovraccarico permanente

[I], > 4 parti, Lineare, G2, eZ, Diagramma

qi - sovraccarico variabile

[I], > Lineare, Inviluppo (Inviluppo q1), eZ, Diagramma

• εI – Precompressione

 $ez = Mp l^2 / [4 \cdot E \cdot I]$

Progetto Esecutivo

24 i	n° trefoli 0,6"	Ec	36416,1	N/mm ²
-------------	-----------------	----	---------	-------------------

1,39 area trefolo cm²

27,83 Ygci [cm] da intradosso - baricentro sezione iniziale

13,50 Ygi [cm] da intradosso - baricentro trefoli

56,21 Ygt [cm] da intradosso - baricentro sezione finale

3828822,88 Jci [cm⁴] - Momento di inerzia iniziale - sezione lastra omogeneizzata

14278385,43 Jct [cm4] - Momento di inerzia finale - sezione omogeneizzata completa del getto di soletta

T.	L	Tensioni	Npi	Mpi	l i	$\mathbf{e}_{\mathbf{z},\mathbf{p}}$	
Trave m		Мра		kN	kNm	cm^4	mm
		tensione iniziale nei trefoli	1353,2	4514,3	646,8	3828822,9	-10,03
A1	13,15	perdite a tempo iniziale:	-31,1	-103,7	-14,9	3828822,9	0,46
711	13,13	perdite al getto della soletta:	-55,2	-184,2	-26,4	3828822,9	0,82
		perdite a tempo finale -9'		-324,8	-138,7	14278385,4	1,15
						e _{z,p} finale	-7,59

Verifica delle deformazioni nel SLE_R

Si conduce una verifica allo Stato Limite di Servizio per la deformazione della campata di riva, più sollecitata. Per la precompressione, per le azioni permanenti e per le azioni variabili, si assumono nelle combinazioni di carico allo stato limite di deformazione i coefficienti $\gamma p = \gamma g = \gamma q = 1$.

Fase 0: rilascio della precompressione

Deformazione in mezzeria della lastra per peso proprio e precompressione: η0

Fase 1: getto della soletta integrativa

Deformazione in mezzeria della lastra per peso proprio, precompressione + getto: η1

Fase 2: carichi permanenti

Deformazione in mezzeria: $\eta 2$

Fase 3: carichi mobili massimi

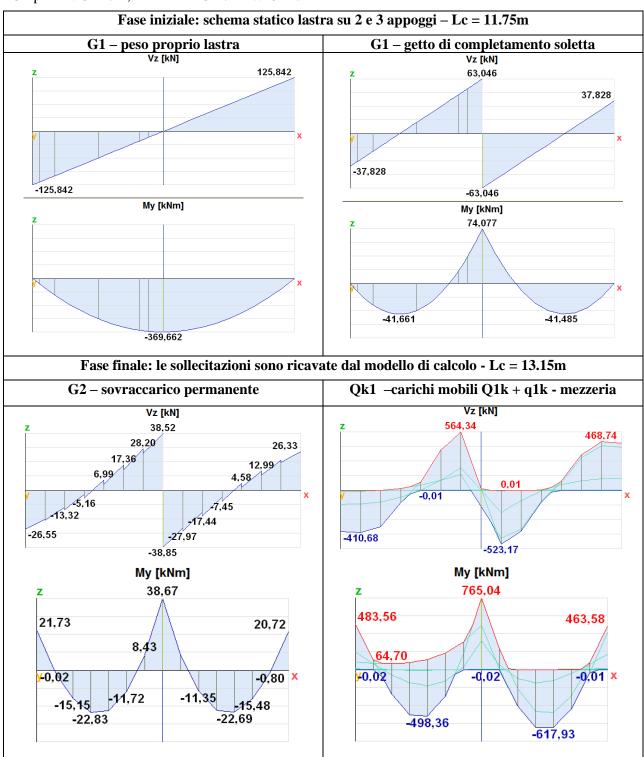
Deformazione totale massima in mezzeria: η3

Tabella

Ipotesi Trave	G1-1	ez,p	G1-2	G2	Q1
	[mm]	[mm]	[mm]	[mm]	[mm]
A1	2,6	-7,595	2,5	0,4	5,3

η0	η1	η2	η3		
[mm]	[mm]	[mm]	[mm]		
-7,0	-3,6	-2,1	3,2		

MAX SLE	L/ez(Q1)
[mm]	[-]
3,2	2481



4.5.3 LASTRE PRECOMPRESSE – LASTRA TIPO 4

4.5.3.1 Sollecitazioni di calcolo per ciascun carico

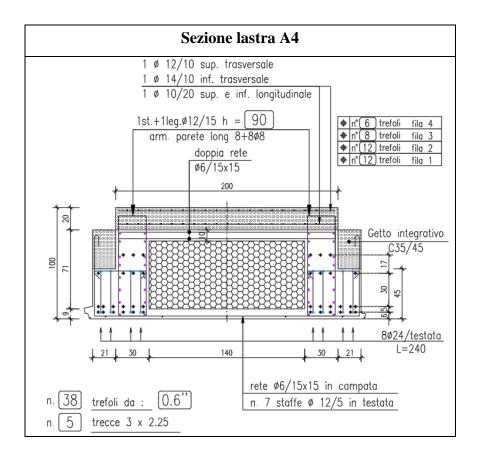
L'analisi è condotta sulla lastra da 2.50m di larghezza.

G1-p = 21.43 kN/m; G1-s = 17.18 kN/m

• $\varepsilon 1$ – Precompressione

Tipo acciaio armonico: trefolo 0.6" stabilizzato.

Numero trefoli : 38


I trefoli vengono sistemati su 4 livelli:

- n° 12 trefoli a 60 mm dall'intradosso soletta;
- n° 12 trefoli a 110 mm dall'intradosso soletta;
- n° 8 trefoli a 410 mm dall'intradosso soletta;
- n° 6 trefoli a 575 mm dall'intradosso soletta;

La tensione nei trefoli a tempo infinito è di 1141.6 Mpa.

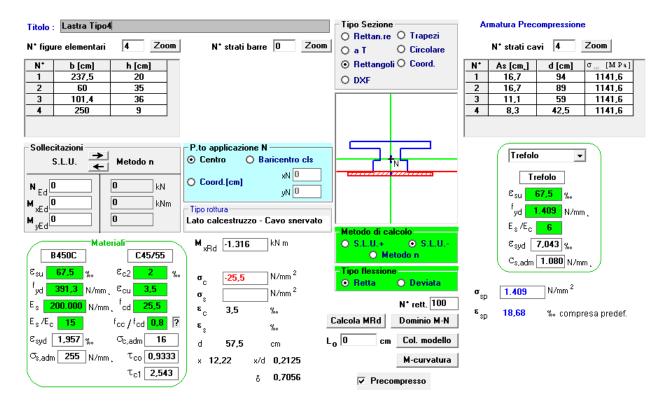
$$Np = 1141.6 \times 139 \times 38 = 6030131 daN$$

$$\mathbf{Mp} = - \text{Np x } (\text{Ygci-Ygi}) = -6030131 \text{ x } (0,328-0,324) = -24120,05 \text{ daNm}$$

4.5.3.2 Verifiche allo S.L.U.

La verifica viene eseguita sulla sezione equivalente a rettangoli sovrapposti, costituita dal sistema lastra+soletta. Le dimensioni della soletta vengono ridotte del coefficiente di omogeneizzazione $0.95: 250 \times 0.92 = 237.5 \text{ cm}$. (Ec,soletta/Ec,lastra)

 $M_{Ed}\text{:}\quad \gamma_{G1}M_{G1}+\gamma_{G2}M_{G2}+\gamma_{Q}M_{Q}$

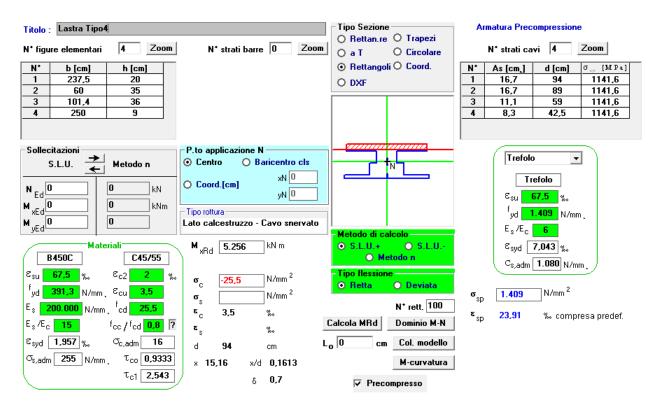

con: $\gamma_{G1}=1,3$

 $\gamma_{\rm G2} = 1,5$

 $\gamma_Q = 1,5$

- sezione appoggio centrale

d	G1-1	G1-2	G2	q1	SLU
m	kNm	kNm	kNm	kNm	kNm
Mezzeria	369,66	-74,10	-38,67	-765,04	-821,3



M_{Rd} = 1316 kNm > 821.3 kNm => verifica soddisfatta

- sezione in mezzeria semicampata

d	G1-1	G1-2	G2	q1	SLU
m	kNm	kNm	kNm	kNm	kNm
1/4	179,09	41,66	22,83	617,93	1248,1

M_{Rd} = 5256 kNm > 1248.1 kNm => verifica soddisfatta

In tutte le verifiche sono indicate e combinate le azioni manuale facendo vedere il carico di calcolo massimo

4.5.3.3 Verifiche allo S.L.U. per taglio e torsione

Taglio sollecitante ultimo:

 $V_{Ed}\text{:}\quad \gamma_{G1}V_{G1}+\gamma_{G2}V_{G2}+\gamma_{Q}V_{Q}$

con: $\gamma_{G1}=1,3$ $\gamma_{G2}=1,5$ $\gamma_{Q}=1,5$

Il momento torcente, dovuto solo a disuniformità dei carichi permanenti portati e ad eventuale presenza di carichi mobili, rappresenta una sollecitazione minore e non essenziale all'equilibrio della struttura; viene pertanto trascurata.

d F1	d F2	G1-p	G1-g	G2	Qk	SLU
r	n	kN	kN	kN	kN	kN
0	0,7	125,84	37,83	6,18	408,96	835,5
0,5	1,2	115,13	29,24	3,21	381,57	764,9
1,8	2,5	87,29	6,92	7,38	129,42	327,7
2	2,7	83,00	3,50	9,44	75,77	240,3

			1
Caratteristiche Calcestruzzo:			
Classe di resistenza :			C45/55
Resistenza caratt.:	R_{ck}	=	55 N/mm ²
Coefficienti di sicurezza e parametri di riduzione della			
Coeff. di sicurezza :	γc	=	1,50
Coeff. di sic. addizionale per compressione centrata:	η_{cc}	=	1,25
Coeff. riduttivo per rottura a termine :	β	=	0,85
Resistenze di calcolo:			
Res. caratt. a compressione:	$f_{ck} = 0.83 \cdot R_{ck}$	=	45,65 N/mm ²
Res. a compressione di calcolo:	$f_{cd} = \beta \cdot f_{ck} / \gamma_c$	=	25,87 N/mm ²
Res. media. a compressione:	$f_{cm} = f_{ck} + 8N/mm^2$	=	53,65 N/mm ²
Res. a trazione media di progetto:	$f_{ctm} = 0.30 f_{ck}^{2/3}$	=	3,83 N/mm²
Res. a trazione caratt. di progetto:	$f_{ctk} = 0.70 f_{ctm}$	=	2,68 N/mm ²
Res. tangenziale caratt. di aderenza di progetto:	$f_{bk} = 2,25f_{ctk}$	=	6,04 N/mm ²
Res. a trazione di calcolo:	$f_{ctd} = f_{ctk}/\gamma_c$	=	1,79 N/mm²
Acciaio per cemento armato:			
Classe dell'acciaio :			B450C
Coeff. di sicurezza :	γs	=	1,15
Resistenze di calcolo:			
Tensione carat. di snervamento:	f_{yk}	=	450 N/mm ²
Resistenza di calcolo:	$f_{yd} = f_{yk} / \gamma_s$	=	391,3 N/mm ²

Sezione di testa x = 0cm (precompressione non ancora attiva, cls in opera)

altezza utile					d	1000 mm	
base equivalente	pase equivalente bw						
Armature resistenti per le v	Armature resistenti per le verifiche a taglio :						
Diametro, numero bracci, pas	so medi	o, inclina	zione, ar	ea resistente e rapporto di arma	atura :		
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	Swi				
	[-]	[mm]	[cm]				
staffe/molle:	6	8	7,5	A_s	w1 =	3,02 cm ²	
tralicci	6	6	15	As	w2 =	1,70 cm ²	
				A	sw =	4,71 cm ²	
		V_{Ro}	$_{\rm cd} = 0.9$	$d \cdot b_w \cdot f'_{cd} \cdot \alpha_c \cdot ctg\theta / (1 + ctg^2)$	θ) =	14550,9 <i>kN</i>	
			7	$V_{\rm Rsd} = 0.9 \cdot d \cdot (A_{\rm sw}/s) \cdot f_{\rm yd} \cdot {\rm ctg}$	gθ =	1814,5 <i>kN</i>	
	1814,5 <i>kN</i>						
				V	Sd =	835,5 kN	
					ls =	46,05%	

Sezione di testa x = 120cm (50 fase 1)

Sezione di testa x = 120cm (00 1000 1	,				
altezza utile				d		1000 mm
base equivalente				bw		1100 mm
Armature resistenti per le v	verifiche	a taglio	:			
Diametro, numero bracci, pas	sso medi	o, inclina	zione, ar	ea resistente e rapporto di armatu	ra :	
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	Swi			
	[-]	[mm]	[cm]			
staffe/molle:	6	8	7,5	A _{sw1}	=	3,02 cm ²
tralicci	6	6	15	A _{sw2}	=	1,70 cm ²
				A_{sw}	=	4,71 cm ²
		V_{R}	$_{cd} = 0.9$	$d \cdot b_{\rm w} \cdot f'_{\rm cd} \cdot \alpha_{\rm c} \cdot {\rm ctg}\theta / (1 + {\rm ctg}^2\theta)$	=	6402,4 kN
			7	$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} \cdot ctg\theta$	=	1814,5 <i>kN</i>
				$ m V_{Rd}$	=	1814,5 <i>kN</i>
·				V_{Sd}	=	835,5 <i>kN</i>
·				ls		46,05%

Sezione di testa x = 250cm (180 fase 0)

altezza utile				d	1000 mm
base equivalente				bw	1100 mm
Armature resistenti per le v					
Diametro, numero bracci, pas	so medi	o, inclinaz	zione, ar	ea resistente e rapporto di armatura :	
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	Swi		
	[-]	[mm]	[cm]		
staffe/molle:	6	8	7,5	A _{sw1} =	3,02 cm ²
tralicci	6	6	15	A _{sw2} =	1,70 cm ²
				A _{sw} =	4,71 cm ²
		V_{Ro}		$d \cdot b_w \cdot f'_{cd} \cdot \alpha_c \cdot ctg\theta/(1+ctg^2\theta) =$	6402,4 kN
			V	$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} \cdot ctg\theta =$	1814,5 <i>kN</i>
	1814,5 <i>kN</i>				
	•	•	•	V_{Sd} =	764,9 <i>kN</i>
				ls =	42,15%

Sezione di testa x = 270cm (200 fase 0)

altezza utile	d =	1000 mm
base equivalente	b _w =	1100 mm
	$f_{ctd} =$	1,79 MPa
	$N_p =$	602993 daN
	A _c =	8022 cm ²
	$\sigma_{cp}^{} = N_p^{} / A_c^{} =$	7,52 MPa
	$\sigma_{cp} = N_p / A_c = V_{Rd} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2}$	3365,3 kN
	V_{Sd} =	240,3 kN
	ls =	7,14%

Verifiche allo S.L.U. armatura all'appoggio

Si verifica lo stato tensionale dell'armatura longitudinale inferiore all'appoggio che garantisce il funzionamento del modello a traliccio in quella zona del manufatto, soggetta alla forza concentrata rappresentata dalla reazione dell'appoggio.

La verifica viene eseguita nelle ipotesi che lo sforzo longitudinale inferiore sia pari al taglio e che tale sforzo sia mitigato dalla presenza dello sforzo di compressione longitudinale esercitato dai trefoli attivi (non inguainati).

Per valutare la compressione data dai trefoli si ipotizza una legge lineare di trasferimento del carico dai trefoli al calcestruzzo per una lunghezza di 75 cm a partire dalla testata della trave, per cui all'appoggio la precompressione è ancora molto bassa. Si adotta prudenzialmente un coefficiente riduttivo per tale compressione pari a 0.7.

Verifiche allo S.L.U. armatura all'appoggio

verificile and 3.L.O. armatu	ia ali ap	Juggiu		
Taglio totale di calcolo			V _{Ed} =	835,5 kN
Numero di trefoli attivi	38]	Tensione finale trefoli =	1142 MPa
		-	Compressione totale =	956,75 kN
				< V _{Ed}
L'armatura longitudinale	n _i	Фі		
	[-]	[mm]		
si predispongono ad testata	8	24	A _s =	36,19 cm ²
			$V_{Rd} = A_s x f_{yd} =$	1416,2 <i>kN</i>
	•		ls =	59,00%

Progetto Esecutivo

4.5.3.4 Verifiche SLE – verifica delle tensioni

Tensioni iniziali nel calcestruzzo

$$\sigma_c < 0.70 f_{cki}$$

essendo f_{ckj} la resistenza caratteristica del calcestruzzo all'atto del tiro.

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:

 $\sigma_c < 0.60 \; f_{ck}$ - per combinazione caratteristica (rara)

 $\sigma_c < 0{,}45~f_{ck}$ - per combinazione quasi permanente.

Nella zona di ancoraggio delle armature si possono tollerare compressioni locali σ_c prodotte dagli apparecchi di ancoraggio pari a: $\sigma_c < 0.90 \; f_{ckj}$.

Tensioni limite per gli acciai da precompressione

$$\sigma_{spi} < 0.90 \; f_{p(0,1)k} \qquad \qquad \sigma_{spi} < 0.80 \; f_{ptk} \; \text{- per armatura pre-tesa.}$$

Progetto Esecutivo

Verifiche SLE – stato di tensione sezione di mezzeria

geometria della trav			
Altezza lastra	cm		
Larghezza totale	b =	160	cm
Sezione lastra	Ac =	7212	cmq
Baricentro da intrad.	Ygc =	32,8	cm
Momento di inerzia	Jc =	3749853	cm^4

sezione lastra omog			
Altezza lastra Ht =		80	cm
Sezione ideale lastra	Ac' =	7526	cmq
Baricentro da intrad.	Ygc' =	32,4	cmq
Momento di inerzia id.	Jc' =	3778549	cm^4
Modulo resistenza sup Ws' =		79443	cm/3
Modulo resistenza inf.	Wi' =	116489	cm/3

sezione omogeneizzata completa del getto di soletta							
E(getto)/E(lastra) n" = 0,95							
Altezza lastra	Ht=	80	cm				
Spessore soletta	Hs =	20	cm				
Sezione ideale totale	Ac" =	23395	cmq				
Baricentro da intrad.	Ygc" =	58,5	cm				

precompressione				
Tensione trefoli a tem	σspf =	1142	Мра	
Sezione trefoli	38	da 0.6")	52,8	cmq
Baricentro da intrados	Baricentro da intradosso			cmq
precompressione				
Tensione iniziale di te	Tensione iniziale di tesatura			Мра
Perdita di tensione al	martinetto 3%	Δσspm =	43	Мра
Perdita per accorciam	ento elastico	Δσspe =	54	MPa
Tensione iniziale nei t	σspi =	1343	Мра	
Sforzo iniziale di preci	σspi x Ai =	7094	kN	
momento in. di precor	mp.: $M0 = N0 x$ (Yp-Yt') =	66381	kNcm

Cadute di	tensione				
Fluage			2 x Δσspe =	108	Мра
Ritiro εr =	0,00025		εr x Ep =	50	Мра
Rilassame	nto (2.8+3x	0.046 σspi =	62	Мра	
Rilassame	nto ridotto	Rit)/ospi) =	44	MPa	
Tensione finale nei trefoli			σspf =	1142	MPa

pessore soletta	Hs =	20	cm				
ezione ideale totale	Ac" =	23395	cmq		suddivisione delle c	adute di tensione nelle varie	fasi
aricentro da intrad.	Ygc" =	58,5	cm	Мра	al taglio dei trefoli	al getto della soletta	a tempo infinito
Iomento di inerzia tot	Jc" =	15127820	cm ⁴	Fluage	0	33%	67%
lodulo resistenza sol.	Wss" =	383559	cm^3	Rilassam.	40%	30%	30%
lodulo resistenza sup	Ws" =	704266	cm^3	Ritiro	25%	25%	50%
lodulo resistenza inf.	Wi" =	258508	cm^3	perdite	30	61	110

Distanza della sezio	ne di verif	ica dalla sezior	ne di app	oggio	x =	658 cn	n	
fase 0 [Mpa]	N	М	σss	σs	σi	Ac' =	7526	cmq
peso proprio	0	3696900,422		4,65	-3,17	Ws'=	79443	cm^3
precompressione	709352	-6638138		1,07	15,12	Wi' =	116489	cm^3
caduta di tensione	-15823	148076		-0,02	-0,34			
totale fase 0	693528	-2793161		5,70	11,61	•		
fase 1 [Mpa]	N	М	σss	σs	σi			
getto integrativo	0	-742000		-0,93	0,64			
caduta di tensione	-32287	302147		-0,05	-0,69			
totale fase 0+1	661241	-3233014		4,72	11,56	•		
fase 2 [Mpa]	N	М	σss	σs	σi	Ac" =	23395	cmq
carico permanente	0	-386700	-0,10	-0,05	0,15	Wss" =	383559	cm^3
carichi mobili	0	-7650400	-1,99	-1,09	2,96	Ws" =	704266	cm^3
totale fase 0+1+2	661241	-11270114	-2,10	3,58	14,67	Wi" =	258508	cm/3
fase 3 [Mpa]	N	М	σss	σs	σі			
caduta di tensione	-58228	2063644	0,29	0,04	-1,05			
totale fase 0+1+2+3	603013	-9206470	-1,81	3,62	13,62			

La sezione è sempre compressa σ lastra $< 0.6 f_{ck} = 27.39 MPa$

 $\sigma \ lastra < 0.6 \ f_{ck} = 27.39 \ MPa \qquad \qquad \sigma \ getto \ in \ opera < 0.6 \ f_{ck} = 22.41 \ MPa$

Verifiche SLE – stato di tensione sezione a 5.9m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a temp	oo infinito:	σspf =	1142	Мра
Larghezza totale	b =	250	cm		Sezione trefoli	38	da 0.6")	52,8	cmq
Sezione lastra	Ac =	8022	cmq		Baricentro da intrados	so		23,1	cmq
Baricentro da intrad.	Ygc =	30,0	cm						
Momento di inerzia	Jc =	4340372	cm/4		Tensione iniziale di tes	satura	σspt =	1440	Mpa
					Perdita di tensione al	martinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciam	ento elastico	Δσspe =	54	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tr	efoli	σspi =	1343	Mpa
Sezione ideale lastra	Ac' =	8336	cmq		Sforzo iniziale di preco	omp.: N0 =	σspi x Ai =	7094	kN
Baricentro da intrad.	Ygc' =	29,7	cmq		momento in. di precon	np.: M0 = N0 x	(Yp-Yt') =	47125	kNcm
Momento di inerzia id.	Jc' =	4354773	cm ⁴						
Modulo resistenza sup	Ws'=	86615	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	146515	cm^3		Fluage		2 x Δσspe =	108	Мра
					Ritiro $\epsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x	(2.8-2.2))%σspi	0.046 ospi =	62	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto	Ril x (1-2.5x(Flu-	-Rit)/σspi) =	44	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei tref	foli	σspf =	1142	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	24205	cmq		suddivisione delle cad	ute di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	73,2	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	39233513	cm ⁴	Fluage	0	339	6		67%
Modulo resistenza sol.	Wss" =	656907	cm^3	Rilassam.	40%	309	6	3	80%
Modulo resistenza sup	Ws" =	916389	cm^3	Ritiro	25%	259	6	5	50%
Modulo resistenza inf.	Wi" =	536073	cm^3	perdite	30	61		,	110

Distanza	a della sezion	ne di verif	ica dalla sezior	ne di app	oggio	x =	590 cn	n	
fase 0	[Mpa]	N	М	σss	σs	σi	Ac' =	8336	cmq
peso pro	prio	0	3648099,328		4,21	-2,49	Ws'=	86615	cm^3
precomp	ressione	709352	-4712529		3,07	11,73	Wi' =	146515	cm^3
caduta d	i tensione	-15823	105122		-0,07	-0,26			
totale fa	ise 0	693528	-959308		7,21	8,97	•		
fase 1	[Mpa]	N	М	σss	σs	бі			
getto inte	egrativo	0	-355500		-0,41	0,24			
caduta d	i tensione	-32287	214499		-0,14	-0,53			
totale fa	ıse 0+1	661241	-1100308		6,66	8,68	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	24205	cmq
carico pe	ermanente	0	-167600	-0,03	-0,02	0,03	Wss" =	656907	cm^3
carichi m	nobili	0	-3913200	-0,60	-0,43	0,73	Ws" =	916389	cm^3
totale fa	se 0+1+2	661241	-5181108	-0,62	6,22	9,44	Wi" =	536073	cm^3
fase 3	[Mpa]	N	М	σss	σs	бі			
caduta d	i tensione	-58228	2917678	0,20	0,08	-0,78			
totale fa	se 0+1+2+3	603013	-2263431	-0,42	6,29	8,66	-		

 $\label{eq:lambda} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

Verifiche SLE – stato di tensione sezione a 5.5m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a temp	o infinito:	σspf =	1142	Мра
Larghezza totale	b =	250	cm		Sezione trefoli	38	da 0.6")	52,8	cmq
Sezione lastra	Ac =	9422	cmq		Baricentro da intradoss	0		23,1	cmq
Baricentro da intrad.	Ygc =	36,7	cm						
Momento di inerzia	Jc =	6767676	cm^4		Tensione iniziale di tes	atura	σspt =	1440	Мра
					Perdita di tensione al n	nartinetto 3%	Δσspm =	43	Мра
sezione lastra omogei	neizzata				Perdita per accorciame	nto elastico	Δσspe =	54	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tre	efoli	σspi =	1343	Мра
Sezione ideale lastra	Ac' =	9736	cmq		Sforzo iniziale di preco	mp.: N0 =	σspi x Ai =	7094	kN
Baricentro da intrad.	Ygc' =	36,2	cmq		momento in. di precom	p.: M0 = N0 x	((Yp-Yt') =	93309	kNcm
Momento di inerzia id.	Jc' =	6823820	cm^4						
Modulo resistenza sup	Ws'=	155913	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	188331	cm^3		Fluage		2 x Δσspe =	108	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-2.2))% ospi	0.046 σspi =	62	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto F	Ril x (1-2.5x(Flu-	+Rit)/σspi) =	44	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefe	oli	σspf =	1142	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	16154	cmq		suddivisione delle cadu	te di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	54,8	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	16497640	cm/4	Fluage	0	339	%	6	67%
Modulo resistenza sol.	Wss" =	383547	cm/3	Rilassam.	40%	309	%	3	80%
Modulo resistenza sup	Ws" =	653690	cm/3	Ritiro	25%	259	%	5	50%
Modulo resistenza inf.	Wi" =	301259	cm^3	perdite	30	61			110

Distanza della se	ezione di verif	ica dalla sezio	ne di app	oggio	x =	550 cr	n	
fase 0 [Mpa]	N	M	σss	σs	σі	Ac' =	9736	cmq
peso proprio	0	3573123,711		2,29	-1,90	Ws'=	155913	cm^3
precompressione	709352	-9330937		1,30	12,24	Wi' =	188331	cm^3
caduta di tensione	-15823	208144		-0,03	-0,27			
totale fase 0	693528	-5549670		3,56	10,07	-		
fase 1 [Mpa]	N	М	σss	σs	бі			
getto integrativo	0	-163270		-0,10	0,09			
caduta di tensione	-32287	424714		-0,06	-0,56			
totale fase 0+1	661241	-5288225		3,40	9,60	-		
fase 2 [Mpa]	N	М	σss	σs	бі	Ac" =	16154	cmq
carico permanente	e 0	-53500	-0,01	-0,01	0,02	Wss" =	383547	cm^3
carichi mobili	0	-2768900	-0,72	-0,42	0,92	Ws" =	653690	cm^3
totale fase 0+1+2	2 661241	-8110625	-0,74	2,97	10,54	Wi" =	301259	cm^3
fase 3 [Mpa]	N	М	σss	σs	σі			
caduta di tensione		1844856	0,12	-0,08	-0,97			
totale fase 0+1+2	2+3 603013	-6265769	-0,62	2,89	9,56	-		

$$\label{eq:lambda} \begin{split} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa \end{split}$$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

Verifiche SLE – stato di tensione sezione a 3.0m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempo in	finito:	σspf =	1142	Mpa
Larghezza totale	b =	250	cm		Sezione trefoli	38	da 0.6")	52,8	cmq
Sezione lastra	Ac =	9422	cmq		Baricentro da intradosso			23,1	cmq
Baricentro da intrad.	Ygc =	36,7	cm						
Momento di inerzia	Jc =	6767676	cm/4		Tensione iniziale di tesatu	ra	σspt =	1440	Мра
					Perdita di tensione al mart	inetto 3%	Δσspm =	43	Мра
sezione lastra omoger	neizzata				Perdita per accorciamento	elastico	$\Delta \sigma spe =$	54	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei trefoli		σspi =	1343	Mpa
Sezione ideale lastra	Ac' =	9736	cmq		Sforzo iniziale di precompa	.: N0 =	σspi x Ai =	7094	kN
Baricentro da intrad.	Ygc' =	36,2	cmq		momento in. di precomp.:	M0 = N0 x	(Yp-Yt') =	93309	kNcm
Momento di inerzia id.	Jc' =	6823820	cm ⁴						
Modulo resistenza sup	Ws'=	155913	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	188331	cm^3		Fluage		2 x Δσspe =	108	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-	-2.2))%σspi	0.046 σspi =	62	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto Ril x	(1-2.5x(Flu+	-Rit)/σspi) =	44	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefoli		σspf =	1142	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	16154	cmq		suddivisione delle cadute d	di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	54,8	cm	Мра	al taglio dei trefoli	al getto dell	a soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	16497640	cm ⁴	Fluage	0	33%	6		67%
Modulo resistenza sol.	Wss" =	383547	cm^3	Rilassam.	40%	30%	6	3	30%
Modulo resistenza sup	Ws" =	653690	cm^3	Ritiro	25%	25%	6	5	50%
Modulo resistenza inf.	Wi" =	301259	cm^3	perdite	30	61			110

Distanz	a della sezior	ne di verif	ica dalla sezior	ne di app	oggio	x =	300 cn	n	
fase 0	[Mpa]	N	М	σss	σs	σi	Ac' =	9736	cmq
peso pro	oprio	0	2327992,921		1,49	-1,24	Ws'=	155913	cm^3
precom	oressione	709352	-9330937		1,30	12,24	Wi' =	188331	cm^3
caduta (di tensione	-15823	208144		-0,03	-0,27			
totale f	ase 0	693528	-6794800		2,77	10,73			
fase 1	[Mpa]	N	М	σss	σs	бі			
getto int	tegrativo	0	368200		0,24	-0,20			
caduta	di tensione	-32287	424714		-0,06	-0,56			
totale f	ase 0+1	661241	-6001886		2,94	9,98			
fase 2	[Mpa]	N	М	σss	σs	бі	Ac" =	16154	cmq
carico p	ermanente	0	219400	0,06	0,03	-0,07	Wss" =	383547	cm^3
carichi r	mobili	0	4983600	1,30	0,76	-1,65	Ws" =	653690	cm^3
totale f	ase 0+1+2	661241	-798886	1,36	3,74	8,25	Wi" =	301259	cm^3
fase 3	[Mpa]	N	М	σss	σs	σі			
caduta (di tensione	-58228	1844856	0,12	-0,08	-0,97			
totale f	ase 0+1+2+3	603013	1045970	1,48	3,66	7,28			

$$\label{eq:lambda} \begin{split} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa \end{split}$$

 σ getto in opera $< 0.6 \; f_{ck} = 22.41 \; MPa$

Verifiche SLE – stato di tensione sezione a 1.7m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempe	o infinito:	σspf =	1142	Mpa
Larghezza totale	b =	250	cm		Sezione trefoli	38	da 0.6")	52,8	cmq
Sezione lastra	Ac =	9422	cmq		Baricentro da intradoss	0		23,1	cmq
Baricentro da intrad.	Ygc =	36,7	cm						
Momento di inerzia	Jc =	6767676	cm^4		Tensione iniziale di tes	atura	σspt =	1440	Mpa
					Perdita di tensione al m	artinetto 3%	Δσspm =	43	Mpa
sezione lastra omogei	neizzata				Perdita per accorciame	nto elastico	Δσspe =	54	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tre	efoli	σspi =	1343	Мра
Sezione ideale lastra	Ac' =	9736	cmq		Sforzo iniziale di precoi	mp.: N0 =	σspi x Ai =	7094	kN
Baricentro da intrad.	Ygc' =	36,2	cmq		momento in. di precom	p.: M0 = N0 x	((Yp-Yt') =	93309	kNcm
Momento di inerzia id.	Jc' =	6823820	cm^4						
Modulo resistenza sup	Ws'=	155913	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	188331	cm^3		Fluage		2 x Δσspe =	108	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2	2.8-2.2))% ospi	0.046 σspi =	62	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto F	il x (1-2.5x(Flu-	+Rit)/σspi) =	44	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefo	oli	σspf =	1142	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	16896	cmq		suddivisione delle cadu	te di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	55,7	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	16794239	cm/4	Fluage	0	339	%	6	67%
Modulo resistenza sol.	Wss" =	398264	cm/3	Rilassam.	40%	309	%	3	80%
Modulo resistenza sup	Ws" =	689720	cm/3	Ritiro	25%	259	%	5	50%
Modulo resistenza inf.	Wi" =	301780	cm^3	perdite	30	61		,	110

Distanz	a della sezior	ne di verif	ica dalla sezior	ne di app	oggio	x =	170 cn	n	
fase 0	[Mpa]	N	М	σSS	σs	σi	Ac' =	9736	cmq
peso pro	prio	0	1151411,268		0,74	-0,61	Ws'=	155913	cm^3
precomp	ressione	709352	-9330937		1,30	12,24	Wi' =	188331	cm^3
caduta d	di tensione	-15823	208144		-0,03	-0,27			
totale fa	ase 0	693528	-7971382		2,01	11,36	•		
fase 1	[Mpa]	N	М	σss	σs	σi			
getto int	egrativo	0	292200		0,19	-0,16			
caduta d	di tensione	-32287	424714		-0,06	-0,56			
totale fa	ase 0+1	661241	-7254468		2,14	10,64	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	16896	cmq
carico p	ermanente	0	122800	0,03	0,02	-0,04	Wss" =	398264	cm^3
carichi n	nobili	0	1915500	0,48	0,28	-0,63	Ws" =	689720	cm^3
totale fa	ase 0+1+2	661241	-5216168	0,51	2,43	9,97	Wi" =	301780	cm^3
fase 3	[Mpa]	N	М	σSS	σs	σі			
caduta c	di tensione	-58228	1896583	0,13	-0,07	-0,97			
totale fa	ase 0+1+2+3	603013	-3319585	0,64	2,36	9,00			

 $\label{eq:lambda} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

Verifiche SLE – stato di tensione sezione a 1.0m dall'asse appoggio

						_			
geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	45	cm		Tensione trefoli a temp	o infinito:	σspf =	1142	Mpa
Larghezza totale	b =	250	cm		Sezione trefoli	38	da 0.6")	52,8	cmq
Sezione lastra	Ac =	11250	cmq		Baricentro da intradoss	30		23,1	cmq
Baricentro da intrad.	Ygc =	22,5	cm						
Momento di inerzia	Jc =	1898438	cm^4		Tensione iniziale di tes	atura	σspt =	1440	Mpa
					Perdita di tensione al r	martinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciame	ento elastico	Δσspe =	54	MPa
Altezza lastra	Ht =	45	cm		Tensione iniziale nei tr	efoli	σspi =	1343	Мра
Sezione ideale lastra	Ac' =	11564	cmq		Sforzo iniziale di preco	mp.: N0 =	σspi x Ai =	7094	kN
Baricentro da intrad.	Ygc' =	22,5	cmq		momento in. di precom	np.: M0 = N0 x	(Yp-Yt') =	-3995	kNcm
Momento di inerzia id.	Jc' =	1898540	cm^4						
Modulo resistenza sup	Ws'=	84439	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	84321	cm^3		Fluage		2 x Δσspe =	108	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x)	(2.8-2.2))%σspi	0.046 σspi =	62	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto I	Ril x (1-2.5x(Flu-	-Rit)/σspi) =	44	MPa
Altezza lastra	Ht=	45	cm		Tensione finale nei tref	oli	σspf =	1142	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	24638	cmq	_	suddivisione delle cadu	ute di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	49,0	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	20525461	cm ⁴	Fluage	0	339	%	6	67%
Modulo resistenza sol.	Wss" =	423601	cm/3	Rilassam.	40%	309	%	3	30%
Modulo resistenza sup	Ws" =	662955	cm/3	Ritiro	25%	259	%	5	50%
Modulo resistenza inf.	Wi" =	418550	cm^3	perdite	30	61			110

Distanza	a della sezior	ne di verif	ica dalla sezior	ne di app	oggio	x =	100 cn	า	
fase 0	[Mpa]	N	М	σss	σs	σi	Ac' =	11564	cmq
peso pro	prio	0	367916,0655		0,44	-0,44	Ws'=	84439	cm^3
precomp	ressione	709352	399526		6,61	5,66	Wi' =	84321	cm^3
caduta d	di tensione	-15823	-8912		-0,15	-0,13			
totale fa	ase 0	693528	758530		6,90	5,10	•		
fase 1	[Mpa]	N	М	σss	σs	σi			
getto inte	egrativo	0	105700		0,13	-0,13			
caduta d	di tensione	-32287	-18185		-0,30	-0,26			
totale fa	ase 0+1	661241	846045		6,72	4,71	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	24638	cmq
carico pe	ermanente	0	11400	0,00	0,00	0,00	Wss" =	423601	cm^3
carichi n	nobili	0	-999500	-0,24	-0,15	0,24	Ws" =	662955	cm^3
totale fa	ase 0+1+2	661241	-142055	-0,23	6,57	4,95	Wi" =	418550	cm^3
fase 3	[Mpa]	N	М	σss	σs	σi			
caduta d	di tensione	-58228	1511627	0,12	-0,01	-0,60	-		
totale fa	ase 0+1+2+3	603013	1369571	-0,11	6,56	4,35			

$$\label{eq:lambda} \begin{split} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa \end{split}$$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

Verifiche SLE - stato di tensione sezione all'attacco delle nervature al traverso di testa

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	45	cm		Tensione trefoli a temp	oo infinito:	σspf =	1142	Мра
Larghezza totale	b =	250	cm		Sezione trefoli	38	da 0.6")	52,8	cmq
Sezione lastra	Ac =	11250	cmq		Baricentro da intrados	so		23,1	cmq
Baricentro da intrad.	Ygc =	22,5	cm						
Momento di inerzia	Jc =	1898438	cm ⁴		Tensione iniziale di tes	satura	σspt =	1440	Мра
					Perdita di tensione al	martinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciam	ento elastico	Δσspe =	54	MPa
Altezza lastra	Ht =	45	cm		Tensione iniziale nei tr	efoli	σspi =	1343	Мра
Sezione ideale lastra	Ac' =	11564	cmq		Sforzo iniziale di preco	omp.: N0 =	σspi x Ai =	7094	kN
Baricentro da intrad.	Ygc' =	22,5	cmq		momento in. di precon	np.: M0 = N0	((Yp-Yt') =	-3995	kNcm
Momento di inerzia id.	Jc' =	1898540	cm ⁴						
Modulo resistenza sup	Ws' =	84439	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	84321	cm^3		Fluage		2 x Δσspe =	108	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x	(2.8-2.2))% ospi	0.046 σspi =	62	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto	Ril x (1-2.5x(Flu-	+Rit)/σspi) =	44	MPa
Altezza lastra	Ht=	45	cm		Tensione finale nei tref	foli	σspf =	1142	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	24638	cmq		suddivisione delle cad	ute di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	49,0	cm	Мра	al taglio dei trefoli	al getto de	la soletta	a tempo	infinito
Momento di inerzia tot	Jc" =	20525461	cm ⁴	Fluage	0	33'	%		67%
Modulo resistenza sol.	Wss" =	423601	cm^3	Rilassam.	40%	30	%	3	30%
Modulo resistenza sup	Ws" =	662955	cm^3	Ritiro	25%	25	%		50%
Modulo resistenza inf.	Wi" =	418550	cm^3	perdite	30	6′			110

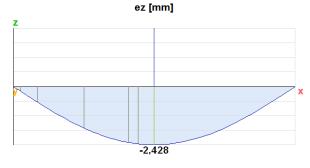
Distanza della sezio	ne di verifi	ca dalla sezio	ne di app	oggio	x =	70 cm	1	
fase 0 [Mpa]	N	М	σss	σs	σi	Ac' =	11564	cmq
peso proprio	0	0		0,00	0,00	Ws' =	84439	cm^3
precompressione	709352	399526		6,61	5,66	Wi' =	84321	cm^3
caduta di tensione	-15823	-8912		-0,15	-0,13			
totale fase 0	693528	390614		6,46	5,53	•		
fase 1 [Mpa]	N	М	σss	σs	бі			
getto integrativo	0	0		0,00	0,00			
caduta di tensione	-32287	-18185		-0,30	-0,26			
totale fase 0+1	661241	372429		6,16	5,28	•		
fase 2 [Mpa]	N	М	σss	σs	σi	Ac" =	24638	cmq
carico permanente	0	-55400	-0,01	-0,01	0,01	Wss" =	423601	cm^3
carichi mobili	0	-2015300	-0,48	-0,30	0,48	Ws" =	662955	cm^3
totale fase 0+1+2	661241	-1698271	-0,49	5,85	5,77	Wi" =	418550	cm^3
fase 3 [Mpa]	N	М	σss	σs	σі			
caduta di tensione	-58228	1511627	0,12	-0,01	-0,60			
totale fase 0+1+2+3	603013	-186645	-0,37	5,84	5,17			

La sezione è sempre compressa

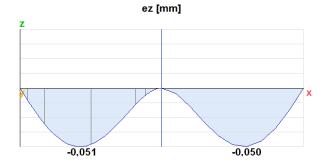
 $\sigma \ lastra < 0.6 \ f_{ck} = 27.39 \ MPa$

 $\sigma \; getto \; in \; opera < 0.6 \; f_{ck} = 22.41 \; MPa$

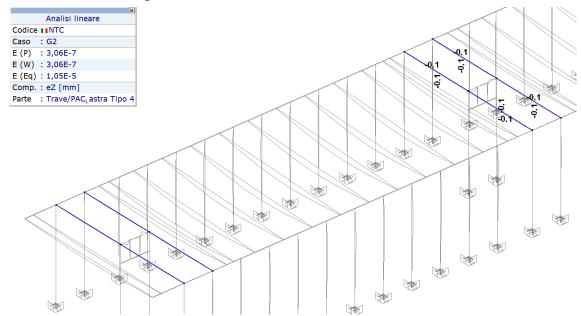
4.5.3.4.1 Verifiche SLE – fessurazione


Le sezioni di calcestruzzo delle lastre risultano sempre compresse; non si ha mai apertura delle fessure.

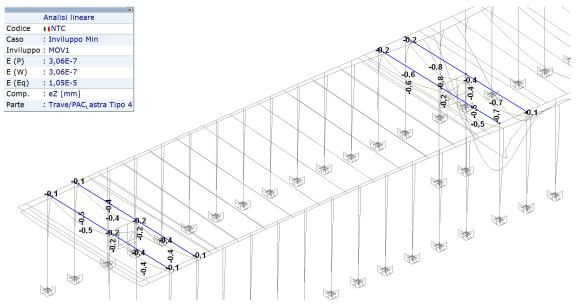
Progetto Esecutivo


4.5.3.5 Verifica delle deformazioni

Calcolo delle frecce nelle diverse ipotesi


G1 – peso proprio lastra

■ G1 – peso getto di completamento soletta


■ G2 – sovraccarico permanente

[I], > 4 parti, Lineare, G2, eZ, Diagramma

■ qi – sovraccarico variabile

• εI – Precompressione

$$ez = Mp \ l^2 / \left[4 \cdot E \cdot I\right]$$

	L	Tensioni		Npi	Mpi	l i	$e_{z,p}$
Trave	m	Мра		kN	kNm	cm^4	mm
		tensione iniziale nei trefoli	1343,0	7093,5	663,8	3778549,0	-10,43
Tipo 4	13,15	perdite a tempo iniziale:	-30,0	-158,2	-14,8	3778549,0	0,47
11ро ч	13,13	perdite al getto della soletta:	-61,1	-322,9	-30,2	3778549,0	0,95
		perdite a tempo finale -110,2		-582,3	-206,4	15127819,6	1,62
						e _{z,p} finale	-7,39

Progetto Esecutivo

Verifica delle deformazioni nel SLE_R

Si conduce una verifica allo Stato Limite di Servizio per la deformazione della campata di riva, più sollecitata. Per la precompressione, per le azioni permanenti e per le azioni variabili, si assumono nelle combinazioni di carico allo stato limite di deformazione i coefficienti $\gamma p = \gamma g = \gamma q = 1$.

Fase 0: rilascio della precompressione

Deformazione in mezzeria della lastra per peso proprio e precompressione: η0

Fase 1: getto della soletta integrativa

Deformazione in mezzeria della lastra per peso proprio, precompressione + getto: η1

Fase 2: carichi permanenti

Deformazione in mezzeria: $\eta 2$

Fase 3: carichi mobili massimi

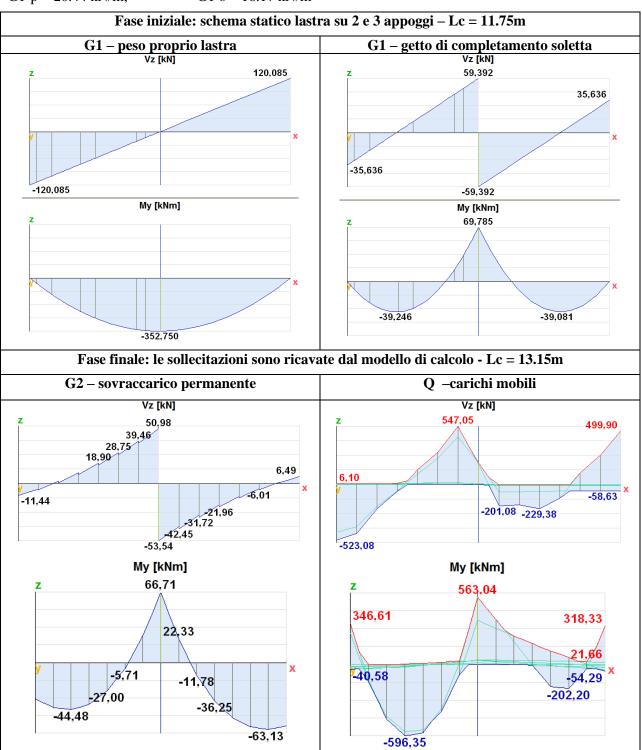
Deformazione totale massima in mezzeria: η3

Tabella

Ipotesi Trave	G1-1	ez,p	G1-2	G2	Q1
	[mm]	[mm]	[mm]	[mm]	[mm]
Tipo 4	1,75	-7,394	0,05	0,1	0,7

η0	η1	η2	η3
[mm]	[mm]	[mm]	[mm]
-8,2	-7,2	-5,5	-4,8

MAX SLE	L/ez(Q1)
[mm]	[-]
-4,8	18786



4.5.4 LASTRE PRECOMPRESSE – LASTRA TIPO 6

4.5.4.1 Sollecitazioni di calcolo per ciascun carico

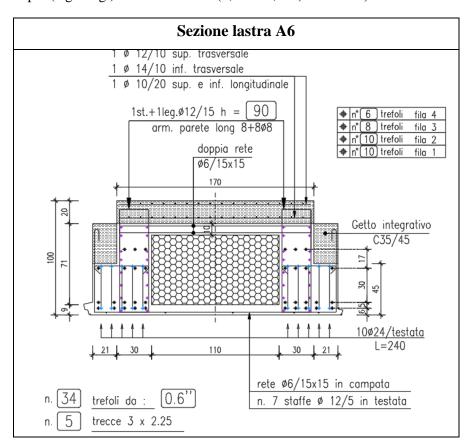
L'analisi è condotta sulla lastra da 2.20m di larghezza.

G1-p = 20.44 kN/m; G1-s = 16.17 kN/m

• $\varepsilon 1$ – Precompressione

Tipo acciaio armonico: trefolo 0.6" stabilizzato.

Numero trefoli : 34


I trefoli vengono sistemati su 4 livelli:

- n° 10 trefoli a 60 mm dall'intradosso soletta;
- n° 10 trefoli a 110 mm dall'intradosso soletta;
- n° 8 trefoli a 410 mm dall'intradosso soletta;
- n° 6 trefoli a 575 mm dall'intradosso soletta;

La tensione nei trefoli a tempo infinito è di 1159.6 Mpa.

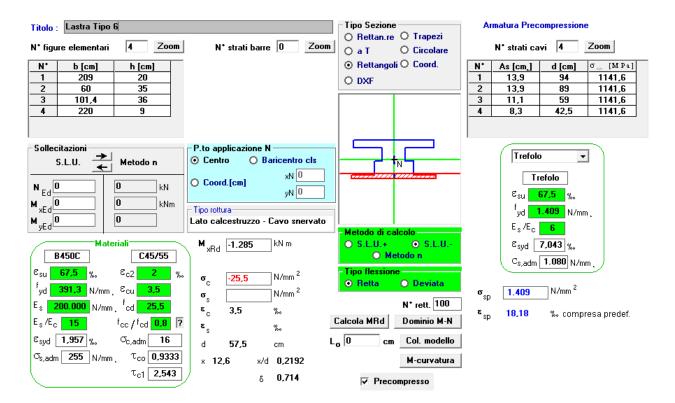
$$Np = 1159.6 \times 139 \times 34 = 5480269.6 daN$$

$$\mathbf{Mp} = -\text{Np x } (\text{Ygci-Ygi}) = -5480269.6 \text{ x } (0.322 - 0.319) = -16440.81 \text{ daNm}$$

4.5.4.2 Verifiche allo S.L.U.

La verifica viene eseguita sulla sezione equivalente a rettangoli sovrapposti, costituita dal sistema lastra+soletta. Le dimensioni della soletta vengono ridotte del coefficiente di omogeneizzazione 0,95: 250 x 0,95= 209 cm. (Ec,soletta/Ec,lastra)

 $M_{Ed}\text{:}\quad \gamma_{G1}M_{G1}+\gamma_{G2}M_{G2}+\gamma_{Q}M_{Q}$


con: $\gamma_{G1} = 1,35$

 $\gamma_{\rm G2} = 1,5$

 $\gamma_{\rm Q}=1,5$

- sezione su appoggio centrale

d	G1-1	G1-2	G2	q1	SLU
m	kNm	kNm	kNm	kNm	kNm
Mezzeria	400,73	-69,79	-66,71	-563,04	-638,11



M_{Rd} = 1285 kNm > 638,11 kNm => verifica soddisfatta

- sezione in mezzeria della semicampata

d	G1-1	G1-2	G2	q1	SLU
m	kNm	kNm	kNm	kNm	kNm
L/4	294,48	39,25	34,90	596,35	1397,38

M_{Rd} = 4577 kNm > 1397.38 kNm => verifica soddisfatta

4.5.4.3 Verifiche allo S.L.U. per taglio e torsione

1) Lato spalla

Taglio sollecitante ultimo:

 $V_{Ed} \colon \quad \gamma_{G1} V_{G1} + \gamma_{G2} V_{G2} + \gamma_{Q} V_{Q}$

con: $\gamma_{G1}=1,3$ $\gamma_{G2}=1,5$ $\gamma_{Q}=1,5$

Il momento torcente, dovuto solo a disuniformità dei carichi permanenti portati e ad eventuale presenza di carichi mobili, rappresenta una sollecitazione minore e non essenziale all'equilibrio della struttura; viene pertanto trascurata.

d F1	d F2	G1-p	G1-g	G2	Qk	SLU
n	n	kN	kN	kN	kN	kN
0	0,7	120,09	35,64	18,13	477,79	946,3
0,5	1,2	109,87	27,55	13,73	398,15	796,5
1,8	2,5	83,29	6,52	1,78	249,5	493,7
2	2,7	79,21	3,89	4,64	208,72	428,1

Caratteristiche Calcestruzzo:			
Classe di resistenza :			C45/55
Resistenza caratt.:	R_{ck}	=	55 N/mm ²
Coefficienti di sicurezza e parametri di riduzione della resister	ıza:		
Coeff. di sicurezza :	γ _c	=	1,50
Coeff. di sic. addizionale per compressione centrata:	η_{cc}	=	1,25
Coeff. riduttivo per rottura a termine :	β	=	0,85
Resistenze di calcolo:			
Res. caratt. a compressione:	$f_{ck} = 0.83 \cdot R_{ck}$	=	45,65 N/mm²
Res. a compressione di calcolo:	$f_{cd} = \beta \cdot f_{ck} / \gamma_c$	=	25,87 N/mm ²
Res. media. a compressione:	$f_{cm} = f_{ck} + 8N/mm^2$	=	53,65 N/mm ²
Res. a trazione media di progetto:	$f_{ctm} = 0.30 f_{ck}^{2/3}$	=	3,83 N/mm²
Res. a trazione caratt. di progetto:	$f_{ctk} = 0.70 f_{ctm}$	=	2,68 N/mm ²
Res. tangenziale caratt. di aderenza di progetto:	$f_{bk} = 2,25f_{ctk}$	=	6,04 N/mm ²
Res. a trazione di calcolo:	$f_{ctd} = f_{ctk}/\gamma_c$	=	1,79 N/mm²
Acciaio per cemento armato:			
Classe dell'acciaio:			B450C
Coeff. di sicurezza :	γs	=	1,15
Resistenze di calcolo:			
Tensione carat. di snervamento:	f_{yk}	=	450 N/mm ²
Resistenza di calcolo:	$f_{yd} = f_{yk} / \gamma_s$	=	391,3 N/mm ²

Sezione di testa x = 0cm (precompressione non ancora attiva, cls in opera)

altezza utile				d		1000 mm			
base equivalente		2200 mm							
Armature resistenti per le v	erifiche	a taglio	:						
Diametro, numero bracci, pas	so medi	o, inclinaz	zione, ar	ea resistente e rapporto di armatura	:				
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	S _{wi}						
	[-]	[mm]	[cm]						
staffe/molle:	6	8	7,5	A _{sw1} =	:	3,02 cm ²			
tralicci	6	6	15	A _{sw2} =	:	1,70 cm ²			
				A _{sw} =	:	4,71 cm ²			
		V_{Ro}	$_{\rm xd} = 0.9$	$d \cdot b_w \cdot f'_{cd} \cdot \alpha_c \cdot ctg\theta / (1 + ctg^2\theta) =$	12	804,8 <i>kN</i>			
			Ţ	$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} \cdot ctg\theta =$. 1	814,5 <i>kN</i>			
	1	814,5 <i>kN</i>							
	$V_{Rd} = V_{Sd}$								
				ls =	:	52,15%			

Sezione di testa x = 120cm (50 fase 1)

Dezione di testa x = 120cm (JU lase i)			
altezza utile				d	1000 mm
base equivalente	bw	1100 mm			
Armature resistenti per le	verifiche	a taglio):		
Diametro, numero bracci, pas	sso medi	o, inclina	zione, ar	rea resistente e rapporto di armatura :	
Armature resistenti a taglio	n _{brwi}	Фмі	S _{wi}		
	[-]	[mm]	[cm]		
staffe/molle:	6	8	7,5	A _{sw1} =	3,02 cm ²
tralicci	6	6	15	A _{sw2} =	1,70 cm ²
				A _{sw} =	4,71 cm ²
		V_{R}	$_{\rm cd} = 0.9$	$d \cdot b_w \cdot f'_{cd} \cdot \alpha_c \cdot ctg\theta/(1+ctg^2\theta) =$	6402,4 kN
			Ţ	$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} \cdot ctg\theta =$	1814,5 <i>kN</i>
				V	1814,5 <i>kN</i>
				$V_{Rd} =$	· · · · · · · · · · · · · · · · · · ·
				$V_{Sd} =$	946,3 kN
				ls =	52,15%

Sezione di testa x = 250cm (180 fase 0)

altezza utile d					1000 mm
base equivalente bw					1100 mm
Armature resistenti per le v					
Diametro, numero bracci, pas					
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	Swi		
	[-]	[mm]	[cm]		
staffe/molle:	6	8	7,5	A _{sw1} =	3,02 cm ²
tralicci	6	6	15	A _{sw2} =	1,70 cm ²
	4,71 cm ²				
	6402,4 kN				
	1814,5 <i>kN</i>				
				V_{Rd} =	1814,5 <i>kN</i>
				V_{Sd} =	796,5 kN
				ls =	43,90%

Sezione di testa x = 270cm (200 fase 0)

altezza utile c	=	1000 mm
base equivalente b _i	, =	1100 mm
f _{ctc}	=	1,79 MPa
N ₁	, =	539520 daN
A _i	=	8092 cm ²
$\sigma_{\rm cp} = N_{\rm p} / A_{\rm p}$, =	6,67 MPa
$\sigma_{cp} = N_p / A_s$ $V_{Rd} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/3}$	=	3208,0 kN
	. =	428,1 kN
ls	=	13,34%

Verifiche allo S.L.U. armatura all'appoggio

Si verifica lo stato tensionale dell'armatura longitudinale inferiore all'appoggio che garantisce il funzionamento del modello a traliccio in quella zona del manufatto, soggetta alla forza concentrata rappresentata dalla reazione dell'appoggio.

La verifica viene eseguita nelle ipotesi che lo sforzo longitudinale inferiore sia pari al taglio e che tale sforzo sia mitigato dalla presenza dello sforzo di compressione longitudinale esercitato dai trefoli attivi (non inguainati).

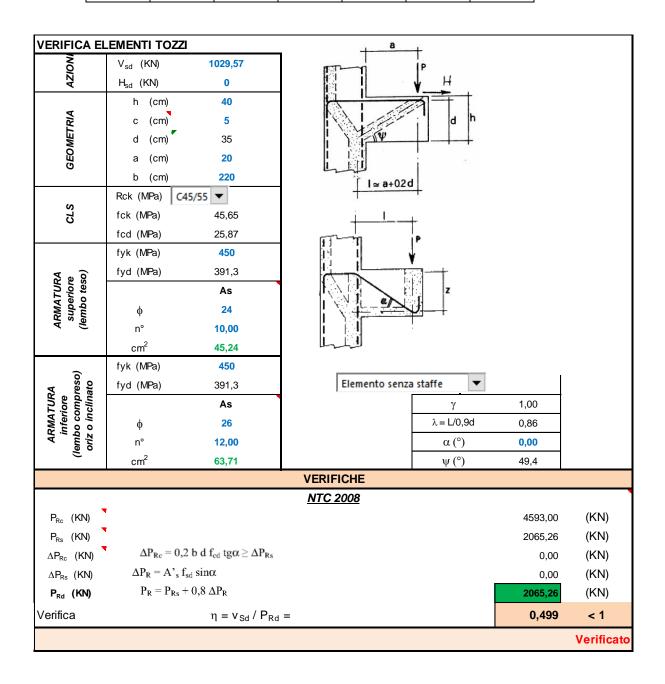
Per valutare la compressione data dai trefoli si ipotizza una legge lineare di trasferimento del carico dai trefoli al calcestruzzo per una lunghezza di 75 cm a partire dalla testata della trave, per cui all'appoggio la precompressione è ancora molto bassa. Si adotta prudenzialmente un coefficiente riduttivo per tale compressione pari a 0.7.

Verifiche allo S.L.U. armatura all'appoggio

Verificile and 3.L.O. armatu	ia ali api	Juggiu		
Taglio totale di calcolo			V _{Ed} =	946,3 kN
Numero di trefoli attivi	34]	Tensione finale trefoli =	1142 MPa
			Compressione totale =	856,04 kN
				< V _{Ed}
L'armatura longitudinale	n _i	Фі		
	[-]	[mm]		
si predispongono ad testata	10	24	A _s =	45,24 cm ²
			$V_{Rd} = A_s x f_{yd} =$	1770,2 kN
			ls =	53,46%

2) <u>Lato trave</u>

Taglio sollecitante ultimo:


 V_{Ed} : $\gamma_{G1}V_{G1} + \gamma_{G2}V_{G2} + \gamma_{Q}V_{Q}$

con: $\gamma_{G1} = 1,3$

 $\gamma_{G2} = 1,5$

 $\gamma_Q = 1,5$

d F1	d F2	G1-p	G1-g	G2	Qk	SLU
n	1	kN	kN	kN	kN	kN
0	0,7	120,08	35,64	26,94	524,48	1029,57

Progetto Esecutivo

4.5.4.4 Verifiche SLE – verifica delle tensioni

Tensioni iniziali nel calcestruzzo

$$\sigma_c < 0.70 f_{cki}$$

essendo f_{ckj} la resistenza caratteristica del calcestruzzo all'atto del tiro.

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:

 $\sigma_c < 0.60 \; f_{ck}$ - per combinazione caratteristica (rara)

 $\sigma_c < 0{,}45~f_{ck}$ - per combinazione quasi permanente.

Nella zona di ancoraggio delle armature si possono tollerare compressioni locali σ_c prodotte dagli apparecchi di ancoraggio pari a: $\sigma_c < 0.90 \; f_{ckj}$.

Tensioni limite per gli acciai da precompressione

$$\sigma_{spi} < 0.90 \; f_{p(0,1)k} \qquad \qquad \sigma_{spi} < 0.80 \; f_{ptk} \; \text{- per armatura pre-tesa.}$$

Progetto Esecutivo

Verifiche SLE – stato di tensione sezione di mezzeria

geometria della trav	e di solo ca	alcestruzzo	
Altezza lastra	Ht =	80	cm
Larghezza totale	b =	180	cm
Sezione lastra	Ac =	7392	cmq
Baricentro da intrad.	Ygc =	32,2	cm
Momento di inerzia	Jc =	3892160	cm^4

sezione lastra omog	eneizzata		
Altezza lastra	Ht =	80	cm
Sezione ideale lastra	Ac' =	7673	cmq
Baricentro da intrad.	Ygc' =	31,9	cmq
Momento di inerzia id.	Jc' =	3906822	cm^4
Modulo resistenza sup	Ws' =	81197	cm^3
Modulo resistenza inf.	Wi' =	122530	cm^3

sezione omogeneizz	ata comple	eta del getto	di soletta
E(getto)/E(lastra)	n" =	0,95	
Altezza lastra	Ht=	80	cm
Spessore soletta	Hs =	20	cm
Sezione ideale totale	Ac" =	18520	cmq
Baricentro da intrad.	Ygc" =	72,0	cm

precompressione				
Tensione trefoli a tem	po infinito:	σspf =	1160	Мра
Sezione trefoli	34	da 0.6")	47,3	cmq
Baricentro da intrados	S0		24,8	cmq
precompressione				
Tensione iniziale di te	satura	σspt =	1440	Мра
Perdita di tensione al	martinetto 3%	Δσspm =	43	Мра
Perdita per accorciam	ento elastico	Δσspe =	47	MPa
Tensione iniziale nei t	refoli	σspi =	1350	Мра
Sforzo iniziale di preci	omp.: N0 =	σspi x Ai =	6378	kN
momento in. di precor	mp.: $M0 = N0 x$ (Yp-Yt') =	45224	kNcm

Cadute di	tensione				
Fluage			2 x Δσspe =	95	Мра
Ritiro εr =	0,00025		εr x Ep =	50	Мра
Rilassame	nto (2.8+3x	0.046 σspi =	62	Мра	
Rilassame	nto ridotto	Rit)/ospi) =	45	MPa	
Tensione fi	nale nei tre	foli	σspf =	1160	MPa

Spessore soletta	Hs =	20	cm				
Sezione ideale totale	Ac" =	18520	cmq		suddivisione delle c	adute di tensione nelle varie	fasi
Baricentro da intrad.	Ygc" =	72,0	cm	Мра	al taglio dei trefoli	al getto della soletta	a tempo infinito
Momento di inerzia tot	Jc" =	32310080	cm ⁴	Fluage	0	33%	67%
Modulo resistenza sol.	Wss" =	530913	cm^3	Rilassam.	40%	30%	30%
Modulo resistenza sup	Ws" =	734241	cm^3	Ritiro	25%	25%	50%
Modulo resistenza inf.	Wi" =	448781	cm^3	perdite	31	57	102

Distanz	a della sezior	ne di verif	ica dalla sezior	ne di app	oggio	x =	658 cn	n	
fase 0	[Mpa]	N	М	σss	σs	σi	Ac' =	7673	cmq
peso pro	oprio	0	3526830,699		4,34	-2,88	Ws'=	81197	cm^3
precomp	oressione	637797	-4522370		2,74	12,00	Wi' =	122530	cm^3
caduta d	di tensione	-14502	102825		-0,06	-0,27			
totale fa	ase 0	623296	-892714		7,02	8,85	•		
fase 1	[Mpa]	N	М	σss	σs	σi			
getto int	egrativo	0	-699040		-0,86	0,57			
caduta d	di tensione	-27091	192092		-0,12	-0,51			
totale fa	ase 0+1	596205	-1399662		6,05	8,91	•		
fase 2	[Mpa]	N	М	σss	σs	бі	Ac" =	18520	cmq
carico p	ermanente	0	-624200	-0,12	-0,09	0,14	Wss" =	530913	cm^3
carichi r	nobili	0	-5630400	-1,06	-0,77	1,25	Ws" =	734241	cm^3
totale fa	ase 0+1+2	596205	-7654262	-1,18	5,19	10,31	Wi" =	448781	cm/3
fase 3	[Mpa]	N	М	σss	σs	σi			
caduta d	di tensione	-48183	2274304	0,17	0,05	-0,77			
totale fa	ase 0+1+2+3	548021	-5379957	-1,01	5,24	9,54	<u>-</u> '		

La sezione è sempre compressa σ lastra $< 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera < 0.6 f_{ck} = 22.41 MPa

Verifiche SLE – stato di tensione sezione a 5.9m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempo	infinito:	σspf =	1160	Мра
Larghezza totale	b =	180	cm		Sezione trefoli	34	da 0.6")	47,3	cmq
Sezione lastra	Ac =	7392	cmq		Baricentro da intradosso			24,8	cmq
Baricentro da intrad.	Ygc =	32,2	cm						
Momento di inerzia	Jc =	3892160	cm ⁴		Tensione iniziale di tesa	tura	σspt =	1440	Мра
					Perdita di tensione al ma	artinetto 3%	Δσspm =	43	Мра
sezione lastra omoger	neizzata				Perdita per accorciamen	to elastico	$\Delta \sigma spe =$	47	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tref	oli	σspi =	1350	Мра
Sezione ideale lastra	Ac' =	7673	cmq		Sforzo iniziale di precom	p.: N0 =	σspi x Ai =	6378	kN
Baricentro da intrad.	Ygc' =	31,9	cmq		momento in. di precomp	.: M0 = N0 x	(Yp-Yt') =	45224	kNcm
Momento di inerzia id.	Jc' =	3906822	cm^4						
Modulo resistenza sup	Ws'=	81197	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	122530	cm^3		Fluage		2 x Δσspe =	95	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2	8-2.2))%σspi	0.046 σspi =	62	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto Ri	x (1-2.5x(Flu-	-Rit)/σspi) =	45	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefol		σspf =	1160	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	18520	cmq		suddivisione delle cadute	di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	72,0	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	32310080	cm/4	Fluage	0	33%	6	6	67%
Modulo resistenza sol.	Wss" =	530913	cm^3	Rilassam.	40%	30%	6	3	30%
Modulo resistenza sup	Ws" =	734241	cm^3	Ritiro	25%	25%	6	5	50%
Modulo resistenza inf.	Wi" =	448781	cm^3	perdite	31	57			102

Distanza della sez	ione di verif	ica dalla sezior	ne di app	oggio	x =	590 cn	n	
fase 0 [Mpa]	N	M	σSS	σs	σi	Ac' =	7673	cmq
peso proprio	0	3480274,617		4,29	-2,84	Ws'=	81197	cm^3
precompressione	637797	-4522370		2,74	12,00	Wi' =	122530	cm^3
caduta di tensione	-14502	102825		-0,06	-0,27			
totale fase 0	623296	-939270		6,97	8,89	•		
fase 1 [Mpa]	N	М	σSS	σs	σi			
getto integrativo	0	-334850		-0,41	0,27			
caduta di tensione	-27091	192092		-0,12	-0,51			
totale fase 0+1	596205	-1082028		6,44	8,65	•		
fase 2 [Mpa]	N	М	σss	σs	σi	Ac" =	18520	cmq
carico permanente	0	-333800	-0,06	-0,05	0,07	Wss" =	530913	cm^3
carichi mobili	0	2303100	0,43	0,31	-0,51	Ws" =	734241	cm^3
totale fase 0+1+2	596205	887272	0,37	6,71	8,21	Wi" =	448781	cm/3
fase 3 [Mpa]	N	М	σSS	σs	σi			
caduta di tensione	-48183	2274304	0,17	0,05	-0,77			
totale fase 0+1+2+	3 548021	3161576	0,54	6,76	7,45			

 $\label{eq:lambda} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

Verifiche SLE – stato di tensione sezione a 5.5m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempo	infinito:	σspf =	1160	Mpa
Larghezza totale	b =	180	cm		Sezione trefoli	34	da 0.6")	47,3	cmq
Sezione lastra	Ac =	8092	cmq		Baricentro da intradoss	0		24,8	cmq
Baricentro da intrad.	Ygc =	35,9	cm						
Momento di inerzia	Jc =	5071864	cm^4		Tensione iniziale di tesa	atura	σspt =	1440	Mpa
					Perdita di tensione al m	artinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciame	nto elastico	Δσspe =	47	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tre	foli	σspi =	1350	Мра
Sezione ideale lastra	Ac' =	8373	cmq		Sforzo iniziale di precor	np.: N0 =	σspi x Ai =	6378	kN
Baricentro da intrad.	Ygc' =	35,5	cmq		momento in. di precom	o.: M0 = N0 x	((Yp-Yt') =	68213	kNcm
Momento di inerzia id.	Jc' =	5105117	cm^4						
Modulo resistenza sup	Ws' =	114694	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	143850	cm^3		Fluage		2 x Δσspe =	95	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2	2.8-2.2))% ospi	0.046 σspi =	62	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto R	il x (1-2.5x(Flu-	+Rit)/σspi) =	45	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefo	li	σspf =	1160	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	14221	cmq		suddivisione delle cadu	te di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	54,7	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	13818921	cm/4	Fluage	0	339	%	6	67%
Modulo resistenza sol.	Wss" =	320735	cm^3	Rilassam.	40%	309	%	3	80%
Modulo resistenza sup	Ws" =	545916	cm^3	Ritiro	25%	259	%	50%	
Modulo resistenza inf.	Wi" =	252692	cm^3	perdite	31	57	7		102

Distanza d	lella sezior	ne di verif	ica dalla sezior	e di app	oggio	x =	550 cn	n	
fase 0	[Mpa]	N	М	σss	σs	σi	Ac' =	8373	cmq
peso propri	О	0	3408748,128		2,97	-2,37	Ws'=	114694	cm^3
precompres	ssione	637797	-6821340		1,67	12,36	Wi' =	143850	cm^3
caduta di te	ensione	-14502	155097		-0,04	-0,28			
totale fase	0	623296	-3257495		4,60	9,71	•		
fase 1	[Mpa]	N	М	σss	σs	σi			
getto integr	rativo	0	-153800		-0,13	0,11			
caduta di te	ensione	-27091	289744		-0,07	-0,52			
totale fase	0+1	596205	-3121551		4,40	9,29	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	14221	cmq
carico pern	nanente	0	36800	0,01	0,01	-0,01	Wss" =	320735	cm^3
carichi mob	oili	0	3609400	1,13	0,66	-1,43	Ws" =	545916	cm^3
totale fase	0+1+2	596205	524649	1,14	5,07	7,85	Wi" =	252692	cm^3
fase 3	[Mpa]	N	М	σss	σs	бі			
caduta di te	ensione	-48183	1440322	0,11	-0,07	-0,91			
totale fase	0+1+2+3	548021	1964971	1,25	4,99	6,94	-		

 $\label{eq:lambda} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

Verifiche SLE – stato di tensione sezione a 3.0m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempo in	finito:	σspf =	1160	Мра
Larghezza totale	b =	180	cm		Sezione trefoli	34	da 0.6")	47,3	cmq
Sezione lastra	Ac =	8092	cmq		Baricentro da intradosso			24,8	cmq
Baricentro da intrad.	Ygc =	35,9	cm						
Momento di inerzia	Jc =	5071864	cm^4		Tensione iniziale di tesatur	a	σspt =	1440	Mpa
					Perdita di tensione al mart	inetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciamento	elastico	Δσspe =	47	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei trefoli		σspi =	1350	Мра
Sezione ideale lastra	Ac' =	8373	cmq		Sforzo iniziale di precomp.	: N0 =	σspi x Ai =	6378	kN
Baricentro da intrad.	Ygc' =	35,5	cmq		momento in. di precomp.:	M0 = N0 x	(Yp-Yt') =	68213	kNcm
Momento di inerzia id.	Jc' =	5105117	cm^4						
Modulo resistenza sup	Ws'=	114694	cm/3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	143850	cm^3		Fluage		2 x Δσspe =	95	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-	2.2))%σspi	0.046 σspi =	62	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto Ril x	(1-2.5x(Flu+	-Rit)/σspi) =	45	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefoli		σspf =	1160	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	14221	cmq		suddivisione delle cadute o	li tensione ne	elle varie fasi		
Baricentro da intrad.	Ygc" =	54,7	cm	Мра	al taglio dei trefoli	al getto dell	a soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	13818921	cm/4	Fluage	0	33%	6		37%
Modulo resistenza sol.	Wss" =	320735	cm^3	Rilassam.	40%	30%	6	3	30%
Modulo resistenza sup	Ws" =	545916	cm^3	Ritiro	25%	25%	6	5	50%
Modulo resistenza inf.	Wi" =	252692	cm^3	perdite	31	57		,	102

Distanz	a della sezior	ne di verif	ica dalla sezior	ne di app	oggio	x =	300 cn	n	
fase 0	[Mpa]	N	M	σSS	σs	σi	Ac' =	8373	cmq
peso pro	oprio	0	2220897,499		1,94	-1,54	Ws'=	114694	cm^3
precom	oressione	637797	-6821340		1,67	12,36	Wi' =	143850	cm^3
caduta (di tensione	-14502	155097		-0,04	-0,28			
totale f	ase 0	623296	-4445346		3,57	10,53			
fase 1	[Mpa]	N	М	σss	σs	бі			
getto int	tegrativo	0	391330		0,34	-0,27			
caduta (di tensione	-27091	289744		-0,07	-0,52			
totale f	ase 0+1	596205	-3764272		3,84	9,74			
fase 2	[Mpa]	N	М	σSS	σs	σi	Ac" =	14221	cmq
carico p	ermanente	0	354300	0,11	0,06	-0,14	Wss" =	320735	cm^3
carichi r	mobili	0	5963500	1,86	1,09	-2,36	Ws" =	545916	cm^3
totale f	ase 0+1+2	596205	2553528	1,97	5,00	7,24	Wi" =	252692	cm^3
fase 3	[Mpa]	N	М	σSS	σs	σі			
caduta (di tensione	-48183	1440322	0,11	-0,07	-0,91			
totale f	ase 0+1+2+3	548021	3993850	2,08	4,92	6,33			

$$\label{eq:lambda} \begin{split} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa \end{split}$$

Verifiche SLE – stato di tensione sezione a 1.7m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a temp	o infinito:	σspf =	1160	Mpa
Larghezza totale	b =	180	cm		Sezione trefoli	34	da 0.6")	47,3	cmq
Sezione lastra	Ac =	8092	cmq		Baricentro da intradoss	0		24,8	cmq
Baricentro da intrad.	Ygc =	35,9	cm						
Momento di inerzia	Jc =	5071864	cm ⁴		Tensione iniziale di tes	atura	σspt =	1440	Mpa
					Perdita di tensione al n	nartinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciame	nto elastico	Δσspe =	47	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tre	efoli	σspi =	1350	Mpa
Sezione ideale lastra	Ac' =	8373	cmq		Sforzo iniziale di preco	mp.: N0 =	σspi x Ai =	6378	kN
Baricentro da intrad.	Ygc' =	35,5	cmq		momento in. di precom	p.: M0 = N0 x	(Yp-Yt') =	68213	kNcm
Momento di inerzia id.	Jc' =	5105117	cm ⁴						
Modulo resistenza sup	Ws'=	114694	cm/3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	143850	cm^3		Fluage		2 x Δσspe =	95	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-2.2))% ospi	0.046 σspi =	62	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto F	Ril x (1-2.5x(Flu-	+Rit)/σspi) =	45	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefe	oli	σspf =	1160	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	15533	cmq		suddivisione delle cadu	te di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	57,0	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	14781748	cm/4	Fluage	0	339	%	6	67%
Modulo resistenza sol.	Wss" =	361149	cm^3	Rilassam.	40%	309	%	3	80%
Modulo resistenza sup	Ws" =	641392	cm^3	Ritiro	25%	259	%	5	50%
Modulo resistenza inf.	Wi" =	259540	cm^3	perdite	31	57	7		102

Distanza d	ella sezior	ne di verifi	ica dalla sezior	ne di app	oggio	x =	170 cn	n	
fase 0	[Mpa]	N	М	σss	σs	σi	Ac' =	8373	cmq
peso propri)	0	1248230,133		1,09	-0,87	Ws'=	114694	cm^3
precompres	sione	637797	-6821340		1,67	12,36	Wi' =	143850	cm^3
caduta di te	ensione	-14502	155097		-0,04	-0,28			
totale fase	0	623296	-5418013		2,72	11,21	•		
fase 1	[Mpa]	N	М	σSS	σs	σi			
getto integra	ativo	0	275280		0,24	-0,19			
caduta di te	ensione	-27091	289744		-0,07	-0,52			
totale fase	0+1	596205	-4852989		2,89	10,49	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	15533	cmq
carico perm	anente	0	404500	0,11	0,06	-0,16	Wss" =	361149	cm^3
carichi mob	ili	0	3911300	1,08	0,61	-1,51	Ws" =	641392	cm^3
totale fase	0+1+2	596205	-537189	1,20	3,56	8,83	Wi" =	259540	cm^3
fase 3	[Mpa]	N	М	σSS	σs	σi			
caduta di te	ensione	-48183	1549550	0,12	-0,07	-0,91			
totale fase	0+1+2+3	548021	1012360	1,31	3,49	7,92	•		

 $\label{eq:lambda} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

Verifiche SLE – stato di tensione sezione a 1.0m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	45	cm		Tensione trefoli a tempo	infinito:	σspf =	1160	Mpa
Larghezza totale	b =	180	cm		Sezione trefoli	34	da 0.6")	47,3	cmq
Sezione lastra	Ac =	8100	cmq		Baricentro da intradosso			24,8	cmq
Baricentro da intrad.	Ygc =	22,5	cm						
Momento di inerzia	Jc =	1366875	cm^4		Tensione iniziale di tesat	ura	σspt =	1440	Mpa
					Perdita di tensione al ma	rtinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciamen	to elastico	$\Delta \sigma spe =$	47	MPa
Altezza lastra	Ht =	45	cm		Tensione iniziale nei trefo	oli	σspi =	1350	Mpa
Sezione ideale lastra	Ac' =	8381	cmq		Sforzo iniziale di precom	p.: N0 =	σspi x Ai =	6378	kN
Baricentro da intrad.	Ygc' =	22,6	cmq		momento in. di precomp.	: $M0 = N0 x$	(Yp-Yt') =	-14141	kNcm
Momento di inerzia id.	Jc' =	1368304	cm^4						
Modulo resistenza sup	Ws'=	61022	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	60606	cm^3		Fluage		2 x Δσspe =	95	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.	8-2.2))%σspi	0.046 σspi =	62	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto Ril	x (1-2.5x(Flu+	-Rit)/σspi) =	45	MPa
Altezza lastra	Ht=	45	cm		Tensione finale nei trefoli		σspf =	1160	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	17794	cmq		suddivisione delle cadute	di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	49,0	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	14791067	cm ⁴	Fluage	0	33%	%	6	67%
Modulo resistenza sol.	Wss" =	304938	cm^3	Rilassam.	40%	30%	%	3	80%
Modulo resistenza sup	Ws" =	476923	cm^3	Ritiro	25%	25%	%	5	50%
Modulo resistenza inf.	Wi" =	301942	cm^3	perdite	31	57	7		102

Distanza della	sezione di v	erifica dalla se	zione di app	oggio	x =	100 cr	n	
fase 0 [Mpa	1] N	М	σSS	σs	σi	Ac' =	8381	cmq
peso proprio	0	287174,21	07	0,47	-0,47	Ws' =	61022	cm^3
precompression	e 6377	97 1414132		9,93	5,28	Wi' =	60606	cm/3
caduta di tensio	ne -1450	2 -32153		-0,23	-0,12			
totale fase 0	6232	96 1669153	1	10,17	4,68	-		
fase 1 [Mpa	ı] N	М	σss	σs	σі			
getto integrativo	0	99570		0,16	-0,16			
caduta di tensio	ne -2709	-60067		-0,42	-0,22			
totale fase 0+1	5962	05 1708657	,	9,91	4,29	-		
fase 2 [Mpa	ı] N	М	σss	σs	бі	Ac" =	17794	cmq
carico permaner	nte 0	382200	0,13	0,08	-0,13	Wss" =	304938	cm/3
carichi mobili	0	1638700	0,54	0,34	-0,54	Ws" =	476923	cm/3
totale fase 0+1	+2 5962	05 3729557	0,66	10,34	3,63	Wi" =	301942	cm^3
fase 3 [Mpa	ı] N	М	σSS	σs	σі			
caduta di tensio	ne -4818	33 1165667	0,11	-0,03	-0,66	_		
totale fase 0+1	+2+3 5480	21 4895224	0,77	10,31	2,97	_		

 $\label{eq:lambda} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

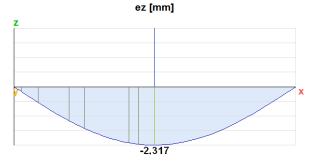
Verifiche SLE - stato di tensione sezione all'attacco delle nervature al traverso di testa

geometria della trave					precompressione				
Altezza lastra	Ht =	45	cm		Tensione trefoli a tempo in	finito:	σspf =	1160	Мра
Larghezza totale	b =	180	cm		Sezione trefoli	34	da 0.6")	47,3	cmq
Sezione lastra	Ac =	8100	cmq		Baricentro da intradosso			24,8	cmq
Baricentro da intrad.	Ygc =	22,5	cm						
Momento di inerzia	Jc =	1366875	cm ⁴		Tensione iniziale di tesatu	ra	σspt =	1440	Мра
					Perdita di tensione al mart	inetto 3%	Δσspm =	43	Мра
sezione lastra omoger	neizzata				Perdita per accorciamento	elastico	$\Delta \sigma spe =$	47	MPa
Altezza lastra	Ht =	45	cm		Tensione iniziale nei trefoli	j	σspi =	1350	Мра
Sezione ideale lastra	Ac' =	8381	cmq		Sforzo iniziale di precomp.	.: N0 =	σspi x Ai =	6378	kN
Baricentro da intrad.	Ygc' =	22,6	cmq		momento in. di precomp.:	M0 = N0 x	(Yp-Yt') =	-14141	kNcm
Momento di inerzia id.	Jc' =	1368304	cm ⁴						
Modulo resistenza sup	Ws'=	61022	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	60606	cm^3		Fluage		2 x Δσspe =	95	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-	-2.2))%σspi	0.046 σspi =	62	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto Ril x	(1-2.5x(Flu+	⊦Rit)/σspi) =	45	MPa
Altezza lastra	Ht=	45	cm		Tensione finale nei trefoli		σspf =	1160	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	17794	cmq		suddivisione delle cadute d	di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	49,0	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	14791067	cm ⁴	Fluage	0	33%	%		67%
Modulo resistenza sol.	Wss" =	304938	cm^3	Rilassam.	40%	30%	%	3	80%
Modulo resistenza sup	Ws" =	476923	cm^3	Ritiro	25%	25%	%	5	50%
Modulo resistenza inf.	Wi" =	301942	cm^3	perdite	31	57	7		102

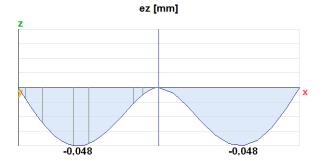
Distanza della sezio	one di verifi	ca dalla sezio	one di appo	oggio	x =	70 cn	า	
fase 0 [Mpa]	N	M	σSS	σs	σі	Ac' =	8381	cmq
peso proprio	0	0		0,00	0,00	Ws' =	61022	cm^3
precompressione	637797	1414132		9,93	5,28	Wi' =	60606	cm^3
caduta di tensione	-14502	-32153		-0,23	-0,12			
totale fase 0	623296	1381979		9,70	5,16			
fase 1 [Mpa]	N	M	σss	σs	бі			
getto integrativo	0	0		0,00	0,00			
caduta di tensione	-27091	-60067		-0,42	-0,22			
totale fase 0+1	596205	1321912		9,28	4,93			
fase 2 [Mpa]	N	M	σss	σs	бі	Ac" =	17794	cmq
carico permanente	0	355900	0,12	0,07	-0,12	Wss" =	304938	cm^3
carichi mobili	0	-560000	-0,18	-0,12	0,19	Ws" =	476923	cm^3
totale fase 0+1+2	596205	1117812	-0,07	9,24	5,00	Wi" =	301942	cm^3
fase 3 [Mpa]	N	M	σss	σs	бі			
caduta di tensione	-48183	1165667	0,11	-0,03	-0,66			
totale fase 0+1+2+3	548021	2283480	0,04	9,21	4,34			

La sezione è sempre compressa

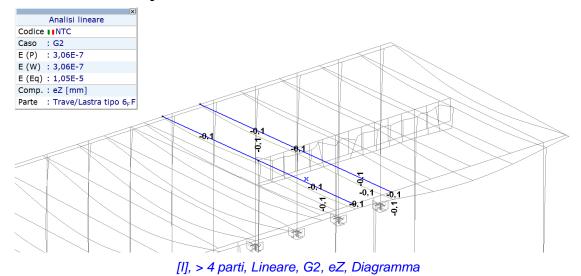
 $\sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa \qquad \qquad \sigma \; getto \; in \; opera < 0.6 \; f_{ck} = 22.41 \; MPa \label{eq:sigma}$


4.5.4.4.1 Verifiche SLE – fessurazione

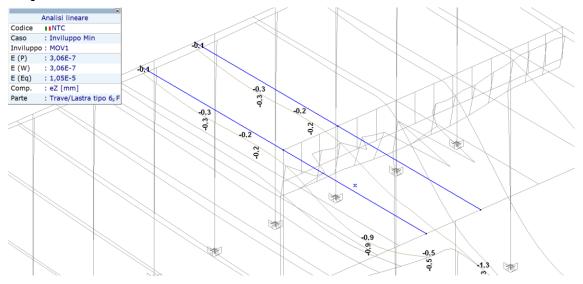
Le sezioni di calcestruzzo delle lastre risultano sempre compresse; non si ha mai apertura delle fessure.


4.5.4.5 Verifica delle deformazioni

Calcolo delle frecce nelle diverse ipotesi


■ G1 – peso proprio lastra

■ G1 – peso getto di completamento soletta



■ G2 – sovraccarico permanente

■ qi – sovraccarico variabile

• εI – Precompressione

$$ez = Mp l^2 / [4 \cdot E \cdot I]$$

T	L	Tensioni Mpa		Npi	Mpi	l i	$e_{z,p}$
Trave	m			kN	kNm	cm^4	mm
		tensione iniziale nei trefoli	1349,5	6378,0	452,2	3906822,4	-6,87
Tipo 6	13,15	perdite a tempo iniziale:	-30,7	-145,0	-10,3	3906822,4	0,31
про	13,13	perdite al getto della soletta:	-57,3	-270,9	-19,2	3906822,4	0,58
		perdite a tempo finale	-102,0	-481,8	-227,4	32310080,0	0,84
						e _{z,p} finale	-5,14

Verifica delle deformazioni nel SLE_R

Si conduce una verifica allo Stato Limite di Servizio per la deformazione della campata di riva, più sollecitata. Per la precompressione, per le azioni permanenti e per le azioni variabili, si assumono nelle combinazioni di carico allo stato limite di deformazione i coefficienti $\gamma p = \gamma g = \gamma q = 1$.

Fase 0: rilascio della precompressione

Deformazione in mezzeria della lastra per peso proprio e precompressione: η0

Fase 1: getto della soletta integrativa

Deformazione in mezzeria della lastra per peso proprio, precompressione + getto: η1

21_08_PE_R416_0 Calcoli esecutivi delle strutture – Copertura Fosso Melara Pag. 80	0 di 156
--	----------

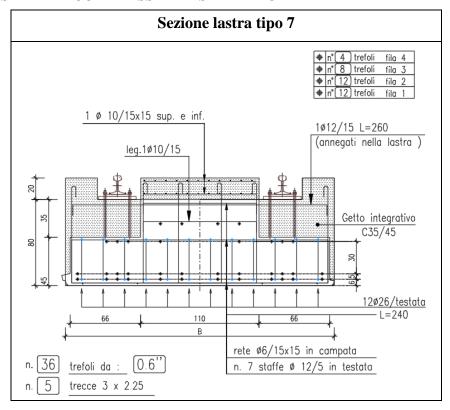
Progetto Esecutivo

Fase 2: carichi permanenti

Deformazione in mezzeria: $\eta 2$

Fase 3: carichi mobili massimi

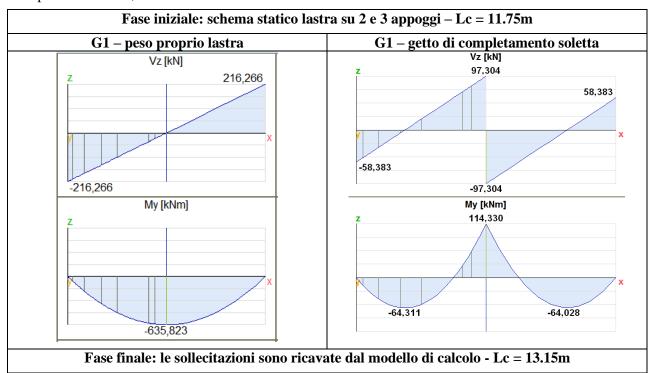
Deformazione totale massima in mezzeria: $\eta 3$

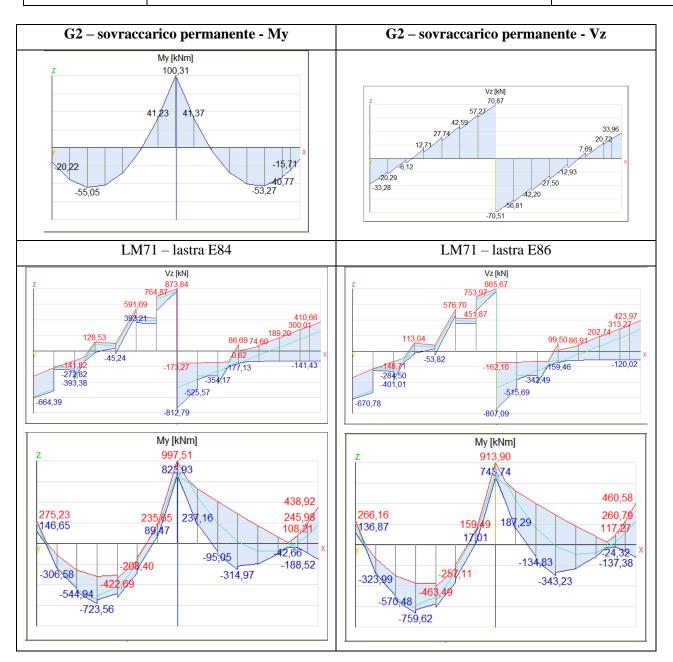

Tabella

Ipotesi Trave	G1-1	ez,p	G1-2	G2	Q1
	[mm]	[mm]	[mm]	[mm]	[mm]
Tipo 6	1,65	-5,139	0,05	0,1	0,9

η0	η1	η2	η3		
[mm]	[mm]	[mm]	[mm]		
-4,9	-4,3	-3,3	-2,4		

MAX SLE	L/ez(Q1)
[mm]	[-]
-2,4	14611


4.5.5 LASTRE PRECOMPRESSE – LASTRA TIPO 7



4.5.5.1 Sollecitazioni di calcolo per ciascun carico

L'analisi è condotta sulla lastra da 2.50m di larghezza.

$$G1-p = 36.78 \text{ kN/m};$$
 $G1-s = 26.50 \text{ kN/m}$

• $\varepsilon 1$ – Precompressione

Tipo acciaio armonico: trefolo 0.6" stabilizzato.

Numero trefoli : 36

I trefoli vengono sistemati su 4 livelli:

- n° 12 trefoli a 60 mm dall'intradosso soletta;
- n° 12 trefoli a 110 mm dall'intradosso soletta;
- n° 8 trefoli a 410 mm dall'intradosso soletta;
- n° 4 trefoli a 575 mm dall'intradosso soletta;

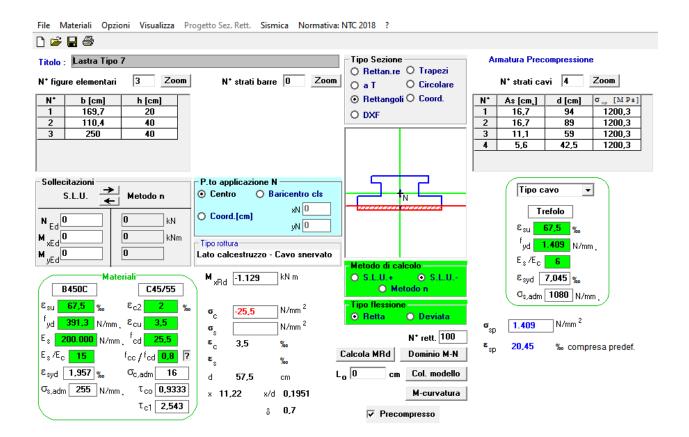
La tensione nei trefoli a tempo infinito è di 1200,3 Mpa.

$$Np = 1200,3 \times 139 \times 36 = 600648 \text{ daN}$$

 $Mp = -Np \times (Ygci-Ygi) = -600648 \times (0,306-0,212) = -56619,89 \text{ daNm}$

4.5.5.2 Verifiche allo S.L.U.

La verifica viene eseguita sulla sezione equivalente a rettangoli sovrapposti, costituita dal sistema lastra+soletta. Le dimensioni della soletta vengono ridotte del coefficiente di omogeneizzazione 0,95: (Ec,soletta/Ec,lastra)

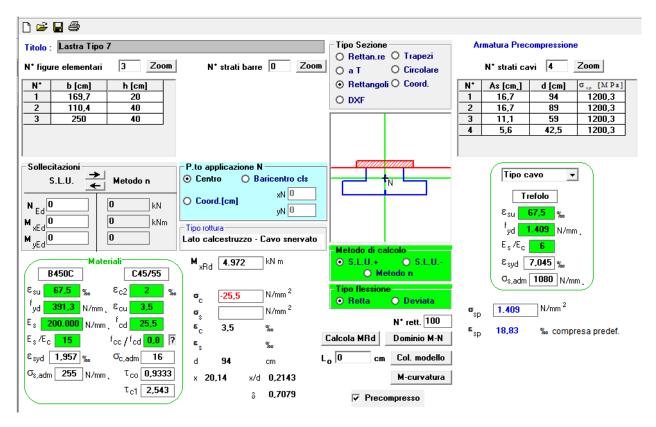

$$M_{Ed}\text{:}\quad \gamma_{G1}M_{G1}+\gamma_{G2}M_{G2}+\gamma_{Q}M_{Q}$$

con:
$$\gamma_{G1}=1,35 \text{ sfav}$$
 $\gamma_{G2}=1,5$ $\gamma_{Q}=1,45$

 γ_{G1} = 1,00 fav

- sezione su appoggio centrale

d	G1-1	G1-2	G2	q1	SLU
m	kNm	kNm	kNm	kNm	kNm
Mezzeria	635,82	-114,33	-100,31	-997,51	-1116,3



M_{Rd} = 1129 kNm > 1116,3 kNm => verifica soddisfatta

- sezione in mezzeria della semicampata

d	G1-1	G1-2	G2	q1	SLU
m	kNm	kNm	kNm	kNm	kNm
L/4	477,27	64,31	55,05	759,62	1915,16

M_{Rd} = 4972 kNm > 1888,1 kNm => verifica soddisfatta

4.5.5.3 Verifiche allo S.L.U. per taglio e torsione

1) Lato spalla

Taglio sollecitante ultimo:

 $V_{Ed} \colon \quad \gamma_{G1} V_{G1} + \gamma_{G2} V_{G2} + \gamma_{Q} V_{Q}$

con: $\gamma_{G1} = 1,35$ $\gamma_{G2} = 1,5$ $\gamma_{Q} = 1,45$

Il momento torcente, dovuto solo a disuniformità dei carichi permanenti portati e ad eventuale presenza di carichi mobili, rappresenta una sollecitazione minore e non essenziale all'equilibrio della struttura; viene pertanto trascurata.

d F1	d F2	G1-p	G1-g	G2	Qk	SLU
m		kN	kN	kN	kN	kN
0	0,7	216,14	58,38	21,32	670,78	1375,2
0,5	1,2	197,75	45,13	14,79	618,78	1247,3
1,8	2,5	149,92	10,68	3,26	509,90	961,0
2	2,7	142,56	5,38	55,47	401,01	864,4

Caratteristiche Calcestruzzo:			
Classe di resistenza :			C45/55
Resistenza caratt.:	R_{ck}	=	55 N/mm ²
Coefficienti di sicurezza e parametri di riduzione della resister	ıza:		
Coeff. di sicurezza :	γ _c	=	1,50
Coeff. di sic. addizionale per compressione centrata:	η_{cc}	=	1,25
Coeff. riduttivo per rottura a termine :	β	=	0,85
Resistenze di calcolo:			
Res. caratt. a compressione:	$f_{ck} = 0.83 \cdot R_{ck}$	=	45,65 N/mm²
Res. a compressione di calcolo:	$f_{cd} = \beta \cdot f_{ck} / \gamma_c$	=	25,87 N/mm ²
Res. media. a compressione:	$f_{cm} = f_{ck} + 8N/mm^2$	=	53,65 N/mm ²
Res. a trazione media di progetto:	$f_{ctm} = 0.30 f_{ck}^{2/3}$	=	3,83 N/mm²
Res. a trazione caratt. di progetto:	$f_{ctk} = 0.70 f_{ctm}$	=	2,68 N/mm ²
Res. tangenziale caratt. di aderenza di progetto:	$f_{bk} = 2,25f_{ctk}$	=	6,04 N/mm ²
Res. a trazione di calcolo:	$f_{ctd} = f_{ctk}/\gamma_c$	=	1,79 N/mm²
Acciaio per cemento armato:			
Classe dell'acciaio:			B450C
Coeff. di sicurezza :	γs	=	1,15
Resistenze di calcolo:			
Tensione carat. di snervamento:	f_{yk}	=	450 N/mm ²
Resistenza di calcolo:	$f_{yd} = f_{yk} / \gamma_s$	=	391,3 N/mm ²

Sezione di testa x = 70cm (0 fase 1)

altezza utile					d	1000 mm
base equivalente	base equivalente bw					
Armature resistenti per le v	erifiche/	a taglio	:			
Diametro, numero bracci, pas	so medi	o, inclina	zione, ar	ea resistente e rapporto di a	rmatura :	
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	Swi			
	[-]	[mm]	[cm]			
staffe/molle:	6	10	7,5		A _{sw1} =	4,71 cm ²
tralicci	6	6	15		A _{sw2} =	1,70 cm ²
		-			$A_{sw} =$	6,41 cm ²
		V_{R_0}	$_{\rm rd} = 0.9$	$d \cdot b_w \cdot f'_{cd} \cdot \alpha_c \cdot ctg\theta/(1+ct)$	$tg^2\theta$) =	14550,9 <i>kN</i>
				$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd}$		2611,1 <i>kN</i>
$V_{Rd} =$						2611,1 kN
$V_{Sd} =$						1375,2 <i>kN</i>
					ls =	52,67%

Sezione di testa x = 120cm (50 fase 1)

Oczione di testa x = 1200m (Job lasc	'/			
altezza utile				d	1000 mm
base equivalente				bw	2500 mm
Armature resistenti per le	verifiche	a taglio) :		
Diametro, numero bracci, pas	sso medi	o, inclina	zione, ar	ea resistente e rapporto di armatura :	
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	S _{wi}		
	[-]	[mm]	[cm]		
staffe/molle:	6	10	7,5	A _{sw1} =	4,71 cm ²
tralicci	6	6	15	A _{sw2} =	1,70 cm ²
	-	-		A _{sw} =	6,41 cm ²
		V_{R}	$_{\rm cd} = 0.9$	$d \cdot b_{w} \cdot f'_{cd} \cdot \alpha_{c} \cdot ctg\theta/(1+ctg^{2}\theta) =$	14550,9 kN
			7	$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} \cdot ctg\theta =$	2611,1 kN
				•	
				$V_{Rd} =$	2611,1 kN
				V _{Sd} =	1247,3 kN
				ls =	47,77%

Sezione di testa x = 250cm (180 fase 0)

Sezione di testa x = 250cm (100 lase	0)			
altezza utile				d	1000 mm
base equivalente				bw	2500 mm
Armature resistenti per le v	erifiche/	a taglio	:		
Diametro, numero bracci, pas	so medi	o, inclina	zione, ar	ea resistente e rapporto di armatura	:
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	Swi		
	[-]	[mm]	[cm]		
staffe/molle:	6	10	7,5	A _{sw1} =	4,71 cm ²
tralicci	6	6	15	A _{sw2} =	1,70 cm ²
				A _{sw} =	6,41 cm ²
		V_{Ro}	$_{\rm cd} = 0.9$	$d \cdot b_{w} \cdot f'_{cd} \cdot \alpha_{c} \cdot ctg\theta/(1+ctg^{2}\theta) =$	14550,9 <i>kN</i>
			7	$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} \cdot ctg\theta =$	2611,1 <i>kN</i>
				V_{Rd} =	2611,1 <i>kN</i>
				V_{Sd} =	961,0 <i>kN</i>
	•	•	•	ls =	36,81%

Sezione di testa x = 270cm (200 fase 0)

altezza utile d =	1000 mm
base equivalente $b_w =$	2500 mm
$f_{\rm ctd} =$	1,79 MPa
$N_p =$	600480 daN
A _c =	14790 cm ²
$\sigma_{\rm cp} = N_{\rm p} / A_{\rm c} =$	4,06 МРа
$\sigma_{cp} = N_p / A_c = V_{Rd} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = V_{Rd} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = 0.7 \cdot d \cdot d \cdot d \cdot d \cdot$	6063,5 <i>kN</i>
$V_{Sd} =$	864,4 kN
ls =	14,26%

Verifiche allo S.L.U. armatura all'appoggio

Si verifica lo stato tensionale dell'armatura longitudinale inferiore all'appoggio che garantisce il funzionamento del modello a traliccio in quella zona del manufatto, soggetta alla forza concentrata rappresentata dalla reazione dell'appoggio.

La verifica viene eseguita nelle ipotesi che lo sforzo longitudinale inferiore sia pari al taglio e che tale sforzo sia mitigato dalla presenza dello sforzo di compressione longitudinale esercitato dai trefoli attivi (non inguainati).

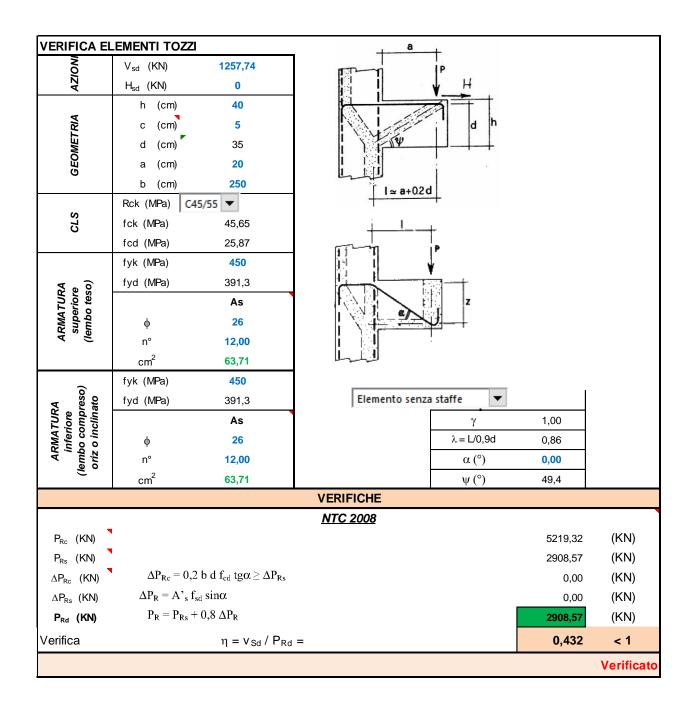
Per valutare la compressione data dai trefoli si ipotizza una legge lineare di trasferimento del carico dai trefoli al calcestruzzo per una lunghezza di 75 cm a partire dalla testata della trave, per cui all'appoggio la precompressione è ancora molto bassa. Si adotta prudenzialmente un coefficiente riduttivo per tale compressione pari a 0.7.

Verifiche allo S.L.U. armatura all'appoggio

verificile allo 3.L.O. armatu	ia aii apj	Juggiu		
Taglio totale di calcolo			V _{Ed} =	1375,2 kN
Numero di trefoli attivi	36		Tensione finale trefoli = Compressione totale =	1200 <i>MPa</i> 952,76 kN < V _{Ed}
L'armatura longitudinale	ni	Фі		
	[-]	[mm]		
si predispongono ad testata	12	26	A _s =	63,71 cm ²
			$V_{Rd} = A_s x f_{yd} =$	2493,1 kN
			ls =	55,16%

2) <u>Lato trave</u>

Taglio sollecitante ultimo:


 V_{Ed} : $\gamma_{G1}V_{G1} + \gamma_{G2}V_{G2} + \gamma_{Q}V_{Q}$

con: $\gamma_{G1} = 1,35$

 $\gamma_{G2} = 1,5$

 $\gamma_{\rm Q}=1,45$

d F1	d F2	G1-p	G1-g	G2	Qk	SLU
r	n	kN	kN	kN	kN	kN
0	0,7	120,08	58,38	33,96	670,78	1257,74

Progetto Esecutivo

4.5.5.4 Verifiche SLE – verifica delle tensioni

Tensioni iniziali nel calcestruzzo

$$\sigma_c < 0.70 f_{ckj}$$

essendo f_{ckj} la resistenza caratteristica del calcestruzzo all'atto del tiro.

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:

 $\sigma_c < 0.60 \; f_{ck}$ - per combinazione caratteristica (rara)

 $\sigma_c < 0.45 \ f_{ck}$ - per combinazione quasi permanente.

Nella zona di ancoraggio delle armature si possono tollerare compressioni locali σ_c prodotte dagli apparecchi di ancoraggio pari a: $\sigma_c < 0.90 \; f_{ckj}$.

Tensioni limite per gli acciai da precompressione

$$\sigma_{spi} < 0.90 \; f_{p(0,1)k} \qquad \qquad \sigma_{spi} < 0.80 \; f_{ptk} \; \text{- per armatura pre-tesa.}$$

Progetto Esecutivo

Verifiche SLE – stato di tensione sezione di mezzeria

geometria della trav			
Altezza lastra	Ht =	80	cm
Larghezza totale	b =	210	cm
Sezione lastra	Ac =	11590	cmq
Baricentro da intrad.	Ygc =	30,8	cm
Momento di inerzia	Jc =	4919861	cm^4

sezione lastra omoge			
Altezza lastra	Ht =	80	cm
Sezione ideale lastra	Ac' =	11888	cmq
Baricentro da intrad.	Ygc' =	30,6	cmq
Momento di inerzia id.	Jc' =	4946973	cm^4
Modulo resistenza sup	Ws' =	100127	cm^3
Modulo resistenza inf.	Wi' =	161702	cm^3

sezione omogeneizz	ata comple	eta del getto	di soletta
E(getto)/E(lastra)	n" =	0,95	
Altezza lastra	Ht=	80	cm
Spessore soletta	Hs =	20	cm
Sezione ideale totale	Ac" =	21111	cmq
Baricentro da intrad.	Ygc" =	48,7	cm

precompressione				
Tensione trefoli a tem	po infinito:	σspf =	1200	Мра
Sezione trefoli	36	da 0.6")	50,0	cmq
Baricentro da intrados	SO SO		21,2	cmq
precompressione				
Tensione iniziale di te	satura	σspt =	1440	Мра
Perdita di tensione al	martinetto 3%	Δσspm =	43	Мра
Perdita per accorciam	ento elastico	Δσspe =	32	MPa
Tensione iniziale nei t	refoli	σspi =	1365	Мра
Sforzo iniziale di preci	omp.: N0 =	σspi x Ai =	6828	kN
momento in. di precor	mp.: $M0 = N0 \times ($	Yp-Yt') =	64364	kNcm

Cadute di	tensione				
Fluage			2 x Δσspe =	65	Мра
Ritiro εr =	0,00025		εr x Ep =	50	Мра
Rilassame	nto (2.8+3x	(2.8-2.2))%σspi	0.046 σspi =	63	Мра
Rilassame	nto ridotto	Ril x (1-2.5x(Flu+F	Rit)/ospi) =	50	MPa
Tensione fi	nale nei tre	foli	σspf =	1200	MPa

Spessore soletta	Hs =	20	cm				
Sezione ideale totale	Ac" =	21111	cmq		suddivisione delle c	adute di tensione nelle varie	fasi
Baricentro da intrad.	Ygc" =	48,7	cm	Мра	al taglio dei trefoli	al getto della soletta	a tempo infinito
Momento di inerzia tot	Jc" =	16218701	cm ⁴	Fluage	0	33%	67%
Modulo resistenza sol.	Wss" =	332789	cm^3	Rilassam.	40%	30%	30%
Modulo resistenza sup	Ws" =	518898	cm^3	Ritiro	25%	25%	50%
Modulo resistenza inf.	Wi" =	332732	cm^3	perdite	32	49	83

Distanza della sezio	ne di verif	ica dalla sezior	ne di app	oggio	x =	658 cn	า	
fase 0 [Mpa]	N	М	σss	σs	σi	Ac' =	11888	cmq
peso proprio	0	6133705,995		6,13	-3,79	Ws'=	100127	cm^3
precompressione	682800	-6436392		-0,68	9,72	Wi' =	161702	cm^3
caduta di tensione	-16181	152530		0,02	-0,23			
totale fase 0	666619	-150156		5,46	5,70	•		
fase 1 [Mpa]	N	М	σss	σs	σi			
getto integrativo	0	-1145250		-1,14	0,71			
caduta di tensione	-24364	229668		0,02	-0,35			
totale fase 0+1	642255	-1065739		4,34	6,06	•		
fase 2 [Mpa]	N	М	σss	σs	σi	Ac" =	21111	cmq
carico permanente	0	-1003100	-0,30	-0,19	0,30	Wss" =	332789	cm^3
carichi mobili	0	-9975100	-3,00	-1,92	3,00	Ws" =	518898	cm^3
totale fase 0+1+2	642255	-12043939	-3,30	2,22	9,36	Wi" =	332732	cm^3
fase 3 [Mpa]	N	М	σss	σS	σі			
caduta di tensione	-41607	1147406	0,15	0,02	-0,54	-		
totale fase 0+1+2+3	600648	-10896533	-3,15	2,25	8,82			

La sezione è sempre compressa σ lastra $< 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera < 0.6 f_{ck} = 22.41 MPa

Verifiche SLE – stato di tensione sezione a 5.9m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempo in	nfinito:	σspf =	1200	Мра
Larghezza totale	b =	250	cm		Sezione trefoli	36	da 0.6")	50,0	cmq
Sezione lastra	Ac =	14790	cmq		Baricentro da intradosso			21,2	cmq
Baricentro da intrad.	Ygc =	32,8	cm						
Momento di inerzia	Jc =	6837161	cm^4		Tensione iniziale di tesatu	ıra	σspt =	1440	Мра
					Perdita di tensione al mar	tinetto 3%	Δσspm =	43	Мра
sezione lastra omoger	neizzata				Perdita per accorciamento	elastico	$\Delta \sigma spe =$	32	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei trefo	i	σspi =	1365	Мра
Sezione ideale lastra	Ac' =	15088	cmq		Sforzo iniziale di precomp	.: N0 =	σspi x Ai =	6828	kN
Baricentro da intrad.	Ygc' =	32,6	cmq		momento in. di precomp.:	M0 = N0 x	(Yp-Yt') =	77987	kNcm
Momento di inerzia id.	Jc' =	6876748	cm/4						
Modulo resistenza sup	Ws'=	145043	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	211019	cm^3		Fluage		2 x Δσspe =	65	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8	-2.2))%σspi	0.046 σspi =	63	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto Ril:	k (1-2.5x(Flu+	-Rit)/σspi) =	50	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefoli		σspf =	1200	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	22980	cmq		suddivisione delle cadute	di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	46,7	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	17688992	cm/4	Fluage	0	33%	6		67%
Modulo resistenza sol.	Wss" =	349232	cm/3	3 Rilassam. 40% 30% 30%				30%	
Modulo resistenza sup	Ws" =	531672	cm/3	Ritiro	25%	25%	6	5	50%
Modulo resistenza inf.	Wi" =	378540	cm^3	perdite	32	49			83

Distanz	a della sezior	ne di verif	ica dalla sezior	ne di app	oggio	x =	590 cn	n	
fase 0	[Mpa]	N	M	σss	σs	σi	Ac' =	15088	cmq
peso pro	prio	0	6049909,371		4,17	-2,87	Ws'=	145043	cm^3
precomp	oressione	682800	-7798654		-0,85	8,22	Wi' =	211019	cm^3
caduta d	di tensione	-16181	184813		0,02	-0,19			
totale fa	ase 0	666619	-1563932		3,34	5,16	•		
fase 1	[Mpa]	N	М	σss	σs	σi			
getto int	egrativo	0	-548600		-0,38	0,26			
caduta d	di tensione	-24364	278277		0,03	-0,29			
totale fa	ase 0+1	642255	-1834255		2,99	5,13	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	22980	cmq
carico p	ermanente	0	-372400	-0,11	-0,07	0,10	Wss" =	349232	cm^3
carichi r	nobili	0	-7250700	-2,08	-1,36	1,92	Ws" =	531672	cm^3
totale fa	ase 0+1+2	642255	-9457355	-2,18	1,56	7,14	Wi" =	378540	cm^3
fase 3	[Mpa]	N	М	σss	σs	σі			
caduta d	di tensione	-41607	1063590	0,12	0,02	-0,46	_		
totale fa	ase 0+1+2+3	600648	-8393765	-2,06	1,58	6,68	-		

 $\label{eq:lambda} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

Verifiche SLE – stato di tensione sezione a 3.65m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a temp	o infinito:	σspf =	1200	Mpa
Larghezza totale	b =	250	cm		Sezione trefoli	36	da 0.6")	50,0	cmq
Sezione lastra	Ac =	14790	cmq		Baricentro da intradoss	30		21,2	cmq
Baricentro da intrad.	Ygc =	32,8	cm						
Momento di inerzia	Jc =	6837161	cm^4		Tensione iniziale di tes	atura	σspt =	1440	Mpa
					Perdita di tensione al r	nartinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciame	ento elastico	Δσspe =	32	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tr	efoli	σspi =	1365	Мра
Sezione ideale lastra	Ac' =	15088	cmq		Sforzo iniziale di preco	mp.: N0 =	σspi x Ai =	6828	kN
Baricentro da intrad.	Ygc' =	32,6	cmq		momento in. di precom	np.: M0 = N0 x	(Yp-Yt') =	77987	kNcm
Momento di inerzia id.	Jc' =	6876748	cm^4						
Modulo resistenza sup	Ws'=	145043	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	211019	cm/3		Fluage		2 x Δσspe =	65	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x)	2.8-2.2))%σspi	0.046 σspi =	63	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto I	Ril x (1-2.5x(Flu-	-Rit)/σspi) =	50	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei tref	oli	σspf =	1200	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	26640	cmq		suddivisione delle cadu	ite di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	48,9	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	18848029	cm^4	Fluage	0	33%	6		67%
Modulo resistenza sol.	Wss" =	387894	cm^3				80%		
Modulo resistenza sup	Ws" =	605978	cm^3	Ritiro	25%	25%	6	5	50%
Modulo resistenza inf.	Wi" =	385468	cm^3	perdite	32	49)		83

Distanza	della sezior	ne di verif	ica dalla sezior	ne di app	oggio	x =	365 cn	n	
fase 0	[Mpa]	N	М	σSS	σs	σi	Ac' =	15088	cmq
peso propi	rio	0	4560191,605		3,14	-2,16	Ws'=	145043	cm^3
precompre	essione	682800	-7798654		-0,85	8,22	Wi' =	211019	cm^3
caduta di t	tensione	-16181	184813		0,02	-0,19			
totale fas	e 0	666619	-3053650		2,31	5,87	•		
fase 1	[Mpa]	N	М	σSS	σs	σi			
getto integ	grativo	0	-251990		-0,17	0,12			
caduta di	tensione	-24364	278277		0,03	-0,29			
totale fas	e 0+1	642255	-3027363		2,17	5,69	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	26640	cmq
carico per	manente	0	422600	0,11	0,07	-0,11	Wss" =	387894	cm^3
carichi mo	obili	0	-6383500	-1,65	-1,05	1,66	Ws" =	605978	cm^3
totale fas	se 0+1+2	642255	-8988263	-1,54	1,19	7,24	Wi" =	385468	cm^3
fase 3	[Mpa]	N	М	σss	σs	σi			
caduta di t	tensione	-41607	1153754	0,14	0,03	-0,46			
totale fas	e 0+1+2+3	600648	-7834509	-1,40	1,22	6,78	•		

$$\label{eq:lambda} \begin{split} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa \end{split}$$

Verifiche SLE – stato di tensione sezione a 2.7m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempo	infinito:	σspf =	1200	Mpa
Larghezza totale	b =	250	cm		Sezione trefoli	36	da 0.6")	50,0	cmq
Sezione lastra	Ac =	14790	cmq		Baricentro da intradoss)		21,2	cmq
Baricentro da intrad.	Ygc =	32,8	cm						
Momento di inerzia	Jc =	6837161	cm^4		Tensione iniziale di tesa	atura	σspt =	1440	Мра
					Perdita di tensione al m	artinetto 3%	Δσspm =	43	Мра
sezione lastra omoger	neizzata				Perdita per accorciame	nto elastico	Δσspe =	32	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tre	foli	σspi =	1365	Mpa
Sezione ideale lastra	Ac' =	15088	cmq		Sforzo iniziale di precor	np.: N0 =	σspi x Ai =	6828	kN
Baricentro da intrad.	Ygc' =	32,6	cmq		momento in. di precomp	o.: $M0 = N0 x$	((Yp-Yt') =	77987	kNcm
Momento di inerzia id.	Jc' =	6876748	cm^4						
Modulo resistenza sup	Ws'=	145043	cm/3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	211019	cm/3		Fluage		2 x Δσspe =	65	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2	2.8-2.2))%σspi	0.046 σspi =	63	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto R	il x (1-2.5x(Flu-	+Rit)/σspi) =	50	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefo	li	σspf =	1200	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	26640	cmq		suddivisione delle cadut	e di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	48,9	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	18848029	cm^4	Fluage	0	339	%	. 6	67%
Modulo resistenza sol.	Wss" =	387894	cm^3	Rilassam. 40% 30% 30%			30%		
Modulo resistenza sup	Ws" =	605978	cm/3	Ritiro	25%	259	%	5	50%
Modulo resistenza inf.	Wi" =	385468	cm^3	perdite	32	49)		83

Distanza	della sezior	ne di verif	ica dalla sezior	ne di app	oggio	x =	270 cn	n	
fase 0	[Mpa]	N	М	σSS	σs	σi	Ac' =	15088	cmq
peso prop	orio	0	3372095,708		2,32	-1,60	Ws'=	145043	cm^3
precompr	essione	682800	-7798654		-0,85	8,22	Wi' =	211019	cm^3
caduta di	tensione	-16181	184813		0,02	-0,19			
totale fas	se 0	666619	-4241745		1,49	6,43	•		
fase 1	[Mpa]	N	М	σSS	σs	σi			
getto inte	grativo	0	568300		0,39	-0,27			
caduta di	tensione	-24364	278277		0,03	-0,29			
totale fas	se 0+1	642255	-3395169		1,92	5,87	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	26640	cmq
carico per	rmanente	0	489600	0,13	0,08	-0,13	Wss" =	387894	cm^3
carichi me	obili	0	-2434700	-0,63	-0,40	0,63	Ws" =	605978	cm^3
totale fas	se 0+1+2	642255	-5340269	-0,50	1,59	6,37	Wi" =	385468	cm^3
fase 3	[Mpa]	N	М	σSS	σs	σi			
caduta di	tensione	-41607	1153754	0,14	0,03	-0,46			
totale fas	se 0+1+2+3	600648	-4186515	-0,36	1,63	5,91			

La sezione è sempre compressa σ lastra $< 0.6~f_{ck} = 27.39~MPa$

Verifiche SLE – stato di tensione sezione a 1.7m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempe	o infinito:	σspf =	1200	Mpa
Larghezza totale	b =	250	cm		Sezione trefoli	36	da 0.6")	50,0	cmq
Sezione lastra	Ac =	14790	cmq		Baricentro da intradoss	0		21,2	cmq
Baricentro da intrad.	Ygc =	32,8	cm						
Momento di inerzia	Jc =	6837161	cm^4		Tensione iniziale di tes	atura	σspt =	1440	Mpa
					Perdita di tensione al n	nartinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciame	nto elastico	Δσspe =	32	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tre	efoli	σspi =	1365	Мра
Sezione ideale lastra	Ac' =	15088	cmq		Sforzo iniziale di preco	mp.: N0 =	σspi x Ai =	6828	kŇ
Baricentro da intrad.	Ygc' =	32,6	cmq		momento in. di precom	p.: M0 = N0 >	(Yp-Yt') =	77987	kNcm
Momento di inerzia id.	Jc' =	6876748	cm^4						
Modulo resistenza sup	Ws'=	145043	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	211019	cm^3		Fluage		2 x Δσspe =	65	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-2.2))%σspi	0.046 σspi =	63	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto F	Ril x (1-2.5x(Flu-	+Rit)/σspi) =	50	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefo	oli	σspf =	1200	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	26640	cmq		suddivisione delle cadu	te di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	48,9	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	18848029	cm^4	Fluage	0	339	%	6	67%
Modulo resistenza sol.	Wss" =	387894	cm^3					80%	
Modulo resistenza sup	Ws" =	605978	cm^3	Ritiro	25%	259	%	5	50%
Modulo resistenza inf.	Wi" =	385468	cm/3	perdite	32	49)		83

Distanza della s	ezione di verif	ica dalla sezioi	ne di app	oggio	x =	170 cn	n	
fase 0 [Mpa]	N	M	σSS	σs	σi	Ac' =	15088	cmq
peso proprio	0	1762832,689		1,22	-0,84	Ws' =	145043	cm^3
precompressione	682800	-7798654		-0,85	8,22	Wi' =	211019	cm^3
caduta di tension	e -16181	184813		0,02	-0,19			
totale fase 0	666619	-5851008		0,38	7,19	-		
fase 1 [Mpa]	N	М	σss	σs	σi			
getto integrativo	0	451000		0,31	-0,21			
caduta di tension	e -24364	278277		0,03	-0,29			
totale fase 0+1	642255	-5121732		0,73	6,68	-		
fase 2 [Mpa]	N	М	σss	σs	σi	Ac" =	26640	cmq
carico permanent	te 0	430000	0,11	0,07	-0,11	Wss" =	387894	cm^3
carichi mobili	0	-533300	-0,14	-0,09	0,14	Ws" =	605978	cm^3
totale fase 0+1+	2 642255	-5225032	-0,03	0,71	6,71	Wi" =	385468	cm^3
fase 3 [Mpa]	N	М	σss	σs	σi			
caduta di tension	e -41607	1153754	0,14	0,03	-0,46	_		
totale fase 0+1+	2+3 600648	-4071278	0,11	0,74	6,26	-		

$$\label{eq:lambda} \begin{split} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa \end{split}$$

Verifiche SLE – stato di tensione sezione a 1.0m dall'asse appoggio

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	45	cm		Tensione trefoli a temp	oo infinito:	σspf =	1200	Мра
Larghezza totale	b =	250	cm		Sezione trefoli	36	da 0.6")	50,0	cmq
Sezione lastra	Ac =	10940	cmq		Baricentro da intrados	so		21,2	cmq
Baricentro da intrad.	Ygc =	22,4	cm						
Momento di inerzia	Jc =	1858554	cm/4		Tensione iniziale di tes	satura	σspt =	1440	Мра
					Perdita di tensione al	martinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciamento elastico Δσspe =			32	MPa
Altezza lastra	Ht =	45	cm		Tensione iniziale nei ti	refoli	σspi =	1365	Мра
Sezione ideale lastra	Ac' =	11238	cmq		Sforzo iniziale di precomp.: N0 = ospi x A			6828	kŇ
Baricentro da intrad.	Ygc' =	22,3	cmq	momento in. di precomp.: M0 = N0 x (Yp-Yt') =				8017	kNcm
Momento di inerzia id.	Jc' =	1858975	cm^4						
Modulo resistenza sup	Ws'=	82040	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	83210	cm^3		Fluage		2 x Δσspe =	65	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x	(2.8-2.2))%σspi	0.046 σspi =	63	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto	Ril x (1-2.5x(Flu-	+Rit)/σspi) =	50	MPa
Altezza lastra	Ht=	45	cm		Tensione finale nei tre	foli	σspf =	1200	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	24312	cmq		suddivisione delle cad	ute di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	49,3	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	infinito
Momento di inerzia tot	Jc" =	20359288	cm ⁴	Fluage	0	339	%		67%
Modulo resistenza sol.	Wss" =	422450	cm^3	Rilassam.	40%	309	%	3	30%
Modulo resistenza sup	Ws" =	-4718948	cm^3	Ritiro	25%	25%	%	5	50%
Modulo resistenza inf.	Wi" =	412847	cm^3	perdite	32	49)		83

Distanza d	lella sezior	ne di verifi	ica dalla sezior	e di app	oggio	x =	100 cı	m	
fase 0	[Mpa]	N	М	σss	σs	σi	Ac' =	11238	cmq
peso propri	0	0	417488,8059		0,51	-0,50	Ws'=	82040	cm^3
precompres	ssione	682800	-801652		5,10	7,04	Wi' =	83210	cm^3
caduta di te	ensione	-16181	18998		-0,12	-0,17			
totale fase	0	666619	-365165		5,49	6,37	•		
fase 1	[Mpa]	N	М	σss	σs	σi			
getto integr	ativo	0	163130		0,20	-0,20			
caduta di te	ensione	-24364	28605		-0,18	-0,25			
totale fase	0+1	642255	-173430		5,50	5,92	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	24312	cmq
carico perm	nanente	0	314200	0,07	-0,01	-0,08	Wss" =	422450	cm/3
carichi mob	oili	0	-895800	-0,21	0,02	0,22	Ws" =	-4718948	cm/3
totale fase	0+1+2	642255	-755030	-0,14	5,52	6,06	Wi" =	412847	cm^3
fase 3	[Mpa]	N	М	σss	σs	σі			
caduta di te	ensione	-41607	1171139	0,11	-0,20	-0,45			
totale fase	0+1+2+3	600648	416108	-0,03	5,32	5,61	-		

 $\label{eq:lambda} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

Verifiche SLE - stato di tensione sezione all'attacco delle nervature al traverso di testa

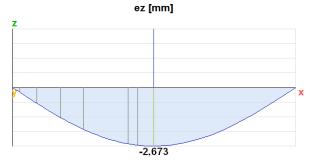
geometria della trave					precompressione				
Altezza lastra	Ht =	45	cm		Tensione trefoli a tempo inf		σspf = da 0.6")	1200	Мра
Larghezza totale	b =	250	cm		Sezione trefoli 36			50,0	cmq
Sezione lastra	Ac =	10940	cmq		Baricentro da intradosso			21,2	cmq
Baricentro da intrad.	Ygc =	22,4	cm						
Momento di inerzia	Jc =	1858554	cm ⁴		Tensione iniziale di tesatura	a	σspt =	1440	Мра
					Perdita di tensione al marti	netto 3%	Δσspm =	43	Мра
sezione lastra omoger	neizzata				Perdita per accorciamento	elastico	Δσspe =	32	MPa
Altezza lastra	Ht =	45	cm		Tensione iniziale nei trefoli		σspi =	1365	Мра
Sezione ideale lastra	Ac' =	11238	cmq		Sforzo iniziale di precomp.: N0 = ospi x			6828	kN
Baricentro da intrad.	Ygc' =	22,3	cmq		momento in. di precomp.: M0 = N0 x (Yp-Yt') =				kNcm
Momento di inerzia id.	Jc' =	1858975	cm ⁴						
Modulo resistenza sup	Ws'=	82040	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	83210	cm/3		Fluage		2 x Δσspe =	65	Мра
					Ritiro er = 0,00025		εrx Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-2	2.2))%σspi	0.046 σspi =	63	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto Ril x	(1-2.5x(Flu+	·Rit)/ospi) =	50	MPa
Altezza lastra	Ht=	45	cm		Tensione finale nei trefoli		σspf =	1200	MPa
Spessore soletta	Hs =	20	cm				•		
Sezione ideale totale	Ac" =	24312	cmq		suddivisione delle cadute d	i tensione ne	elle varie fasi		
Baricentro da intrad.	Ygc" =	49,3	cm ·	Мра	al taglio dei trefoli	al getto dell	a soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	20359288	cm/4	Fluage		33%			67%
Modulo resistenza sol.	Wss" =	422450	cm/3	Rilassam.	40%	30%	6	3	30%
Modulo resistenza sup	Ws" =	-4718948	cm/3	Ritiro	25%	25%	6	5	50%
Modulo resistenza inf.	Wi" =	412847	cm^3	perdite	32	49			83

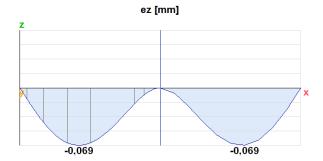
Distanza	della sezion	ne di verifi	ca dalla sezio	ne di app	oggio	x =	80 cı	m	
fase 0	[Mpa]	N	М	σSS	σs	σi	Ac' =	11238	cmq
peso pro	prio	0	0		0,00	0,00	Ws'=	82040	cm^3
precomp	ressione	682800	-801652		5,10	7,04	Wi' =	83210	cm^3
caduta d	i tensione	-16181	18998		-0,12	-0,17			
totale fa	se 0	666619	-782654		4,98	6,87	•		
fase 1	[Mpa]	N	М	σss	σs	σi			
getto inte	egrativo	0	0		0,00	0,00			
caduta d	i tensione	-24364	28605		-0,18	-0,25			
totale fa	se 0+1	642255	-754049		4,80	6,62	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	24312	cmq
carico pe	ermanente	0	232100	0,05	0,00	-0,06	Wss" =	422450	cm^3
carichi m	nobili	0	-1854100	-0,44	0,04	0,45	Ws" =	-4718948	cm^3
totale fa	se 0+1+2	642255	-2376049	-0,38	4,83	7,01	Wi" =	412847	cm^3
fase 3	[Mpa]	N	M	σss	σs	σі			
caduta d	i tensione	-41607	1171139	0,11	-0,20	-0,45			
totale fa	se 0+1+2+3	600648	-1204911	-0,28	4,63	6,56	-		

La sezione è sempre compressa σ lastra $< 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera $< 0.6 \; f_{ck} = 22.41 \; MPa$

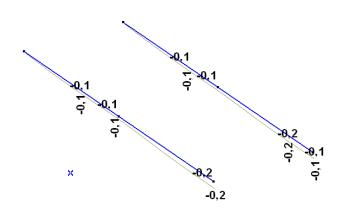
4.5.5.4.1 Verifiche SLE – fessurazione


Le sezioni di calcestruzzo delle lastre risultano sempre compresse; non si ha mai apertura delle fessure.


4.5.5.5 Verifica delle deformazioni

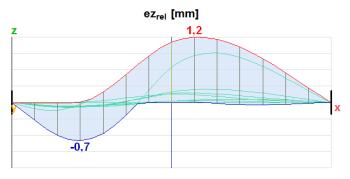
Calcolo delle frecce nelle diverse ipotesi

G1 – peso proprio lastra



■ G1 – peso getto di completamento soletta

■ G2 – sovraccarico permanente


	×
	Analisi lineare
Codice	IINTC
Caso	: G2
E (P)	: 3,06E-7
E (W)	: 3,06E-7
E (Eq)	: 1,05E-5
Comp.	: eZ [mm]
Parte	: Trave/Lastra tipo $7_{\rm F}$ F

[I], > 4 parti, Lineare, G2, eZ, Diagramma

qi – sovraccarico variabile

• εI – Precompressione

 $ez = Mp \, l^2 / \left[4 \cdot E \cdot I \right]$

T.	L	Tensioni	Npi	Mpi	l i	$e_{z,p}$	
Trave	m	Мра		kN	kNm	cm^4	mm
		tensione iniziale nei trefoli	1364,5	6828,0	643,6	4946972,8	-7,72
Tipo 7	13,15	perdite a tempo iniziale:	-32,3	-161,8	-15,3	4946972,8	0,37
Tipo /	15,15	perdite al getto della soletta:	-48,7	-243,6	-23,0	4946972,8	0,55
		perdite a tempo finale	-83,1	-416,1	-114,7	16218700,6	0,84
•						e _{z,p} finale	-5,97

Verifica delle deformazioni nel SLE_R

Si conduce una verifica allo Stato Limite di Servizio per la deformazione della campata di riva, più sollecitata. Per la precompressione, per le azioni permanenti e per le azioni variabili, si assumono nelle combinazioni di carico allo stato limite di deformazione i coefficienti $\gamma p = \gamma g = \gamma q = 1$.

Fase 0: rilascio della precompressione

Deformazione in mezzeria della lastra per peso proprio e precompressione: η0

Fase 1: getto della soletta integrativa

Deformazione in mezzeria della lastra per peso proprio, precompressione + getto: $\eta 1$

Fase 2: carichi permanenti

Deformazione in mezzeria: η2

Fase 3: carichi mobili massimi

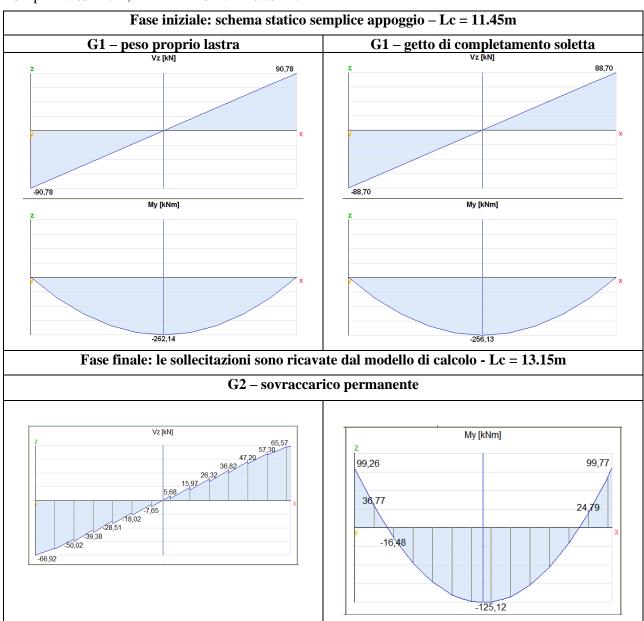
Deformazione totale massima in mezzeria: η3

Tabella

Ipotesi Trave	G1-1	ez,p	G1-2	G2	Q1
	[mm]	[mm]	[mm]	[mm]	[mm]
Tipo 7	2,673	-5,966	0,069	0,2	0,7

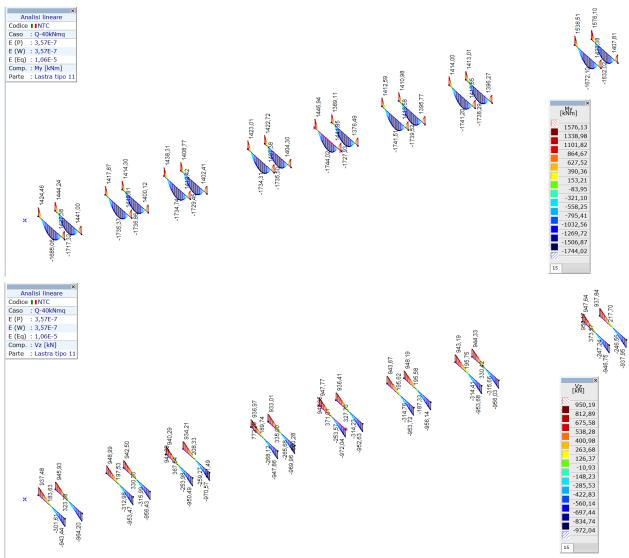
η0	η1	η2	η3
[mm]	[mm]	[mm]	[mm]
-4 7	-4 1	-3.0	-23

MAX SLE	L/ez(Q1)
[mm]	[-]
-2,3	18786


Progetto Esecutivo

4.5.6 LASTRE PRECOMPRESSE – LASTRA TIPO 11 – BORDO GRIGLIATO

4.5.6.1 Sollecitazioni di calcolo per ciascun carico


L'analisi è condotta sulla lastra da 2.50m di larghezza.

G1-p = 17.63 kN/m; G1-s = 16.75 kN/m

Q1 – carico variabile

• $\varepsilon 1$ – Precompressione

Tipo acciaio armonico: trefolo 0.6" stabilizzato.

Numero trefoli : 28

I trefoli vengono sistemati su 4 livelli:

- n° 14 trefoli a 60 mm dall'intradosso soletta;
- n° 4 trefoli a 110 mm dall'intradosso soletta;
- n° 4 trefoli a 160 mm dall'intradosso soletta;
- n° 6 trefoli a 360 mm dall'intradosso soletta;

La tensione nei trefoli a tempo infinito è di 1165.5 Mpa.

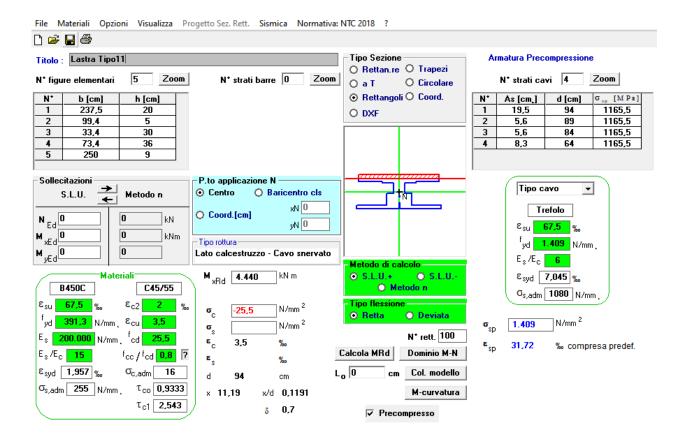
$$Np = 1165.5 \times 139 \times 28 = 453610 \text{ daN}$$

$$\mathbf{Mp} = - \text{Np x } (\text{Ygci-Ygi}) = -453610 \text{ x } (0,277-0,146) = \textbf{- 59571.67daNm}$$

4.5.6.2 Verifiche allo S.L.U.

La verifica viene eseguita sulla sezione equivalente a rettangoli sovrapposti, costituita dal sistema lastra+soletta. Le dimensioni della soletta vengono ridotte del coefficiente di omogeneizzazione 0,95: 250 x 0,95= 237,5 cm. (Ec,soletta/Ec,lastra)

$$M_{Ed}\text{:}\quad \gamma_{G1}M_{G1}+\gamma_{G2}M_{G2}+\gamma_{Q}M_{Q}$$


con:
$$\gamma_{G1}$$
= 1,3

$$\gamma_{G2} = 1,5$$

$$\gamma_{Q} = 1,5$$

- sezione di mezzeria

d	G1-1	G1-2	G2	q1	SLU
m	kNm	kNm	kNm	kNm	kNm
Mezzeria	262,14	256,13	125,10	1751,48	3488,62

M_{Rd} = 4440 kNm > 3488,62 kNm => verifica soddisfatta

4.5.6.3 Verifiche allo S.L.U. per taglio e torsione

Taglio sollecitante ultimo:

 $V_{Ed}\text{:}\quad \gamma_{G1}V_{G1}+\gamma_{G2}V_{G2}+\gamma_{Q}V_{Q}$

con: $\gamma_{G1}=1,3$ $\gamma_{G2}=1,5$ $\gamma_{Q}=1,5$

Il momento torcente, dovuto solo a disuniformità dei carichi permanenti portati e ad eventuale presenza di carichi mobili, rappresenta una sollecitazione minore e non essenziale all'equilibrio della struttura; viene pertanto trascurata.

d F1	d F2	G1-p	G1-g	G2	Qk	SLU
m		kN	kN	kN	kN	kN
0	0,7	90,78	88,70	60,58	867,22	1625,0
0,5	1,2	90,78	81,02	56,06	796,11	1501,6
1,8	2,5	62,49	61,06	41,77	586,93	1103,7
2	2,7	59,34	57,98	37,68	528,89	1002,4

			1
Caratteristiche Calcestruzzo:			
Classe di resistenza :			C45/55
Resistenza caratt.:	R_{ck}	=	55 N/mm ²
Coefficienti di sicurezza e parametri di riduzione della	resistenza:		
Coeff. di sicurezza :	γc	=	1,50
Coeff. di sic. addizionale per compressione centrata:	η_{cc}	=	1,25
Coeff. riduttivo per rottura a termine :	β	=	0,85
Resistenze di calcolo:			
Res. caratt. a compressione:	$f_{ck} = 0.83 \cdot R_{ck}$	=	45,65 N/mm ²
Res. a compressione di calcolo:	$f_{cd} = \beta \cdot f_{ck} / \gamma_c$	=	25,87 N/mm ²
Res. media. a compressione:	$f_{cm} = f_{ck} + 8N/mm^2$	=	53,65 N/mm ²
Res. a trazione media di progetto:	$f_{ctm} = 0.30 f_{ck}^{2/3}$	=	3,83 N/mm²
Res. a trazione caratt. di progetto:	$f_{ctk} = 0.70 f_{ctm}$	=	2,68 N/mm ²
Res. tangenziale caratt. di aderenza di progetto:	$f_{bk} = 2,25f_{ctk}$	=	6,04 N/mm ²
Res. a trazione di calcolo:	$f_{ctd} = f_{ctk}/\gamma_c$	=	1,79 N/mm²
Acciaio per cemento armato:			
Classe dell'acciaio :			B450C
Coeff. di sicurezza :	γs	=	1,15
Resistenze di calcolo:			
Tensione carat. di snervamento:	f_{yk}	=	450 N/mm ²
Resistenza di calcolo:	$f_{yd} = f_{yk} / \gamma_s$	=	391,3 N/mm ²

Progetto Esecutivo

Sezione di testa x = 0

0,8 fase 1

altezza utile				d		1000 mm		
base equivalente				bw		2500 mm		
Armature resistenti per le v	erifiche/	a taglio	:					
Diametro, numero bracci, pas	so medi	o, inclina	zione, ar	ea resistente e rapporto di armat	ura :			
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	Swi					
	[-]	[mm]	[cm]					
staffe/molle:	7	8	7,5	A _{sw1}	=	3,52 cm ²		
tralicci	6	6	15	A _{sw2}	=	1,70 cm ²		
	A _{sw} =							
		V_{Ro}	$_{\rm cd} = 0.9$	$d \cdot b_{w} \cdot f'_{cd} \cdot \alpha_{c} \cdot ctg\theta/(1+ctg^{2}\theta)$	=	14550,9 <i>kN</i>		
$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} \cdot ctg\theta =$						2050,5 kN		
				$ m V_{Rd}$				
	2050,5 kN							
				$ m V_{Sd}$	=	1625,0 <i>kN</i>		
				ls	=	79,25%		

Sezione di testa x = 0,5

1,3 fase 1

altezza utile				d	1000 mm
base equivalente				bw	1394 mm
Armature resistenti per le v					
Diametro, numero bracci, pas	sso medi	o, inclina	zione, ar	rea resistente e rapporto di armatura	:
Armature resistenti a taglio	n _{brwi}	Φ _{wi}	S _{wi}		
	[-]	[mm]	[cm]		
staffe/molle:	7	8	7,5	A _{sw1} =	3,52 cm ²
tralicci	6	6	15	A _{sw2} =	1,70 cm ²
				A _{sw} =	5,22 cm ²
		V_{Ro}	$_{cd} = 0.9$	$d \cdot b_{w} \cdot f'_{cd} \cdot \alpha_{c} \cdot ctg\theta/(1+ctg^{2}\theta) =$	8113,6 <i>kN</i>
			7	$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} \cdot ctg\theta =$	2050,5 kN
				$V_{Rd} =$	2050,5 kN
				$V_{Sd} =$	1501,6 <i>kN</i>
				ls =	73,23%

Sezione di testa x = 1,8

2,6 fase 1

altezza utile				d	1000 mm
base equivalente				bw	777 mm
Armature resistenti per le	verifiche	a taglio	:		
Diametro, numero bracci, pas	sso medi	o, inclina	zione, aı	ea resistente e rapporto di armatura :	
Armature resistenti a taglio	n _{brwi}	Ф _{wi}	S _{wi}		
	[-]	[mm]	[cm]		
staffe/molle:	7	8	7,5	A _{sw1} =	3,52 cm ²
tralicci	6	6	15	A _{sw2} =	1,70 cm ²
		-		A _{sw} =	5,22 cm ²
		V_{Ro}	$_{\rm cd} = 0.9$	$d \cdot b_{w} \cdot f_{cd}^{2} \cdot \alpha_{c} \cdot ctg\theta/(1+ctg^{2}\theta) =$	4522,4 kN
			7	$V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{vd} \cdot ctg\theta =$	2050,5 kN
				$V_{Rd} =$	2050,5 kN
				V _{Sd} =	1103,7 kN
				ls =	53,82%

Sezione di testa x = 2	2,8 fase 1		
altezza utile		d =	1000 mm
base equivalente		b _w =	777 mm
		f_{ctd} =	1,79 MPa
		N_p =	453613 daN
		A _c =	6391 cm ²
		$\sigma_{cp} = N_p / A_c =$	7,10 <i>MPa</i>
		$\sigma_{cp} = N_p / A_c = $ $V_{Rd} = 0.7 \cdot d \cdot b_w \cdot (f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd})^{1/2} = $	2323,0 <i>kN</i>
		V_{Sd} =	1002,4 <i>kN</i>
		ls =	43,15%

Verifiche allo S.L.U. armatura all'appoggio

Si verifica lo stato tensionale dell'armatura longitudinale inferiore all'appoggio che garantisce il funzionamento del modello a traliccio in quella zona del manufatto, soggetta alla forza concentrata rappresentata dalla reazione dell'appoggio.

La verifica viene eseguita nelle ipotesi che lo sforzo longitudinale inferiore sia pari al taglio e che tale sforzo sia mitigato dalla presenza dello sforzo di compressione longitudinale esercitato dai trefoli attivi (non inguainati).

Per valutare la compressione data dai trefoli si ipotizza una legge lineare di trasferimento del carico dai trefoli al calcestruzzo per una lunghezza di 75 cm a partire dalla testata della trave, per cui all'appoggio la precompressione è ancora molto bassa. Si adotta prudenzialmente un coefficiente riduttivo per tale compressione pari a 0.7.

Verifiche allo S.L.U. armatura all'appoggio

Taglio totale di calcolo			V _{Ed} =	1625,0 kN
Numero di trefoli attivi	16]	Tensione finale trefoli = Compressione totale =	1166 <i>MPa</i> 411,28 kN < V _{Ed}
L'armatura longitudinale	n _i	Фі		
	[-]	[mm]		
si predispongono ad testata	12	24	A _s =	54,29 cm ²
			$V_{Rd} = A_s x f_{yd} =$	2124,3 kN
			ls =	76,50%

Progetto Esecutivo

4.5.6.4 Verifiche SLE – verifica delle tensioni

Tensioni iniziali nel calcestruzzo

$$\sigma_c < 0.70 f_{cki}$$

essendo f_{ckj} la resistenza caratteristica del calcestruzzo all'atto del tiro.

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:

 $\sigma_c < 0.60 \; f_{ck}$ - per combinazione caratteristica (rara)

 $\sigma_c < 0,\!45~f_{ck}$ - per combinazione quasi permanente.

Nella zona di ancoraggio delle armature si possono tollerare compressioni locali σ_c prodotte dagli apparecchi di ancoraggio pari a: $\sigma_c < 0.90 \; f_{ckj}$.

Tensioni limite per gli acciai da precompressione

$$\sigma_{spi} < 0.90 \; f_{p(0,1)k} \qquad \qquad \sigma_{spi} < 0.80 \; f_{ptk} \; \text{- per armatura pre-tesa.}$$

Progetto Esecutivo

Verifiche SLE – stato di tensione sezione di mezzeria

geometria della trav			
Altezza lastra	Ht =	80	cm
Larghezza totale	b =	250	cm
Sezione lastra	Ac =	6391	cmq
Baricentro da intrad.	Ygc =	28,2	cm
Momento di inerzia	Jc =	3865573	cm^4

sezione lastra omoge			
Altezza lastra	80	cm	
Sezione ideale lastra	Ac' =	6623	cmq
Baricentro da intrad.	Ygc' =	27,7	cmq
Momento di inerzia id.	Jc' =	3906922	cm^4
Modulo resistenza sup	Ws' =	74708	cm/3
Modulo resistenza inf.	Wi' =	141023	cm/3

sezione omogeneizzata completa del getto di soletta						
E(getto)/E(lastra)	n" =	0,95				
Altezza lastra	Ht=	80	cm			
Spessore soletta	Hs =	20	cm			
Sezione ideale totale	Ac" =	12994	cmq			
Baricentro da intrad.	Ygc" =	54,8	cm			

precompressione				
Tensione trefoli a tem	po infinito:	σspf =	1165	Мра
Sezione trefoli	28	da 0.6")	38,9	cmq
Baricentro da intrados	Baricentro da intradosso			cmq
precompressione				
Tensione iniziale di te	satura	σspt =	1440	Мра
Perdita di tensione al	martinetto 3%	Δσspm =	43	Мра
Perdita per accorciam	ento elastico	Δσspe =	45	MPa
Tensione iniziale nei t	σspi =	1352	Мра	
Sforzo iniziale di preci	σspi x Ai =	5261	kN	
momento in. di precor	mp.: $M0 = N0 x$ (Yp-Yt') =	69090	kNcm

Cadute di	tensione				
Fluage			2 x Δσspe =	90	Мра
Ritiro εr =	0,00025		εr x Ep =	50	Мра
Rilassame	nto (2.8+3x	0.046 σspi =	62	Мра	
Rilassamento ridotto Ril x (1-2.5x(Flu+Rit)/σspi) =				46	MPa
Tensione fi	nale nei tre	σspf =	1165	MPa	

Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	12994	cmq		suddivisione delle cadute di tensione nelle varie fasi				
Baricentro da intrad.	Ygc" =	54,8	cm	Мра	al taglio dei trefoli	al getto della soletta	a tempo infinito		
Momento di inerzia tot	Jc" =	15079273	cm ⁴	Fluage	0	33%	67%		
Modulo resistenza sol.	Wss" =	351074	cm^3	Rilassam.	40%	30%	30%		
Modulo resistenza sup	Ws" =	599025	cm^3	Ritiro	25%	25%	50%		
Modulo resistenza inf.	Wi" =	275034	cm^3	perdite	31	56	99		

Distanz	a della sezior	ne di verif	ica dalla sezior	e di app	oggio	x =	658 cn	า	
fase 0	[Mpa]	N	М	σss	σs	бі	Ac' =	6623	cmq
oeso proprio		0	2939852,223		3,94	-2,08	Ws'=	74708	cm^3
orecompressione		526089	-6909011		-1,30	12,84	Wi' =	141023	cm^3
caduta d	di tensione	-12036	158062		0,03	-0,29			
totale fase 0		514053	-3811097		2,66	10,46			
fase 1	[Mpa]	N	М	σss	σs	σi			
getto int	egrativo	0	2793531,727		3,74	-1,98			
caduta d	di tensione	-21823	286601		0,05	-0,53			
totale fase 0+1		492230	-730965		6,45	7,95	•		
fase 2	[Mpa]	N	М	σss	σs	бі	Ac" =	12994	cmq
carico p	ermanente	0	1251000	0,36	0,21	-0,45	Wss" =	351074	cm^3
carichi n	nobili	0	17514900	4,99	2,92	-6,37	Ws" =	599025	cm^3
totale fa	ase 0+1+2	492230	18034935	5,35	9,59	1,13	Wi" =	275034	cm^3
fase 3	[Mpa]	N	М	σss	σs	бі			
caduta c	di tensione	-38620	1554650	0,15	-0,04	-0,86			
totale fase 0+1+2+3		453610	19589585	5,49	9,55	0,27			

La sezione è sempre compressa $\sigma \ lastra < 0.6 \ f_{ck} = 27.39 \ MPa \qquad \qquad \sigma \ getto \ in \ opera < 0.6 \ f_{ck} = 22.41 \ MPa$

Progetto Esecutivo

Verifiche SLE – stato di tensione sezione a 4.2m dall'asse appoggio

di solo ca	Icestruzzo			precompressione				
Ht =	80	cm		Tensione trefoli a tempo infinito:	σspf =	1165	Мра	
b =	250	cm		Sezione trefoli 28	da 0.6")	38,9	cmq	
Ac =	6391	cmq		Baricentro da intradosso		14,6	cmq	
Ygc =	28,2	cm						
Jc =	3865573	cm^4		Tensione iniziale di tesatura	σspt =	1440	Мра	
				Perdita di tensione al martinetto	3% $\Delta \sigma$ spm =	43	Мра	
eizzata				Perdita per accorciamento elast	ico Δσspe =	45	MPa	
Ht =	80	cm		Tensione iniziale nei trefoli	σspi =	1352	Мра	
Ac' =	6623	cmq		Sforzo iniziale di precomp.:	N0 = σspi x Ai =	5261	kN	
Ygc' =	27,7	cmq		momento in. di precomp.: M0	$= N0 \times (Yp-Yt') =$	69090	kNcm	
Jc' =	3906922	cm^4						
Ws'=	74708	cm^3		Cadute di tensione				
Wi' =	141023	cm^3		Fluage	2 x Δσspe =	90	Мра	
				Ritiro $\epsilon r = 0,00025$	εr x Ep =	50	Мра	
a comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-2.2))%	6 оврі 0.046 оврі =	62	Мра	
n" =	0,95			Rilassamento ridotto Ril x (1-2.5	5x(Flu+Rit)/σspi) =	46	MPa	
Ht=	80	cm		Tensione finale nei trefoli	σspf =	1165	MPa	
Hs =	20	cm			·			
Ac" =	12994	cmq		suddivisione delle cadute di tens	sione nelle varie fasi			
Ygc" =	54,8	cm	Мра	al taglio dei trefoli al ge	etto della soletta	a tempo i	nfinito	
Jc" =	15079273	cm^4	Fluage	0	33%	6	7%	
Wss" =	351074	cm^3	Rilassam.	40%	30%	3	0%	
Ws" =	599025	cm^3	Ritiro	25%	25%	5	0%	
\//i" —	275034	cm/3	perdite	31	56		99	
	Ht = b = Ac = Ygc = Jc = Eizzata Ht = Ac' = Ygc' = Jc' = Ws' = Wi' = Hs = Ac'' = Ygc'' = Jc'' = Wss''	b = 250 Ac = 6391 Ygc = 28,2 Jc = 3865573 eizzata Ht = 80 Ac' = 6623 Ygc' = 27,7 Jc' = 3906922 Ws' = 74708 Wi' = 141023 a completa del getto n" = 0,95 Ht = 80 Hs = 20 Ac" = 12994 Ygc" = 54,8 Jc" = 15079273 Wss" = 351074 Ws" = 599025	Ht = 80 cm b = 250 cm Ac = 6391 cmq Ygc = 28,2 cm Jc = 3865573 cm ⁴ eizzata Ht = 80 cm Ac' = 6623 cmq Ygc' = 27,7 cmq Jc' = 3906922 cm ⁴ Ws' = 74708 cm ³ Wi' = 141023 cm ³ a completa del getto di soletta n" = 0,95 Ht = 80 cm Hs = 20 cm Ac" = 12994 cmq Ygc" = 54,8 cm Jc" = 15079273 cm ⁴ Wss" = 351074 cm ³ Ws" = 599025 cm ³	Ht = 80 cm b = 250 cm Ac = 6391 cmq Ygc = 28,2 cm Jc = 3865573 cm/4 eizzata Ht = 80 cm Ac' = 6623 cmq Ygc' = 27,7 cmq Jc' = 3906922 cm/4 Ws' = 74708 cm/3 Wi' = 141023 cm/3 a completa del getto di soletta n" = 0,95 Ht = 80 cm Ac" = 12994 cmq Ygc" = 54,8 cm Jc" = 15079273 cm/4 Ws" = 599025 cm/3 Ritiro	Ht = 80 cm Tensione trefoli a tempo infinito: b = 250 cm Sezione trefoli 28 Ac = 6391 cmq Baricentro da intradosso Ygc = 28,2 cm Jc = 3865573 cm/4 Tensione iniziale di tesatura Perdita di tensione al martinetto Perdita per accorciamento elast Ht = 80 cm Tensione iniziale di tesatura Perdita per accorciamento elast Tensione iniziale di tensione al martinetto Perdita per accorciamento elast Tensione iniziale di tensione iniziale di percomp.: Ygc' = 27,7 cmq Sforzo iniziale di precomp.: M0 Jc' = 3906922 cm/4 Cadute di tensione Fluage Wi' = 141023 cm/3 Cadute di tensione Rilassamento (2.8+3x(2.8-2.2))% A completa del getto di soletta Rilassamento ridotto Ril x (1-2.3) Rilassamento ridotto Ril x (1-2.3) HE 80 cm Tensione finale nei trefoli al completa del getto di tensione HE 80 cm Tensione finale	Ht =	Ht =	

Distanza	adella sezio	one di verif	ica dalla sezior	ne di app	oggio	x =	420 cr	n	
fase 0	[Mpa]	N	М	σss	σs	σі	Ac' =	6623	cmq
peso pro	prio	0	2442632,038		3,27	-1,73	Ws'=	74708	cm^3
precomp	ressione	526089	-6909011		-1,30	12,84	Wi' =	141023	cm^3
caduta d	li tensione	-12036	158062		0,03	-0,29			
totale fa	ıse 0	514053	-4308318		2,00	10,82	_'		
fase 1	[Mpa]	N	М	σss	σs	σі			
getto inte	egrativo	0	2321058,875		3,11	-1,65			
caduta d	li tensione	-21823	286601		0,05	-0,53			
totale fa	ıse 0+1	492230	-1700658		5,16	8,64	-		
fase 2	[Mpa]	N	М	σss	σs	σі	Ac" =	12994	cmq
carico pe	ermanente	0	961200	0,27	0,16	-0,35	Wss" =	351074	cm^3
carichi m	nobili	0	13408200	3,82	2,24	-4,88	Ws" =	599025	cm^3
totale fa	se 0+1+2	492230	12668742	4,09	7,55	3,41	Wi" =	275034	cm/3
fase 3	[Mpa]	N	М	σSS	σs	бі			
caduta d	li tensione	-38620	1554650	0,15	-0,04	-0,86			

$$\label{eq:lambda} \begin{split} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa \end{split}$$

 σ getto in opera $< 0.6 f_{ck} = 22.41 MPa$

Verifiche SLE – stato di tensione sezione a 2.2m dall'asse appoggio

totale fase 0+1+2+3	453610	14223392	4,24	7,52	2,55				
geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempo ir	nfinito:	σspf =	1165	Мра
Larghezza totale	b =	250	cm		Sezione trefoli	28	da 0.6")	38,9	cmq
Sezione lastra	Ac =	6391	cmq		Baricentro da intradosso			14,6	cmq
Baricentro da intrad.	Ygc =	28,2	cm						
Momento di inerzia	Jc =	3865573	cm^4		Tensione iniziale di tesatu	ra	σspt =	1440	Мра
					Perdita di tensione al mar	tinetto 3%	∆σspm =	43	Мра
sezione lastra omoge	neizzata				Perdita per accorciamento	elastico	$\Delta \sigma spe =$	45	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei trefol	i	σspi =	1352	Mpa
Sezione ideale lastra	Ac' =	6623	cmq		Sforzo iniziale di precomp	.: N0 =	σspi x Ai =	5261	kN
Baricentro da intrad.	Ygc' =	27,7	cmq		momento in. di precomp.:	M0 = N0	((Yp-Yt') =	69090	kNcm
Momento di inerzia id.	Jc' =	3906922	cm/4						
Modulo resistenza sup	Ws'=	74708	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	141023	cm^3		Fluage		2 x Δσspe =	90	Mpa
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Mpa
sezione omogeneizza	ita comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8	-2.2))%σspi	0.046 σspi =	62	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto Ril :	(1-2.5x(Flu-	+Rit)/σspi) =	46	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefoli		σspf =	1165	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	12994	cmq		suddivisione delle cadute	di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	54,8	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	15079273	cm/4	Fluage	0	339	%	6	37%
Modulo resistenza sol.	Wss" =	351074	cm^3	Rilassam.	40%	309	%	3	30%
Modulo resistenza sup	Ws" =	599025	cm^3	Ritiro	25%	259	%	5	50%
Modulo resistenza inf.	Wi" =	275034	cm^3	perdite	31	56	3		99

Distanz	a della sezior	ne di verif	ica dalla sezior	ne di app	oggio	x =	220 cm	1	
fase 0	[Mpa]	N	М	σss	σs	σi	Ac' =	6623	cmq
peso pro	oprio	0	1252609,212		1,68	-0,89	Ws'=	74708	cm^3
precomp	oressione	526089	-6909011		-1,30	12,84	Wi' =	141023	cm^3
caduta d	di tensione	-12036	158062		0,03	-0,29			
totale fa	ase 0	514053	-5498340		0,40	11,66	•		
fase 1	[Mpa]	N	М	σSS	σs	σi			
getto int	egrativo	0	1190265,125		1,59	-0,84			
caduta d	di tensione	-21823	286601		0,05	-0,53	_		
totale fa	ase 0+1	492230	-4021474		2,05	10,28			
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	12994	cmq
carico p	ermanente	0	256600	0,07	0,04	-0,09	Wss" =	351074	cm^3
carichi n	nobili	0	3411400	0,97	0,57	-1,24	Ws" =	599025	cm^3
totale fa	ase 0+1+2	492230	-353474	1,04	2,66	8,95	Wi" =	275034	cm^3
fase 3	[Mpa]	N	М	σss	σs	σi			
caduta d	di tensione	-38620	1554650	0,15	-0,04	-0,86	-		
totale fa	ase 0+1+2+3	453610	1201175	1,19	2,62	8,09			

$$\label{eq:lambda} \begin{split} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa \end{split}$$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

Verifiche SLE – stato di tensione sezione a 1.5m dall'asse appoggio

geometria della trave	di solo c	alcestruzzo			precompre	ssione				
Altezza lastra	Ht =	80	cm		Tensione tre	foli a temp	oo infinito:		1165	Мра
Larghezza totale	b =	250	cm		Sezione tref	oli	16	da 0.6")	22,2	cmq
Sezione lastra	Ac =	10250	cmq		Baricentro d	a intrados	S0		19,8	cmq
Baricentro da intrad.	Ygc =	31,7	cm							
Momento di inerzia	Jc =	4944560	cm ⁴		Tensione ini	ziale di tes	satura	σspt =	1440	Mpa
					Perdita di te	nsione al	martinetto 3%	$\Delta \sigma spm =$	43	Mpa
sezione lastra omoge	neizzata				Perdita per a	accorciam	ento elastico	$\Delta \sigma spe =$	45	MPa
Altezza lastra	Ht =	80	cm		Tensione ini	ziale nei tı	refoli	σspi =	1352	Mpa
Sezione ideale lastra	Ac' =	10383	cmq		Sforzo inizia	le di preco	omp.: N0 =	σspi x Ai =	3006	kN
Baricentro da intrad.	Ygc' =	31,5	cmq		momento in.	. di precon	np.: $M0 = N0 x$	(Yp-Yt') =	35352	kNcm
Momento di inerzia id.	Jc' =	4963079	cm ⁴							
Modulo resistenza sup	Ws'=	102352	cm^3		Cadute di te	nsione				
Modulo resistenza inf.	Wi' =	157510	cm^3		Fluage			2 x Δσspe =	90	Mpa
					Ritiro εr =	0,00025		εr x Ep =	50	Mpa
sezione omogeneizza	ata comple	eta del getto	di soletta		Rilassament	to (2.8+3x	(2.8-2.2))%σspi	0.046 σspi =	62	Mpa
E(getto)/E(lastra)	n" =	0,95					Ril x (1-2.5x(Flu+	-Rit)/ospi) =	46	MPa
Altezza lastra	Ht=	80	cm		Tensione fin	ale nei tre	foli	σspf =	1165	MPa
Spessore soletta	Hs =	20	cm							
Sezione ideale totale	Ac" =	17227	cmq		suddivisione	delle cad	ute di tensione ne	elle varie fasi		
Baricentro da intrad.	Ygc" =	51,8	cm	Мра	al taglio de	ei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	16996845	cm ⁴	Fluage	0		33%	6	6	7%
Modulo resistenza sol.	Wss" =	371043	cm^3	Rilassam.	40%	6	30%	6	3	0%
Modulo resistenza sup	Ws" =	733343	cm^3	Ritiro	25%	6	25%	6	5	0%
Modulo resistenza inf.	Wi" =	327980	cm^3	perdite	31		56			99
Distanza della sezion	e di verifi	ca dalla sezio	ne di app	oggio	x =	150	cm			
	e di verifi N	ca dalla sezio	one di app	oggio os	х = σі	150 Ac' =	cm 10383	cmq		
fase 0 [Mpa]								cmq cm/3		
fase 0 [Mpa] peso proprio	N	M		σs	σі	Ac' =	10383	•		
fase 0 [Mpa] peso proprio precompressione	N 0	M 669498,027		თs 0,65	оі -0,43	Ac' = Ws' =	10383 102352	cm/3		
fase 0 [Mpa] peso proprio precompressione caduta di tensione	N 0 300622	M 669498,027 -3535225		os 0,65 -0,56	оі -0,43 5,14	Ac' = Ws' =	10383 102352	cm/3		
fase 0 [Mpa] peso proprio precompressione caduta di tensione totale fase 0	N 0 300622 -6878	M 669498,027 -3535225 80877		os 0,65 -0,56 0,01	бі -0,43 5,14 -0,12	Ac' = Ws' =	10383 102352	cm/3		
fase 0 [Mpa] peso proprio precompressione caduta di tensione totale fase 0 fase 1 [Mpa]	N 0 300622 -6878 293745	M 669498,027 -3535225 80877 -2784850	σss	os 0,65 -0,56 0,01 0,11	oi -0,43 5,14 -0,12 4,60	Ac' = Ws' =	10383 102352	cm/3		
fase 0 [Mpa] peso proprio precompressione caduta di tensione totale fase 0 fase 1 [Mpa] getto integrativo	N 0 300622 -6878 293745 N	M 669498,027 -3535225 80877 -2784850 M	σss	os 0,65 -0,56 0,01 0,11	ofi -0,43 5,14 -0,12 4,60	Ac' = Ws' =	10383 102352	cm/3		
fase 0 [Mpa] peso proprio precompressione caduta di tensione totale fase 0 fase 1 [Mpa] getto integrativo caduta di tensione	N 0 300622 -6878 293745 N 0	M 669498,027 -3535225 80877 -2784850 M 636176,1875	σss	os 0,65 -0,56 0,01 0,11 os 0,62	gi -0,43 5,14 -0,12 4,60 gi -0,40	Ac' = Ws' =	10383 102352	cm/3		
peso proprio precompressione caduta di tensione totale fase 0 fase 1 [Mpa] getto integrativo caduta di tensione totale fase 0+1	N 0 300622 -6878 293745 N 0 -12470	M 669498,027 -3535225 80877 -2784850 M 636176,1875 146649	σss	os 0,65 -0,56 0,01 0,11 os 0,62 0,02	oi -0,43 5,14 -0,12 4,60 oi -0,40 -0,21	Ac' = Ws' =	10383 102352	cm/3		
peso proprio precompressione caduta di tensione totale fase 0 fase 1 [Mpa] getto integrativo caduta di tensione totale fase 0+1 fase 2 [Mpa]	N 0 300622 -6878 293745 N 0 -12470 281274	M 669498,027 -3535225 80877 -2784850 M 636176,1875 146649 -2002025	σss σss	os 0,65 -0,56 0,01 0,11 os 0,62 0,02 0,75	oi -0,43 5,14 -0,12 4,60 oi -0,40 -0,21 3,98	Ac' = Ws' = Wi' =	10383 102352 157510	cm^3 cm/3		
peso proprio precompressione caduta di tensione totale fase 0 fase 1 [Mpa] getto integrativo caduta di tensione totale fase 0+1	N 0 300622 -6878 293745 N 0 -12470 281274	M 669498,027 -3535225 80877 -2784850 M 636176,1875 146649 -2002025 M	oss oss	os 0,65 -0,56 0,01 0,11 os 0,62 0,02 0,75	oi -0,43 5,14 -0,12 4,60 oi -0,40 -0,21 3,98	Ac' = Ws' = Wi' =	10383 102352 157510	cm ² 3 cm ² 3		

$$\label{eq:lastic_lastic} \begin{split} La \ sezione \ \grave{e} \ sempre \ compressa \\ \sigma \ lastra < 0.6 \ f_{ck} = 27.39 \ MPa \end{split}$$

Ν

-22068

259206

М

707792

197167

σss

0,06

0,46

-0,03

0,92

[Mpa]

caduta di tensione

totale fase 0+1+2+3

fase 3

 σ getto in opera < 0.6 f_{ck} = 22.41 MPa

σί

-0,34

3,18

Verifiche SLE – stato di tensione sezione a 1.0m dall'asse appoggio

geometria della trave					precompressione			
Altezza lastra	Ht =	45	cm		Tensione trefoli a tempo infinito:	σspf =	1165	Мра
Larghezza totale	b =	250	cm		Sezione trefoli 16	da 0.6")	22,2	cmq
Sezione lastra	Ac =	7268	cmq		Baricentro da intradosso		19,8	cmq
Baricentro da intrad.	Ygc =	20,0	cm					
Momento di inerzia	Jc =	1343630	cm ⁴		Tensione iniziale di tesatura	σspt =	1440	Мра
					Perdita di tensione al martinetto	3% Δσspm =	43	Мра
sezione lastra omoger	neizzata				Perdita per accorciamento elastic	o Δσspe =	45	MPa
Altezza lastra	Ht =	45	cm		Tensione iniziale nei trefoli	σspi =	1352	Мра
Sezione ideale lastra	Ac' =	7401	cmq		Sforzo iniziale di precomp.:	N0 = σspi x Ai =	3006	kN
Baricentro da intrad.	Ygc' =	20,0	cmq		momento in. di precomp.: M0 =	N0 x (Yp-Yt') =	841	kNcm
Momento di inerzia id.	Jc' =	1343640	cm/4					
Modulo resistenza sup	Ws'=	53810	cm^3		Cadute di tensione			
Modulo resistenza inf.	Wi' =	67082	cm/3		Fluage	2 x Δσspe =	90	Мра
					Ritiro $\epsilon r = 0.00025$	εrx Ep =	50	Mpa
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-2.2))%	оярі 0.046 оярі =	62	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto Ril x (1-2.5	x(Flu+Rit)/σspi) =	46	MPa
Altezza lastra	Ht=	45	cm		Tensione finale nei trefoli	σspf =	1165	MPa
Spessore soletta	Hs =	20	cm					
Sezione ideale totale	Ac" =	17080	cmq		suddivisione delle cadute di tensi	one nelle varie fasi		
Baricentro da intrad.	Ygc" =	51,8	cm	Мра	al taglio dei trefoli al get	to della soletta	a tempo	infinito
Momento di inerzia tot	Jc" =	16975959	cm/4	Fluage		33%		67%
Modulo resistenza sol.	Wss" =	370048	cm^3	Rilassam.	40%	30%	3	30%
Modulo resistenza sup	Ws" =	-2513994	cm^3	Ritiro	25%	25%		50%
Modulo resistenza inf.	Wi" =	328021	cm^3	perdite	31	56		99

Distanza della	a sezion	ne di verif	ica dalla sezior	ne di app	oggio	x =	100 cı	m	
fase 0 [Mp	a]	N	М	σSS	σs	σi	Ac' =	7401	cmq
peso proprio		0	200100,1345		0,37	-0,30	Ws' =	53810	cm^3
precompression	ne	300622	-84123		3,91	4,19	Wi' =	67082	cm^3
caduta di tensi	one	-6878	1925		-0,09	-0,10			
totale fase 0		293745	117902		4,19	3,79	•		
fase 1 [Mp	a]	N	М	σss	σs	σi			
getto integrative	0	0	190140,875		0,35	-0,28			
caduta di tensi	one	-12470	3490		-0,16	-0,17			
totale fase 0+	1	281274	311533		4,38	3,34	•		
fase 2 [Mp	a]	N	М	σSS	σs	σі	Ac" =	17080	cmq
carico permane	ente	0	-361700	-0,10	0,01	0,11	Wss" =	370048	cm^3
carichi mobili		0	-5379200	-1,45	0,21	1,64	Ws" =	-2513994	cm^3
totale fase 0+	1+2	281274	-5429367	-1,55	4,61	5,09	Wi" =	328021	cm^3
fase 3 [Mp	a]	N	М	σss	σs	σi			
caduta di tensi	one	-22068	706243	0,06	-0,16	-0,34			
totale fase 0+	1+2+3	259206	-4723125	-1,49	4,45	4,74	-		

 $\label{eq:lambda} La \; sezione \; \grave{e} \; sempre \; compressa \\ \sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

Verifiche SLE – stato di tensione sezione di appoggio

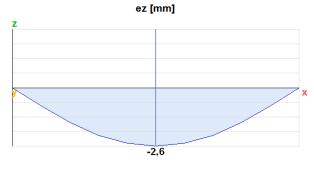
					00					
geometria della trave	e di solo ca	Icestruzzo			precompre	ssione				
Altezza lastra	Ht =	45	cm		Tensione tre	efoli a temp	o infinito:	σspf =	1165	Mpa
Larghezza totale	b =	250	cm		Sezione tre	foli	16	da 0.6")	22,2	cmq
Sezione lastra	Ac =	11250	cmq		Baricentro d	da intrados	80		19,8	cmq
Baricentro da intrad.	Ygc =	22,5	cm							
Momento di inerzia	Jc =	1898438	cm ⁴		Tensione in	iziale di tes	atura	σspt =	1440	Mpa
					Perdita di te	ensione al r	martinetto 3%	Δσspm =	43	Mpa
sezione lastra omoge	eneizzata				Perdita per	accorciame	ento elastico	$\Delta \sigma spe =$	45	MPa
Altezza lastra	Ht =	45	cm		Tensione in	iziale nei tr	efoli	σspi =	1352	Mpa
Sezione ideale lastra	Ac' =	11382	cmq		Sforzo inizia	ale di preco	mp.: N0 =	σspi x Ai =	3006	kN
Baricentro da intrad.	Ygc' =	22,5	cmq		momento in	n. di precom	M0 = N0	x (Yp-Yt') =	8171	kNcm
Momento di inerzia id.	Jc' =	1899426	cm ⁴							
Modulo resistenza sup	Ws'=	84299	cm^3		Cadute di te	ensione				
Modulo resistenza inf.	Wi' =	84539	cm^3		Fluage			2 x Δσspe =	90	Mpa
					Ritiro εr =	0,00025		εr x Ep =	50	Mpa
sezione omogeneizz	ata comple	ta del getto	di soletta		Rilassamen	to (2.8+3x(2.8-2.2))%σspi	0.046 σspi =	62	Mpa
E(getto)/E(lastra)	n" =	0,95			Rilassamen	to ridotto I	Ril x (1-2.5x(Flu	+Rit)/σspi) =	46	MPa
Altezza lastra	Ht=	45	cm		Tensione fir	nale nei tref	oli	σspf =	1165	MPa
Spessore soletta	Hs =	20	cm							
Sezione ideale totale	Ac" =	24456	cmq		suddivisione	e delle cadu	ite di tensione r	nelle varie fasi		
Baricentro da intrad.	Ygc" =	49,2	cm	Mpa	al taglio d	lei trefoli	al getto de	lla soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	20426511	cm ⁴	Fluage	9 0		33	%	6	57%
Modulo resistenza sol.	Wss" =	423011	cm^3	Rilassam	. 409	%	30	%		30%
Modulo resistenza sup	Ws" =	-4846795	cm^3	Ritiro	259	%	25	%		50%
Modulo resistenza inf.	Wi" =	415051	cm^3	perdite	31		50	6		99
								·		
Distanza della sezior	ne di verific	a dalla sezi	ione di app	oggio	x =	80	cm			
fase 0 [Mpa]	N	М	σss	σs	σі	Ac' =	11382	cmq		
peso proprio	0	0		0,00	0,00	Ws'=	84299	cm^3		
precompressione	300622	-817108		1,67	3,61	Wi' =	84539	cm^3		
caduta di tensione	-6878	18693		-0,04	-0,08					
totale fase 0	293745	-798414	<u> </u>	1,63	3,53					

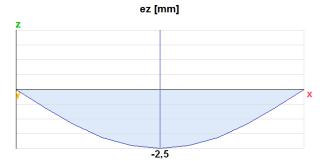
Distanza	a della sezioi	ne di verifi	ca dalla sezio	ne di app	oggio	x =	80 CI	m	
fase 0	[Mpa]	N	М	σss	σS	σi	Ac' =	11382	cmq
peso pro	oprio	0	0		0,00	0,00	Ws'=	84299	cm^3
precomp	oressione	300622	-817108		1,67	3,61	Wi' =	84539	cm^3
caduta c	di tensione	-6878	18693		-0,04	-0,08			
totale fa	ase 0	293745	-798414		1,63	3,53	_		
fase 1	[Mpa]	N	M	σss	σs	σi			
getto int	egrativo	0	0		0,00	0,00			
caduta c	di tensione	-12470	33895		-0,07	-0,15			
totale fa	ase 0+1	281274	-764519		1,56	3,38	-		
fase 2	[Mpa]	N	М	σss	σs	оi	Ac" =	24456	cmq
carico pe	ermanente	0	-552900	-0,13	0,01	0,13	Wss" =	423011	cm^3
carichi n	nobili	0	-8163400	-1,93	0,17	1,97	Ws" =	-4846795	cm^3
totale fa	ase 0+1+2	281274	-9480819	-2,06	1,74	5,48	Wi" =	415051	cm/3
fase 3	[Mpa]	N	M	σss	σs	σi			
caduta c	di tensione	-22068	650230	0,06	-0,10	-0,25	_		
totale fa	ase 0+1+2+3	259206	-8830589	-2,00	1,64	5,23	=		

La sezione è sempre compressa σ lastra $< 0.6 \; f_{ck} = 27.39 \; MPa$

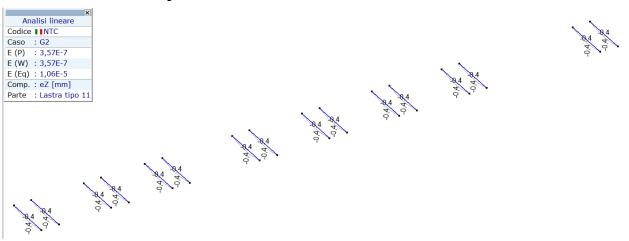
 σ getto in opera $< 0.6 \; f_{ck} = 22.41 \; MPa$

4.5.6.4.1 Verifiche SLE – fessurazione

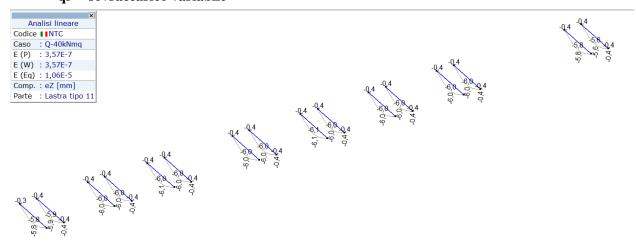

Le sezioni di calcestruzzo delle lastre risultano sempre compresse; non si ha mai apertura delle fessure.


4.5.6.5 Verifica delle deformazioni

Calcolo delle frecce nelle diverse ipotesi


■ G1 – peso proprio lastra

■ G1 – peso getto di completamento soletta



■ G2 – sovraccarico permanente

[I], > 4 parti, Lineare, G2, eZ, Diagramma

■ qi – sovraccarico variabile

[I], > Lineare, Inviluppo (Inviluppo q1), eZ, Diagramma

• εI – Precompressione

 $ez = Mp l^2 / [4 \cdot E \cdot I]$

28 n° trefoli 0,6" Ec 36416,1 N/mm²

1,39 area trefolo cm²

27,70 Ygci [cm] da intradosso - baricentro sezione iniziale

14,57 Ygi [cm] da intradosso - baricentro trefoli

54,83 Ygt [cm] da intradosso - baricentro sezione finale

3906922,39 Jci [cm⁴] - Momento di inerzia iniziale - sezione lastra omogeneizzata

15079272,99 Jct [cm4] - Momento di inerzia finale - sezione omogeneizzata completa del getto di soletta

TD.	L	Tensioni		Npi	Mpi	li .	$e_{z,p}$
Trave	m	m Mpa			kNm	cm^4	mm
1		tensione iniziale nei trefoli	1351,7	5260,9	690,9	3906922,4	-10,50
A11	13,15	perdite a tempo iniziale:	-30,9	-120,4	-15,8	3906922,4	0,48
7111	13,13	perdite al getto della soletta:	-56,1	-218,2	-28,7	3906922,4	0,87
		perdite a tempo finale	-99,2	-386,2	-155,5	15079273,0	1,22
						e _{z,p} finale	-7,92

Verifica delle deformazioni nel SLE_R

Si conduce una verifica allo Stato Limite di Servizio per la deformazione della campata di riva, più sollecitata. Per la precompressione, per le azioni permanenti e per le azioni variabili, si assumono nelle combinazioni di carico allo stato limite di deformazione i coefficienti $\gamma p = \gamma g = \gamma q = 1$.

Fase 0: rilascio della precompressione

Deformazione in mezzeria della lastra per peso proprio e precompressione: η0

Fase 1: getto della soletta integrativa

Deformazione in mezzeria della lastra per peso proprio, precompressione + getto: η1

Fase 2: carichi permanenti

Deformazione in mezzeria: η2

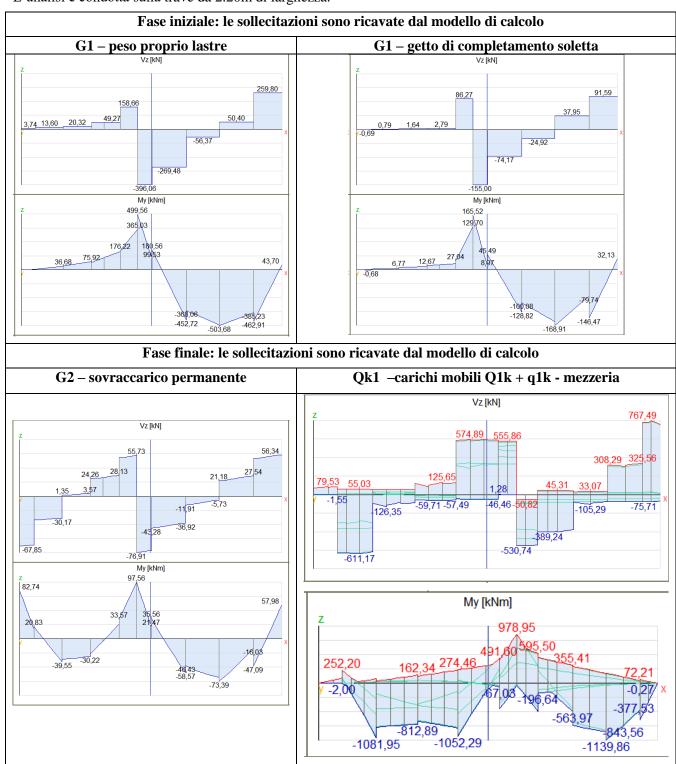
Fase 3: carichi mobili massimi

Deformazione totale massima in mezzeria: η3

Tabella

Ipotesi Trave	G1-1	ez,p	G1-2	G2	Q1
	[mm]	[mm]	[mm]	[mm]	[mm]
A11	2,6	-7,922	2,5	0,4	6,1

η0	η1	η2	η3
[mm]	[mm]	[mm]	[mm]
-7,4	-4,0	-2,4	3,7


MAX SLE	L/ez(Q1)
[mm]	[-]
3,7	2156

4.5.7 TRAVE PRECOMPRESSA – TR1

4.5.7.1 Sollecitazioni di calcolo per ciascun carico

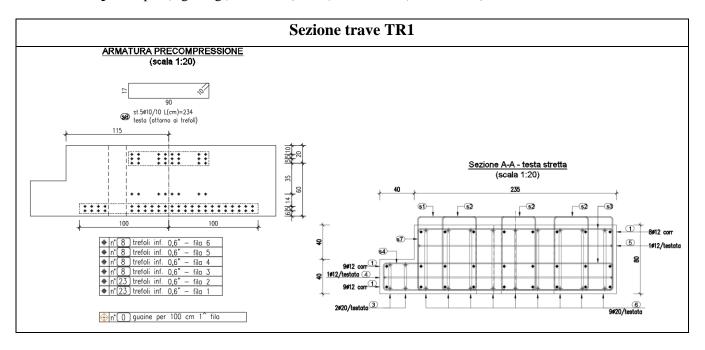
L'analisi è condotta sulla trave da 2.20m di larghezza.

Progetto Esecutivo

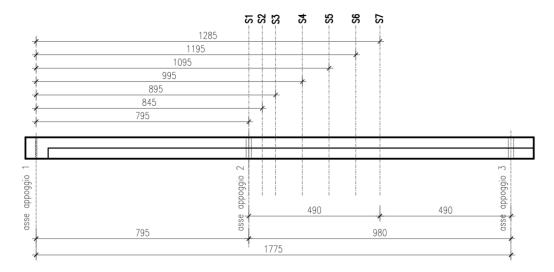
• $\varepsilon 1$ – Precompressione

Tipo acciaio armonico: trefolo 0.6" stabilizzato.

Numero trefoli : 78


I trefoli vengono sistemati su 6 livelli:

- n° 23 trefoli a 60 mm dall'intradosso;
- n° 23 trefoli a 110 mm dall'intradosso;
- n° 8 trefoli a 250 mm dall'intradosso:
- n° 8 trefoli a 600 mm dall'intradosso;
- n° 8 trefoli a 650 mm dall'intradosso;
- n° 8 trefoli a 700 mm dall'intradosso;

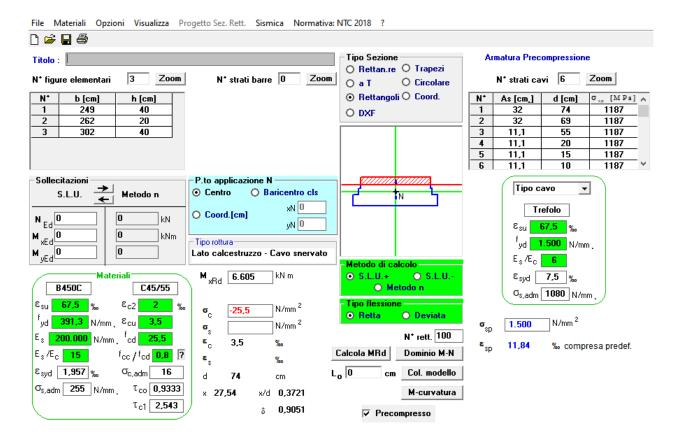

La tensione nei trefoli a tempo infinito è di 1187.4 Mpa.

 $Np = 1215.2 \times 139 \times 78 = -12873,29 \text{ kN}$

 $Mp = -Np \times (Ygci-Ygi) = -12873,29 \times (0,382-0,276) = -139979,42 \text{ kNm}$

Sezioni di calcolo:

4.5.7.2 Verifiche allo S.L.U.


La verifica viene eseguita sulla sezione equivalente a rettangoli sovrapposti, costituita dal sistema lastra+soletta. Le dimensioni della soletta vengono ridotte del coefficiente di omogeneizzazione 0,95: 262 x 0,95= 249 cm. (Ec,soletta/Ec,lastra)

$$M_{Ed}\text{:}\quad \gamma_{G1}M_{G1}+\gamma_{G2}M_{G2}+\gamma_{Q}M_{Q}$$

con: $\gamma_{G1} = 1,3$ $\gamma_{G2} = 1,5$ $\gamma_{Q} = 1,5$

- Sezione in mezzeria

d	G1-pp	G1-lastre	G1-getto	G2	q1	SLU
m	kNm	kNm	kNm	kNm	kNm	kNm
Mezzeria C2	1751,24	503,68	168,91	73,39	1139.86	5092.05

M_{Rd} = 66051 kNm > 5092.05 kNm => verifica soddisfatta

Progetto Esecutivo

4.5.7.3 Verifiche SLE – verifica delle tensioni

Tensioni iniziali nel calcestruzzo

$$\sigma_c < 0.70 f_{cki}$$

essendo f_{ckj} la resistenza caratteristica del calcestruzzo all'atto del tiro.

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:

 $\sigma_c < 0.60 \; f_{ck}$ - per combinazione caratteristica (rara)

 $\sigma_c < 0.45 \ f_{ck}$ - per combinazione quasi permanente.

Nella zona di ancoraggio delle armature si possono tollerare compressioni locali σ_c prodotte dagli apparecchi di ancoraggio pari a: $\sigma_c < 0.90 \; f_{ckj}$.

Tensioni limite per gli acciai da precompressione

$$\sigma_{spi} < 0.90 \; f_{p(0,1)k} \qquad \qquad \sigma_{spi} < 0.80 \; f_{ptk} \; \text{- per armatura pre-tesa.}$$

Progetto Esecutivo

Verifiche SLE – stato di tensione sezione S1 a 7.95m dall'asse appoggio 1

geometria della trav			
Altezza lastra	Ht =	80	cm
Larghezza totale	b =	292,5	cm
Sezione lastra	Ac =	21800	cmq
Baricentro da intrad.	Ygc =	38,5	cm
Momento di inerzia	Jc =	11579694	cm^4

sezione lastra omoge			
Altezza lastra	80	cm	
Sezione ideale lastra	Ac' =	22445	cmq
Baricentro da intrad.	Ygc' =	38,2	cmq
Momento di inerzia id.	Jc' =	11654828	cm^4
Modulo resistenza sup	Ws'=	278940	cm^3
Modulo resistenza inf.	Wi' =	304960	cm^3

sezione omogeneizzata completa del getto di soletta									
E(getto)/E(lastra)	n" =	0,95							
Altezza lastra	Ht=	80	cm						
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	29528	cmq						
Baricentro da intrad.	Ygc" =	51,2	cm						
Momento di inerzia tot	Jc" =	27822665	cm^4						

precompressione				
Tensione trefoli a tem	po infinito:	σspf =	1187	Мра
Sezione trefoli	78	da 0.6")	108,4	cmq
Baricentro da intrados	80		27,6	cmq
precompressione				
Tensione iniziale di te	satura	σspt =	1440	Мра
Perdita di tensione al	martinetto 3%	Δσspm =	43	Мра
Perdita per accorciam	ento elastico	Δσspe =	37	MPa
Tensione iniziale nei t	refoli	σspi =	1360	Мра
Sforzo iniziale di preci	omp.: N0 =	σspi x Ai =	14742	kN
momento in. di precor	mp.: $M0 = N0 x$ (Yp-Yt') =	156867	kNcm

Cadute di	tensione				
Fluage			2 x Δσspe =	74	Мра
Ritiro εr =	0,00025		εr x Ep =	50	Мра
Rilassame	nto (2.8+3x	(2.8-2.2))%σspi	0.046 σspi =	63	Мра
Rilassame	nto ridotto	Rit)/ospi) =	48	MPa	
Tensione fi	nale nei tre	foli	σspf =	1187	MPa

essore soletta	Hs =	20	cm				
zione ideale totale	Ac" =	29528	cmq		suddivisione delle c	adute di tensione nelle varie	fasi
ricentro da intrad.	Ygc" =	51,2	cm	Мра	al taglio dei trefoli	al getto della soletta	a tempo infinito
mento di inerzia tot	Jc" =	27822665	cm ⁴	Fluage	0	33%	67%
dulo resistenza sol.	Wss" =	599069	cm^3	Rilassam.	40%	30%	30%
odulo resistenza sup	Ws" =	964561	cm^3	Ritiro	25%	25%	50%
dulo resistenza inf.	Wi" =	543889	cm^3	perdite	32	51	89

Distanz	a della sezio	ne di verifi	ica dalla sezior	ne di app	oggio	x =	795 cm	n	
fase 0	[Mpa]	N	М	σss	σs	σi	Ac' =	22445	cmq
peso pro	prio	0	21669061,16		7,77	-7,11	Ws' =	278940	cm^3
precomp	ressione	1474233	-15686711		0,94	11,71	Wi' =	304960	cm^3
caduta d	li tensione	-34488	366977		-0,02	-0,27			
totale fa	ise 0	1439745	6349327		8,69	4,33	•		
fase 1	[Mpa]	N	М	σss	σs	σi			
getto int	egrativo	0	-6650800		-2,38	2,18			
caduta d	li tensione	-55771	593440		-0,04	-0,44			
totale fa	ase 0+1	1383974	291967		6,27	6,07	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	29528	cmq
carico p	ermanente	0	-975600	-0,16	-0,10	0,18	Wss" =	599069	cm^3
carichi n	nobili	0	-9789500	-1,63	-1,01	1,80	Ws" =	964561	cm^3
totale fa	ase 0+1+2	1383974	-10473133	-1,80	5,15	8,05	Wi" =	543889	cm/3
fase 3	[Mpa]	N	М	σss	σS	σі			
caduta c	li tensione	-96644	2278695	0,05	-0,09	-0,75	-		
totale fa	ase 0+1+2+3	1287329	-8194438	-1,74	5,06	7,30			

La sezione è sempre compressa $\sigma \ lastra < 0.6 \ f_{ck} = 27.39 \ MPa$

 σ getto in opera $<0.6~f_{ck}=22.41~MPa$

Verifiche SLE – stato di tensione sezione S2 a 8.45m dall'asse appoggio 1

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempe	o infinito:	σspf =	1187	Мра
Larghezza totale	b =	293,55	cm		Sezione trefoli	78	da 0.6")	108,4	cmq
Sezione lastra	Ac =	21884	cmq		Baricentro da intradoss	0		27,6	cmq
Baricentro da intrad.	Ygc =	38,5	cm						
Momento di inerzia	Jc =	11624674	cm/4		Tensione iniziale di tes	atura	σspt =	1440	Mpa
					Perdita di tensione al n	nartinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciame	nto elastico	$\Delta \sigma spe =$	37	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tre	efoli	σspi =	1360	Mpa
Sezione ideale lastra	Ac' =	22529	cmq		Sforzo iniziale di preco	mp.: N0 =	σspi x Ai =	14742	kN
Baricentro da intrad.	Ygc' =	38,2	cmq		momento in. di precom	p.: $M0 = N0 x$	(Yp-Yt') =	156965	kNcm
Momento di inerzia id.	Jc' =	11699893	cm ⁴						
Modulo resistenza sup	Ws'=	280064	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	306086	cm^3		Fluage		2 x Δσspe =	74	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-2.2))%σspi	0.046 σspi =	63	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto F	Ril x (1-2.5x(Flu-	⊦Rit)/σspi) =	48	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefo	oli	σspf =	1187	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	29632	cmq		suddivisione delle cadu	te di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	51,1	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo ii	nfinito
Momento di inerzia tot	Jc" =	27908711	cm/4	Fluage	0	33%	%	6	7%
Modulo resistenza sol.	Wss" =	600855	cm^3	Rilassam.	40%	30%	%	3	0%
Modulo resistenza sup	Ws" =	967361	cm^3	Ritiro	25%	25%	%	5	0%
Modulo resistenza inf.	Wi" =	545629	cm/3	perdite	32	51			89

Distanz	istanza della sezione di verifica dalla sezione di appoggio						845 cn	n	
fase 0	[Mpa]	N	М	σss	σs	σi	Ac' =	22529	cmq
peso pro	oprio	0	21856798,5		7,80	-7,14	Ws'=	280064	cm^3
precomp	oressione	1474233	-15696509		0,94	11,67	Wi' =	306086	cm^3
caduta d	di tensione	-34488	367207		-0,02	-0,27			
totale fa	ase 0	1439745	6527496		8,72	4,26	-		
fase 1	[Mpa]	N	М	σss	σs	σi			
getto int	egrativo	0	-3895500		-1,39	1,27			
caduta d	di tensione	-55771	593811		-0,04	-0,44			
totale fa	ase 0+1	1383974	3225806		7,30	5,09	_'		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	29632	cmq
carico p	ermanente	0	-595400	-0,10	-0,06	0,11	Wss" =	600855	cm^3
carichi r	nobili	0	-7458800	-1,24	-0,77	1,37	Ws" =	967361	cm^3
totale fa	ase 0+1+2	1383974	-4828394	-1,34	6,46	6,57	Wi" =	545629	cm^3
fase 3	[Mpa]	N	М	σss	σs	σi			
caduta d	di tensione	-96644	2278169	0,05	-0,09	-0,74			
totale fa	ase 0+1+2+3	1287329	-2550225	-1,29	6,37	5,82	-		

La sezione è sempre compressa

 $\sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera $< 0.6 \; f_{ck} = 22.41 \; MPa$

Verifiche SLE – stato di tensione sezione S3 a 8.95m dall'asse appoggio 1

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a temp	σspf =	1187	Мра	
Larghezza totale	b =	294,6	cm		Sezione trefoli	da 0.6")	108,4	cmq	
Sezione lastra	Ac =	21968	cmq		Baricentro da intradoss	80		27,6	cmq
Baricentro da intrad.	Ygc =	38,5	cm						
Momento di inerzia	Jc =	11669653	cm^4		Tensione iniziale di tes	atura	σspt =	1440	Мра
					Perdita di tensione al r	martinetto 3%	Δσspm =	43	Мра
sezione lastra omoger	neizzata				Perdita per accorciame	ento elastico	$\Delta \sigma spe =$	37	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tr	efoli	σspi =	1360	Мра
Sezione ideale lastra	Ac' =	22613	cmq		Sforzo iniziale di preco	mp.: N0 =	σspi x Ai =	14742	kN
Baricentro da intrad.	Ygc' =	38,2	cmq		momento in. di precom	(Yp-Yt') =	157062	kNcm	
Momento di inerzia id.	Jc' =	11744957	cm ⁴						
Modulo resistenza sup	Ws'=	281187	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	307212	cm^3		Fluage		2 x Δσspe =	74	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x)	(2.8-2.2))%σspi	0.046 σspi =	63	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto I	Ril x (1-2.5x(Flu-	⊦Rit)/σspi) =	48	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei tref	oli	σspf =	1187	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	29736	cmq		suddivisione delle cadu	ute di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	51,1	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo ii	nfinito
Momento di inerzia tot	Jc" =	27994756	cm^4	Fluage	0	339	%	6	7%
Modulo resistenza sol.	Wss" =	602641	cm^3	Rilassam.	40%	309	%	3	0%
Modulo resistenza sup	Ws" =	970162	cm^3	Ritiro	25%	25%	%	5	0%
Modulo resistenza inf.	Wi" =	547369	cm^3	perdite	32	51			89

Distanza	a della sezio	ne di verifi	ica dalla sezior	ne di app	oggio	x =	895 cn	n	
fase 0	[Mpa]	N	М	σSS	σs	σi	Ac' =	22613	cmq
peso pro	prio	0	21905471,15		7,79	-7,13	Ws'=	281187	cm^3
precomp	ressione	1474233	-15706235		0,93	11,63	Wi' =	307212	cm^3
caduta c	li tensione	-34488	367434		-0,02	-0,27			
totale fa	ise 0	1439745	6566671		8,70	4,23	•		
fase 1	[Mpa]	N	М	σSS	σs	σi			
getto int	egrativo	0	-1140100		-0,41	0,37			
caduta c	li tensione	-55771	594179		-0,04	-0,44			
totale fa	ase 0+1	1383974	6020749		8,26	4,16	•		
fase 2	[Mpa]	N	М	σss	σs	σi	Ac" =	29736	cmq
carico pe	ermanente	0	-222100	-0,04	-0,02	0,04	Wss" =	602641	cm^3
carichi n	nobili	0	-4931500	-0,82	-0,51	0,90	Ws" =	970162	cm^3
totale fa	ase 0+1+2	1383974	867149	-0,86	7,73	5,10	Wi" =	547369	cm^3
fase 3	[Mpa]	N	М	σSS	σs	σi			
caduta c	li tensione	-96644	2277646	0,05	-0,09	-0,74			
totale fa	ase 0+1+2+3	1287329	3144795	-0,80	7,64	4,36	-		

$$\label{eq:lastic_lastic} \begin{split} La \ sezione \ \grave{e} \ sempre \ compressa \\ \sigma \ lastra < 0.6 \ f_{ck} = 27.39 \ MPa \end{split}$$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

Verifiche SLE – stato di tensione sezione S4 a 9.95m dall'asse appoggio 1

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempo infinito:				
Larghezza totale	b =	296,7	cm		Sezione trefoli	da 0.6")	108,4	cmq	
Sezione lastra	Ac =	22136	cmq		Baricentro da intradoss	0		27,6	cmq
Baricentro da intrad.	Ygc =	38,6	cm						
Momento di inerzia	Jc =	11759607	cm^4		Tensione iniziale di tes	atura	σspt =	1440	Mpa
					Perdita di tensione al n	nartinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciame	nto elastico	Δσspe =	37	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tre	efoli	σspi =	1360	Мра
Sezione ideale lastra	Ac' =	22781	cmq		Sforzo iniziale di preco	mp.: N0 =	σspi x Ai =	14742	kN
Baricentro da intrad.	Ygc' =	38,2	cmq		momento in. di precom	p.: M0 = N0 >	((Yp-Yt') =	157255	kNcm
Momento di inerzia id.	Jc' =	11835079	cm ⁴						
Modulo resistenza sup	Ws'=	283433	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	309464	cm^3		Fluage		2 x Δσspe =	74	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-2.2))%σspi	0.046 σspi =	63	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto F	Ril x (1-2.5x(Flu-	+Rit)/σspi) =	48	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefo	oli	σspf =	1187	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	29944	cmq		suddivisione delle cadu	te di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	51,1	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	28166841	cm/4	Fluage	0	339	%	6	7%
Modulo resistenza sol.	Wss" =	606213	cm^3	Rilassam.	40%	309	%	3	0%
Modulo resistenza sup	Ws" =	975763	cm^3	Ritiro	25%	259	%	5	0%
Modulo resistenza inf.	Wi" =	550849	cm/3	perdite	32	51			89

Distanza	Distanza della sezione di verifica dalla sezione di appoggio						x = 995 cm				
fase 0	[Mpa]	N	М	σSS	σs	σi	Ac' =	22781	cmq		
peso prop	rio	0	21585622,34		7,62	-6,98	Ws'=	283433	cm^3		
precompr	essione	1474233	-15725470		0,92	11,55	Wi' =	309464	cm^3		
caduta di	tensione	-34488	367884		-0,02	-0,27					
totale fas	se 0	1439745	6228036		8,52	4,31	•				
fase 1	[Mpa]	N	М	σSS	σs	бі					
getto inte	grativo	0	1141700		0,40	-0,37					
caduta di	tensione	-55771	594906		-0,03	-0,44					
totale fas	se 0+1	1383974	7964643		8,89	3,50	•				
fase 2	[Mpa]	N	М	σss	σs	бі	Ac" =	29944	cmq		
carico per	manente	0	62700	0,01	0,01	-0,01	Wss" =	606213	cm^3		
carichi mo	obili	0	-3366200	-0,56	-0,34	0,61	Ws" =	975763	cm^3		
totale fas	se 0+1+2	1383974	4661143	-0,54	8,55	4,10	Wi" =	550849	cm^3		
fase 3	[Mpa]	N	М	σss	σs	бі					
caduta di	tensione	-96644	2276612	0,05	-0,09	-0,74	_				
totale fas	se 0+1+2+3	1287329	6937754	-0,49	8,46	3,37	-				

La sezione è sempre compressa

 $\sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera $< 0.6 \; f_{ck} = 22.41 \; MPa$

Verifiche SLE – stato di tensione sezione S5 a 10.95m dall'asse appoggio 1

geometria della trave	di solo ca	lcestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempo infinito:				
Larghezza totale	b =	298,8	cm		Sezione trefoli	da 0.6")	108,4	cmq	
Sezione lastra	Ac =	22304	cmq		Baricentro da intradoss	0		27,6	cmq
Baricentro da intrad.	Ygc =	38,6	cm						
Momento di inerzia	Jc =	11849556	cm^4		Tensione iniziale di tes	atura	σspt =	1440	Мра
					Perdita di tensione al m	artinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciame	nto elastico	Δσspe =	37	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tre	foli	σspi =	1360	Мра
Sezione ideale lastra	Ac' =	22949	cmq		Sforzo iniziale di precoi	np.: N0 =	σspi x Ai =	14742	kN
Baricentro da intrad.	Ygc' =	38,3	cmq		momento in. di precom	o.: $M0 = N0 x$	((Yp-Yt') =	157444	kNcm
Momento di inerzia id.	Jc' =	11925194	cm^4						
Modulo resistenza sup	Ws'=	285679	cm/3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	311716	cm/3		Fluage		2 x Δσspe =	74	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2	2.8-2.2))%σspi	0.046 σspi =	63	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto F	il x (1-2.5x(Flu-	+Rit)/σspi) =	48	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefo	li	σspf =	1187	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	30152	cmq		suddivisione delle cadu	te di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	51,1	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo ii	nfinito
Momento di inerzia tot	Jc" =	28338919	cm/4	Fluage	0	339	%	6	7%
Modulo resistenza sol.	Wss" =	609784	cm/3	Rilassam.	40%	309	%	3	0%
Modulo resistenza sup	Ws" =	981366	cm^3	Ritiro	25%	25%	%	5	0%
Modulo resistenza inf.	Wi" =	554328	cm^3	perdite	32	51			89

Distanza de	lla sezio	ne di verifi	ca dalla sezior	ne di app	oggio	x =	1095 cn	n	
fase 0 [N	/ [ра]	N	М	σSS	σs	σi	Ac' =	22949	cmq
peso proprio		0	20709514,75		7,25	-6,64	Ws'=	285679	cm^3
precompress	ione	1474233	-15744424		0,91	11,47	Wi' =	311716	cm^3
caduta di ten	sione	-34488	368327		-0,02	-0,27			
totale fase 0)	1439745	5333418		8,14	4,56			
fase 1 [N	/lpa]	N	М	σss	σs	σi			
getto integrat	ivo	0	4578300		1,60	-1,47			
caduta di ten	sione	-55771	595623		-0,03	-0,43			
totale fase 0)+1	1383974	10507342		9,71	2,66			
fase 2 [N	/lpa]	N	М	σss	σs	σi	Ac" =	30152	cmq
carico perma	nente	0	452200	0,07	0,05	-0,08	Wss" =	609784	cm^3
carichi mobili	į	0	8879300	1,46	0,90	-1,60	Ws" =	981366	cm^3
totale fase 0)+1+2	1383974	19838842	1,53	10,66	0,98	Wi" =	554328	cm^3
fase 3 [N	lpa]	N	М	σss	σs	σі			
caduta di ten	sione	-96644	2275591	0,05	-0,09	-0,73			
totale fase 0)+1+2+3	1287329	22114433	1,58	10,57	0,25			

La sezione è sempre compressa

 $\sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

Verifiche SLE – stato di tensione sezione S6 a 11.95m dall'asse appoggio 1

geometria della trave	di solo ca	Icestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a tempo infinito:				Mpa
Larghezza totale	b =	300,9	cm		Sezione trefoli	78	da 0.6")	108,4	cmq
Sezione lastra	Ac =	22472	cmq		Baricentro da intradoss	0		27,6	cmq
Baricentro da intrad.	Ygc =	38,6	cm						
Momento di inerzia	Jc =	11939499	cm ⁴		Tensione iniziale di tes	atura	σspt =	1440	Mpa
					Perdita di tensione al n	nartinetto 3%	Δσspm =	43	Mpa
sezione lastra omoger	neizzata				Perdita per accorciame	nto elastico	Δσspe =	37	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tre	efoli	σspi =	1360	Мра
Sezione ideale lastra	Ac' =	23117	cmq		Sforzo iniziale di preco	mp.: N0 =	σspi x Ai =	14742	kN
Baricentro da intrad.	Ygc' =	38,3	cmq		momento in. di precom	p.: M0 = N0 >	((Yp-Yt') =	157631	kNcm
Momento di inerzia id.	Jc' =	12015301	cm ⁴						
Modulo resistenza sup	Ws'=	287925	cm/3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	313967	cm/3		Fluage		2 x Δσspe =	74	Мра
					Ritiro $\varepsilon r = 0,00025$		εrx Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x(2.8-2.2))%σspi	0.046 σspi =	63	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto F	Ril x (1-2.5x(Flu-	+Rit)/σspi) =	48	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei trefo	oli	σspf =	1187	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	30360	cmq		suddivisione delle cadu	te di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	51,1	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo i	nfinito
Momento di inerzia tot	Jc" =	28510990	cm/4	Fluage	0	339	%	6	7%
Modulo resistenza sol.	Wss" =	613356	cm^3	Rilassam.	40%	309	%	3	0%
Modulo resistenza sup	Ws" =	986968	cm^3	Ritiro	25%	259	%	5	0%
Modulo resistenza inf.	Wi" =	557808	cm^3	perdite	32	51			89

Distanz	a della sezio	ne di verifi	ca dalla sezior	x =	1195 cn	n			
fase 0	[Mpa]	N	М	σss	σs	σі	Ac' =	23117	cmq
peso pro	prio	0	19277148,36		6,70	-6,14	Ws'=	287925	cm^3
precomp	ressione	1474233	-15763102		0,90	11,40	Wi' =	313967	cm^3
caduta d	di tensione	-34488	368764		-0,02	-0,27			
totale fa	ase 0	1439745	3882811		7,58	4,99	•		
fase 1	[Mpa]	N	М	σSS	σs	σі			
getto int	egrativo	0	5201600		1,81	-1,66			
caduta d	di tensione	-55771	596330		-0,03	-0,43			
totale fa	ase 0+1	1383974	9680741		9,35	2,90	•		
fase 2	[Mpa]	N	М	σss	σs	σі	Ac" =	30360	cmq
carico p	ermanente	0	537400	0,09	0,05	-0,10	Wss" =	613356	cm^3
carichi r	nobili	0	8527700	1,39	0,86	-1,53	Ws" =	986968	cm^3
totale fa	ase 0+1+2	1383974	18745841	1,48	10,27	1,28	Wi" =	557808	cm^3
fase 3	[Mpa]	N	М	σSS	σs	σі			
caduta d	di tensione	-96644	2274585	0,05	-0,09	-0,73			
totale fa	ase 0+1+2+3	1287329	21020426	1,53	10,18	0,55	<u>-</u> '		

La sezione è sempre compressa

 $\sigma \; lastra < 0.6 \; f_{ck} = 27.39 \; MPa$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

Verifiche SLE – stato di tensione sezione S7 a 12.85m dall'asse appoggio 1

geometria della trave	di solo ca	lcestruzzo			precompressione				
Altezza lastra	Ht =	80	cm		Tensione trefoli a temp	o infinito:	σspf =	1187	Мра
Larghezza totale	b =	303	cm		Sezione trefoli	da 0.6")	108,4	cmq	
Sezione lastra	Ac =	22640	cmq		Baricentro da intrados	SO		27,6	cmq
Baricentro da intrad.	Ygc =	38,6	cm						
Momento di inerzia	Jc =	12029437	cm ⁴		Tensione iniziale di tes	satura	σspt =	1440	Мра
					Perdita di tensione al i	martinetto 3%	Δσspm =	43	Мра
sezione lastra omoger	neizzata				Perdita per accorciame	ento elastico	$\Delta \sigma spe =$	37	MPa
Altezza lastra	Ht =	80	cm		Tensione iniziale nei tr	efoli	σspi =	1360	Мра
Sezione ideale lastra	Ac' =	23285	cmq		Sforzo iniziale di preco	omp.: N0 =	σspi x Ai =	14742	kN
Baricentro da intrad.	Ygc' =	38,3	cmq		momento in. di precon	np.: $M0 = N0 x$	(Yp-Yt') =	157815	kNcm
Momento di inerzia id.	Jc' =	12105400	cm ⁴						
Modulo resistenza sup	Ws'=	290171	cm^3		Cadute di tensione				
Modulo resistenza inf.	Wi' =	316218	cm^3		Fluage		2 x Δσspe =	74	Мра
					Ritiro $\varepsilon r = 0,00025$		εr x Ep =	50	Мра
sezione omogeneizza	ta comple	ta del getto	di soletta		Rilassamento (2.8+3x	(2.8-2.2))%σspi	0.046 σspi =	63	Мра
E(getto)/E(lastra)	n" =	0,95			Rilassamento ridotto	Ril x (1-2.5x(Flu-	-Rit)/σspi) =	48	MPa
Altezza lastra	Ht=	80	cm		Tensione finale nei tref	oli	σspf =	1187	MPa
Spessore soletta	Hs =	20	cm						
Sezione ideale totale	Ac" =	30568	cmq	_	suddivisione delle cade	ute di tensione n	elle varie fasi		
Baricentro da intrad.	Ygc" =	51,1	cm	Мра	al taglio dei trefoli	al getto del	la soletta	a tempo ii	nfinito
Momento di inerzia tot	Jc" =	28683055	cm ⁴	Fluage	0	33%	6	6	7%
Modulo resistenza sol.	Wss" =	616928	cm^3	Rilassam.	40%	30%	6	3	0%
Modulo resistenza sup	Ws" =	992572	cm^3	Ritiro	25%	25%	6	5	0%
Modulo resistenza inf.	Wi" =	561287	cm^3	perdite	32	51			89

Distanza della sezio	Distanza della sezione di verifica dalla sezione d					1285 cm	1	
fase 0 [Mpa]	N	М	σss	σs	σi	Ac' =	23285	cmq
peso proprio	0	17512417,35		6,04	-5,54	Ws' =	290171	cm^3
precompressione	1474233	-15781511		0,89	11,32	Wi' =	316218	cm^3
caduta di tensione	-34488	369195		-0,02	-0,26			
totale fase 0	1439745	2100102		6,91	5,52			
fase 1 [Mpa]	N	М	σSS	σs	бі			
getto integrativo	0	6725900		2,32	-2,13			
caduta di tensione	-55771	597026		-0,03	-0,43			
totale fase 0+1	1383974	9423028		9,19	2,96			
fase 2 [Mpa]	N	М	σss	σs	σi	Ac" =	30568	cmq
carico permanente	0	733900	0,12	0,07	-0,13	Wss" =	616928	cm^3
carichi mobili	0	11398600	1,85	1,15	-2,03	Ws" =	992572	cm^3
totale fase 0+1+2	1383974	21555528	1,97	10,41	0,80	Wi" =	561287	cm^3
fase 3 [Mpa]	N	М	σss	σs	бі			
caduta di tensione	-96644	2273592	0,05	-0,09	-0,72			
totale fase 0+1+2+3	1287329	23829121	2,02	10,33	0,08			

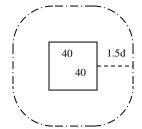
La sezione è sempre compressa

 $\sigma \ lastra < 0.6 \ f_{ck} = 27.39 \ MPa$

 σ getto in opera $<0.6~f_{ck}$ = 22.41 MPa

4.5.7.3.1 Verifiche SLE – fessurazione

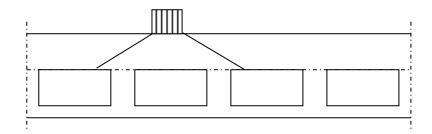
Le sezioni di calcestruzzo delle lastre risultano sempre compresse; non si ha mai apertura delle fessure.


4.5.8 VERIFICA SOLETTA SUPERIORE

Si verifica a punzonamento la soletta da 20 cm di spessore gettata in opera sui blocchi di alleggerimento in EPS per il carico di 150 kN su impronta 40cm x 40cm – schema di carico 3

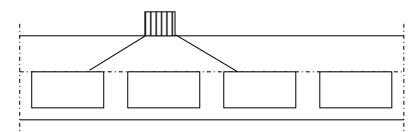
Perimetro critico:

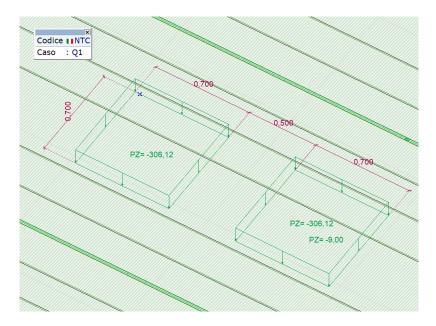
20 cm soletta (h' = 17 cm)


$$1.5d = 1.5 \times 17 = 25.5 \text{ cm}$$

La larghezza di diffusione del carico entro lo spessore della soletta vale:

b = 40 + 2x25.5 = 91 cm, pari al'interasse tra due nervature successive.

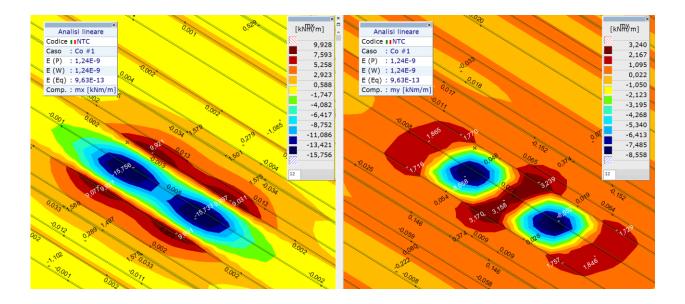

In tali condizioni non si instaura un effetto di punzonamento, in quanto il carico è portato direttamente dalle nervature.



• Verifica flessione della soletta:

Analisi dei carichi:

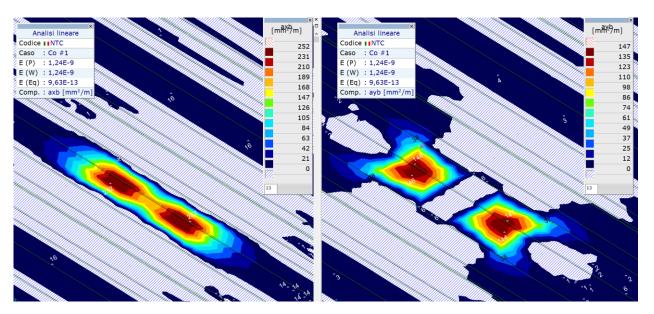
- G1 carico permanente peso proprio considerando il peso specifico del c.a. pari a 25kN/m³
- G2 sovraccarico permanente 6 kN/ m²
- Q sovraccarico variabile $2 \times 150 \text{ kN}$ interasse 120 cm su impronta $40 \text{cm} \times 40 \text{cm}$ Considerando una diffusione dei carichi a 45° su una soletta da 20 cm risulta un carico distribuito $q = 150 / 0.70 / 0.70 = 306.12 \text{ kN/m}^2$



Sollecitazioni di calcolo

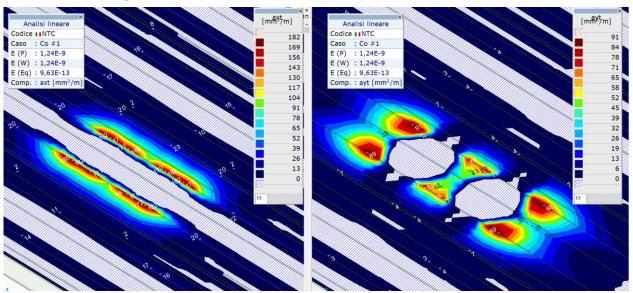
Vengono prima riportati i diagrammi relativi all'intera soletta, dai quali è possibile identificare le aree maggiormente sollecitate;

Combinazioni SLU _{STR} : 1.35G1+1.5G2+1.35Q


Armature minime a flessione

Di seguito si riportano i diagrammi con indicazione dell'armatura minima da disporre per ottenere una verifica a flessione positiva.

Armature minime inferiori:


Progetto Esecutivo

 $a_{xb,min}$ =252mm² $< a_{xb,ef}$ =1539 mm² (10Ø14/m)

 $a_{yb,min}=147 \text{ mm}^2 < a_{yb,ef}=393 \text{ mm}^2 (5Ø10/m)$

Armature minime superiori:

 $a_{xt,min} = 182 mm^2 < a_{xt,ef} = 1131 \ mm^2 \ (10 \rlap{/}012/m)$

$$a_{yt,min}=91 \text{mm}^2 < a_{yb,ef}=393 \text{ mm}^2 (5Ø10/\text{m})$$

4.5.9 GIUNTO TECNICO

Gli sforzi di taglio nel giunto vengono assorbiti da barre \varnothing 26 passo 30cm. Si conduce una verifica a taglio delle barre.

Taglio massimo schema di carico 1:

[I], > Giunto tecnico, Lineare, Schema 1, Vz, Diagramma

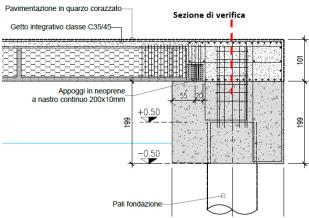
Taglio massimo schema di carico 1:

Lo sforzo di taglio massimo risulta:

Vb = 1.5x0 + 1.5x214.64 = 321,96 daN

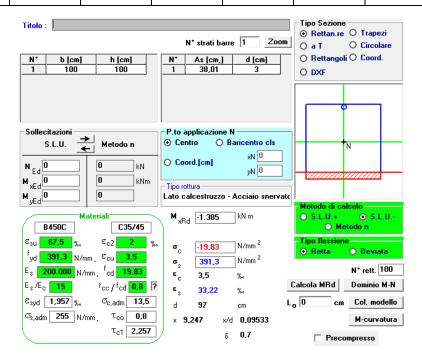
Quindi per ogni barra Ø26 il taglio vale:

 $V_{Ed} = Vb \times 30 / 100 = 96,59 \text{ kN}$


 $V_{Rd} = A_s \; f_{yd} \; / \sqrt{3} = 5.31 \; x \; 39.13 \; / \; \sqrt{3} = 119.96 \; kN > V_{Ed}$

4.5.10 CONTINUITA' CON I CORDOLI SUI DIAFRAMMI DI TESTA

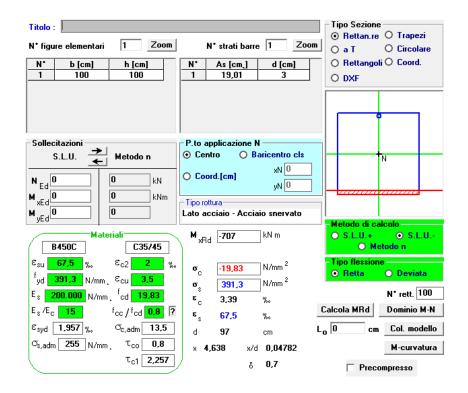
Per il calcolo della continuità viene analizzata la struttura completa e collaborante dell'impalcato. Per gli effetti della continuità vengono aggiunte le armature a momento negativo verso i diaframmi e integrate quelle a taglio.


La verifica viene eseguita sulla sezione piena gettata in opera alta 100cm, per una larghezza unitaria di 100cm, in asse pali. Non si ha precompressione; data inoltre l'elevata elasticità dei pali gli effetti reologici a tempo finale e termici sono trascurabili.

4.5.10.1 Verifiche a flessione:

Lastra tipo 1

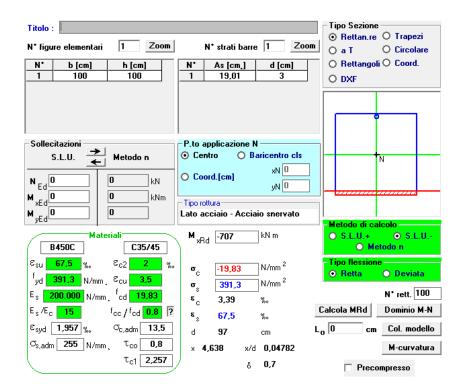
lastra	G1-p	G1-g	G2	a	SLU	SLU
b = 2.50m	kNm	kNm	kNm	kNm	kNm	kNm/m
appoggio	0,00	0,00	-74,52	-1021,69	-1644,3	-657,7



 $M_{Rd} = 1385 \text{ kNm} (10\varphi 22) > 657,7 \text{ kNm} => \text{verifica soddisfatta}$

• Lastra tipo 4

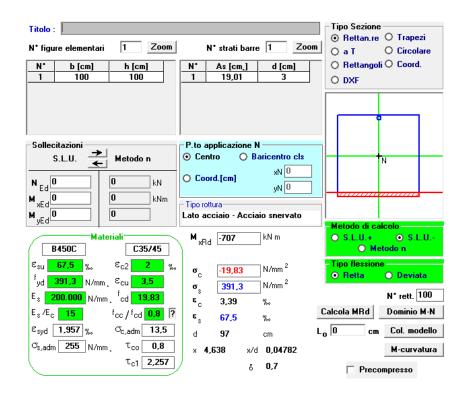
lastra	G1-p	G1-g	G2	q	SLU	SLU
b = 2.50m	kNm	kNm	kNm	kNm	kNm	kNm/m
appoggio (0,6m)	0,00	0,00	-7,85	-399,10	-586,90	-234,8



 $M_{Rd} = 707 \text{ kNm/m} (5\phi22) > 234.8 \text{ kNm/m} => verifica soddisfatta$

• Lastra tipo 6

lastra	G1-p	G1-g	G2	q	SLU	SLU
b = 2.50m	kNm	kNm	kNm	kNm	kNm	kNm/m
appoggio (0,6m)	0,00	0,00	62,19	348,88	616,6	246,6



 $M_{Rd} = 707 \text{ kNm/m} (5\phi22) > 246.6 \text{ kNm/m} => verifica soddisfatta$

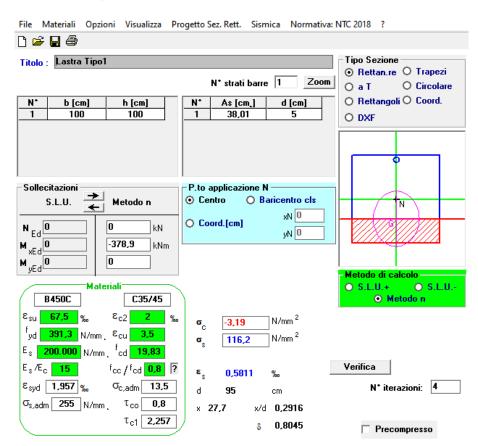
• Lastra tipo 7

lastra	G1-p	G1-g	G2	q	SLU	SLU
b = 2.50m	kNm	kNm	kNm	kNm	kNm	kNm/m
appoggio (0,6m)	0,00	0,00	45,45	-460,90	-623,2	-249,3

 $M_{Rd} = 707 \text{ kNm/m} (5\phi22) > 249.3 \text{ kNm/m} => verifica soddisfatta$

4.5.10.2 Verifiche a fessurazione:

Per le verifiche a fessurazione viene impegnata la combinazione SLE frequente


$$SLE_F = G_1 + G_2 + P + \psi_{1,Oi} Q_k$$

$$\psi_{1,Qi} = 0.9$$

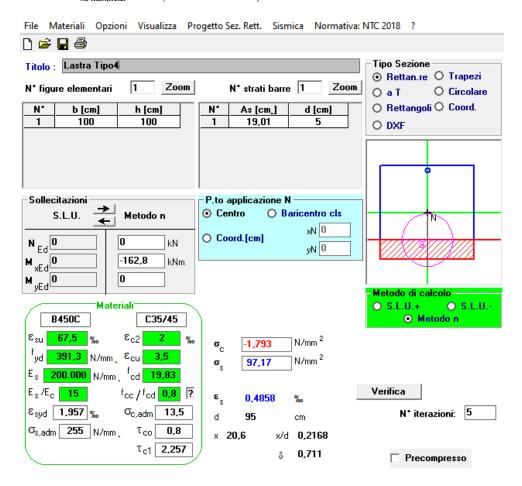
Lastra tipo 1

lastra	G1-p	G1-g	G2	q	SLE	SLE
b = 2.50m	kNm	kNm	kNm	kNm	kNm	kNm/m
appoggio (0,6m)	0,00	0,00	27,85	1021,69	947,4	378,9

$$M_{sd max, SLE} = 947,4 \text{ kNm} => 378,9 \text{ kNm/m}$$

Progetto Esecutivo

Descrizione	Formule	Valore U.M.							
CONTROLLO DI FESSURAZIONE A SLE									
Dimensioni GEOMETRICHE									
Altezza della sezione trasversale di calcestruzzo	h =	1000 [mm]							
Larghezza della sezione trasversale di calcestruzzo	b =	1000 [mm]							
Copriferro	d' =	52 [mm]							
Altezza utile della sezione	d =	948 [mm]							
Area dell'armatura tesa	As =	3801 [mm ²]							
Area dell'armatura compressa	A's =	[mm ²]							
Distanza tra il bordo del cls e l'armatura	c =	40 [mm]							
Distanza tra i baricentri delle barre	s =	100 [mm]							
Distanza massima di riferimento tra le barre	S _{rif.max} =	260 [mm]							
Calcolo dell'ampiezza delle fessure - Combina	zione Frequente								
Momento sollecitante	$M_{\text{sd max,SLE}} =$	378,9 [kNm]							
Durata del carico		lunga [-]							
Posizione dell'asse neutro dal lembo superiore	X =	277,0 [mm]							
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{s} =$	116,2 [MPa]							
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{ct,eff} =$	3,0 <i>[MPa]</i>							
Fattore dipendente dalla durata del carico	k _t =	0,4 [-]							
Altezza efficace	$h_{c,eff} =$	130,00 <i>[mm]</i>							
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff} =$	130000,00 [mm ²]							
Rapporto geometrico sull'area efficace	$\rho_{p,eff}$ =	0,02924 [-]							
Rapporto tra E _s /E _{cm}	α_{e} =	6,3 [-]							
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	$\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}$ =	0,000322 [-]							
*		0,000491 [-]							
Determinazione del diametro equivalente delle barre tese	ф _{ед} =	24,00 [mm]							
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k ₁ =	0,8 <i>[-]</i>							
Coefficiente che tiene conto della flessione pura	k ₂ =	0,5 [-]							
	k ₃ =	3,4 [-]							
	k ₄ =	0,425 [-]							
Distanza massima tra le fessure	$s_{r,max} =$	275,5 [mm]							
		275,5 [mm]							
Ampiezza delle fessure	W _k =	0,135 [mm]							
Ampiezza massima delle fessure	w _{max} =	0,3 [mm]							
$W_k < W_{max} V$	erifica soddisfatta								


Progetto Esecutivo

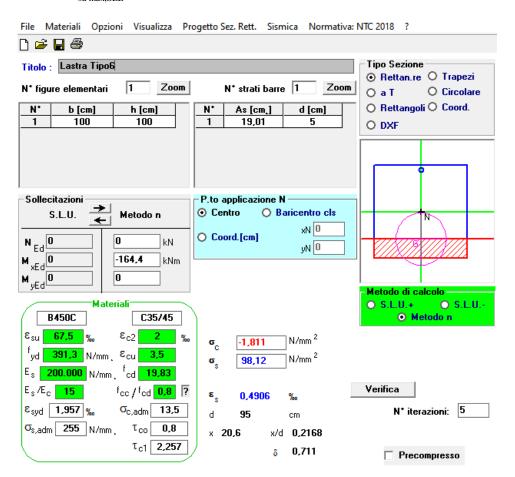
Lastra tipo 4

Sollecitazioni di calcolo:

lastra	G1-p	G1-g	G2	q	SLE	SLE
b = 2.50m	kNm	kNm	kNm	kNm	kNm	kNm/m
appoggio (0,6m)	0,00	0,00	7,85	399,10	407,0	162,8

 $M_{sd max,SLE} = 407,0 \text{ kNm} = > 162,8 \text{ kNm/m}$

Progetto Esecutivo


Descrizione	Formule	Valore U.M.						
CONTROLLO DI FESSURAZIONE A SLE								
Dimensioni GEOMETRICHE								
Altezza della sezione trasversale di calcestruzzo	h =	1000 [mm]						
Larghezza della sezione trasversale di calcestruzzo	b =	1000 [mm]						
Copriferro	d' =	52 [mm]						
Altezza utile della sezione	d =	948 [mm]						
Area dell'armatura tesa	As =	1901 [mm ²]						
Area dell'armatura compressa	A's =	[mm ²]						
Distanza tra il bordo del cls e l'armatura	c =	40 [mm]						
Distanza tra i baricentri delle barre	s =	100 [mm]						
Distanza massima di riferimento tra le barre	s _{rif.max} =	260 [mm]						
Calcolo dell'ampiezza delle fessure - Combina	zione Frequente							
Momento sollecitante	$M_{\text{sd max,SLE}} =$	162,8 [kNm]						
Durata del carico		lunga [-]						
Posizione dell'asse neutro dal lembo superiore	x =	206,0 [mm]						
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_s =$	97,2 [MPa]						
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{ct,eff} =$	3,0 <i>[MPa]</i>						
Fattore dipendente dalla durata del carico	k _t =	0,4 [-]						
Altezza efficace	$h_{c,eff} =$	130,00 [mm]						
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff} =$	130000,00 [mm ²]						
Rapporto geometrico sull'area efficace	$\rho_{p,eff}$ =	0,01462 [-]						
Rapporto tra E _s /E _{cm}	$\alpha_{e} =$	6,3 [-]						
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	$\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}$ =	0,000036 [-]						
	-51116111	0,000491 [-]						
Determinazione del diametro equivalente delle barre tese	ф _{еа} =	24,00 [mm]						
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k ₁ =	0,8 <i>[-]</i>						
Coefficiente che tiene conto della flessione pura	k ₂ =	0,5 [-]						
•	k ₃ =	3,4 [-]						
	k ₄ =	0,425 [-]						
Distanza massima tra le fessure	$s_{r,max} =$	415,0 <i>[mm]</i>						
	I,IIIGA	415,0 <i>[mm]</i>						
Ampiezza delle fessure	w _k =	0,204 [mm]						
Ampiezza massima delle fessure	w _{max} =	0,3 [mm]						
$W_k < W_{max} $ V	verifica soddisfatta							

Lastra tipo 6

Sollecitazioni di calcolo:

lastra	G1-p	G1-g	G2	q	SLE	SLE
b = 2.50m	kNm	kNm	kNm	kNm	kNm	kNm/m
appoggio (0,6m)	0,00	0,00	62,19	348,88	411,1	164,4

 $M_{sd max, SLE} = 411.1 \text{kNm} = > 164.4 \text{ kNm/m}$

Progetto Esecutivo

Descrizione	Formule	Valore U.M.						
CONTROLLO DI FESSURAZIONE A SLE								
Dimensioni GEOMETRICHE								
Altezza della sezione trasversale di calcestruzzo	h =	1000 [mm]						
Larghezza della sezione trasversale di calcestruzzo	b =	1000 [mm]						
Copriferro	d' =	52 [mm]						
Altezza utile della sezione	d =	948 [mm]						
Area dell'armatura tesa	As =	3801 [mm ²]						
Area dell'armatura compressa	A's =	[mm ²]						
Distanza tra il bordo del cls e l'armatura	c =	40 [mm]						
Distanza tra i baricentri delle barre	s =	100 [mm]						
Distanza massima di riferimento tra le barre	s _{rif.max} =	260 [mm]						
Calcolo dell'ampiezza delle fessure - Combina	azione Frequente							
Momento sollecitante	$M_{\text{sd max,SLE}} =$	164,4 [kNm]						
Durata del carico		lunga [-]						
Posizione dell'asse neutro dal lembo superiore	x =	206,0 [mm]						
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_s =$	98,1 [MPa]						
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{ct,eff} =$	3,0 <i>[MPa]</i>						
Fattore dipendente dalla durata del carico	k _t =	0,4 [-]						
Altezza efficace	$h_{c,eff} =$	130,00 [mm]						
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff} =$	130000,00 [mm ²]						
Rapporto geometrico sull'area efficace	$\rho_{p,eff}$ =	0,02924 [-]						
Rapporto tra E _s /E _{cm}	α_{e} =	6,3 [-]						
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	$\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}$ =	0,000236 [-]						
, , , , , , , , , , , , , , , , , , ,	-5111 -6111	0,000491 [-]						
Determinazione del diametro equivalente delle barre tese	ф _{еа} =	24,00 [mm]						
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k ₁ =	0,8 [-]						
Coefficiente che tiene conto della flessione pura	k ₂ =	0,5 [-]						
· ·	k ₃ =	3,4 [-]						
	k ₄ =	0,425 [-]						
Distanza massima tra le fessure	$s_{r,max} =$	275,5 [mm]						
	ŸI,ITIUX —	275,5 [mm]						
Ampiezza delle fessure	W _k =	0,135 [mm]						
Ampiezza massima delle fessure	w _{max} =	0,3 [mm]						
•	verifica soddisfatta	ړ						

4.5.10.3 Appoggi

Si riportano di seguito i carichi nominali massimi agenti agli appoggi. Data la tipologia di appoggio, costituita da lastra in neoprene da 10mm di spessore, larga 200mm e disposta lungo tutta la spalla, si ricavano le sollecitazioni per metro lineare.

Pressione sul neoprene

pressione limite σv , $\lim = 1.2xSxG = 100 \text{ daN/cmq}$

S = coefficiente di forma = a x b / [2 x sp x (a + b)] = 9.26

G = modulo di elasticità tangenziale = 9 daN/cmq (neoprene Shore A3 60)

ma σv , lim deve essere anche $\leq 50 \text{ daN/cmq}$

Larghezza	lastra	G1-p	G1-g	Q _{max}	q _{max}	σv
m		kN	kN	kN	kN/m	daN/cm²
2,5	Tipo 1	90,78	88,70	233,3	93,33	4,67
2,5	Tipo 4	125,84	37,83	212,8	85,11	4,26
2,2	Tipo 6	120,09	35,64	202,4	92,02	4,60
2,5	Tipo 7	216,14	58,38	356,9	142,75	7,14

verifica:

 $\sigma v = 7,14 \text{ daN/cmq} < \sigma v, \text{lim}$

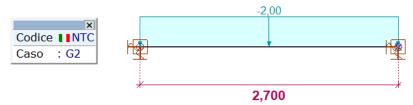
La verifica è per la fase di esecuzione, in quanto la funzione della lastra di neoprene è limitata al solo carico per peso proprio delle lastre più il getto in opera della soletta e dei traversi.

Progetto Esecutivo

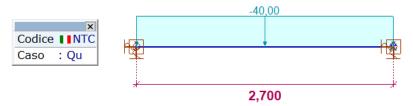
4.5.11 TRAVI DI SUPPORTO DEI GRIGLIATI

Schema di calcolo:

Viene analizzata la trave considerando lo schema di calcolo in semplice appoggio, luce 2,7m, interasse travi 1.0m

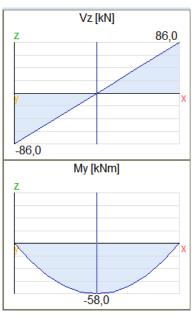


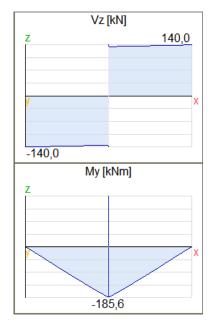
Carichi:


G1 – Peso proprio – calcolato in automatico del programma

G2 - Sovraccarico permanente - peso grigliato 2kN/mq

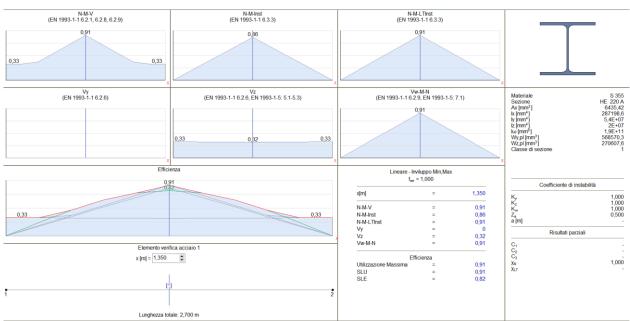
Qu - Sovraccarico variabile uniforme - 40 kN/mq


Qu - Carico variabile puntuale in mezzeria - 200 kN



Co	Combinazioni di carico personalizzate per casi di carico							
	Nome Tipo G1 G2 Qu Qk							
1	Co #1	SLU	1,35	1,50	1,50	0		
2	Co #2	SLU	1,35	1,50	0	1,35		
3	Co #3	SLE Caratteristica	1,00	1,00	0	1,00		
4	Co #4	SLE Caratteristica	1,00	1,00	1,00	0		

Sollecitazioni di calcolo:



Combinazione 1

Combinazione 2

Efficienza massima:

VERIFICA DELL'ASTA IN ACCIAIO

Elemento di progetto: 1

Nodi: 1-2

Codice: NTC (Italiane)
Materiale: S 355
Sezione: HE 220 A

Caso di carico: Lineare, Inviluppo (Combinazioni di carico)

Coefficiente per le forze sismiche: 1,0

Classe di sezione: 1 (Progettazione in fase plastica)

1. Sforzo normale-Flessione-Taglio

EN 1993-1-1: 6.2.1, 6.2.8, 6.2.9

Combinazione critica: Co #2

Sezione critica: $x = 0.50 \cdot L = 0.50 \cdot 270.00 = 135.00 \text{ cm}$

$$V_{zEd_z} = -135,00 \text{ kN } M_{yEd_z} = -18559,34 \text{ kNcm} = -185,6 \text{ kNm}$$

$$\eta_{NMV_{pl}} = \max \left(\eta_N; \eta_{M_{y,pl}}; \eta_{M_{z,pl}}; \eta_{V_z}; \eta_{V_y} \right) = 91,0 \%$$
passato

2. Sforzo normale-Flessione-Instabilità flessionale

EN 1993-1-1: 6.3.3, Annex B: Method 2

Combinazione critica: Co #2

Sezione critica: $x = 0.50 \cdot L = 0.50 \cdot 270.00 = 135.00 \text{ cm}$

$$C_{mv} = \max\left(0.95 + 0.05 \cdot \alpha_{mv}, 0.9 + 0.1 \cdot \alpha_{mv}\right) = \max\left(0.95 + 0.05 \cdot 0.0, 0.9 + 0.1 \cdot 0\right) = 0.95 \ge 0.4 \quad \text{Tabella B.3}$$

$$C_{mz} = 1 \ge 0.4$$
 Tabella B.3

$$k_{yy} = C_{my} \cdot \left(1 + f_{yy} \cdot \frac{\left| N_{Ed} \right|}{\frac{\chi_y \cdot N_{pl,Rd}}{\gamma_{M_1}}} \right) = 0.95 \cdot \left(1 + 0.185 \cdot \frac{|0|}{\frac{1 \cdot 2284.57}{1}} \right) = 0.95$$

$$k_{yy} = 0.6 \cdot k_{yy} = 0.6 \cdot 0.95 = 0.57$$
 Tabella Annex B.1

$$\chi_{v} = 1 (6.49)$$

$$\chi_z = 1 (6.49)$$

$$\eta_{NMBuckl_{1}} = \frac{ \frac{\left| N_{Ed_{7}} \right|}{\chi_{y} \cdot N_{pl,Rd}} + k_{yy} \cdot \frac{\left| M_{y,Ed_{7}} \right|}{M_{pl,Rdy}} = \frac{|0|}{\frac{1 \cdot 2284,57}{1}} + 0,95 \cdot \frac{\left| (-18559,34) \right|}{\frac{20397,05}{1}} = 86,4\% \quad (6.61)$$

$$\eta_{NMBuckl_{2}} = \frac{\begin{vmatrix} N_{Ed_{7}} \\ \chi_{z} \cdot N_{pl,Rd} \end{vmatrix}}{2 \chi_{x} \cdot N_{pl,Rd}} + k_{zy} \cdot \frac{\begin{vmatrix} M_{y,Ed_{7}} \\ M_{pl,Rd,y} \end{vmatrix}}{2 \chi_{x}} = \frac{|0|}{\frac{1 \cdot 2284,57}{1}} + 0,57 \cdot \frac{|(-18559,34)|}{\frac{20397,05}{1}} = 51,9\% \quad (6.62)$$

$$\eta_{NMBuckl} = 86,4\%$$
 passato

Progetto Esecutivo

3. Sforzo normale-Flessione-Instabilità laterale torsionale

EN 1993-1-1: 6.3.3, Annex B: Method 2

Combinazione critica: Co #2

Sezione critica: $x = 0.50 \cdot L = 0.50 \cdot 270.00 = 135.00 \text{ cm}$

$$N_{Ed_7} = 0 \,\mathrm{kN}$$

$$\eta_{NMLTBuckl} = \frac{M_{y,Ed_7}}{M_{b,Rd}} + \frac{M_{z,Ed_7}}{\frac{W_{pl,z} \cdot f_y}{\gamma_{M_1}}} = \frac{(-18559,34)}{20397,05} + \frac{0}{\frac{270,59 \cdot 35,50}{1}} = 91,0\%$$
 passato

4. Resistenza a taglio (y) della sezione trasversale:

EN 1993-1-1: 6.2.6

Combinazione critica: Co#1

Sezione critica: $x = 0.00 \cdot L = 0.00 \cdot 270.00 = 0$ cm

$$A_{Vy} = 2 \cdot b \cdot t_f = 48,40 \text{ cm}^2$$

$$V_{pl,Rd,y} = \frac{A_{V,y} \cdot f_y}{\sqrt{3} \cdot \gamma_{M_0}} = \frac{48,40 \cdot 35,50}{\sqrt{3} \cdot 1} = 992,00 \text{ kN}$$
 (6.18)

$$\eta_{V_y} = \frac{|V_{y,Ed}|}{|V_{pl,Rd}|} = \frac{|0|}{992,00} = 0\% \quad (6.17)$$
passato

5. Resistenza instabilità taglio anima:

EN 1993-1-5: 5.1, 5.2, 5.3, 5.5, Annex A: A.3

Combinazione critica: Co #2

Sezione critica: $x = 0.00 \cdot L = 0.00 \cdot 270.00 = 0$ cm

$$\eta_w = 1,2 \quad 5.2 (2) \text{ NOTE } 2$$

$$h_w = h - 2 \cdot t_f = 21,00 - 2 \cdot 1,10 = 18,80 \text{ cm}$$

Nessun rinforzo $\rightarrow k_{\tau} = 5,34$ (A.5)

$$\frac{h_w}{t_w} \le \frac{31 \cdot \varepsilon \cdot \sqrt{k_\tau}}{\eta_w} \to V_{b,Rd} = V_{pl,Rd,z} = 423,94 = 423,94 \text{ kN} \quad (5.1 (2))$$

$$\eta_{V_w} = \frac{|V_{z,Ed}|}{|V_{b,Rd}|} = \frac{|(-139,95)|}{423,94} = 33,0 \% \quad (5.10)$$
passato

6. Taglio-Flessione-Sforzo normale

EN 1993-1-1: 6.2.9; EN 1993-1-5: 7.1

Combinazione critica: Co #2

Sezione critica: $x = 0.50 \cdot L = 0.50 \cdot 270.00 = 135.00 \text{ cm}$

$$M_{fRd} = b \cdot t_f \cdot f_y \cdot (h - t_f) = 22,00 \cdot 1,10 \cdot 35,50 \cdot (21,00 - 1,10) = 17096,09 \text{ kNcm} = 171,0 \text{ kNm}$$

$$V_{z,Ed_{7}} < 0.5 \cdot V_{bw,Rd} \rightarrow \eta_{V_{w}MN} = \frac{\left| M_{y,Ed_{7}} \right|}{M_{pl,Rd_{7}}} = \frac{\left| (-18559,34) \right|}{20397,05} = 91,0 \%$$
 (7.1) passato

7. Combinazione SLE (Stati Limite di Esercizio)

EN 1993-1-1: 7., EN 1990: 3.4, A1.4.

Combinazione critica: Co #3

Sezione critica: $x = 0.50 \cdot L = 0.50 \cdot 270.00 = 134.99 \text{ cm}$

$$e_z = |e_{zi} + u_z| = |(-0.74) + 0| = 0.74 \text{ cm}$$

$$e_{z,Limit} = \frac{L}{300.0} = \frac{270,00}{300.0} = 0,90 \text{ cm}$$

$$\eta_{e_z} = \frac{e_z}{e_{z,limit}} = \frac{0.74}{0.90} = 81.9 \%$$

$$\eta_{SLS} = \max \left(\eta_{e_{z}} \right) = \max (81.9) = 81.9 \%$$
pass ato

Risultati parziali

8. Resistenza al carico assiale della sezione trasversale :

EN 1993-1-1: 6.2.4

Combinazione critica: Co #1

Sezione critica: $x = 0.00 \cdot L = 0.00 \cdot 270.00 = 0 \text{ cm}$

$$N_{pl,Rd} = \frac{A \cdot f_y}{\gamma_{Mo}} = \frac{64,35 \cdot 35,50}{1} = 2284,57 \text{ kN} \quad (6.10)$$

$$\eta_N = \frac{\left| N_{Ed} \right|}{N_{pl,Rd}} = \frac{|0|}{2284,57} = 0 \% \quad (6.9)$$
passato

9. Resistenza a flessione (yy) della sezione trasversale:

EN 1993-1-1: 6.2.5

Combinazione critica: Co #2

Sezione critica: $x = 0.30 \cdot L = 0.30 \cdot 270.00 = 81.00 \text{ cm}$

$$M_{pl,Rdy} = \frac{W_{pl,y} \cdot f_y}{\gamma_{Mo}} = \frac{574,56 \cdot 35,50}{1} = 20397,05 \text{ kNcm} = 204,0 \text{ kNm}$$
 (6.13)

$$\eta_{M_{y,pl}} = \frac{M_{y,Ed_4}}{M_{pl,Rd_y}} = \frac{|(-11215,85)|}{20397,05} = 55,0 \% \quad (6.12)$$
pass ato

10. Resistenza a flessione (ZZ) della sezione trasversale:

EN 1993-1-1: 6.2.5

Combinazione critica: Co #1

Sezione critica: $x = 0.00 \cdot L = 0.00 \cdot 270.00 = 0$ cm

$$M_{pl,Rd,z} = \frac{W_{pl,z} \cdot f_y}{\gamma_{M0}} = \frac{270,59 \cdot 35,50}{1} = 9606,11 \text{ kNcm} = 96,1 \text{ kNm}$$
 (6.13)

$$\eta_{M_{z,pl}} = \frac{|M_{z,Ed}|}{M_{plRdz}} = \frac{|0|}{9606,11} = 0\% \quad (6.12)$$
 passato

11. Resistenza a taglio (z) della sezione trasversale :

EN 1993-1-1: 6.2.6

Combinazione critica: Co #2

Sezione critica: $x = 0.00 \cdot L = 0.00 \cdot 270.00 = 0$ cm

$$A_{Vz} = A - 2 \cdot b \cdot t_f + (t_w + 2 \cdot r) \cdot t_f = 20,68 \text{ cm}^2$$

$$V_{pl,Rd,z} = \frac{A_{V,z} \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = \frac{20,68 \cdot 35,50}{\sqrt{3} \cdot 1} = 423,94 \text{ kN} \quad (6.18)$$

$$\eta_{V_z} = \frac{\left|V_{z,Ed}\right|}{V_{pl,Rd,z}} = \frac{\left|(-139,95)\right|}{423,94} = 33,0 \% \quad (6.17)$$
passato

12. Verifica di interazione flessione - taglio

EN 1993-1-1: 6.2.1, 6.2.8, 6.2.9

Combinazione critica per interazione N-M-V: Co #2

Sezione critica: $x = 0.50 \cdot L = 0.50 \cdot 270.00 = 135.00 \text{ cm}$

$$V_{z,Ed_{\gamma}} = -135,00 \text{ kN} \le V_{pl,Rd,z}/2 = 211,97 \text{ kN} \rightarrow \text{L'effetto della forza di taglio sul momento resistente è}$$

trascurabile. 6.2.8 (2)

 $V_{y,Ed_2} = 0 \text{ kN} \le V_{pl,Rdy}/2 = 496,00 \text{ kN} \rightarrow \text{L'effetto della forza di taglio sul momento resistente è trascurabile.}$

6.2.8(2)

13. Verifica di interazione forza assiale - flessione

EN 1993-1-1: 6.2.1, 6.2.8, 6.2.9

Combinazione critica per interazione N-M-V: Co #2

Sezione critica: $x = 0.50 \cdot L = 0.50 \cdot 270,00 = 135,00 \text{ cm}$

$$n = \frac{N_{Ed}}{N_{pl,Rd}} = \frac{0}{2284,57} = 0 \% \le 25\%$$

$$N_{Ed_{\gamma}} = 0 \text{ kN} \le N_{Rd,w}/2 = \frac{h_w \cdot t_w \cdot f_y}{2 \cdot \gamma_{M0}} = \frac{18,80 \cdot 0,70 \cdot 35,50}{2 \cdot 1} = 233,59 \text{ kN}$$

$$M_{NyRd} = M_{yVRd} = 20397,05 = 20397,05 \text{ kNcm} = 204,0 \text{ kNm}$$

$$M_{Nz,Rd} = M_{z,V,Rd} = 9606,11 = 9606,11 \text{ kNcm} = 96,1 \text{ kNm}$$

$$\eta_{MN,1} = \frac{M_{y,Ed_7}}{M_{NyRd}} = \frac{(-18559,34)}{20397,05} = 91,0 \%$$

$$\eta_{MN,2} = \frac{M_{z,Ed_7}}{M_{N,z,Rd}} = \frac{0}{9606,11} = 0 \%$$

$$\alpha_{MN} = 2$$

$$\beta_{MN} = \max(5 \cdot n/100; 1) = \max(5 \cdot 0/100; 1) = 1$$

$$\eta_{MN,3} = \left(\frac{M_{y,Ed_7}}{M_{Ny,Rd}}\right)^{\alpha_{MN}} + \left(\frac{M_{z,Ed_7}}{M_{Nz,Rd}}\right)^{\beta_{MN}} = \left(\frac{(-18559,34)}{20397,05}\right)^2 + \left(\frac{0}{9606,11}\right)^1 = 82,8\% \quad (6.41)$$

$$\eta_{MN} = \max (\eta_{MN,1}; \eta_{MN,2}; \eta_{MN,3}; \eta_{N}) = \max (91,0; 0; 82,8; 0) = 91,0\%$$
 passato

14. Resistenza instabilità flessionale:

EN 1993-1-1: 6.3.1

Combinazione critica per interazione N-M-Instab. flessionale: Co #2

Sezione critica: $x = 0.50 \cdot L = 0.50 \cdot 270.00 = 135.00 \text{ cm}$

Lo sforzo normale risulta pari a zero lungo l'elemento progettato.

$$\rightarrow \chi_v = 1 \chi_z = 1 \chi_{TF} = 1 \rightarrow \chi = 1$$

$$N_{b,Rd} = \frac{\chi \cdot A \cdot f_y}{\gamma_{M1}} = \frac{1.64,35.35,50}{1} = 2284,57 \text{ kN}$$

$$\eta_{N_b} = \frac{|N_{Ed}|}{N_{b,Rd}} = \frac{|0|}{2284,57} = 0 \% \quad (6.46)$$
passato

15. Resistenza instabilità laterale-torsionale:

EN 1993-1-1: 6.3.2

Combinazione critica per interazione N-M-Intabilità laterale torsionale: Co#2

Sezione critica: $x = 0.50 \cdot L = 0.50 \cdot 270,00 = 135,00 \text{ cm}$

Impostazione utente: L'elemento di progetto è sufficientemente vincolato contro l'instabilità laterale torsionale.

$$\rightarrow \chi_{LT} = 1$$

$$M_{b,Rd} = \frac{\chi_{LT} \cdot W_y \cdot f_y}{\gamma_{M_1}} = \frac{1.574,56.35,50}{1} = 20397,05 \text{ kNcm} = 204,0 \text{ kNm}$$
 (6.55)

$$\eta_{M_b} = \frac{M_{y,Ed}}{M_{b,Rd}} = \frac{|(-18559,34)|}{20397,05} = 91,0\% \quad (6.54)$$
passato

4.5.12 VERIFICA DEI GRIGLIATI DI COPERTURA

I grigliati di copertura vengono analizzati utilizzando due schemi di carico variabili:

- Caso 1: Carico uniforme cat. E: Q1 = 40 kN/mq
- Caso 2: Carico stradale schema di carico 2: Qak = 2 x 200kN / 0,35m x 0,60m

Verifica grigliato caso 1:

Indice	Descrizione	Formule	Valore	U.M.
	Carico dinamico uniforme distribuito (classe 1)	Q =	40,00	kN/m ²
	Luce netta tra gli appoggi	$L_n =$	1,00	m
	Grigliato tipo Keller		120 x 5 –	25x76
	S B A A	h		
		h =	120	mm
		s =	5	mm
		B =	25	
		A =	76	
	Modulo di resistenza	W =	12000,0	mm^3
	Modulo di inerzia	J =	720000,0	mm^3
	Numero barre portanti in 1 metro di larghezza	N =	40,00	-
	Materiale		S235JR	
	Coefficiente di sicurezza per le sezioni lorde Resistenza nominale di snervamento	$\gamma_{M0} =$	1,05	- 2
	Modulo di elasticità	$f_{yk} = E = 0$		N/mm^2
		_	210000	
	Verifica SLU	$\sigma_{\rm c} = f_{\rm yk} / \gamma_{\rm M0} =$	223,01	N/mm ²
	Coefficiente	ν _α . –	1,50	_
		$\gamma_{Qi} = Q_1 = Q_2 \cdot \gamma_{Qi} = Q_1 = Q_2 \cdot \gamma_{Qi} = Q_1 \cdot \gamma_{Qi} = Q_2 \cdot \gamma_{Qi} = Q_1 \cdot \gamma_{Qi} = Q_2 \cdot \gamma_{Qi} $		kN/m^2
		$Q_i = Q_i \cdot 1 / N = 0$		kN/m
		$= q_1 \cdot Ln^2 / 8 =$		
		$\sigma = M/W =$		N/mm ²
	Verifiche	$\sigma / \sigma_{c} =$		< 1 OK
	Verifica SLE		,	
	Coefficiente	$\gamma_{\mathrm{Qi}} =$	1,00	_
	Carico amplificato	$Q_1 = Q \cdot \gamma_{Qi} =$	40,00	kN/m^2
		$q = Q \cdot 1 / N =$	1,00	kN/m
	Freccia elastica $f = 5 \cdot q \cdot Ln^4$	/ 384 · E · J =	0,09	mm
	Raporto freccia /luce netta	$L_n / 200 =$	5,00	mm
	Verifiche	$f < L_n / 200 =$		OK

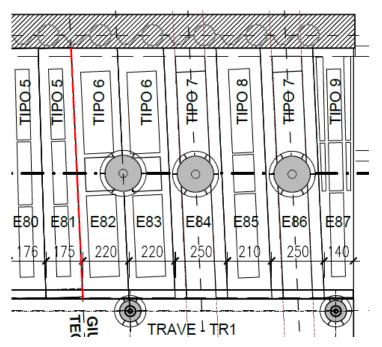
Verifica grigliato caso 2:

Indice	Descrizione	Formule	Valore	U.M.
	Carico dinamico di 200kN su impronta di 600x350	mm P =	200,00	kN
	Dim. impronta in direzione longitudinale	L1=	600	mm
	Dim. impronta in direzione trasversale	B1=	350	mm
	Luce tra gli appoggi	L=	1,00	m
	Luce netta di calcolo	$L_n =$	0,88	m
	Grigliato tipo Keller		120x5-25x	76
	Modulo di resistenza Modulo di inerzia Numero barre portanti in 1 metro di larghezza Numero barre portanti / 0,35m Materiale Coefficiente di sicurezza per le sezioni lorde	$h = s = B = A = W = J = N / 1m = n_{bp} = $	120 5 25 76 12000,0 720000,0 40,00 15,00 \$235JR 1,05	mm mm mm mm mm mm s mm
	Resistenza nominale di snervamento	$f_{yk} =$		N/mm ²
	Modulo di elasticità	$\mathbf{E} = \mathbf{E}$	210000	
	Triodulo di calsicia	$f_{yd} = f_{yk} / \gamma_{M0} =$		N/mm ²
	Verifica SLU	1yd — 1yk / / Mu —	220,01	1 N/IIIIII
	Coefficiente	$\gamma_{\mathrm{Qi}} =$	1,35	_
	Cocheciae	$\gamma_{\rm GI} =$	1,35	_
	Carico su una barra portante	$q = P / (n_{bp} \times L1) =$	22,22	kN/m
	q [[[]]]	q = 1 / (n _{bp} x L1) =	22,22	KIV/III
	L ₁			
	Momento flettente	$M_{Sd} = \gamma_{Gl} \times M_{Gl} + \gamma_{Qi} \times M_{Q1} =$	2,62	kNm
		$M_{Rd} = W \times f_{yk} \ / \ \gamma_{M0} =$	2,69	kNm
	Verifiche a flessione:	$M_{Sd} / M_{Rd} =$	0,974	< 1 OK
	Taglio massimo sul appoggio	$V_{Sd} = \gamma_{G1} \times V_{G1} + \gamma_{Qi} \times V_{Q1} =$	10,47	kN
		$V_{pl.Rd} = Av \times f_{yk} / \sqrt{3} \times \gamma_{M0} =$	77,530	kN
	Verifiche a taglio:	$V_{Sd} / V_{pl.Rd} =$	0,135	< 1 OK
	Verifica SLE			
	Coefficiente	$\gamma_{\mathrm{Qi}} =$	1,00	-
	Carico amplificato	$P_1 = P\cdot \gamma_{Qi} =$	200,00	kN
	Carico su una barra portante	$p=P\ / n_{bp}=$	13,33	kN
	Freccia elastica	$f = p \cdot Ln^3 / 48 \cdot E \cdot J =$	1,25	mm
	Verifiche	f < 5 mm	1,25	< 5 OK
	Raporto freccia /luce netta	$L_n / 200 =$	4,40	mm
	Verifiche	$f < L_n / 200 =$		OK

Progetto Esecutivo

5 CONCLUSIONI

Visto l'esito positivo delle verifiche condotte sulle strutture – di cui al § 4 *Relazione di calcolo delle strutture* – si conclude che le opere risultano conformi alle prescrizioni delle norme di riferimento di cui al § 2 *Norme di riferimento*, e che possono quindi essere realizzate come previste dal presente progetto.



6 ADDENDUM


6.1 PREMESSA – OGGETTO E CONTENUTO DEL PRESENTE ADDENDUM

Il presente capitolo di Addendum è per chiarire la sequenza progettuale e le modalità costruttive delle lastre di impalcato della copertura del Fosso Melara che appoggiano in mezzeria su pali di grande diametro.

Si tratta in particolare delle travi tipo 6 e tipo 7, numerate E82, E83, E84 e E86:

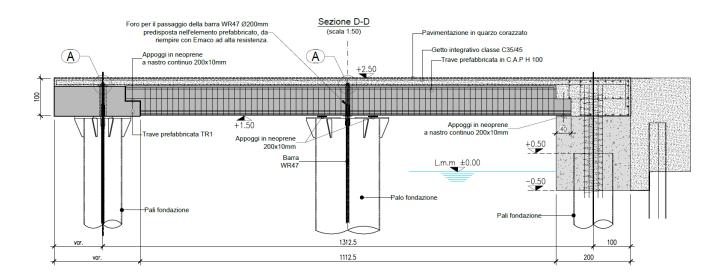
planimetria delle travi in oggetto

sezione impalcato nella zona interessata

Per quanto riguarda ogni dettaglio su normative, materiali, criteri di calcolo, analisi delle sollecitazioni e verifica delle sezioni si rimanda alla relazione di calcolo a cui il presente elaborato fa riferimento.

6.2 SEQUENZA DELLE VERIFICHE DI CALCOLO

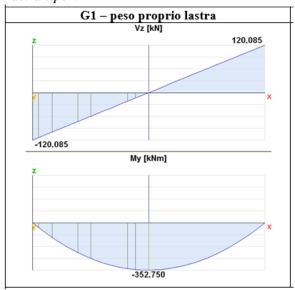
Le lastre tipo 6 e tipo 7 sono state verificate nella relazione di calcolo della copertura del Fosso Melara ai paragrafi 4.5.4 e 4.5.5, come per tutte le altre tipologie, per i seguenti carichi:

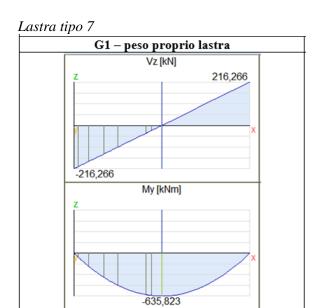

- G1-1 Peso proprio della lastra;
- G1-2 Getto strutturale in opera di completamento della soletta;
- G2 Sovraccarico permanente;
- Q Carichi variabili (gru a portale, carichi ferroviari).

Vengono condotte dapprima le verifiche allo Stato Limite Ultimo per flessione e taglio e successivamente le verifiche allo Stato Limite di Servizio per il controllo delle tensioni e delle eventuali fessurazioni e la verifica delle deformazioni.

Le lastre prefabbricate sono precompresse a trefoli aderenti, sono autoportanti e non hanno necessità di essere puntellate durante la costruzione della struttura. All'atto del trasferimento della precompressione, applicata in stabilimento, le lastre assumono una monta di costruzione di circa 5mm.

6.2.1 VARO DELLE LASTRE


Le lastre vengono varate in semplice appoggio alle due estremità: la testata Ovest poserà sulla trave di coronamento che sormonta il diaframma di pali metallici e palancole di confinamento del Fosso Melara, la testata Est andrà in appoggio sulla trave TR1 in corrispondenza della deviazione del fosso.



In questa fase, ancora provvisoria, le lastre risulteranno con vincolo isostatico alle due teste in quanto l'appoggio sul palo in mezzeria sarà ancora scarico.

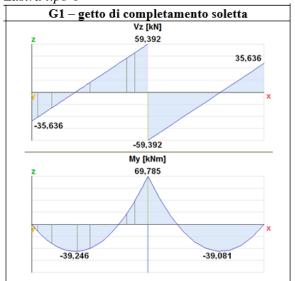
Lastra tipo 6

(N.B.: il segno dei momenti segue la notazione americana, negativo se tende le fibre inferiori)

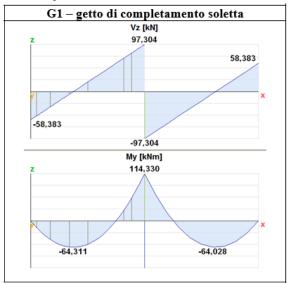
Prima di eseguire il varo sarà importante rilevare la quota degli appoggi e dell'estradosso del palo in quanto le lastre di neoprene da incollare sulla testa del palo dovranno saturare lo spessore della monta di costruzione e garantire il contatto lastra-palo.

6.2.2 GETTO IN OPERA DELLA SOLETTA STRUTTURALE DI COMPLETAMENTO

Completato il varo delle lastre si procede con la chiusura delle barre tipo Dywidag WR47 per garantire la formazione della cerniera di appoggio in mezzeria. L'applicazione del carico di chiusura, dato il sicuro contatto sul palo di fondazione all'intradosso, non comporta sollecitazioni aggiuntive sulla lastra; è necessario per garantire l'ulteriore appoggio per i forti carichi mobili di transito e, allo stesso tempo, garantire l'assenza di battimenti tra lastra e palo.

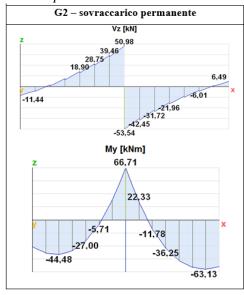

Eseguita la chiusura delle barre si procede con il getto della soletta, nella conformazione prevista a progetto per ospitare le rotaie della gru e dei binari ferroviari.

Il getto della soletta è un carico portato ancora dalle lastre prefabbricate, che ora però risultano vincolate su tre appoggi. Le lastre non sono ancora collaboranti tra loro in senso trasversale.

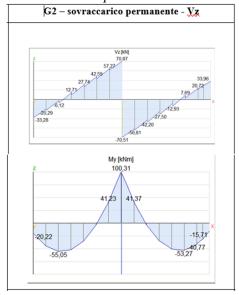

I diagrammi di sollecitazione per i due tipi di lastra, ricavati ancora dalla relazione di calcolo, sono riportati di seguito:

Lastra tipo 6

Lastra tipo 7



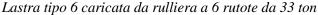
Da questo momento, maturati i getti, l'impalcato è costituito da una struttura omogenea monolitica, per cui tutti i successivi stati di sollecitazione sono ricavati dal modello di calcolo globale. Le lastre adiacenti presentano valori di inerzia di sezione prossimi ma differenti a quella delle sezioni in oggetto; i carichi mobili vengono distribuiti trasversalmente in funzione delle rigidezze di piano.

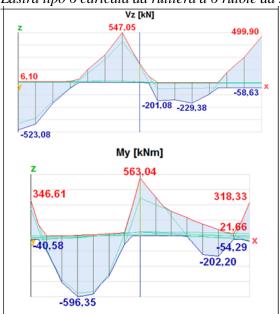

6.2.3 SOVRACCARICO PERMANENTE

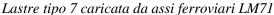
I diagrammi del sovraccarico permanente ricalcano quelli del getto della soletta ma si differenziano per il fatto di presentare continuità strutturale con le opere di sostegno alle teste:

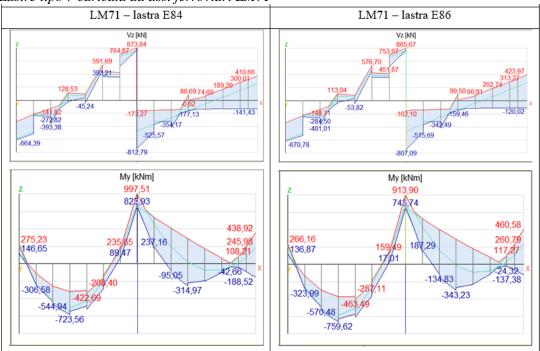
Lastra tipo 6

Lastra tipo 7






6.2.4 SOVRACCARICHI VARIABILI


I carichi variabili sono carichi mobili dati da rulliere delle gru e da assi ferroviari, per cui per ogni lastra vengono analizzati diagrammi di inviluppo.

Anche per questi carichi gli stati di sollecitazione sono ricavati dal modello di calcolo globale sullo schema di impalcato vincolato in continuità alle teste con le strutture di supporto e incernierate in corrispondenza dei pali centrali:

Progetto Esecutivo

6.3 OPERATIVE DI COSTRUZIONE

Si riportano di seguito le modalità costruttive delle lastre di impalcato che si appoggiano anche in mezzeria su pali di grande diametro. La maggior parte della sequenza è valida anche per tutte le altre lastre, escludendo le operative che coinvolgono il vincolo in mezzeria.

Le operative partono dopo la maturazione della trave di coronamento che sormonta il diaframma di pali metallici e palancole di confinamento del Fosso Melara e dopo la posa e solidarizzazione della trave TR1 con i pali di fondazione e in continuità con la trave di coronamento.

- 1) Rilievo delle quote di estradosso delle travi di coronamento, della trave TR1 e dei pali centrali;
- 2) Misura della monta di costruzione delle lastre tipo 6 e 7 e calcolo del dislivello rispetto alle teste;
- 3) Posa delle lastre di neoprene di appoggio sui cordoli e sulla trave TR1;
- 4) Incollaggio con resina epossidica delle lastre di neoprene sui pali centrali, di spessore tale da collimare con l'intradosso delle lastre;
- 5) Varo in sequenza delle lastre prefabbricate. Le lastre, diversificate per tipologia di sezione ed entità di precompressione applicata, potranno presentare un lieve disallineamento delle quote di intradosso;
- 6) Intasamento con betoncino tipo EMACO dei fori di passaggio delle barre;
- 7) Predisposizione piastre e chiusura dei dadi delle barre tipo Dywidag WR47 al carico previsto a progetto;
- 8) Posa dei cavidotti dove previsto;
- 9) Posa delle armature di soletta e di integrazione delle travi di coronamento;
- 10) Posa in quota degli angolari metallici zancati per il supporto dei grigliati;
- 11) Getto di prima fase del calcestruzzo delle nervature tra le lastre a partire dalla mezzeria verso le teste, compresa quota delle travi di coronamento;
- 12) Getto conclusivo della soletta;
- 13) Stesa della superficie di finitura in quarzo corazzato.

Progetto Esecutivo

REGIONE LIGURIA

COMUNE DI LA SPEZIA

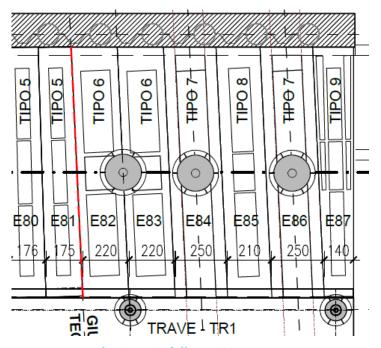
PORTO MERCANTILE DELLA SPEZIA IMPALCATO DI COPERTURA DEL PROLUNGAMENTO DEL FOSSO MELARA

ADDENDUM

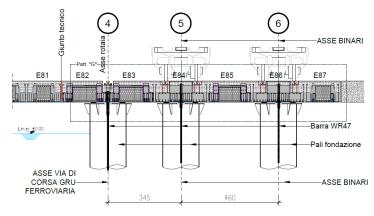
0	Novembre 2022	Costruzione	M. Defina - MITING	M. Defina - MITING
Rev.	Data	Emesso per	Autore	Approvato

PORTO DI LA SPEZIA - AMPLIAMENTO TERMINAL RAVANO COPERTURA FOSSO MELARA

Progetto Esecutivo


SOMMARIO

PRE	PREMESSA – OGGETTO E CONTENUTO DEL PRESENTE ELABORATO		
1	SEQUENZA DELLE VERIFICHE DI CALCOLO	4	
1.1	VARO DELLE LASTRE	4	
1.2	GETTO IN OPERA DELLA SOLETTA STRUTTURALE DI COMPLETAMENTO	5	
1.3	SOVRACCARICO PERMANENTE	<i>6</i>	
1.4	SOVRACCARICHI VARIABILI	7	
2	OPERATIVE DI COSTRUZIONE	8	


PREMESSA – OGGETTO E CONTENUTO DEL PRESENTE ELABORATO

Si emette il presente elaborato per chiarire la sequenza progettuale e le modalità costruttive delle lastre di impalcato della copertura del Fosso Melara che appoggiano in mezzeria su pali di grande diametro.

Si tratta in particolare delle travi tipo 6 e tipo 7, numerate E82, E83, E84 e E86:

planimetria delle travi in oggetto

sezione impalcato nella zona interessata

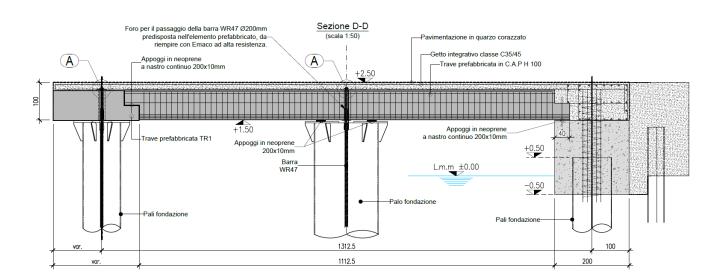
Per quanto riguarda ogni dettaglio su normative, materiali, criteri di calcolo, analisi delle sollecitazioni e verifica delle sezioni si rimanda alla relazione di calcolo a cui il presente elaborato fa riferimento.

PORTO DI LA SPEZIA - AMPLIAMENTO TERMINAL RAVANO COPERTURA FOSSO MELARA

Progetto Esecutivo

1 SEQUENZA DELLE VERIFICHE DI CALCOLO

Le lastre tipo 6 e tipo 7 sono state verificate nella relazione di calcolo della copertura del Fosso Melara ai paragrafi 4.5.4 e 4.5.5, come per tutte le altre tipologie, per i seguenti carichi:

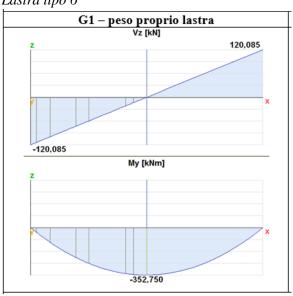

- G1-1 Peso proprio della lastra;
- G1-2 Getto strutturale in opera di completamento della soletta;
- G2 Sovraccarico permanente;
- Q Carichi variabili (gru a portale, carichi ferroviari).

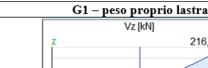
Vengono condotte dapprima le verifiche allo Stato Limite Ultimo per flessione e taglio e successivamente le verifiche allo Stato Limite di Servizio per il controllo delle tensioni e delle eventuali fessurazioni e la verifica delle deformazioni.

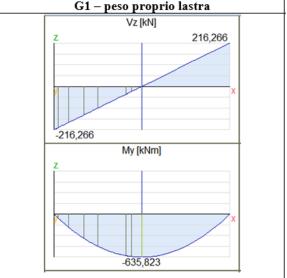
Le lastre prefabbricate sono precompresse a trefoli aderenti, sono autoportanti e non hanno necessità di essere puntellate durante la costruzione della struttura. All'atto del trasferimento della precompressione, applicata in stabilimento, le lastre assumono una monta di costruzione di circa 5mm.

1.1 VARO DELLE LASTRE

Le lastre vengono varate in semplice appoggio alle due estremità: la testata Ovest poserà sulla trave di coronamento che sormonta il diaframma di pali metallici e palancole di confinamento del Fosso Melara, la testata Est andrà in appoggio sulla trave TR1 in corrispondenza della deviazione del fosso.


PORTO DI LA SPEZIA - AMPLIAMENTO TERMINAL RAVANO COPERTURA FOSSO MELARA


Progetto Esecutivo


In questa fase, ancora provvisoria, le lastre risulteranno con vincolo isostatico alle due teste in quanto l'appoggio sul palo in mezzeria sarà ancora scarico.

Lastra tipo 7

(N.B.: il segno dei momenti segue la notazione americana, negativo se tende le fibre inferiori)

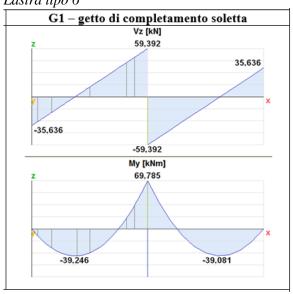
Prima di eseguire il varo sarà importante rilevare la quota degli appoggi e dell'estradosso del palo in quanto le lastre di neoprene da incollare sulla testa del palo dovranno saturare lo spessore della monta di costruzione e garantire il contatto lastra-palo.

1.2 GETTO IN OPERA DELLA SOLETTA STRUTTURALE DI COMPLETAMENTO

Completato il varo delle lastre si procede con la chiusura delle barre tipo Dywidag WR47 per garantire la formazione della cerniera di appoggio in mezzeria. L'applicazione del carico di chiusura, dato il sicuro contatto sul palo di fondazione all'intradosso, non comporta sollecitazioni aggiuntive sulla lastra; è necessario per garantire l'ulteriore appoggio per i forti carichi mobili di transito e, allo stesso tempo, garantire l'assenza di battimenti tra lastra e palo.

Eseguita la chiusura delle barre si procede con il getto della soletta, nella conformazione prevista a progetto per ospitare le rotaie della gru e dei binari ferroviari.

Il getto della soletta è un carico portato ancora dalle lastre prefabbricate, che ora però risultano vincolate su tre appoggi. Le lastre non sono ancora collaboranti tra loro in senso trasversale.



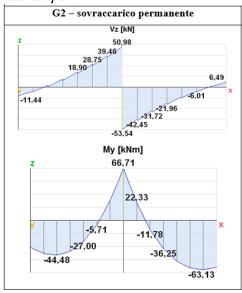
PORTO DI LA SPEZIA - AMPLIAMENTO TERMINAL RAVANO COPERTURA FOSSO MELARA

Progetto Esecutivo

I diagrammi di sollecitazione per i due tipi di lastra, ricavati ancora dalla relazione di calcolo, sono riportati di seguito:

Lastra tipo 6

Lastra tipo 7



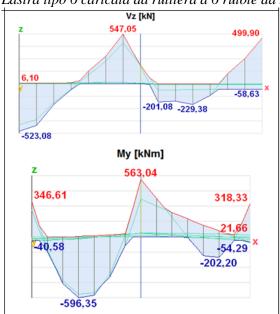
Da questo momento, maturati i getti, l'impalcato è costituito da una struttura omogenea monolitica, per cui tutti i successivi stati di sollecitazione sono ricavati dal modello di calcolo globale. Le lastre adiacenti presentano valori di inerzia di sezione prossimi ma differenti a quella delle sezioni in oggetto; i carichi mobili vengono distribuiti trasversalmente in funzione delle rigidezze di piano.

1.3 SOVRACCARICO PERMANENTE

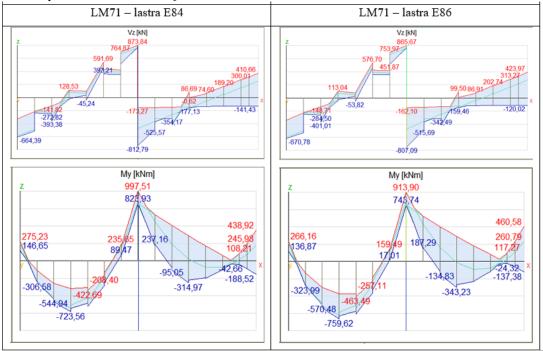
I diagrammi del sovraccarico permanente ricalcano quelli del getto della soletta ma si differenziano per il fatto di presentare continuità strutturale con le opere di sostegno alle teste:

Lastra tipo 6

Lastra tipo 7



1.4 SOVRACCARICHI VARIABILI


I carichi variabili sono carichi mobili dati da rulliere delle gru e da assi ferroviari, per cui per ogni lastra vengono analizzati diagrammi di inviluppo.

Anche per questi carichi gli stati di sollecitazione sono ricavati dal modello di calcolo globale sullo schema di impalcato vincolato in continuità alle teste con le strutture di supporto e incernierate in corrispondenza dei pali centrali:

Lastra tipo 6 caricata da rulliera a 6 rutote da 33 ton

Lastre tipo 7 caricata da assi ferroviari LM71

PORTO DI LA SPEZIA - AMPLIAMENTO TERMINAL RAVANO COPERTURA FOSSO MELARA

Progetto Esecutivo

2 OPERATIVE DI COSTRUZIONE

Si riportano di seguito le modalità costruttive delle lastre di impalcato che si appoggiano anche in mezzeria su pali di grande diametro. La maggior parte della sequenza è valida anche per tutte le altre lastre, escludendo le operative che coinvolgono il vincolo in mezzeria.

Le operative partono dopo la maturazione della trave di coronamento che sormonta il diaframma di pali metallici e palancole di confinamento del Fosso Melara e dopo la posa e solidarizzazione della trave TR1 con i pali di fondazione e in continuità con la trave di coronamento.

- 1) Rilievo delle quote di estradosso delle travi di coronamento, della trave TR1 e dei pali centrali;
- 2) Misura della monta di costruzione delle lastre tipo 6 e 7 e calcolo del dislivello rispetto alle teste;
- 3) Posa delle lastre di neoprene di appoggio sui cordoli e sulla trave TR1;
- 4) Incollaggio con resina epossidica delle lastre di neoprene sui pali centrali, di spessore tale da collimare con l'intradosso delle lastre;
- 5) Varo in sequenza delle lastre prefabbricate. Le lastre, diversificate per tipologia di sezione ed entità di precompressione applicata, potranno presentare un lieve disallineamento delle quote di intradosso;
- 6) Intasamento con betoncino tipo EMACO dei fori di passaggio delle barre;
- 7) Predisposizione piastre e chiusura dei dadi delle barre tipo Dywidag WR47 al carico previsto a progetto;
- 8) Posa dei cavidotti dove previsto;
- 9) Posa delle armature di soletta e di integrazione delle travi di coronamento;
- 10) Posa in quota degli angolari metallici zancati per il supporto dei grigliati;
- 11) Getto di prima fase del calcestruzzo delle nervature tra le lastre a partire dalla mezzeria verso le teste, compresa quota delle travi di coronamento;
- 12) Getto conclusivo della soletta;
- 13) Stesa della superficie di finitura in quarzo corazzato.