

GRE.EEC.R.73.IT.W.12420.12.009.01

PAGINA

1 di/of 17

TITLE: AVAILABLE LANGUAGE: IT

INTEGRALE RICOSTRUZIONE DELL'IMPIANTO EOLICO DI NICOSIA

PROGETTO DEFINITIVO

Relazione idraulica

File: GRE.EEC.R.73.IT.W.12420.12.009.01 - Relazione idraulica.docx

	1	1						ile. GK	L.EEC	·.K.7	3.11.	VV. 12	420.	12.00	9.01	- 10	Iazio	116 1	urau	ica.c	100
01 05/07/2024 Integrazione MAS											S	. Brizz	İ		G. A	lfano			P. Po	olinelli	
00	03/07/2020	Prima en	rima emissione						N	I. Terzi			N. Novati L. Lavazza								
REV.	DATE			DESC	RIPTIO	N					PREPARED		VERIFIED			APPROVED		ED			
					G	RE \	/ALI	DATI	ON												
	М. То	mei				S.	Bello	orini				L. laciofano									
	COLLABO	RATORS				VE	RIFIE	D BY							VA	ALIDA	ATED	BY			
PROJECT	T/PLANT							G	RE C	OD	E	•									
N	icosia	GROUP	FUNCION	TYPE	ISS	SUER	cc	DUNTRY	TEC			PLAN	г		SYS	STEM	PR	OGRE	SSIVE	RE	VISION
		GRE	EEC	R	7	3	I	Т	W	1	2	4	2	0	1	2	0	0	9	0	1
CLASSI	FICATION	PUBL	IC			UTII	LIZAT	ION SC	OPE	В	AS	IC	DE	SI	GN						
	ument is property o he previous written				forbidde	en to re	produc	ce this d	ocumen	t, in v	whole	or in p	art, aı	nd to p	rovide	e to o	thers	any re	elated	inforn	nation

GRE CODE

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

2 di/of 17

INDICE

1.	INTRODUZIONE3
	1.1. DESCRIZIONE DEL PROPONENTE
	1.2. CONTENUTI DELLA RELAZIONE
2.	INQUADRAMENTO TERRITORIALE4
3.	RISULTATI DELL'ANALISI IDROLOGICA LOCALE5
4.	STIMA DELLE PORTATE DI PROGETTO7
	4.1. IDENTIFICAZIONE DEI SOTTO-BACINI CRITICI
	4.1.1. TEMPO DI CORRIVAZIONE
	4.1.2. ALTEZZA DI PIOGGIA
	4.1.3. COEFFICIENTE DI DEFLUSSO
	4.2. RISULTATI DELLE ELABORAZIONI
5.	OPERE DI REGIMAZIONE IDRAULICA
	5.1. OPERE IDRAULICHE DI PROGETTO
	5.1.1. FOSSI DI GUARDIA
	5.1.2. ATTRAVERSAMENTI IN CORRISPONDENZA DEI PUNTI DI SCARICO
	5.1.3. CANALETTE TRASVERSALI
AL	EGATO 1 - FOGLI DI CALCOLO

GRE CODE

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

3 di/of 17

1. INTRODUZIONE

Stantec S.p.A., in qualità di Consulente Tecnico, è stata incaricata da Enel Green Power S.p.A. ("EGP") di redigere il progetto definitivo per il potenziamento dell'esistente impianto eolico ubicato nei comuni di Nicosia (EN) e Mistretta (ME), in località "Contrada Marrocco", costituito da 55 aerogeneratori di potenza nominale pari a 0,85 MW, per una potenza totale installata di 46,75 MW.

L'energia prodotta dagli aerogeneratori, attraverso il sistema di cavidotti interrati in media tensione, viene convogliata alla sottostazione elettrica di alta tensione "Serra Marrocco" 150 kV, realizzata in entra-esce sulla linea Nicosia-Caltanissetta. La suddetta stazione elettrica è ubicata all'interno dell'area dell'impianto eolico.

Il progetto proposto prevede l'installazione di nuove turbine eoliche in sostituzione delle esistenti, in linea con gli standard più alti presenti sul mercato, e consentirà di ridurre il numero di macchine da 55 a 13, diminuendo in questo modo l'impatto visivo, in particolare il cosiddetto "effetto selva". Inoltre, la maggior efficienza dei nuovi aerogeneratori comporterà un aumento considerevole dell'energia specifica prodotta, riducendo in maniera proporzionale la quantità di CO₂ equivalente.

1.1. DESCRIZIONE DEL PROPONENTE

Enel Green Power S.p.A., in qualità di soggetto proponente del progetto, è la società del Gruppo Enel che dal 2008 si occupa dello sviluppo e della gestione delle attività di generazione di energia da fonti rinnovabili.

Enel Green Power è presente in 29 Paesi nel mondo: in 18 gestisce delle capacità produttive mentre in 11 è impegnata nello sviluppo e costruzione di nuovi impianti. La capacità gestita totale supera i 42 GW, corrispondenti a più di 1.200 impianti.

In Italia, il parco di generazione di Enel Green Power è rappresentato da tutte le 5 tecnologie rinnovabili del gruppo: idroelettrico, eolico, fotovoltaico, geotermia e biomassa. Attualmente nel Paese conta una capacità gestita complessiva di oltre 14,4 GW.

1.2. CONTENUTI DELLA RELAZIONE

La presente relazione costituisce la relazione idraulica del progetto definitivo.

Il capitolo 2 definisce l'inquadramento territoriale dell'opera.

Nel capitolo 3 si definisce l'inquadramento idrografico dell'opera in progetto, richiamando le curve segnalatrici di possibilità pluviometrica.

Il capitolo 4 illustra la metodologia di calcolo per la stima delle portate di piena di progetto ed i risultati di tale calcolo.

Infine, nel capitolo 5 vengono presentate le opere di progetto finalizzate alla regimazione delle acque meteoriche.

GRE CODE

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

4 di/of 17

2. INQUADRAMENTO TERRITORIALE

Il sito, oggetto del presente elaborato, è ubicato a circa 80 km a Sud-Est di Palermo ed a qualche km ad Est delle Madonie, nei comprensori comunali di Nicosia (EN) e Mistretta (ME), Regione Sicilia.

L'area interessata si sviluppa lungo il crinale della dorsale ad andamento O-E, che si estende tra Serra Marrocco, Monte Ferrante, Monte Quattro Finaite e località Portella Palumba (a sud di Monte Saraceno) per una lunghezza di circa 6 Km, e lungo i due crinali delle dorsali ad andamento Sud-Nord, che si estendono da Serra Marocco per una lunghezza di circa 1 Km e tra Monte della Grassa e Monte Quattro Finaite per una lunghezza di circa 3 Km.

L'impianto in progetto ricade entro i confini comunali di Nicosia e Mistretta, in particolare all'interno dei seguenti riferimenti cartografici:

- Foglio di mappa catastale del Comune di Nicosia nº 1, 3, 4 e 5;
- Foglio di mappa catastale del Comune di Mistretta nº 96;
- Foglio di mappa catastale del Comune di Castel di Lucio nº 36;
- Foglio di mappa catastale del Comune di Geraci Siculo n° 57;Fogli I.G.M. in scala 1:25.000, codificati 260-I-SO Castel di Lucio e 260-II-NO Ganci;
- Carta tecnica regionale CTR in scala 1:10.000, foglio nº 610160.

Di seguito è riportato l'inquadramento territoriale dell'area di progetto e la configurazione proposta su ortofoto.

Figura 2-1: Inquadramento generale dell'area di progetto

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

5 di/of 17

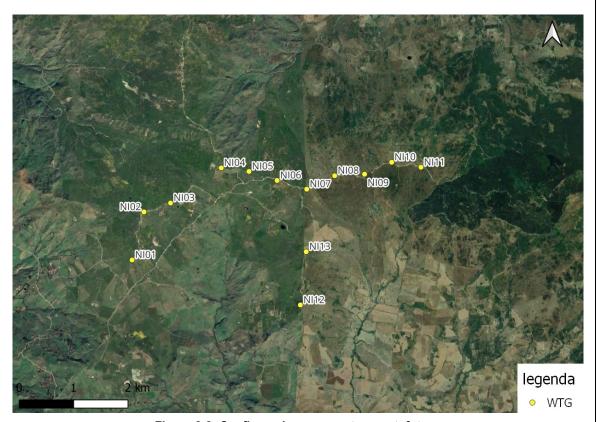


Figura 2-2: Configurazione proposta su ortofoto

Di seguito è riportato in formato tabellare un dettaglio sulla locazione delle WTG di nuova costruzione, in coordinate WGS84 UTM fuso 33N:

Tabella 2-1: Coordinate aerogeneratori

ID	Comune	Est	Nord	Altitudine [m s.l.m.]	
NI01	Nicosia	435152,37	4186572,87	997	
NI02	Nicosia	435371,96	4187457,03	1093	
NI03	Nicosia	435860,43	4187620,53	1073	
NI04	Nicosia	436793,02	4188265,95	1105	
NI05	Nicosia	437302,81	4188201,13	1083	
NI06	Nicosia	437819,67	4188034,76	1087	
NI07	Nicosia	438364,31	4187874,32	1101	
NI08	Nicosia	438879,01	4188122,02	1111	
NI09	Nicosia	439428,41	4188150,68	1119	
NI10	Nicosia	439927,01	4188370,05	1142	
NI11	Nicosia	440465,48	4188278,58	1124	
NI12	Nicosia	438248,00	4185747.00	1056	
NI13	Nicosia	438356.00	4186725.00	1055	

3. RISULTATI DELL'ANALISI IDROLOGICA LOCALE

Il presente capitolo richiama le curve di possibilità pluviometrica come ricavate nella relazione

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

6 di/of 17

idrologica (<u>GRE.EEC.R.73.IT.W.12420.12.004 - Relazione idrologica</u>) e necessarie alla successiva progettazione delle opere idrauliche per la raccolta e l'allontanamento delle acque meteoriche.

La procedura di definizione è stata derivata dal progetto VA.PI. sulla Valutazione delle Piene in Italia sviluppato dalla Linea 1 del Gruppo Nazionale per la Difesa delle Catastrofi Idrogeologiche del Consiglio nazionale delle Ricerche. Esso ha l'obiettivo di regionalizzare le piogge intense su tutto il territorio nazionale secondo criteri omogenei. Nel caso in esame si è fatto riferimento allo studio condotto nella Regione Sicilia: Cannarozzo M., D'Asaro F., Ferro V. "Valutazione delle piene in Sicilia" CNR-GNDCI, Palermo 1993.

Di seguito si riporta le curve di possibilità pluviometrica per eventi con tempi di ritorno pari a 10, 20, 50, 100 e 200 anni.

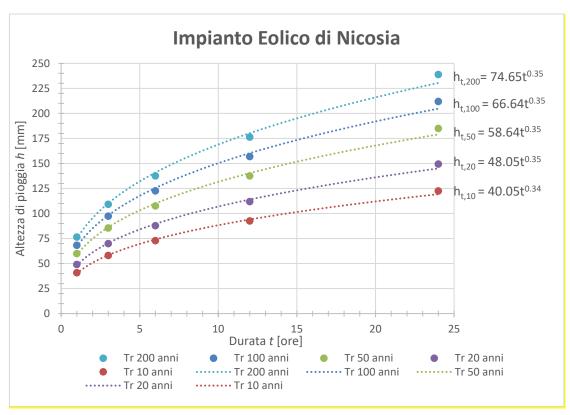


Figura 3-1: curve di possibilità pluviometrica

GRE CODE

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

7 di/of 17

4. STIMA DELLE PORTATE DI PROGETTO

Scopo del presente capitolo è la definizione delle portate di piena corrispondenti a tempi di ritorno di progetto per quanto riguarda i bacini scolanti identificati come critici ai fini della regimazione delle acque del nuovo impianto eolico di Nicosia.

La metodologia identificata per la valutazione della piena di progetto è il metodo razionale e si articola come segue:

- a) delimitazione dei sottobacini idrografici di interesse sulla base della morfologia del territorio e della nuova viabilità interna d'impianto;
- b) definizione dei parametri morfologici quali superficie del bacino sotteso, lunghezza e pendenza dell'asta principale, quota massima, minima e media del bacino, copertura vegetale e uso del suolo;
- definizione dei tempi di corrivazione in base a diverse formule teorico-sperimentali e attribuzione dei valori di riferimento;
- d) definizione della curva segnalatrice di probabilità pluviometrica per diversi tempi di ritorno (vedi Capitolo 2);
- e) analisi dei dati di copertura e vegetazione per la valutazione del coefficiente di deflusso;
- f) calcolo della portata di massima piena per diversi tempi di ritorno.

4.1. IDENTIFICAZIONE DEI SOTTO-BACINI CRITICI

Come anticipato, l'area in esame si sviluppa lungo il crinale della dorsale ad andamento O-E, che si estende tra Serra Marrocco, Monte Ferrante, Monte Quattro Finaite e località Portella Palumba e lungo i due crinali delle dorsali ad andamento Sud-Nord, che si estendono da Serra Marocco e tra Monte della Grassa e Monte Quattro Finaite. Dal DTM che segue si nota appunto come la disposizione dell'impianto e delle annesse strade interne segua le suddette dorsali sviluppandosi lungo le linee spartiacque dei bacini caratterizzanti la zona d'interesse. Tale disposizione permette di avere a monte dell'impianto in progetto superfici molto ridotte con conseguenti ridotti volumi idrici scolanti da gestire dalle opere di regimazione delle acque.

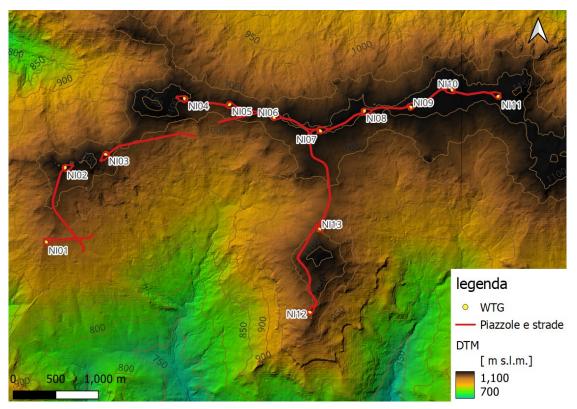


Figura 4-1. DTM - Modello Digitale del Terreno

Attraverso l'analisi della morfologia del territorio si sono individuati i bacini idrografici minori che caratterizzano l'intorno delle opere di progetto. La seguente rappresentazione grafica di

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

8 di/of 17

tali bacini mostra come la disposizione delle opere di progetto si sviluppi lungo la linea di separazione di diversi bacini idrografici appartenenti a diversi versanti. Un chiaro esempio è costituito dall'asse stradale che conduce alla turbina NI13.

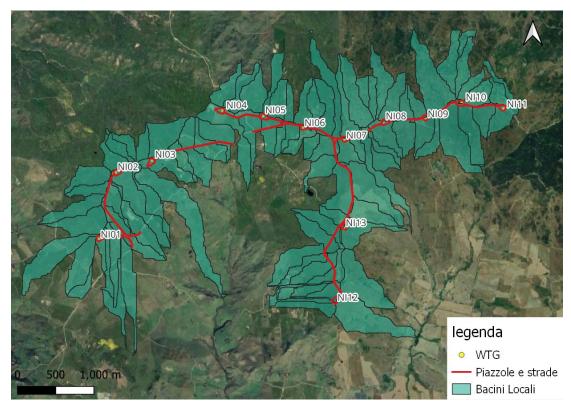


Figura 4-2. Identificazione dei bacini idrografici minori

Al fine di dimensionare correttamente le opere idrauliche di progetto è necessario stimare le massime portate convogliate in corrispondenza della viabilità interna all'impianto. Tale stima prevede in primo luogo l'individuazione dei sotto-bacini caratterizzati dall'avere sezioni di chiusura lungo la viabilità di progetto e le maggiori estensioni areali.

I sotto-bacini critici individuati sono di seguito riportati:

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

9 di/of 17

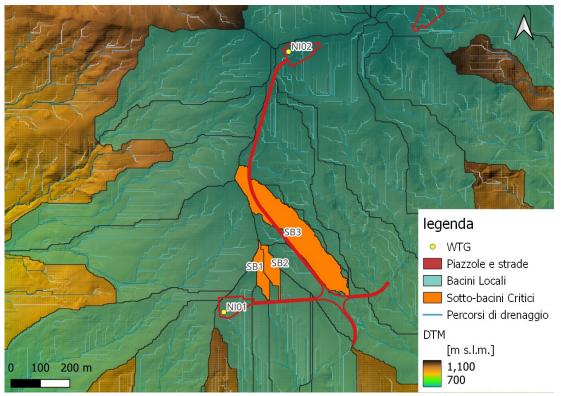


Figura 4-3 Individuazione sotto-bacini SB1, SB 2 e SB3

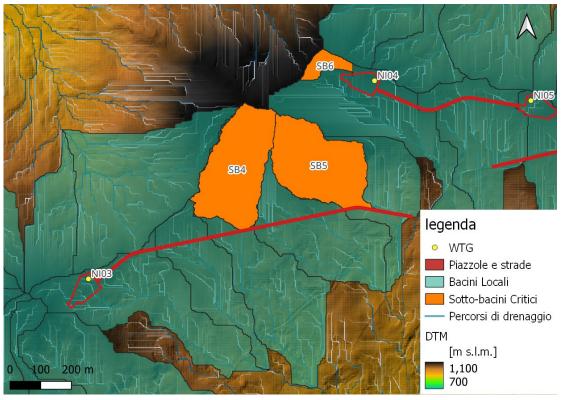
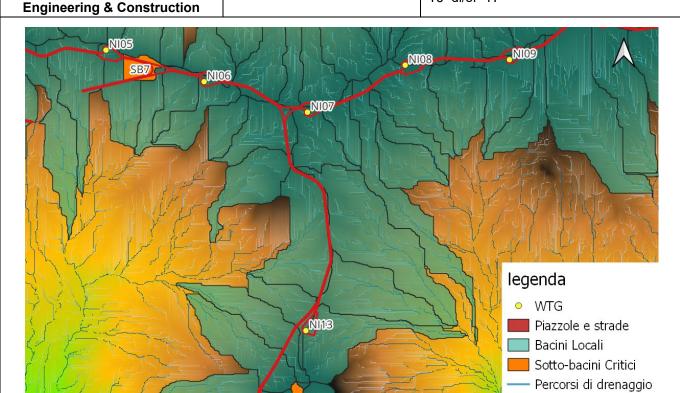


Figura 4-4 Individuazione sotto-bacini SB4, SB5 e SB6

GRE.EEC.R.73.IT.W.12420.12.009.0.


DTM

[m s.l.m.] 1,100

700

PAGINA

10 di/of 17

METODOLOGIA DI CALCOLO DELLE PORTATE DI PIENA

Alla base del metodo razionale di stima delle piene vi sono le seguenti assunzioni:

- la massima piena avviene per precipitazioni meteoriche con durata pari al tempo di corrivazione del bacino;
- il picco di piena ha il medesimo tempo di ritorno della precipitazione che lo ha generato;
- la formazione delle piene ed il suo trasferimento lungo il reticolo idrografico avviene senza la formazione di invasi significativi;

La portata al colmo di piena è espressa dalla formula:

$$Q = \frac{c \cdot h \cdot S}{3.6 \cdot t_c} \text{ in m}^3/\text{s}$$

dove:

250

500 m

- c rappresenta il coefficiente di deflusso del bacino;
- h, l'altezza di massima pioggia per assegnato tempo di ritorno ed una durata pari al tempo di corrivazione del bacino(mm);
- S è la superficie del bacino (km2);
- t_c tempo di corrivazione del bacino (h).

4.1.1. TEMPO DI CORRIVAZIONE

La determinazione del valore del tempo di corrivazione per bacini con estensione areale inferiore ai 20 kmq come nel caso in esame è stata effettuata, in funzione delle caratteristiche fisiografiche dei bacini, mediante le formule di Pezzoli, Kirpich, Ventura e Viparelli. Il tempo di corrivazione di progetto è stato poi calcolato come media dei valori ottenuti ad esclusione degli outlier (valori esterni all'intervallo μ – σ ; μ + σ).

GRE CODE

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

11 di/of 17

4.1.2. ALTEZZA DI PIOGGIA

L'altezza di pioggia massima di assegnato tempo di ritorno e durata è ricavabile dalle curve segnalatrici di possibilità pluviometrica ricavate nell'elaborato GRE.EEC.R.73.IT.W.12420.12.004 - Relazione idrologica e riportate nel capitolo 3 del presente elaborato. Assegnato un tempo di ritorno di progetto pari a Tr= 25 anni, l'equazione della linea segnalatrice si esprime:

$$h(t, 25) = 50.6 \cdot t^{0.348}$$

tuttavia, tale equazione ricavata mediante il modello VAPI, trova applicazione per eventi meteorici di durata maggiore ad 1 ora. Nel presente caso, trattandosi di piccoli bacini con brevi tempi di corrivazione, l'equazione di calcolo della precipitazione massima per gli eventi di breve durata si esprime:

$$h(t) = 0.208 \cdot h(1) \cdot t^{0.386}$$
 in cui t è espresso in minuti.

Tale espressione, disponibile in letteratura, è stata ricavata analizzando i dati forniti nella Tab. V degli Annali Idrologici, relativi alle precipitazioni di breve durata e notevole intensità (Ferreri G. B. e Ferro V. – 1996 – Rainfall intensity-duration-frequency relationship for South Italy. Journal of Hydraulic Engineering, ASCE, 95).

Infine, andrebbe considerato il fatto che piogge di elevata intensità si concentrano in aree piccole, e che, a parità di durata e tempo di ritorno, l'altezza di precipitazione decresca al crescere dell'area. Per tener conto di tale fenomeno, l'altezza di pioggia stimata andrebbe riscalata secondo un fattore di riduzione areale - ARF. Tuttavia, nel caso in esame, le aree dei bacini sono inferiori ad 1 kmq e pertanto il valore di ARF è assunto pari a 1.

4.1.3. COEFFICIENTE DI DEFLUSSO

Il coefficiente di deflusso relativo a ciascun bacino idrografico di interesse è stimato mediante il metodo del Curve Number, proposto dal Soil Conservation Service (1972), il quale si basa sull'assunzione che il volume specifico (altezza) di pioggia netta (efficace) Pnet risulta legato al volume specifico (altezza) di pioggia lorda P (pioggia effettiva) caduta nel medesimo intervallo temporale dalla relazione:

$$P_{net} = \frac{(P - I_a)^2}{P - I_a + S}$$

nella quale S è il massimo volume specifico di acqua che il terreno può trattenere in condizione di saturazione ed I_a è la cosiddetta perdita iniziale, vale a dire quel valore limite di altezza di pioggia che il terreno può trattenere nella fase iniziale del fenomeno senza che si abbia creazione di deflusso. In mancanza di adeguate osservazioni utili, per la stima di Ia si può fare ricorso alla sequente relazione:

$$I_a = 0.2 \cdot S$$

che risulta verificata in buona approssimazione.

La valutazione del valore di S può invece essere ricondotta a quella dell'indice CN (Curve Number), cui esso risulta legato dalla relazione:

$$S = 254 \left(\frac{100}{CN} - 1 \right)$$

L'indice CN è un numero adimensionale, compreso fra 0 e 100, funzione della permeabilità della litologia superficiale, dell'uso del suolo e del grado di saturazione del terreno prima dell'evento meteorico. Il Soil Conservation Service (SCS) sulla base della capacità di assorbimento del terreno nudo a seguito di prolungato adacquamento, ha classificato i vari

GRE CODE

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

12 di/of 17

- - -

tipo di suolo in quattro gruppi (A, B, C, D):

- Gruppo A Scarsa potenzialità di deflusso: comprende forti spessori di sabbia con scarsissimo limo e argilla; anche forti spessori di ghiaie profonde, molto permeabili.
- Gruppo B Potenzialità di deflusso moderatamente bassa: comprende la maggior parte degli strati sabbiosi meno spessi che nel gruppo A, ma il gruppo nel suo insieme mantiene alte capacità di infiltrazione anche a saturazione.
- Gruppo C Potenzialità di deflusso moderatamente alta: comprende suoli sottili e suoli contenenti considerevoli quantità di argilla e colloidi, anche se meno che nel gruppo D. Il gruppo ha scarsa capacità di infiltrazione a saturazione.
- Gruppo D Potenzialità di deflusso molto elevata: comprende la maggior parte delle argille con alta capacità di rigonfiamento, ma anche suoli sottili con orizzonti pressoché impermeabili in vicinanza della superficie.

Per tali gruppi si riportano i valori del parametro CN corrispondenti a diverse tipologie di utilizzo del suolo per condizioni di umidità iniziale medie.

Tabella 4-1. CN in funzione di uso e tipo del suolo (Soil Conservation Service)

	Tipo idrologico Suolo				
Tipologia di Uso del Territorio	Α	В	С	D	
Terreno coltivato					
in presenza di pratiche di conservazione del suolo	62	71	78	81	
in assenza di pratiche di conservazione del suolo	72	81	88	91	
Terreno a pascolo					
in cattive condizioni	68	79	86	89	
in buone condizioni	39	61	74	80	
Terreni boscosi o forestati					
in presenza di copertura rada e senza sottobosco	45	66	77	83	
in presenza di copertura fitta e con sottobosco	25	55	70	77	
Spazi aperti, prati rasati, parchi					
con copertura erbosa superiore al 75% dell'area	39	61	74	80	
con copertura erbosacompreso tra il 50 ed il 75% dell'area	49	69	79	84	
con copertura erbosa inferiore al 50% dell'area	68	79	86	89	
Aree commerciali (area impermeabile 85%)	89	92	94	95	
Distretti industriali (area impermeabile 72%)	81	88	91	93	
Aree residenziali					
impermeabilità media 65%	77	85	90	92	
impermeabilità media 38%	61	75	83	87	
impermeabilità media 30%	57	72	81	86	
impermeabilità media 25%	54	70	80	85	
impermeabilità media 20%	51	68	79	84	
impermeabilità media 12%	46	65	77	82	
Parcheggi, tetti, autostrade	98	98	98	98	
<u>Strade</u>					
pavimentate o asfaltate, dotate di drenaggio	98	98	98	98	
con letto in ghiaia	76	85	89	91	
battute in terra	72	82	87	89	

Al fine di definire il valore di CN per i bacini in studio, le risultanze a seguito del sopralluogo e della relazione geologica (<u>GRE.EEC.R.73.IT.W.12420.12.006 – Relazione geologica</u>) mostrano una tipologia D di terreno e una tipologia di uso suolo classificata come 'Spazi aperti con copertura erbosa compresa tra il 50% ed il 75% dell'area'. Ne consegue un valore di CN pari a 84.

Una volta calcolata la pioggia netta (efficace), il coefficiente di deflusso è pari a:

$$c = \frac{P_{net}}{P}$$

4.2. RISULTATI DELLE ELABORAZIONI

Di seguito sono riportati i valori di massima piena per tempo di ritorno pari a 25 anni associate ai sotto-bacini identificati come critici in termini di sollecitazione sulle opere di progetto dell'impianto eolico di Nicosia.

GRE CODE

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

13 di/of 17

Tabella 4-2 Esiti della valutazione delle piene di progetto

ID	A [km2]	tc [h]	h(tc,25y)[mm]	c [-]	Q [m3/s]
SB1	0.005	0.04	14.70	0.03	0.01826
SB2	0.005	0.04	14.34	0.03	0.01638
SB3	0.042	0.11	21.56	0.11	0.25485
SB4	0.070	0.06	17.33	0.06	0.33793
SB5	0.069	0.06	17.45	0.06	0.33524
SB6	0.008	0.05	16.19	0.05	0.03565
SB7	0.022	0.06	16.97	0.06	0.10198
SB8	0.029	0.10	0.00	0.10	0.17473

Tali portate sono alla base del dimensionamento delle tubazioni relative agli attraversamenti in corrispondenza dei punti di scarico al fine di convogliare le acque intercettate a monte della viabilità di progetto in favore degli impluvi esistenti di valle.

GRE CODE

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

14 di/of 17

5. OPERE DI REGIMAZIONE IDRAULICA

Durante i sopralluoghi effettuati in sito, si sono osservati fenomeni caratterizzati da piccoli dissesti in prossimità degli attuali aerogeneratori. Tali fenomeni sono associati, con buona probabilità, a fenomeni di erosione accelerata causata dal ruscellamento delle acque meteoriche. Sarà quindi fondamentale una corretta gestione delle acque al fine di garantire la durabilità di strade e piazzole tramite un efficace sistema idraulico di allontanamento e drenaggio delle acque meteoriche.

Gli interventi da realizzarsi nell'area in esame sono stati sviluppati secondo due differenti linee di obiettivi:

- mantenimento delle condizioni di "equilibrio idrologico-idraulico" preesistenti agli interventi di potenziamento dell'impianto eolico attualmente in esercizio;
- regimazione e controllo delle acque che defluiscono lungo la viabilità del parco in progetto, attraverso la realizzazione di una adeguata rete drenante, volta a proteggere le infrastrutture del parco eolico.

Le opere di regimazione sono state definite a partire dal DTM – Modello Digitale del Terreno dell'area in esame e dalla riprogettazione della viabilità del parco, individuando le vie preferenziali di deflusso, gli impluvi interferenti con le opere in progetto e le caratteristiche planimetriche ed altimetriche della nuova viabilità interna all'impianto.

5.1. OPERE IDRAULICHE DI PROGETTO

Le opere di regimazione idraulica di progetto presentate nell'allegato <u>GRE.EEC.R.73.IT.W.12420.12.009 – Relazione idraulica – Allegato 2</u> sono le seguenti.

5.1.1. FOSSI DI GUARDIA

È previsto l'impiego di 4 tipologie di fossi di guardia a seconda delle caratteristiche di portata e pendenza di ciascun tratto stradale. In particolare:

- Fosso di guardia di tipo 1 per Q≤0,08 m³/s e i≤6,00%;
- Fosso di guardia di tipo 1P per Q≤0,08 m³/s e 6,00% <i≤11,00%;
- Fosso di guardia di tipo 2 per Q>0,08 m³/s e i≤6,00%;
- Fosso di guardia di tipo 2P per Q>0,08 m³/s e 6,00%<i≤11,00%.

SEZIONE TIPO FOSSI DI GUARDIA

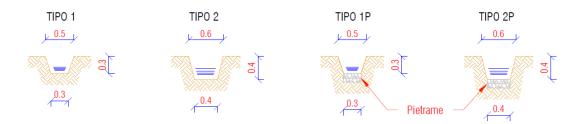


Figura 5-1. Estratto da tavola di progetto - Fossi di guardia

I fossi di guardia di tipo -P presentano il fondo rivestito in pietrame di media pezzatura in modo da ridurre l'azione erosiva delle acque meteoriche intercettate.

Nei tratti caratterizzati da pendenze superiori all'11%, i fossi di guardia presentano briglie in legname. Tali briglie, poste in opera con una interdistanza variabile in funzione delle caratteristiche del tratto stradale, avranno lo scopo di ridurre la pendenza del fosso di guardia attraverso la naturale deposizione di materiale solido limitando così l'azione erosiva dell'acqua.

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

15 di/of 17

BRIGLIE IN LEGNAME

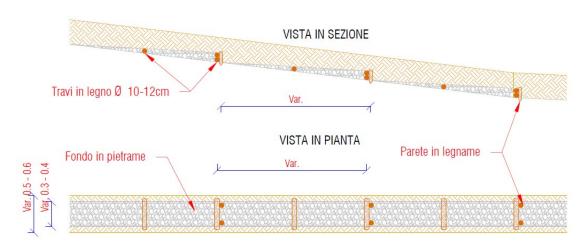


Figura 5-2. Estratto da tavola di progetto - Briglie

5.1.2. ATTRAVERSAMENTI IN CORRISPONDENZA DEI PUNTI DI SCARICO

Si tratta di attraversamenti del rilevato stradale resi necessari per lo scarico, presso gli impluvi esistenti, delle acque meteoriche intercettate dai fossi di guardia.

Gli attraversamenti sono realizzati con tubazioni in HDPE corrugato SN8 di diametro variabile e prevedono in ingresso un pozzetto per ispezione e raccordo con il fosso di guardia ed in uscita lo scarico diretto presso gli impluvi esistenti, previa opera di dissipazione in pietrame.

SEZIONE TIPO ATTRAVERSAMENTO STRADALE

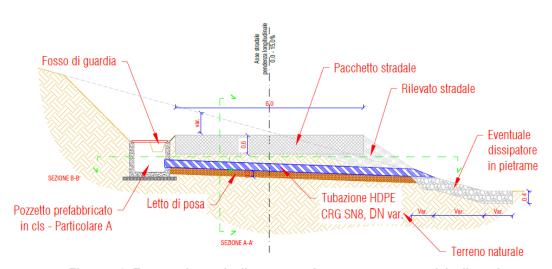


Figura 5-3. Estratto da tavola di progetto - Attraversamento stradale di scarico

Le opere di dissipazione sono poste al termine degli scarichi, in modo tale da ridurre l'energia della corrente idrica reimmessa negli impluvi naturali e limitare quindi l'erosione dei versanti.

Sono previste opere di dissipazione con pietrame di grandi dimensioni, con differente geometria in funzione delle caratteristiche della corrente in uscita e del corpo idrico ricettore.

5.1.3. CANALETTE TRASVERSALI

È prevista la posa di canalette in legname trasversali alla viabilità per i tratti con pendenza superiore a 12%. Tali opere hanno lo scopo di limitare la lunghezza del percorso dell'acqua sul piano stradale convogliandola presso i fossi di guardia paralleli ad essa riducendone così

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

16 di/of 17

il potere erosivo ed il deterioramento della viabilità.

CANALETTA DI RACCOLTA TRASVERSALE

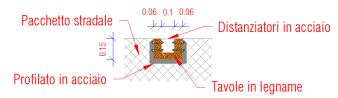


Figura 5-4. Estratto dalla tavola di progetto - Canaletta trasversale

La distanza tra le canalette consecutive deve garantire lo smaltimento del deflusso superficiale prodotto sulla sede stradale, limitare l'erosione del fondo stesso ed evitare la formazione di solchi, ma al contempo garantire una qualità di transito ragionevole. Nel caso in esame, si considera di installare una canaletta ogni 50-60 m ed orientamento di 30° rispetto alla perpendicolare dell'asse stradale, per evitare che le ruote gravino contemporaneamente sul manufatto e per conferire una pendenza trasversale alla canaletta.

GRE.EEC.R.73.IT.W.12420.12.009.0.

PAGINA

17 di/of 17

ALLEGATO 1 - FOGLI DI CALCOLO

					tc [h]							
ID	A [m2]	A [km2]	L [km]	i [-]	Pezzoli	Kirpich	Ventura	Viparelli	media	scarto	hm (m)	hv (m)
SB1	5495.829	0.0055	0.231	0.156061	0.03	0.04	0.02	0.04	0.04	0.01	1032.57	996.52
SB2	5335.718	0.0053	0.22	0.168273	0.03	0.04	0.02	0.04	0.03	0.01	1029.33	992.31
SB3	41761.11	0.0418	0.679	0.127275	0.10	0.11	0.07	0.13	0.10	0.02	1060.2	973.78
SB4	70497.35	0.0705	0.46	0.290609	0.05	0.06	0.06	0.09	0.06	0.01	1174.54	1040.86
SB5	69167.73	0.0692	0.555	0.295135	0.06	0.07	0.06	0.10	0.07	0.02	1167.78	1003.98
SB6	8429.909	0.0084	0.263	0.074715	0.05	0.06	0.04	0.05	0.05	0.01	1131.42	1111.77
SB7	22039.51	0.0220	0.34	0.132118	0.05	0.06	0.05	0.06	0.06	0.01	1101.78	1056.86
SB8	29264.67	0.0293	0.514	0.08358	0.10	0.10	0.08	0.10	0.09	0.01	1103.35	1060.39

Limite sx	Limite dx	Pezzoli	Kirpich	Ventura	Viparelli	tc [h]	tc [min]
0.03	0.04	0.03	0.04	0.00	0.04	0.04	2.37
0.03	0.04	0.03	0.04	0.00	0.04	0.04	2.22
0.08	0.12	0.10	0.11	0.00	0.00	0.11	6.40
0.05	0.08	0.00	0.06	0.06	0.00	0.06	3.63
0.05	0.09	0.06	0.07	0.06	0.00	0.06	3.70
0.04	0.06	0.05	0.00	0.00	0.05	0.05	3.05
0.05	0.06	0.00	0.06	0.05	0.00	0.06	3.44
0.08	0.10	0.10	0.10	0.00	0.10	0.10	5.92

CN	Tr [y]	h(1h,25y) [mm]	h(d,25y) [mm]	la [mm]	S [mm]	Pnet [mm]	c [-]
84	25	50.629	14.70	9.68	48.38	0.47	0.03
			14.34	9.68	48.38	0.41	0.03
			21.56	9.68	48.38	2.34	0.11
			17.33	9.68	48.38	1.05	0.06
			17.45	9.68	48.38	1.08	0.06
			16.19	9.68	48.38	0.77	0.05
			16.97	9.68	48.38	0.96	0.06
			20.92	9.68	48.38	2.12	0.10

ID	A [km2]	tc [h]	h(tc,25y) [mm]	c [-]	Q [m3/s]
SB1	0.005	0.04	14.70	0.03	0.01826
SB2	0.005	0.04	14.34	0.03	0.01638
SB3	0.042	0.11	21.56	0.11	0.25485
SB4	0.070	0.06	17.33	0.06	0.33793
SB5	0.069	0.06	17.45	0.06	0.33524
SB6	0.008	0.05	16.19	0.05	0.03565
SB7	0.022	0.06	16.97	0.06	0.10198
SB8	0.029	0.10	0.00	0.10	0.17473