

REGIONE EMILIA-ROMAGNA

PROVINCIA DI FORLÌ-CESENA

COMUNE DI ROCCA SAN CASCIANO COMUNE DI TREDOZIO COMUNE DI MODIGLIANA

OGGETTO

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO COMPOSTO DA 8 AEROGENERATORI DA 6,6 MW CIASCUNO PER UNA POTENZA COMPLESSIVA PARI A 52,8 MW DENOMINATO "MONTEBELLO" DA REALIZZARSI NEI COMUNI DI MODIGLIANA (FC), ROCCA SAN CASCIANO (FC) E TREDOZIO (FC) IN LOCALITÀ MONTEBELLO E OPERE CONNESSE NEI COMUNI DI ROCCA SAN CASCIANO (FC), TREDOZIO (FC) E MODIGLIANA (FC)

PROGETTO DEFINITIVO

PROPONENTE

TITOLO

RELAZIONE CAVIDOTTO E SCHEMA A BLOCCHI

PROGETTISTA

Dott. Ing. Girolamo Gorgone

CONSULENTE ELETTRICO

Per. Ind. Alessandro Tedeschi per conto di Tesi s.r.l., Ordine dei periti industriali delle province di Bologna e Ferrara n°613

CODICE ELABORATO

SMG_R_06_A_D_A_1

SCALA

n°.Rev.	DESCRIZIONE REVISIONE	DATA	ELABORATO	VERIFICATO	APPROVATO

Rif. PROGETTO		
N		

NOME FILE DI STAMPA	

SCALA DI STAMPA DA FILE

Pagina | 2

Sommario

1	PRI	EMESSA	4
2	INT	RODUZIONE AL PROGETTO	4
	2.1	Inquadramento territoriale	4
	2.2	Scopo del documento	8
	2.3	Aerogeneratori	8
	2.4	Soluzione tecnica minima generale (STMG)	10
3	SPE	ECIFICHE GENERALI	11
4	NO	RMATIVE DI RIFERIMENTO	11
5	GL	OSSARIO E DEFINIZIONI	13
6	ME	TODOLOGIA	15
	6.1	Generale	15
	6.2	Corrente nominale dei raffreddatori ad aria	15
	6.3	Capacità di corrente dei cavi MT	16
	6.4	Fattore di correzione	29
	6.5	Convalida per corrente di generazione	32
	6.6	Dimensionamento delle perdite in Corrente Alternata (AC)	32
	6.7	Dimensionamento del cortocircuito	33
	6.8	Dimensionamento della caduta di tensione	34
7	SCI	HEMA A BLOCCHI	36
8	RIS	SULTATI	36
9	CO	NCLUSIONE	37

Pagina | 3

INDICE DELLE FIGURE

Figura 5 Schema tipo di funzionamento di un aerogeneratore, fonte www.e-nsight.com	9
Figura 6 Vista di una turbina della tipologia impiegata nel progetto	9
Figura 7 Viste frontale e laterale di un aerogeneratore del tipo proposto	10
Figura 3 - Sezione trifoglio	17
Figura 4 - Valori di portata effettiva per ogni circuito	31
Figura 5 - Verifica capacità di esportazione della massima potenza	32
Figura 6 - Valori di perdita di potenza del sistema	33
Figura 7 - Valori di cadute di tensione	35
Figura 8 Schema a blocchi	36
INDICE DELLE TABELLE	
Tabella 2 - Temperatura massima del conduttore per diversi tipi di composti isolante	15
Tabella 3 - Corrente nominale per cavi unipolari con isolante in XLPE - tensione nominale	da 3,6 kV
a 18/30 kV - conduttore in alluminio	16
Tabella 4 - Resistenza termica dei materiali	19
Tabella 5 - Spessore nominale dell'isolante in polietilene reticolato	20
Tabella 6 - Diametri minimi e massimi dei conduttori circolari in alluminio	20
Tabella 7 - Resistività termica dei materiali	22
Tabella 8- Diametro fittizio del conduttore	23
Tabella 9 - Conduttori a trifoglio per cavi unipolari e multipolari	25
Tabella 10 - Resistività elettriche e coefficienti di temperatura dei metalli utilizzati	25
Tabella 11 - Valori sperimentali per i coefficienti kp e ks	27
Tabella 12 - Valori di permittività relativa e fattori di perdita per l'isolamento di cavi ad alt	a e media
tensione alla frequenza di alimentazione	28
Tabella 13 - Fattori correttivi per temperature ambiente al suolo diverse da 20°	29
Tabella 14 - Fattori di correzione per gruppi di circuiti trifase unipolari posati direttamente r	el terreno
	30
Tabella 15 - Fattori correttivi per profondità di posa diverse da 0,8 m per cavi interrati dire	tti 30
Tabella 16 - Fattori correttivi per le resistività termiche del suolo diverse da quelle dei cav	i unipolari
interrati	
Tabella 17 - Valori di B, Q _e , Q ₂₀ dei materiali	

Pagina | 4

PREMESSA

Il presente documento costituisce la relazione cavidotto e schema a blocchi, relativa al Progetto definitivo per la realizzazione di un impianto eolico composto da 8 aerogeneratori da 6,6 MW ciascuno, per una potenza nominale complessiva di 52,8 MW. Ogni aerogeneratore, servito da un piazzale di sosta e manovra, è collegato agli altri mediante piste di accesso (in parte su tracciati viari già esistenti) necessarie tanto all'attività di realizzazione che di successiva manutenzione dell'impianto. Un cavidotto interrato in media tensione collegherà le turbine alla SSE utente di trasformazione 132/30 kV, da quest'ultima un cavidotto interrato di collegamento in AT collegherà la SSE utente alla rete di e-distribuzione in antenna su stallo della C.P. Modigliana.

L'area interessata dal parco eolico ricade nei territori comunali di Modigliana (Forlì-Cesena), Tredozio (Forlì-Cesena) e Rocca San Casciano (Forlì-Cesena), la SSE utente di trasformazione e la stazione di connessione alla RTN ricadono nel territorio Comunale di Modigliana (FC).

L'azienda proponente l'iniziativa è Statkraft, società internazionale leader nella generazione idroelettrica e primo produttore europeo di energia da fonti rinnovabili. Il Gruppo produce energia idroelettrica, eolica, solare, da gas e fornisce teleriscaldamento. Statkraft è un'azienda globale nella gestione dei mercati elettrici e conta 5300 dipendenti in 21 paesi tra cui l'Italia.

2 INTRODUZIONE AL PROGETTO

2.1 Inquadramento territoriale

Il parco eolico in progetto e le infrastrutture indispensabili all'esercizio dello stesso ricadono nei comuni di Modigliana (FC), Tredozio (FC) e Rocca San Casciano (FC), tutti ricadenti nella provincia di Forlì-Cesena. La SSE utente di trasformazione e la stazione di connessione alla RTN ricadono nel territorio Comunale di Modigliana (FC).

Con riferimento alla cartografia della serie IGM 25V in scala 1:25000 il parco eolico (inteso come l'insieme degli aerogeneratori e delle piste che li collegano) ricade nei Fogli 254SO-Tredozio, 254SE Rocca San Casciano e 254NO-Modigliana, in cui ricadono anche le opere di trasformazione e connessione alla RTN. In relazione alla Carta Tecnica Regionale in scala 1:10000 il parco eolico (inteso come l'insieme degli aerogeneratori e delle piste che li collegano) e le opere di trasformazione e connessione ricadono nei Fogli 254100 Cuzzano, 254110 Rocca San Casciano, 254060 Castagnara e 254020 Modigliana.

Pagina | 5

Il sito del parco eolico, si colloca a circa 5 km a Sud-Est del centro abitato di Modigliana (FC) e a circa 3 km a Nord-Ovest del centro abitato di Rocca San Casciano (FC), è facilmente raggiungibile da Forlì percorrendo Via Del Partigiano/SP56, procedendo lungo Via G. Mengozzi/SS67 e immettendosi sulla SP21 e procedendo lungo via Morgana e altri tratti di viabilità locale che portano all'accesso degli aerogeneratori.

Il sito di impianto è caratterizzato da una morfologia prevalentemente collinare; le quote altimetriche sono comprese tra i 578 m s.l.m. alla WTG04 ed i 692 m s.l.m. alla WTG01. Le aree destinate al collocamento delle postazioni macchina sono principalmente adibite ad uso seminativo non irriguo (CLC 2110). La ventosità on-shore a 100 metri di altezza, come riportato nell'Atlante eolico Italiano - RSE (Ricerca Sistema Energetico), è compresa tra 6 e 7 m/s.

Di seguito si riporta una tabella riassuntiva che permette di identificare; modello, denominazione e posizione geografica degli aerogeneratori che compongono il Parco eolico di progetto.

INQUADRAMENTO TERRITORIALE					
	PARC	O EOLICO	PUNTO DI CONNESSIONE		
Località impianto	Мо	ntebello	Cerretola		
Comuni interessati	Tred	gliana (FC) lozio (FC) n Casciano (FC)	Modigliana (FC)		
Inquadramento CTR	254110 Roc 254060	00 Cuzzano ca San Casciano 0 Castagnara 0 Modigliana	254020 Modigliana		
Inquadramento IGM	254SE Roc	O Tredozio ca San Casciano) Modigliana	254NO Modigliana		
	CARATTER	ISTICHE DELLE TUR	RBINE		
Modello - Potenza nominale	Siemens Gamesa 6.6-170 o similare/equivalente				
	Altezza del mozzo dal piano di campagna: fino a 125 m				
Dimensioni	Diametro del rotore fino a 175 m				
	Altezza totale dell'aerogeneratore: fino a 200 m				
	NUMERO E DIS	POSIZIONE DELLE	TURBINE		
Codice turbina	Coordinate W	GS84 (Lat Long.)	Quota (m s.l.m.)		
WTG 01	44° 4'57.38"N	11°47'40.51"E	692		
WTG 02	44° 5'30.56"N	11°47'57.61"E	635		
WTG 03	44° 6'40.72"N	11°48'10.29"E	604		
WTG 04	44° 6'19.53"N	11°48'41.98"E	578		
WTG 05	44° 5'29.12"N	11°48'47.73"E	650		
WTG 06	44° 5'49.36"N	11°49'24.64"E	604		
WTG 07	44° 5'33.10"N	11°49'46.92"E	609		

Pagina | 6

WTG 08	44° 5'0.26"N	11°49'34.46"E	624		
	<u> </u>	ll			
TRACCIATO DEL CAVIDOTTO DI CONNESSIONE					
Comune	Strada percorsa	Tipologia di sedime	Distanza [m]	Tipologia di cavidotto	
Tredozio, Rocca San Casciano, Modigliana	n.r.	Pista	1218,50		
Modigliana	n.r.	Sterrato	158,26		
Modigliana	n.r.	Sterrato	1751,31		
Modigliana	n.r.	Pista	94,73		
Modigliana	n.r.	Sterrato	401,44		
Modigliana	n.r.	Pista	126,86		
Modigliana	n.r.	Sterrato	453,49		
Rocca San Casciano	n.r.	Pista	549,25		
Rocca San Casciano, Modigliana	n.r.	Sterrato	530,04		
Modigliana	n.r.	Pista	351,54	1	
Modigliana	n.r.	Sterrato	317,73		
Rocca San Casciano	n.r.	Pista	101,14		
Rocca San Casciano, Modigliana	· I II I		199,19	MT	
Rocca San Casciano	n.r.	Pista	318,46		
Rocca San Casciano, Modigliana n.r.		Sterrato	659,42		
Modigliana	n.r.	Sterrato	206,98	1	
Rocca San Casciano, Modigliana	SP 129 "Modigliana Rocca S.Casciano"	Asfalto	2040,44		
Rocca San Casciano, Modigliana	SP 129 "Modigliana Rocca S.Casciano"	Asfalto	47,5		
Rocca San Casciano, Modigliana	Rocca San Casciano, "Modigliana		672,41		

Pagina | 7

Modigliana	SP 129 "Modigliana Rocca S.Casciano"	Asfalto	427,95		
Modigliana	SP 129 "Modigliana Rocca S.Casciano"	Asfalto	1067,27		
Modigliana	SP 129 "Modigliana Rocca S.Casciano"	Asfalto	1399,41		
Modigliana	Via Morana	Asfalto	3490,73		
Modigliana	SP21 "TREBBIO"	Asfalto	2931,46		
Modigliana	Via San Casciano	Asfalto	958,81		
Modigliana	Via dei Raggi	Asfalto	366,82		
Modigliana	Via dei Raggi	Sterrato	1677,9		
Modigliana	Via dei Raggi	Asfalto	864,35		
Modigliana	Via C. A. Dalla Chiesa	Asfalto	415,55		
Modigliana	Via C. A. Dalla Chiesa	Asfalto	617,9	AT	
	OPE	RE ACCESSORIE			
Piste di impianto	1.567 m (piste d	di nuova realizzazione	e)		
Piazzale di impianto (Permanente) 15.499,08 m²					
Piazzale SSE utente	2.250 m ²				
Cavidotto MT interrato di connessione 23,8 Km circa					
Cavidotto AT interrato di connessione	617,9 m circa				

Pagina | 8

2.2 Scopo del documento

Lo scopo principale della presente relazione è determinare e applicare i criteri necessari per l'appropriato dimensionamento del cavo di media tensione (MT) per la connessione alla SSE utente di trasformazione 30/132 kV, a sua volta in immissione alla Cabina primaria Modigliana quindi alla rete AT del distributore. Il presente elaborato è relativo ad un impianto di generazione energetica da fonte eolica per una potenza nominale complessiva pari a 52,8 MW, conforme ai requisiti stabiliti dalle norme e considerando, inoltre, le condizioni ambientali e le caratteristiche geofisiche del terreno.

2.3 Aerogeneratori

Gli aerogeneratori presi a riferimento in questa fase della progettazione sono macchine di *grande taglia*, in particolare sono state prese a riferimento turbine del tipo **Siemens Gamesa 6.6-170 o similare/equivalente**. In generale, le macchine di grande taglia sono molto performanti dal punto di vista della produzione energetica e con efficienza maggiore rispetto a formati di macchina inferiori.

L'aerogeneratore si compone di una **torre tubolare** ancorata al suolo (diametro alla base di circa 4 metri, altezza al mozzo fino a 125 metri), cui è fissata la **navicella** (o gondola) costituita da un basamento e da un involucro esterno. All'interno della navicella si trovano:

- L'albero di trasmissione lento (o albero principale);
- Il moltiplicatore di giri;
- L'albero veloce;
- Il generatore elettrico;
- I dispositivi ausiliari.

All'esterno della navicella, all'estremità dell'albero lento è montato il **rotore**, costituito da un mozzo in acciaio, su cui sono montate n. 3 pale in poliestere rinforzato con fibra di vetro. Il diametro del rotore sarà fino a 175 metri e l'altezza totale dell'aerogeneratore sarà fino a 200 metri. La navicella è in grado di ruotare intorno a un asse verticale allo scopo di mantenere l'asse del rotore sempre parallelo alla direzione del vento (imbardata). Cavi elettrici convogliano al suolo l'energia elettrica generata nella rotazione del rotore al trasformatore posto nella navicella stessa per l'innalzamento di tensione della corrente. La corrente in uscita dal trasformatore è quindi condotta alla Stazione di connessione alla RTN mediante cavidotti MT interrati.

La torre è accessibile attraverso una scala metallica che conduce alla porta di ingresso, posta a circa 3 metri dal livello del suolo. Attraverso un sistema di scale a pioli e pianerottoli di sosta posti

Pagina | 9

all'interno della torre è possibile arrivare alla navicella per i necessari interventi di ispezione e manutenzione. Per ulteriori dettagli sull'aerogeneratore si rimanda alla Relazione tecnica ed agli elaborati di Progetto definitivo.

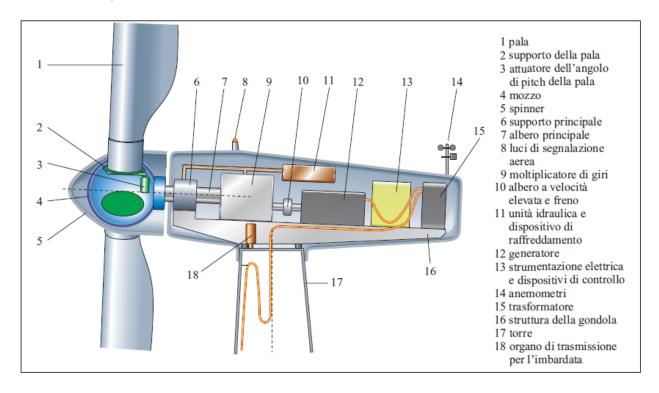


Figura 1 Schema tipo di funzionamento di un aerogeneratore, fonte www.e-nsight.com

Figura 2 Vista di una turbina della tipologia impiegata nel progetto

VISTA FRONTALE

Progetto per la realizzazione di un impianto eolico composto da 8 aerogeneratori da 6,6 MW ciascuno per una potenza complessiva pari a 52,8 MW denominato "Montebello" da realizzarsi nei comuni di Modigliana (FC), Rocca San Casciano (FC) e Tredozio (FC) in località Montebello e opere connesse nei comuni di Rocca San Casciano (FC), Tredozio (FC) e Modigliana (FC)

Pagina | 10

VISTA LATERALE

Rotore Pola State of the state

Figura 3 Viste frontale e laterale di un aerogeneratore del tipo proposto

2.4 Soluzione tecnica minima generale (STMG)

A seguito di richiesta di connessione effettuata dal soggetto proponente STATKRAFT ITALIA S.r.I, è stata individuata da E-Distribuzione S.P.A. la Soluzione Tecnica Minima Generale emessa in data 31/08/2023 e avente come oggetto:

"Preventivo con STMG per la connessione alla rete AT di e-distribuzione in regime di cessione totale per l'impianto di produzione da fonte di Eolica per una potenza in immissione richiesta di 52.800,00 KW, sito in via MODIGLIANA snc, nel Comune di MODIGLIANA (FC)".

Pagina | 11

Ai sensi del Testo Integrato delle Connessioni Attive (TICA), di cui all'Allegato A della delibera 99/08 e sue successive modificazioni ed integrazioni, il preventivo per la connessione in oggetto, elaborato secondo le seguenti condizioni:

- Potenza in immissione richiesta (art. 1.1,x del TICA) 52.800,00 kW
- Potenza nominale impianto di produzione di 52.800,00 kW
- Potenza richiesta in prelievo: 700,00 kW
- Potenza ai fini della connessione in AT (art. 1.1,z del TICA): 52.800,00 kW

Il punto di connessione dell'impianto in oggetto alla rete AT con tensione nominale 132.000 V ed identificato con il codice di rintracciabilità della richiesta **376178584**

La STMG prevede che impianto sarà allacciato alla rete di e-distribuzione tramite realizzazione di nuova uscita in antenna su stallo di cabina primaria MODIGLIANA. L'STMG di TERNA prevede la realizzazione di alcuni interventi sulla RTN a PdS Terna.

Il parco eolico con connessione in cavidotto interrato a 132 kV sarà quindi allacciato alla rete di edistribuzione tramite realizzazione di nuova uscita in antenna su stallo di cabina primaria MODIGLIANA. L'STMG di TERNA prevede la realizzazione di alcuni interventi sulla RTN a PdS Terna, ovvero la realizzazione di uno stallo in aria linea AT in cabina primaria.

3 SPECIFICHE GENERALI

POTENZA AEROGENERATORI (CADAUNO)	6,6 MW	
TEMPERATURE ESTREME DI ESERCIZIO	-30°C / +50°C	
POTENZA COMPLESSIVA	52,8 MW	
TENSIONE IN EMISSIONE	30 kV	
MAX. CADUTA DI TENSIONE AMMISSIBILE CAVIDOTTO AC	2,5 %	

4 NORMATIVE DI RIFERIMENTO

- IEC 60287-1-1/A1: Cavi elettrici Calcolo della portata di corrente Parte 1-1: Equazioni della portata di corrente (fattore di carico 100 %) e calcolo delle perdite Generale;
- **IEC 60287-2-1**: Cavi elettrici Calcolo della portata di corrente Parte 2-1: Resistenza termica Calcolo della resistenza termica;
- IEC 60228: Conduttori di cavi isolati;

Pagina | 12

- IEC 60502-2: Cavi elettrici con isolamento estruso e loro accessori per tensioni nominali da 1 kV (Um = 1,2 kV) a 30 kV (Um = 36 kV) - Parte 2: Cavi per tensioni nominali da 6 kV (Um = 7,2 kV) a 30 kV (Um = 36 kV).
- **IEEE 575-2014**: Guida per il collegamento delle schermature dei cavi di potenza a conduttore singolo con tensione nominale da 5kV a 500kV.
- **IEC 60949**: 1988 Calcolo delle correnti di cortocircuito termicamente ammissibili, tenendo conto degli effetti del riscaldamento non adiabatico.
- **IEC 60140-1**: edizione 4, aspetti riguardanti gli impianti di energia eolica, inclusi i criteri di progettazione, le condizioni di carico, le misurazioni, i test e le procedure di valutazione delle prestazioni.
- IEC 60140-6: edizione 1, progettazione, valutazione e conformità delle turbine eoliche.
- **IEC 61400-24**: aspetti relativi alla progettazione e alla verifica della sicurezza di un sistema di controllo per le turbine eoliche;
- EN ISO 13849-1:2023: livello di prestazione necessario per il sistema di comando in modo che possa garantire la sicurezza del personale coinvolto nell'uso delle macchine
- EN 60204-1:2018: "Sicurezza del macchinario Equipaggiamento elettrico delle macchine-Parte 1: Regole generali"

Pagina | 13

GLOSSARIO E DEFINIZIONI

- **Tensione**: grandezza fisica che quantifica la differenza di potenziale elettrico tra due punti;
- Tensione massima del sistema: valore massimo di tensione ammissibile in un determinato momento e in qualsiasi punto del sistema, in condizioni di funzionamento normali;
- Tensione nominale: tensione con cui viene designato il sistema e a cui si riferiscono alcune delle sue caratteristiche di funzionamento;
- Media tensione (MT): sistemi con tensioni superiori a 1kV con un massimo di 30kV;
- Alta tensione (AT): sistemi con tensioni superiori a 30kV con un massimo di 220kV;
- Altissima tensione (AAT): sistemi con tensioni superiori a 220kV;
- Turbina eolica: una turbina eolica è un dispositivo che converte l'energia cinetica del vento in energia elettrica. A tal fine, utilizza pale che ruotano sotto l'azione del vento e trasmettono il loro movimento a un generatore.
- Alimentatore: tutti i conduttori di un circuito tra l'apparecchiatura di origine del generatore e la protezione da sovracorrenti.
- Portata/Ampacity: intensità massima di corrente che può essere stabilita costantemente attraverso un conduttore senza superare i limiti di temperatura che influenzano le caratteristiche fisiche ed elettriche del conduttore. Questa corrente varia a seconda delle condizioni di installazione:
- **Carico (elettrico)**: la potenza installata o richiesta su un alimentatore;
- Resistività termica: la resistività termica è una proprietà fisica dei materiali che misura la capacità di opporsi al passaggio del calore. Nel Sistema Internazionale di Unità di Misura, la resistività termica è misurata in K-m/W;
- S (kVA): potenza apparente. Somma dell'energia dissipata dal circuito in un certo tempo sotto forma di calore o lavoro e dell'energia utilizzata per la formazione dei campi elettrici e magnetici dei suoi componenti;
- **cos ρ**: fattore di potenza, rapporto tra potenza attiva e reattiva;
- **Sezione** (mm²): area della sezione trasversale di un conduttore elettrico;
- **R** (Ω /km): resistenza del conduttore a 90°C in corrente alternata (CA); •
- **X** (Ω /km): reattanza del conduttore a 90°C in corrente alternata;
- **ΔV (V)**: caduta di tensione su un alimentatore o un circuito, in volt;
- **ΔV%**: caduta di tensione su un alimentatore o un circuito, in percentuale;
- %PJ = 3l²R: percentuale delle perdite di potenza dovute all'effetto Joule;
- Iz (A): portata/ampacity nominale del conduttore elettrico;

Pagina | 14

- Iz' (A): portata/ampacity nominale del conduttore elettrico dopo l'applicazione dei fattori di correzione;
- K: Costante del materiale conduttivo (Tabella 43A, IEC 60364-4-43);
- k₁: Fattore di correzione da applicare quando la temperatura del suolo è diversa da 20°C (Tabella B.11, IEC 60502-2);
- k₂: Fattore correttivo da applicare per gruppi di circuiti posati nella stessa trincea (Tabella B.19, IEC 60502-2);
- k₃: Fattore di correzione da applicare quando la profondità di interramento è diversa da 0,8 m (Tabella B.12, IEC 60502-2);
- **k**₄: Fattore di correzione da applicare quando la resistività termica del terreno è diversa da 1,5 K·m/W (Tabella B.14, IEC 60502-2);
- Δθ: Aumento della temperatura del conduttore elettrico rispetto alla temperatura ambiente (K);
- T₁: Resistività termica tra un conduttore e il suo isolante (m.K/W);
- T₂: Resistività termica tra l'isolante e la sua armatura (m.K/W);
- T₃: Resistività termica del rivestimento (m.K/W);
- T₄: Resistività termica tra la superficie del cavo e il fluido (m.K/W);
- R: Resistenza elettrica CA del conduttore alla massima temperatura di esercizio (Ω/m);
- **R'**: Resistenza elettrica CD del conduttore alla massima temperatura di esercizio (Ω/m) ;
- **Wd**: Perdite dielettriche dell'isolamento (W/m);
- λ₁: Rapporto tra le perdite nella guaina metallica e le perdite totali in tutti i conduttori di quel cavo. Si considera zero (0) perché il cavo non è armato;
- λ₂: Rapporto tra le perdite di armatura e le perdite di tutti i conduttori del cavo. Si considera zero (0) perché il cavo non è armato.

Pagina | 15

6 METODOLOGIA

6.1 Generale

Per il corretto dimensionamento del sistema di collettori MT, è necessario tenere in considerazione la temperatura del suolo, il numero di circuiti raggruppati nella stessa trincea, la profondità di interramento e la resistività termica, al fine di garantire il ciclo di vita del conduttore e il suo isolamento.

La corrente massima che attraverserà il conduttore in regime permanente deve corrispondere alla temperatura massima consentita dal suo isolante, secondo la norma IEC 60502-2.

Inquisti	d	Maximum conductor temperature °C			
Insulati	ing compound	Normal operation	Short-circuit (5 s maximum duration)		
Polyvinyl chloride	(PVC/B)				
	Conductor cross-section ≤300 mm ²	70	160		
	Conductor cross-section >300 mm ²	70	140		
Cross-linked polyethylene	(XLPE)	90	250		
Ethylene propylene rubber	(EPR and HEPR)	90	250		

Tabella 1 - Temperatura massima del conduttore per diversi tipi di composti isolante

6.2 Corrente nominale dei raffreddatori ad aria

Per il calcolo dei conduttori, si considera la corrente massima in uscita da ogni aerogeneratore WTG e fissata, considerando la potenza massima secondo la scheda tecnica di 6600 kW, (fattore di potenza 0,9). A tal fine si utilizza il seguente calcolo:

$$I_{n (TR)} = \frac{P_{TR}}{\sqrt{3} \cdot 0.9 \cdot 30000} = 141.3 A$$

Essendo linee indipendenti in partenza da ogni aerogeneratore, il dimensionamento viene effettuato considerando come corrente di linea la $I_{n\ (TR)}$.

Dove:

- **P**_{TR}: Potenza attiva del trasformatore BT/MT.
- **V**: Tensione nominale.

Pagina | 16

6.3 Capacità di corrente dei cavi MT

La tabella seguente, riferita ai cavi isolanti in XLPE della norma IEC 60502-2 fornisce la portata/ampacity per i conduttori di media tensione fino a 400 mm².

	Buried dir	rect in the	In single-	way ducts		In air		
Nominal area of conductor	Trefoil	Flat spaced	Trefoil ducts	Flat touching ducts	Trefoil	Flat touching	Flat spaced	
	}	• • •	ූ මුත {	9 o				
mm ²	Α	Α	A	Α	Α	Α	Α	
16	84	88	80	81	97	99	116	
25	108	112	102	103	127	130	153	
35	129	134	122	123	154	157	185	
50	152	157	144	146	184	189	222	
70	186	192	176	178	230	236	278	
95	221	229	210	213	280	287	338	
120	252	260	240	242	324	332	391	
150	281	288	267	271	368	376	440	
185	317	324	303	307	424	432	504	
240	367	373	351	356	502	511	593	
300	414	419	397	402	577	586	677	
400	470	466	451	457	673	676	769	
Maximum con		rature	90 °C					
Ambient air te	mperature			30 °C				
Ground temperature		-	20 °C					
	Depth of laying		0,8 m					
Thermal resistivity of soil Thermal resistivity of earthenware ducts		1,5 K·m/V						
	*		1,2 K·m/V	V				
	Screens bonded at both ends.							
* Current rating calculated for cables having a rated voltage of 6/10 kV.								

Tabella 2 - Corrente nominale per cavi unipolari con isolante in XLPE - tensione nominale da 3,6 kV a 18/30 kV - conduttore in alluminio

È necessario applicare l'equazione secondo la norma IEC 60287-1-1 (sezione 1.4.1.1) per i cavi da 630 mm², per i cavi in corrente alternata in cui non si considera il "dry-out":

$$I = \left[\frac{\Delta \theta - W_d [0.5T_1 + n(T_2 + T_3 + T_4)]}{RT_1 + nR(1 + \lambda_1)T_2 + nR(1 + \lambda_1 + \lambda_2)(T_3 + T_4)} \right]^{0.5}$$

Pagina | 17

Dove:

- Δθ Aumento della temperatura del conduttore elettrico rispetto alla temperatura ambiente (K).
- **n**: Numero di conduttori carichi.
- T₁: Resistività termica tra un conduttore e il suo isolante (m.K/W).
- T₂: Resistività termica tra l'isolante e l'armatura (m.K/W).
- T₃: Resistività termica dell'isolante (m.K/W).
- T₄: Resistività termica tra la superficie del cavo e il fluido (m.K/W) Tre cavi unipolari in configurazione trifoglio.
- R: Resistenza elettrica CA del conduttore alla massima temperatura di esercizio (Ω/m).
- R': resistenza elettrica CD del conduttore alla massima temperatura di esercizio (Ω/m).
- Wd: perdita dielettrica dell'isolante (W/m).
- λ₁: rapporto tra le perdite dell'isolante metallico e le perdite totali in tutti i conduttori del cavo.
 Si considera pari a zero (0) perché il cavo non è armato.
- λ_2 : rapporto tra le perdite di armatura e le perdite totali in tutti i conduttori del cavo. Si considera pari a zero (0) perché il cavo non è armato.

La configurazione trifoglio è considerata per i circuiti MT direttamente interrati e distanziati di 400 mm per tutta la loro lunghezza, in conformità alla norma IEC 60502-2 (sezione B.5.2.a.):

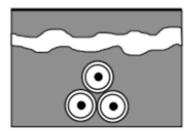


Figura 4 - Sezione trifoglio

Ai fini della presente relazione di calcolo, sono state valutate le condizioni di installazione standard secondo la norma IEC 60502-2: temperatura del terreno di 20°C, profondità di interramento di 800 mm e resistività termica di 1,5 K-m/W; al fine di verificare i risultati di portata/ampacity dei misuratori da 630 mm² rispetto alla tabella riportata dalla stessa norma. Va chiarito che la portata/ampacity del calibro da 630 mm² non è incluso nelle tabelle della norma.

Pagina | 18

Di seguito vengono riportati calcoli specifici per il cavo da 630 mm² maggiormente utilizzato per gli impianti di generazione di energia elettrica da fonti rinnovabili, pertanto nella trattazione seguente, i cavi di diverso formato verranno considerati solo nelle operazioni di calcolo successivamente riassunte.

Le caratteristiche dei cavi MT considerati in fase di progetto sono presentate di seguito:

SPECIFICHE TECNICHE DEI CAVI MT 30kV				
Descrizione	XLPE			
Sezione trasversale (mm²)	500 o 630			
Tensione (kV)	18/30 (36)			
Temp. Conduttore	Fino al 90°			
Conduttore	Conduttore circolare compatto in alluminio (Classe 2)			
Schermo metallico	Nastro in foglio di alluminio			
Isolante	XLPE			
Altro	Resistente ai raggi UV, resistente all'umidità			

Ogni termine dell'equazione viene quindi calcolato separatamente:

 Δθ Si calcola come la differenza tra la temperatura massima del conduttore in condizioni operative normali (90°C secondo la tabella 4, IEC 60502-2) e la temperatura di terra:

$$\Delta\theta = \theta_c - \theta = 90^{\circ}\text{C} - 20^{\circ}\text{C} = 70^{\circ}\text{C}$$

Dove:

- θ: Temperatura del suolo in condizioni di funzionamento normali (°C).
- θc: Temperatura del conduttore (°C).
- T₁: Viene calcolato tramite l'equazione riportata nella norma IEC 60287-2-1 (sezione 4.1.2.1), per i cavi unipolari:

$$T_1 = \frac{\rho_T}{2\pi} \ln \left[1 + \frac{2t_1}{d_c} \right]$$

Dove:

- **ρ**_T': Resistività termica dell'isolante (m.K/W).
- **t**₁: Spessore dell'isolante (mm).
- d₁: Diametro del conduttore (mm).
- **ρ**_T Si ricava dalla norma IEC 60287-2-1 e risulta pari a 3,5 K-m/W per l'isolante XLPE:

Pagina | 19

Material	Thermal resistivity (p _T)
	K·m/W
Insulating materials ^a	
Paper insulation in solid type cables	6,0
Paper insulation in oil-filled cables	5,0
Paper insulation in cables with external gas pressure	5,5
Paper insulation in cables with internal gas pressure:	
a) pre-impregnated	5,5
b) mass-impregnated	6,0
PE	3,5
XLPE	3,5
PPL	5,5
Polyvinyl chloride:	
up to and including 3 kV cables	5,0
greater than 3 kV cables	6,0
EPR:	
up to and including 3 kV cables	3,5
greater than 3 kV cables	5,0
Bulyl rubber	5,0
Rubber	5,0
Protective coverings	
Compounded jute and fibrous materials	6,0
Rubber sandwich protection	6,0
Polychloroprene	5,5
PVC:	
up to and including 35 kV cables	5,0
greater than 35 kV cables	6,0
PVC/bitumen on corrugated aluminium sheaths	6,0
PE	3,5
Materials for duct installations	
Concrete	1,0
Fibre	4,8
Asbestos	2,0
Earthenware	1,2
PVC	6.0
PE	3,5

^a For the purposes of current rating calculations, the semiconducting screening materials are assumed to have the same thermal properties as the adjacent dielectric materials. Where plastic or elastomeric materials are used for protective coverings, the thermal resistivities shall be taken to be the same as those for the insulating grades of the materials given in this table.

Tabella 3 - Resistenza termica dei materiali

 t₁ si ricava dalla norma IEC 60502-2 e risulta pari a 8,0 mm per le sezioni oggetto alla presente relazione di calcolo:

Pagina | 20

Nominal cross- sectional area	Nominal thickness of insulation at rated voltage U_0/U ($U_{ m m}$)						
of conductor mm ²	3,6/6 (7,2) kV mm	6/10 (12) kV	8,7/15 (17,5) kV mm	12/20 (24) kV mm	18/30 (36) kV mm		
10	2,5	-	-	-	-		
16	2,5	3,4	_	-	-		
25	2,5	3,4	4,5	-	-		
35	2,5	3,4	4,5	5,5	-		
50 to 185	2,5	3,4	4,5	5,5	8,0		
240	2,6	3,4	4,5	5,5	8,0		
300	2,8	3,4	4,5	5,5	8,0		
400	3,0	3,4	4,5	5,5	8,0		
500 to 1 600	3,2	3,4	4,5	5,5	8,0		

NOTE 1 Any smaller conductor cross-section than those given in this table is not recommended. However, if a smaller cross-section is needed, either the diameter of the conductor may be increased by a conductor screen (see 7.1), or the insulation thickness may be increased in order to limit, at the values calculated with the smallest conductor size given in this table, the maximum electrical stresses applied to the insulation under test voltage.

NOTE 2 For conductor cross-sections larger than 1 000 mm², the insulation thickness may be increased to avoid any mechanical damage during installation and service.

Tabella 4 - Spessore nominale dell'isolante in polietilene reticolato

Infine, la d_c è ricavata dalla norma IEC 60228, risultando pari a 29,3 mm per il calibro 630 mm²

1	2	3	- 4	5		
Cross-sectional		Solid conductors (Class I)		Stranded compacted conductors (Class 2)		
area (mm²)	Minimum diameter (mm)	Maximum diameter (mm)	Minimum diameter (mm)	Maximum diameter (mm)		
16 25	4.1 5.2	4.6 5.7	4.6 5.6	52 65		
35	6.1	6.7	6.6	7.5		
50 70	7.2 8.7	. 7.8 9.4	7.7 9.3	86 102		
95	(03	11.0	11.0	12.0		
120 150	11.6 12.9	12.4 13.8	12.5 13.9	13.5		
185	145	15.4	15.5	16.8		
240	16.7	17.6	17.8	19.2		
300 400	188	19.8	20.0 22.9	21.6. 24.6		
500	_	,	25.7	276		
630	_	_	29.3	325		

Tabella 5 - Diametri minimi e massimi dei conduttori circolari in alluminio

Pagina | 21

Di conseguenza, la resistività termica T₁ risulta:

$$T_{1(630mm^2)} = \frac{\rho_T}{2\pi} \ln\left[1 + \frac{2t_1}{d_c}\right] = \frac{3.5}{2\pi} \ln\left[1 + \frac{2 \cdot 8.0}{29.3}\right] = 0.243 \ Km/W$$

- **T**₂: Si considera zero (0) tenendo conto del fatto che i cavi MT non sono armati, come indicato nella sezione 4.1.3.1 della IEC 60287-2-1.
- T₃: Calcolato in base alla norma IEC 60287-2-1 (sezione 4.1.4.1) per il caso generale:

$$T_3 = \frac{1}{2\pi} \rho_T \ln \left[1 + \frac{2t_3}{D'_a} \right]$$

Dove

- ρ_T': Resistività termica del rivestimento (m.K/W).
- t₃: Spessore rivestimento (mm).
- D'a: Diametro del sotto il rivestimento (mm).
- ρ_T è ottenuto da IEC 60287-2-1 (tabella 7), risultando in 3,5 K·m/W per un rivestimento in polietilene (PE):

Pagina | 22

Material	Thermal resistivity (p _T) K·m/W
Insulating materials ^a	
Paper insulation in solid type cables	6,0
Paper insulation in oil-filled cables	5,0
Paper insulation in cables with external gas pressure	5,5
Paper insulation in cables with internal gas pressure:	
a) pre-impregnated	5,5
b) mass-impregnated	6,0
PE	3,5
XLPE	3,5
PPL	5,5
Polyvinyl chloride:	
up to and including 3 kV cables	5,0
greater than 3 kV cables	6,0
EPR:	
up to and including 3 kV cables	3,5
greater than 3 kV cables	5,0
Bulyl rubber	5,0
Rubber	5,0
Protective coverings	
Compounded jute and fibrous materials	6,0
Rubber sandwich protection	6,0
Polychloroprene	5,5
PVC:	
up to and including 35 kV cables	5,0
greater than 35 kV cables	6,0
PVC/bitumen on corrugated aluminium sheaths	6,0
PE	3,5
Materials for duct installations	
Concrete	1,0
Fibre	4,8
Asbestos	2,0
Earthenware	1,2
PVC	6.0
PE	3,5

^a For the purposes of current rating calculations, the semiconducting screening materials are assumed to have the same thermal properties as the adjacent dielectric materials. Where plastic or elastomeric materials are used for protective coverings, the thermal resistivities shall be taken to be the same as those for the insulating grades of the materials given in this table.

Tabella 6 - Resistività termica dei materiali

 t₃ è ottenuto dalla norma IEC 60502-2 (sezione 14.3), che indica la seguente equazione per calcolare lo spessore del rivestimento:

$$t_3 = 0.035D + 1.0$$

D è il diametro fittizio immediatamente sotto il rivestimento, in millimetri (specificato nell'allegato A della stessa norma), rispettivamente di 17,5 mm e 28,3 mm:

Pagina | 23

Nominal cross- section of conductor mm ²	d L mm	Nominal cross- section of conductor mm ²	d L mm
10	3,6	240	17,5
16	4,5	300	19,5
25	5,6	400	22,6
35	6,7	500	25,2
50	8,0	630	28,3
70	9,4	800	31,9
95	11,0	1 000	35,7
120	12,4	1 200	39,1
150	13,8	1 400	42,2
185	15,3	1 600	45,1

Tabella 7- Diametro fittizio del conduttore

In questo modo gli spessori dei rivestimenti per i calibri valutati sono:

$$t_{3(630mm^2)} = 0.035D + 1.0 = 0.035 \cdot 28.3 + 1.0 = 1.99 \, mm$$

• Infine, D'a si ricava dai dati del cavo precedentemente calcolati in T₁ (d_c+2·t₁), risultando 45.3 mm per il calibro 630 mm².

Pertanto, la resistività termica T₃ è pari a:

$$T_{3(630mm^2)} = \frac{1}{2\pi} \rho_T \ln \left[1 + \frac{2t_3}{D'_a} \right] = \frac{1}{2\pi} 3.5 \cdot \ln \left[1 + \frac{2 \cdot 1.9}{45.3} \right] = 0.047 \; Km/W$$

• **T**₄: È calcolato dalla norma IEC 60287-2-1 (sezione 4.2.4.3.2), rispetto a una terna di cavi unipolari in configurazione a trifoglio:

$$T_4 = \frac{1.5}{\pi} \rho_T [\ln(2u) - 0.630]$$

Dove,

$$u = \frac{2L}{D_o}$$

- ρ_{T':} Resistività termica del suolo (m.K/W).
- L: Distanza tra la superficie del terreno e l'asse del cavo (mm).
- **D**_e: Diametro esterno del cavo (mm).

Pagina | 24

- ρ_T è considerato pari a 1,5 Km/W, secondo le condizioni di installazione indicate nella norma IEC 60502-2.
- L è considerato 800 mm in base alle condizioni di installazione della norma IEC 60502-2.
- **D**_e si ricava dai dati del cavo precedentemente calcolati in T₁ e T₃ (d₊+2·t₁ + 2·t₃), risultando pari a 49.3mm per il calibro 630 mm².

Pertanto, la resistività termica T₄ è:

$$u_{(630mm^2)} = \frac{2L}{D_e} = \frac{2 \cdot 800}{49.3} = 32.5$$

$$T_{4_{(630mm^2)}} = \frac{1.5}{\pi} \rho_T [\ln(2u) - 0.630] = \frac{1.5}{\pi} 1.5 \cdot [\ln(2 \cdot 32.5) - 0.630] = 2.538 \, Km/W$$

R: È calcolato dalla norma IEC 60287-1-1 (sezione 2.1):

R= R'
$$(1+\gamma_s + \gamma_p)$$

Dove

- R': Resistenza CD del conduttore a 20°C (ohm/m).
- γ_s : Fattore effetto pelle.
- γ_p: Fattore di effetto di prossimità.
- R' È calcolato dalla norma IEC 60287-1-1 (sezione 2.1.1):

R'=R₀ [1 +
$$\alpha_{20}$$
 (θ -20)]

Dove

- R₀: Resistenza CD del conduttore a 20°C (ohm/km).
- α₂₀: Coefficiente di temperatura di massa costante a 20°C
- θ: Temperatura massima di esercizio (°C).
- R₀ è ricavato dalla IEC 60228 essendo pari a 0,0469 Ω/km per il calibro 630 mm²

Pagina | 25

1	2	3	4	5 6		7	8	9	10
	The I	east num	ber of v	wires in	the cond	ductor	Max. co	onductor resistance	e value of 20°C
lominal cross-Section	Circular			Compacted Circular		atted	Annealed co	Annealed copper conductor	
rea	Cu	AI	Cu	AI	Cu	AI	Bare	Coated Metal	conductors
mm ²							Ω/km	Ω/km	Ω/km
0,5	7			*			36,0	36,7	
0,75	7	-	-	-	-		24,5	24,8	
1,0	7				*		18,1	18,2	-
1,5	7		6	-			12,1	12,2	140
2,5	7		6				7,41	7,56	
4	7		6	-			4,61	4,70	1.0
6	7	-	6	-	-	-	3,08	3,11	-
10	7	7	6	6		-	1,83	1,84	3,08
16	7	7	6	6	*		1,15	1,16	1,91
25	7	7	6	6	6	6	0,727	0,754	1,20
35	7	7	6	6	6	6	0,524	0,529	0,868
50	19	19	6	6	6	6	0,387	0,391	0,641
70	19	19	12	12	12	12	0,268	0,270	0,443
95	19	19	15	15	15	15	0,193	0,195	0,320
120	37	37	18	15	18	15	0,153	0,154	0,253
150	37	37	18	15	18	15	0,124	0,126	0,206
185	37	37	30	30	30	30	0,0991	0,100	0,164
240	37	37	34	30	34	30	0.0754	0,0762	0,125
300	61	61	34	30	34	30	0,0601	0,0607	0,100
400	61	61	53	53	53	53	0,0470	0.0475	0.0778
500	61	61	53	53	53	53	0.0366	0.0369	0.0605
630	91	91	53	53	53	53	0,0283	0,0286	0.0469
800	91	91	53	53		-	0,0221	0,0224	0,0367
1000	91	91	53	53			0,0176	0,0177	0,0291
1200						200	0,0151	0,0151	0,0247
1400 *							0,0129	0,0129	0,0212
1600			1	b			0,0113	0,0113	0,0186
1800 *							0,0101	0,0101	0,0165
2000			1	b			0,0090	0,0090	0,0149
2500				b			0,0072	0,0072	0.0127

Tabella 8 - Conduttori a trifoglio per cavi unipolari e multipolari

• α_{20} si ricava dalla norma IEC 60287-1-1, essendo pari a 4,03x10-3 per i conduttori in alluminio.

Material	Resistiv ohm ⋅ m a		Temperature coefficient (α ₂₀) per K at 20 °C		
a) Conductors					
Copper	1,7241	10 ⁻⁸	3,93	10 ⁻³	
Aluminium	2,8264	10-8	4,03	10 ⁻³	
) Sheaths and armour					
Lead or lead alloy	21,4	10-8	4,0	10 ⁻³	
Steel	13,8	10-8	4,5	10 ⁻³	
Bronze	3,5	10-8	3,0	10-3	
Stainless steel	70	10-8	Negli	Negligible	
Aluminium	2,84	10-8	4,03	10-3	

Tabella 9 - Resistività elettriche e coefficienti di temperatura dei metalli utilizzati

• • è stata precedentemente indicata come la massima temperatura di esercizio del conduttore, in accordo con il suo isolante (XLPE), che è di 90°C.

Pagina | 26

In questo modo si ottengono i valori di R' per i calibri in analisi:

$$R'_{630mm^2} = R_0[1 + \alpha_{20}(\theta - 20)] = 0.047 \cdot [1 + 4.03 \times 10^{-3}(90 - 20)] = 0.060 \times 10^{-3} \,\Omega/\text{km}$$

• Tenendo conto della stessa norma IEC 60287-1-1, si ottiene γ_s (sezione 2.1.2):

$$\gamma_s = \frac{x_s^4}{192 + 0.8x_s^4}$$

Dove,

$$x_s^2 = \frac{8\pi f}{R'} 10^{-7} k_s$$

f: frequenza elettrica (Hz).

E i valori di ks sono riportati nella tabella 10.

D'altra parte, γ_p è ottenuto dalla norma IEC 60287-1-1 (sezione 2.1.4):

$$\gamma_p = \frac{x_p^4}{192 + 0.8x_p^4} \left(\frac{d_c}{s}\right) \left[0.312 \left(\frac{d_c}{s}\right)^2 + \frac{1.18}{\frac{x_p^4}{192 + 0.8x_p^4} + 0.27} \right]$$

Dove

$$x_p^2 = \frac{8\pi f}{R'} 10^{-7} k_p$$

- **d**_c: Diametro del conduttore (mm)
- **s**: Distanza da centro a centro del conduttore (mm), considerata come il diametro di un singolo cavo tenendo conto della configurazione a tre fili.

I valori di k_p sono riportati nella tabella 10:

Pagina | 27

Type of conductor	Whether dried and impregnated or not	k.	k,
Copper			
Round, stranded	Yes	1	8,0
Round, stranded	No	1	1
Round, segmental ⁸		0,435	0,37
Hollow, helical stranded	Yes	ь	0,8
Sector-shaped	Yes	1	8,0
Sector-shaped	No	1	1
Aluminium			d
Round, stranded	Either	1	
Round, 4 segment	Either	0,28	
Round, 5 segment	Either	0,19	
Round, 6 segment	Either	0,12	
Segmental with peripheral strands	Either	c	

The values given apply to conductors having four segments (with or without central duct) and sectional areas less than 1 600 mm². These values apply to conductors in which all the layers of wire have the same direction of lay. The values are provisional and the subject is under consideration.

$$k_{a} = \left(\frac{d'_{c} - d'_{i}}{d'_{c} + d'_{i}}\right) \left(\frac{d'_{c} + 2d'_{i}}{d'_{c} + d'_{i}}\right)^{2}$$

Tabella 10 - Valori sperimentali per i coefficienti kp e ks

Quindi si ottengono i seguenti valori di R: 0.0601×10^{-3} Ω/m per 630 mm². Infine, viene calcolato W_d da IEC 60287-1-1 (sezione 2.29).

$$W_d = \omega C U_0^2 \tan \delta$$

Dove:

- ω : $2\pi f$.

- C: Capacità per unità di lunghezza (F/m).

U₀: Tensione di terra (V).

I valori di Resistenza vengono riportati nella tabella seguente.

La Capacità per conduttori circolari viene data dalla seguente espressione:

$$C = \frac{\varepsilon}{18 \ln \left(\frac{D_i}{d_c}\right)} 10^{-9}$$

Dove,

- ε: Permittività relativa dell'isolante.
- **D**_i: Diametro esterno dell'isolante (escluso rivestimento) (mm).

The following formula should be used for k.:

Pagina | 28

d_c: Diametro del conduttore, compreso l'eventuale rivestimento (mm).

I valori di $\tan \delta$, ε e U₀ sono riportati nella Tabella seguente (IEC 60287-1-1):

	1		2	3				
	Type of cable							
Cables insulated wi	th impregnated paper							
Solid type, fully-imp	regnated, pre-impregnated or mass-impregnated non-drain	ing 4	1	0,01				
Oil-filled, self-conta	3	3.6	0,0035					
	up to $U_o = 36 \text{ kV}$ up to $U_n = 87 \text{ kV}$	3	3,6	0,0033				
	up to $U_o = 160 \text{ kV}$	3	3,5	0,0030				
	up to $U_o = 220 \text{ kV}$	3	3,5	0,0028				
Oil-pressure, pipe-ty	ype ²⁾	3	3.7	0.0045				
External gas-pressu		3	3,6	0,0040				
Internal gas-pressu		3	3,4	0,0045				
Cable with other kin	ds of insulation ⁵⁾							
Butyl rubber	ou of manager			0.050				
EPR				-,				
	g 18/30 (36) kV cables		3	0,020				
greater than 18/30	- Contract			0,005				
PVC	. (,			0.1				
		'		-,-				
PE (HD and LD)		'	2,3	0,001				
XLPE								
up to and includin	g 18/30 (36) kV cables (unfilled)	_ 2	2,5	0,004				
) (36) kV cables (unfilled)		2,5	0,001				
greater than 18/30	1	3,0	0,005					
PPL		ı						
equal to, or greate	er than 63/110 kV cables	2	8,9	0,0014				
 Safe values at m each type of cable 	aximum permissible temperature, applicable to the higher.	st voltages nom	nally s	pecified for				
1) See la IEC 60141	-1.							
2) See la IEC 60141								
9) See la IEC 60141								
4) See la IEC 60141	-2.							
5) See la IEC 60502								
NOTE The dielectr	ic loss should be taken into account for values of $U_{\rm o}$ equal	to or greater tha	n the f	following:				
		U _o	٦					
	Type of cable	kV	1					
	Cables insulated with impregnated paper		1					
	Solid-type	38						
	Oil-filled and gas-pressure	63.5	1					
	Cables with other types of insulation	00,0						
	Butvl rubber	18	1					
	EPR	63.5						
	PVC	6	1					
	PE (HD and LD)	127	1					
	XLPE (unfilled)	127						

Tabella 11 - Valori di permittività relativa e fattori di perdita per l'isolamento di cavi ad alta e media tensione alla frequenza di alimentazione

Pertanto, la capacità risulta:

$$C_{630mm^2} = \frac{\varepsilon}{18\ln\left(\frac{D_i}{d_c}\right)} 10^{-9} = \frac{2.5}{18\ln\left(\frac{45.3}{29.3}\right)} 10^{-9} = 3.18 \times 10^{-10}$$

Pagina | 29

E la W_d :

$$W_{d(630mm^2)} = \omega C U_0^2 \tan \delta = 2\pi f \cdot 3.187 \times 10^{-10} \cdot 17{,}320^2 \cdot 0.001 = 0.03605$$

Infine, sostituendo ogni termine dell'equazione principale, si ottiene l'amperaggio per le dimensioni target della presente relazione di calcolo, nelle condizioni di installazione indicate nella norma IEC 60205-2 (cavi unipolari direttamente interrati in configurazione trifoglio), che sono state considerate come una verifica degli amperaggi indicati nella norma:

$$I = \left[\frac{\Delta \theta - W_d [0.5T_1 + n(T_2 + T_3 + T_4)]}{RT_1 + nR(1 + \lambda_1)T_2 + nR(1 + \lambda_1 + \lambda_2)(T_3 + T_4)} \right]^{0.5}$$

$$\Rightarrow I_{630mm^2} = \left[\frac{70 - 0.036 \cdot [0.5 \cdot 0.243 + (0 + 0.047 + 2.537)]}{0.064 \times 10^{-3} (0.243 + 0 + (0.047 + 2.537))} \right]^{0.5} = 641.21 A$$

Si considera una resistività termica di 1,5 k·m/W e una temperatura di terra di 30°C.

6.4 Fattore di correzione

Il passo successivo consiste nel correggere l'amperaggio dei conduttori in funzione delle condizioni di installazione e dei relativi fattori di temperatura del terreno (**k1**), circuiti raggruppati nella stessa trincea (**k2**), profondità di interramento (**k3**) e resistività termica del terreno (**k4**).

Fattore di correzione della temperatura K₁

Il fattore di correzione per la temperatura dell'aria ambiente è ricavato dalla tabella B.10 della norma IEC 60502-2.

Per questo caso, il valore di 31,37°C, preso dal database della NASA, è considerato un parametro conservativo.

Maximum conductor temperature	Ambient ground temperature							
*c	10	15	25	30	35	40	45	50
90	1,07	1,04	0,96	0,93	0,89	0,85	0,80	0,76

Tabella 12 - Fattori correttivi per temperature ambiente al suolo diverse da 20°

Pagina | 30

Fattore di correzione per il raggruppamento dei circuiti K2

Nel caso del fattore per raggruppamento di circuiti si prende la tabella B.19 della norma IEC 60502-2, prendendo opportunamente distanze di 40 cm tra i cavi e tenuto conto, per la dorsale considerata, delle interferenze con altre terne di altre dorsali:

Number of cables in		Spacing be	tween grou	p centres	
group	Touching	200	400	600	800
2	0,73	0,83	0,88	0,90	0,92
3	0,60	0,73	0,79	0,83	0,86
4	0,54	0.68	0.75	0,80	0.84
5	0.49	0.83	0.72	0.78	0.82
6	0,46	0,81	0,70	0,78	0,81
7	0,43	0,58	0,08	0,75	0,80
8	0,41	0,57	0,67	0,74	-
9	0,39	0,55	0,66	0,73	-
10	0.37	0.54	0.65		-
11	0,36	0,53	0,64		_
12	0,35	0,52	0,64	-	_

Tabella 13 - Fattori di correzione per gruppi di circuiti trifase unipolari posati direttamente nel terreno

Fattore di correzione della profondità di sepoltura K₃

Nel caso del fattore di correzione da applicare a cavi interrati a profondità diversa da 0,8 m, si tiene conto della norma IEC 60502-2 nella tabella B.12, che presenta quanto segue:

	Single-co	ore cables	
Depth of laying m	Nominal conductor size mm ²		Three-core cables
Γ	≤185 mm²	>185 mm²	
0,5	1,04	1,06	1,04
0,6	1,02	1,04	1,03
1	0,98	0,97	0,98
1,25	0,96	0,95	0,96
1,5	0,95	0,93	0,95
1,75	0,94	0,91	0,94
2	0,93	0,90	0,93
2,5	0,91	0,88	0,91
3	0,90	0,86	0,90

Tabella 14 - Fattori correttivi per profondità di posa diverse da 0,8 m per cavi interrati diretti

Pagina | 31

Fattore di correzione per resistività termica K₄

Nel caso del fattore correttivo da applicare quando la resistività termica del terreno è diversa da 1,5 k·m/W, esso è ricavato dalla tabella B.14 della norma IEC 60502-2.

Nominal area of		Values of soil thermal resistivity K·m/W								
conductor mm ²	0,7	0,8	0,9	1	2	2,5	3			
16	1,29	1,24	1,19	1,15	0,89	0,82	0,75			
25	1,30	1,25	1,20	1,16	0,89	0,81	0,75			
35	1,30	1,25	1,21	1,16	0,89	0,81	0,75			
50	1,32	1,26	1,21	1,16	0,89	0,81	0,74			
70	1,33	1,27	1,22	1,17	0,89	D,81	0,74			
95	1,34	1,28	1,22	1,18	0,89	0,80	0,74			
120	1,34	1,28	1,22	1,18	0,88	0,80	0,74			
150	1,35	1,28	1,23	1,18	0,88	0,80	0,74			
185	1,35	1,29	1,23	1,18	0,88	0,80	0,74			
240	1,36	1,29	1,23	1,18	0,88	0,80	0,73			
300	1,36	1,30	1,24	1,19	0,88	0,80	0,73			
400	1,37	1,30	1,24	1,19	0,88	0,79	0,73			

Tabella 15 - Fattori correttivi per le resistività termiche del suolo diverse da quelle dei cavi unipolari interrati

Applicando i fattori k_1 , k_2 , k_3 e k_4 si ottiene la portata corretta per ciascuna sezione del circuito:

TRATTO	Long. (XLPE)	Resistività termica equivalente	lz	#C.Z	k1	k2	k3	k4	lz'
	[m]	Km/W	[A]	Qty.	31°C	Acco. to #C.Z	1.0/1.5m	1.5 Km/W	[A]
WTG 1 - WTG 2	1218	1,50	543,00	3	0,93	1,00	0,97	1,00	489,84
WTG 2- WTG 4	2782	1,50	543,00	3	0,93	0,75	0,97	1,00	367,38
WTG 4 - SSEU	13570	1,50	1234,00	3	0,93	0,72	0,97	1,00	801,50
WTG 8 - WTG 7	1278	1,50	543,00	3	0,93	1,00	0,97	1,00	489,84
WTG 7 - WTG 6	3216	1,50	617,00	3	0,93	1,00	0,97	1,00	556,60
WTG 6 - SSE	14932	1,50	1234,00	3	0,93	0,72	0,97	1,00	801,50
WTG 5 - WTG 3	3402	1,50	543,00	3	0,93	0,72	0,97	1,00	352,69
WTG 3 - SSE	12672	1,50	617,00	3	0,93	0,72	0,97	1,00	400,75
SSE - SE RTN	609	1,50	595,00	3	0,93	1,00	0,93	1,00	514,62

Figura 5 - Valori di portata effettiva per ogni circuito

Pagina | 32

6.5 Convalida per corrente di generazione

Affinché i cavi MT e AT abbiano la capacità di esportare la massima potenza generata, è necessario che la capacità di corrente di ciascuna sezione MT e AT sia maggiore della corrente massima generata dall'insieme di ITS che collegano:

CIRCUITO	TRATTO	Corrente nominale Trasformatore	lz	lz'	lz' > ln	Capacità di carico
		[A]	[A]	[A]	CHECK	[%]
DORSALE 1 MT	WTG 1 - WTG 2	141,13	543,00	489,84	VERIFICATO	28,8%
	WTG 2- WTG 4	282,26	543,00	367,38	VERIFICATO	76,8%
	WTG 4 - SSEU	423,39	1234,00	801,50	VERIFICATO	52,8%
	WTG 8 - WTG 7	141,13	543,00	489,84	VERIFICATO	28,8%
DORSALE 2 MT	WTG 7 - WTG 6	282,26	617,00	556,60	VERIFICATO	50,7%
	WTG 6 - SSE	423,39	1234,00	801,50	VERIFICATO	52,8%
DORSALE 3 MT	WTG 5 - WTG 3	141,13	543,00	352,69	VERIFICATO	40,0%
DORSALE 3 WIT	WTG 3 - SSE	282,26	617,00	400,75	VERIFICATO	70,4%
DORSALE 4 AT	SE - SE RTN	230,94	595,00	514,62	VERIFICATO	44,9%

Figura 6 - Verifica capacità di esportazione della massima potenza

Dove

- In: Amperaggio del trasformatore ITS (A).
- Iz: Amperaggio sezione MT (A).
- Iz': Amperaggio sezione corretta MT (A).

6.6 Dimensionamento delle perdite in Corrente Alternata (AC)

Successivamente, si valutano le perdite di potenza per il sistema di collettori MT e AT.

A questo proposito, si utilizza la seguente equazione per calcolare le perdite di potenza:

$$P_{Losses} = \frac{\sum_{Tramo\ MT} 3 \cdot {I_n}^2 \cdot (\ R \cdot cos\varphi \ + \ X \cdot sin\varphi) \ LF}{P_T} \times 100$$

Pagina | 33

Dove:

- I_n: Amperaggio del trasformatore ITS (A).
- R: Resistenza totale della sezione MT.
- L_F: Fattore di carico, si considera il 100%.
- P_T: Potenza massima generata in CA (kW).

I risultati sono riportati nella tabella seguente:

CIRCUITO	TRATTO	Long. (XLPE	Corrente nominale Trasformator e	R (XLPE)	X (XLPE)	Perdita	Perdit a totale	Perdit a CA	PE CA TOTALE PERDIT A	PE AC TOTALE PERDIT A		
		[m]	[A]	[Ω/km]	[Ω/km]	[%] Pj=3Rl²*LF	%	[kW]	[kW]			
DORSALE 1	WTG 1 - WTG 2	1218	141,13	0,0790	0,0990	0,13%	3,36%	8,3	8,3	8,3		
MT	WTG 2- WTG 4	2782	282,26	0,0790	0,0990	0,58%		76,0	1.245,69	6,29%		
	WTG 4 - SSE	13570	423,39	0,0315	0,0480	1,82%		359,6				
	WTG 8 - WTG 7	1278	141,13	0,0790	0,0990	0,13%	3,64%	8,7				
DORSALE 2 MT	WTG 7 - WTG 6	3216	282,26	0,0630	0,0960	0,57%		75,7				
	WTG 6 - SSE	14932	423,39	0,0315	0,0480	2,00%		395,7				
DORSALE 3	WTG 5 - WTG 3	3402	141,13	0,0790	0,0990	0,35%	2,44%	23,2				
MT	WTG 3 - SSE	12672	282,26	0,0630	0,0960	2,26%	,	298,5				
DORSALE 4 AT	SSE - SE RTN	609	230,94	0,0790	0,0770	0,02%	0,02%	11,0	10,97	0,02%		

Figura 7 - Valori di perdita di potenza del sistema

6.7 Dimensionamento del cortocircuito

Inoltre, il cablaggio MT e AT viene calcolato in base alla massima corrente di cortocircuito da sopportare, tenendo conto della durata del guasto di 1s, e che il cavo deve essere progettato per raggiungere una temperatura massima di 250°C durante questa condizione.

L'analisi viene effettuata prendendo come riferimento una corrente di 20 kA.

Pertanto, la sezione minima del cavo deve rispettare la seguente relazione:

$$S = \frac{\sqrt{I^2 * t}}{k}$$

Dove:

- S: Sezione conduttore (mm²).

Pagina | 34

- I: Valore efficace della corrente di guasto che può attraversare il dispositivo di protezione per un'impedenza di guasto trascurabile.
- t: Tempo di risoluzione del guasto.
- **k**: Fattore il cui valore dipende dalla natura del metallo del conduttore di protezione, dall'isolante e dalle altre parti, e dalle temperature iniziale e finale.

Il fattore **k** si ottiene dalla seguente equazione:

$$k = \sqrt{\frac{Q_c(B+20)}{Q_{20}} \ln\left(1 + \frac{\theta_f - \theta_i}{B + \theta_i}\right)}$$

Dove,

- Q_c: Capacità termica volumetrica del materiale conduttore (J/°C mm³).
- **B**: Inverso del coefficiente di temperatura della resistività a 0°C per il conduttore (°C).
- Q₂₀: Resistività elettrica del materiale conduttivo a 20°C (Ω mm).
- **θi**: Temperatura iniziale del conduttore (°C), considerata pari a 90°C.
- **0f**: Temperatura finale del conduttore (°C), considerata come 250°C per isolante XLPE secondo IEC 60502-2.

Material	B (*C)*	Q _c (J/°C mm³)**	€20 (Ω mm)*	$\sqrt{\frac{Q_{\rm c}(\mathrm{B}+20)}{\varrho_{20}}}$
Copper	234.5	3.45 × 10-3	17.241 × 10-6	226
Aluminium	228	2.5 × 10-3	28.264 × 10-6	148
Lead	230	1.45 × 10-3	214 × 10-6	42
Steel	202	3.8 × 10 ⁻⁹	138 × 10-6	78

Tabella 16 - Valori di B, Qe, Q20 dei materiali

Quindi:

$$k = \sqrt{\frac{2.5 \times 10^{-3} (228 + 20)}{28.264 \times 10^{-6}} \cdot \ln\left(1 + \frac{250 - 90}{228 + \theta_i}\right)} = 94.55$$

La sezione minima del conduttore per una corrente di cortocircuito di 20kA e un tempo di sgancio di 1s è pari a:

$$S = \frac{\sqrt{I^2 * t}}{k} = \frac{\sqrt{20^2 * 4.0}}{94.55} = 211,52 \text{ mm}^2$$

6.8 Dimensionamento della caduta di tensione

Infine, si effettua la verifica della caduta di tensione, considerando che non deve superare il 2,5%.

Pagina | 35

La caduta di tensione in ogni sezione viene calcolata applicando la seguente equazione:

$$\Delta V\% = k_{cdt} \times I \times \frac{L_c}{1000} \times (R \times \cos(\varphi) + X \times sen(\varphi)) \times \frac{100}{V_n}$$

Dove:

- **Kcdt**: è $\sqrt{3}$ per i sistemi trifase;
- I: corrente di esercizio che attraversa il conduttore;
- L: Distanza del cavo in metri;
- X: Reattanza per unità di lunghezza (Ohm/m);
- R: Resistenza per unità di lunghezza (Ohm/m);
- **V**_n: Tensione nominale di esercizio;
- φ: Angolo tra tensione e corrente.

Applicando l'equazione precedente, si ottengono le cadute di tensione per ogni sezione e per ogni circuito MT e AT:

CIRCUITO	TRATTO	Long. (XLPE)	Corrente nominale Trasform atore	R (XLPE)	X (XLPE)	R TOTAL	X TOTAL	ΔV	ΔV%	ΔV TOTAL E	ΔV% TOTAL E
		[m]	[A]	[Ω/km]	[Ω/km]	[Ω]	[Ω]	[V]	[%]	[V]	[%]
DODCA154	WTG 1 - WTG 2	1218	141,13	0,0790	0,0990	0,0962	0,1206	34,02	0,11%	679,74	2,27%
DORSALE 1 MT	WTG 2- WTG 4	2782	282,26	0,0790	0,0990	0,2198	0,2754	155,39	0,52%		
1411	WTG 4 - SSEU	13570	423,39	0,0315	0,0480	0,4275	0,6514	490,33	1,63%		
DODGALES	WTG 8 - WTG 7	1278	141,13	0,0790	0,0990	0,1010	0,1265	35,69	0,12%		2,43%
DORSALE 2 MT	WTG 7 - WTG 6	3216	282,26	0,0630	0,0960	0,2026	0,3087	154,94	0,52%	730,18	
1411	WTG 6 - SSE	14932	423,39	0,0315	0,0480	0,4704	0,7167	539,54	1,80%		
DORSALE 3	WTG 5 - WTG 3	3402	141,13	0,0790	0,0990	0,2688	0,3368	95,01	0,32%	705 52	2 250/
MT	WTG 3 - SSE	12672	282,26	0,0630	0,0960	0,7983	1,2165	610,51	2,04%	705,52	2,35%
DORSALE 4 AT	SSE - SE RTN	609	230,94	0,0790	0,0770	0,0481	0,0469	19,24	0,01%	19,24	0,01%

Figura 8 - Valori di cadute di tensione

Si ottiene una perdita di tensione massima complessiva dello 2,43% per la **Dorsale 2** (composta per circa 15 km per ultimo tratto da cavo in formazione 3x2x630mm²), segue la **Dorsale 3** con una perdita di carico complessiva di 2,35% (circa 13 km per ultimo tratto versione cavo a 3x1x630 mm²), quindi 2,27% per la **Dorsale 1** (circa 13,5 km versione cavo a 3x2x630 mm² per ultimo tratto). Pertanto, il requisito tecnico è soddisfatto. Per il breve percorso della dorsale 4 AT la perdita di tensione risulta irrilevante, essendo in cavo 3x1x500mm² per un tratto di circa 600m.

Pagina | 36

7 SCHEMA A BLOCCHI

ALLEGATO A - SCHEMA A BLOCCHI

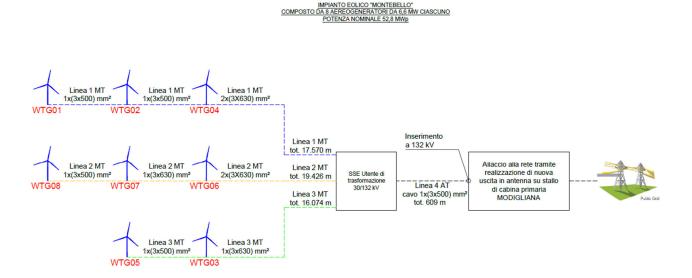


Figura 9 Schema a blocchi

8 RISULTATI

Dall'analisi eseguite si evincono i seguenti valori:

CIRCUITO	TRATTO	Long. (XLPE)	Transformatore [kW]	Tensione [kV]	Conduttori x FASE unt	Sezione	Composizione terna
	MITC 1 MITC 2				4		2545500
DORSALE 1	WTG 1 - WTG 2	1218	6.600	30,0	1	500	3x1x500
MT	WTG 2- WTG 4	2782	13.200	30,0	1	500	3x1x500
IVII	WTG 4 - SSE	13570	19.800	30,0	2	630	3x2x630
DORSALE 2	WTG 8 - WTG 7	1278	6.600	30,0	1	500	3x1x500
	WTG 7 - WTG 6	3216	13.200	30,0	1	630	3x1x630
MT	WTG 6 - SSE	14932	19.800	30,0	2	630	3x2x630
DORSALE 3	WTG 5 - WTG 3	3402	6.600	30,0	1	500	3x1x500
MT	WTG 3 - SSE	12672	13.200	30,0	1	630	3x1x630
DORSALE 4	COE OF DIM	600	F2 900	122.0	1	500	2×1×500
AT	SSE - SE RTN	609	52.800	132,0	l	500	3x1x500

RELAZIONE CAVIDOTTO E SCHEMA A BLOCCHI

SMG_R_06_A_D_A_1

Progetto per la realizzazione di un impianto eolico composto da 8 aerogeneratori da 6,6 MW ciascuno per una potenza complessiva pari a 52,8 MW denominato "Montebello" da realizzarsi nei comuni di Modigliana (FC), Rocca San Casciano (FC) e Tredozio (FC) in località Montebello e opere connesse nei comuni di Rocca San Casciano (FC), Tredozio (FC) e Modigliana (FC)

Pagina | 37

9 CONCLUSIONE

Le sezioni di cablaggio MT valutate in questa relazione di calcolo (500 mm² e 630 mm²) e AT (500 mm²) sono state verificate per le condizioni di installazione considerate, le perdite di potenza, i cortocircuiti e i requisiti tecnici dovuti alla caduta di tensione, in conformità con gli standard internazionali, integrati dalle normative locali.

Pertanto, il dimensionamento del cablaggio MT è conforme ai requisiti tecnici del Progetto.

Palermo 30/03/2024

Dott. Ing. Girolamo Gorgone

Per. Ind. Alessandro Tedeschi per TESI s.r.l.