

PROGETTO PER LA REALIZZAZIONE E L'ESERCIZIO DI UN IMPIANTO AGRIVOLTAICO AVENTE POTENZA P=36,083 MWp CIRCA E RELATIVE OPERE DI CONNESSIONE

Nome impianto CAR01 Comune di Carapelle, Regione Puglia

PROGETTO DEFINITIVO

Codice pratica: WPBM6T0

N° Elaborato:

RT10

ELABORATO:

VALUTAZIONE DELLA PRODUCIBILITA'

COMMITTENTE:


LT 04 s.r.l.

Anello Nord 25 ,39031 Brunico (BZ) p.iva: 08527550720

PROGETTISTI:

Ing. Alessandro la Grasta

PROGETTAZIONE:

LT SERVICE s.r.l. via Trieste n°30, 70056 Molfetta (BA) tel: 0803346537 pec: studiotecnicolt@pec.it

File: WPBM6T0_DocumentazioneSpecialistica_39.pdf

Folder: WPBM6T0_DocumentazioneSpecialistica.zip

00	30/04/2024				PRIMA EMISSIONE
REV.	DATA	SCALA	FORMATO	NOME FILE	DESCRIZIONE REVISIONE

INDICE

1.	PREI	MESSA	2
	1.1.	DESCRIZIONE DEGLI ELEMENTI TECNICI DELL'IMPIANTO AGRIVOLTAICOINFO E CONTATTI	2
2.	ENE	RGIA ELETTRICA DA FONTE SOLARE	10
	2.1.	SOFTWARE UTILIZZATO	11
	2.2.	RADIAZIONE SOLARE MEDIA ANNUA SU BASE GIORNALIERA	11
	2.3.	ANALISI DI PRODUCIBILITA' DELL'IMPIANTO FOTOVOLTAICO	12
	CRITER	IO DI VERIFICA ELETTRICA	13
	2.4.	RISPARMIO DI COMBUSTIBILE	21
	2.5.	EMISSIONE DI SOSTANZE NOCIVE EVITATE IN ATMOSFERA	21

1. PREMESSA

1.1. DESCRIZIONE DEGLI ELEMENTI TECNICI DELL'IMPIANTO AGRIVOLTAICO

Il richiedente propone la realizzazione e gestione di un impianto Agrivoltaico, denominato "CAR01", che si pone l'obiettivo di combinare sulla medesima superficie agricola la produzione di energia elettrica da fonti rinnovabili con l'attività agronomica consistente nella realizzazione di un oliveto super intensivo tra i filari di moduli fotovoltaici.

Il progetto prevede:

- la realizzazione dell'impianto fotovoltaico;
- la realizzazione del cavidotto per il trasferimento dell'energia prodotta e relativa cabina di consegna;
- la realizzazione delle opere di rete.

L'impianto fotovoltaico CAR01 sarà ubicato nell'agro del **Comune di Carapelle (FG)** in località Bonassisi su una superficie recintata complessiva di circa 47,27 ha, prevalentemente pianeggiante, avente destinazione agricola "E" secondo il vigente piano urbanistico.

Le caratteristiche dimensionali dell'impianto sono di seguito riepilogate:

CAR01								
POTENZA TOTALE [kWp]	36083							
NUMERO DI MODULI	60138							
POTENZA MODULO FOTOVOLTAICO [Wp]	600							
NUMERO DI TRACKER DA 56 MODULI	1091							
NUMERO DI TRACKER DA 28 MODULI	131							
NUMERO DI SHELTER	5							
NUMERO DI INVERTER	89							
NUMERO DI STRINGHE	2313							
SUPERFICIE RIFLETTENTE [Ha]	15,54							
SUPERFICIE TERRENI OPZIONATI [ha]	60,8690							
SUPERFICIE RECINTATA TOTALE [ha] (Stot)	47,2731							
PERIMETRO RECINTATO [m]	3108							
DISTANZA DELLA RECINZIONE DAI CONFINI [m]	5							
DISTANZA IMPIANTO DAI CONFINI [m]	10							
SUPERFICI AGRICOLE								
SUPERFICIE DESTINATA A OLIVETO INTERNA ALLA RECINZIONE [ha]	2,89							
SUPERFICIE ESISTENE COLTIVATA A OLIVETO INTERNA ALLA RECINZIONE [ha]	1,79							
SUPERFICIE COLTIVATA AD OLIVETO TRA I FILARI DEI MODULI [ha]	26,45							
SUPERFICIE COLTIVATA A PRATO PERMANENTE ALL'INTERNO DELL'AREA RECINTATA [ha]	15,54							
SUPERFICIE TOTALE DESTINATA ALL'AGRICOLTURA ALL'INTERNO DELL'AREA RECINTATA [ha] (Sagricola)	46,67							
NUMERO DI ALBERI								
Numero di alberi d'olivo all'interno della superficie recintata	23474							
Numero di alberi(lentisco, ilatro comune e alaterno) disposti parallelamente alla recinzione	9324							
Numero di alberi totale	32798							
SUPERFICIE DELL'IMPIANTO FV (superficie recintata - superficie coltivata) [ha]	16,14							
LUNGHEZZA VIABILITA' PERIMETRALE [m]	3108							
LARGHEZZA VIABILITA' PERIMETRALE [m]	5							
AREA VIABILITA' PERIMETRALE [ha]	1,554							
LUNGHEZZA VIABILITA' INTERNA 5m [m]	1548							
AREA VIABILITA' INTERNA 5m [ha]	0,774							
NUMERO PIAZZALI SHELTER	5							
AREA PER PIAZZALI PER CABINE [ha]	0,0675							

Tabella 1 Caratteristiche dimensionali impianto fotovoltaico

Gli elementi tecnici inclusi nella presente relazione riguardano l'impianto fotovoltaico e la sottostazione elettrica ovvero:

Impianto fotovoltaico

Moduli fotovoltaici;

	>	Inverter di stringa
	>	Quadri di parallelo inverter;
	>	Shelter pre-assemblati a 36 kV;
	>	Strutture di sostegno dei moduli (Tracker monoassiali);
	>	Cabine di Servizio / Vano Tecnico;
	>	Trasformatore AT/BT;
	>	Cavidotti BT;
	>	Cavidotti AT di collegamento alla Cabina di Sezionamento/Smistamento alla SE RTN 36 kV;
	>	Quadro AT;
	>	Quadri BT;
e pi	ù in	dettaglio l'impianto si comporrà di:
✓	60	.138 moduli fotovoltaici bifacciali in silicio cristallino di potenza massima unitaria pari a
	60	0 Wp, installati su tracker monoassiali da 2x26 e 1x26 moduli installati in modalità portrait;
✓	1.2	222 tracker monoassiali;
✓	2.3	313 stringhe composte da 26 moduli da 600 Wp aventi tensione di stringa 958V @20°C,
	со	rrente di stringa 19,64 A;
✓	87	inverter di stringa 320 kW @ 1.500V - 0,8 kV;
✓	2 i	nverter di stringa 225 kW @ 1.500V - 0,8 kV;

- ✓ 5 shelter 20ft pre-assemblati 0,8/36 kV dotati di quadri di parallelo inverter, sistema di trasformazione MT/BT, trasformatore ausiliari, protezione MT e BT, di potenza complessiva compresa tra 4480 e 6400 kVA
- ✓ 1 Cabina di Sezionamento/Smistamento (Cabina "AUX") in cui a) si convoglia l'energia prodotta dall'impianto fotovoltaico proveniente dai 5 shelter alla SE RTN

 Terna e b) sarà presente il vano per l'alloggiamento del trasformatore per i servizi ausiliari c) saranno ubicati quadri BT / TLC, vano control room, vano deposito;
- ✓ 1 Cabina di Consegna in cui vengono installati i misuratori di energia elettrica prima
 che l'energia prodotta dall'impianto fotovoltaico venga convogliata a Terna;
- ✓ 1 terna AT @36kV in cavo interrato attraverso cui l'energia prodotta viene trasferita
 alla SE RTN TERNA;
- ✓ Apparecchiature elettriche di protezione e controllo in AT, MT, BT;

L'energia prodotta verrà convogliata, mediante una terna di cavi AT 36kV interrati su strada provinciale, strada interpoderale e terreni agricoli privati lungo i confini di proprietà, in modo da non interferire con le pratiche agricole, tramite connessione in antenna a 36 kV su un futuro ampliamento della SE della RTN denominata "Manfredonia" (Codice pratica 202201347).

			CA	MPO FV					ı	AC .		
	n°di traker da 52 moduli	n°di traker da 26 moduli	Numero di moduli	Potenza modulo FV [Wp]	Numero di stringhe da 26 moduli	Potenza di picco [kWp]	Pn [kW] inverter	Numero di inverter	inverter	N° di stringhe per inverter	Potenza di picco [kWp]	Pac totale [kW]
									1	27	421	
									2	26	406	
									3	26	406	
									4	26	406	
S1							320	10	5	26	406	
	130 21	21	7306	600	281	4384	320	10	6	27	421	3425
									7	26	406	
									8	27	421	
									9	27	421	
									10	25	390	
							225	1	11	18	281	
										281	4384	3425

			CA	MPO FV					,	AC .		
									1	26	406	
									2	26	406	
									3	26	406]
									4	26	406	
									5	26	406	
									6	26	406	
									7	27	421	
									8	27	421	
									9	27	421	
	254	18	13676	600	526	8206	320	20	10	26	406	6400
S2									11	26	406	
5 2									12	26	406	
									13	26	406	
									14	26	406	
									15	27	421	
									16	27	421	
									17	26	406	
									18	26	406	
									19	26	406	
									20	27	421	
										526	8206	6400

			CA	MPO FV					,	AC .		
									1	26	406	
									2	26	406	
									3	26	406	
									4	26	406	
									5	26	406	
									6	26	406	
									7	26	406	
									8	26	406	
									9	27	421	
	254	14	13572	600	522	8143	320	20	10	26	406	6400
S3					5	0143	525		11	27	421	0400
33									12	26	406	
									13	26	406	
									14	26	406	
									15	26	406	
									16	26	406	
									17	26	406	
									18	26	406	
									19	26	406	
									20	26	406	
										522	8143	6400

			CA	MPO FV					,	AC .		
									1	26	406	
									2	26	406]
									3	26	406	
									4	26	406	
									5	26	406	ļ
									6	26	406	
									7	26	406	
									8	26	406	
									9	26	406	
	241	31	13338	600	513	8003	320	19	10	26	406	6305
S4									11	26	406	
5 T									12	26	406	
									13	26	406	
									14	26	406	
									15	26	406	
									16	26	406	
									17	26	406	
									18	27	421	
									19	27	421	
							225	1	20	17	265	
										513	8003	13

			CA	MPO FV					,	AC .		
									1	25	390	
									2	27	421]
									3	27	421]
									4	26	406]
									5	26	406]
									6	27	421	ļ
									7	26	406	
									8	26	406	ļ
	212	47	12246	600	471	7348	320	18	9	26	406	5760
S5	212	7/	12240	000	7/1	7348	320	10	10	26	406	3700
33									11	27	421	ļ
									12	26	406	
									13	26	406	
									14	26	406	
									15	27	421	
									16	26	406	
									17	25	390	
									18	26	406	
										471	7348	5760

Tabella 2 Archittettura impianto fotovoltaico

L'elenco dei componenti e materiali utilizzati nel progetto definitivo dell'impianto fotovoltaico in oggetto sono tra i prodotti più efficienti e performanti attualmente disponibili nel mercato, tuttavia la rapida evoluzione del settore e della tecnologia potrebbe prospettare in sede di progettazione esecutiva nuove tecnologie che potrebbero essere utilizzate in sostituzione di quelle ivi elencate senza che questo però comporti alcuna variazione (maggiorazione) in termini di potenza installata, superficie occupata da moduli fotovoltaici, vani tecnici e/o di conversione comunicati.

1.2. INFO E CONTATTI

La società promotrice dell'iniziativa e i progettisti incaricati sono rispettivamente:

LT 04 Srl

39031 Brunico (BZ)

Anello Nord 25

lt04srl@legalmail.it

Ing Alessandro la Grasta

70056 Molfetta (BA)

Via Vittorio Emanuele II 28

Email:info@ltservice.net

Pec: studiotecnicolt@pec.it

Tel: +39 3401706888

Ing Luigi Tattoli

70056 Molfetta (BA)

Via Vittorio Emanuele II 28

Email:info@ltservice.net

Pec: studiotecnicolt@pec.it

Tel: +39 3403112803

2. ENERGIA ELETTRICA DA FONTE SOLARE

L'energia solare è considerata una fonte di energia rinnovabile e inesauribile nella scala del tempo dell'uomo.

Il Sole irraggia il nostro pianeta per una potenza di circa 180 mila miliardi di kilowatt e irraggia sull'orbita terrestre una energia pari a 1367 watt / m² (1,3 kW / m²).

Complessivamente, giunge fino alla superficie terrestre circa 1 kilowatt di energia solare per metro quadro.

Il fotovoltaico è una tecnologia in grado di sfruttare l'energia solare per produrre energia elettrica che si basa sull'effetto fotovoltaico, in base al quale l'irradiazione solare viene convertita direttamente in elettricità.

L'effetto fotovoltaico si presenta nei materiali semiconduttori quando un elettrone passa dalla banda di valenza alla banda di conduzione per effetto dell'assorbimento dell'energia di un fotone proveniente dall'esterno.

Tale fenomeno si realizza in alcuni semiconduttori ed è il principio base di funzionamento delle celle fotovoltaiche che sono i componenti di base dei moduli fotovoltaici i quali possono essere assemblati per la realizzazione dei pannelli solari fotovoltaici.

I moduli fotovoltaici producono energia in corrente continua la quale per mezzo di inverter viene convertita in corrente alternata prima di essere immessa nella rete elettrica.

2.1. SOFTWARE UTILIZZATO

Il calcolo della producibilità è stato effettuato imputando il modello del sistema nel software di simulazione PVSyst vers. 7.4 del quale si riporta il report di calcolo in allegato alla presente relazione.

2.2. RADIAZIONE SOLARE MEDIA ANNUA SU BASE GIORNALIERA

Il sito di installazione appartiene ad un'area che dispone di dati climatici storici riportati in diversi database. Il database internazionale MeteoNorm rende disponibili i dati meteorologici per la località oggetto di intervento: l'attendibilità dei dati contenuti nel database è internazionalmente riconosciuta, possono quindi essere usati per l'elaborazione statistica per la stima di radiazione solare per il sito.

In particolare sono stati utilizzati i dati del database MeteoNorm 7.2, aggiornati rispetto a quelli utilizzati in progetto definitivo. Nelle immagini che seguono si riportano i dati meteorologici assunti per la presente simulazione.

Bilanci e risultati principali

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
Gennaio	58.5	28.60	7.42	75.9	69.9	2526039	2400465	0.876
Febbraio	75.6	35.73	7.97	96.2	90.2	3249416	3091947	0.891
Marzo	125.3	53.68	11.24	162.0	153.7	5458571	5188247	0.887
Aprile	155.0	71.77	14.40	195.4	186.5	6524073	6196649	0.879
Maggio	194.1	79.26	19.91	246.5	235.9	8059953	7646658	0.860
Giugno	204.1	84.89	24.95	255.7	244.6	8227585	7808638	0.846
Luglio	208.6	83.75	28.02	264.4	252.8	8369007	7942387	0.832
Agosto	187.0	73.24	27.68	241.3	231.2	7719607	7323412	0.841
Settembre	138.1	59.99	22.01	177.4	168.4	5768661	5482319	0.857
Ottobre	105.5	38.40	17.97	139.2	131.6	4565966	4338290	0.863
Novembre	60.1	30.97	12.65	76.6	71.0	2517529	2390430	0.865
Dicembre	48.1	24.99	8.71	62.1	56.7	2038722	1934335	0.863
Anno	1560.0	665.26	16.97	1993.0	1892.6	65025128	61743778	0.859

Legenda

GlobHor Irraggiamento orizzontale globale
DiffHor Irraggiamento diffuso orizz.
T_Amb Temperatura ambiente
GlobInc Globale incidente piano coll.

GlobEff Globale "effettivo", corr. per IAM e ombre

EArray Energia effettiva in uscita campo E_Grid Energia immessa in rete

PR Indice di rendimento

Figura 1 Dati metereologici (fonte Meteonorm 7.2 agg. Marzo 2020)

2.3. ANALISI DI PRODUCIBILITA' DELL'IMPIANTO FOTOVOLTAICO

L'energia generata dipende:

- dal sito di installazione (latitudine, radiazione solare disponibile, temperatura, riflettanza della superficie antistante i moduli);
- dall'esposizione dei moduli: angolo di inclinazione (Tilt) e angolo di orientazione (Azimut);
- da eventuali ombreggiamenti o insudiciamenti del generatore fotovoltaico;
- dalle caratteristiche dei moduli: potenza nominale, coefficiente di temperatura, perdite per disaccoppiamento o mismatch;
- dalle caratteristiche del BOS (Balance Of System).

Il valore del BOS può essere stimato direttamente oppure come complemento all'unità del totale delle perdite, calcolate mediante la seguente formula:

Totale perdite [%] =
$$[1 - (1 - a - b) \times (1 - c - d) \times (1 - e) \times (1 - f)] + g$$

per i seguenti valori:

- Perdite per riflessione.
- perdite per ombreggiamento.
- Perdite per mismatching.
- Perdite per effetto della temperatura.
- Perdite nei circuiti in continua.
- Perdite negli inverter.
- Perdite nei circuiti in alternata.

CRITERIO DI VERIFICA ELETTRICA

In corrispondenza dei valori minimi della temperatura di lavoro dei moduli (-6 °C) e dei valori massimi di lavoro degli stessi (60 °C) sono verificate le seguenti disuguaglianze:

TENSIONI MPPT

Tensione nel punto di massima potenza, Vm, a 60 °C maggiore o uguale alla Tensione MPPT minima (Vmppt min).

Tensione nel punto di massima potenza, Vm, a -6 °C minore o uguale alla Tensione MPPT massima (Vmppt max).

I valori di MPPT rappresentano i valori minimo e massimo della finestra di tensione utile per la ricerca del punto di funzionamento alla massima potenza.

TENSIONE MASSIMA

Tensione di circuito aperto, Voc, a -6 °C minore o uguale alla tensione massima di ingresso dell'inverter.

TENSIONE MASSIMA MODULO

Tensione di circuito aperto, Voc, a -6 °C minore o uguale alla tensione massima di sistema del modulo.

CORRENTE MASSIMA

Corrente massima (corto circuito) generata, Isc, minore o uguale alla corrente massima di ingresso dell'inverter.

DIMENSIONAMENTO

Dimensionamento compreso tra il 70 % e 120 %.

Per dimensionamento si intende il rapporto percentuale tra la potenza nominale dell'inverter e la potenza del generatore fotovoltaico ad esso collegato (nel caso di sottoimpianti MPPT, il dimensionamento è verificato per il sottoimpianto MPPT nel suo insieme).

La stima della producibilità dell'impianto è stata calcolata considerando la potenza dell'impianto fotovoltaico pari a 36.083 MWp composto da 60.138 moduli fotovoltaici in silicio monocristallino bifacciali di potenza unitaria pari a 600 Wp, installati su tracker monoassiali in gruppi di 2x26 o 1x26 moduli in modalità portrait a comporre 2.313 stringhe, composte da 26 moduli da 600 Wp, aventi tensione di stringa 1.051V @20°C e corrente di stringa 13,44 A, collegate a n°89 inverter di stringa di potenza pari a 225-320 kVA.

Di seguito si riporta l'analisi di producibilità dell'impianto, utilizzando i dati meteorologici elaborati dal software PVSyst ricavati dal database Meteonorm, database riconosciuto a livello internazionale, da cui si evince che l'energia annua prodotta dall'impianto è pari a 61.744 MWh/annui che corrispondono ad una produzione di 1.711 kWh/kWp/anno con un performance ratio di 87.41%.

Il valore del performance ratio ottenuto deriva dall'aver considerato le varie perdite di energia che negli impianti fotovoltaici sono dovute essenzialmente a:

- -perdite di potenza dovute allo scostamento dalle condizioni STC
- -perdite per riflessione
- -perdite per mismatch
- -perdite per caduta di tensione sul tratto DC
- -perdite nell'inverter

- -perdite per sporcizia
- -perdite per calo di efficienza annuale dei moduli fotovoltaici
- -perdite nel trasformatore di tensione (quando presente)
- -perdite per caduta di tensione nel tratto AC
- -perdite per ombreggiamento.

con v7.3.4

Progetto: CAR01

Variante: Sungrow 320kw + Longi 600 Wp Bifacciale

Lt service srl (Italy)

Parametri principali

Sistema connesso in rete

Inseguitori campo singolo, con indetreggiamento

Orientamento campo FV

Orientamento
Piano d'inseguimento, asse orizzon. N-S
Asse dell'azimut 0 "

Algoritmo dell'Insegulmento Ottimizzazione irraggiamento

Backtracking attivato

Campo con backtracking

N. di eliostati 86 unità

Campo (array) singolo

Dimensioni

 Distanza eliostati
 9.50 m

 Larghezza collettori
 4.55 m

 Fattore occupazione (GCR) 48.2 %

 Banda inattiva sinistra
 0.02 m

 Banda inattiva destra
 0.02 m

 Phi min / max
 -/+ 60.0 °

Strategia Backtracking

Phi limits for BT -/+ 60.9 ° Distanza tavole backtracking9.50 m Larghezza backtracking 4.62 m

Modelli utilizzati

Trasposizione Perez
Diffuso Perez, Meteonorm
Circumsolare separare

Orizzonte Ombre vicine
Orizzonte Ilbero Ombre lineari

Ombreggiamento diffidadomatico

Bisogni dell'utente

Carico illimitato (rete)

Caratteristiche campo FV

	Caratterist	iche campo FV	
Modulo FV		Inverter	
Costruttore	LONGI	Costruttore	Sungrow
Modello	LR5-72HTH 580-600M	Modello	SG350HX-15A
(Definizione customizza	ata del parametri)	(Definizione customizzata dei	parametri)
Potenza nom. unit.	600 Wp	Potenza nom. unit.	320 kWac
Numero di moduli FV	60135 unità	Numero di inverter	89 unità
Nominale (STC)	35.05 MWc	Potenza totale	25450 kWac
Moduli	2313 Stringhe x 26 In serie	Voltaggio di funzionamento	500-1500 V
In cond. dl funz. (50°C)		Potenza max. (=>30°C)	352 kWac
Pmpp	33.52 MWc	Rapporto Pnom (DC:AC)	1.27
U mpp	1051 V	Power sharing within this inverter	
I mpp	31910 A		
Potenza PV totale		Potenza totale inverter	
Nominale (STC)	36063 kWp	Potenza totale	28480 kWac
Totale	60135 moduli	Potenza max.	31326 kWac
Superficie modulo	154806 m²	Numero di inverter	89 unità
		Rapporto Pnom	1.27

Progetto: CAR01

Variante: Sungrow 320kw + Longi 600 Wp Bifacciale

Lt service srl (Italy)

PVsyst V7.3.4 VCH, Simulato su 19/06/23 19:05

Perdite campo

Perdite per sporco campo

Fatt. di perdita termica

Perdite DC nel cablaggio

Fraz. perdite

1.0 %

Temperatura modulo secondo irraggiamento Res. globale campo 0.08δ mΩ Uc (cost) 29.0 W/m²K

Fraz. perdite

Uv (vento)

0.3 % a STC

LID - Light Induced Degradation Fraz. perdite

Perdita di qualità moduli Fraz. perdite

Perdite per mismatch del modulo

Perdita disadattamento Stringhe

Fraz. perdite

Fattore di perdita IAM

Effetto d'incidenza, profilo definito utente (IAM): Vetro Fresnel levigato, n = 1.526

0*	30*	50"	60*	70°	75*	80*	85"	90"
1.000	0.995	0.951	0.948	0.862	0.776	0.636	0.403	0.000

Perdite sistema

Perdite ausiliarie

Proporzionali alla potenza 20.0 W/kW

0.0 kW dalla soglia di potenza

Perdite cablaggio AC

Linea uscita inv. sino al trasformatore MT

800 Vac tri

Inverter: SG350HX-15A

Rame 89 x 3 x 300 mm² Sezione cavi (89 Inv.) Lunghezza media del cavi 150 m

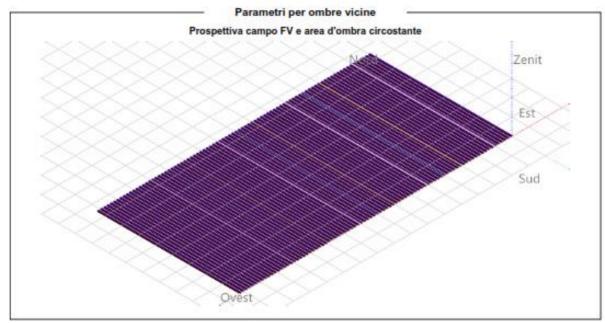
Linea MV fino alla iniezione

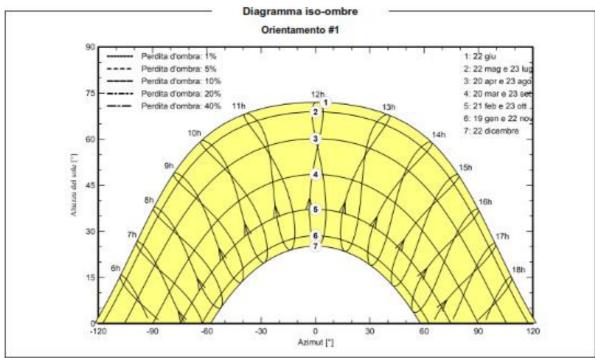
Voltaggio MV 36 kV Conduttori Rame 3 x 700 mm² Lunghezza 0.55 % a STC Fraz, perdite

Perdite AC nei trasformatori

Trafo MV

36 kV


Transformer parameters


35.49 MVA Potenza nominale a STC Iron Loss (Connessione 24/24) 34.49 kVA Frazione di perdite a vuoto 0.10 % a STC 365.25 kVA Frazione di perdite a carico 1.03 % a STC Resistenza equivalente induttori 3 x 0.19 mΩ

Progetto: CAR01 Variante: Sungrow 320kw + Longi 600 Wp Bifacciale Lt service srl (Italy)

Progetto: CAR01

Variante: Sungrow 320kw + Longi 600 Wp Bifacciale

Lt service srl (Italy)

Risultati principali Produzione sistema Energia prodotta 61743776 kWh/anno Prod. Specif. 1711 kWh/kWc/anno Indice rendimento PR 85.86 % Produzione normalizzata (per kWp installato) Indice di rendimento PR Lo: Perdite di reccolte (perdite impiento FV) 0.52 kWh/kWo/giorno PR: Indice di rendimento (Y1 / Yr): 0.859 La: Perdite sistema (invertor, ...) 0.25 kWh/kWo'gomo National Comments of Comments YY: Energia utile prodotta: (usota inverter) 4.69 kWh/kWicigiomo 0.8 0.6 0.4 0.2

Bilanci e risultati principali

	GlobHor kWh/m²	DiffHor kWh/m²	T_Amb *C	Globino kWh/m²	GlobEff kWh/m²	EArray kWh	E_Grid kWh	PR
Gennalo	58.5	25.60	7.42	75.9	69.9	2526039	2400465	0.876
Febbralo	75.6	35.73	7.97	96.2	90.2	3249416	3091947	0.591
Marzo	125.3	53.68	11.24	162.0	153.7	5458571	5188247	0.557
Aprile	155.0	71.77	14.40	195.4	186.5	6524073	6196649	0.879
Magglo	194.1	79.26	19.91	246.5	235.9	8059953	7646658	0.860
Glugno	204.1	54.59	24.95	255.7	244.6	8227585	7808638	0.546
Luglio	205.6	53.75	25.02	264.4	252.8	8369007	7942387	0.832
Agosto	187.0	73.24	27.68	241.3	231.2	7719607	7323412	0.541
Settembre	135.1	59.99	22.01	177.4	165.4	5768661	5482319	0.857
Ottobre	105.5	35.40	17.97	139.2	131.6	4565966	4335290	0.563
Novembre	60.1	30.97	12.65	76.6	71.0	2517529	2390430	0.865
Dicembre	45.1	24.99	5.71	62.1	56.7	2038722	1934335	0.563
Anno	1560.0	665.26	16.97	1993.0	1892.6	65025128	61743778	0.859

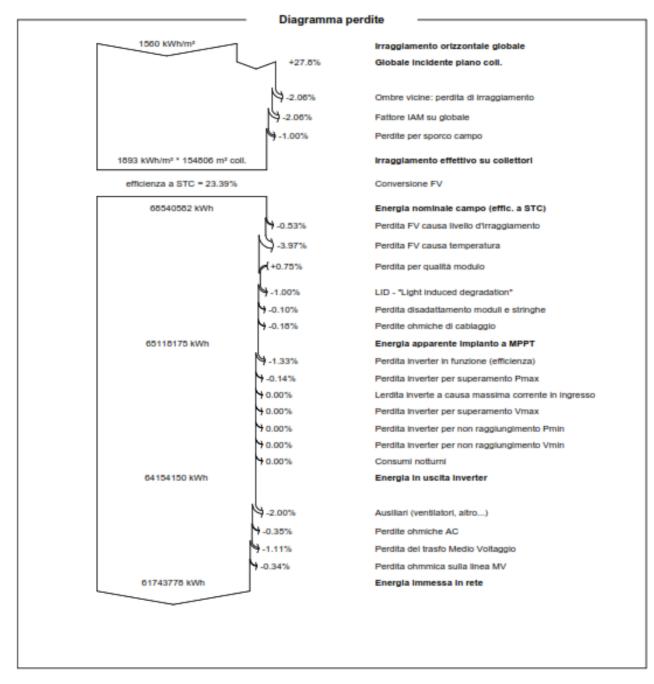
Legenda

GlobHor Irraggiamento orizzontale globale Irraggiamento diffuso orizz. T_Amb Temperatura ambiente Globino Globale incidente piano coll.

Globale "effettivo", corr. per IAM e ombre GlobEff

ЕАггау Energia effettiva in uscita campo E_Grid Energia immessa in rete

Indice di rendimento



Progetto: CAR01

Variante: Sungrow 320kw + Longi 600 Wp Bifacciale

Lt service srl (Italy)

2.4. RISPARMIO DI COMBUSTIBILE

L'impianto fotovoltaico consentirà un risparmio di combustibile quantificabile con il fattore di conversione T.E.P./MWh, (tonnellate equivalenti di petrolio) necessarie per la produzione di 1 MWh di energia mediante combustibili fossili, pari a 8,598*10⁻⁵ tep/kWh ovvero **11.546 tep/anno**

Le T.E.P. risparmiate nell'arco di 20 anni saranno quinti pari a 346.383

2.5. EMISSIONE DI SOSTANZE NOCIVE EVITATE IN ATMOSFERA

L'impianto fotovoltaico consentirà la riduzione di emissioni in atmosfera delle sostanze che hanno effetto inquinante e di quelle che contribuiscono all'effetto serra.

Dato il parametro dell'energia prodotta, il contributo alle emissioni evitate in atmosfera di sostanze nocive, può essere valorizzato come segue:

L'impianto fotovoltaico eviterà le seguenti emissioni inquinanti in atmosfera:

• CO₂: 462 t/GWh ovvero 28.525 t/anno

• SO₂: 0,540 t/GWh ovvero 33,34 t/anno tep

• NO_x: 0,490 t/GWh ovvero 30,25 t/anno

• Polveri: 0,014 t/GWh ovvero 0.86 t/anno

I tecnici

Dott. Ing. Alessandro la Grasta

Dott. Ing. Luigi Tattoli