

Direzione Tecnica

STRADA STATALE 4 "VIA SALARIA" Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

Stralcio 1 da pk 0+000 a pk 1+900

PROGETTO ESECUTIVO

COD.

RM 368

PROGETTAZIONE:

R.T.I.: PROGER S.p.A. (capogruppo mandataria)

PROGIN S.p.A.

S.I.N.A. S.p.A. – BRENG S.r.l.

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Antonio GRIMALDI (Progin S.p.A.) Ordine degli Ingegneri della Provincia di Napoli n. 23799 CAPOGRUPPO MANDATARIA:

IL GEOLOGO:

Dott. Geol. Gianluca PANDOLFI ELMI (Progin S.p.A.) Ordine dei Geologi Regione Umbria n. 467

orame acr deolog/ neglone ombita ii. 107

IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Michele CURIALE (Progin S.p.A.)

VISTO: IL RESPONSABILE UNICO DEL PROGETTO

Dott. Ing. Paolo NARDOCCI

PROTOCOLLO

DATA

PROGIN
Progettazione Grandi Infrastrutture

Direttore Tecnico:
Dott. Ing. Lorenzo INFANTE

OPERE D'ARTE MINORI - TOMBINI

202_

Tombino 2x2 pk 0+261 – Relazione di calcolo

CODICE	E PROGETTO	NOME FILE T01TM03STRRE01C			REVISIONE	SCALA:
	D P R M 3 6 8 E 2 3	CODICE T 0 1	T M 0 3 S	T R R E 0 1	С	-
С	Emissione a seguito di validazior	ne e istruttoria ANAS	01/2024	M. Boccardi	P.Valente	L. Infante
В	Emissione a seguito istru	uttoria ANAS	05/2023	E. Abbasciano	P.Valente	L. Infante
А	Prima emissio	ne	09/2022	E. Abbasciano	P.Valente	L. Infante
REV.	DESCRIZIONI		DATA	REDATTO	VERIFICATO	APPROVATO

Sommario

1	PR	EMESSA	1
	1.1	Descrizione dell'opera	1
2	NC	ORMATIVA DI RIFERIMENTO	4
,	2.1	Elaborati di riferimento	5
3	CA	RATTERISTICHE DEI MATERIALI	6
	3.1	Classe di esposizione e copriferri	6
,	3.2	Calcestruzzo strutture (C32/40)	7
,	3.3	Calcestruzzo cordoli portabarriera	8
,	3.4	Acciaio per barre d'armatura (B450C)	8
4	IN	QUADRAMENTO GEOTECNICO	9
4	4.1	Stratigrafia di progetto e parametri geotecnici	9
4	4.2	Interazione Terreno-Fondazione	11
5	CA	RATTERIZZAZIONE SISMICA DEL SITO	12
6	CR	ITERI GENERALI PER LE VERIFICHE STRUTTURALI	16
(5.1	VERIFICHE ALLO SLU	16
	6.1.1	Pressoflessione	16
	6.1.2	Taglio	17
(5.2	VERIFICA SLE	18
	6.2.1	Verifiche alle tensioni	18
	6.2.2	Verifiche a fessurazione	18
7	CO	OMBINAZIONI DI CARICO	19
8	SO	FTWARE DI CALCOLO	24
8	8.1	ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO ADOTTATI	24
,	8.2	UNITÀ DI MISURA	24

8.3	GRADO DI AFFIDABILITÀ DEL CODICE	24
8.4	VALUTAZIONE DELLA CORRETTEZZA DEL MODELLO	25
8.5	CARATTERISTICHE DELL'ELABORAZIONE	25
8.6	GIUDIZIO FINALE SULLA ACCETTABILITÀ DEI CALCOLI	25
8.7	PROGRAMMI DI SERVIZIO	25
9 PC	OZZETTO 4.7 M X 3.8 M	26
9.1	GEOMETRIA	26
9.2	MODELLO DI CALCOLO	29
9.2.1	Valutazione della rigidezza delle molle	30
9.3	ANALISI DEI CARICHI	31
9.3.1	Peso proprio della struttura e carichi permanenti portati	31
9.3.2	2 Spinta del terreno sulle pareti	33
9.3.3	3 Azione Termica	33
9.3.4	Azione sismica inerziale	33
9.4	DIAGRAMMI DELLE SOLLECITAZIONI	34
9.5	VERIFICA DELLE SEZIONI IN C.A.	36
9.5.1	Verifica piedritti spessore 40 cm	36
9.5.2	2 Verifica soletta di fondazione	38
9.6	ARMATURA	40
9.6.1	I Incidenza armature	40
9.7	VERIFICA FONDAZIONE	41
9.7.1	l Verifica portanza	41
10 S	SCATOLARE 2M X 2M	52
10.1	GEOMETRIA	52
10.2	MODELLO DI CALCOLO	53
10.2	.1 Valutazione della rigidezza delle molle	54
10.3	ANALISI DEI CARICHI	55
10.3	.1 Peso proprio della struttura e carichi permanenti portati	55

10.3.2	Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente	55
10.3.3	Ripartizione dei carichi mobili verticali	56
10.3.4	Spinta del sovraccarico sul rilevato q1=20 kN/m	58
10.3.5	Frenatura	59
10.3.6	Variazione termica	59
10.3.7	Ritiro differenziale della soletta di copertura	60
10.3.8	Azione sismica inerziale	61
10.4 D	IAGRAMMI DELLE SOLLECITAZIONI	64
10.5 V	ERIFICA DELLE SEZIONI IN C.A.	67
10.5.1	Verifica soletta inferiore	67
10.5.2	Verifica soletta superiore	71
10.5.3	Verifica piedritti	75
10.5.4	Tabella riassuntiva armature	80
10.5.5	Incidenza armature	80
10.6 V	ERIFICA FONDAZIONE	81
10.6.1	Verifica portanza	81
11 MU	RO DI SOSTEGNO	89
11.1 D	ESCRIZIONE DELLE OPERE	89
11.2 A	NALISI DEI CARICHI E COMBINAZIONI	89
11.2.1	Pesi Propri e Carichi permanenti	90
11.2.2	Spinte del terreno in fase statica	90
11.2.3	Coefficienti sismici	91
11.2.4	Spinte del terreno in Fase sismica	92
11.2.5	Carichi Accidentali	92
11.2.6	Combinazioni di Carico	92
11.3 C	RITERI GENERALI DI VERIFICA DELLE OPERE	93
11.3.1	Verifiche geotecniche	93
11.3.2	Verifiche strutturali	98
11.4 A	NALISI E VERIFICHE MURO	99
11.4.1	Modello di calcolo	99

11.4.2	Risultati	100
11.4.1	Verifiche strutturali	101
11.4.2	Incidenze e armature	117

1 PREMESSA

Nell'ambito della progettazione definitiva dell'intervento di adeguamento della piattaforma stradale e messa in sicurezza della STRADA STATALE 4 "VIA SALARIA" dal km 56+000 al km 64+000, è prevista la realizzazione di una struttura interrata comprensiva di uno scatolare stradale, muro di imbocco e pozzetto.

1.1 Descrizione dell'opera

Le strutture oggetto di dimensionamento, sono riepilogate nella seguente tabella:

Opera:	Dimensione in pianta:	Dimensione in elevazione:
Pozzetto	4.7m x 3.8m	
Scatolare stradale		2m x 2m
Muro di sostegno		3,60 m

L'opera oggetto della relazione ha l'obiettivo di regimentare le acque meteoriche. Per realizzare il pozzetto, lo scatolare ed i muri di sostegno si realizzano delle opere di tipo provvisorio che servono sia per sostenere gli scavi, sia per non interrompere il flusso veicolare. In particolare le fasi che caratterizzano tale costruzione prevedono:

- Una prima fase in cui si realizzano le paratie provvisorie (lato pozzetto e lato scatolare) per garantire il traffico veicolare spostandolo provvisoriamente a destra e permettendo di realizzare il pozzetto e la parte sinistra dello scatolare
- ➤ Una seconda fase in cui si demolisce il tirante della paratia (lato scatolare) e si effettua un pre-scavo con realizzazione del tirante dal lato opposto, in modo da realizzare la parte destra dello scatolare e spostare il flusso veicolare a sinistra.

Allo scopo di individuare dei modelli di calcolo rappresentativi delle diverse situazioni presenti in termini di ricoprimento e di luce netta, sono state effettuate alcune valutazioni di calcolo relativamente alla pressione complessiva in asse alla soletta di copertura per effetto del terreno di ricoprimento e dei carichi variabili sul piano stradale opportunamente diffusi, secondo i criteri già esposti nei paragrafi successivi. Nel seguito si riportano alcune immagini rappresentative delle sezioni oggetto di analisi:

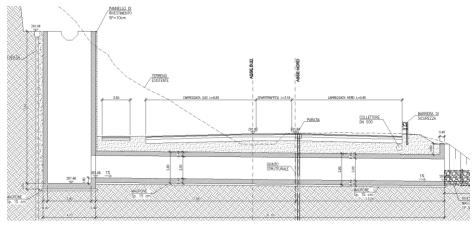


Figura 1- Profilo longitudinale

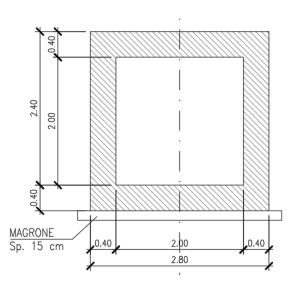


Figura 2- Sezione tombino

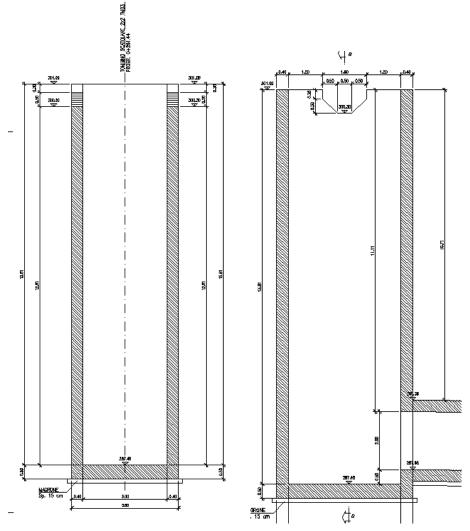
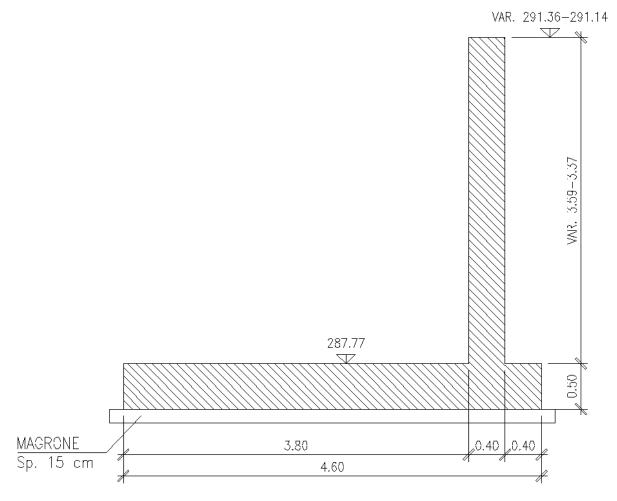
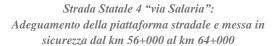


Figura 3- sezioni pozzetto




Figura 4- sezione muro di sostegno

2 NORMATIVA DI RIFERIMENTO

Si riporta nel seguito l'elenco delle leggi e dei decreti di carattere generale, assunti come riferimento.

- D.M. 17 gennaio 2018 Norme Tecniche per le Costruzioni (NTC);
- Circolare n.7 del 21 gennaio 2019 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018;
- UNI EN 1992-1-1 Progettazione delle strutture di calcestruzzo;
- UNI EN 206-1-2014 Calcestruzzo: specificazione, prestazione, produzione e conformità.
- UNI 11104_2016: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1
- Decreto Protezione Civile 21 ottobre 2003: Disposizioni attuative dell'art. 2, commi 2, 3 e 4, dell'ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003.
- OPCM 20 marzo 2003 n. 3274, Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica.
- OPCM 3 maggio 2005 n. 3431: Ulteriori modifiche ed integrazioni dell'ordinanza del Presidente del consiglio dei Ministri n. 3274 del 20/3/2003 recante "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica".
- OPCM 8 luglio 2004 n. 3362: Modalità di attivazione del Fondo per investimenti straordinari della
 Presidenza del Consiglio dei Ministri istituito ai sensi dell'art. 32-bis del decreto legge 30 settembre 2003 n. 269 convertito, con modificazioni, dalla legge 24 novembre 2003 n. 326.
- OPCM 28 aprile 2006: Criteri generali per l'individuazione delle zone sismiche e per la formazione e l'aggiornamento degli elenchi delle medesime zone.
- Linee Guida per la valutazione e riduzione del rischio sismico del patrimonio culturale e successive modificazioni del Ministero per i Beni e le Attività Culturali, come licenziate dal Consiglio Superiore dei Lavori Pubblici e ss. mm. ii..
- Raccomandazioni AGI (1977);
- Modalità Tecniche ANISG (1977).
- Ouaderni tecnici ANAS

2.1 Elaborati di riferimento

Costituiscono parte integrante di quanto esposto nel presente documento, l'insieme degli elaborati di progetto specifici relativi all'opera in esame e riportati in elenco elaborati:

T01TM03STRDI01

T01TM03STRDI02

T01TM03STRCP01

T01TM03STRCA01

T01TM03STRAR02

T01TM03STRAR01

3 CARATTERISTICHE DEI MATERIALI

Di seguito si riportano le caratteristiche dei materiali previsti per la realizzazione delle strutture oggetto di calcolo nell'ambito del presente documento:

3.1 Classe di esposizione e copriferri

Con riferimento alle specifiche di cui alla norma, si definiscono di seguito le classi di esposizione del calcestruzzo delle diverse parti della struttura oggetto dei dimensionamenti di cui al presente documento:

■ XC4 – XF1;

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 -1	Descrizione dell'ambienne	Esemplo	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)
1 Assenza	a di rischio di	corrosione o attacco				
1	ΧO	Per calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto dove c'è gelo'disgelo, o attacco chimico. Calcestruzzi con armatura o inserti metallici:in ambiente molto asciutto.	Interno di edifici con umidità relativa molito bassa. Caloestruzzo non armato all'interno di edifici. Caloestruzzo non armato immerso in suolo non aggressiva o in acqua non aggressiva. Caloestruzzo non armato soggetto a cidi di bagnato asciutto ma non soggetto adrassione, gelo o attasco chimico.	-	C 12/15	
		a carbonatazione				
condizioni riflet	ttano quelle dell'amb		iferro o nel ricoprimento di inserti metallici, ma in r lassificazione dell'ambiente circostante può esser			
2 a	XC1	Asciutto o permanentemente bagnato.	Interni di edifici con umidità relativa bassa. Calcestruzzo armato ordinario o precompresso con le superfici all'interno di strutture con eccezione delle parii esposte a condensa, o immerse i acqua.	0,60	C 25/30	
2 a	XC2	Bagnato, raramente asciutto.	Parti di strutture di contenimento liquidi, fondazioni. Calcestruzzo armato ordinario o precompresso prevalentemente immerso in acqua o terreno non aggressivo.	0,60	C 25/30	
5 a	хсз	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta.	0,55	C 28/35	
4 a 5 b	XC4	Ciclicamente asciutto e bagnato.	Calcestruzzo armato ordinario o precompresso in esterni con superfici soggette a alternanze di asciutto ed umido. Calcestruzzi a vista in ambienti urbani. Superfici a contatto con l'acqua non comprese nella classe XC2.	0,50	C 32/40	
3 Corrosi	one indotta d	a cloruri esclusi quelli	provenenti dall'acqua di mare			
5 a	XD1	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in superfici o parti di ponti e viadotti esposti a spruzzi d'acqua contenenti cloruri.	0,55	C 28/35	
4 a 5 b	XD2	Bagnato, raramente asciutto.	Calcestruzzo armato ordinario o precompresso in elementi strutturali totalmente immersi in acqua anche industriale contenete cloruri (Piscine).	0,50	C 32/40	
5 c	XD3	Ciclicamente bagnato e asciutto.	Calcestruzzo armato ordinario o precompresso, di elementi strutturali direttamente soggetti agli agenti disgelanti o agli supruzi contenenti agenti disgelanti. Calcestruzzo armatio ordinario precompresso, elementi con una superficie immersa in acqua contenente cloruri e l'altre esposta all'ana. Parti di ponti, pavimentazioni e parcheggi per auto.	0,45	C 35/45	

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 –1	Descrizione dell'ambiente	Esemplo	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)
4 Corrosi	one indotta	da cloruri presenti nell'	acqua di mare			
4 a 5 b	XS1	Esposto alla salsedine marina ma non direttamente in contatto con l'acqua di mare.	Calcestruzzo armato ordinario o precompresso con elementi strutturali sulle coste o in prossimità.	0,50	C 32/40	
	XS2	Permanentemente sommerso.	Calcestruzzo armato ordinario o precompresso di strutture marine completamente immersi in acqua.	0,45	C 35/45	
	XS3	Zone esposte agli spruzzi o alle marea.	Calcestruzzo armato ordinario o precompresso con elementi strutturali esposti alla battigia o alle zone soggette agli spruzzi ed onde del mare.	0,45	C 35/45	
5 Attacco	dei cicli di g	elo/disgelo con o senza				
2 b	XF1	Moderata saturazione d'acqua,in assenza di agente disgelante.	Superfici verticali di calcastruzzo come facciate e colonne esposte alla pioggia ed al gelo. Superfici non verticali e non soggette alla completa saturazione ma esposte al gelo, alla pioggia o all'acqua.	0,50	C 32/40	
3	XF2	Moderata saturazione d'acqua, in presenza di agente disgelante.	Elementi come parti di ponti che in altro modo sarebbero classificati come XF1 ma che sono esposti direttamente o indirettamente agli agenti disgelanti.	0,50	C 25/30	3,0
2 b	XF3	Elevata saturazione d'acqua, in assenza di agente disgelante	Superfici orizzontali în edifici dove l'acqua può accumularsi e che possono essere soggetti ai fenomeni di gelo, elementi soggetti a frequenti bagnature ed esposti al gelo.	0,50	C 25/30	3,0
3	XF4	Elevata saturazione d'acqua, con presenza di agente antigelo oppure acqua di mare.	Superfici orizzontali quali strade o pavimentazioni esposte al gelo ed ai sali disgelanti in modo diretto o indiretto, elementi esposti al gelo e soggetti a frequenti bagnature in presenza di agenti disgelanti o di acqua di mare.	0,45	C 28/35	3,0
6 Attacco	chimico**					
5 a	XA1	Ambiente chimicamente debolmente aggressivo secondo il prospetto 2 della UNI EN 206-1	Contenitori di fanghi e vasche di decantazione. Contenitori e vasche per acque reflue.	0,55	C 28/35	
4 a 5 b	XA2	Ambiente chimicamente moderatamente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di terreni aggressivi.	0,50	C 32/40	
5 c	XA3	Ambiente chimicamente fortemente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di acque industriali fortemente aggressive. Contenitori di foraggi, mangimi e liquame provenienti dall'allevamento animale. Torri di raffreddamento di fumi di gas di scarico industriali.	0,45	C 35/45	

Classi di esposizione secondo norma

La determinazione delle classi di resistenza dei conglomerati dei conglomerati, di cui ai successivi paragrafi, sono state inoltre determinate tenendo conto delle classi minime stabilite dalla stessa norma UNI-EN 11104, di cui alla successiva tabella:

										Classi di	esposizio	ne							
Massimo rapporto a/c C12/15 C25/30 C28/35 C32/40 C35/45 C28/35 C32/40 C35/45 C32/4		corrosione	one indotta dalla carbonatazione						lisgelo	Ambiente aggressivo pe attacco chimico									
Massimo rapporto a/c - 0,60 0,55 0,50 0,50 0,45 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,45 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,20 0,50 0,20 0,20 0,20 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Acqu</td> <td>a di m</td> <td>are</td> <td></td>							Acqu	a di m	are										
Minima classe di resistenza ⁷ C12/15 C25/30 C28/35 C32/40 C35/45 C28/35 C32/40 C35/45 C32/40 C35/45 32/40 25/30 28/35 28,35 32/40 Minimo contenuto in cemento (kg/m³) 300 320 340 360 320 340 360 320 340 360 320 340		X0	XC1	XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	XF1	XF2	XF3	XF4	XA1	XA2	XA3
Minimo contenuto in cemento (kg/m³) - 300 320 340 360 320 340 360 320 340 360 320 340	Massimo rapporto a/c	-	0,	60	0,55	0,50	0,50	0,	45	0,55	0,50	0,45	0,50	0,	50	0,45	0,55	0,50	0,45
(kg/m²)	Minima classe di resistenza*)	C12/15	C2!	5/30	C28/35	C32/40	C32/40	C3	5/45	C28/35	C32/40	C35/45	32/40	25/30 28/35		28,35	32/40	35/4	
Contenuto minimo in aria (%) 3,0 ^{a)}		-	30	00	320	340	340	3	60	320	340	360	320	3	40	360	320	340	360
	Contenuto minimo in aria (%)													3,0 ^{a)}					
Altri requisiti Aggregati conformi alla UNI EN 12620 È richiesto l'impieg di adeguata resistenza al gelo/disgelo cementi resistenti a	Altri requisiti																		

Classi di resistenza minima del calcestruzzo secondo UNI – 11104

I copriferri di progetto adottati per le barre di armatura, tengono infine conto inoltre delle prescrizioni della Tabella C4.1.IV della circolare esplicativa alle NTC2018; si è in particolare previsto di adottare i seguenti copriferri (intesi come distanza tra il lembo più esterno di cls ed estremità del ferro staffe/ripartitori) minimi:

■ 40 mm

3.2 Calcestruzzo strutture (C32/40)

**Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0

Resistenza caratteristica a compressione cubica a 28 gg:		$\mathbf{R}_{\mathbf{ck}} =$	40	MPa
Resistenza caratteristica a compressione cilindrica a 28 gg:	$(0.83*R_{ck})$	$f_{ck}=$	33,2	MPa
Resistenza a compressione cilindrica media:	(fck+8)	$\mathbf{f}_{\mathrm{cm}} =$	41,2	MPa
Valore medio resistenza a trazione assiale:		$\mathbf{f}_{\mathrm{ctm}} =$	3,10	MPa
Valore caratteristico frattile 5% resistenza a trazione assiale:		$\mathbf{f}_{\mathrm{ctk,0,05}} =$	2,17	MPa
Valore medio resistenza a trazione per flessione:		$\mathbf{f}_{\mathrm{cfm}} =$	3,72	MPa
Valore caratteristico frattile 5% resistenza a trazione per flessione		$f_{\mathrm{cfk,0,05}} =$	2,60	MPa
**Coefficiente parziale per le verifiche agli SLU:		γ c=	1,5	[-]
Resistenza di calcolo a compressione allo SLU:	(0,85*fck/gc)	$\mathbf{f}_{\mathrm{cd}} =$	18,8	MPa
Resistenza di calcolo a trazione diretta allo SLU:	$(f_{ctk\ 0,05}/\ g_S)$	$\mathbf{f}_{\mathrm{ctd}} =$	1,45	MPa
*Resistenza di calcolo a trazione per flessione SLU:	(1,2*fctd)	$\mathbf{f}_{\mathrm{ctd}} =$	1,74	MPa
Modulo di elasticità secante:		$\mathbf{E}_{\mathbf{cm}} =$	33643	MPa
Modulo di Poisson:		v =	0-0,2	[-]
Coefficiente di dilatazione lineare		α=	0,00001	°C-1
*Tensione massima ammissibile nella comb. Quasi Permanente	$\sigma_{cmax QP} =$	$(0,45 f_{cK}) =$	14,94	MPa
*Tensione massima ammissibile nella comb. Caratteristica -Rara	σ _{cmax R} =	$(0,60 \; f_{cK}) =$	19,92	MPa

⁷

^{*}Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

3.3 Calcestruzzo cordoli portabarriera

Resistenza a compressione cubica caratteristica	$R_{ck} =$	45	N/mm^2
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	37.35	N/mm ²
Resistenza a compressione cilindrica media	$f_{cm} =$	45.35	N/mm ²
Resistenza a trazione semplice	$f_{ctm} =$	3.35	N/mm ²
Resistenza a trazione per flessione	$f_{ctm} =$	4.02	N/mm ²
Modulo elastico secante medio	$E_{cm} =$	34625	N/mm^2
Resistenza caratteristica a trazione semplice (5%)	$\mathbf{f}_{\text{ctk}} =$	2.35	N/mm^2
Resistenza caratteristica a trazione semplice (95%)	$\mathbf{f}_{\text{ctk}} =$	4.36	N/mm^2
Coefficiente di sicurezza SLU:	$\gamma_c =$	1.5	
Resistenza di calcolo a compressione cilindrica SLU:	$\mathbf{f}_{cd} =$	21.2	N/mm^2
Resistenza di calcolo a trazione semplice (5%) - SLU:	$\mathbf{f}_{ctd} =$	1.56	N/mm^2
Coefficiente di sicurezza SLE:	$\gamma_c =$	1.0	
Resistenza di calcolo a compressione cilindrica SLE:	$\mathbf{f}_{cd} =$	37.4	N/mm^2
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{ctd} =$	2.35	N/mm^2
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{c,ad} =$	22.41	N/mm^2
Combinazione quasi permanente	$\sigma_{c,ad} =$	16.81	N/mm^2
Classe di esposizione		XC4-XD3	
Classe di consistenza slump:		S4	
Contenuto minimo di cemento:		360	daN/m^3
Rapporto A/C		≤ 0.45	
Massima dimensione aggregato		18	mm

3.4 Acciaio per barre d'armatura (B450C)

Tipologia		B450C	
Resistenza caratteristica a snervamento	f_{yk}	450	MPa
Coefficiente parziale di sicurezza per l'acciaio	$\gamma_{\rm c}$	1.15	
Resistenza di progetto a snervamento	$f_{ m yd}$	391.3	MPa
Modulo elastico longitudinale	E_{cm}	210000	MPa
Tensione massima per la verifica agli SLE	$\sigma_{s \text{ max}} = (0.80 \text{ f}_{yK}) =$	360	MPa

Combinazione di Carico Caratteristica (Rara)

4 INQUADRAMENTO GEOTECNICO

Nel presente capitolo si riportano le principali unità geotecniche presenti lungo la linea ed a seguire i parametri geotecnici di progetto secondo quanto riportato nella relazione geotecnica generale alla quale si rimanda per ulteriori approfondimenti.

4.1 Stratigrafia di progetto e parametri geotecnici

Le caratteristiche geotecniche del volume di terreno che interagisce con l'opera sono state desunte tenendo conto di quanto risultante nel profilo geologico e dalla caratterizzazione dei litotipi riportati nella relazione geotecnica generale.

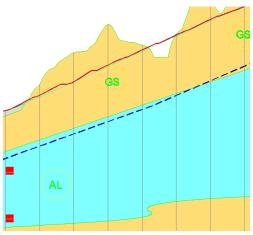


Figura 5- stratigrafia di progetto

Come mostrato nella stratigrafia, in relazione all'ubicazione dell'opera e alle quote di approfondimento delle stesse, il terreno di fondazione è unico a tutte le opere oggetto della presente relazione ed è rappresentato dall'unità:

Unità AL (argilla limosa)

$\gamma = 19.0 \text{ kN/m}^3$	peso di volume naturale
c' = 5÷ 15 kPa (utilizzato 10kPa)	coesione drenata
$\phi' = 26 \div 30^{\circ} \text{ (utilizzato } 28^{\circ}\text{)}$	angolo di resistenza al taglio
$c_u = 75 \dot{\div} 200 \text{ kPa (utilizzato 150kPa)}$	resistenza al taglio in condizioni non drenate
Eo = 150 ÷400 MPa (utilizzato 150MPa)	modulo di deformazione elastico a piccole deformazioni
Eop1' = Eo/5 = 30 MPa	modulo elastico operativo

I moduli di deformabilità "operativi" da adottare per il calcolo delle deformazioni/cedimenti delle opere di sostegno e delle fondazioni (Eop1'), saranno assunti pari a 1/5 di quello iniziale (Eo): Eop1 '= Eo / 5.

La falda non interferisce con le opere oggetto della relazione in termini di spinta sui piedritti, viene però tenuta in conto per le verifiche geotecniche.

Per il terreno di ricoprimento dell'opera sono state assunte le seguenti caratteristiche geotecniche:

DATI GEOTECNICI						
Grandezza	Simbolo	Valore	U.M.			
angolo di attrito	ф	35	٥			
peso di volume ricoprimento	$\gamma_{\rm r}$	20	kN/m³			
coefficiente di spinta a riposo	K_0	0.43	-			
Modulo elastico terreno fondazione	E	150000	kPa			
Cond. Geo: tangente $\phi/1.25$	tanφ/1.25	0.560	-			
Cond. Geo: angolo di attrito	φ_{Geo}	29	٥			
Geo: coeff. di spinta a riposo	$K_{0(Geo)}$	0.511	-			

4.2 Interazione Terreno-Fondazione

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

- $s = B \cdot C_1 \cdot (q \sigma_{V0}) \cdot (1 V^2) / E$ dove:
 - s = cedimento elastico totale;
 - B = lato minore della fondazione;
 - c_t = coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti
 dal Bowles, 1960 (L = lato maggiore della fondazione):

$$\begin{split} c_t &= 0.853 + 0.534 \; ln(L \, / \, B) & \text{rettangolare con } L \, / \, B \! \leq \! 10 \\ c_t &= 2 + 0.0089 \; (L \, / \, B) & \text{rettangolare con } L \, / \, B \! > \! 10 \end{split}$$

- q = pressione media agente sul terreno;
- σ_{v0} = tensione litostatica verticale alla quota di posa della fondazione;
- v = coefficiente di Poisson del terreno;
- E = modulo elastico operativo del terreno sottostante (pari ad 1/5 del modulo elastico inziale)

Il valore della costante di sottofondo k_w è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento, pertanto si ottiene:

• $k_w = E / [(1-v^2) \cdot B \cdot ct]$

Di seguito si riportano, in forma tabellare, i risultati delle valutazioni effettuate per i casi in esame, sulla scorta del valore di progetto di **E** attribuito allo strato di Fondazione, avendo considerato una dimensione longitudinale della fondazione ritenuta potenzialmente collaboranti:

Tombino Scatolare

Caratterist	Caratteristiche dei terreni			etria Fond	dazione	Costante di sottofondo			
T	ν	E	L	В	L/B	c _t k _w Fondazione Rigida ct			
Tipo	[-]	[MPa]	[m]	[m]	[m]	[-]	[kN/m³]	rettangolare con L/B<10	0.853 + 0.534 ln(L/B)
Base (P)	0.3	30	31.10	2.80	11.11	2.10 5610		rettangolare con L/B>10	2 + 0.0089 (L/B)

Pozzetto

Caratterist	Caratteristiche dei terreni			Geometria Fondazione			Costante di sottofondo			
Time	v	E	L	В	L/B	c _t k _w Fondazione Rigida ct			ct	
Tipo	[-]	[MPa]	[m]	[m]	[m]	[-]	[kN/m ³]	rettangolare con L/B<10	0.853 + 0.534 ln(L/B)	
Base (P)	0.3	30	4.70	3.80	1.24	0.97	8976	rettangolare con L/B>10	2 + 0.0089 (L/B)	

5 CARATTERIZZAZIONE SISMICA DEL SITO

L'opera in oggetto è progettata per una vita nominale VN pari a 50 anni. Gli si attribuisce inoltre una classe d'uso IV ("Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità.") ai sensi del D. Min. 17/01/2018, da cui scaturisce un coefficiente d'uso CU = 2.0

L'azione sismica di progetto è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste, descritta in termini geografici e temporali:

- attraverso i valori di accelerazione orizzontale di picco ag (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione Se(T);
- in corrispondenza del punto del reticolo che individua la posizione geografica dell'opera;
- con riferimento a prefissate probabilità di eccedenza PVR

In particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

- ag, accelerazione orizzontale massima del terreno
- F0, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- TC*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici.

In particolare, si può notare come F₀ descriva la pericolosità sismica locale del sito su cui l'opera insiste. Infatti, da quest'ultimo, attraverso le espressioni fornite dalla normativa, sono valutati i valori d'amplificazione stratigrafica e topografica.

Considerando la lieve variabilità dei parametri sismici lungo il tracciato, le opere in progetto sono state verificate in funzione dei massimi parametri di pericolosità sismica attesi lungo l'intero tracciato.

Di seguito sono riassunti i valori dei parametri assunti per l'opera in oggetto.

= 2.0;

Vita nominale VN = 50 anni; Classe d'uso = IV;

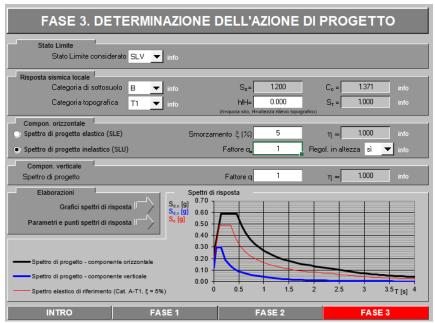
Coefficiente d'uso Cu

Periodo di riferimento VR = 100.0 anni; TR,SLV = 949 anni;

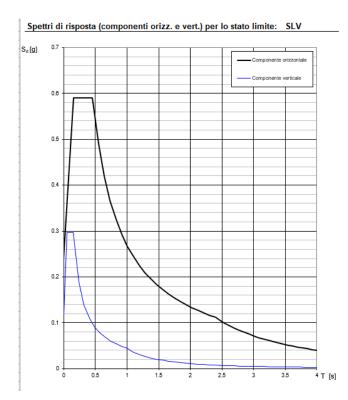
Per le opere in progetto, in accordo con la tabella 3.2.III delle NTC2018, si assume categoria topografica T2. In accordo con quanto riportato al punto 3.2.3.2 delle NTC2008, ultimo capoverso, in ragione della morfologia dell'area e dell'ubicazione delle opere rispetto ad essa (situate di fatto in corrispondenza della base del versante), non sussistono condizioni tali da comportare un effetto di amplificazione topografica delle azioni sismiche, per cui il coefficiente topografico (Tab. 3.2.V), viene assunto unitario (ST=1.0).

In relazione alle progressive chilometriche, le categorie di sottosuolo e topografiche sono riassunte nel prospetto seguente:

Da pk	A pk	Categoria sottosuolo
0+000	0+501	В
0+501	3+650	A
3+650	3+810	E
3+810	7+130	A
7+130	7+964	В


L'opera seguente è situata alla progressiva 0+270.0 per cui la categoria di sottosuolo è B.

Si riporta la sismica locale per l'opera in questione:

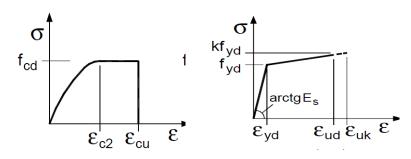


Parametri indipendenti

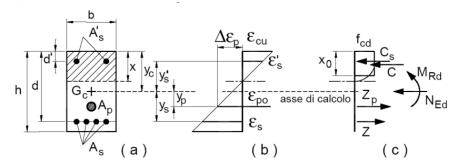
STATO LIMITE	SLV			
a _α	0.199 g			
F _o	2.473			
T _C *	0.332 s			
S _S	1.200			
C _C	1.372			
S _T	1.000			
q	1.000			

Parametri dipendenti

· arainour aipoi	1401111
S	1.200
η	1.000
T _B	0.152 s
T _C	0.455 s
T _D	2.395 s


6 CRITERI GENERALI PER LE VERIFICHE STRUTTURALI

I criteri generali di verifica utilizzati per la valutazione delle capacità resistenti delle sezioni, per la condizione SLU, e per le massime tensioni nei materiali nonché per il controllo della fessurazione, relativamente agli SLE, sono quelli definiti al p.to 4.1.2 delle NTC.


6.1 VERIFICHE ALLO SLU

6.1.1 Pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.3.2 delle NTC, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

Legami costitutivi Calcestruzzo ed Acciaio -

Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione -

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

$$M_{Rd} = M_{Rd} (N_{Ed}) \ge M_{Ed}$$
 [4.1.18a]

$$\mu_h = \mu_h (N_{Ed}) \ge \mu_{Ed}$$
 [4.1.18b]

dove

M_{Rd} è il valore di progetto del momento resistente corrispondente a N_{Ed};

N_{Ed} è il valore di progetto dello sforzo normale sollecitante;

M_{Ed} è il valore di progetto del momento di domanda;

 μ_{ϕ} è il valore di progetto della duttilità di curvatura corrispondente a N_{Ed} ;

 μ_{Ed} è la domanda in termini di duttilità di curvatura.

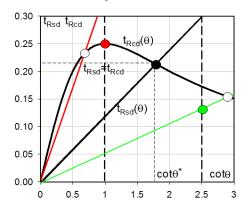
6.1.2 Taglio

La resistenza a taglio VRd della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

•
$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$
;


•
$$k = 1 + (200/d)^{1/2} \le 2$$
;

- $\rho_1 = A_{sw}/(b_w * d)$
- d = altezza utile per piedritti soletta superiore ed inferiore;
- b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio VRd è il minimo tra la resistenza a taglio trazione VRsd e la resistenza a taglio compressione VRcd :

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot \left(ctg\alpha + ctg\theta \right) \cdot \sin\alpha \qquad V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}^{'} \cdot \frac{\left(ctg\alpha + ctg\theta \right)}{\left(1 + ctg^2\theta \right)}$$

Essendo: $1 \le \operatorname{ctg} \theta \le 2,5$

- Se la $\cot\theta^*$ è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversal e il taglio resistente $V_{Rd}(=V_{Rsd})$ coincide con il massimo taglio sopportat dalle armature trasversali valutabile per una $\cot\theta=2,5$.
- Se la $\cot\theta^*$ è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e taglio resistente $V_{Rd}(=V_{Rcd})$ coincide con il massimo taglio sopportato dall bielle di calcestruzzo valutabile per una $\cot\theta=1,0$.
- Se la $\cot\theta^*$ è compresa nell'intervallo (1,0-2,5) è possibile valutare il tagli resistente $V_{Rd}(=V_{Rcd}=V_{Rsd})$

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.3.5.2 delle NTC, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

$$1 \le \text{ctg } \theta \le 2.5$$
 $45^{\circ} \ge \theta \ge 21.8^{\circ}$

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato:

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature) dove:

$$v = f'cd / fcd = 0.5$$

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

ωsw: Percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{sW} f_{yd}}{b \ s \ f_{cd}}$$

6.2 VERIFICA SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

6.2.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento quelli previsti dalle NTC e riepilogati ai par.3.2 (per il cls) e 3.3 (per l'acciaio).

6.2.2 Verifiche a fessurazione

La verifica a fessurazione consiste nel controllo dell'ampiezza massima delle fessure per le combinazioni di carico di esercizio i cui valori limite sono stabiliti dalle NTC. Nel caso in esame, adottando un'armatura poco sensibile alla corrosione, ed in considerazione delle classi di esposizione, le verifiche sono le seguenti:

Combinazioni	Q.P.	Freq.	Rara
Cond. Ordinarie	w = 0.20 mm	w = 0.30 mm	-

COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni. Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \text{ x } E_Y \pm 0.3 \text{ x } E_Z$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura scatolare si è fatto riferimento alla combinazione A1 STR (Approccio 1 -

Combinazione 1) per le verifiche strutturali ed A1 GEO (Approccio 1 – Combinazione 2) per le verifiche geotecniche.

L'opera principale è trattata con le combinazioni tipiche dei ponti ai sensi del DM 2018 e s.m.i.

Tabella 5.1.IV - Valori caratteristici delle azioni dovute al traffico

		Carichi su marciapiedi e piste ciclabili				
	Carichi verticali			Carichi orizz	ontali	Carichi verticali
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				

La Tab. 5.1.V fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi, il significato dei simboli è il seguente:

- γ G1 coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua, quando pertinente;
- γ G2 coefficiente parziale dei pesi propri degli elementi non strutturali;
- γ Q coefficiente parziale delle azioni variabili da traffico;
- γ Qi coefficiente parziale delle azioni variabili.

I valori dei coefficienti ψ_{0j} , ψ_{1j} e ψ_{2j} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI.

Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γQ	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

 $\textbf{Tabella 5.1.VI} - \textit{Coefficienti} \ \psi \ \textit{per le} \ \textit{azioni variabili per ponti stradali e pedonali}$

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente ψ 1 (valori frequenti)	Coefficiente \(\psi_2\) (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
Novo a	SLU e SLE	0,0	0,0	0,0
Neve q₅	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

Tabella 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

в ена 6.2.11 – Соејјісіени ра	rziaii per i parameiri geolecnici ael	terreno		
PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	$\gamma_{\rm M}$		
Tangente dell'angolo di resistenza al taglio	$tan \phi'_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{e'}$	1,0	1,25
Resistenza non drenata	c_{uk}	$\gamma_{\rm cu}$	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Le condizioni di carico considerate sono le seguenti:

Tabella 1 – Riepilogo condizioni di carico

Tipo Carico	Abbreviazione
Peso proprio	DEAD
Carichi permanenti	PERM
Falda	FALDA
Spinta terreno sinistra	STS
Spinta terreno destra	STD
Carico Stradale Centrato	TRM
Carico Stradale Laterale	TRV
Sovraccarico accidentale sinistra	SAS
Sovraccarico accidentale destra	SAD
Ritiro	RIT
Variazione termica	ΔΤ
Frenatura	FRE
Azione sismica orizzontale	E _H
Azione sismica verticale	Ev

Si riportano di seguito le combinazioni di carico ritenute più significative con i coefficienti di combinazione $\gamma \cdot \psi$. Essendo la struttura simmetrica, si adottano tipologie di combinazione asimmetriche in modo da massimizzare le sollecitazioni. Il dimensionamento delle armature e le verifiche strutturali verranno poi eseguite tenendo conto della simmetria e verificando le condizioni peggiori per ogni lato della struttura.

Tabella 2 - Combinazioni di carico

COMB	DEAD	STS	STD	RIT	ΔΤ	PERM	FALDA	TRM	TRV	SAS	SAD	FRE	Ен	Ev
n° 1 SLU-STR	1.35	1.35	1.35	1.20	1.50	1.50	-	-	-	-	-		-	-
n° 2 SLU-STR	1.35	1.35	1.00	1.20	1.50	1.50	-							
n° 3 SLU-STR	1.35	1.00	1.35	1.20	1.50	1.50								
n° 04 SLU-STR	1.35	1.35	1.35	1.20	1.50	1.50	1.35	-	-	-	-		-	-
n° 05 SLU-STR	1.35	1.35	1.00	1.20	1.50	1.50	1.35							
n° 06 SLU-STR	1.35	1.00	1.35	1.20	1.50	1.50	1.35							
n° 07 SLU-STR	1.35	1.35	1.35	1.20	0.90	1.50	1.35	1.35	-	1.35	1.35	1.35	-	-
n° 08 SLU-STR	1.35	1.35	1.00	1.20	0.90	1.50	1.35	1.35	-	1.35	1.35	1.35		
n° 09 SLU-STR	1.35	1.00	1.35	1.20	0.90	1.50	1.35	1.35	-	1.35	1.35	1.35		
n° 10 SLU-STR	1.35	1.35	1.35	1.20	0.90	1.50	1.35	-	1.35	1.35	1.35	1.35	-	-
n° 11 SLU-STR	1.35	1.35	1.00	1.20	0.90	1.50	1.35	-	1.35	1.35	1.35	1.35		
n° 12 SLU-STR	1.35	1.00	1.35	1.20	0.90	1.50	1.35	-	1.35	1.35	1.35	1.35		
n° 13 SLU-STR	1.35	1.35	1.35	1.20	0.90	1.50	1.35	1.35	-	1.35	-	1.35	-	-
n° 14 SLU-STR	1.35	1.35	1.00	1.20	0.90	1.50	1.35	1.35	-	1.35	-	1.35	-	-
n° 15 SLU-STR	1.35	1.00	1.35	1.20	0.90	1.50	1.35	1.35	-	1.35	-	1.35	-	-
n° 16 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20	-	0.20	-	0.20	1.00	0.30
n° 17 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20	-	0.20	-	0.20	1.00	-0.30
n° 18 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	-	0.20	-	0.20	-	0.20	1.00	0.30
n° 19 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	-	0.20	-	0.20	-	0.20	1.00	-0.30
GEO	1.00	1.30	1.00	1.00	0.60	1.30	1.00	1.15	-	1.15	-	1.15	-	-
GEO - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20		0.20		0.20	1.00	0.30
SLE - Q.P.	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.00	-	0.00	-	0.00	-	-
SLE - Frequente	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.75	1	0.75	-	0.75	1	ı
SLE - Rara	1.00	1.00	1.00	1.00	0.60	1.00	1.00	1.00	1	1.00	-	1.00	1	ı

SOFTWARE DI CALCOLO

ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO ADOTTATI 8.1

Per le analisi delle strutture è stato utilizzato il Sap 2000 v.22 prodotto, distribuito ed assistito da Computers and Structures, Inc.1995 University Ave. Berkeley. Questa procedura è sviluppata in ambiente Windows, permette l'analisi elastica lineare e non di strutture tridimensionali con nodi a sei gradi di libertà utilizzando un solutore ad elementi finiti. Gli elementi considerati sono frame (trave), con eventuali svincoli interni o rotazione attorno al proprio asse. I carichi sono applicati sia ai nodi, come forze o coppie concentrate, sia sulle travi, come forze distribuite, trapezie, concentrate, come coppie e come distorsioni termiche. A supporto del programma è fornito un ampio manuale d'uso contenente fra l'altro una vasta serie di test di validazione sia su esempi classici di Scienza delle Costruzioni, sia su strutture particolarmente impegnative e reperibili nella bibliografia specializzata. Tale programma fornisce in output, oltre a tutte le caratteristiche geometriche e di carico delle strutture, i risultati relativi alle sollecitazioni indotte nelle sezioni degli elementi presenti.

Per le analisi del muro di sostegno è stato utilizzato MAX (Analisi e Calcolo Muri di Sostegno) prodotto e distribuito dalla Aztec Informatica srl, Casole Bruzio (CS). Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

UNITÀ DI MISURA

Le unità di misura adottate sono le seguenti:

- lunghezze: m

- forze: kN

- masse: kN massa

- temperature: gradi centigradi

- angoli: gradi sessadecimali o radianti

- si assume l'uguaglianza 1 kN = 100 kg

GRADO DI AFFIDABILITÀ DEL CODICE

L'affidabilità del codice di calcolo e' garantita dall'esistenza di un'ampia documentazione di supporto. E' possibile inoltre ottenere rappresentazioni grafiche di deformate e sollecitazioni della struttura. La società produttrice Aztec Informatica srl ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

8.4 VALUTAZIONE DELLA CORRETTEZZA DEL MODELLO

Il modello di calcolo adottato e' da ritenersi appropriato in quanto non sono state riscontrate labilità, le reazioni vincolari equilibrano i carichi applicati, la simmetria di carichi e struttura dà origine a sollecitazioni simmetriche.

8.5 CARATTERISTICHE DELL'ELABORAZIONE

Tutte le analisi strutturali sono state eseguite su di una workstation dedicata avente le seguenti caratteristiche tecniche:

- Tipo Intel i7
- Memoria centrale 8 Gb;
- Lunghezza in bit della parola 64 bit;
- Memoria di massa 1 Hard disk da 500 Gb.

8.6 GIUDIZIO FINALE SULLA ACCETTABILITÀ DEI CALCOLI

Si ritiene che i risultati ottenuti dalla elaborazione siano accettabili e che le ipotesi poste alla base della formulazione del modello matematico siano valide come dimostrato dal comportamento dei materiali. All'interno del pacchetto Sap 2000 sono inoltre presente una serie di test per il benchmark del solutore, che consentono di comprovare l'affidabilita' del codice di calcolo e paragonare risultati ottenuti con le soluzioni esatte.

I risultati delle elaborazioni fatte da MAX sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni. In base a quanto sopra, si asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.

8.7 PROGRAMMI DI SERVIZIO

Per le verifiche delle sezioni si adotta il programma: "RC-SEC" – Autore GEOSTRU Software.

9 POZZETTO 4.7 M X 3.8 M

Nel seguito verrà esaminato il modello globale in shell del pozzetto.

Nell'analisi dell'opera si è tenuto in conto della presenza della paratia di micropali definitiva (opera OS03), pertanto sul pozzetto è stata considerata una spinta del terreno nulla. Si garantisce la messa in opera di un materiale di riempimento con compressibilità tale da non indurre interazioni significative tra l'opera OS03 e il pozzetto.

9.1 GEOMETRIA

La sezione trasversale di calcolo ha larghezza interna di L_{int} =3.90 m (lato maggiore) e L_{int} = 3.00 m (lato minore) ed un'altezza netta di H_{int} = 13.61 m; lo spessore della platea di fondazione è di S_f = 0.50 m, lo spessore dei piedritti a sezione costante è di S_p = 0.40 m.

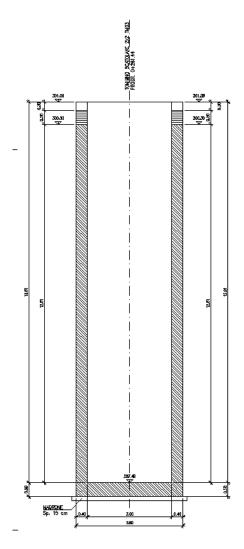


Figura 6 – sezione longitudinale

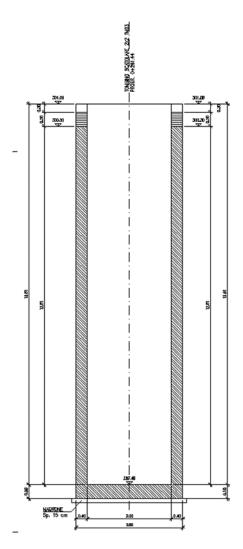


Figura 7 – sezione Trasversale

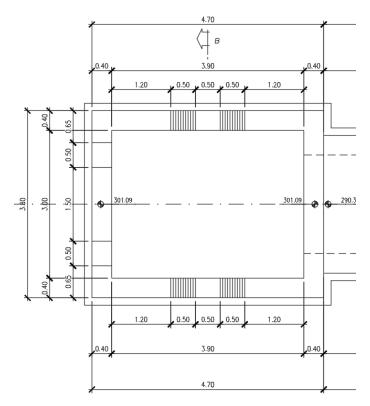


Figura 8 – pianta

DATI GEOMETRICI							
Grandezza	Simbolo	Valore	U.M.				
larghezza totale pozzetto (lato min)	Ltot	3.80	m				
larghezza totale pozzetto (lato magg)	Ltot	4.70	m				
larghezza utile pozzetto (lato min)	Lint	3.00	m				
larghezza utile pozzetto (lato magg)	Lint	3.90	m				
			7				
spessore piedritti	Sp	0.40	m				
spessore fondazione	Sf	0.50	m				
altezza totale pozzetto	Htot	14.11	m				
altezza libera pozzetto	Hint	13.61	m				

9.2 MODELLO DI CALCOLO

Il modello di calcolo attraverso il quale è modellata la struttura è formato da shell elements su letto di molle alla Winkler. I piedritti e le solette sono modellati con elementi shell-thick soggetti alle azioni da traffico di norma (se presenti) e quelle permanenti. Il terreno di fondazione è stato modellato utilizzando la formulazione di Winkler con un opportuno coefficiente di sottofondo.

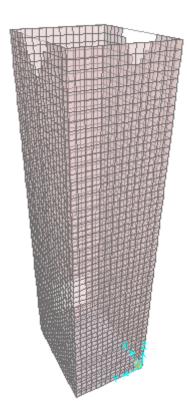
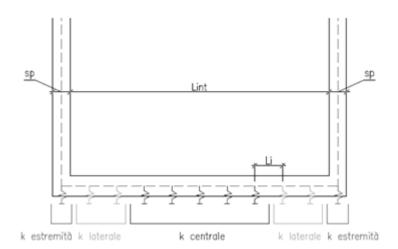


Figura 9 - Modello shell


9.2.1 Valutazione della rigidezza delle molle

Si considera il pozzetto appoggiato su di un letto di molle (schematizzazione alla Winkler) assegnando agli shell di fondazione del modello un valore di "spring" pari a K= 224000 kN/mc in funzione dell'interasse delle molle secondo la seguente formulazione:

 $Interasse \ molle \ (Dir. \ Lunga) \\ i = (S_p/2 + L_{int} + S_p/2)/14 \\ = (0.40/2 + 3.90 + 0.4/2)/14 \\ = 4.30/14 \\ = 0.31 \ [m]$

Interasse molle (Dir. Corta) $i = (S_p/2 + L_{int} + S_p/2)/14 = (0.40/2 + 3.00 + 0.4/2)/14 = 3.40/14 = 0.24 \text{ [m]}$

 $\begin{tabular}{lll} Molle centrali & $k_1=k*i$ & $[kN/m]$ \\ Molle intermedie & $k_2=1.5*k*i$ & $[kN/m]$ \\ Molle laterali & $k_3=2*k*(i/2+S_p/2)$ & $[kN/m]$ \\ \hline \end{tabular}$

Si è optata come strategia di modellazione quella dove viene assegnata alla piastra una distribuzione di linear spring tale che la rigidezza è decrescente dal bordo verso il centro della piastra, compatibile con la deformata della piastra stessa. La rigidezza nel modello è comunque applicata mediante una molla lineare su modello piano. Per un interasse delle molle pari al lato del singolo shell, si è calcolata la rigidezza delle molle in entrambi le direzioni x e y.

Pozzetto -	- Dir. Lunga	Pozzetto - Dir. Corta				
Lint	3.90	Lint	3.00			
Sp/2	0.20	Sp/2	0.20			
Sp/2	0.20	Sp/2	0.20			
i	0.31	i	0.24			
K	8976	K	8976			
k1	2757	k1	2180			
k2	4135	k2	3270			
k3	6347	k3	5770			

Nel modello si sono utilizzate le rigidezze delle molle minori corrispondenti a quelle calcolate nel lato corto.

La scelta di ridurre la rigidezza delle molle verso il centro dell'elemento piastra è stata fatta per tenere conto dell'effetto di bordo al fine di simulare la differente risposta del terreno, in termini di rigidezza, tra le due zone. La scelta consente di massimizzare i momenti di incastro nel solettone di fondo.

9.3 ANALISI DEI CARICHI

9.3.1 Peso proprio della struttura e carichi permanenti portati

Soletta inferiore	- Peso proprio	_	12.50	kN/m2
-		- Totale	12.50	kN/m2
-	- peso dell'acqua su soletta inferiore		128.00	kN/m2
D			10.00	137/ 0
<u>Piedritti</u>	- Peso proprio	-	10.00	kN/m2
		- Totale	10.00	kN/m2

Il carico dell'acqua sulla soletta inferiore è stato stimato, a favore di sicurezza, nell'ipotesi di pozzetto pieno, per altezza del pelo libero dell'acqua pari a 12.80 m..

La spinta dell'acqua sulle pareti è di andamento triangolare, con valori alla base pari a :

- peso dell'acqua su base piedritto 128 kN/m²

Si specifica che il peso della colonna d'acqua nel pozzetto, essendo molto profondo, potrebbe generare pressioni sulla soletta di fondazione abbastanza rilevanti. Queste pressioni per lo scatolare (dove il livello del pelo libero dell'acqua è molto ridotto) sono di entità trascurabile e potrebbero portare a sollecitazioni nella soletta di fondazione meno cautelativi.

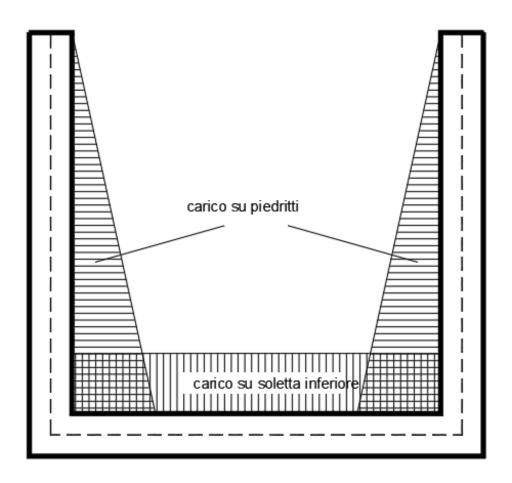
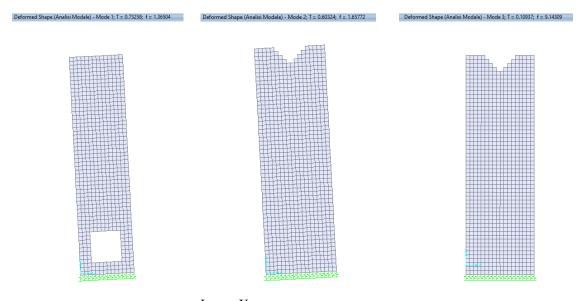


Figura 10- carico dell'acqua su soletta inferiore

9.3.2 Spinta del terreno sulle pareti


In questo caso specifico, data la presenza di paratie ai lati del pozzetto, il carico del terreno sui piedritti è nullo.

9.3.3 Azione Termica

Si applica ai piedritti una variazione termica di +/-15°C.

9.3.4 Azione sismica inerziale

Per il calcolo dell'azione sismica si utilizza un'analisi modale con spettro di risposta. Si riportano di seguito i modi di vibrare ottenuti dall'analisi:

 $Lungo\ Y \hspace{1.5cm} Lungo\ X \hspace{1.5cm} Lungo\ Z$

Mode	T (s)	Fr (1/s)	UX	UY	UZ	Sum UX	Sum UY	Sum UZ	RX	RY	RZ	Sum RX	Sum RY	Sum RZ
1	0.733	1.37	0.000	0.685	0.000	0.000	0.685	0.000	0.315	0.000	0.000	0.315	0.000	0.000
2	0.603	1.66	0.676	0.000	0.000	0.676	0.685	0.000	0.000	0.324	0.000	0.315	0.324	0.000
3	0.109	9.14	0.000	0.000	1.000	0.676	0.685	1.000	0.000	0.000	0.000	0.315	0.324	0.000
4	0.028	35.69	0.000	0.215	0.000	0.676	0.900	1.000	0.468	0.000	0.000	0.783	0.324	0.000
5	0.023	43.56	0.241	0.000	0.000	0.917	0.900	1.000	0.000	0.501	0.000	0.783	0.825	0.000
6	0.012	80.54	0.000	0.061	0.000	0.917	0.961	1.000	0.133	0.000	0.001	0.916	0.825	0.001
7	0.011	88.98	0.067	0.000	0.000	0.984	0.961	1.000	0.000	0.141	0.000	0.916	0.966	0.001
8	0.009	109.71	0.000	0.000	0.000	0.984	0.961	1.000	0.000	0.001	0.000	0.916	0.967	0.001
9	0.009	110.96	0.000	0.021	0.000	0.984	0.982	1.000	0.045	0.000	0.000	0.961	0.967	0.001
10	0.008	119.61	0.007	0.000	0.000	0.991	0.982	1.000	0.000	0.014	0.000	0.961	0.981	0.001
11	0.008	124.53	0.000	0.000	0.000	0.991	0.982	1.000	0.000	0.000	0.333	0.961	0.981	0.335
12	0.008	130.13	0.000	0.008	0.000	0.991	0.990	1.000	0.018	0.000	0.008	0.979	0.981	0.343
13	0.007	138.22	0.000	0.000	0.000	0.991	0.990	1.000	0.000	0.000	0.229	0.979	0.981	0.572
14	0.007	140.79	0.000	0.000	0.000	0.991	0.990	1.000	0.000	0.000	0.397	0.979	0.981	0.969
15	0.007	145.32	0.000	0.000	0.000	0.991	0.990	1.000	0.000	0.000	0.000	0.979	0.981	0.969
16	0.007	147.87	0.000	0.000	0.000	0.991	0.990	1.000	0.000	0.000	0.000	0.979	0.981	0.969
17	0.007	153.00	0.000	0.003	0.000	0.991	0.993	1.000	0.006	0.000	0.009	0.985	0.981	0.978
18	0.006	156.68	0.000	0.000	0.000	0.991	0.993	1.000	0.001	0.000	0.015	0.986	0.981	0.992
19	0.006	165.41	0.002	0.000	0.000	0.993	0.993	1.000	0.000	0.004	0.000	0.986	0.985	0.992
20	0.006	166.96	0.001	0.000	0.000	0.994	0.993	1.000	0.000	0.002	0.000	0.986	0.987	0.992

9.4 DIAGRAMMI DELLE SOLLECITAZIONI

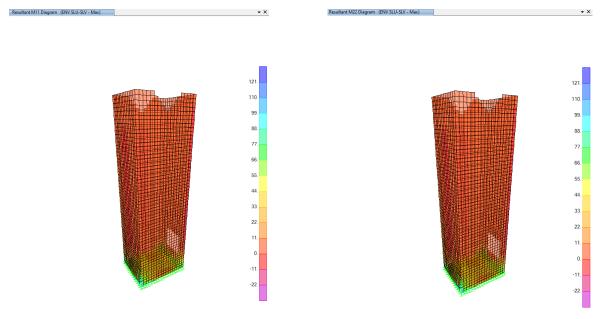


Figura 11- Inviluppo momenti flettenti M11 M22 SLU-SLV

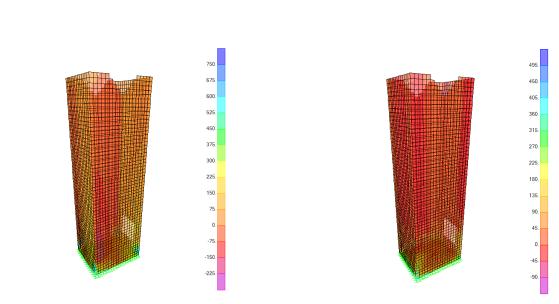


Figura 12- Inviluppo sforzi taglianti V13 V23 SLU-SLV

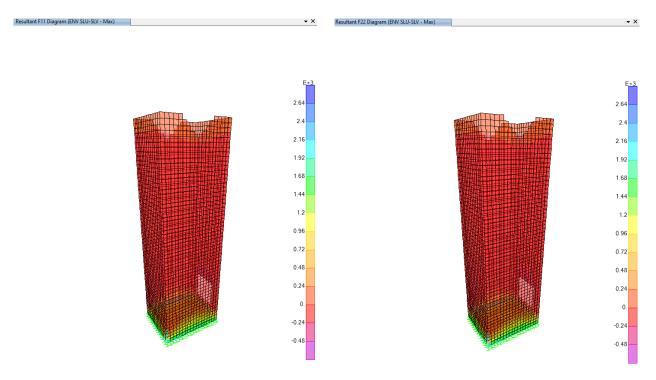


Figura 13- Inviluppo azioni assiali F11 F22 SLU-SLV

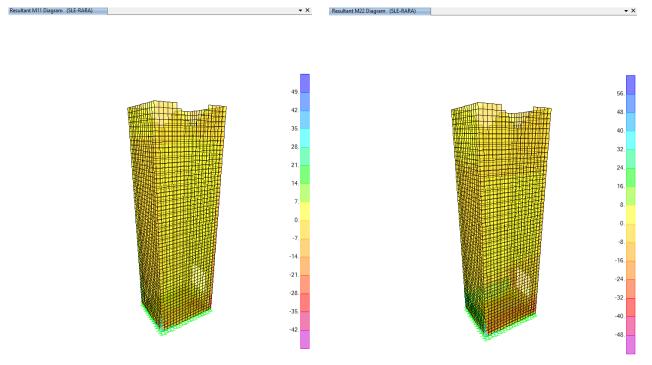


Figura 14- Inviluppo momenti flettenti M11 M22 SLE rara

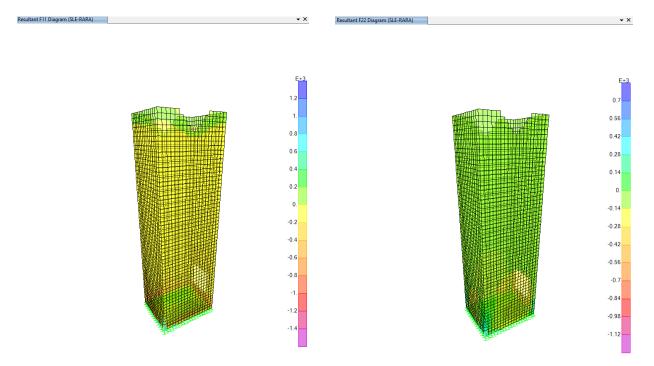


Figura 15- inviluppo azioni assiali F11 F22 sle rara

9.5 VERIFICA DELLE SEZIONI IN C.A.

9.5.1 Verifica piedritti spessore 40 cm

Si verificano i piedritti per le sollecitazioni riportate di seguito. Le section cut utilizzate si trovano ad una quota di 0,75m dalla base della fondazione.

- ➤ P [kN]
- ∨ [kN]
- ➤ M [kNm]

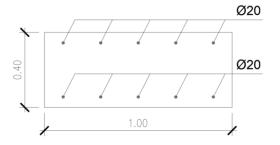

TABLE: Sed	TABLE: Section Cut Forces - Design												
SectionC -T	OutputCas -T	CaseTyp ▼	StepTy ▼	P 🔽	V2 🔽	V3 🔽	M2 🔽	М3 🔽					
b1	ENV SLU-SLV	Combination	Max	12.769	132.64	33.758	73.4721	4.8832					
b1	ENV SLU-SLV	Combination	Min	-512.125	-14.341	-183.194	-51.6459	-13.2779					
b2	ENV SLU-SLV	Combination	Max	-77.074	154.204	240.262	36.7562	6.1887					
b2	ENV SLU-SLV	Combination	Min	-438.917	-28.376	-32.571	-44.1373	-15.3968					
b3	ENV SLU-SLV	Combination	Max	-52.638	114.54	24.756	2.4502	35.2798					
b3	ENV SLU-SLV	Combination	Min	-90.393	-145.071	-24.454	-2.4789	-30.797					
b4	ENV SLU-SLV	Combination	Max	19.239	282.694	20.289	0.3844	39.6136					
b4	ENV SLU-SLV	Combination	Min	-369.364	-109.701	-20.055	-0.3774	-56.203					

TABLE: Sec	TABLE: Section Cut Forces - Design												
SectionC -T	OutputCas -T	CaseTyp▼	StepTy ▼	P 🔽	V2 🔻	V3 🔽	M2 🔽	М3 🔽					
b1	SLE-QP	Combination		-275.711	63.134	-15.593	-15.1775	-5.7946					
b1	SLE-QP2	Combination		-100.746	14.141	-87.91	26.5284	0.2591					
b2	SLE-QP	Combination		-254.625	71.779	25.956	12.7226	-6.6685					
b2	SLE-QP2	Combination		-134.011	10.919	116.9	-14.2419	0.5267					
b3	SLE-QP	Combination		-65.628	32.752	0.151	-0.0143	-10.6363					
b3	SLE-QP2	Combination		-65.756	-53.785	0.151	-0.0143	11.3893					
b4	SLE-QP	Combination		-204.113	-5.69	0.117	0.0035	11.6858					
b4	SLE-QP2	Combination		-74.578	125.108	0.117	0.0035	-20.2531					

TABLE: See	TABLE: Section Cut Forces - Design												
SectionC -T	OutputCas -T	CaseTyp▼	StepTy ₁ ▼	P 🔽	V2 🔽	V3 🔽	M2 🔽	М3 🔽					
b1	SLE-FREQ	Combination		-275.711	63.134	-15.593	-15.1775	-5.7946					
b1	SLE-FREQ2	Combination		-100.746	14.141	-87.91	26.5284	0.2591					
b2	SLE-FREQ	Combination		-254.625	71.779	25.956	12.7226	-6.6685					
b2	SLE-FREQ2	Combination		-134.011	10.919	116.9	-14.2419	0.5267					
b3	SLE-FREQ	Combination		-65.628	32.752	0.151	-0.0143	-10.6363					
b3	SLE-FREQ2	Combination		-65.756	-53.785	0.151	-0.0143	11.3893					
b4	SLE-FREQ	Combination		-204.113	-5.69	0.117	0.0035	11.6858					
b4	SLE-FREQ2	Combination		-74.578	125.108	0.117	0.0035	-20.2531					

TABLE: Sec	ction Cut Force	es - Design						
SectionC -T	OutputCas -T	CaseTyp▼	StepTy ₁	P 🔽	V2 🔽	V3 🔽	M2 🔽	M3 🔽
b1	SLE-RARA	Combination		-293.207	68.033	-8.361	-19.3481	-6.4
b1	SLE-RARA2	Combination		-83.25	9.241	-95.142	30.699	0.8644
b2	SLE-RARA	Combination		-266.687	77.865	16.861	15.419	-7.388
b2	SLE-RARA2	Combination		-121.95	4.833	125.995	-16.9384	1.2462
b3	SLE-RARA	Combination		-65.615	41.406	0.151	-0.0143	-12.8389
b3	SLE-RARA2	Combination		-65.769	-62.439	0.151	-0.0143	13.5918
b4	SLE-RARA	Combination		-217.066	-18.77	0.117	0.0035	14.8797
b4	SLE-RARA2	Combination		-61.625	138.188	0.117	0.0035	-23.447

Strada Statale 4 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

Verifiche a pressoflessione

	GEOME	TRIA				VERIFIC	A A PRESSOFLESS	IONE			FS
Ele	ento	b	h	M _{ed} ,	Fe	erri	A	As	С	M_{Rd}	rs
Liem	iento	[mm]	[mm]	[kNm]	n	φ	Armature	[mm²]	[mm]	[kNm]	[-]
Piedritti	Lato Interno	1000	400	72.5	5	20	ф20/20	1570.80	60	201.5	2.74
Plearitti	Lato Terreno	1000	400	73.5	5	20	ф20/20	1570.80	60	201.5	2.74

Verifiche elementi non armati a taglio

	Geometrie				Armatura long. tes	a	Sollecitazioni di	TAGLIO RESISTENTE ELEMENTI SENZA ARMATURA A TAGLIO						
Elemento	b _w	н	c	_	ø	As	V _{sd}			f _{cK}		V _{Rdmin}	V _{Rct}	FS
	(mm)	(mm)	(mm)	"	[mm]	(mm²)	(KN)	Pi	ĸ	(Mpa)	V _{min}	(KN)	(KN)	
Piedritti	1000	400	60	5	20	1570	283.00	0.005	1.77	33.2	0.47	161.05	179.09	0.63

Verifiche elementi armati a taglio

		Armature	trasversali		Inclina	zione Bielle Con	npresse	Taglio Cor	npressione	Taglio Tr				
Elemento		Ø	р	A_{sw}	-4-0	$\sigma_{\rm cp}$		£ (M)	V _{Rcd} (KN)	V_{Rsd}	37	FS		
	n _b	n _b	n _b	Ø	(mm)	(mm2)	ctg θ	(Mpa)	ας	f'cd (Mpa)	V _{Red} (KN)	(KN)	Vrd	
Piedritti	5	12	400	565.49	2.5	0	1	18.81	992.57	423.19	423.19	1.50		

Verifiche tensionali - rara

Verifica delle tensioni	I_p	N _{Ed}	\mathbf{M}_{ed}	0,6 f _{ck}	FS	σ_{f}	0,8 f _{yk}	FS
vernica delle telisioni	[-]	[kN]	[kNm]	[Mpa]	[-]	[Mpa]	[Mpa]	[-]
combinazione rara	piedritti	60.0	31.0	19.9	11.07	65.0	360.0	5.54

Verifiche tensionali – quasi permanente

Verifica delle tensioni	I _p	N_{Ed}	\mathbf{M}_{ed}	0,45 f _{ck}	FS
vernica dene tensioni	[-]	[kN]	[kNm]	[Mpa]	[-]
combinazione quasi	piedritti	65.0	27.0	14.9	9.96

Verifiche a fessurazione

Verifica a fessurazione	I _p	N _{Ed}	\mathbf{M}_{ed}	Kt	$h_{c.eff}$	peff	_	4000	Δs,max	$\mathbf{w}_{\mathbf{f}}$	$\mathbf{w_1}$	FS
vernica a ressurazione	[-]	[kN]	[kNm]	Kt	mm	pen	ε _{sm}	феа	mm	[mm]	[mm]	[-]
combinazione quasi	piedritti	65.0	27.0	0.4	100.7	0.02	0.0002	20.0	387.9	0.107	0.200	1.86
combinazione frequente	piedritti	65.0	27.0	0.4	100.7	0.02	0.0002	20.0	387.9	0.107	0.300	2.79

9.5.2 Verifica soletta di fondazione

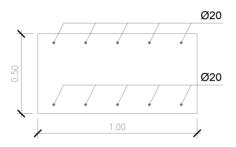

TABLE: Sed	TABLE: Section Cut Forces - Design												
SectionC -T	OutputCas -T	CaseTyp▼	StepTy ₁	P 🔽	V2 🔽	V3 🔽	M2 🔽	М3 🔽					
F1	ENV SLU-SLV	Combination	Max	546.781	61.604	9.593	1.4536	71.7038					
F1	ENV SLU-SLV	Combination	Min	-398.675	8.173	-9.487	-1.4371	-45.7953					
F2	ENV SLU-SLV	Combination	Max	12.29	141.627	118.499	1.2412	6.8387					
F2	ENV SLU-SLV	Combination	Min	-154.494	83.199	-460.396	-16.5164	0.3349					
F3	ENV SLU-SLV	Combination	Max	251.862	86.077	13.359	1.4547	73.8273					
F3	ENV SLU-SLV	Combination	Min	-610.472	51.949	-13.211	-1.471	-50.7814					
F4	ENV SLU-SLV	Combination	Max	613.641	15.979	28.54	5.0794	43.744					
F4	ENV SLU-SLV	Combination	Min	-997.719	-1.275	-28.254	-5.028	-28.432					

TABLE: See	ction Cut Force	es - Design						
SectionC -	OutputCas -T	CaseTyp▼	StepTy ▼	P 🔽	V2 🔽	V3 🔽	M2 🔽	M3 🔽
F1	SLE-QP	Combination		-104.562	18.962	0.053	0.0083	29.7861
F1	SLE-QP2	Combination		210.589	36.773	0.053	0.0083	-9.3803
F2	SLE-QP	Combination		-75.354	96.736	-20.253	-8.0511	3.5868
F2	SLE-QP2	Combination		-19.76	77.26	-213.218	-2.1319	2.5729
F3	SLE-QP	Combination		21.915	66.295	0.074	-0.0081	-13.4038
F3	SLE-QP2	Combination		-265.529	61.951	0.074	-0.0081	28.1324
F4	SLE-QP	Combination		-393.288	7.172	0.143	0.0257	19.9294
F4	SLE-QP2	Combination		143.832	9.709	0.143	0.0257	-4.1293

TABLE: Sec	ction Cut Force	es - Design						
SectionC -	OutputCas -T	CaseTyp▼	StepTy ▼	P 🔽	V2 🔽	V3 🔽	M2 🔽	М3 🔽
F1	SLE-FREQ	Combination		-104.562	18.962	0.053	0.0083	29.7861
F1	SLE-FREQ2	Combination		210.589	36.773	0.053	0.0083	-9.3803
F2	SLE-FREQ	Combination		-75.354	96.736	-20.253	-8.0511	3.5868
F2	SLE-FREQ2	Combination		-19.76	77.26	-213.218	-2.1319	2.5729
F3	SLE-FREQ	Combination		21.915	66.295	0.074	-0.0081	-13.4038
F3	SLE-FREQ2	Combination		-265.529	61.951	0.074	-0.0081	28.1324
F4	SLE-FREQ	Combination		-393.288	7.172	0.143	0.0257	19.9294
F4	SLE-FREQ2	Combination		143.832	9.709	0.143	0.0257	-4.1293

TABLE: Sec	ction Cut Force	es - Design						
SectionC -T	OutputCas -T	CaseTyp▼	StepTy ▼	P 🔽	V2 🔽	V3 🔽	M2 🔽	М3 🔽
F1	SLE-RARA	Combination		-136.078	17.181	0.053	0.0083	33.7028
F1	SLE-RARA2	Combination		242.105	38.554	0.053	0.0083	-13.2969
F2	SLE-RARA	Combination		-80.914	98.683	-0.957	-8.643	3.6882
F2	SLE-RARA2	Combination		-14.2	75.312	-232.515	-1.54	2.4715
F3	SLE-RARA	Combination		50.66	66.73	0.074	-0.0081	-17.5575
F3	SLE-RARA2	Combination		-294.274	61.516	0.074	-0.0081	32.286
F4	SLE-RARA	Combination		-447	6.918	0.143	0.0257	22.3352
F4	SLE-RARA2	Combination		197.544	9.963	0.143	0.0257	-6.5352

Verifiche a pressoflessione

vermene a pressenes	310110											
	GEOMETRIA						VERIFICA A PRE					
Elemento		b	h	M _{ed} ,	Fe	Ferri As c d		M _{Rd}	FS			
		[mm]	[mm]	[kNm]	n	φ	Armature	[mm ²]	[mm]	[mm]	[kNm]	[-]
Superiore		4000		74.0	5	20 φ20/20	1570.80	60	440	252.0	2.55	
Fondazione	Inferiore	1000	500	74.0	5	20	ф20/20	1570.80	60	440	263.0	3.55

Verifiche elementi non armati a taglio

verillene elementi noi	i aiiiiali a l	agiio											
		Geometrie	Armatura long. tesa Soilecitazioni di TAGLIO RESISTENTE ELEMENTI SENZA ARMATURA A TAGLIO CALONO.						10				
Elemento	b _w	н	с	_	ø	As	V _{sd}				V _{Rdmin}	V _{Rct}	FS
	(mm)	(mm)	(mm)	"	[mm]	(mm²)	(KN)	Pi	, K	V _{min}	(KN)	(KN)	
Fondazione	1000	500	60	5	20	1570	460.00	0.004	1.67	0.44	192.22	201.51	0.44

Verifiche elementi armati a taglio

_		Armature	nature trasversali Inclinazione Bielle Compresse Tagli					Taglio Con	npressione	Taglio Trazione														
Elemento	$n_{\rm b}$	ø	p	A_{sw}	-4-0	$\sigma_{\rm cp}$		E (Mars)	V _{Rcd} (KN)	V_{Rsd}	FS													
		$n_{\rm b}$	n _b	\mathbf{n}_{b}	n _b	\mathbf{n}_{b}	\mathbf{n}_{b}	$\mathbf{n_b}$	$\mathbf{n_b}$	$\mathbf{n_b}$	n_b	n _b	$\mathbf{n_b}$	n_b	n_b	n_b	v	(mm)	(mm2)	ctg θ	(Mpa)	αc	f'cd (Mpa)	V _{Red} (KIV)
Fondazione	5	12	400	565.49	2.5	0	1	18.81	1284.50	547.66	1.19													

Verifiche tensionali - rara

Verifica delle tensioni	I_p	N _{Ed}	\mathbf{M}_{ed}	$\sigma_{\rm c}$	0,6 f _{ck}	FS	σ_{f}	0,8 f _{yk}	FS
	[-]	[kN]	[kNm]	[Mpa]	[Mpa]	[-]	[Mpa]	[Mpa]	[-]
combinazione rara	fondazione	0.0	34.0	1.3	19.9	15.32	55.0	360.0	6.55

Verifiche tensionali – quasi permanente

Verifica delle tensioni	I_p	N _{Ed}	\mathbf{M}_{ed}	$\sigma_{\rm c}$	0,45 f _{ck}	FS
vernica delle tensioni	[-]	[kN]	[kNm]	[Mpa]	[Mpa]	[-]
combinazione quasi	fondazione	0.0	30.0	1.1	14.9	13.58

Verifiche a fessurazione

Verifica a fessurazione	I _p	N _{Ed}	\mathbf{M}_{ed}	174	$h_{c,eff}$	peff	5 1000	∆s,max	$\mathbf{w}_{\mathbf{f}}$	\mathbf{w}_{1}	FS	
vernica a fessurazione	[-]	[kN]	[kNm]	Kt	mm	pen	ε _{sm}	феа	mm	[mm]	[mm]	[-]
combinazione quasi	fondazione	0.0	30.0	0.4	128.9	0.02	0.0001	20.0	355.9	0.083	0.200	2.41
combinazione frequente	fondazione	0.0	30.0	0.4	128.9	0.02	0.0001	20.0	355.9	0.083	0.300	3.62

9.6 ARMATURA

ARMATURA POZZETTO								
golette	nodo piedritto	Ø20/20 inf Ø20/20 sup						
soletta inferiore	1	\varnothing 20/20 sup \varnothing 20/20 inf						
	campata	Ø20/20 sup						
	nodo soletta	Ø20/20 inf						
piedritti	inf	Ø20/20 sup						
	nodo soletta	Ø20/20 inf						
	inf	\emptyset 20/20 sup						

9.6.1 Incidenza armature

INCIDENZA (Kg/m³)						
soletta inferiore	100					
piedritti	125					

9.7 VERIFICA FONDAZIONE

9.7.1 Verifica portanza

Si riporta di seguito la verifica di portanza per la combinazione più sfavorevole che risulta essere la "GEO-SIS". A vantaggio di sicurezza si riporta inoltre la verifica di portanza per l'inviluppo SLU-STR. Per ottenere gli scarichi a base fondazione si sono estrapolate le reaction dei nodi di fondazione con i point spring:

- > Per il carico verticale si è effettuata una sommatoria delle reazioni verticali
- ➤ Per il carico orizzontale si è effettuata una sommatoria delle reazioni orizzontali
- ➤ Per il momento si è calcolato il momento provocato da ciascuna reazione verticale rispetto al baricentro della fondazione e si è poi fatta la somma algebrica dei momenti per ottenere il valore complessivo, sia con le eccentricità in X che con le eccentricità in Y

GEO-SIS

	Risultante Base Plinto										
Ntot	Ntot Fx Fy My Mx										
kN	kN	kN	kNm	kNm							
5486 338 74 546 -14											

ENV SLU-STR

Risultante Base Plinto						
Ntot Fx Fy My Mx						
kN	kN	kNm	kNm			
6634 338 74 867 -11						

Per la verifica di portanza verticale si sono adottate le formulazioni di Brinch Hansen

Condizioni Drenate

$$egin{aligned} q_{lim} &= rac{1}{2} \gamma' \, B' \, N_\gamma \, i_\gamma \, s_\gamma \, b_\gamma \, d_\gamma \, g_\gamma + c' \, N_c \, i_c \, s_c \, b_c \, d_c \, g_c + q' \, N_q \, i_q \, s_q \, b_q \, d_q \, g_q \ N_\gamma &= 2 \, (N_q + 1) an \phi' & N_c &= rac{N_q - 1}{ an \phi'} & N_q &= rac{1 + \sin \phi'}{1 - \sin \phi'} e^{\pi an \phi'} \end{aligned}$$

Condizioni non Drenate

$$q_{lim} = c_u \ N_c^\circ \ i_c^\circ \ s_c^\circ \ b_c^\circ \ d_c^\circ \ g_c^\circ + t_q^\circ + q$$

$$N_c^\circ=2+\pipprox5,14$$
 $N_\gamma^\circ=-2\sin\omega$ $t_g^\circ=rac{1}{2}\gamma B'N_\gamma^\circ s_\gamma^\circ$ $g_c^\circ=1-rac{2\,\omega}{\pi+2}$

Con riduzione delle dimensioni della fondazione per carichi eccentrici secondo le formulazioni:

$$B' = B - 2\,e_B = B - 2rac{M_B}{N}$$
 $L' = L - 2\,e_L = L - 2rac{M_L}{N}$

$$L'=L-2\,e_L=L-2rac{M_L}{N}$$

Che presenta i seguenti coefficienti correttivi:

	Condizioni Drenate						
Coeff. Correttivi	γ	γ q					
Inclinazione del carico							
$m=rac{2+rac{B}{L}}{1+rac{B}{L}}$	$i_{\gamma} = \left(1 - rac{ H }{N + B'L'c' an\phi'} ight)^{m+1}$	$i_q = \left(1 - rac{ H }{N + B' \; L' \; c' \; an \phi'} ight)^m$	$i_c = i_q - rac{1-i_q}{N_c an \phi'}$				
$ H =\sqrt{{H_B}^2+{H_L}^2}$							
Fattori di forma	$s_{\gamma}=s_{q}=1+0$	$s_{\gamma}=s_{q}=1+0,1rac{1+\sin\phi'}{1-\sin\phi'}rac{B'}{L'}$					
Fattori di inclinazione della base della fondazione	$b_q=b_\gamma=0$	$b_c = b_q - rac{1 - b_q}{N_c \; an \phi'}$					
Fattori di inclinazione del piano campagna	$g_{\gamma}=g_{q}=$	$(1-\tan\omega)^2$	$g_c = g_q - rac{1-g_q}{N_c an \phi'}$				

Condizioni non Drenate					
Coeff. Correttivi	γ	q	c		
Inclinazione del carico					
$m=rac{2+rac{B'}{L'}}{1+rac{B'}{L'}}$	-	-	$i_c^\circ = 1 - rac{m H }{B'L'c_uN_c}$		
$ H =\sqrt{{H_B}^2+{H_L}^2}$					
Fattori di forma	-	-	$s_c^\circ = 1+0, 2rac{B'}{L'}$		
Fattori di inclinazione					
della base della	-	-	$b_c^\circ = 1 - rac{2lpha}{\pi+2}$		
fondazione					
Fattori di inclinazione del piano campagna	$g_{\gamma}=g_{q}=$	$(1-\tan\omega)^2$	$g_c = g_q - rac{1-g_q}{N_c an \phi'}$		

Per il meccanismo di rottura a punzonamento viene definito un parametro, l'indice di rigidezza, la cui espressione è la seguente:

$$Ir = \frac{G}{c + \sigma t g \varphi}$$

Dove G è il modulo di taglio del terreno a basse deformazioni e σ è la pressione efficace media a profondità "D+B/2". I coefficienti correttivi del punzonamento hanno la seguente espressione:

$$\varPsi_q = exp\left[\left(0.6\frac{B}{L} - 4.4\right)tg\emptyset + \frac{3.07\cdot sen\phi \cdot Log_{10}(Ir)}{1 + sen\phi}\right] \quad \text{per} \quad \Phi > 0 \quad ; \quad \varPsi_q = 1 \quad \text{per} \; \Phi = 0$$

$$\Psi_c = \Psi_q - \frac{1 - \Psi_q}{N_q \cdot tg\emptyset}$$
 per $\Phi > 0$; $\Psi_c = 0.32 + 0.12 \frac{B}{l} + 0.6 \cdot Log_{10} \cdot lr$ per $\Phi = 0$

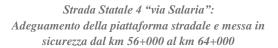
$$\Psi_{\gamma} = \Psi_{q} \quad \text{per} \quad \Phi > 0 \quad ; \quad \Psi_{\gamma} = 1 \quad \text{per} \; \Phi = 0$$

I fattori si devono applicare solo nel caso in cui Ir<Ir,crit.

Di seguito si allegano le verifiche effettuate in condizioni drenate per la combinazione GEO-SIS:

Load	FX (kN)	FY (kN)	FZ (kN)	MX (kNm)	MY (kNm)
GEO-SIS	74.00	338.00	5486.00	14.00	546.00
				l	I
Larghezza Fondazione)		В	3.80	m
Profondità piano di posa			D	4.10	m
Lunghezza Fondazione	Э		L	4.70	m
Angolo di attrito			Ф	28.00	0
Angolo di attrito in radi	anti		Ф	0.49	rad
Coesione			C'	10.00	kN/m²
Peso per unità di volun	ne del terre	no	γ	19.00	kN/m³
Valore Nq			Nq	14	.72
Valore Nc			Nc	25	.80
Valore Ng			Νγ	16	.72
Condizioni non drenate	e?			No	
Momento X nel baricer	ntro del plini	to	Mx	14.00	kNm
Momento Y nel baricer			My	546.00	kNm
Eccentricità del carico			eB	0.00	m
Eccentricità del carico in L			eL	0.10	m
Dimensione della fonda		etta B'	B'	3.79	m
Dimensione della fonda			L'	4.50	m
				l	
Per fondazioni quadr	ate - fattor	e di correzione	e di forma		
Fattore primo membro			Sc	1.	48
Fattore secondo memb	oro		Sq	1.45	
Fattore terzo membro			Sγ	θγ 0.60	
Fattori di inclinazione	e del carico)			
Coefficiente mB			mB	1.	54
Coefficiente mL			mL	1.46	
Coefficiente m			m	1.	46
Fattore primo membro			ic	0.	91
Fattore secondo memb	oro		iq	0.	91
Fattore terzo membro			iγ	0.	86
Profondità della falda d	lann (>0 v	verso il hasso)	d	0.00	m
Peso per unità di volume fino a D				19.00	kN/m³
Peso per unità di volume dopo D			γ 1	9.00	kN/m³
Coefficiente del terzo r	•	la formula	γ ₂ γ ₂ Β	34.20	kN/m²
Carico del terreno sovr			γ ₂ Β q	77.90	kN/m²
Canco del terreno soviastante			Ч		1

VERIFICHE - CARICO LIMITE			
Carico limite	qlim	2009.62	kN/m²
Carico limite come forza	Qlim	34325.49	kN
Carico di esercizio	Qed	5486.00	kN
Fattore di sicurezza (γr=2,3)	FS	2.72	


VERIFICHE - CARICO LIMITE (PUNZONAMENTO)					
Modulo elastico del terreno	Е	150	Мра		
Coefficiente di Poisson	٧	0.3			
Modulo di taglio del terreno	G	57.69 MPa			
Pressione efficace media alla profondità D+B/2	σ	95.00	kPa		
Indice per la rottura a punzonamento	lr 953.40				
Indice di rigidezza per punzonamento critico	Ir,crit 64.56				
Meccanismo di punzonamento plausibile?	No				

VERIFICHE - SCORRIMENTO			
Resistenza allo scorrimento	Fd	2916.96	kN
Azione per lo scorrimento	Fe	338.00	kN
Fattore di sicurezza (γr=1,1)	FS	7.	85

Di seguito si allegano le verifiche effettuate in condizioni non drenate per la combinazione GEO-SIS:

Load	FX (kN)	FY (kN)	FZ (kN)	MX (kNm)	MY (kNm)
GEO-SIS	74.00	338.00	5486.00	14.00	546.00
	·				
Larghezza Fonda	azione		В	3.80	m
Profondità piano	di posa		D	4.10	m
Lunghezza Fondazione			L	4.70	m
Angolo di attrito			Ф	28.00	0
Angolo di attrito i	n radianti		Ф	0.49	rad
Coesione non dre	enata		cu	150.00	kN/m²
Peso per unità di	volume del te	erreno	γ	19.00	kN/m³
Valore Nq			Nq	1.0	00
Valore Nc			Nc	5.	14
Valore Ng			Νγ	0.0	00
Condizioni non di	renate?			Si	
Momento X nel baricentro del plinto			Mx	14.00	kNm
Momento Y nel baricentro del plinto			My	546.00	kNm
Eccentricità del carico in B			eВ	0.00	m
Eccentricità del c			eL	0.10	m
Dimensione della			B'	3.79	m
Dimensione della	fondazione d	corretta L'	L'	4.50	m
Per fondazioni d	nuadrate - fat	tore di correzione	di forma		
Fattore primo me	-	tore ar corregion	Sc	1.	17
Fattore secondo			Sq	1.00	
Fattore terzo mer			Sγ	1.00	
			ı		
Fattori di inclina	zione del ca	rico			
Coefficiente mB			mB	1.9	54
Coefficiente mL			mL	1.46	
Coefficiente m			m	1.46	
Fattore primo me	embro		ic	0.96	
Fattore secondo membro			iq	1.00	
Fattore terzo membro			iγ	1.0	00
D (193) 1 11 (0 "11 \		0.00	<u> </u>
Profondità della falda da p.p. (>0 verso il basso)			d	0.00	m
Peso per unità di volume fino a D			Y 1	19.00	kN/m³
Peso per unità di volume dopo D			Y 2	9.00	kN/m³
Coefficiente del te	erzo membro	della formula	γ ₂ Β	34.20	kN/m²
Carico del terreno	o sovrastante		q	77.90	kN/m²

VERIFICHE - CARICO LIMITE			
Carico limite	qlim	945.21	kN/m²
Carico limite come forza	Qlim	16144.73	kN
Carico di esercizio	Qed	5486.00	kN
Fattore di sicurezza (γr=2,3)	FS	1.28	

VERIFICHE - CARICO LIMITE (PUNZONAMENTO)					
Modulo elastico del terreno	Е	150	Мра		
Coefficiente di Poisson	٧	0.3			
Modulo di taglio del terreno	G	57.69 MPa			
Pressione efficace media alla profondità D+B/2 σ 95.00		kPa			
Indice per la rottura a punzonamento	lr 287.72				
Indice di rigidezza per punzonamento critico	Ir,crit 64.56				
Meccanismo di punzonamento plausibile?	No				

VERIFICHE - SCORRIMENTO			
Resistenza allo scorrimento	Fd	2916.96	kN
Azione per lo scorrimento	Fe	338.00	kN
Fattore di sicurezza (γr=1,1)	FS	7.85	

Di seguito si allegano le verifiche effettuate in condizioni drenate per inviluppo SLU-SLV:

Load	FX (kN)	FY (kN)	FZ (kN)	MX (kNm)	MY (kNm)
ENV SLU/SLV	74.00	338.00	6634.00	11.00	867.00
	'				•
Larghezza Fondazione			В	3.80	m
Profondità piano di posa			D	4.10	m
Lunghezza Fondazione)		L	4.70	m
Angolo di attrito			Ф	28.00	0
Angolo di attrito in radia	anti		Ф	0.49	rad
Coesione			c'	10.00	kN/m²
Peso per unità di volum	ne del terre	eno	γ	19.00	kN/m³
Valore Nq			Nq	14.	72
Valore Nc			Nc	25.	80
Valore Ng			Νγ	16.	72
Condizioni non drenate	?			No	
Momento X nel baricen	tro del plin	to	Mx	11.00	kNm
Momento Y nel baricen	-		My	867.00	kNm
Eccentricità del carico i	n B		eВ	0.00	m
Eccentricità del carico i	Eccentricità del carico in L			0.13	m
Dimensione della fonda	azione corr	etta B'	B'	3.80	m
Dimensione della fonda	azione corr	etta L'	L'	4.44	m
Per fondazioni quadra	ate - fattor	e di correzione			
Fattore primo membro			Sc	1.49	
Fattore secondo memb	ro		Sq	1.45	
Fattore terzo membro			Sγ	0.6	<u> </u>
Fattori di inclinazione	del carico	<u> </u>			
Coefficiente mB		-	mB	1.5	54
Coefficiente mL			mL	1.4	
Coefficiente m			m	1.46	
Fattore primo membro			ic	0.92	
Fattore secondo memb	ro		iq	0.9	93
Fattore terzo membro	Fattore terzo membro			0.8	38
			d		T
	Profondità della falda da p.p. (>0 verso il basso)			0.00	m
Peso per unità di volume fino a D		Y 1	19.00	kN/m³	
Peso per unità di volum	Peso per unità di volume dopo D			9.00	kN/m³
Coefficiente del terzo n	nembro del	la formula	γ ₂ Β	34.20	kN/m²
Carico del terreno sovr	astante		q	77.90	kN/m²

VERIFICHE - CARICO LIMITE				
Carico limite	qlim	2052.22	kN/m²	
Carico limite come forza	Qlim	34584.09	kN	
Carico di esercizio	Qed	6634.00	kN	
Fattore di sicurezza (γr=2,3)	FS	2.2	27	

VERIFICHE - CARICO LIMITE (PUNZONAMENTO)					
Modulo elastico del terreno E 150 Mpa					
Coefficiente di Poisson	pefficiente di Poisson v 0.3		3		
Modulo di taglio del terreno	G	57.69	MPa		
Pressione efficace media alla profondità D+B/2	σ	95.00	kPa		
Indice per la rottura a punzonamento	lr	953	.40		
Indice di rigidezza per punzonamento critico Ir,crit 63.97					
eccanismo di punzonamento plausibile?					

VERIFICHE - SCORRIMENTO			
Resistenza allo scorrimento	Fd	3527.36	kN
Azione per lo scorrimento	Fe	338.00	kN
Fattore di sicurezza (γr=1,1)	FS	9.4	.9

Di seguito si allegano le verifiche effettuate in condizioni non drenate per inviluppo SLU-SLV:

Load	FX (kN)	FY (kN)	FZ (kN)	MX (kNm)	MY (kNm)
ENV SLU/SLV	74.00	338.00	6634.00	11.00	867.00
		•			
Larghezza Fondazione			В	3.80	m
Profondità piano di posa			D	4.10	m
Lunghezza Fondazione			L	4.70	m
Angolo di attrito			Ф	28.00	0
Angolo di attrito in radia	nti		Ф	0.49	rad
Coesione non drenata			cu	150.00	kN/m²
Peso per unità di volume	e del terreno		γ	19.00	kN/m³
Valore Nq			Nq	1.0	00
Valore Nc			Nc	5.1	14
Valore Ng			Νγ	0.0	00
Condizioni non drenate?)			Si	
Momento X nel baricent	ro del plinto		Mx	11.00	kNm
Momento Y nel baricent	<u> </u>		My	867.00	kNm
Eccentricità del carico in	•		eB	0.00	m
Eccentricità del carico in			eL	0.13	m
Dimensione della fondaz	zione corretta	a B'	B'	3.80	m
Dimensione della fondazione corretta L'			L'	4.44	m
Per fondazioni quadra	e - fattore d	li correzione	di forma		
Fattore primo membro			Sc	1.17	
Fattore secondo membr	0		Sq	1.00	
Fattore terzo membro			Sγ	1.00	
Fattori di inclinazione	del carico				
Coefficiente mB			mB	1.5	54
Coefficiente mL			mL	1.46	
Coefficiente m			m	1.46	
Fattore primo membro			ic	0.96	
Fattore secondo membro		iq	1.00		
Fattore terzo membro			iγ	1.0	00
Profondità della falda da	p.p. (>0 ver	so il basso)	d	0.00	m
Peso per unità di volume fino a D			Y 1	19.00	kN/m³
Peso per unità di volume	e dopo D		γ2	9.00	kN/m³
Coefficiente del terzo me	embro della t	formula	γ ₂ B	34.20	kN/m²
Carico del terreno sovra	stante		q	77.90	kN/m²

VERIFICHE - CARICO LIMITE				
Carico limite	qlim	946.48	kN/m²	
Carico limite come forza	Qlim	15950.15	kN	
Carico di esercizio	Qed	6634.00	kN	
Fattore di sicurezza (γr=2,3)	FS	1.0)5	

VERIFICHE - CARICO LIMITE (PUNZONAMENTO)				
Modulo elastico del terreno	Е	150	Мра	
Coefficiente di Poisson v 0.3			3	
Modulo di taglio del terreno	G	57.69	MPa	
Pressione efficace media alla profondità D+B/2	σ	95.00	kPa	
Indice di rigidezza per la rottura a punzonamento	namento Ir 287.72			
Indice di rigidezza per punzonamento critico Ir,crit 63.97				
Meccanismo di punzonamento plausibile?				

VERIFICHE - SCORRIMENTO			
Resistenza allo scorrimento	Fd	3527.36	kN
Azione per lo scorrimento	Fe	338.00	kN
Fattore di sicurezza (γr=1,1)	FS	9.4	19

10 SCATOLARE 2M X 2M

La dimensione interna è di 2.00m e l'altezza interna pari a 2.00m, con soletta superiore di spessore 0.40m, piedritti di spessore 0.40m e soletta inferiore di spessore 0.40m.

Nel seguito verrà esaminata una striscia di scatolare avente lunghezza di 1.00 m. In figura si riporta schematicamente la geometria dell'opera.

10.1 GEOMETRIA

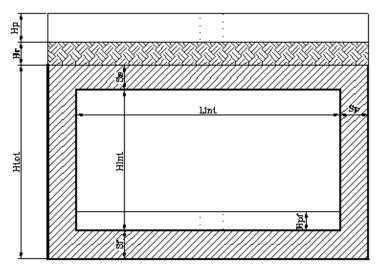


Figura 16- Significato dei simboli

DATI GEOMETRICI				
Grandezza	Simbolo	Valore	U.M.	
larghezza totale scatolare	\mathcal{L}_{tot}	2.80	m	
larghezza utile scatolare	L_{int}	2.00	m	
larghezza interasse	L_{a}	2.40	m	
spessore soletta superiore	S_s	0.40	m	
spessore piedritti	S_p	0.40	m	
spessore fondazione	S_f	0.40	m	
altezza totale scatolare	H_{tot}	2.80	m	
altezza libera scatolare	H_{int}	2.00	m	
spessore pacchetto superiore	$H_{\mathtt{Psup}}$	0.13	m	
spessore ricoprimento superiore	H_{Rsup}	1.70	m	
spessore pacchetto inferiore	$H_{ ext{Pinf}}$		m	
spessore ricoprimento inferiore	H_{Rinf}		m	

10.2 MODELLO DI CALCOLO

Il modello di calcolo attraverso il quale è schematizzata la struttura è quello del telaio chiuso su letto di molle alla Winkler. Il modello considerato per l'analisi è quello di uno scatolare di profondità unitaria (1.00m) soggetto alle azioni da traffico di norma e quelle permanenti. In corrispondenza dei vertici dello scatolare sono state inserite delle zone rigide pari a metà spessore degli elementi.

Il terreno di fondazione è stato modellato utilizzando la schematizzazione alla Winkler con un opportuno coefficiente di sottofondo.

Di seguito si riporta lo schema di calcolo.

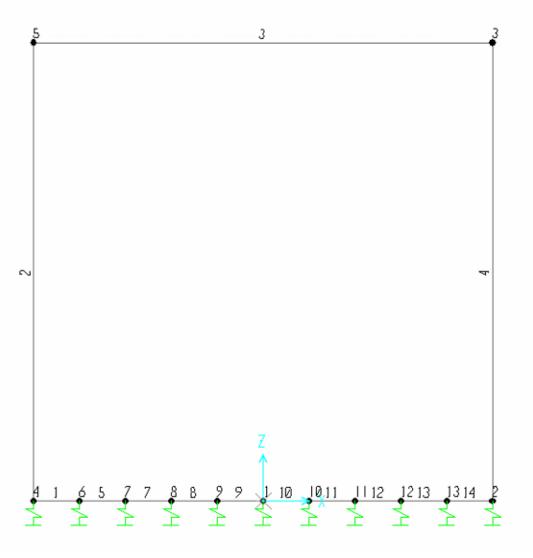
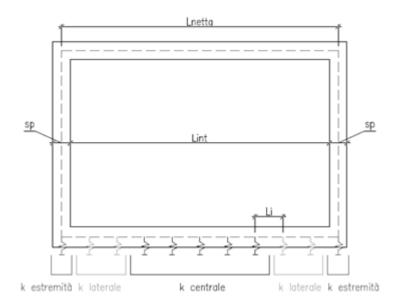


Figura 17- Numerazione aste e nodi



10.2.1 Valutazione della rigidezza delle molle

Si considera lo scatolare appoggiato su di un letto di molle (schematizzazione alla Winkler) assegnando alle aste di fondazione del modello un valore di "linear spring" pari a K=5610~kN/mc in funzione dell'interasse delle molle secondo la seguente formulazione:

 $i = (S_p/2 + L_{int} + S_p/2)/10 \\ = (0.40/2 + 2 + 0.4/2)/10 \\ = 2.40/10 \\ = 0.24 \\ [m]$

$$\label{eq:molecular_model} \begin{split} &\text{Molle centrali} & & k_1 = k * i & [kN/m] \\ &\text{Molle intermedie} & & k_2 = 1.5 * k * i & [kN/m] \\ &\text{Molle laterali} & & k_3 = 2 * k * (i/2 + S_p/2) & [kN/m] \end{split}$$

Scatolare 2x2			
Lint	2.00		
Sp/2	0.20		
Sp/2	0.20		
i	0.24		
K	5610		
k1	1346		
k2	2020		
k3	3590		

10.3 ANALISI DEI CARICHI

10.3.1 Peso proprio della struttura e carichi permanenti portati

Soletta superiore	- Peso proprio	_	10.00 kN/m
		- Totale	10.00 kN/m
	- Peso pacchetto pavimentazione 13 c	m	3.12 kN/m
	- Peso terreno ricoprimento		34.00 kN/m
		- Totale	37.12 kN/m
Soletta inferiore	- Peso proprio	_	10.00 kN/m
		- Totale	10.00 kN/m
	- Peso pacchetto pavimentazione 0 cm	ı	0.00 kN/m
	- Peso terreno ricoprimento	_	0.00 kN/m
		- Totale	0.00 kN/m
<u>Piedritti</u>	- Peso proprio	_	10.00 kN/m
		- Totale	10.00 kN/m

Figura 18- Schema tipo carichi permanenti

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 5.62 kN.

10.3.2 Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente

Per il rinterro si prevede un terreno avente angolo di attrito $\phi = 35^{\circ}$ ed un peso di volume $\gamma = 20 \text{ kN/m}^3$, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dello scatolare, utilizzando la formula Ko=1-sin ϕ ', per cui si ottiene un valore di Ko=0.43. Le spinte in asse soletta superiore ed asse soletta inferiore valgono:

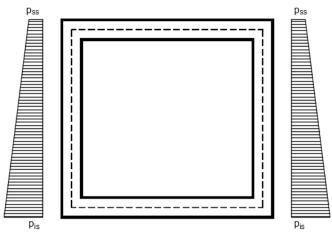
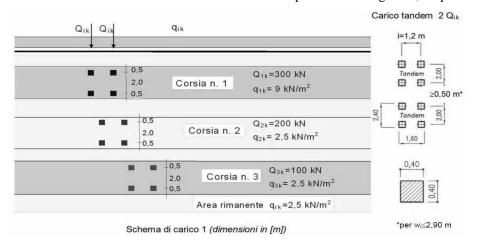
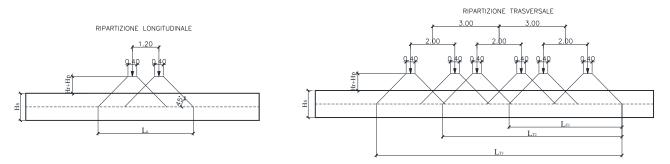



Figura 19– Schema tipo spinta terreno su pareti

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta superiore con valore pari a 2.52 kN ed inferiore con valore pari a 6.96 kN.

10.3.3 Ripartizione dei carichi mobili verticali

Le azioni variabili del traffico definite nello Schema di Carico 1 sono costituite da carichi concentrati e da carichi uniformemente distribuiti. Tale schema è da assumere a riferimento sia per le verifiche globali, sia per le verifiche locali.



Il numero delle colonne di carichi mobili e la loro disposizione sono quelli massimi compatibili con la larghezza della carreggiata considerata.

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m²]
Corsia Numero 1	300	9
Corsia Numero 2	200	2,5
Corsia Numero 3	100	2,5
Altre corsie	0,00	2,50

La ripartizione dei carichi si effettua considerando il carico isolato da 150 kN con impronta quadrata di lato 0.4 m. Per il calcolo dei valori di L_L ed L_T si considera una ripartizione a 35° all'interno degli strati di pavimentazione e rinterro e 45° all'interno della soletta in c.a., di seguito i risultati numeri ed uno schema grafico tipologico rappresentativo.

Il carico è schematizzato da due assi da 150 kN disposti ad interasse di 1.20m.

Si procede al calcolo dei carichi per metro lineare riferiti al baricentro della soletta per i diversi treni di carico.

Si considera una larghezza di ripartizione trasversale e longitudinale come descritto nelle figure precedenti; risulta pertanto:

Il valore del carico distribuito è pari, per la corsia $n^{\circ}1$, a q_{2k} =9.0 kN/mq a cui va sommato il carico q_{11} 32.89 kN/mq applicato su una larghezza di 3.93 m.

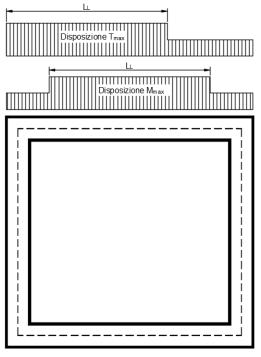


Figura 20- Schema tipo carichi mobili soletta superiore

Per tenere in conto le carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 6.45 kN per i carichi concentrati e valore pari a 1.80 kN per il carico distribuito.

10.3.4 Spinta del sovraccarico sul rilevato q1=20 kN/m

Per il calcolo della spinta dovuta al traffico stradale sul rilevato, si considera un carico tandem distibuito sull'intera lunghezza del mezzo autoarticolato (18.0m) e sui 3.0m di corsia.

$$q_1{=}150\;kN^*\;4/(18.0^*3.0)\;m2{+}9\;kN/m^2=20\;kN/m^2$$

$$q_1 * K_0 = 8.53 kN/m^2$$

a) Spinta sul piedritto sinistro

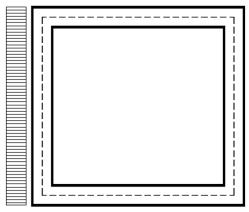


Figura 21- Schema tipo spinta carico accidentale su parete sinistra

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta superiore con valore pari a 1.71 kN ed inferiore con valore pari a 1.71 kN.

b) Spinta su entrambi i piedritti

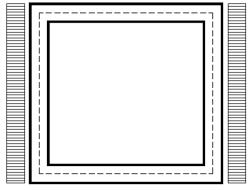


Figura 22- Schema tipo spinta carico accidentale su entrambi le pareti

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritti e soletta superiore con valore pari a 1.71 kN ed inferiore con valore pari a 1.71 kN.

10.3.5 Frenatura

La forza uniformemente distribuita da applicare sulla soletta vale:

$$q_3 = 7.3 \text{ kN/m}^2$$

La frenatura è ripartita sulla lunghezza della zona caricata e sulla dimensione dell'auto articolato 18.0m.

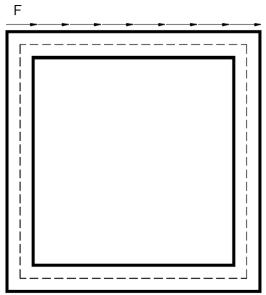


Figura 23- Schema tipo azione di frenatura sulla soletta superiore

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritti e soletta superiore con valore pari a 1.5 kN.

10.3.6 Variazione termica

Si applica una variazione termica pari a +/- 15°C.

10.3.7 Ritiro differenziale della soletta di copertura

Si considera uan variazione termica uniforme equivalente sulla soletta superiore come da calcolo seguente. Il calcolo viene condotto secondo le indicazioni dell'EUROCODICE 2-UNI EN1992-1-1 Novembre 2005 e DM 17-01-2018

Cls a t=0

R_{ck}	=	40	N/mm ²
\mathbf{f}_{ck}	=	33.2	N/mm ²
f_{cm}	=	41.2	N/mm ²
α	=	1.0E-05	
E_{cm}	=	33643	N/mm ²
cls tipo		R	

Resistenza compressione cubica

caratteristica

Resistenza cilindrica acompressione

caratteristica

Resistenza a compressione cilindrica media

Modulo elastico secante medio

classe del cemento

Tempo e ambiente

t_s	=	2	gg
t ₀	=	2	gg
t	=	25550	gg
$h_0=2A_c/u$	=	800	mm
Ac	=	400000	mm^2
u	=	1000	mm
RH	=	75	%

età del calcestruzzo in giorni, all'inizio del ritiro per essiccamento

età del calcestruzzo in giorni al momento del

carico

età del calcestruzzo in giorni

dimensione fittizia dell'elemento di cls

sezione dell'elemento

perimetro a contatto con l'atmosfera

umidità relativa percentuale Coefficiente di viscosità ϕ (t,t₀) e modulo elastico EC_t a tempo "t"

$$\phi(t,t_0) = \varphi_0 \beta_c(t,t_0) =$$

$$\phi_0 = \phi RH \beta_c(f_{cm}) \beta_c(t_0) =$$

$$\varphi_{RH} = 1 + \left[\frac{1 - RH/100}{0.1 \sqrt[5]{h_0}} \alpha_1 \right] \alpha_2 =$$

$$1.233\,$$
 coeff che tiene conto dell'umidità

$$\alpha_1 = \begin{cases} (35/f_{cm})^{0.7} & per\,f_{cm} > 35MPa \\ 1 & per\,f_{cm} \leq 35MPa \end{cases} =$$

$$\alpha_2 = \begin{cases} (35/f_{cm})^{0.2} & per f_{cm} > 35MPa \\ 1 & per f_{cm} \le 35MPa \end{cases} =$$

$$\beta_C(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} =$$

$$\beta_c(t_0) = \frac{1}{(0.1 + t_0^{0.20})} =$$

$$t_o = t_0 \left(\frac{9}{2 + t_0^{1.2}} + 1\right)^{\alpha} \ge 0.5 =$$

coeff per il tipo di cemento (-1 per classe S, 0

 $\beta_c(t, t_0) = \left[\frac{(t - t_0)}{(\beta_u + t - t_0)}\right]^{0.3} =$

0.984 coeff per la variabilità della viscosità nel tempo

$$\beta_H = 1.5[1 + (0.012 \, RH)^{18}] \, h_0 + 250 \alpha_3 \le 1500 \alpha_3 =$$

per classe N, 1 per classe R)

$$\alpha_3 = \begin{cases} (35/f_{cm})^{0.5} & per f_{cm} > 35MPa \\ 1 & per f_{cm} \le 35MPa \end{cases} =$$

Il modulo elastico a tempo "t" è pari a:

$$E_{cm}(t,t_0) = \frac{E_{cm}}{1 + \varphi(t,t_0)} = 10986414 \text{ kN/m}^2$$

Deformazioni di ritiro

$$\varepsilon_s(t,t_0) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t) =$$

0.000346 deformazione di ritiro ε (t,t 0)

$$\varepsilon_{cd}(t) = \beta_{ds}(t, t_s) K_b \varepsilon_{cd,0} =$$

0.000288 deformazione al ritiro per essiccamento

$$\beta_{ds}(t, t_s) = \left[\frac{(t - t_s)}{(t - t_s) + 0.04 \sqrt{h_0^3}} \right] =$$

0.966

 $K_h =$

parametro che dipende da h₀ secondo il prospetto seguente

Valori di k h

h _o	4,
100	1,0
200	0,85
300	0,75
≥500	0,70

Valori di K_h intermedi a quelli del prospetto vengono calcolati tramite interpolazione lineare

$$\varepsilon_{cd,0} = 0.85 \left[(200 + 100 \ \alpha_{ds1}) \exp\left(-\alpha_{ds2} \frac{f_{cm}}{f_{cm0}}\right) \right] 10^{-6} \beta_{RH} = 0.00042602$$

deformazione di base

$$\beta_{RH} = 1.55 \left[1 - \left(\frac{RH}{RH0} \right)^3 \right] =$$

 $\left| \frac{d}{dt} \right| = 0.896094$

$$f_{cm0} = 10 \text{ Mpa}$$
 $RH0 = 100 \%$
 $\alpha_{ds1} = 6$

coeff per il tipo di cemento (3 per classe S, 4 per classe N, 6 per classe R)

 $\alpha_{ds2} = 0.11$

coeff per il tipo di cemento (0.13 per classe S, 0.12 per classe N, 0.11 per classe R)

 $\varepsilon_{ca}(t) = \beta_{as}(t)\varepsilon_{ca,00} =$

0.00058 deformazione dovuta al ritiro autogeno

$$\beta_{as}(t) = 1 - \exp(-0.2t^{0.5}) =$$

$$\varepsilon_{ca00} = 2.5 (f_{ck} - 10) 10^{-6}$$

Variazione termica uniforme equivalente agli effetti del ritiro:

$$\Delta T_{\text{ritiro}} = -\frac{\varepsilon_{\text{s}}(t, t_0) E_{\text{cm}}}{(1 + \varphi(t, t_0)) E_{\text{cm}} \alpha} = -11.30 \text{ °C}$$

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura

10.3.8 Azione sismica inerziale

Per il calcolo dell'azione sismica si utilizza il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico *k*. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h * W$

Forza sismica verticale $F_v = k_v * W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni: k_h = a_{max}/g k_v = $\pm~0.5*k_h$

Con riferimento alla nuova classificazione sismica del territorio nazionale ai fini del calcolo dell'azione sismica secondo il DM 17/01/2018 viene assegnata all'opera una vita nominale $V_N \ge 50$ anni ed una classe d'uso IV $C_u = 2.0$; segue un periodo di riferimento $V_R = V_N * C_u = 100.0$ anni

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a a_g = 0.199 g. (Latitudine: 42.23455; Longitudine: 12.82293)

In assenza di analisi specifiche della risposta sismica locale l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = S_s * S_t * a_g$$

dove assumendo un terreno di tipo B ed in base al fattore di amplificazione del sito Ss si ottiene:

S_s= 1.200 Coefficiente di amplificazione stratigrafica

 $S_T=1$ Coefficiente di amplificazione topografica

ne deriva che:

$$a_{max}$$
= 1.200 * 1 * 0.199 g = 0.239 g

$$k_h = a_{max}/g = 0.239$$

$$k_v = \pm \ 0.5 \ * \ k_h = 0.119$$

Si consideri inoltre che non è stato applicato il coefficiente di riduzione delle azioni sismiche β. Inoltre l'azione sismica è stata considerata come carico distribuito lungo i piedritti, con risultante della forza sismica applicata a metà altezza.

le spinte del terreno in fase sismica sono state determinate con la teoria di Wood

Sisma orizzontale

$F_{sis} =$	$a_{max} ^* \gamma_r \ ^* \ H_{tot} \ ^* \ 1m$	=	13.37	kN/m	(carico applicato sulla parete)
$F_{inp} =$	α * S_p * γ_{cls} * $1m$	=	2.39	kN/m	(inerzia piedritti)
		Totale =	15.76	kN/m	(piederitto sx)
		Totale =	2.39	kN/m	(piederitto dx)
$F_{\text{inr}} =$	$\alpha * (H_p + H_r) * \gamma_r * 1m$	=	6.59	kN/m	(inerzia pavimentazione e riempimento)
$F_{ins} =$	α * S_s * γ_{cls} * 1m	=	2.39	kN/m	(inerzia soletta superiore)
Fq =	$\alpha * q * 1m * 0.2$	= _	2.00	kN/m	(inerzia veicoli)
		Totale =	10.98	kN/m	(soletta superiore)

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta superiore con valore pari a 3.15 kN ed inferiore con valore pari a 3.15 kN. Si applicano delle forze concentrate nei nodi tra piedritto destro e soletta superiore con valore pari a 0.48 kN ed inferiore con valore pari a 0.48 kN.

Sisma verticale

	Totale =	5.49	kN/m	(soletta superiore)
$F_{\text{ins}} =$	$0.5 * \alpha * S_s * \gamma_{cls} * 1m =$	1.19	kN/m	(inerzia soletta superiore)
$F_{inr} =$	$0.5 * \alpha * (H_p + H_r) * \gamma_r * 1m =$	3.30	kN/m	(inerzia pavimentazione e riempimento)
Fq =	0.5* a * q * 1m * 0.2	1.00	kN/m	(inerzia veicoli)
$F_{inp} =$	$0.5 * \alpha * S_p * \gamma_{cls} * 1m =$	1.19	kN/m	(inerzia piedritti)

Per tenere in conto le carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 1.10 kN.

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: $G_1 + G_2 + \psi_{2j} \ Q_{kj}$

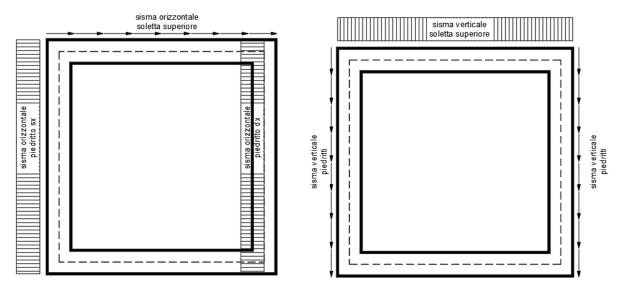


Figura 24– Schema tipo azioni sismiche orizzontali e verticali

10.4 DIAGRAMMI DELLE SOLLECITAZIONI

Per le sollecitazioni sono state applicate delle spuntature ad ogni elemento strutturale pari al proprio semi-spessore. In tal modo è possibile considerare le sollecitazioni sulla luce netta delle solette superiori ed inferiori e dei piedritti.

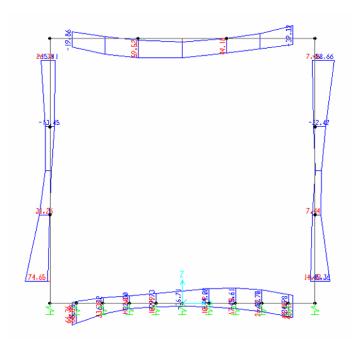


Figura 25- Inviluppo momenti flettenti SLU-SLV

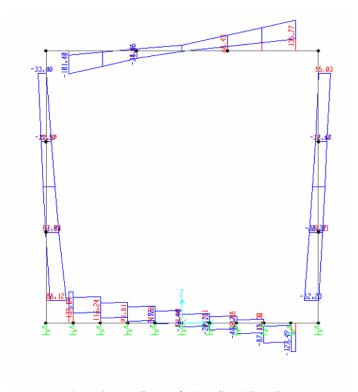
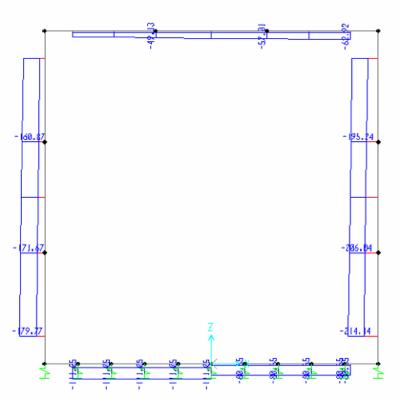



Figura 26– Inviluppo sforzi taglianti SLU-SLV

 ${\it Figura~27-Inviluppo~azioni~assiali~SLU-SLV}$

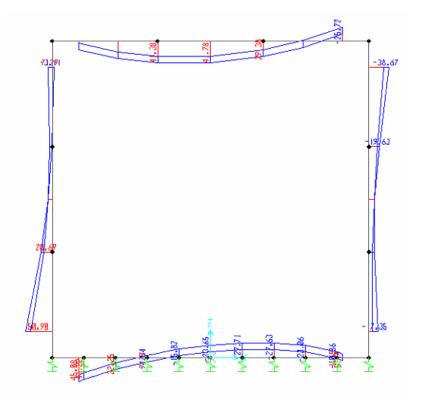


Figura 28– Inviluppo momenti flettenti SLE rara

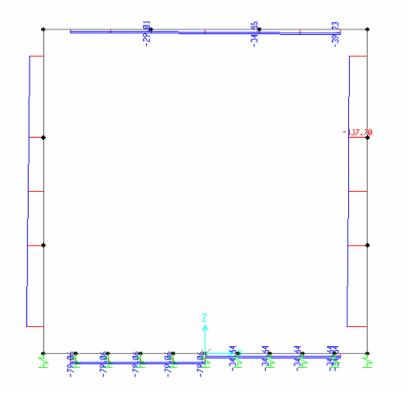


Figura 29– Inviluppo azioni assiali SLE rara

10.5 VERIFICA DELLE SEZIONI IN C.A.

Nelle tabelle seguenti sono indicati i valori delle sollecitazioni massime e i valori delle sollecitazioni per la verifica a fessurazione risultanti dalle combinazioni di cui al capitolo precedente.

Per le verifiche in corrispondenza dei nodi si considerano le sollecitazioni a filo elemento rigido. Per ogni elemento si ricerca la sezione di Momento e Taglio massimo; la verifica sarà eseguita con la sollecitazione, in modulo, maggiore:

		SLU STR-SLV					
Elemento strutturale	Sezione	C.C. M _{max}	N (kN)	M _{max} (kNm)	T _{max} (kN)		
soletta inferiore	nodo piedritto	SLU14-STR2	111.05	66.36	137.04		
	campata	SLU14-STR	12.16	-45.61	-		
soletta superiore	nodo piedritto	SLU14-STR	50.21	-39.32	135.77		
	campata	SLU14-STR2	20.70	59.52	-		
piedritti	nodo soletta inf	SLU14-STR2	167.06	74.65	88.12		
	nodo soletta sup	SLU14-STR	187.14	58.66	62.23		

		SLE	SLE RARA		SLE FREQUENTE			SLE QUASI PERMANENTE		
Elemento strutturale	Sezione	N (kN)	M _{max} (kNm)	ID Asta	N (kN)	M _{max} (kNm)	ID Asta	N (kN)	M _{max} (kNm)	
soletta	nodo piedritto	79.06	45.08	soletta	71.57	38.58	soletta inferiore	51.71	22.21	
inferiore	campata	24.17	-27.71	inferiore	29.53	-22.02		42.98	-9.10	
soletta	nodo piedritto	39.23 -25.72 soletta	_	34.61	-19.86	soletta	23.38	-5.38		
superiore	campata	21.46	41.78	superiore	20.41	36.58	superiore	14.65	24.09	
piedritti	nodo soletta inf	101.70	-3.11	piedritti	91.27	-1.38	piedritti	65.98	-1.31	
	nodo soletta inf	121.70	50.90		111.27	43.62		79.98	24.42	
	nodo soletta sup	131.70	38.67		-113.77	30.82		79.98	24.42	
	nodo soletta sup	145.70	5.93		127.77	5.58		65.98	-1.31	

10.5.1 Verifica soletta inferiore

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

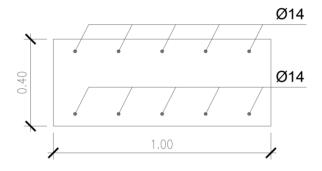
CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.8	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.300	mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm

ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Classe Calcestruzzo:		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE


N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.0	7.0	14
2	-43.0	33.0	14
3	43.0	33.0	14
4	43.0	7.0	14

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generazio

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	14
2	2	3	3	14

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordin con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coo		
N°Comb.	N	Mx	Vy	
1	111.05	66.26	127.04	

66.36	137.04
45.61	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)				
Mx	Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione con verso positivo se tale da comprimere il lembo superiore della sezione				
N°Comb.	N	Mx	My		
1	79.06	45.08	0.00		
2	2/1 17	27 71	0.00		

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mo con verso positivo se tale da comprimere il lembo superiore della sezione				
N°Comb.	N	Mx	My		
1	51.71	22.21 (105.30)	0.00 (0.00)		
2	42.98	9.10 (130.36)	0.00 (0.00)		

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fes con verso positivo se tale da comprimere il lembo superiore della sezione				
N°Comb.	N	Mx	Му		
1 2	54.01 44.99	22.56 (105.86) 8.58 (137.47)	0.00 (0.00) 0.00 (0.00)		

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver		S = combinazior	ne verificata / N = com	bin. non verificata					
N		Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)							
Mx		Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia							
N Res		Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)							
Mx Res		Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia							
Mis.Sic.		Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)							
		Verifica positiva	se tale rapporto risulta	a >=1.000	• ,				
As Tesa		Area armature tr	rave [cm²] in zona tesa	a. [Tra parentesi l'area minima	ex (4.1.15)NTC]				
N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.			

As Tesa

Strada Statale 4 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

1	S	111.05	66.36	111.06	128.25	1.93	15.4(7.2)
2	S	12.16	45.61	11.87	112.51	2.47	15.4(7.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del calcestruzzo a compressione
Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.139	-50.0	40.0	-0.00185	-43.0	33.0	-0.02174	-43.0	7.0
2	0.00350	0.122	-50.0	40.0	-0.00259	-43.0	33.0	-0.02520	-43.0	7.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000764755	-0.027090199	0.139	0.700
2	0.000000000	0.000869568	-0.031282730	0 122	0.700

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata
Ved Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [MPa]

N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp
1	S	137.04	189.29	33.0	100.0	0.0047	0.28
2	S	0.00	177.06	33.0	100.0	0.0047	0.03

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min
Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)

Ac eff.

As eff.

As eff.

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max \	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
	-							870 913	

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

Strada Statale 4 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - sr max wk Mx fes My fes	(68.	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = 0.5 per flessione; = (e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Copriferro [mm] netto calcolato con riferimento alla barra più tesa cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm]											
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm	sr max	wk	Mx fess	My fess
1 2	S S	-0.00091 -0.00066	0.00000 0.00000	0.500 0.500	14.0 14.0	63 63			2 (0.00042) 1 (0.00031)		0.203 (990.00) 0.152 (990.00)	100.66 94.28	0.00 0.00
COMBIN	AZION	I FREQUEN	ITI IN ESERCI	ZIO - MA	ASSIMI	E TENSI	ONI NOR	MALI ED A	PERTURA I	FESSU	RE (NTC/EC2)		
N°Comb	Ver	Sc max	Xc max Yc m	ax S	s min	Xs min	Ys min	Ac eff.	As eff.				
1 2	S S	1.81 0.66			-60.8 -12.4	-43.0 -43.0	7.0 7.0	870 735	7.7 7.7				
COMBIN	AZION	I FREQUEN	ITI IN ESERCI	ZIO - AP	ERTUF	RA FESS	SURE [§ 7	7.3.4 EC2]					
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm	sr max	wk	Mx fess	My fess
1 2	S S	-0.00040 -0.00009		0.500 0.500	14.0 14.0	63 63			3 (0.00018) 4 (0.00004)	483 441	0.088 (0.30) 0.016 (0.30)	105.30 130.36	0.00 0.00
COMBINA	AZION	I QUASI PE	RMANENTI IN	ESERCI	ZIO -	MASSIN	IE TENS	IONI NORM	ALI ED APE	RTUR	A FESSURE (NT	C/EC2)	
N°Comb	Ver	Sc max	Xc max Yc m	ax S	s min	Xs min	Ys min	Ac eff.	As eff.				
1 2	S S	1.83 0.61).0).0	-60.8 -9.6	-43.0 -43.0	7.0 7.0	870 690	7.7 7.7				
COMBINA	AZION	I QUASI PE	RMANENTI IN	ESERCI	ZIO - A	PERTU	RA FESS	SURE [§ 7.3.	.4 EC2]				
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm	sr max	wk	Mx fess	My fess
1 2	S S	-0.00040 -0.00007		0.500 0.500	14.0 14.0	63 63			3 (0.00018) 3 (0.00003)	483 428	0.088 (0.20) 0.012 (0.20)	105.86 137.47	0.00 0.00
	10.5	5.2 Verif	ica soletta	super	iore								

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

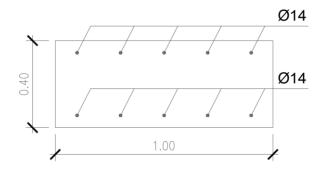
CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.8	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Frequen	ti: 0.300	mm

	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE


N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.0	7.0	14
2	-43.0	33.0	14
3	43.0	33.0	14
4	43.0	7.0	14

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Rarro	Numero di harre generate equidistanti cui si riferisce la genera

listanti cui si riferisce la generazione Numero di barre generate equidistanti cui si rif Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	14
2	2	3	3	14

0.00

2

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Momento flettente [da con verso positivo se	Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate		
N°Comb.	N	Mx	Vy		
1	50.21	39.32	135.77		

59.52 COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

20.70

N Mx	Momento flettente [l	applicato nel Baricentro (+ s kNm] intorno all'asse X di rife e tale da comprimere il lembo	rimento (tra parentesi Mom.Fessurazion	e)
N°Comb.	N	Mx	Му	

N°Comb.	N	Mx	Му
1	39.23	25.72	0.00
2	21.46	41.78	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Momento flettente	κN] applicato nel Baricentro (+ se e [kNm] intorno all'asse X di rifer o se tale da comprimere il lembo	mento (tra parentesi Mom.Fessurazio	one)
N°Comb.	N	Mx	Му	

,		••	
0.00 (0.00)	19.86 (100.57)	34.61	1
0.00 (0.00)	36.58 (92.19)	20.41	2

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione					
N°Comb.	N	Mx	My			

it comb.	14	WA	iviy
1	23.38	5.38 (125.65)	0.00 (0.00)
2	14.65	24.09 (92.52)	0.00 (0.00)

RISULTATI DEL CALCOLO

As Tesa

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res	Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res	Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb Ver Ν N Res Mx Res Mis.Sic. As Tesa Mx

Strada Statale 4 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

1	S	50.21	39.32	50.40	118.89	3.02	15.4(7.2)
2	S	20.70	59.52	20.59	113.96	1.91	15.4(7.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.130	-50.0	40.0	-0.00220	-43.0	33.0	-0.02337	-43.0	7.0
2	0.00350	0.124	-50.0	40.0	-0.00250	-43.0	33.0	-0.02476	-43.0	7.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. di duttilità	ell'eq. dell'asse neutro aX- (travi e solette)[§ 4.1.2.1 nomenti per sola flessione	2.1 NTC]: deve ess	, - 3 -
N°Comb	а	b	С	x/d

14	COITID	ŭ	D	· ·	λ/u	O.Mu.
	1	0.000000000	0.000814138	-0.029065526	0.130	0.700
	2	0.000000000	0.000856467	-0.030758663	0.124	0.700

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata
Ved Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [MPa]

N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp
	-	135.77 0.00					

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min
Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max \	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.14	-50.0	40.0	-83.7	-43.0	7.0	913	7.7
2	S	3.54	-50.0	40.0	-164.1	-43.0	7.0	913	7.7

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

Strada Statale 4 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - sr ma: wk Mx fes	x ss.	Minima = 0.8 p = 0.4 p = 0.5 pe = 3.400 = 0.425 Diametr Coprifer Differen Tra pare Massim Aperturi Compor	a deformazione un deformazione un er barre ad adere per comb. quasi per flessione; e[c] Coeff. in eq.(7.1 coeff. in eq.(7.1 ro [mm] equivaler rro [mm] netto cal iza tra le deforma entesi: valore min a distanza tra le fa fessure in mm onente momento denente momento denente momento de deformatica distanza tra le fa fessure in mm onente momento denente momento denente momento de denente momento de deformazione un supplicatione de deformazione de	itaria di tra nza miglio ermanenti + e2)/(2*e 1) come da 1) come da te delle ba colato con zioni medi imo = 0.6 essure [m calcolata = i prima fes	zione n rata [ec / = 0.6 1) per t a annes a annes a re tesa riferima e di acc Smax / m] sr max ssurazio	el calcest q.(7.11)EC per comb razione ec si naziona si naziona e comprese ento alla b ciaio e cal Es [(7.9 *(e_sm - e ne intorno	ruzzo (tra c2] .frequenti ccentrica ali eli en nell'are parra più t cestruzzo d)EC2 e (C e_cm) [(7.00) all'asse	zione -) valutati [cfr. eq.(7.9)E- [eq.(7.13)EC2] a efficace Ac el esa [(7.8)EC2 e (C 4.1.8)NTC] 8)EC2 e (C4.1.1 X [kNm]	a in sezione C2] ff [eq.(7.11)[4.1.7)NTC]	fessurata	a		
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm	sr max	wk	Mx fess	My fess
1 2	S S	-0.00054 -0.00105		0.500 0.500	14.0 14.0	63 63			(0.00025) (0.00049)		0.125 (990.00) 0.244 (990.00)	98.92 91.91	0.00 0.00
COMBIN	AZION	I FREQUEN	ITI IN ESERCIZ	ZIO - MA	ASSIM	E TENSI	ONI NOI	RMALI ED AF	PERTURA	FESSU	RE (NTC/EC2)		
N°Comb	Ver	Sc max	Xc max Yc m	ax S	s min	Xs min	Ys min	Ac eff.	As eff.				
1 2	S S	1.64 3.09	-50.0 40 -50.0 40		-61.8 142.6	-43.0 -43.0	7.0 7.0	870 913	7.7 7.7				
COMBIN	AZION	I FREQUEN	ITI IN ESERCIZ	IO - AP	ERTU	RA FESS	SURE [§	7.3.4 EC2]					
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm	sr max	wk	Mx fess	My fess
1 2	S S	-0.00040 -0.00091		0.500 0.500	14.0 14.0	63 63			(0.00019) (0.00043)	483 497	0.090 (0.30) 0.212 (0.30)	100.57 92.19	0.00 0.00
COMBIN	AZION	I QUASI PE	RMANENTI IN	ESERCI	ZIO -	MASSIN	ME TENS	IONI NORMA	ALI ED AP	ERTUR	A FESSURE (NT	C/EC2)	
N°Comb	Ver	Sc max	Xc max Yc m	ax S	s min	Xs min	Ys min	Ac eff.	As eff.				
1 2	S S	0.40 2.04	-50.0 40 -50.0 40	0.0	-8.4 -93.1	-43.0 -43.0	7.0 7.0	735 913	7.7 7.7				
COMBIN	AZION	I QUASI PE	RMANENTI IN	ESERCI	ZIO - <i>A</i>	APERTU	RA FES	SURE [§ 7.3.4	4 EC2]				
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm	sr max	wk	Mx fess	My fess
1 2	S S	-0.00006 -0.00060		0.500 0.500	14.0 14.0	63 63			(0.00003) (0.00028)	441 497	0.011 (0.20) 0.139 (0.20)	125.65 92.52	0.00 0.00
	10.5	5.3 Verif	ica piedrit	ti									
CARATT	ERISTI	CHE DI RES	SISTENZA DEI	MATERI	ALI IM	PIEGAT	I						
CALC	CESTR	UZZO -	Classe: Resis. compr Def.unit. max Def.unit. ultim Diagramma to Modulo Elasti Resis. media	resistenz la ecu: ensione-c co Norma a trazion	za ec2: leforma ale Ec: e fctm:	az.:	Parab	C32/4 18. 0.002 0.003 ola-Rettangol 33643. 3.1	8 MPa 0 5 0 MPa 0 MPa				

15.00

19.9 MPa 19.9 MPa 0.300 mm

14.9 MPa

Coeff. Omogen. S.L.E.:

Sc limite S.L.E. comb. Rare:
Sc limite S.L.E. comb. Frequenti:
Ap.Fessure limite S.L.E. comb. Frequenti:

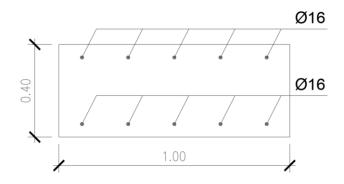
Sc limite S.L.E. comb. Q.Permanenti:

	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3	-50.0 -50.0 50.0 50.0	0.0 40.0 40.0

DATI BARRE ISOLATE


N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.0	7.0	16
2	-43.0	33.0	16
3	43.0	33.0	16
4	43.0	7.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	16
2	2	3	3	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate			
N°Comb.	N	Mx	Vy		
1	167.06	74.65	88.12		
2	187.14	58.66	62.23		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione						
N°Comb.	N	Mx	My				
1	101.70	3.11	0.00				
2	121.70	50.90	0.00				
3	131.70	38.67	0.00				
4	145.70	5.93	0.00				

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Momento f	nale [kN] applicato nel Baricent ettente [kNm] intorno all'asse X positivo se tale da comprimere il	di riferimento (tra parentesi Mon	n.Fessurazione)
N°Comb.	N	Mx	Му	
1	91.27	1.38 (100.57)	0.00 (0.00)	
2	111.27	43.62 (109.55)	0.00 (0.00)	
3	-113.77	30.82 (72.41)	0.00 (0.00)	
4	127.77	5.58 (0.00)	0.00 (0.00)	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fe con verso positivo se tale da comprimere il lembo superiore della sezione								
N°Comb.	N	Mx	Му					
1	65.98 70.08	1.31 (125.65)	0.00 (0.00)					
3 4	79.98 79.98 65.98	24.42 (116.48) 1.31 (0.00)	0.00 (0.00) 0.00 (0.00) 0.00 (0.00)					
		\ /	\ /					

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res	Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res	Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

As Tesa		•	a se tale rapporto risu trave [cm²] in zona te	llta >=1.000 sa. [Tra parentesi l'area minima e	ex (4.1.15)NTC]		
N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1 2	S S	167.06 187.14	74.65 58.66	167.06 186.86	162.40 165.21	2.18 2.82	20.1(7.2) 20.1(7.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.159	-50.0	40.0	-0.00117	-43.0	33.0	-0.01852	-43.0	7.0
2	0.00350	0.161	-50.0	40.0	-0.00112	-43.0	33.0	-0.01829	-43.0	7.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue								
N°Comb	а	b	С	x/d	C.Rid.				
1	0.000000000	0.000667248	-0.023189936	0.159	0.700				
2	0.000000000	0.000660194	-0.022907746	0.161	0.700				

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)
Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC] Ved Vwct d Altezza utile sezione [cm] Larghezza minima sezione [cm]
Rapporto geometrico di armatura longitudinale [<0.02] bw Ro Tensione media di compressione nella sezione [MPa] Scp N°Comb Ver Ved Vwct d bw Ro Scp S 88.12 212.57 33.0 100.0 0.0061 0.42 2 62.23 100.0 0.0061 S 215.05 33.0 0.47

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

924

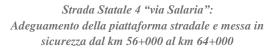
10.1

Ver Sc max Xc max, Yc max Ss min Xs min, Ys min Ac eff. As eff. N°Comb Ver Sc max			Massima Ascissa, (Minima te Ascissa, (Area di ca	tensione (p Ordinata [c nsione (ne Ordinata [c Ilcestruzzo	m] del punto gativa se di m] della bar o [cm²] in zor	i compres corrisp. a trazione) ra corrisp. na tesa co	sione) nel ca a Sc max (s nell'acciaio a Ss min (s nsiderata a	calcestruzzo [istema rif. X,` [MPa] sistema rif. X, derente alle b l'apertura de	Y,O) Y,O) parre
N°Comb	Ver	Sc max	Xc max \	∕c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.34	-50.0	40.0	2.5	-43.0	7.0		

-108.2

-43.0

7.0


2

S

3.72

-50.0

40.0

3	S	2.75	-50.0	40.0	-64.1	-43.0	7.0	874	10.1				
4	S	0.54		40.0	3.1	-43.0	7.0						
COMBINA	ZION	I RARE IN E	SERCIZIO	- APERTUR	RA FES	SSURE [§	7.3.4 E	:C2]					
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - e sr max wk Mx fess My fess		Esito de Massima Minima d = 0.8 pe = 0.4 p = 0.5 pe = 3.400 = 0.425 Diametra Coprifer Differenz Tra pare Massima Apertura Compon	lla verifica a deformazione er barre ad ad er comb. qua: r flessione; =(Coeff. in eq.(; o [mm] equiva ro [mm] netto za tra le defor a distanza tra	ne unitaria di tra erenza miglic si permanenti e1 + e2)/(2*e 7.11) come da 7.11) come da piente delle ba calcolato con mazioni medi minimo = 0.6 le fessure [m m calcolata = o di prima fes	razione narata [ec / = 0.6 1) per tra annes a annes arre tesa riferima e di acc Smax / m] sr max assurazio	nel calcese el calcestri. (7.11) EC: per comb : razione ecis i nazional si nazional e comprese ento alla baciacio e calce [(7.9)] *(e_sm - e ne intorno	struzzo (trazzo (trazzo (trazzo (trazzo (z) frequenti centrica li li e e nell'area arra più te estruzzo EC2 e (C _cm) [(7.4 all'asse)	razione -) valuzione -) valuta [cfr. eq.(7.9)] [eq.(7.13)]EC2 a efficace Ac e esa [(7.8)]EC2 e ((4.1.8)]NTC] 8)]EC2 e (C4.1.1)	tata in sezione ta in sezione EC2] eff [eq.(7.11)E	e fessurati fessurati		ctm	
Comb.	Ver	e1	e2	k2	Ø	Cf		е	sm - e cm	sr max	wk	Mx fess	My fess
1 2 3 4	S S S	-0.00054 -0.00071 -0.00043 0.00000	0.00000 0.00000 0.00000 0.00000	0.500 0.500 	16.0 16.0 	62 62 			2 (0.00032) 9 (0.00019) 	461 447	0.000 (990.00) 0.150 (990.00) 0.086 (990.00) 0.000 (990.00)	98.92 108.12 117.82 0.00	0.00 0.00 0.00 0.00
COMBINA	ZION	I FREQUEN	TI IN ESER	CIZIO - MA	ASSIMI	E TENSIO	ONI NOF	RMALI ED A	PERTURA	FESSU	RE (NTC/EC2)		
N°Comb	Ver	Sc max	Xc max Yc	max S	s min	Xs min	Ys min	Ac eff.	As eff.				
1 2 3 4	S S S	0.26 3.18 2.16 0.49	-50.0 -50.0 -50.0	40.0 40.0	2.7 -89.4 162.8 2.6	-43.0 -43.0 -43.0 -43.0	7.0 7.0 7.0 7.0	924 1121 	10.1 10.1 				
	Ver	e1	e2		Ø	Cf	OIYE [3		om om	er may	wk	Mx fess	My fess
1 2 3 4	S S S S	-0.00040 -0.00059 -0.00102 0.00000	0.00000 0.00000 0.00000 0.00000	0.500 0.500 	16.0 16.0	62 62 		0.00027	 7 (0.00027) 9 (0.00049)	461 514	0.000 (0.30) 0.124 (0.30) 0.251 (0.30) 0.000 (0.30)	100.57 109.55 72.41 0.00	0.00 0.00 0.00 0.00
COMBINA	ZION	I QUASI PE	RMANENTI	IN ESERCI	ZIO -	MASSIM	E TENS	IONI NORM	ALI ED AP	ERTUR	A FESSURE (NT	C/EC2)	
N°Comb	Ver	Sc max	Xc max Yc	max S	s min	Xs min	Ys min	Ac eff.	As eff.				
1 2 3 4	S S S	0.20 1.74 1.74 0.20	-50.0		1.9 -41.9 -41.9 1.9	-43.0 -43.0 -43.0 -43.0	7.0 7.0 7.0 7.0	874 874 	10.1 10.1 				
COMBINA	ZION	I QUASI PE	RMANENTI	IN ESERCI	ZIO - A	PERTUR	RA FESS	SURE [§ 7.3.	.4 EC2]				
Comb.	Ver	e1	e2	k2	Ø	Cf		e	sm - e cm	sr max	wk	Mx fess	My fess
1 2 3 4	S S S	-0.00006 -0.00028 -0.00028 0.00000	0.00000 0.00000 0.00000 0.00000	0.500 0.500 	16.0 16.0 	62 62 			3 (0.00013) 3 (0.00013) 	447 447 	0.000 (0.20) 0.056 (0.20) 0.056 (0.20) 0.000 (0.20)	125.65 116.48 116.48 0.00	0.00 0.00 0.00 0.00

10.5.4 Tabella riassuntiva armature

ARMATURA									
	nodo	Ø14/20 inf							
soletta	piedritto	Ø14/20 sup							
inferiore	aammata	Ø14/20 inf							
	campata	Ø14/20 sup							
	nodo	Ø14/20 inf							
soletta	piedritto	Ø14/20 sup							
superiore		Ø14/20 inf							
	campata	Ø14/20 sup							
	nodo soletta	Ø16/20 ext							
ni admitti	inf	Ø16/20 int							
piedritti	nodo soletta	Ø16/20 ext							
	sup	Ø16/20 int							

10.5.5 Incidenza armature

INCIDENZA (Kg/m³)								
soletta inferiore	65							
soletta superiore	70							
piedritti	100							

10.6 VERIFICA FONDAZIONE

10.6.1 Verifica portanza

Si riporta di seguito la verifica di portanza per la combinazione più sfavorevole che risulta essere la "GEO-SIS". A vantaggio di sicurezza si riporta inoltre la verifica di portanza per l'inviluppo SLU-STR. Per ottenere gli scarichi a base fondazione si sono estrapolate le reaction dei nodi di fondazione con i point spring:

- ➤ Per il carico verticale si è effettuata una sommatoria delle reazioni verticali
- > Per il carico orizzontale si è effettuata una sommatoria delle reazioni orizzontali
- Per il momento si è calcolato il momento provocato da ciascuna reazione verticale rispetto al baricentro della fondazione e si è poi fatta la somma algebrica dei momenti per ottenere il valore complessivo

	Reazioni nodali per la striscia di 1m									
Nodo	Combo	F1 (kN)	F2 (kN)	F3 (kN)	M1 (kNm)	M2 (kNm)	M3 (kNm)	Coord. X (m)	F1*y (kNm)	F3*x (kNm)
1	GEO-SIS	-86.05	0.00	13.16	0.00	0.00	0.00	0.00	-17.21	0.00
2	GEO-SIS	0.00	0.00	71.46	0.00	0.00	0.00	1.20	0.00	85.75
4	GEO-SIS	0.00	0.00	-0.19	0.00	0.00	0.00	-1.20	0.00	0.22
6	GEO-SIS	0.00	0.00	4.06	0.00	0.00	0.00	-0.96	0.00	-3.90
7	GEO-SIS	0.00	0.00	8.09	0.00	0.00	0.00	-0.72	0.00	-5.83
8	GEO-SIS	0.00	0.00	8.01	0.00	0.00	0.00	-0.48	0.00	-3.84
9	GEO-SIS	0.00	0.00	10.58	0.00	0.00	0.00	-0.24	0.00	-2.54
10	GEO-SIS	0.00	0.00	15.76	0.00	0.00	0.00	0.24	0.00	3.78
11	GEO-SIS	0.00	0.00	18.42	0.00	0.00	0.00	0.48	0.00	8.84
12	GEO-SIS	0.00	0.00	31.72	0.00	0.00	0.00	0.72	0.00	22.83
13	GEO-SIS	0.00	0.00	35.93	0.00	0.00	0.00	0.96	0.00	34.49
Risulta	nte Base Plinto -	· L=1m						L=	31.10	m
Ntot (kN)	Htot (kN)	M (kNm)								
216.98	86.05	157.02								
Risultan	te Base Plinto - I	_=31.1m								
Ntot (kN)	Htot (kN)	M (kNm)								
6748.11	2676.28	4883.42								

Risultante Base Plinto - L=31.1m						
Combo	Ntot (kN)	Htot (kN)	M (kNm)			
SLU-STR max	13031	2587	4491			
SLU-STR min	7796	0.00	-847			
SLU-SISM max	6748	2676	4883			
SLU-SISM min	0.00	0.00	0.00			
Oltre alle combo GEO e						

Per la verifica di portanza verticale si sono adottate le formulazioni di Brinch Hansen

Condizioni Drenate

$$egin{aligned} q_{lim} &= rac{1}{2} \gamma' \, B' \, N_\gamma \, i_\gamma \, s_\gamma \, b_\gamma \, d_\gamma \, g_\gamma + c' \, N_c \, i_c \, s_c \, b_c \, d_c \, g_c + q' \, N_q \, i_q \, s_q \, b_q \, d_q \, g_q \ N_\gamma &= 2 \, (N_q + 1) an \phi' & N_c &= rac{N_q - 1}{ an \phi'} & N_q &= rac{1 + \sin \phi'}{1 - \sin \phi'} e^{\pi an \phi'} \end{aligned}$$

Condizioni non Drenate

 $q_{lim} = c_u N_c^{\circ} i_c^{\circ} s_c^{\circ} b_c^{\circ} d_c^{\circ} g_c^{\circ} + t_q^{\circ} + q$

$$N_c^\circ=2+\pipprox5,14$$
 $N_\gamma^\circ=-2\sin\omega$ $q_c^\circ=1-rac{2\,\omega}{\pi+2}$ $t_g^\circ=rac{1}{2}\gamma\,B'N_\gamma^\circ s_\gamma^\circ$

Con riduzione delle dimensioni della fondazione per carichi eccentrici secondo le formulazioni:

$$B'=B-2\,e_B=B-2rac{M_B}{N}$$
 $L'=L-2\,e_L=L-2rac{M_L}{N}$

Che presenta i seguenti coefficienti correttivi:

Condizioni Drenate						
Coeff. Correttivi	γ	q	с			
Inclinazione del carico						
$m=rac{2+rac{B}{L}}{1+rac{B}{L}}$	$i_{\gamma} = \left(1 - rac{ H }{N + B'L'c' an\phi'} ight)^{m+1}$	$i_q = \left(1 - rac{ H }{N + B' \; L' \; c' \; an \phi'} ight)^m$	$i_c = i_q - rac{1-i_q}{N_c an \phi'}$			
$ H =\sqrt{{H_B}^2+{H_L}^2}$						
Fattori di forma	$s_{\gamma}=s_{q}=1+0$	$s_c=1+0, 2rac{1+\sin\phi'}{1-\sin\!\phi'}rac{B'}{L'}$				
Fattori di inclinazione della base della fondazione	$b_q=b_\gamma=0$	$b_c = b_q - rac{1 - b_q}{N_c an \phi'}$				
Fattori di inclinazione del piano campagna	$g_{\gamma}=g_{q}=$	$(1- an\omega)^2$	$g_c = g_q - rac{1-g_q}{N_c an \phi'}$			

Condizioni non Drenate						
Coeff. Correttivi	γ	q	c			
Inclinazione del carico						
$m=rac{2+rac{B}{L'}}{1+rac{B^2}{L'}}$	-	-	$i_c^\circ = 1 - rac{m H }{B'L'c_uN_c}$			
$ H =\sqrt{{H_B}^2+{H_L}^2}$						
Fattori di forma	-	-	$s_c^\circ = 1+0, 2rac{B'}{L'}$			
Fattori di inclinazione						
della base della	-	-	$b_c^\circ = 1 - \frac{2\alpha}{\pi + 2}$			
fondazione						
Fattori di inclinazione del piano campagna	$g_{\gamma}=g_{q}=$	$(1- an\omega)^2$	$g_c = g_q - rac{1-g_q}{N_c an \phi'}$			

Di seguito si allegano le verifiche effettuate in condizioni drenate per la combinazione GEO-SIS:

Load	FX (kN)	FY (kN)	FZ (kN)	MX (kNm)	MY (kNm)
GEO-SIS	0.00	2676.00	6748.00	4883.00	0.00
Larghezza Fonda	azione		В	2.80	m
Profondità piano	di posa		D	4.10	m
Lunghezza Fond	azione		L	31.10	m
Angolo di attrito		Ф	28.00	0	
Angolo di attrito i	Angolo di attrito in radianti		Ф	0.49	rad
Coesione		C'	10.00	kN/m²	
Peso per unità di	volume del teri	reno	γ 19.00 kN/		kN/m³
Valore Nq			Nq	14.	.72
Valore Nc			Nc	Nc 25.80	
Valore Ng	Valore Ng		Nγ	16.72	
Condizioni non d	Condizioni non drenate? No				
<u> </u>					

Momento X nel baricentro del plinto	Mx	4883.00	kNm
Momento Y nel baricentro del plinto	My	0.00	kNm
Eccentricità del carico in B	eB	0.72	m
Eccentricità del carico in L	eL	0.00	m
Dimensione della fondazione corretta B'	B'	1.35	m
Dimensione della fondazione corretta L'	L'	31.10	m

Per fondazioni quadrate - fattore di correzione di forma					
Fattore primo membro	Sc	1.02			
Fattore secondo membro	Sq	1.02			
Fattore terzo membro	Sγ	0.60			

Fattori di inclinazione del carico						
Coefficiente mB	mB	1.96				
Coefficiente mL	mL	1.04				
Coefficiente m	m	1.04				
Fattore primo membro	ic	0.57				
Fattore secondo membro	iq	0.60				
Fattore terzo membro	iγ	0.37				

Profondità della falda da p.p. (>0 verso il basso)	d	0.00	m
Peso per unità di volume fino a D	Y 1	19.00	kN/m³
Peso per unità di volume dopo D	γ2	9.00	kN/m³
Coefficiente del terzo membro della formula	γ ₂ Β	25.20	kN/m²
Carico del terreno sovrastante	q	77.90	kN/m²

VERIFICHE - CARICO LIMITE			
Carico limite	qlim	907.50	kN/m²
Carico limite come forza	Qlim	38179.25	kN
Carico di esercizio	Qed	6748.00	kN
Fattore di sicurezza (γr=2,3)	FS	2.46	

VERIFICHE - SCORRIMENTO			
Resistenza allo scorrimento	Fd	3587.98	kN
Azione per lo scorrimento	Fe	2676.00	kN
Fattore di sicurezza (γr=1,1)	FS	1.2	22

Di seguito si allegano le verifiche effettuate in condizioni non drenate per la combinazione GEO-SIS:

Load	FX (kN)	FY (kN)	FZ (kN)	MX (kNm)	MY (kNm)
GEO-SIS	0.00	2676.00	6748.00	4883.00	0.00
Larghezza Fondazion	е		В	2.80	m
Profondità piano di po	sa		D	4.10	m
Lunghezza Fondazior	ne		L	31.10	m
Angolo di attrito		Ф	28.00	0	
Angolo di attrito in radianti		Ф	0.49	rad	
Coesione non drenata		cu	150.00	kN/m²	
Peso per unità di volu	Peso per unità di volume del terreno		γ	19.00	kN/m³
Valore Nq			Nq	Nq 1.00	
/alore Nc Nc		Nc	5.	14	
Valore Ng			Νγ 0.00		00
Condizioni non drena	te?		Si		

Momento X nel baricentro del plinto	Mx	4883.00	kNm
Momento Y nel baricentro del plinto	My	0.00	kNm
Eccentricità del carico in B	eB	0.72	m
Eccentricità del carico in L	eL	0.00	m
Dimensione della fondazione corretta B'	B'	1.35	m
Dimensione della fondazione corretta L'	L'	31.10	m

Per fondazioni quadrate - fattore di correzione di forma				
Fattore primo membro	Sc	1.01		
Fattore secondo membro	Sq	1.00		
Fattore terzo membro	Sγ	1.00		

Fattori di inclinazione del carico		
Coefficiente mB	mB	1.96
Coefficiente mL	mL	1.04
Coefficiente m	m	1.04
Fattore primo membro	ic	0.91
Fattore secondo membro	iq	1.00
Fattore terzo membro	iγ	1.00

Profondità della falda da p.p. (>0 verso il basso)	d	0.00	m
Peso per unità di volume fino a D	Y 1	19.00	kN/m³
Peso per unità di volume dopo D	Y 2	9.00	kN/m³
Coefficiente del terzo membro della formula	γ ₂ Β	25.20	kN/m²
Carico del terreno sovrastante	q	77.90	kN/m²

VERIFICHE - CARICO LIMITE			
Carico limite	qlim	788.77	kN/m²
Carico limite come forza	Qlim	33184.22	kN
Carico di esercizio	Qed	6748.00	kN
Fattore di sicurezza (γr=2,3)	FS	2.1	14

VERIFICHE - SCORRIMENTO			
Resistenza allo scorrimento	Fd	3587.98	kN
Azione per lo scorrimento	Fe	2676.00	kN
Fattore di sicurezza (γr=1,1)	FS	1.22	

Di seguito si allegano le verifiche effettuate in condizioni drenate per inviluppo SLU-STR:

Load	FX (kN)	FY (kN)	FZ (kN)	MX (kNm)	MY (kNm)
ENV(SLU-STR)	0.00	2587.00	13031.00	4491.00	0.00
Larghezza Fondazione		В	2.80	m	
Profondità piano di	posa		D	4.10	m
Lunghezza Fondaz	zione		L	31.10	m
Angolo di attrito			Ф	28.00	0
Angolo di attrito in	radianti		Ф	0.49	rad
Coesione			c'	10.00	kN/m²
Peso per unità di v	olume del te	erreno	γ	19.00	kN/m³
Valore Nq			Nq	14	.72
Valore Nc			Nc	25	.80
Valore Ng			Νγ	16	.72
Condizioni non dre	nate?			No	
Momento X nel bai	ricentro del p	olinto	Mx	4491.00	kNm
Momento Y nel bai	ricentro del p	olinto	My	0.00	kNm
Eccentricità del car	rico in B		eB	0.34	m
Eccentricità del car	rico in L		eL	0.00	m
Dimensione della f	ondazione c	orretta B'	B'	2.11	m
Dimensione della fondazione corretta L'		L'	31.10	m	
Per fondazioni quadrate - fattore di correzion			di forma		
Fattore primo mem		tore di correzione	Sc	1	04
Fattore secondo m			Sq	1.04	
Fattore terzo mem			Sγ	0.60	
			- 1	<u> </u>	
Fattori di inclinaz	ione del ca	rico			
Coefficiente mB			mB	1.	94
Coefficiente mL			mL	1.06	
Coefficiente m			m	1.06	
Fattore primo mem	bro		ic	0.78	
Fattore secondo m	embro		iq	0.80	
Fattore terzo membro		iγ	0.64		
Profondità della fal	da da p.p. (s	>0 verso il basso)	d	0.00	m
Peso per unità di volume fino a D		Υ ₁	19.00	kN/m³	
Peso per unità di volume dopo D		Υ1 Υ2	9.00	kN/m³	
Coefficiente del ter	•		γ ₂ γ ₂ Β	25.20	kN/m²
Carico del terreno	sovrastante		q	77.90	kN/m²
L					1

VERIFICHE - CARICO LIMITE			
Carico limite	qlim	1235.75	kN/m²
Carico limite come forza	Qlim	81118.75	kN
Carico di esercizio	Qed	13031.00	kN
Fattore di sicurezza (γr=2,3)	FS	2.	71

VERIFICHE - SCORRIMENTO			
Resistenza allo scorrimento	Fd	6928.71	kN
Azione per lo scorrimento	Fe	2587.00	kN
Fattore di sicurezza (γr=1,1)	FS	2.43	

Di seguito si allegano le verifiche effettuate in condizioni non drenate per inviluppo SLU-STR:

Load	FX (kN)	FY (kN)	FZ (kN)	MX (kNm)	MY (kNm)
ENV(SLU-STR)	0.00	2587.00	13031.00	4491.00	0.00
Larghezza Fondazio	one		В	2.80	m
Profondità piano di	posa		D	4.10	m
Lunghezza Fondazi	one		L	31.10	m
Angolo di attrito			Ф	28.00	0
Angolo di attrito in r	adianti		Ф	0.49	rad
Coesione non drena	ata		cu	150.00	kN/m²
Peso per unità di vo	olume del terre	eno	Υ	19.00	kN/m³
Valore Ng		Nq	1.	00	
Valore Nc			Nc 5.14		14
Valore Ng			Νγ 0.00		00
Condizioni non drer	nate?		Si		
	nate?		<u> </u>		

Momento X nel baricentro del plinto	Mx	4491.00	kNm
Momento Y nel baricentro del plinto	My	0.00	kNm
Eccentricità del carico in B	eB	0.34	m
Eccentricità del carico in L	eL	0.00	m
Dimensione della fondazione corretta B'	B'	2.11	m
Dimensione della fondazione corretta L'	L'	31.10	m

Per fondazioni quadrate - fattore di correzione di forma					
Fattore primo membro	Sc	1.01			
Fattore secondo membro	Sq	1.00			
Fattore terzo membro Sγ 1.00					

Fattori di inclinazione del carico

Strada Statale 4 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

Coefficiente mB	mB	1.94
Coefficiente mL	mL	1.06
Coefficiente m	m	1.06
Fattore primo membro	ic	0.95
Fattore secondo membro	iq	1.00
Fattore terzo membro	iγ	1.00

Profondità della falda da p.p. (>0 verso il basso)	d	0.00	m
Peso per unità di volume fino a D	γ1	19.00	kN/m³
Peso per unità di volume dopo D	Y 2	9.00	kN/m³
Coefficiente del terzo membro della formula	γ ₂ Β	25.20	kN/m²
Carico del terreno sovrastante	q	77.90	kN/m²

VERIFICHE - CARICO LIMITE						
Carico limite	qlim	816.88	kN/m²			
Carico limite come forza	Qlim	53622.91	kN			
Carico di esercizio	Qed	13031.00	kN			
Fattore di sicurezza (γr=2,3)	FS	1.79				

VERIFICHE - SCORRIMENTO			
Resistenza allo scorrimento	Fd	6928.71	kN
Azione per lo scorrimento	Fe	2587.00	kN
Fattore di sicurezza (γr=1,1)	FS	2.43	

Si precisa che l'inviluppo delle combinazioni SLU-SIS fornisce valori identici alla combinazione GEO-SIS che è stata analizzata in questo paragrafo, pertanto non si riportano due volte le verifiche.

11 MURO DI SOSTEGNO

11.1 DESCRIZIONE DELLE OPERE

Nel seguito si riportano le principali caratteristiche geometriche del muro in esame, ed a seguire alcune immagini rappresentative delle sezioni trasversali di calcolo analizzate:

Paramento	Fondazione				
H [m]	L [m]	S [m]			
3,60	4,60	0,50			

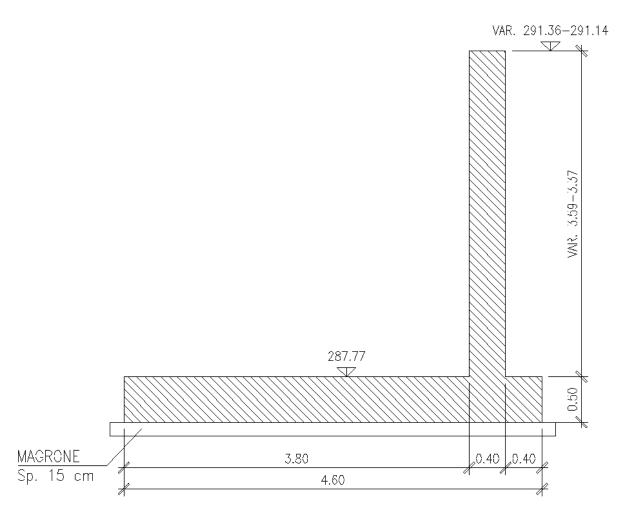


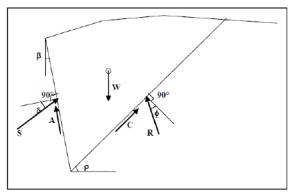
Figura 30 – sezione trasversale

11.2 ANALISI DEI CARICHI E COMBINAZIONI

Nel presente paragrafo si descrivono i criteri di valutazione delle azioni sollecitanti le opere di sostegno e relative combinazioni di calcolo adottate.

11.2.1 Pesi Propri e Carichi permanenti

I pesi propri relativi alla struttura ed al terreno eventualmente gravante sulla fondazione nonché della piattaforma ferroviaria, sono valutati tenendo conto dei pesi dell'unità di volume specifici γ come di seguito definiti:


Calcestruzzo strutturale costituente il muro : $\gamma = 25 \text{ KN/m}^3$

Terreno in sito: come da caratterizzazione geotecnica di cui al paragrafo precedente

11.2.2 Spinte del terreno in fase statica

Le spinte esercitate dal terrapieno e dagli eventuali carichi presenti su di esso sono state valutate con il metodo di Culmann.

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente.



Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea. I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio del terreno tenendo conto anche dell'eventuale presenza della falda (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima. La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno. Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Il metodo, per come è stato descritto, non permette di ricavare il diagramma delle pressioni agente sulla parete (e quindi le sollecitazioni lungo la parete) e inoltre risulta di difficile determinazione il punto di applicazione della spinta.

Nell'ambito dello specifico Software utilizzato, il procedimento è stato implementato suddividendo l'altezza della parete in tanti tratti di ampiezza dz, al fine di ricavare l'andamento delle pressioni lungo l'altezza del muro; in corrispondenza di ogni ordinata **zi** si trova il cuneo di rottura e la spinta **Si** ottenendo la distribuzione della spinta **S(z)** lungo l'altezza della parete.

Nota la distribuzione delle spinte lungo l'altezza della parete, la pressione ad una generica profondità \mathbf{z} , rispetto alla sommità della parete, è espressa da:

$$\sigma(z) = \frac{dS}{dz}$$

Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta. Inoltre dal diagramma delle pressioni è facile ricavare l'andamento delle sollecitazioni lungo la parete, con gli usuali metodi della scienza delle costruzioni.

Per l'attrito paramento – terreno si utilizza il valore $\delta = 0.6 \, \varphi$ ' mentre per quanto riguarda l'attrito fondazione muro – terreno, in funzione dell'angolo d'attrito del terreno, si sono assunti i seguenti valori:

per $\varphi < 30^{\circ} \delta = tg \varphi'$;

per $\phi > 35^{\circ} \delta = 0.85 \text{ tg } \phi$ ';

per $30^{\circ} \le \varphi \le 35^{\circ}$ δ si ricava per interpolazione lineare

Infine l'adesione ca terra-opera sarà considerata nulla.

11.2.3 Coefficienti sismici

Il § 7.11.3.5.2 del DM 18, precisa che l'analisi della sicurezza dei muri di sostegno in condizioni sismiche, può essere eseguite mediante i metodi pseudo-statici o i metodi degli spostamenti. Nell'analisi pseudo-statica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico. Nelle verifiche, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni:

$$k_h = \beta_S \cdot \frac{a_{max}}{g}$$
 [7.11.3]

$$k_v = \pm 0.5 \cdot k_h$$
 [7.11.4]

dove

β_s = coefficiente di riduzione dell'accelerazione massima attesa al sito;

a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima attesa al sito può essere valutata con la relazione

$$\mathbf{a}_{\text{max}} = \mathbf{S} \cdot \mathbf{a}_{g} = (\mathbf{S}_{S} \cdot \mathbf{S}_{T}) \cdot \mathbf{a}_{g}$$
 [7.11.5]

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_S), di cui al § 3.2.3.2:

a_s = accelerazione orizzontale massima attesa su sito di riferimento rigido.

 β_s : coefficiente di riduzione dell'accelerazione massima attesa al sito, che assume i valori specificati di seguito:

	Categoria d	i sottosuolo					
	A	A B, C, D, E					
	βs	βs					
$0.2 \le a_g(g) \le 0.4$	0,30	0,28					
$0.1 \le a_g(g) \le 0.2$	0,27	0,24					

0.20

0.20

Tab. 7.11.I - Coefficienti di riduzione dell'accelerazione massima attesa al sito

Nelle analisi eseguite con il metodo pseudostatico, i valori dei coefficienti sismici orizzontali e verticali, nelle verifiche allo stato limite ultimo, potranno essere assunti come definito al paragrafo 7.11.6.2.1 delle NTC anche per i muri su pali, con l'avvertenza di sostituire le relazioni 7.11.6 e 7.11.7 delle stesse norme tecniche con le espressioni di seguito riportate (Manuale RFI):

$$k_h = 2 \cdot \beta_m \cdot S_T \cdot S_S \cdot \frac{a_g}{g}$$
 $k_v = \frac{1}{2} \cdot k_h$

11.2.4 Spinte del terreno in Fase sismica

In condizioni sismiche si adotta la formulazione di Culmann come già illustrata al paragrafo precedente, inserendo nell'equazione risolutiva anche la forza di inerzia del cuneo di spinta.

11.2.5 Carichi Accidentali

 $a_{R}(g) \leq 0.1$

Si considera un carico dovuto ai mezzi di manutenzione ai lati della struttura pari a 5 kN/m².

11.2.6 Combinazioni di Carico

Sulla base della definizione dei carichi di cui sopra, in accordo a quanto prescritto dal DM 17/01/2018, sono state individuate le combinazioni di carico per le verifiche di stati limite ultimi e di esercizio in condizioni statiche e in condizioni sismiche.

- combinazione fondamentale (SLU)
- combinazione di esercizio (SLE)
- combinazione sismica (SLV): il coefficiente di combinazione per il carico variabile Q_1 è pari a 0

Ai fini della scelta dei coefficienti parziali da applicare alle azioni (γ), la norma definisce inoltre, per il caso specifiche delle opere di sostegno, due possibili approcci progettuali ovvero:

Ai fini della scelta dei coefficienti parziali da applicare alle azioni (γ), la norma definisce inoltre, per il caso specifiche delle opere di sostegno, due possibili approcci progettuali ovvero:

Approccio 1:

Fase Statica: A1+M1+R1 (STR – Combinazione per le verifiche strutturali)

A2+M2+R1 (GEO – Combinazione per le verifiche geotecniche)

Fase Sismica: 1+M1+R1 (EQK-STR – Combinazione per le verifiche strutturali in fase sismica)

1+M2+R1 (EQK-GEO – Combinazione per le verifiche geotecniche in fase sismica)

Approccio 2:

Fase Statica: A1+M1+R3 (STR / GEO – Combinazione per le verifiche strutturali e geotecniche)

Fase Sismica: 1+M1+R3 (EQK- STR/GEO – Combinazione per le verifiche strutturali e geotecniche in fase sismica) Nel caso in esame si opererà utilizzando l'APPROCCIO 2.

Per un riepilogo delle Combinazioni di Calcolo considerate nelle analisi si rimanda ai tabulati di calcolo in allegato.

11.3 CRITERI GENERALI DI VERIFICA DELLE OPERE

Nel seguente paragrafo si riporta una descrizione riguardante procedure e criteri di calcolo adottati per l'effettuazione di tutte le verifiche prescritte dalla normative vigente.

11.3.1 Verifiche geotecniche

Le verifiche geotecniche sono quelle che coinvolgono la resistenza del terreno nell'ambito di quelle prescritte dalla normativa e come già illustrate al paragrafo precedente.

Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro, sia minore di tutte le forze resistenti lungo la stessa direzione.

La verifica a scorrimento risulta in particolare soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento (\mathbf{Fr}) fattorizzata secondo un opportuno coefficiente parziale γ_r stabilito dalla normativa e la risultante delle forze mobilitanti (\mathbf{Fs}) risulti non inferiore all'unita:

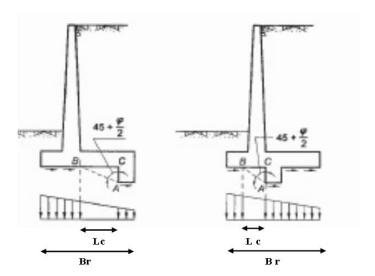
$$(F_r/\gamma_r)/F_s \geqslant 1$$

ovvero che il rapporto Fr/Fs risulti non inferiore di γ_r , fissato dalla normativa pari ad 1,1 per verifiche in fase statica e pari ad 1,0, per le verifiche in fase sismica.

Le forze che intervengono nella **Fs** sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione.

Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δf l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con Br la larghezza della fondazione reagente, la forza resistente può esprimersi come


$$F_r = N \ tg \ \delta_f + c_a B_r$$

In casi particolari specificati dalla normativa, come già descritto al paragrafo precedente, è possibile eventualmente tener conto della resistenza passiva Sp del terreno a valle del muro.

Come già ampiamente illustrato al paragrafo precedente, la valutazione delle azioni resistenti e di quelle mobilitanti, dovrà tener conto dei coefficienti A ed M fissati dalla normativa per la combinazioni di verifica specifica.

Nel caso di fondazione con dente, è possibile in linea generale tener conto della resistenza passiva sviluppatasi lungo il cuneo passante per lo spigolo inferiore del dente, secondo quanto riportato negli schemi delle figure seguenti:

Il procedimento utilizzato dal Software fa riferimento in particolare alle teoria di Lancellotta-Calavera, per i cui dettagli si rimanda alla letteratura tecnica; nella fattispecie, la procedura di calcolo implementata, prevede la definizione dello schema geometrico del cuneo di rottura, attraverso un procedimento iterativo volto a determinare il coefficiente di sicurezza a scorrimento minimo.

In dipendenza della geometria della fondazione e del dente, dei parametri geotecnici del terreno e del carico risultante in fondazione, tale cuneo può avere forma triangolare o trapezoidale.

Detta pertanto N la componente normale del carico agente sul piano di posa della fondazione, Q l'aliquota di carico gravante sul cuneo passivo, Sp la resistenza passiva, Lc l'ampiezza del cuneo e indicando con δf l'angolo d'attrito terrenofondazione, con c_a l'adesione terreno-fondazione e con c_a l'adesione e con c

$$Fr = (N - Q) \cdot tg(\delta_t) + Sp + ca \cdot Lr$$

con Lr = Br - Lc

Per quanto riguarda l'attrito fondazione muro – terreno considerato ai fini delle verifiche di scorrimento sul piano di posa della fondazione, si è assunto quanto segue:

per $\phi < 30^{\circ} \mu = tg \phi$;

per $\phi > 35^{\circ}$ $\mu = 0.85$ tg ϕ ';

per $30^{\circ} \le \phi \le 35^{\circ}$ μ si ricava per interpolazione lineare

Infine l'adesione ca terra-opera è stata assunta pari al valore di coesione del terreno di fondazione.

Verifica a carico limite

Per la valutazione del carico limite delle fondazioni dirette si utilizza il criterio di Brinch-Hansen di cui nel seguito si riporta la relativa trattazione teorica:

Dette:

c Coesione

ca Adesione lungo la base della fondazione ($ca \le c$)

V Azione tagliante

φ Angolo d'attrito

δ Angolo di attrito terreno fondazione

γ Peso specifico del terreno

Kp Coefficiente di spinta passiva espresso da $Kp = tan2(45^{\circ} + \phi/2)$

B Larghezza della fondazione

L Lunghezza della fondazione

D Profondità del piano di posa della fondazione

η inclinazione piano posa della fondazione

P Pressione geostatica in corrispondenza del piano di posa della fondazione

qult Carico ultimo della fondazione

Risulta:

Caso generale

$$q_{ult} = \mathbf{c} \cdot N_{\mathbf{c}} \cdot \mathbf{s_c} \cdot d_{\mathbf{c}} \cdot i_{\mathbf{c}} \cdot g_{\mathbf{c}} \cdot b_{\mathbf{c}} + q \cdot N_{\mathbf{d}} \cdot \mathbf{s_a} \cdot d_{\mathbf{d}} \cdot i_{\mathbf{d}} \cdot g_{\mathbf{d}} \cdot b_{\mathbf{d}} + 0.5 \cdot B \cdot \gamma \cdot N_{\gamma} \cdot \mathbf{s_{\gamma}} \cdot d_{\gamma} \cdot i_{\gamma} \cdot g_{\gamma} \cdot b_{\gamma}$$

Caso di terreno puramente coesivo $\phi = 0$

$$q_{ult} = 5.14 \cdot c \cdot (1 + s_c + d_c - i_c - g_c - b_c) + q$$

in cui dc, dq e $d\gamma$ sono i fattori di profondità, sc, sq e $s\gamma$ sono i fattori di forma, ic, iq e $i\gamma$ sono i fattori di inclinazione del carico, bc, bq e $b\gamma$, sono i fattori di inclinazione del piano di posa e gc, gq e $g\gamma$ sono fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori Nc , Nq , $N\gamma$ sono espressi come:

 $N_a = Kp e^{\pi tg\varphi}$

 $N_c = (N_q - 1)ctg\varphi$

 $N_{\gamma} = 1.5(N_q - 1)tg\varphi$

Fattori di forma

per φ = 0	per $\phi > 0$
	$s_c = 1 + \frac{N_q}{N_c} \frac{B}{L}$
$s_c = 0.2 \frac{B}{L}$	$s_q = 1 + \frac{B}{L} t g \phi$
	$s_{\gamma} = 1 - 0.4 \frac{B}{L}$

Fattori di profondità

$$k = \frac{D}{B}$$
 se $\frac{D}{B} \le 1$
 $k = arctg \frac{D}{B}$ se $\frac{D}{B} > 1$

Fattori inclinazione del carico

Indicando con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con Af l'area efficace della fondazione ottenuta come Af = B'xL' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e

all'eccentricità del carico eB, eL dalle relazioni $B' = B - 2e_B$ $L' = L - 2e_L$) con η l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

I fattori di inclinazione del carico si esprimono come:

per φ = 0	per φ > 0					
$i_c = \frac{1}{2} \left(1 - \sqrt{1 - \frac{H}{A_f c_a}} \right)$	$i_c = i_q - \frac{1-i_q}{N_q-1}$					
	$i_q = \left(1 - \frac{0.5H}{V + A_f c_a \cot \phi}\right)^5$					
	Per η =0	$i_{\gamma} = \left(1 - \frac{0.7H}{V + A_f c_a \cot \phi}\right)^5$				
	Per η >0	$i_{\gamma} = \left(1 - \frac{\left(0.7 - \eta^{\circ}/450^{\circ}\right)H}{V + A_{f}c_{a}\cot\phi}\right)^{5}$				

Fattori inclinazione del piano di posa della fondazione

per φ = 0	per $\phi > 0$
$b_c = \frac{\eta^{\circ}}{147^{\circ}}$	$b_c = 1 - \frac{\eta^*}{147^\circ}$ $b_q = e^{-2\eta g \phi}$ $b_{\gamma} = e^{-2.7\eta g \phi}$

Fattori di inclinazione del terreno

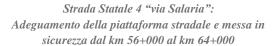
per φ = 0	per φ > 0
$g_c = \frac{\beta^o}{147^o}$	$g_c = 1 - \frac{\beta^o}{147^o}$ $g_q = g_\gamma = (1 - 0.5tg\beta)^5$

Si precisa infine che, in relazione alle specifiche di normativa di cui al paragrafo precedente, ai fini delle verifiche, al valore di \mathbf{q}_{ult} determinato con i criteri di cui sopra, va applicato un coefficiente parziale di sicurezza R pari ad $\mathbf{1.4}$ per le verifiche in fase statica ovvero pari ad $\mathbf{1.2}$ per le verifiche in fase sismica, ovvero, equivalentemente, i coefficienti di sicurezza $\mathbf{q}_{ult}/\mathbf{q}_d$, dovranno risultare non inferiori ai predetti valori nelle due fasi di verifica citate.

Verifica a ribaltamento

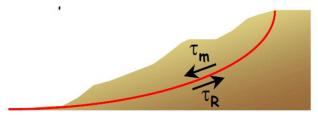
La verifica al ribaltamento dell'opera di sostegno, prevede la valutazione del coefficiente di sicurezza nei confronti del meccanismo di rotazione dell'opera rispetto al vertice esterno della fondazione.

Nella fattispecie, detti:


 $M_{\it rib}$: momento delle azioni ribaltanti; $M_{\it sta}$: momento delle azioni stabilizzanti occorrerà verificare quanto segue:

$$M_{sta}/R \ge M_{rib}$$

Con R pari ad 1.15 per le verifiche statiche e 1.00 per le verifiche in fase sismica. ovvero, equivalentemente, il rapporto $M_{sta'}/M_{rib}$ dovrà risultare non inferiore ai predetti valori nelle due fasi di verifica citate.


Verifica di stabilità globale

Nel presente paragrafo sono illustrati i Criteri generali adottati per l'effettuazione delle Verifiche di Stabilità Globale prescritte dalla normativa. In generale, ciascuno metodo va alla ricerca del potenziali superfici di scivolamento, generalmente di forma circolare, in qualche caso anche di forma diversa, rispetto a cui effettuare un equilibrio alla rotazione (o roto-traslazione) della potenziale massa di terreno coinvolta nel possibile movimento e quindi alla

determinazione di un coefficiente di sicurezza coefficiente di sicurezza disponibile, espresso in via generale tra la resistenza al taglio disponibile lungo la superficie S e quella effettivamente mobilitata lungo la stessa superficie, ovvero:

$$FS = \frac{\int_{S} \tau_{\text{rott}}}{\int_{S} \tau_{\text{mob}}}$$

Si procede generalmente suddividendo la massa di terreno coinvolta nella verifica in una serie di conci di dimensione b, interessati da azioni taglianti e normali sulle superfici di delimitazione dello stesso come di seguito rappresentato.

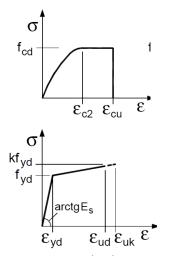
Per il caso in esame, le verifiche sono state effettuate rispetto a superfici di forma circolare, utilizzando il metodo di **Bishop**, per i cui dettagli si rimanda a quanto esposto a riguarda nella letteratura tecnica.

Le verifiche sono state effettuate rispetto a famiglie di superfici potenziali di rottura disegnate in maniera tale da non intersecare le opere, escludendo quindi ai fini della stabilità la resistenza al taglio locale offerta dalle opere, fermo restando tutte le prescrizioni definite dalla normativa per questo tipo di verifica, come già illustrate precedentemente; riguardo quest'ultimo aspetto, si segnala, come già ampiamente illustrato in precedenza, che la norma impone di fattorizzare con un coefficiente parziale R le resistenze, che assume valore 1.1 per le verifiche statiche ed 1.2 per le verifiche in fase sismica, ovvero, equivalentemente, che il valore di Fs come precedentemente definito, risulti non inferiore ai predetti valori.

Verifiche geotecniche su pali

Note le terne di azioni (Fx, Fz, ed My) ad intradosso platea di fondazione, si procede come segue:

- calcolo dei carichi assiali sui pali;
- dimensionamento geotecnico dei pali;
- verifica strutturale dei pali;
- verifica strutturale della platea di fondazione.



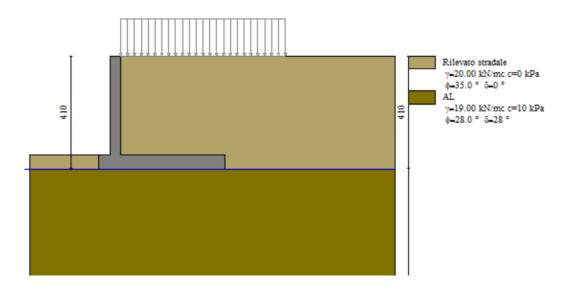
11.3.2 Verifiche strutturali

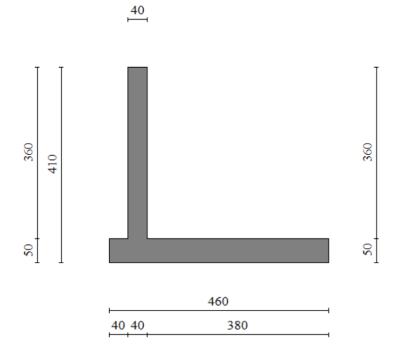
I criteri generali di verifica utilizzati per la valutazione delle capacità resistenti delle sezioni, per la condizione SLU, e per le massime tensioni nei materiali nonché per il controllo della fessurazione, relativamente agli SLE, sono quelli definiti al p.to 4.1.2 del DM 17.01.18.

Verifica a flessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione in c.a., viene effettuata con i criteri di cui al punto 4.1.2.3.4.2 del DM 18, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione -


Legami costitutivi Calcestruzzo ed Acciaio


11.4 ANALISI E VERIFICHE MURO

Di seguito si riportano i risultati delle analisi dei muri in oggetto. Si precisa che nel modello di calcolo il software trascura il contributo della spinta passiva per il terreno di valle.

11.4.1 Modello di calcolo

Modello di calcolo muro

Geometria muro

11.4.2 Risultati

n°	Combinazione	Sismica	FSsco	FSqlim	FSrib	FSstab	FShyd	FSupl
1	STR (A1-M1-R3)		3.115	4.237				
2	STR (A1-M1-R3)	H+V	1.327	1.768				
3	STR (A1-M1-R3)	H-V	1.106	1.810				
4	GEO (A2-M2-R2)					1.840		
5	GEO (A2-M2-R2)	H+V				1.492		
6	GEO (A2-M2-R2)	H-V				1.378		
7	EQU (A1-M1-R3)				9.955			
8	EQU (A1-M1-R3)	H+V			3.330			
9	EQU (A1-M1-R3)	H-V			2.302			

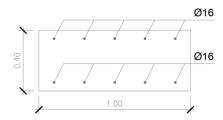
Sintesi risultati verifiche Momento [kNm] Taglio [kN] Sforzo normale [kN] -321.09 100.23 67.39 -113.63

Inviluppo sollecitazioni sul muro

11.4.1 Verifiche strutturali

Le verifiche strutturali del muro di sostegno sono riportate in dettaglio nell'elaborato "T01TM03STRRE01 – allegato". Si riporta qui di seguito il report sintetico delle verifiche strutturali:

Verifiche a flessione


Elementi calcolati a trave

Simbologia adottata

n° indice sezione
B larghezza sezione espresso in [cm]
H altezza sezione espresso in [cm]
Afi area ferri inferiori espresso in [cmq]
Afs area ferri superiori espressa in [cmq]
M momento agente espressa in [kMm]
N sforzo normale agente espressa in [kN]
Mu momento ultimi espresso in [kNm]

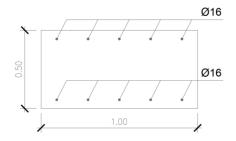
Nu sforzo normale ultimo espressa in [kN]
FS fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

Combinazione nº 1 - STR (A1-M1-R3)

n°	Y	В	н	Afi	Afs	M	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0.00	100	40	10.05	10.05	0.00	0.00	0.00	0.00	100000.000
2	-0.10	100	40	10.05	10.05	0.01	0.98	77.87	7390.30	7535.891
3	-0.20	100	40	10.05	10.05	0.05	1.96	172.55	7343.04	3743.851
4	-0.30	100	40	10.05	10.05	0.11	2.94	267.88	6890.70	2342.148
5	-0.40	100	40	10.05	10.05	0.22	3.92	350.16	6182.33	1576.031
6	-0.50	100	40	10.05	10.05	0.38	4.90	416.15	5420.24	1105.405
7	-0.60	100	40	10.05	10.05	0.58	5.88	461.54	4648.01	789.930
8	-0.70	100	40	10.05	10.05	0.85	6.86	486.68	3918.25	570.777
9	-0.80	100	40	10.05	10.05	1.19	7.85	498.53	3290.40	419.402
10	-0.90	100	40	10.05	10.05	1.60	8.83	503.84	2780.58	315.039
11	-1.00	100	40	10.05	10.05	2.09	9.81	506.33	2373.95	242.072
12	-1.10	100	40	10.05	10.05	2.67	10.79	508.08	2050.66	190.097
13	-1.20	100	40	10.05	10.05	3.35	11.77	509.44	1789.79	152.087
14	-1.30	100	40	10.05	10.05	4.13	12.75	510.55	1576.25	123.638
15	-1.40	100	40	10.05	10.05	5.02	13.73	511.08	1398.06	101.828
16	-1.50	100	40	10.05	10.05	6.03	14.71	511.51	1248.74	84.890
17	-1.60	100	40	10.05	10.05	7.16	15.69	511.87	1122.36	71.530
18	-1.70	100	40	10.05	10.05	8.42	16.67	512.19	1014.41	60.846
19	-1.80	100	40	10.05	10.05	9.82	17.65	512.45	921.43	52.199
20	-1.90	100	40	10.05	10.05	11.36	18.63	512.69	840.77	45.123
21	-2.00	100	40	10.05	10.05	13.06	19.61	512.89	770.32	39.275
22	-2.10	100	40	10.05	10.05	14.92	20.59	507.63	700.92	34.035
23	-2.20	100	40	10.05	10.05	16.94	21.57	499.87	636.74	29.513
24	-2.30	100	40	10.05	10.05	19.13	22.56	493.18	581.41	25.777
25	-2.40	100	40	10.05	10.05	21.51	23.54	487.37	533.31	22.659
26	-2.50	100	40	10.05	10.05	24.07	24.52	482.28	491.19	20.035
27	-2.60	100	40	10.05	10.05	26.83	25.50	477.80	454.06	17.808
28	-2.70	100	40	10.05	10.05	29.79	26.48	473.82	421.15	15.905
29	-2.80	100	40	10.05	10.05	32.96	27.46	470.27	391.82	14.269
30	-2.90	100	40	10.05	10.05	36.34	28.44	467.10	365.54	12.853
31	-3.00	100	40	10.05	10.05	39.95	29.42	464.24	341.91	11.621
32	-3.10	100	40	10.05	10.05	43.78	30.40	461.66	320.56	10.544
33	-3.20	100	40	10.05	10.05	47.85	31.38	459.32	301.21	9.598
34	-3.30	100	40	10.05	10.05	52.17	32.36	457.20	283.60	8.763
35	-3.40	100	40	10.05	10.05	56.74	33.34	455.25	267.54	8.024
36	-3.50	100	40	10.05	10.05	61.56	34.32	453.48	252.83	7.366
37	-3.59	100	40	10.05	10.05	66.65	35.30	451.84	239.33	6.779

Combinazione nº 2 - STR (A1-M1-R3) H + V


n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0.00	100	40	10.05	10.05	0.00	0.00	0.00	0.00	100000.000
2	-0.10	100	40	10.05	10.05	0.05	1.10	282.16	6776.33	6170.893
3	-0.20	100	40	10.05	10.05	0.19	2.20	435.92	5131.85	2336.667
4	-0.30	100	40	10.05	10.05	0.43	3.29	490.00	3771.96	1144.982
5	-0.40	100	40	10.05	10.05	0.78	4.39	503.41	2852.02	649.301
6	-0.50	100	40	10.05	10.05	1.23	5.49	507.01	2255.97	410.882
7	-0.60	100	40	10.05	10.05	1.81	6.59	509.11	1853.90	281.377
8	-0.70	100	40	10.05	10.05	2.51	7.69	510.60	1565.64	203.680
9	-0.80	100	40	10.05	10.05	3.33	8.78	511.22	1347.88	153.432
10	-0.90	100	40	10.05	10.05	4.29	9.88	511.71	1178.85	119.281
11	-1.00	100	40	10.05	10.05	5.39	10.98	512.10	1044.00	95.072
12	-1.10	100	40	10.05	10.05	6.63	12.08	512.42	934.04	77.326
13	-1.20	100	40	10.05	10.05	8.02	13.18	512.68	842.77	63.956
14	-1.30	100	40	10.05	10.05	9.56	14.28	512.90	765.86	53.649
15	-1.40	100	40	10.05	10.05	11.26	15.37	506.45	691.19	44.960
16	-1.50	100	40	10.05	10.05	13.13	16.47	498.47	625.13	37.952
17	-1.60	100	40	10.05	10.05	15.17	17.57	491.72	569.33	32.404
18	-1.70	100	40	10.05	10.05	17.39	18.67	485.96	521.61	27.942
19	-1.80	100	40	10.05	10.05	19.79	19.77	480.97	480.38	24.303
20	-1.90	100	40	10.05	10.05	22.38	20.86	476.63	444.41	21.300
21	-2.00	100	40	10.05	10.05	25.16	21.96	472.81	412.80	18.796
22	-2.10	100	40	10.05	10.05	28.13	23.06	469.42	384.80	16.687
23	-2.20	100	40	10.05	10.05	31.31	24.16	466.41	359.86	14.896
24	-2.30	100	40	10.05	10.05	34.70	25.26	463.71	337.51	13.363
25	-2.40	100	40	10.05	10.05	38.30	26.35	461.28	317.38	12.043
26	-2.50	100	40	10.05	10.05	42.13	27.45	459.08	299.17	10.898
27	-2.60	100	40	10.05	10.05	46.17	28.55	457.08	282.62	9.899
28	-2.70	100	40	10.05	10.05	50.45	29.65	455.25	267.53	9.023
29	-2.80	100	40	10.05	10.05	54.97	30.75	453.58	253.72	8.252
30	-2.90	100	40	10.05	10.05	59.72	31.85	452.05	241.04	7.569
31	-3.00	100	40	10.05	10.05	64.73	32.94	450.64	229.36	6.962
32	-3.10	100	40	10.05	10.05	69.98	34.04	449.16	218.49	6.418
33	-3.20	100	40	10.05	10.05	75.49	35.14	447.80	208.44	5.932
34	-3.30	100	40	10.05	10.05	81.27	36.24	446.53	199.11	5.495
35	-3.40	100	40	10.05	10.05	87.31	37.34	445.36	190.44	5.101
36	-3.50	100	40	10.05	10.05	93.63	38.43	444.26	182.36	4.745
37	-3.59	100	40	10.05	10.05	100.23	39.53	443.24	174.82	4.422

Combinazione nº 3 - STR (A1-M1-R3) H - V

n°	Υ	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0.00	100	40	10.05	10.05	0.00	0.00	0.00	0.00	100000.000
2	-0.10	100	40	10.05	10.05	0.04	0.86	280.71	6787.95	7863.254
3	-0.20	100	40	10.05	10.05	0.15	1.73	435.65	5135.74	2974.657
4	-0.30	100	40	10.05	10.05	0.34	2.59	490.29	3759.56	1451.708
5	-0.40	100	40	10.05	10.05	0.61	3.45	503.56	2827.73	818.921
6	-0.50	100	40	10.05	10.05	0.98	4.32	507.17	2226.17	515.766
7	-0.60	100	40	10.05	10.05	1.45	5.18	509.28	1821.14	351.606
8	-0.70	100	40	10.05	10.05	2.02	6.04	510.70	1531.04	253.369
9	-0.80	100	40	10.05	10.05	2.69	6.91	511.33	1312.57	190.062
10	-0.90	100	40	10.05	10.05	3.48	7.77	511.81	1143.32	147.160
11	-1.00	100	40	10.05	10.05	4.38	8.63	512.20	1008.60	116.837
12	-1.10	100	40	10.05	10.05	5.41	9.50	512.52	898.98	94.672
13	-1.20	100	40	10.05	10.05	6.57	10.36	512.78	808.19	78.018
14	-1.30	100	40	10.05	10.05	7.87	11.22	511.03	729.07	64.966
15	-1.40	100	40	10.05	10.05	9.30	12.09	501.72	652.02	53.950
16	-1.50	100	40	10.05	10.05	10.88	12.95	493.98	587.98	45.408
17	-1.60	100	40	10.05	10.05	12.61	13.81	487.45	533.98	38.661
18	-1.70	100	40	10.05	10.05	14.49	14.68	481.88	487.89	33.246
19	-1.80	100	40	10.05	10.05	16.54	15.54	477.08	448.12	28.839
20	-1.90	100	40	10.05	10.05	18.76	16.40	472.89	413.50	25.211
21	-2.00	100	40	10.05	10.05	21.14	17.26	469.22	383.12	22.191
22	-2.10	100	40	10.05	10.05	23.71	18.13	465.98	356.27	19.653
23	-2.20	100	40	10.05	10.05	26.46	18.99	463.09	332.39	17.502
24	-2.30	100	40	10.05	10.05	29.40	19.85	460.51	311.03	15.665
25	-2.40	100	40	10.05	10.05	32.53	20.72	458.19	291.82	14.086
26	-2.50	100	40	10.05	10.05	35.86	21.58	456.09	274.48	12.719
27	-2.60	100	40	10.05	10.05	39.40	22.44	454.19	258.75	11.529
28	-2.70	100	40	10.05	10.05	43.14	23.31	452.46	244.43	10.487
29	-2.80	100	40	10.05	10.05	47.11	24.17	450.88	231.35	9.571
30	-2.90	100	40	10.05	10.05	51.29	25.03	449.27	219.28	8.759
31	-3.00	100	40	10.05	10.05	55.70	25.90	447.76	208.18	8.038
32	-3.10	100	40	10.05	10.05	60.35	26.76	446.38	197.95	7.397
33	-3.20	100	40	10.05	10.05	65.23	27.62	445.09	188.50	6.824
34	-3.30	100	40	10.05	10.05	70.35	28.49	443.91	179.75	6.310
35	-3.40	100	40	10.05	10.05	75.72	29.35	442.80	171.63	5.848
36	-3.50	100	40	10.05	10.05	81.35	30.21	441.78	164.08	5.431
37	-3.59	100	40	10.05	10.05	87.23	31.08	440.82	157.04	5.053

Fondazione

Combinazione nº 1 - STR (A1-M1-R3)

n°	Υ	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-0.80	100	50	10.05	10.05	0.00	0.00	0.00	0.00	100000.000
2	-0.70	100	50	10.05	10.05	0.41	0.00	555.42	0.00	1338.887
3	-0.60	100	50	10.05	10.05	1.66	0.00	555.42	0.00	335.330
4	-0.50	100	50	10.05	10.05	3.72	0.00	555.42	0.00	149.307
5	-0.40	100	50	10.05	10.05	6.60	0.00	555.42	0.00	84.139
6	0.00	100	50	10.05	10.05	-233.12	0.00	-555.42	0.00	2.383
7	0.10	100	50	10.05	10.05	-222.33	0.00	-555.42	0.00	2.498
8	0.19	100	50	10.05	10.05	-211.73	0.00	-555.42	0.00	2.623
9	0.29	100	50	10.05	10.05	-201.34	0.00	-555.42	0.00	2.759
10	0.39	100	50	10.05	10.05	-191.17	0.00	-555.42	0.00	2.905
11	0.49	100	50	10.05	10.05	-181.20	0.00	-555.42	0.00	3.065
12	0.58	100	50	10.05	10.05	-171.46	0.00	-555.42	0.00	3.239
13	0.68	100	50	10.05	10.05	-161.94	0.00	-555.42	0.00	3.430
14	0.78	100	50	10.05	10.05	-152.65	0.00	-555.42	0.00	3.639
15	0.88	100	50	10.05	10.05	-143.58	0.00	-555.42	0.00	3.868
16	0.97	100	50	10.05	10.05	-134.76	0.00	-555.42	0.00	4.122
17	1.07	100	50	10.05	10.05	-126.17	0.00	-555.42	0.00	4.402
18	1.17	100	50	10.05	10.05	-117.83	0.00	-555.42	0.00	4.714
19	1.27	100	50	10.05	10.05	-109.73	0.00	-555.42	0.00	5.062
20	1.36	100	50	10.05	10.05	-101.89	0.00	-555.42	0.00	5.451
21	1.46	100	50	10.05	10.05	-94.30	0.00	-555.42	0.00	5.890
22	1.56	100	50	10.05	10.05	-86.97	0.00	-555.42	0.00	6.386
23	1.66	100	50	10.05	10.05	-79.91	0.00	-555.42	0.00	6.950
24	1.75	100	50	10.05	10.05	-73.12	0.00	-555.42	0.00	7.596
25 26	1.85	100	50 50	10.05	10.05	-66.60	0.00	-555.42	0.00	8.340
26	1.95	100	50	10.05 10.05	10.05	-60.36 -54.40	0.00	-555.42 -555.42	0.00	9.202
28	2.05	100 100	50	10.05	10.05 10.05	-5 4.4 0 -48.72	0.00	-555.42 -555.42	0.00	10.210 11.400
29	2.14	100	50	10.05	10.05	-43.34	0.00	-555.42	0.00	12.816
30	2.24	100	50	10.05	10.05	-38.25	0.00	-555.42	0.00	14.522
31	2.44	100	50	10.05	10.05	-33.45	0.00	-555.42	0.00	16.603
32	2.53	100	50	10.05	10.05	-28.96	0.00	-555.42	0.00	19.177
33	2.63	100	50	10.05	10.05	-24.78	0.00	-555.42	0.00	22.416
34	2.73	100	50	10.05	10.05	-20.90	0.00	-555.42	0.00	26.569
35	2.83	100	50	10.05	10.05	-17.35	0.00	-555.42	0.00	32.019
36	2.92	100	50	10.05	10.05	-14.11	0.00	-555.42	0.00	39.372
37	3.02	100	50	10.05	10.05	-11.19	0.00	-555.42	0.00	49.632
38	3.12	100	50	10.05	10.05	-8.60	0.00	-555.42	0.00	64.568
39	3.22	100	50	10.05	10.05	-6.34	0.00	-555.42	0.00	87.537
40	3.31	100	50	10.05	10.05	-4.42	0.00	-555.42	0.00	125.557
41	3.41	100	50	10.05	10.05	-2.84	0.00	-555.42	0.00	195.414
42	3.51	100	50	10.05	10.05	-1.61	0.00	-555.42	0.00	346.047
43	3.61	100	50	10.05	10.05	-0.72	0.00	-555.42	0.00	775.576
44	3.70	100	50	10.05	10.05	-0.18	0.00	-555.42	0.00	3090.284
45	3.80	100	50	10.05	10.05	0.00	0.00	0.00	0.00	100000.000

Combinazione n° 2 - STR (A1-M1-R3) H + V

0	V	В	Н	Afi	A.S-	M	N	M	NI	FS
n°	•	_			Afs	М		Mu	Nu	12
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-0.80	100	50	10.05	10.05	0.00	0.00	0.00	0.00	100000.000
2	-0.70	100	50	10.05	10.05	0.72	0.00	555.42	0.00	767.267
3	-0.60	100	50	10.05	10.05	2.88	0.00	555.42	0.00	193.153
4	-0.50	100	50	10.05	10.05	6.42	0.00	555.42	0.00	86.448
5	-0.40	100	50	10.05	10.05	11.34	0.00	555.42	0.00	48.971
6	0.00	100	50	10.05	10.05	-190.54	0.00	-555.42	0.00	2.915
7	0.10	100	50	10.05	10.05	-187.59	0.00	-555.42	0.00	2.961
8	0.19	100	50	10.05	10.05	-184.19	0.00	-555.42	0.00	3.016
9	0.29	100	50	10.05	10.05	-180.37	0.00	-555.42	0.00	3.079
10	0.39	100	50	10.05	10.05	-176.16	0.00	-555.42	0.00	3.153
11	0.49	100	50	10.05	10.05	-171.60	0.00	-555.42	0.00	3.237
12	0.58	100	50	10.05	10.05	-166.70	0.00	-555.42	0.00	3.332
13	0.68	100	50	10.05	10.05	-161.49	0.00	-555.42	0.00	3.439

n°	Y	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
14	0.78	100	50	10.05	10.05	-156.01	0.00	-555.42	0.00	3.560
15	0.88	100	50	10.05	10.05	-150.28	0.00	-555.42	0.00	3.696
16	0.97	100	50	10.05	10.05	-144.32	0.00	-555.42	0.00	3.849
17	1.07	100	50	10.05	10.05	-138.17	0.00	-555.42	0.00	4.020
18	1.17	100	50	10.05	10.05	-131.86	0.00	-555.42	0.00	4.212
19	1.27	100	50	10.05	10.05	-125.40	0.00	-555.42	0.00	4.429
20	1.36	100	50	10.05	10.05	-118.84	0.00	-555.42	0.00	4.674
21	1.46	100	50	10.05	10.05	-112.19	0.00	-555.42	0.00	4.951
22	1.56	100	50	10.05	10.05	-105.49	0.00	-555.42	0.00	5.265
23	1.66	100	50	10.05	10.05	-98.75	0.00	-555.42	0.00	5.624
24	1.75	100	50	10.05	10.05	-92.02	0.00	-555.42	0.00	6.036
25	1.85	100	50	10.05	10.05	-85.32	0.00	-555.42	0.00	6.510
26	1.95	100	50	10.05	10.05	-78.68	0.00	-555.42	0.00	7.060
27	2.05	100	50	10.05	10.05	-72.11	0.00	-555.42	0.00	7.702
28	2.14	100	50	10.05	10.05	-65.66	0.00	-555.42	0.00	8.459
29	2.24	100	50	10.05	10.05	-59.35	0.00	-555.42	0.00	9.358
30	2.34	100	50	10.05	10.05	-53.21	0.00	-555.42	0.00	10.439
31	2.44	100	50	10.05	10.05	-47.26	0.00	-555.42	0.00	11.753
32	2.53	100	50	10.05	10.05	-41.53	0.00	-555.42	0.00	13.374
33	2.63	100	50	10.05	10.05	-36.05	0.00	-555.42	0.00	15.406
34	2.73	100	50	10.05	10.05	-30.86	0.00	-555.42	0.00	18.001
35	2.83	100	50	10.05	10.05	-25.96	0.00	-555.42	0.00	21.392
36	2.92	100	50	10.05	10.05	-21.41	0.00	-555.42	0.00	25.947
37	3.02	100	50	10.05	10.05	-17.21	0.00	-555.42	0.00	32.274
38	3.12	100	50	10.05	10.05	-13.40	0.00	-555.42	0.00	41.439
39	3.22	100	50	10.05	10.05	-10.01	0.00	-555.42	0.00	55.464
40	3.31	100	50	10.05	10.05	-7.07	0.00	-555.42	0.00	78.560
41	3.41	100	50	10.05	10.05	-4.60	0.00	-555.42	0.00	120.771
42	3.51	100	50	10.05	10.05	-2.63	0.00	-555.42	0.00	211.299
43	3.61	100	50	10.05	10.05	-1.19	0.00	-555.42	0.00	467.998
44	3.70	100	50	10.05	10.05	-0.30	0.00	-555.42	0.00	1843.209
45	3.80	100	50	10.05	10.05	0.00	0.00	0.00	0.00	100000.000

Combinazione nº 3 - STR (A1-M1-R3) H - V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	ſkN7	[kNm]	ſkN7	
1	-0.80	100	50	10.05	10.05	0.00	0.00	0.00	0.00	100000.000
2	-0.70	100	50	10.05	10.05	0.62	0.00	555.42	0.00	897.976
3	-0.60	100	50	10.05	10.05	2.45	0.00	555.42	0.00	226.271
4	-0.50	100	50	10.05	10.05	5.48	0.00	555.42	0.00	101.367
5	-0.40	100	50	10.05	10.05	9.66	0.00	555.42	0.00	57.478
6	0.00	100	50	10.05	10.05	-321.09	0.00	-555.42	0.00	1.730
7	0.10	100	50	10.05	10.05	-311.32	0.00	-555.42	0.00	1.784
8	0.19	100	50	10.05	10.05	-301.30	0.00	-555.42	0.00	1.843
9	0.29	100	50	10.05	10.05	-291.06	0.00	-555.42	0.00	1.908
10	0.39	100	50	10.05	10.05	-280.62	0.00	-555.42	0.00	1.979
11	0.49	100	50	10.05	10.05	-270.01	0.00	-555.42	0.00	2.057
12	0.58	100	50	10.05	10.05	-259.25	0.00	-555.42	0.00	2.142
13	0.68	100	50	10.05	10.05	-248.38	0.00	-555.42	0.00	2.236
14	0.78	100	50	10.05	10.05	-237.42	0.00	-555.42	0.00	2.339
15	0.88	100	50	10.05	10.05	-226.39	0.00	-555.42	0.00	2.453
16 17	0.97 1.07	100 100	50 50	10.05 10.05	10.05 10.05	-215.33 -204.26	0.00	-555.42 -555.42	0.00	2.579 2.719
18	1.07	100	50	10.05	10.05	-193.20	0.00	-555.42	0.00	2.875
19	1.17	100	50	10.05	10.05	-193.20	0.00	-555.42	0.00	3.049
20	1.36	100	50	10.05	10.05	-171.26	0.00	-555.42	0.00	3.243
21	1.46	100	50	10.05	10.05	-160.42	0.00	-555.42	0.00	3.462
22	1.56	100	50	10.05	10.05	-149.71	0.00	-555.42	0.00	3.710
23	1.66	100	50	10.05	10.05	-139.15	0.00	-555.42	0.00	3.992
24	1.75	100	50	10.05	10.05	-128.76	0.00	-555.42	0.00	4.313
25	1.85	100	50	10.05	10.05	-118.59	0.00	-555.42	0.00	4.684
26	1.95	100	50	10.05	10.05	-108.65	0.00	-555.42	0.00	5.112
27	2.05	100	50	10.05	10.05	-98.97	0.00	-555.42	0.00	5.612
28	2.14	100	50	10.05	10.05	-89.58	0.00	-555.42	0.00	6.200
29	2.24	100	50	10.05	10.05	-80.50	0.00	-555.42	0.00	6.900
30	2.34	100	50	10.05	10.05	-71.76	0.00	-555.42	0.00	7.740
31	2.44	100	50	10.05	10.05	-63.39	0.00	-555.42	0.00	8.761
32	2.53	100	50	10.05	10.05	-55.42	0.00	-555.42	0.00	10.022
33	2.63	100	50	10.05	10.05	-47.87	0.00	-555.42	0.00	11.603
34	2.73	100	50	10.05	10.05	-40.77	0.00	-555.42	0.00	13.624
35	2.83	100	50	10.05	10.05	-34.14	0.00	-555.42	0.00	16.268
36	2.92	100	50	10.05	10.05	-28.02	0.00	-555.42	0.00	19.824
37	3.02	100	50	10.05	10.05	-22.43	0.00	-555.42	0.00	24.768
38	3.12	100	50	10.05	10.05	-17.39	0.00	-555.42	0.00	31.940
39	3.22	100	50	10.05	10.05	-12.94	0.00	-555.42	0.00	42.930
40	3.31	100	50	10.05	10.05	-9.10	0.00	-555.42	0.00	61.056
41	3.41	100	50	10.05	10.05	-5.89	0.00	-555.42	0.00	94.237
42	3.51	100	50	10.05	10.05	-3.36	0.00	-555.42	0.00	165.513
43	3.61	100	50	10.05	10.05	-1.51	0.00	-555.42	0.00	367.969
44	3.70	100	50	10.05	10.05	-0.38	0.00	-555.42	0.00	1454.557
45	3.80	100	50	10.05	10.05	0.00	0.00	0.00	0.00	100000.000

Verifiche a taglio

Simbologia adottata

indice sezione

SIMBOIC
n° (o Is)
Y
B
H
Asw
cotgθ
VRcd
VRsd
T

indice sezione
ordinata sezione espressa in [m]
larghezza sezione espresso in [cm]
altezza sezione espresso in [cm]
altezza sezione espresso in [cm]
area ferri a taglio espresso in [cmq]
inclinazione delle bielle compresse, \(\theta\) inclinazione dei puntoni di calcestruzzo
resistenza di progetto a 'taglio compressione' espressa in [kN]
resistenza di progetto a 'taglio trazione' espressa in [kN]
resistenza di progetto a 'taglio espresso in [kN]. Per elementi con armature trasversali resistenti al taglio (Asw>0.0) VRd=min(VRcd, VRsd).
taglio agente espressa in [kN]
fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente)

Paramento

Combinazione nº 1 - STR (A1-M1-R3)

n°	Y	В	Н	Asw	S	cotθ	V Rcd	VRsd	VRd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	0.00	100	40	0.00	0.00		0.00	0.00	198.46	0.00	100.000
2	-0.10	100	40	0.00	0.00		0.00	0.00	198.59	0.22	908.669
3	-0.20	100	40	0.00	0.00		0.00	0.00	198.72	0.51	390.824
4	-0.30	100	40	0.00	0.00		0.00	0.00	198.85	0.87	228.866
5	-0.40	100	40	0.00	0.00		0.00	0.00	198.98	1.30	153.201
6	-0.50	100	40	0.00	0.00		0.00	0.00	199.11	1.80	110.690
7	-0.60	100	40	0.00	0.00		0.00	0.00	199.24	2.37	84.094
8	-0.70	100	40	0.00	0.00		0.00	0.00	199.37	3.01	66.232
9	-0.80	100	40	0.00	0.00		0.00	0.00	199.49	3.72	53.606
10	-0.90	100	40	0.00	0.00		0.00	0.00	199.62	4.50	44.328
11	-1.00	100	40	0.00	0.00		0.00	0.00	199.75	5.36	37.298
12	-1.10	100	40	0.00	0.00		0.00	0.00	199.88	6.28	31.837
13	-1.20	100	40	0.00	0.00		0.00	0.00	200.01	7.27	27.506
14	-1.30	100	40	0.00	0.00		0.00	0.00	200.14	8.34	24.011
15	-1.40	100	40	0.00	0.00		0.00	0.00	200.27	9.47	21.149
16	-1.50	100	40	0.00	0.00		0.00	0.00	200.39	10.67	18.775
17	-1.60	100	40	0.00	0.00		0.00	0.00	200.52	11.95	16.782
18	-1.70	100	40	0.00	0.00		0.00	0.00	200.65	13.29	15.093
19	-1.80	100	40	0.00	0.00		0.00	0.00	200.78	14.71	13.649
20	-1.90	100	40	0.00	0.00		0.00	0.00	200.91	16.20	12.405
21	-2.00	100	40	0.00	0.00		0.00	0.00	201.04	17.75	11.324
22	-2.10	100	40	0.00	0.00		0.00	0.00	201.17	19.38	10.380
23	-2.20	100	40	0.00	0.00		0.00	0.00	201.30	21.08	9.550
24	-2.30	100	40	0.00	0.00		0.00	0.00	201.42	22.85	8.816
25	-2.40	100	40	0.00	0.00		0.00	0.00	201.55	24.69	8.165
26	-2.50	100	40	0.00	0.00		0.00	0.00	201.68	26.59	7.584
27	-2.60	100	40	0.00	0.00		0.00	0.00	201.81	28.57	7.063
28	-2.70	100	40	0.00	0.00		0.00	0.00	201.94	30.62	6.594
29	-2.80	100	40	0.00	0.00		0.00	0.00	202.07	32.74	6.171
30	-2.90	100	40	0.00	0.00		0.00	0.00	202.20	34.94	5.788
31	-3.00	100	40	0.00	0.00		0.00	0.00	202.33	37.20	5.439
32	-3.10	100	40	0.00	0.00		0.00	0.00	202.45	39.53	5.122
33	-3.20	100	40	0.00	0.00		0.00	0.00	202.58	41.93	4.831
34	-3.30	100	40	0.00	0.00		0.00	0.00	202.71	44.40	4.565
35	-3.40	100	40	0.00	0.00		0.00	0.00	202.84	46.95	4.321
36	-3.50	100	40	0.00	0.00		0.00	0.00	202.97	49.56	4.095
37	-3.59	100	40	0.00	0.00		0.00	0.00	203.10	52.24	3.887

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Υ	В	н	Asw	s	cotθ	VRcd	V _{Rsd}	VRd	Т	FS
•	[m]	[cm]	[cm]	[cmq]	[cm]	COLO	/kN7	[kN]	/kN7	[kN]	15
1	0.00	100	40	0.00	0.00		0.00	0.00	198.46	0.00	100.000
2	-0.10	100	40	0.00	0.00		0.00	0.00	198.61	0.92	215.030
3	-0.20	100	40	0.00	0.00		0.00	0.00	198.75	1.90	104.489
4	-0.30	100	40	0.00	0.00		0.00	0.00	198.90	2.93	67.771
5	-0.40	100	40	0.00	0.00		0.00	0.00	199.04	4.02	49.500
6	-0.50	100	40	0.00	0.00		0.00	0.00	199.18	5.16	38.593
7	-0.60	100	40	0.00	0.00		0.00	0.00	199.33	6.36	31.364
8	-0.70	100	40	0.00	0.00		0.00	0.00	199.47	7.60	26.233
9	-0.80	100	40	0.00	0.00		0.00	0.00	199.62	8.91	22.412
10	-0.90	100	40	0.00	0.00		0.00	0.00	199.76	10.26	19.463
11	-1.00	100	40	0.00	0.00		0.00	0.00	199.91	11.67	17.123
12	-1.10	100	40	0.00	0.00		0.00	0.00	200.05	13.14	15.225
13	-1.20	100	40	0.00	0.00		0.00	0.00	200.19	14.66	13.656
14	-1.30	100	40	0.00	0.00		0.00	0.00	200.34	16.23	12.341
15	-1.40	100	40	0.00	0.00		0.00	0.00	200.48	17.86	11.225
16	-1.50	100	40	0.00	0.00		0.00	0.00	200.63	19.54	10.266
17	-1.60	100	40	0.00	0.00		0.00	0.00	200.77	21.28	9.435
18	-1.70	100	40	0.00	0.00		0.00	0.00	200.91	23.07	8.709
19	-1.80	100	40	0.00	0.00		0.00	0.00	201.06	24.91	8.070
20	-1.90	100	40	0.00	0.00		0.00	0.00	201.20	26.81	7.504

n°	Υ	В	Н	Asw	S	cotθ	VRcd	VRsd	V Rd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
21	-2.00	100	40	0.00	0.00		0.00	0.00	201.35	28.77	6.999
22	-2.10	100	40	0.00	0.00		0.00	0.00	201.49	30.77	6.548
23	-2.20	100	40	0.00	0.00		0.00	0.00	201.63	32.83	6.141
24	-2.30	100	40	0.00	0.00		0.00	0.00	201.78	34.95	5.773
25	-2.40	100	40	0.00	0.00		0.00	0.00	201.92	37.12	5.440
26	-2.50	100	40	0.00	0.00		0.00	0.00	202.07	39.34	5.136
27	-2.60	100	40	0.00	0.00		0.00	0.00	202.21	41.62	4.858
28	-2.70	100	40	0.00	0.00		0.00	0.00	202.36	43.96	4.604
29	-2.80	100	40	0.00	0.00		0.00	0.00	202.50	46.34	4.370
30	-2.90	100	40	0.00	0.00		0.00	0.00	202.64	48.78	4.154
31	-3.00	100	40	0.00	0.00		0.00	0.00	202.79	51.28	3.955
32	-3.10	100	40	0.00	0.00		0.00	0.00	202.93	53.83	3.770
33	-3.20	100	40	0.00	0.00		0.00	0.00	203.08	56.43	3.599
34	-3.30	100	40	0.00	0.00		0.00	0.00	203.22	59.09	3.439
35	-3.40	100	40	0.00	0.00		0.00	0.00	203.36	61.80	3.291
36	-3.50	100	40	0.00	0.00		0.00	0.00	203.51	64.57	3.152
37	-3.59	100	40	0.00	0.00		0.00	0.00	203.65	67.39	3.022

Combinazione nº 3 - STR (A1-M1-R3) H - V

n°	Y	В	Н	Asw	S	cotθ	VRcd	V _{Rsd}	V Rd	T	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	0.00	100	40	0.00	0.00		0.00	0.00	198.46	0.00	100.000
2	-0.10	100	40	0.00	0.00		0.00	0.00	198.58	0.72	274.611
3	-0.20	100	40	0.00	0.00		0.00	0.00	198.69	1.50	132.361
4	-0.30	100	40	0.00	0.00		0.00	0.00	198.80	2.33	85.202
5	-0.40	100	40	0.00	0.00		0.00	0.00	198.92	3.22	61.794
6	-0.50	100	40	0.00	0.00		0.00	0.00	199.03	4.16	47.860
7	-0.60	100	40	0.00	0.00		0.00	0.00	199.14	5.15	38.651
8	-0.70	100	40	0.00	0.00		0.00	0.00	199.26	6.20	32.136
9	-0.80	100	40	0.00	0.00		0.00	0.00	199.37	7.30	27.302
10	-0.90	100	40	0.00	0.00		0.00	0.00	199.48	8.46	23.583
11	-1.00	100	40	0.00	0.00		0.00	0.00	199.60	9.67	20.642
12	-1.10	100	40	0.00	0.00		0.00	0.00	199.71	10.93	18.265
13	-1.20	100	40	0.00	0.00		0.00	0.00	199.82	12.25	16.308
14	-1.30	100	40	0.00	0.00		0.00	0.00	199.94	13.63	14.673
15	-1.40	100	40	0.00	0.00		0.00	0.00	200.05	15.05	13.289
16	-1.50	100	40	0.00	0.00		0.00	0.00	200.16	16.54	12.105
17	-1.60	100	40	0.00	0.00		0.00	0.00	200.28	18.07	11.083
18	-1.70	100	40	0.00	0.00		0.00	0.00	200.39	19.66	10.192
19	-1.80	100	40	0.00	0.00		0.00	0.00	200.50	21.31	9.411
20	-1.90	100	40	0.00	0.00		0.00	0.00	200.62	23.00	8.721
21	-2.00	100	40	0.00	0.00		0.00	0.00	200.73	24.76	8.108
22	-2.10	100	40	0.00	0.00		0.00	0.00	200.84	26.56	7.561
23	-2.20	100	40	0.00	0.00		0.00	0.00	200.96	28.42	7.070
24	-2.30	100	40	0.00	0.00		0.00	0.00	201.07	30.34	6.627
25	-2.40	100	40	0.00	0.00		0.00	0.00	201.18	32.31	6.227
26	-2.50	100	40	0.00	0.00		0.00	0.00	201.30	34.33	5.863
27	-2.60	100	40	0.00	0.00		0.00	0.00	201.41	36.41	5.532
28	-2.70	100	40	0.00	0.00		0.00	0.00	201.52	38.54	5.229
29	-2.80	100	40	0.00	0.00		0.00	0.00	201.64	40.73	4.951
30	-2.90	100	40	0.00	0.00		0.00	0.00	201.75	42.97	4.695
31	-3.00	100	40	0.00	0.00		0.00	0.00	201.86	45.26	4.460
32	-3.10	100	40	0.00	0.00		0.00	0.00	201.98	47.61	4.242
33	-3.20	100	40	0.00	0.00		0.00	0.00	202.09	50.01	4.041
34	-3.30	100	40	0.00	0.00		0.00	0.00	202.20	52.47	3.854
35	-3.40	100	40	0.00	0.00		0.00	0.00	202.32	54.98	3.680
36	-3.50	100	40	0.00	0.00		0.00	0.00	202.43	57.55	3.518
37	-3.59	100	40	0.00	0.00		0.00	0.00	202.54	60.17	3.366

Fondazione

Combinazione nº 1 - STR (A1-M1-R3)

n°	Y	В	Н	Asw	s	cotθ	VRcd	VRsd	V Rd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	-0.80	100	50	0.00	0.00		0.00	0.00	222.73	0.00	100.000
2	-0.70	100	50	0.00	0.00		0.00	0.00	222.73	-8.29	26.870
3	-0.60	100	50	0.00	0.00		0.00	0.00	222.73	-16.53	13.472
4	-0.50	100	50	0.00	0.00		0.00	0.00	222.73	-24.73	9.006
5	-0.40	100	50	0.00	0.00		0.00	0.00	222.73	-32.89	6.773
6	0.00	100	50	0.00	0.00		0.00	0.00	222.73	-111.82	1.992
7	0.10	100	50	0.00	0.00		0.00	0.00	222.73	-109.77	2.029
8	0.19	100	50	0.00	0.00		0.00	0.00	222.73	-107.68	2.069
9	0.29	100	50	0.00	0.00		0.00	0.00	222.73	-105.54	2.110
10	0.39	100	50	0.00	0.00		0.00	0.00	222.73	-103.36	2.155
11	0.49	100	50	0.00	0.00		0.00	0.00	222.73	-101.13	2.202
12	0.58	100	50	0.00	0.00		0.00	0.00	222.73	-98.87	2.253
13	0.68	100	50	0.00	0.00		0.00	0.00	222.73	-96.56	2.307
14	0.78	100	50	0.00	0.00		0.00	0.00	222.73	-94.20	2.364
15	0.88	100	50	0.00	0.00		0.00	0.00	222.73	-91.81	2.426
16	0.97	100	50	0.00	0.00		0.00	0.00	222.73	-89.37	2.492

n°	Y	В	н	Asw	S	cotθ	VRcd	VRsd	V Rd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
17	1.07	100	50	0.00	0.00		0.00	0.00	222.73	-86.89	2.563
18	1.17	100	50	0.00	0.00		0.00	0.00	222.73	-84.36	2.640
19	1.27	100	50	0.00	0.00		0.00	0.00	222.73	-81.80	2.723
20	1.36	100	50	0.00	0.00		0.00	0.00	222.73	-79.19	2.813
21	1.46	100	50	0.00	0.00		0.00	0.00	222.73	-76.53	2.910
22	1.56	100	50	0.00	0.00		0.00	0.00	222.73	-73.84	3.017
23	1.66	100	50	0.00	0.00		0.00	0.00	222.73	-71.10	3.133
24	1.75	100	50	0.00	0.00		0.00	0.00	222.73	-68.32	3.260
25	1.85	100	50	0.00	0.00		0.00	0.00	222.73	-65.49	3.401
26	1.95	100	50	0.00	0.00		0.00	0.00	222.73	-62.63	3.557
27	2.05	100	50	0.00	0.00		0.00	0.00	222.73	-59.72	3.730
28	2.14	100	50	0.00	0.00		0.00	0.00	222.73	-56.76	3.924
29	2.24	100	50	0.00	0.00		0.00	0.00	222.73	-53.77	4.143
30	2.34	100	50	0.00	0.00		0.00	0.00	222.73	-50.73	4.391
31	2.44	100	50	0.00	0.00		0.00	0.00	222.73	-47.65	4.675
32	2.53	100	50	0.00	0.00		0.00	0.00	222.73	-44.52	5.003
33	2.63	100	50	0.00	0.00		0.00	0.00	222.73	-41.35	5.386
34	2.73	100	50	0.00	0.00		0.00	0.00	222.73	-38.14	5.839
35	2.83	100	50	0.00	0.00		0.00	0.00	222.73	-34.89	6.384
36	2.92	100	50	0.00	0.00		0.00	0.00	222.73	-31.59	7.050
37	3.02	100	50	0.00	0.00		0.00	0.00	222.73	-28.26	7.883
38	3.12	100	50	0.00	0.00		0.00	0.00	222.73	-24.87	8.954
39	3.22	100	50	0.00	0.00		0.00	0.00	222.73	-21.45	10.384
40	3.31	100	50	0.00	0.00		0.00	0.00	222.73	-17.98	12.387
41	3.41	100	50	0.00	0.00		0.00	0.00	222.73	-14.47	15.392
42	3.51	100	50	0.00	0.00		0.00	0.00	222.73	-10.92	20.401
43	3.61	100	50	0.00	0.00		0.00	0.00	222.73	-7.32	30.423
44	3.70	100	50	0.00	0.00		0.00	0.00	222.73	-3.68	60.491
4 5	3.80	100	50	0.00	0.00		0.00	0.00	222.73	0.00	100.000

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Υ	В	Н	Asw	S	cotθ	VRcd	VRsd	V Rd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	ſkN7	ſkN7	[kN]	
1	-0.80	100	50	0.00	0.00		0.00	0.00	222.73	0.00	100.000
2	-0.70	100	50	0.00	0.00		0.00	0.00	222.73	-14.43	15.438
3	-0.60	100	50	0.00	0.00		0.00	0.00	222.73	-28.56	7.800
4	-0.50	100	50	0.00	0.00		0.00	0.00	222.73	-42.38	5.255
5	-0.40	100	50	0.00	0.00		0.00	0.00	222.73	-55.91	3.984
6	0.00	100	50	0.00	0.00		0.00	0.00	222.73	-27.96	7.966
7	0.10	100	50	0.00	0.00		0.00	0.00	222.73	-32.67	6.819
8	0.19	100	50	0.00	0.00		0.00	0.00	222.73	-37.08	6.006
9	0.29	100	50	0.00	0.00		0.00	0.00	222.73	-41.22	5.404
10	0.39	100	50	0.00	0.00		0.00	0.00	222.73	-45.07	4.942
11	0.49	100	50	0.00	0.00		0.00	0.00	222.73	-48.63	4.580
12	0.58	100	50	0.00	0.00		0.00	0.00	222.73	-51.91	4.291
13 14	0.68 0.78	100 100	50 50	0.00	0.00		0.00	0.00	222.73	-54.90	4.057 3.867
15	0.78	100	50	0.00	0.00		0.00	0.00	222.73 222.73	-57.60 -60.03	3.867
16	0.88	100	50	0.00	0.00		0.00	0.00	222.73	-62.16	3.583
17	1.07	100	50	0.00	0.00		0.00	0.00	222.73	-64.01	3.480
18	1.17	100	50	0.00	0.00		0.00	0.00	222.73	-65.58	3.460
19	1.27	100	50	0.00	0.00		0.00	0.00	222.73	-66.86	3.331
20	1.36	100	50	0.00	0.00		0.00	0.00	222.73	-67.85	3.283
21	1.46	100	50	0.00	0.00		0.00	0.00	222.73	-68.56	3.249
22	1.56	100	50	0.00	0.00		0.00	0.00	222.73	-68.99	3.229
23	1.66	100	50	0.00	0.00		0.00	0.00	222.73	-69.13	3.222
24	1.75	100	50	0.00	0.00		0.00	0.00	222.73	-68.98	3.229
25	1.85	100	50	0.00	0.00		0.00	0.00	222.73	-68.55	3.249
26	1.95	100	50	0.00	0.00		0.00	0.00	222.73	-67.83	3.284
27	2.05	100	50	0.00	0.00		0.00	0.00	222.73	-66.83	3.333
28	2.14	100	50	0.00	0.00		0.00	0.00	222.73	-65.54	3.398
29	2.24	100	50	0.00	0.00		0.00	0.00	222.73	-63.97	3.482
30	2.34	100	50	0.00	0.00		0.00	0.00	222.73	-62.11	3.586
31	2.44	100	50	0.00	0.00		0.00	0.00	222.73	-59.97	3.714
32	2.53	100	50	0.00	0.00		0.00	0.00	222.73	-57.54	3.871
33	2.63	100	50	0.00	0.00		0.00	0.00	222.73	-54.82	4.063
34	2.73	100	50	0.00	0.00		0.00	0.00	222.73	-51.82	4.298
35	2.83	100	50	0.00	0.00		0.00	0.00	222.73	-48.54	4.589
36	2.92	100	50	0.00	0.00		0.00	0.00	222.73	-44.97	4.953
37	3.02	100	50	0.00	0.00		0.00	0.00	222.73	-41.11	5.418
38	3.12	100	50	0.00	0.00		0.00	0.00	222.73	-36.97	6.024
39	3.22	100	50	0.00	0.00		0.00	0.00	222.73	-32.55	6.843
40	3.31	100	50	0.00	0.00		0.00	0.00	222.73	-27.84	8.002
41	3.41	100	50	0.00	0.00		0.00	0.00	222.73	-22.84	9.752
42	3.51	100	50	0.00	0.00		0.00	0.00	222.73	-17.56	12.686
43	3.61	100	50	0.00	0.00		0.00	0.00	222.73	-11.99	18.576
44	3.70	100	50	0.00	0.00		0.00	0.00	222.73	-6.14	36.289
45	3.80	100	50	0.00	0.00		0.00	0.00	222.73	0.00	100.000

Combinazione nº 3 - STR (A1-M1-R3) H - V

n°	Y	В	Н	Asw	S	cotθ	VRcd	VRsd	V Rd	T	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	-0.80	100	50	0.00	0.00		0.00	0.00	222.73	0.00	100.000
2	-0.70	100	50	0.00	0.00		0.00	0.00	222.73	-12.32	18.076
3	-0.60	100	50	0.00	0.00		0.00	0.00	222.73	-24.35	9.146
4	-0.50	100	50	0.00	0.00		0.00	0.00	222.73	-36.09	6.171
5	-0.40	100	50	0.00	0.00		0.00	0.00	222.73	-47.54	4.685
6	0.00	100	50	0.00	0.00		0.00	0.00	222.73	-98.85	2.253
7	0.10	100	50	0.00	0.00		0.00	0.00	222.73	-101.58	2.193
8	0.19	100	50	0.00	0.00		0.00	0.00	222.73	-104.02	2.141
9	0.29	100	50	0.00	0.00		0.00	0.00	222.73	-106.19	2.098
10	0.39	100	50	0.00	0.00		0.00	0.00	222.73	-108.08	2.061
11	0.49	100	50	0.00	0.00		0.00	0.00	222.73	-109.70	2.030
12	0.58	100	50	0.00	0.00		0.00	0.00	222.73	-111.04	2.006
13	0.68	100	50	0.00	0.00		0.00	0.00	222.73	-112.10	1.987
14	0.78	100	50	0.00	0.00		0.00	0.00	222.73	-112.89	1.973
15	0.88	100	50	0.00	0.00		0.00	0.00	222.73	-113.39	1.964
16	0.97	100	50	0.00	0.00		0.00	0.00	222.73	-113.63	1.960
17	1.07	100	50	0.00	0.00		0.00	0.00	222.73	-113.58	1.961
18	1.17	100	50	0.00	0.00		0.00	0.00	222.73	-113.26	1.967
19	1.27	100	50	0.00	0.00		0.00	0.00	222.73	-112.66	1.977
20	1.36	100	50	0.00	0.00		0.00	0.00	222.73	-111.79	1.992
21	1.46	100	50	0.00	0.00		0.00	0.00	222.73	-110.64	2.013
22	1.56	100	50	0.00	0.00		0.00	0.00	222.73	-109.21	2.040
23	1.66	100	50	0.00	0.00		0.00	0.00	222.73	-107.50	2.072
24	1.75	100	50	0.00	0.00		0.00	0.00	222.73	-105.52	2.111
25	1.85	100	50	0.00	0.00		0.00	0.00	222.73	-103.27	2.157
26	1.95	100	50	0.00	0.00		0.00	0.00	222.73	-100.73	2.211
27	2.05	100	50	0.00	0.00		0.00	0.00	222.73	-97.92	2.275
28	2.14	100	50	0.00	0.00		0.00	0.00	222.73	-94.83	2.349
29	2.24	100	50	0.00	0.00		0.00	0.00	222.73	-91.47	2.435
30	2.34	100	50	0.00	0.00		0.00	0.00	222.73	-87.83	2.536
31	2.44	100	50	0.00	0.00		0.00	0.00	222.73	-83.91	2.655
32	2.53	100	50	0.00	0.00		0.00	0.00	222.73	-79.71	2.794
33	2.63	100	50	0.00	0.00		0.00	0.00	222.73	-75.24	2.960
34	2.73	100	50	0.00	0.00		0.00	0.00	222.73	-70.49	3.160
35	2.83	100	50	0.00	0.00		0.00	0.00	222.73	-65.47	3.402
36	2.92	100	50	0.00	0.00		0.00	0.00	222.73	-60.17	3.702
37	3.02	100	50	0.00	0.00		0.00	0.00	222.73	-54.59	4.080
38	3.12	100	50	0.00	0.00		0.00	0.00	222.73	-48.73	4.571
39	3.22	100	50	0.00	0.00		0.00	0.00	222.73	-42.60	5.228
40	3.31	100	50	0.00	0.00		0.00	0.00	222.73	-36.19	6.154
41	3.41	100	50	0.00	0.00		0.00	0.00	222.73	-29.51	7.548
42	3.51	100	50	0.00	0.00		0.00	0.00	222.73	-22.55	9.879
43	3.61	100	50	0.00	0.00		0.00	0.00	222.73	-15.31	14.551
44	3.70	100	50	0.00	0.00		0.00	0.00	222.73	-7.79	28.585
45	3.80	100	50	0.00	0.00		0.00	0.00	222.73	0.00	100.000

Verifica delle tensioni

Simbologia adottata

indice sezione

n° Y B H Afi Afs M indice sezione
ordinata sezione, espressa in [m]
larghezza sezione, espresso in [cm]
altezza sezione, espresso in [cm]
area ferri inferiori, espresso in [cmq]
area ferri superiori, espressa in [cmq]
momento agente, espressa in [kNm]
sforzo normale agente, espressa in [kN]
tensione di compressione nel cls, espressa in [kPa]
tensione nei ferri inferiori, espressa in [kPa]
tensione nei ferri superiori, espressa in [kPa]

σC σfi

Combinazioni SLER

<u>Paramento</u>

Combinazione nº 10 - SLER

Tensione massima di compressione nel calcestruzzo 18260 [kPa] Tensione massima di trazione dell'acciaio [kPa] 1176817

n°	Y	В	Н	Afi	Afs	М	N	σα	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	0.00	100	40	10.05	10.05	0.00	0.00	0	0	0
2	-0.10	100	40	10.05	10.05	0.01	0.98	3	31	37
3	-0.20	100	40	10.05	10.05	0.03	1.96	6	56	81

n°	Υ	В	н	Afi	Afs	М	N	σC	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
4	-0.30	100	40	10.05	10.05	0.09	2.94	10	72	133
5	-0.40	100	40	10.05	10.05	0.17	3.92	15	77	197
6	-0.50	100	40	10.05	10.05	0.28	4.90	21	70	272
7	-0.60	100	40	10.05	10.05	0.44	5.88	29	46	363
8	-0.70	100	40	10.05	10.05	0.64	6.86	39	18	478
9	-0.80	100	40	10.05	10.05	0.90	7.85	52	169	625
10	-0.90	100	40	10.05	10.05	1.21	8.83	72	473	811
11	-1.00	100	40	10.05	10.05	1.58	9.81	96	994	1032
12	-1.10	100	40	10.05	10.05	2.02	10.79	127	1770	1284
13	-1.20	100	40	10.05	10.05	2.54	11.77	164	2816	1561
14	-1.30	100	40	10.05	10.05	3.13	12.75	206	4141	1862
15	-1.40	100	40	10.05	10.05	3.81	13.73	254	5753	2189
16	-1.50	100	40	10.05	10.05	4.58	14.71	308	7664	2543
17	-1.60	100	40	10.05	10.05	5.44	15.69	369	9887	2925
18	-1.70	100	40	10.05	10.05	6.40	16.67	437	12438	3338
19	-1.80	100	40	10.05	10.05	7.47	17.65	512	15332	3783
20	-1.90	100	40	10.05	10.05	8.65	18.63	595	18585	4263
21	-2.00	100	40	10.05	10.05	9.94	19.61	686	22214	4778
22	-2.10	100	40	10.05	10.05	11.36	20.59	785	26235	5332
23	-2.20	100	40	10.05	10.05	12.90	21.57	893	30665	5926
24	-2.30	100	40	10.05	10.05	14.58	22.56	1010	35522	6561
25	-2.40	100	40	10.05	10.05	16.40	23.54	1137	40821	7240
26	-2.50	100	40	10.05	10.05	18.35	24.52	1274	46581	7964
27	-2.60	100	40	10.05	10.05	20.46	25.50	1420	52819	8735
28	-2.70	100	40	10.05	10.05	22.73	26.48	1578	59551	9555
29	-2.80	100	40	10.05	10.05	25.15	27.46	1746	66796	10426
30	-2.90	100	40	10.05	10.05	27.74	28.44	1926	74569	11349
31	-3.00	100	40	10.05	10.05	30.49	29.42	2118	82889	12326
32	-3.10	100	40	10.05	10.05	33.43	30.40	2322	91773	13359
33	-3.20	100	40	10.05	10.05	36.54	31.38	2538	101237	14449
34	-3.30	100	40	10.05	10.05	39.85	32.36	2768	111300	15599
35	-3.40	100	40	10.05	10.05	43.34	33.34	3010	121979	16810
36	-3.50	100	40	10.05	10.05	47.04	34.32	3267	133290	18084
37	-3.59	100	40	10.05	10.05	50.93	35.30	3537	145252	19422

Fondazione

Combinazione nº 10 - SLER

Tensione massima di compressione nel calcestruzzo 18260 [kPa] Tensione massima di trazione dell'acciaio 1176817 [kPa]

n°	Y	В	Н	Afi	Afs	М	N	σε	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	-0.80	100	50	10.05	10.05	0.00	0.00	0	0	0
2	-0.70	100	50	10.05	10.05	0.38	0.00	17	928	103
3	-0.60	100	50	10.05	10.05	1.52	0.00	69	3708	411
4	-0.50	100	50	10.05	10.05	3.41	0.00	155	8335	923
5	-0.40	100	50	10.05	10.05	6.06	0.00	275	14805	1640
6	0.00	100	50	10.05	10.05	-56.57	0.00	2567	15312	138250
7	0.10	100	50	10.05	10.05	-54.16	0.00	2458	14660	132367
8	0.19	100	50	10.05	10.05	-51.78	0.00	2350	14016	126549
9	0.29	100	50	10.05	10.05	-49.43	0.00	2243	13380	120803
10	0.39	100	50	10.05	10.05	-47.11	0.00	2138	12751	115131
11	0.49	100	50	10.05	10.05	-44.82	0.00	2034	12132	109539
12	0.58	100	50	10.05	10.05	-42.57	0.00	1932	11522	104032
13	0.68	100	50	10.05	10.05	-40.35	0.00	1831	10922	98614
14	0.78	100	50	10.05	10.05	-38.17	0.00	1732	10332	93289
15	0.88	100	50	10.05	10.05	-36.03	0.00	1635	9753	88063
16	0.97	100	50	10.05	10.05	-33.94	0.00	1540	9186	82939
17	1.07	100	50	10.05	10.05	-31.89	0.00	1447	8630	77924
18	1.17	100	50	10.05	10.05	-29.88	0.00	1356	8087	73020
19	1.27	100	50	10.05	10.05	-27.92	0.00	1267	7557	68234
20	1.36	100	50	10.05	10.05	-26.01	0.00	1180	7041	63569
21	1.46	100	50	10.05	10.05	-24.15	0.00	1096	6538	59030
22	1.56	100	50	10.05	10.05	-22.35	0.00	1014	6050	54622
23	1.66	100	50	10.05	10.05	-20.60	0.00	935	5576	50350
24	1.75	100	50	10.05	10.05	-18.91	0.00	858	5119	46217
25	1.85	100	50	10.05	10.05	-17.28	0.00	784	4677	42229
26	1.95	100	50	10.05	10.05	-15.71	0.00	713	4252	38391
27	2.05	100	50	10.05	10.05	-14.20	0.00	644	3844	34706
28	2.14	100	50	10.05	10.05	-12.76	0.00	579	3453	31181
29	2.24	100	50	10.05	10.05	-11.38	0.00	517	3081	27818
30	2.34	100	50	10.05	10.05	-10.08	0.00	457	2727	24623
31	2.44	100	50	10.05	10.05	-8.84	0.00	401	2392	21601
32	2.53	100	50	10.05	10.05	-7.67	0.00	348	2077	18756
33	2.63	100	50	10.05	10.05	-6.59	0.00	299	1782	16093
34	2.73	100	50	10.05	10.05	-5.57	0.00	253	1508	13616
35	2.83	100	50	10.05	10.05	-4.64	0.00	210	1255	11330
36	2.92	100	50	10.05	10.05	-3.78	0.00	172	1023	9240
37	3.02	100	50	10.05	10.05	-3.01	0.00	136	814	7350

n°	V	В	Н	Afi	Afs	М	N	σC	σfi	σfs
••	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
38	3.12	100	50	10.05	10.05	-2.32	0.00	105	627	5665
39	3.22	100	50	10.05	10.05	-1.71	0.00	78	464	4190
40	3.31	100	50	10.05	10.05	-1.20	0.00	54	324	2929
41	3.41	100	50	10.05	10.05	-0.77	0.00	35	209	1887
42	3.51	100	50	10.05	10.05	-0.44	0.00	20	118	1068
43	3.61	100	50	10.05	10.05	-0.20	0.00	9	53	478
44	3.70	100	50	10.05	10.05	-0.05	0.00	2	13	120
45	3.80	100	50	10.05	10.05	0.00	0.00	0	0	0

Combinazioni SLEF

<u>Paramento</u>

Combinazione nº 11 - SLEF

Tensione massima di compressione nel calcestruzzo 33200 [kPa] Tensione massima di trazione dell'acciaio 1569089 [kPa]

n°	Y	В	Н	Afi	Afs	М	N	σc	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	0.00	100	40	10.05	10.05	0.00	0.00	0	0	0
2	-0.10	100	40	10.05	10.05	0.00	0.98	2	33	35
3	-0.20	100	40	10.05	10.05	0.02	1.96	5	62	75
4	-0.30	100	40	10.05	10.05	0.05	2.94	8	85	120
5	-0.40	100	40	10.05	10.05	0.10	3.92	13	100	173
6	-0.50	100	40	10.05	10.05	0.18	4.90	18	106	236
7	-0.60	100	40	10.05	10.05	0.29	5.88	24	100	310
8	-0.70	100	40	10.05	10.05	0.44	6.86	31	80	399
9	-0.80	100	40	10.05	10.05	0.64	7.85	40	38	504
10	-0.90	100	40	10.05	10.05	0.88	8.83	52	63	639
11	-1.00	100	40	10.05	10.05	1.18	9.81	69	277	810
12	-1.10	100	40	10.05	10.05	1.53	10.79	91	674	1021
13	-1.20	100	40	10.05	10.05	1.95	11.77	120	1314	1268
14	-1.30	100	40	10.05	10.05	2.45	12.75	154	2228	1543
15	-1.40	100	40	10.05	10.05	3.01	13.73	195	3427	1844
16	-1.50	100	40	10.05	10.05	3.66	14.71	241	4917	2169
17	-1.60	100	40	10.05	10.05	4.40	15.69	294	6705	2520
18	-1.70	100	40	10.05	10.05	5.23	16.67	352	8803	2897
19	-1.80	100	40	10.05	10.05	6.15	17.65	418	11224	3303
20	-1.90	100	40	10.05	10.05	7.18	18.63	491	13982	3740
21	-2.00	100	40	10.05	10.05	8.32	19.61	571	17093	4210
22	-2.10	100	40	10.05	10.05	9.57	20.59	659	20572	4715
23	-2.20	100	40	10.05	10.05	10.94	21.57	755	24436	5256
24	-2.30	100	40	10.05	10.05	12.43	22.56	859	28701	5836
25	-2.40	100	40	10.05	10.05	14.05	23.54	973	33384	6457
26	-2.50	100	40	10.05	10.05	15.81	24.52	1096	38503	7120
27	-2.60	100	40	10.05	10.05	17.71	25.50	1228	44074	7828
28	-2.70	100	40	10.05	10.05	19.76	26.48	1371	50114	8581
29	-2.80	100	40	10.05	10.05	21.96	27.46	1524	56641	9382
30	-2.90	100	40	10.05	10.05	24.32	28.44	1688	63671	10233
31	-3.00	100	40	10.05	10.05	26.84	29.42	1864	71221	11135
32	-3.10	100	40	10.05	10.05	29.52	30.40	2050	79310	12090
33	-3.20	100	40	10.05	10.05	32.38	31.38	2249	87954	13101
34	-3.30	100	40	10.05	10.05	35.42	32.36	2460	97171	14167
35	-3.40	100	40	10.05	10.05	38.64	33.34	2684	106977	15293
36	-3.50	100	40	10.05	10.05	42.06	34.32	2921	117390	16478
37	-3.59	100	40	10.05	10.05	45.67	35.30	3172	128427	17725

Fondazione

Combinazione nº 11 - SLEF

Tensione massima di compressione nel calcestruzzo 33200 [kPa] Tensione massima di trazione dell'acciaio 1569089 [kPa]

n°	Y	В	Н	Afi	Afs	М	N	σс	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	-0.80	100	50	10.05	10.05	0.00	0.00	0	0	0
2	-0.70	100	50	10.05	10.05	0.36	0.00	17	890	99
3	-0.60	100	50	10.05	10.05	1.46	0.00	66	3556	394
4	-0.50	100	50	10.05	10.05	3.27	0.00	148	7995	885
5	-0.40	100	50	10.05	10.05	5.81	0.00	264	14202	1573
6	0.00	100	50	10.05	10.05	-50.71	0.00	2301	13726	123935

n°	Y	В	Н	Afi	Afs	M	N	σC	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
7	0.10	100	50	10.05	10.05	-48.54	0.00	2203	13138	118624
8	0.19	100	50	10.05	10.05	-46.39	0.00	2105	12557	113376
9	0.29	100	50	10.05	10.05	-44.27	0.00	2009	11983	108195
10	0.39	100	50	10.05	10.05	-42.18	0.00	1914	11417	103084
11	0.49	100	50	10.05	10.05	-40.12	0.00	1821	10859	98049
12	0.58	100	50	10.05	10.05	-38.09	0.00	1729	10311	93093
13	0.68	100	50	10.05	10.05	-36.10	0.00	1638	9771	88219
14	0.78	100	50	10.05	10.05	-34.14	0.00	1549	9241	83433
15	0.88	100	50	10.05	10.05	-32.22	0.00	1462	8721	78737
16	0.97	100	50	10.05	10.05	-30.34	0.00	1377	8211	74136
17	1.07	100	50	10.05	10.05	-28.49	0.00	1293	7712	69635
18	1.17	100	50	10.05	10.05	-26.69	0.00	1211	7225	65236
19	1.27	100	50	10.05	10.05	-24.94	0.00	1132	6750	60944
20	1.36	100	50	10.05	10.05	-23.23	0.00	1054	6287	56763
21	1.46	100	50	10.05	10.05	-21.56	0.00	978	5836	52697
22	1.56	100	50	10.05	10.05	-19.95	0.00	905	5399	48750
23	1.66	100	50	10.05	10.05	-18.38	0.00	834	4976	44926
24	1.75	100	50	10.05	10.05	-16.87	0.00	766	4566	41229
25	1.85	100	50	10.05	10.05	-15.41	0.00	699	4171	37662
26	1.95	100	50	10.05	10.05	-14.01	0.00	636	3791	34231
27	2.05	100	50	10.05	10.05	-12.66	0.00	574	3427	30939
28	2.14	100	50	10.05	10.05	-11.37	0.00	516	3078	27789
29	2.24	100	50	10.05	10.05	-10.14	0.00	460	2745	24787
30	2.34	100	50	10.05	10.05	-8.98	0.00	407	2429	21935
31	2.44	100	50	10.05	10.05	-7.87	0.00	357	2131	19239
32	2.53	100	50	10.05	10.05	-6.83	0.00	310	1850	16701
33	2.63	100	50	10.05	10.05	-5.86	0.00	266	1587	14327
34	2.73	100	50	10.05	10.05	-4.96	0.00	225	1342	12119
35	2.83	100	50	10.05	10.05	-4.13	0.00	187	1117	10083
36	2.92	100	50	10.05	10.05	-3.36	0.00	153	911	8221
37	3.02	100	50	10.05	10.05	-2.68	0.00	121	724	6538
38	3.12	100	50	10.05	10.05	-2.06	0.00	94	558	5039
39	3.22	100	50	10.05	10.05	-1.52	0.00	69	413	3726
40	3.31	100	50	10.05	10.05	-1.07	0.00	48	288	2604
41	3.41	100	50	10.05	10.05	-0.69	0.00	31	186	1677
42	3.51	100	50	10.05	10.05	-0.39	0.00	18	105	949
43	3.61	100	50	10.05	10.05	-0.17	0.00	8	47	425
44	3.70	100	50	10.05	10.05	-0.04	0.00	2	12	107
45	3.80	100	50	10.05	10.05	0.00	0.00	0	0	0

Combinazioni SLEQ

<u>Paramento</u>

Combinazione nº 12 - SLEQ

Tensione massima di compressione nel calcestruzzo 13280 [kPa] Tensione massima di trazione dell'acciaio 1569089 [kPa]

n°	Υ	В		Afi	A.C.	м	N			
n°	-	_	H		Afs	M	N	σC	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	0.00	100	40	10.05	10.05	0.00	0.00	0	0	0
2	-0.10	100	40	10.05	10.05	0.00	0.98	2	34	35
3	-0.20	100	40	10.05	10.05	0.01	1.96	5	66	71
4	-0.30	100	40	10.05	10.05	0.02	2.94	8	94	111
5	-0.40	100	40	10.05	10.05	0.06	3.92	11	116	158
6	-0.50	100	40	10.05	10.05	0.11	4.90	15	130	212
7	-0.60	100	40	10.05	10.05	0.20	5.88	20	135	276
8	-0.70	100	40	10.05	10.05	0.31	6.86	26	128	351
9	-0.80	100	40	10.05	10.05	0.46	7.85	34	107	440
10	-0.90	100	40	10.05	10.05	0.66	8.83	43	69	545
11	-1.00	100	40	10.05	10.05	0.91	9.81	55	16	676
12	-1.10	100	40	10.05	10.05	1.20	10.79	70	200	844
13	-1.20	100	40	10.05	10.05	1.56	11.77	92	551	1054
14	-1.30	100	40	10.05	10.05	1.99	12.75	120	1141	1304
15	-1.40	100	40	10.05	10.05	2.48	13.73	155	2014	1585
16	-1.50	100	40	10.05	10.05	3.05	14.71	195	3185	1893
17	-1.60	100	40	10.05	10.05	3.70	15.69	242	4657	2225
18	-1.70	100	40	10.05	10.05	4.44	16.67	295	6435	2582
19	-1.80	100	40	10.05	10.05	5.27	17.65	354	8528	2965
20	-1.90	100	40	10.05	10.05	6.20	18.63	420	10947	3376
21	-2.00	100	40	10.05	10.05	7.23	19.61	493	13705	3818
22	-2.10	100	40	10.05	10.05	8.37	20.59	574	16818	4291
23	-2.20	100	40	10.05	10.05	9.62	21.57	662	20301	4800
24	-2.30	100	40	10.05	10.05	11.00	22.56	758	24169	5344
25	-2.40	100	40	10.05	10.05	12.49	23.54	863	28439	5928
26	-2.50	100	40	10.05	10.05	14.12	24.52	977	33129	6551
27	-2.60	100	40	10.05	10.05	15.88	25.50	1100	38254	7217
28	-2.70	100	40	10.05	10.05	17.79	26.48	1233	43831	7926

n°	Y	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
29	-2.80	100	40	10.05	10.05	19.84	27.46	1376	49878	8682
30	-2.90	100	40	10.05	10.05	22.04	28.44	1529	56412	9485
31	-3.00	100	40	10.05	10.05	24.40	29.42	1694	63449	10337
32	-3.10	100	40	10.05	10.05	26.92	30.40	1869	71007	11241
33	-3.20	100	40	10.05	10.05	29.61	31.38	2056	79103	12198
34	-3.30	100	40	10.05	10.05	32.47	32.36	2255	87755	13210
35	-3.40	100	40	10.05	10.05	35.51	33.34	2467	96979	14278
36	-3.50	100	40	10.05	10.05	38.74	34.32	2691	106793	15405
37	-3.59	100	40	10.05	10.05	42.15	35.30	2928	117215	16592

Fondazione

Combinazione nº 12 - SLEQ

[kPa] [kPa] Tensione massima di compressione nel calcestruzzo 13280 Tensione massima di trazione dell'acciaio 1569089

n°	Υ	В	Н	Afi	Afs	M	N	σС	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	-0.80	100	50	10.05	10.05	0.00	0.00	0	0	0
2	-0.70	100	50	10.05	10.05	0.35	0.00	16	864	96
3	-0.60	100	50	10.05	10.05	1.41	0.00	64	3455	383
4	-0.50	100	50	10.05	10.05	3.18	0.00	144	7768	860
5	-0.40	100	50	10.05	10.05	5.65	0.00	256	13800	1528
6	0.00	100	50	10.05	10.05	-46.81	0.00	2124	12669	114392
7	0.10	100	50	10.05	10.05	-44.79	0.00	2033	12124	109462
8	0.19	100	50	10.05	10.05	-42.80	0.00	1942	11584	104594
9	0.29	100	50	10.05	10.05	-40.83	0.00	1853	11052	99790
10	0.39	100	50	10.05	10.05	-38.90	0.00	1765	10528	95054
11	0.49	100	50	10.05	10.05	-36.99	0.00	1678	10011	90389
12	0.58	100	50	10.05	10.05	-35.11	0.00	1593	9503	85800
13	0.68	100	50	10.05	10.05	-33.26	0.00	1509	9003	81290
14	0.78	100	50	10.05	10.05	-31.45	0.00	1427	8513	76862
15	0.88	100	50	10.05	10.05	-29.67	0.00	1347	8032	72520
16	0.97	100	50	10.05	10.05	-27.93	0.00	1268	7561	68268
17	1.07	100	50	10.05	10.05	-26.23	0.00	1190	7100	64109
18	1.17	100	50	10.05	10.05	-24.57	0.00	1115	6650	60046
19	1.27	100	50	10.05	10.05	-22.95	0.00	1041	6212	56084
20	1.36	100	50	10.05	10.05	-21.37	0.00	970	5784	52226
21	1.46	100	50	10.05	10.05	-19.84	0.00	900	5369	48475
22	1.56	100	50	10.05	10.05	-18.35	0.00	833	4966	44835
23	1.66	100	50	10.05	10.05	-16.90	0.00	767	4575	41310
24	1.75	100	50	10.05	10.05	-15.51	0.00	704	4198	37903
25	1.85	100	50	10.05	10.05	-14.17	0.00	643	3834	34618
26	1.95	100	50	10.05	10.05	-12.87	0.00	584	3484	31458
27	2.05	100	50	10.05	10.05	-11.63	0.00	528	3148	28427
28	2.14	100	50	10.05	10.05	-10.45	0.00	474	2827	25529
29	2.24	100	50	10.05	10.05	-9.32	0.00	423	2521	22766
30	2.34	100	50	10.05	10.05	-8.24	0.00	374	2231	20144
31	2.44	100	50	10.05	10.05	-7.23	0.00	328	1956	17664
32	2.53	100	50	10.05	10.05	-6.27	0.00	285	1698	15332
33	2.63	100	50	10.05	10.05	-5.38	0.00	244	1456	13150
34	2.73	100	50	10.05	10.05	-4.55	0.00	207	1232	11122
35	2.83	100	50	10.05	10.05	-3.79	0.00	172	1025	9251
36	2.92	100	50	10.05	10.05	-3.09	0.00	140	835	7542
37	3.02	100	50	10.05	10.05	-2.45	0.00	111	664	5997
38	3.12	100	50	10.05	10.05	-1.89	0.00	86	512	4621
39	3.22	100	50	10.05	10.05	-1.40	0.00	63	378	3416
40	3.31	100	50	10.05	10.05	-0.98	0.00	44	264	2387
41	3.41	100	50 50	10.05	10.05	-0.63	0.00	29 16	170 96	1537
42	3.51	100		10.05	10.05	-0.36	0.00			870
43	3.61	100	50	10.05	10.05	-0.16	0.00	7	43	389
44	3.70	100	50	10.05	10.05	-0.04	0.00	2	11	98
45	3.80	100	50	10.05	10.05	0.00	0.00	0	0	0

Verifica a fessurazione

Simbologia adottata

n° Y B H Af Aeff M Mpf indice sezione
ordinata sezione espressa in [m]
larghezza sezione espresso in [cm]
altezza sezione espressa in [cm]
area efriza cona tesa espresso in [cmq]
area efficace espressa in [cmq]
momento agente espressa in [kNm]
momento di formazione/apertura fessure espressa in [kNm]
deformazione espresso in ⁹6-

 $^\epsilon_{\text{Sm}}$

deformazione espresso in % spaziatura tra le fessure espressa in [mm]

apertura delle fessure espressa in [mm]

Combinazioni SLER

<u>Paramento</u>

Combinazione nº 10 - SLER

Apertura limite fessure w_{lim}=0.20

n°	Y	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	0.00	100	40	0.00	0.00	0.00	0.00			0.000
2	-0.10	100	40	10.05	1053.82	0.01	92.13	0.000000	0.00	0.000
3	-0.20	100	40	10.05	1053.44	0.03	92.19	0.000000	0.00	0.000
4	-0.30	100	40	10.05	1053.06	0.09	92.26	0.000000	0.00	0.000
5	-0.40	100	40	10.05	1052.69	0.17	92.33	0.000000	0.00	0.000
6	-0.50	100	40	10.05	1052.31	0.28	92.40	0.000000	0.00	0.000
7	-0.60	100	40	10.05	1051.93	0.44	92.47	0.000000	0.00	0.000
8	-0.70	100	40	10.05	1051.55	0.64	92.53	0.000000	0.00	0.000
9	-0.80	100	40	10.05	1051.17	0.90	92.60	0.000000	0.00	0.000
10	-0.90	100	40	10.05	1050.80	1.21	92.67	0.000000	0.00	0.000
11	-1.00	100	40	10.05	1050.42	1.58	92.74	0.000000	0.00	0.000
12	-1.10	100	40	10.05	1050.04	2.02	92.80	0.000000	0.00	0.000
13	-1.20	100	40	10.05	1049.66	2.54	92.87	0.000000	0.00	0.000
14	-1.30	100	40	10.05	1049.29	3.13	92.94	0.000000	0.00	0.000
15	-1.40	100	40	10.05	1048.91	3.81	93.01	0.000000	0.00	0.000
16	-1.50	100	40	10.05	1048.53	4.58	93.08	0.000000	0.00	0.000
17	-1.60	100	40	10.05	1048.15	5.44	93.14	0.000000	0.00	0.000
18	-1.70	100	40	10.05	1047.77	6.40	93.21	0.000000	0.00	0.000
19	-1.80	100	40	10.05	1047.40	7.47	93.28	0.000000	0.00	0.000
20	-1.90	100	40	10.05	1047.02	8.65	93.34	0.000000	0.00	0.000
21	-2.00	100	40	10.05	1046.64	9.94	93.41	0.000000	0.00	0.000
22	-2.10	100	40	10.05	1046.26	11.36	93.48	0.000000	0.00	0.000
23	-2.20	100	40	10.05	1045.89	12.90	93.55	0.000000	0.00	0.000
24	-2.30	100	40	10.05	1045.51	14.58	93.62	0.000000	0.00	0.000
25	-2.40	100	40	10.05	1045.13	16.40	93.69	0.000000	0.00	0.000
26	-2.50	100	40	10.05	1044.75	18.35	93.75	0.000000	0.00	0.000
27	-2.60	100	40	10.05	1044.37	20.46	93.82	0.000000	0.00	0.000
28	-2.70	100	40	10.05	1044.00	22.73	93.89	0.000000	0.00	0.000
29	-2.80	100	40	10.05	1043.62	25.15	93.96	0.000000	0.00	0.000
30	-2.90	100	40	10.05	1043.24	27.74	94.03	0.000000	0.00	0.000
31	-3.00	100	40	10.05	1042.86	30.49	94.09	0.000000	0.00	0.000
32	-3.10	100	40	10.05	1042.48	33.43	94.16	0.000000	0.00	0.000
33	-3.20	100	40	10.05	1042.11	36.54	94.23	0.000000	0.00	0.000
34	-3.30	100	40	10.05	1041.73	39.85	94.29	0.000000	0.00	0.000
35	-3.40	100	40	10.05	1041.35	43.34	94.36	0.000000	0.00	0.000
36	-3.50	100	40	10.05	1040.97	47.04	94.43	0.000000	0.00	0.000
37	-3.59	100	40	10.05	1040.59	50.93	94.50	0.000000	0.00	0.000

Fondazione

Combinazione nº 10 - SLER

Apertura limite fessure w_{lim} =0.20

n°	Y	В	Н	Af	Aeff	M	Mpf	3	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	-0.80	100	50	0.00	0.00	0.00	0.00			0.000
2	-0.70	100	50	10.05	1345.70	0.38	142.90	0.000000	0.00	0.000
3	-0.60	100	50	10.05	1345.70	1.52	142.90	0.000000	0.00	0.000
4	-0.50	100	50	10.05	1345.70	3.41	142.90	0.000000	0.00	0.000
5	-0.40	100	50	10.05	1345.70	6.06	142.90	0.000000	0.00	0.000
6	0.00	100	50	10.05	1345.70	-56.57	-142.90	0.000000	0.00	0.000
7	0.10	100	50	10.05	1345.70	-54.16	-142.90	0.000000	0.00	0.000
8	0.19	100	50	10.05	1345.70	-51.78	-142.90	0.000000	0.00	0.000
9	0.29	100	50	10.05	1345.70	-49.43	-142.90	0.000000	0.00	0.000
10	0.39	100	50	10.05	1345.70	-47.11	-142.90	0.000000	0.00	0.000
11	0.49	100	50	10.05	1345.70	-44.82	-142.90	0.000000	0.00	0.000
12	0.58	100	50	10.05	1345.70	-42.57	-142.90	0.000000	0.00	0.000
13	0.68	100	50	10.05	1345.70	-40.35	-142.90	0.000000	0.00	0.000
14	0.78	100	50	10.05	1345.70	-38.17	-142.90	0.000000	0.00	0.000
15	0.88	100	50	10.05	1345.70	-36.03	-142.90	0.000000	0.00	0.000
16	0.97	100	50	10.05	1345.70	-33.94	-142.90	0.000000	0.00	0.000
17	1.07	100	50	10.05	1345.70	-31.89	-142.90	0.000000	0.00	0.000
18	1.17	100	50	10.05	1345.70	-29.88	-142.90	0.000000	0.00	0.000
19	1.27	100	50	10.05	1345.70	-27.92	-142.90	0.000000	0.00	0.000
20	1.36	100	50	10.05	1345.70	-26.01	-142.90	0.000000	0.00	0.000
21	1.46	100	50	10.05	1345.70	-24.15	-142.90	0.000000	0.00	0.000

n°	Υ	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
22	1.56	100	50	10.05	1345.70	-22.35	-142.90	0.000000	0.00	0.000
23	1.66	100	50	10.05	1345.70	-20.60	-142.90	0.000000	0.00	0.000
24	1.75	100	50	10.05	1345.70	-18.91	-142.90	0.000000	0.00	0.000
25	1.85	100	50	10.05	1345.70	-17.28	-142.90	0.000000	0.00	0.000
26	1.95	100	50	10.05	1345.70	-15.71	-142.90	0.000000	0.00	0.000
27	2.05	100	50	10.05	1345.70	-14.20	-142.90	0.000000	0.00	0.000
28	2.14	100	50	10.05	1345.70	-12.76	-142.90	0.000000	0.00	0.000
29	2.24	100	50	10.05	1345.70	-11.38	-142.90	0.000000	0.00	0.000
30	2.34	100	50	10.05	1345.70	-10.08	-142.90	0.000000	0.00	0.000
31	2.44	100	50	10.05	1345.70	-8.84	-142.90	0.000000	0.00	0.000
32	2.53	100	50	10.05	1345.70	-7.67	-142.90	0.000000	0.00	0.000
33	2.63	100	50	10.05	1345.70	-6.59	-142.90	0.000000	0.00	0.000
34	2.73	100	50	10.05	1345.70	-5.57	-142.90	0.000000	0.00	0.000
35	2.83	100	50	10.05	1345.70	-4.64	-142.90	0.000000	0.00	0.000
36	2.92	100	50	10.05	1345.70	-3.78	-142.90	0.000000	0.00	0.000
37	3.02	100	50	10.05	1345.70	-3.01	-142.90	0.000000	0.00	0.000
38	3.12	100	50	10.05	1345.70	-2.32	-142.90	0.000000	0.00	0.000
39	3.22	100	50	10.05	1345.70	-1.71	-142.90	0.000000	0.00	0.000
40	3.31	100	50	10.05	1345.70	-1.20	-142.90	0.000000	0.00	0.000
41	3.41	100	50	10.05	1345.70	-0.77	-142.90	0.000000	0.00	0.000
42	3.51	100	50	10.05	1345.70	-0.44	-142.90	0.000000	0.00	0.000
43	3.61	100	50	10.05	1345.70	-0.20	-142.90	0.000000	0.00	0.000
44	3.70	100	50	10.05	1345.70	-0.05	-142.90	0.000000	0.00	0.000
45	3.80	100	50	0.00	0.00	0.00	0.00			0.000

Combinazioni SLEF

<u>Paramento</u>

Combinazione nº 11 - SLEF

Apertura limite fessure w_{lim} =0.20

n°	Y	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	0.00	100	40	0.00	0.00	0.00	0.00			0.000
2	-0.10	100	40	10.05	1053.82	0.00	92.13	0.000000	0.00	0.000
3	-0.20	100	40	10.05	1053.44	0.02	92.20	0.000000	0.00	0.000
4	-0.30	100	40	10.05	1053.06	0.05	92.27	0.000000	0.00	0.000
5	-0.40	100	40	10.05	1052.69	0.10	92.33	0.000000	0.00	0.000
6	-0.50	100	40	10.05	1052.31	0.18	92.40	0.000000	0.00	0.000
7	-0.60	100	40	10.05	1051.93	0.29	92.47	0.000000	0.00	0.000
8	-0.70	100	40	10.05	1051.55	0.44	92.54	0.000000	0.00	0.000
9	-0.80	100	40	10.05	1051.17	0.64	92.60	0.000000	0.00	0.000
10	-0.90	100	40	10.05	1050.80	0.88	92.67	0.000000	0.00	0.000
11	-1.00	100	40	10.05	1050.42	1.18	92.74	0.000000	0.00	0.000
12	-1.10	100	40	10.05	1050.04	1.53	92.81	0.000000	0.00	0.000
13	-1.20	100	40	10.05	1049.66	1.95	92.87	0.000000	0.00	0.000
14	-1.30	100	40	10.05	1049.29	2.45	92.94	0.000000	0.00	0.000
15	-1.40	100	40	10.05	1048.91	3.01	93.01	0.000000	0.00	0.000
16	-1.50	100	40	10.05	1048.53	3.66	93.08	0.000000	0.00	0.000
17	-1.60	100	40	10.05	1048.15	4.40	93.14	0.000000	0.00	0.000
18	-1.70	100	40	10.05	1047.77	5.23	93.21	0.000000	0.00	0.000
19	-1.80	100	40	10.05	1047.40	6.15	93.28	0.000000	0.00	0.000
20	-1.90	100	40	10.05	1047.02	7.18	93.35	0.000000	0.00	0.000
21	-2.00	100	40	10.05	1046.64	8.32	93.42	0.000000	0.00	0.000
22	-2.10	100	40	10.05	1046.26	9.57	93.48	0.000000	0.00	0.000
23	-2.20	100	40	10.05	1045.89	10.94	93.55	0.000000	0.00	0.000
24	-2.30	100	40	10.05	1045.51	12.43	93.62	0.000000	0.00	0.000
25	-2.40	100	40	10.05	1045.13	14.05	93.69	0.000000	0.00	0.000
26	-2.50	100	40	10.05	1044.75	15.81	93.75	0.000000	0.00	0.000
27	-2.60	100	40	10.05	1044.37	17.71	93.82	0.000000	0.00	0.000
28	-2.70	100	40	10.05	1044.00	19.76	93.89	0.000000	0.00	0.000
29	-2.80	100	40	10.05	1043.62	21.96	93.96	0.000000	0.00	0.000
30	-2.90	100	40	10.05	1043.24	24.32	94.02	0.000000	0.00	0.000
31	-3.00	100	40	10.05	1042.86	26.84	94.09	0.000000	0.00	0.000
32	-3.10	100	40	10.05	1042.48	29.52	94.16	0.000000	0.00	0.000
33	-3.20	100	40	10.05	1042.11	32.38	94.23	0.000000	0.00	0.000
34	-3.30	100	40	10.05	1041.73	35.42	94.30	0.000000	0.00	0.000
35	-3.40	100	40	10.05	1041.35	38.64	94.36	0.000000	0.00	0.000
36	-3.50	100	40	10.05	1040.97	42.06	94.43	0.000000	0.00	0.000
37	-3.59	100	40	10.05	1040.59	45.67	94.50	0.000000	0.00	0.000

Fondazione

Combinazione nº 11 - SLEF

Apertura limite fessure w_{lim} =0.20

n°	Υ	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	-0.80	100	50	0.00	0.00	0.00	0.00			0.000
2	-0.70	100	50	10.05	1345.70	0.36	142.90	0.000000	0.00	0.000
3	-0.60	100	50	10.05	1345.70	1.46	142.90	0.000000	0.00	0.000
4	-0.50	100	50	10.05	1345.70	3.27	142.90	0.000000	0.00	0.000
5	-0.40	100	50	10.05	1345.70	5.81	142.90	0.000000	0.00	0.000
6	0.00	100	50	10.05	1345.70	-50.71	-142.90	0.000000	0.00	0.000
7	0.10	100	50	10.05	1345.70	-48.54	-142.90	0.000000	0.00	0.000
8	0.19	100	50	10.05	1345.70	-46.39	-142.90	0.000000	0.00	0.000
9	0.29	100	50	10.05	1345.70	-44.27	-142.90	0.000000	0.00	0.000
10	0.39	100	50	10.05	1345.70	-42.18	-142.90	0.000000	0.00	0.000
11	0.49	100	50	10.05	1345.70	-40.12	-142.90	0.000000	0.00	0.000
12	0.58	100	50	10.05	1345.70	-38.09	-142.90	0.000000	0.00	0.000
13	0.68	100	50	10.05	1345.70	-36.10	-142.90	0.000000	0.00	0.000
14	0.78	100	50	10.05	1345.70	-34.14	-142.90	0.000000	0.00	0.000
15	0.88	100	50	10.05	1345.70	-32.22	-142.90	0.000000	0.00	0.000
16	0.97	100	50	10.05	1345.70	-30.34	-142.90	0.000000	0.00	0.000
17	1.07	100	50	10.05	1345.70	-28.49	-142.90	0.000000	0.00	0.000
18	1.17	100	50	10.05	1345.70	-26.69	-142.90	0.000000	0.00	0.000
19	1.27	100 100	50	10.05 10.05	1345.70	-24.94 -23.23	-142.90	0.000000	0.00	0.000
20	1.36 1.46	100	50	10.05	1345.70 1345.70		-142.90		0.00	
21 22	1.46	100	50 50	10.05	1345.70	-21.56 -19.95	-142.90 -142.90	0.000000	0.00	0.000
23	1.66	100	50	10.05	1345.70	-19.95	-142.90	0.000000	0.00	0.000
24	1.75	100	50	10.05	1345.70	-16.87	-142.90	0.000000	0.00	0.000
25	1.85	100	50	10.05	1345.70	-15.41	-142.90	0.000000	0.00	0.000
26	1.95	100	50	10.05	1345.70	-14.01	-142.90	0.000000	0.00	0.000
27	2.05	100	50	10.05	1345.70	-12.66	-142.90	0.000000	0.00	0.000
28	2.14	100	50	10.05	1345.70	-11.37	-142.90	0.000000	0.00	0.000
29	2.24	100	50	10.05	1345.70	-10.14	-142.90	0.000000	0.00	0.000
30	2.34	100	50	10.05	1345.70	-8.98	-142.90	0.000000	0.00	0.000
31	2.44	100	50	10.05	1345.70	-7.87	-142.90	0.000000	0.00	0.000
32	2.53	100	50	10.05	1345.70	-6.83	-142.90	0.000000	0.00	0.000
33	2.63	100	50	10.05	1345.70	-5.86	-142.90	0.000000	0.00	0.000
34	2.73	100	50	10.05	1345.70	-4.96	-142.90	0.000000	0.00	0.000
35	2.83	100	50	10.05	1345.70	-4.13	-142.90	0.000000	0.00	0.000
36	2.92	100	50	10.05	1345.70	-3.36	-142.90	0.000000	0.00	0.000
37	3.02	100	50	10.05	1345.70	-2.68	-142.90	0.000000	0.00	0.000
38	3.12	100	50	10.05	1345.70	-2.06	-142.90	0.000000	0.00	0.000
39	3.22	100	50	10.05	1345.70	-1.52	-142.90	0.000000	0.00	0.000
40	3.31	100	50	10.05	1345.70	-1.07	-142.90	0.000000	0.00	0.000
41	3.41	100	50	10.05	1345.70	-0.69	-142.90	0.000000	0.00	0.000
42	3.51	100	50	10.05	1345.70	-0.39	-142.90	0.000000	0.00	0.000
43	3.61	100	50	10.05	1345.70	-0.17	-142.90	0.000000	0.00	0.000
44	3.70	100	50	10.05	1345.70	-0.04	-142.90	0.000000	0.00	0.000
45	3.80	100	50	0.00	0.00	0.00	0.00			0.000

Combinazioni SLEQ

<u>Paramento</u>

Combinazione nº 12 - SLEQ

Apertura limite fessure $w_{\text{lim}} = 0.20$

n°	Υ	В	Н	Af	Aeff	М	Mpf	£	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	0.00	100	40	0.00	0.00	0.00	0.00			0.000
2	-0.10	100	40	10.05	1053.82	0.00	92.13	0.000000	0.00	0.000
3	-0.20	100	40	10.05	1053.44	0.01	92.20	0.000000	0.00	0.000
4	-0.30	100	40	10.05	1053.06	0.02	92.27	0.000000	0.00	0.000
5	-0.40	100	40	10.05	1052.69	0.06	92.33	0.000000	0.00	0.000
6	-0.50	100	40	10.05	1052.31	0.11	92.40	0.000000	0.00	0.000
7	-0.60	100	40	10.05	1051.93	0.20	92.47	0.000000	0.00	0.000
8	-0.70	100	40	10.05	1051.55	0.31	92.53	0.000000	0.00	0.000
9	-0.80	100	40	10.05	1051.17	0.46	92.60	0.000000	0.00	0.000
10	-0.90	100	40	10.05	1050.80	0.66	92.67	0.000000	0.00	0.000
11	-1.00	100	40	10.05	1050.42	0.91	92.74	0.000000	0.00	0.000
12	-1.10	100	40	10.05	1050.04	1.20	92.80	0.000000	0.00	0.000
13	-1.20	100	40	10.05	1049.66	1.56	92.87	0.000000	0.00	0.000
14	-1.30	100	40	10.05	1049.29	1.99	92.94	0.000000	0.00	0.000
15	-1.40	100	40	10.05	1048.91	2.48	93.01	0.000000	0.00	0.000
16	-1.50	100	40	10.05	1048.53	3.05	93.08	0.000000	0.00	0.000
17	-1.60	100	40	10.05	1048.15	3.70	93.14	0.000000	0.00	0.000
18	-1.70	100	40	10.05	1047.77	4.44	93.21	0.000000	0.00	0.000
19	-1.80	100	40	10.05	1047.40	5.27	93.28	0.000000	0.00	0.000
20	-1.90	100	40	10.05	1047.02	6.20	93.35	0.000000	0.00	0.000
21	-2.00	100	40	10.05	1046.64	7.23	93.41	0.000000	0.00	0.000
22	-2.10	100	40	10.05	1046.26	8.37	93.48	0.000000	0.00	0.000

n°	Y	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
23	-2.20	100	40	10.05	1045.89	9.62	93.55	0.000000	0.00	0.000
24	-2.30	100	40	10.05	1045.51	11.00	93.62	0.000000	0.00	0.000
25	-2.40	100	40	10.05	1045.13	12.49	93.69	0.000000	0.00	0.000
26	-2.50	100	40	10.05	1044.75	14.12	93.75	0.000000	0.00	0.000
27	-2.60	100	40	10.05	1044.37	15.88	93.82	0.000000	0.00	0.000
28	-2.70	100	40	10.05	1044.00	17.79	93.89	0.000000	0.00	0.000
29	-2.80	100	40	10.05	1043.62	19.84	93.96	0.000000	0.00	0.000
30	-2.90	100	40	10.05	1043.24	22.04	94.02	0.000000	0.00	0.000
31	-3.00	100	40	10.05	1042.86	24.40	94.09	0.000000	0.00	0.000
32	-3.10	100	40	10.05	1042.48	26.92	94.16	0.000000	0.00	0.000
33	-3.20	100	40	10.05	1042.11	29.61	94.23	0.000000	0.00	0.000
34	-3.30	100	40	10.05	1041.73	32.47	94.29	0.000000	0.00	0.000
35	-3.40	100	40	10.05	1041.35	35.51	94.36	0.000000	0.00	0.000
36	-3.50	100	40	10.05	1040.97	38.74	94.43	0.000000	0.00	0.000
37	-3.59	100	40	10.05	1040.59	42.15	94.50	0.000000	0.00	0.000

<u>Fondazione</u>

Combinazione nº 12 - SLEQ

Apertura limite fessure $w_{\text{lim}} = 0.20$

n°	Y	В	Н	Af	Aeff	M	Mpf	3	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	-0.80	100	50	0.00	0.00	0.00	0.00			0.000
2	-0.70	100	50	10.05	1345.70	0.35	142.90	0.000000	0.00	0.000
3	-0.60	100	50	10.05	1345.70	1.41	142.90	0.000000	0.00	0.000
4	-0.50	100	50	10.05	1345.70	3.18	142.90	0.000000	0.00	0.000
5	-0.40	100	50	10.05	1345.70	5.65	142.90	0.000000	0.00	0.000
6	0.00	100	50	10.05	1345.70	-46.81	-142.90	0.000000	0.00	0.000
7	0.10	100	50	10.05	1345.70	-44.79	-142.90	0.000000	0.00	0.000
8	0.19	100	50	10.05	1345.70	-42.80	-142.90	0.000000	0.00	0.000
9	0.29	100	50	10.05	1345.70	-40.83	-142.90	0.000000	0.00	0.000
10	0.39	100	50	10.05	1345.70	-38.90	-142.90	0.000000	0.00	0.000
11	0.49	100	50	10.05	1345.70	-36.99	-142.90	0.000000	0.00	0.000
12	0.58	100	50	10.05	1345.70	-35.11	-142.90	0.000000	0.00	0.000
13	0.68	100	50	10.05	1345.70	-33.26	-142.90	0.000000	0.00	0.000
14	0.78	100	50	10.05	1345.70	-31.45	-142.90	0.000000	0.00	0.000
15	0.88	100	50	10.05	1345.70	-29.67	-142.90	0.000000	0.00	0.000
16	0.97	100	50	10.05	1345.70	-27.93	-142.90	0.000000	0.00	0.000
17	1.07	100	50	10.05	1345.70	-26.23	-142.90	0.000000	0.00	0.000
18	1.17	100	50	10.05	1345.70	-24.57	-142.90	0.000000	0.00	0.000
19	1.27	100	50	10.05	1345.70	-22.95	-142.90	0.000000	0.00	0.000
20	1.36	100	50	10.05	1345.70	-21.37	-142.90	0.000000	0.00	0.000
21	1.46	100	50	10.05	1345.70	-19.84	-142.90	0.000000	0.00	0.000
22	1.56	100	50	10.05	1345.70	-18.35	-142.90	0.000000	0.00	0.000
23	1.66	100	50	10.05	1345.70	-16.90	-142.90	0.000000	0.00	0.000
24	1.75	100	50	10.05	1345.70	-15.51	-142.90	0.000000	0.00	0.000
25	1.85	100	50	10.05	1345.70	-14.17	-142.90	0.000000	0.00	0.000
26	1.95	100	50	10.05	1345.70	-12.87	-142.90	0.000000	0.00	0.000
27	2.05	100	50	10.05	1345.70	-11.63	-142.90	0.000000	0.00	0.000
28	2.14	100	50	10.05	1345.70	-10.45	-142.90	0.000000	0.00	0.000
29	2.24	100	50	10.05	1345.70	-9.32	-142.90	0.000000	0.00	0.000
30	2.34	100	50	10.05	1345.70	-8.24	-142.90	0.000000	0.00	0.000
31	2.44	100	50	10.05	1345.70	-7.23	-142.90	0.000000	0.00	0.000
32	2.53	100	50	10.05	1345.70	-6.27	-142.90	0.000000	0.00	0.000
33	2.63	100	50	10.05	1345.70	-5.38	-142.90	0.000000	0.00	0.000
34	2.73	100	50	10.05	1345.70	-4.55	-142.90	0.000000	0.00	0.000
35	2.83	100	50	10.05	1345.70	-3.79	-142.90	0.000000	0.00	0.000
36	2.92	100	50	10.05	1345.70	-3.09	-142.90	0.000000	0.00	0.00
37	3.02	100	50	10.05	1345.70	-2.45	-142.90	0.000000	0.00	0.000
38	3.12	100	50	10.05	1345.70	-1.89	-142.90	0.000000	0.00	0.000
39	3.22	100	50	10.05	1345.70	-1.40	-142.90	0.000000	0.00	0.000
40	3.31	100	50	10.05	1345.70	-0.98	-142.90	0.000000	0.00	0.000
41	3.41	100	50	10.05	1345.70	-0.63	-142.90	0.000000	0.00	0.00
42	3.51	100	50	10.05	1345.70	-0.36	-142.90	0.000000	0.00	0.00
43	3.61	100	50	10.05	1345.70	-0.16	-142.90	0.000000	0.00	0.000
44	3.70	100	50	10.05	1345.70	-0.04	-142.90	0.000000	0.00	0.000
45	3.80	100	50	0.00	0.00	0.00	0.00			0.000

11.4.2 Incidenze e armature

INCIDENZA (Kg/m³)						
Fondazione	75					
Paramento	75					

ARMATURA MURO						
Fondazione	Ø16/20 Lato Monte					
Folidazione	Ø16/20 Lato Valle					
	Ø16/20 Lato Monte					
Paramento	∅16/20 Lato Valle					
	9 Ф8/mq					