

AUTOSTRADA TORINO - SAVONA S.p.A. Corso Trieste, 170 - 10024 Moncalieri (TO)

Direzione e coordinamento S.I.A.S. S.p.A.

AUTOSTRADA A6 TORINO - SAVONA

NUOVO SVINCOLO DI CARMAGNOLA SUD

PROGETTO DEFINITIVO

VERIFICA DI ASSOGGETTABILITA' ALLA V.I.A.

INTEGRAZIONI

POZZI IRRIGUI E TRATTAMENTO ACQUE

spea	
= autostrade	ı

ingegneria europea

IL PROGETTISTA:

Ing. Giampaolo NEBBIA Ord. Ingg. Roma N. 12028

IL DIRETTORE TECNICO:

Ing. Giampaolo NEBBIA Ord. Ingg. Roma N. 12028

RIFERIMEN	ITO ELABORATO		-			DATA:		REVISIONE
UNITA'	DIRE	TTORIO		FILE		MARZO 2014	n.	data
OHIIIA	codice commessa	N.Prog. Fase	serie	n. progressivo bis	rev.			
PCM	570108	72PF	ΔΜ	019		SCALA:		
						_		

REDATTO:		CONSULENZA:	Ing. Tiziana BASTIANELLO
PROGETTATO:	Ing. Gianluca GALLI	APPROVATO:	Ing. Giampaolo NEBBIA

CAPO COMMESSA

VISTO DELLA COMMITTENTE

Ing. Gianluca GALLI O.I. Roma n. 23243

Sommario

1.1.	Pozzi irrigui	2
1.2.	Dati di pluviometria della zona	3
1.3.	Opere di drenaggio del piazzale di stazione e del nuovo parcheggio	9
2. AL	LEGATI DI CALCOLO	13
2.1.	Piazzale di stazione	13
2.2.	Parcheggio	14
2.3.	Impianto scarico fabbricato di stazione	16

1.1. Pozzi irrigui

Il progetto prende in esame la presenza di pozzi irrigui finalizzati a garantire l'apporto d'acqua necessario alle coltivazioni.

In particolare, per tali interferenze, sono stati mappati in apposito elaborati i pozzi esistenti e confrontata la loro posizione con le planimetrie definitive di progetto.

Come unica alternativa all'interferenza così creata si è scelto di tombare i pozzi interferenti e ripristinare, con creazione di nuovi pozzi, con stesse caratteristiche, dimensioni e funzionalità, nelle particelle interessate, la situazione esistente.

Questa operazione consente con un intervento di tipo compensativo i cui importi sono previsti nel quadro economico di progetto all'interno delle SAD, essendo lo stesso funzionale a preventivo accordo sulla ubicazione e modalità di realizzazione tra la Concessionaria ed i singoli interessati e per tale ragione esterno ma complementare al progetto.

1.2. Dati di pluviometria della zona

Per la progettazione dei sistemi di drenaggio è stato necessario caratterizzare dal punto di vista idrologico la zona oggetto d'intervento.

I valori della precipitazione di progetto sono stati ricavati con riferimento alle linee segnalatrici di possibilità pluviometrica, indicate nelle Norme di attuazione del Piano Stralcio per l'Assetto Idrogeologico dell'Autorità di Bacino del fiume Po: "Direttiva sulla piena di progetto da assumere per le progettazioni e le verifiche di compatibilità idraulica", nel seguito indicata come "Direttiva".

La curva di probabilità pluviometrica è comunemente espressa da una legge di potenza del tipo:

$$h = at^n$$

Dove

h è l'altezza di pioggia espressa in mm

t è la durata critica dell'evento espressa in ore

a ,n sono i parametri caratteristici della curva e dipendono dallo specifico tempo di

ritorno considerato.

La direttiva contiene la stima delle curve di probabilità pluviometrica nella stazioni di misura, effettuata sulla base delle serie storiche dei massimi annuali delle altezze di precipitazione per le durate considerate, definendo i parametri a ed n per i tempi di ritorno di 20, 100, 200 e 500 anni.

Sono state utilizzate le serie storiche delle precipitazioni intense riportate negli Annali Idrologici del Servizio Idrografico e Mareografico Italiano (Parte I, tabella III) relative ai massimi annuali delle precipitazioni della durata di 1, 3, 6, 12, 24 ore consecutive.

Al fine di fornire uno strumento per l'analisi di frequenza delle piogge intense nei punti privi di misure dirette è stata condotta un'interpolazione spaziale con il metodo di kriging dei parametri a e n delle linee segnalatrici, discretizzate in base a un reticolo di 2 km di lato.

Questi dati sono disponibili sul sito web dell'Autorità di Bacino del fiume Po: grazie al Sistema Informativo Territoriale è possibile ottenere le linee segnalatrici per ogni maglia del reticolo.

Il presente studio idrologico si è basato sui risultati del lavoro condotto dall'Autorità di Bacino del fiume Po.

L'area di intervento è situata nel bacino del Po Piemontese, nel sottobacino denominato Ricchiardo Banna. Si tratta di una zona prevalentemente pianeggiante che presenta una fitta rete idrica superficiale.

Ai fini dello studio idrologico è stato individuato l'ambito idrografico in cui ricade l'area e sono state individuate le maglie del reticolo di discretizzazione.

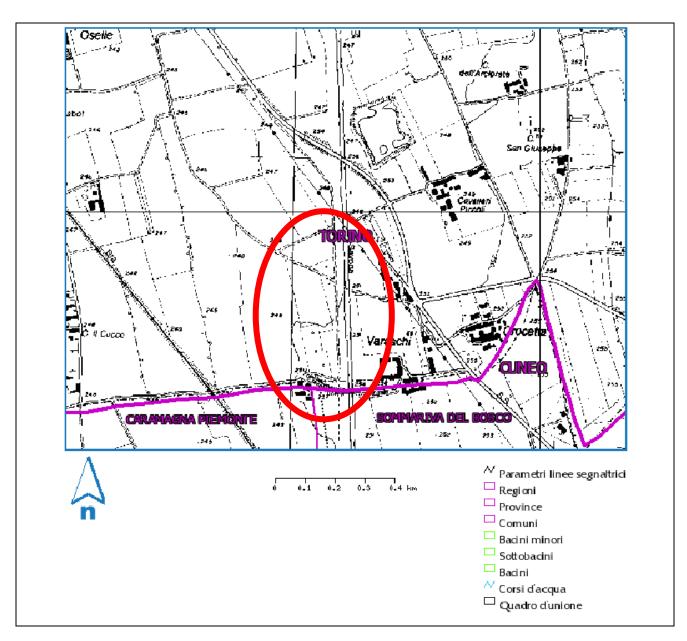


Figura 1 – Individuazione dell'area sul S.I.T. dell'Autorità di Bacino del fiume Po

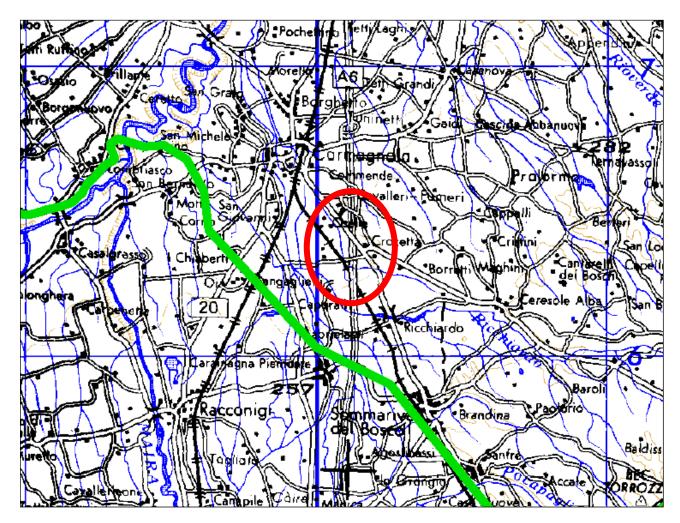


Figura 2 – Individuazione dell'area sulle tavole dell'Allegato 1 della "Direttiva".

AT 115	AU 115	AV 115	AW 115	AX 115	AY 115	AZ 115	BA 115	BB 115	BC 115 0	BD 115
AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD
116	116	116	116	116	116	116	116	116	116	116
AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD
117	117	117	117	117	117	117	117	117	117	117
AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD
118	118	118	118	118	118	18	118	118	118	118
AT	AU	AV	AW	A X	AY	AZ	BA	BB	BC	BD
119	119	119	119	119	M9	119	119	119	119	119
AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD
120	120	120	120	120	120	120	120	120	120	120
AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD
121	121 🥠	121	121	121	121	121	121	121	121	121
AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD
122	122	122	122	122	122	122	1 2 2	122	122	122
АТ	AU	ΑV	AW	AX	AY	AZ	ва	ВВ	ВС	

Figura 3 – Individuazione dell'area sulle tavole dell'Allegato 3 della "Direttiva".

L'area in esame è situata a ridosso di due celle, per tale motivo $\,$ i parametri a e n sono stati calcolati come media dei parametri delle rispettive linee segnalatrici.

Cella reticolo	Comune	Sottobacino	Bacino
AY 118	Carmagnola (TO)	Ricchiardo - Banna	Po piemontese
AY 119	Carmagnola (TO)	Ricchiardo - Banna	Po piemontese

Tabella 1 – Cella di riferimento.

In tabella si riportano i corrispondenti valori dei parametri *a* e *n* delle linee segnalatrici di probabilità pluviometrica per alcuni tempi di ritorno:

Tr	10	10	20	20	50	50	100	100
	а	n	а	n	а	n	а	n
AY 118	39.62750	0.23741	46.16340	0.23228	54.61300	0.22084	60.94700	0.21445
AY 119	39.27340	0.24114	45.71660	0.23592	54.04770	0.22444	60.29380	0.21800
Media	39.45045	0.23928	45.94000	0.23410	54.33035	0.22264	60.62040	0.21623

Tabella 2 – Parametri caratteristici.

Le curve che si ottengono sono valide per precipitazioni di durata superiore a 30 minuti.

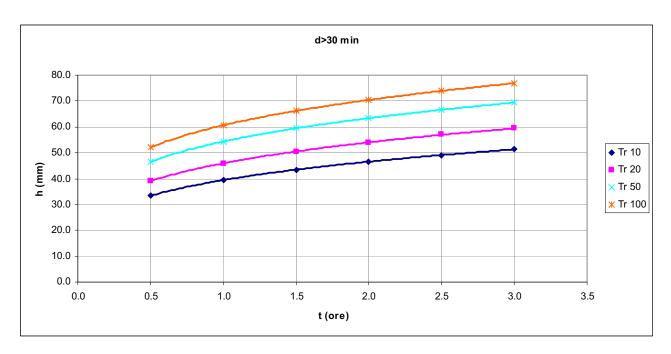


Figura 4 – Relazione altezza-durata-frequenza ADF per t>30 min

Poiché i tempi di corrivazione caratterizzanti i bacini analizzati risultano estremamente contenuti (nettamente inferiori all'ora, dell'ordine di qualche minuto), e le curve di possibilità pluviometrica sono state ottenute mediante l'elaborazione delle piogge aventi durate superiore o uguale all'ora, si è fatto ricorso ad uno studio che dimostra che i rapporti tra le diverse altezze di durata molto breve e l'altezza oraria sono relativamente poco dipendenti dalla località (Piga e altri, 1990), per cui è possibile stabilire delle relazioni univoche che permettono di estrapolare la legge oraria per le piogge di breve durata a partire dai rapporti noti.

Nei calcoli sono stati utilizzati i seguenti rapporti tra i valori medi delle massime altezze di pioggia annue di diversa durata, \underline{h}_{δ} e il valor medio della massima altezza annua oraria \underline{h}_{1} :

			r_{δ}	$= h_{\delta} / h_{1}$				
$\boldsymbol{\delta}$ (min)	1	2	3	4	5	10	15	30
$r_{\delta}=r_{h}/r_{1}$	0,130	0,180	0,229	0,272	0,332	0,489	0,601	0,811

Tabella 3 – Rapporti tra la massima altezza di precipitazione di durata δ e la massima altezza oraria

I valori sopra riportati sono stati elaborati sulla base di registrazioni effettuate al pluviografo di Milano Monviso su un campione di 17 anni.

L'estrapolazione della legge oraria per le brevi durate avviene imponendo il passaggio per le altezze ricavate dai rapporti di letteratura.

Risolvendo il sistema per i vari tempi di ritorno si hanno i seguenti parametri:

Tr	10	10	20	20	50	50	100	100
	a'	n'	a'	n'	a'	n'	a'	n'
	48.018	0.523	56.196	0.525	67.196	0.529	75.439	0.532

Tabella 4 – Parametri caratteristici per durate < 30 minuti

che rappresentano le seguenti curve:

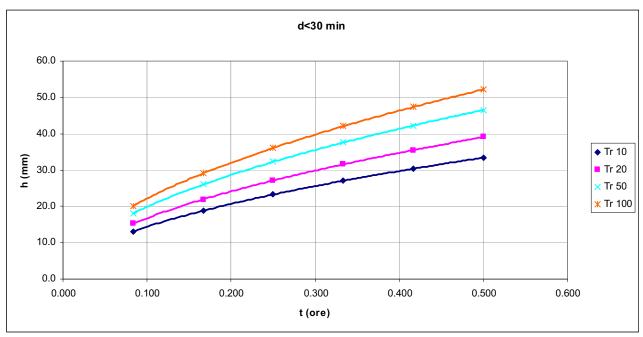


Figura 5 – Relazione altezza-durata-frequenza ADF per t<30 min

Combinando i grafici e riportando gli assi in scala logaritmica si ha:

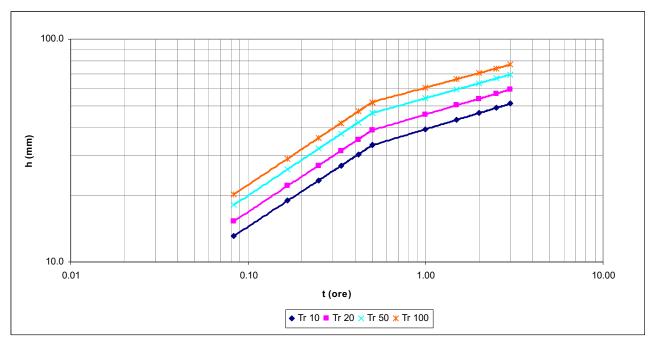


Figura 5 – Relazione altezza-durata-frequenza ADF

1.3. Opere di drenaggio del piazzale di stazione e del nuovo parcheggio

Il Decreto Legislativo del Governo n° 152 del 11/05/1999, recante "Disposizioni sulla tutela delle acque dall'inquinamento e recepimento della direttiva 91/271/CEE concernente il trattamento delle acque reflue urbane e della direttiva 91/676/CEE relativa alla protezione delle acque dall'inquinamento provocato dai nitrati provenienti da fonti agricole.", come modificato dal Decreto Legislativo n° 258 del 18/08/2000" Disposizioni correttive e integrative del decreto legislativo 11 maggio 1999, n. 152, in materia di tutela delle acque dall'inquinamento, a norma dell'articolo 1, comma 4, della legge 24 aprile 1998, n. 128.", e successivamente dal D.Lgs. 3 Aprile 2006 n.152 "Norme in materia ambientale" forniscono disposizioni sulla tutela delle acque dall'inquinamento, prevedendo l'obbligo del trattamento delle acque di prima pioggia dei piazzali su cui possono ricadere oli minerali ed altre sostanze inquinanti.

Le acque meteoriche che ricadono esclusivamente sul piazzale, saranno opportunamente raccolte all'interno di pozzetti in calcestruzzo attraverso caditoie con griglia, collocate ad intervalli di circa 15-20 m l'una dall'altra, e recapitate tramite tubazione in PVC di opportuno diametro all'interno di disoleatori posti all'esterno del piazzale.

Un sistema analogo è previsto per la raccolta delle acque che ricadono sul parcheggio.

Il funzionamento del disoleatore avviene nel modo seguente: durante un evento piovoso l'acqua meteorica raccolta nel piazzale viene convogliata nel pozzetto. Da questo, l'acqua piovana addizionata a piccole quantità di oli minerali, morchie, terriccio e residui di altro genere raccolti sulla pavimentazione stradale arriva all'Impianto di disoleazione ed inizia il trattamento depurativo. La prima vasca componente l'impianto in esame riceve tutte le acque raccolte ed ha funzione di scolmatore. Infatti, durante precipitazioni di minima entità tutta l'acqua in arrivo passa direttamente alla seconda vasca, mentre viceversa nel caso di forti precipitazioni sale il livello dell'acqua nella vasca scolmatore e la quantità di acqua in eccesso viene incanalata mediante by-pass nel pozzetto d'ispezione situato a valle dell'impianto; onde evitare la fuoriuscita di oli minerali, l'uscita della condotta è protetta da un setto interno alla vasca di scolmatura con una tubazione di uscita con pescaggio dal fondo della vasca stessa. La seconda vasca ha funzione di eliminare, dall'acqua meteorica, tutti i solidi raccolti sul piazzale; pertanto nel fondo vasca, mediante decantazione, si accumulano tutti i fanghi ed altre sostanze pesanti eventualmente presenti. L'acqua passa successivamente alla vasca di disoleazione che è divisa in due vani; nel primo vano, per effetto fisico di gravità, vengono trattenuti in superficie circa il 90% degli oli minerali liberi contenuti nell'acqua; il secondo vano è attrezzato con un filtro, idoneo a trattenere oli minerali liberi residui, oli minerali in emulsione, sostanze sospese e materie metalliche residue. Tramite apposita tubazione di uscita l'acqua, ormai trattata, viene recapitata all'interno del pozzetto a valle del piazzale e da qui immessa definitivamente nel ricettore finale.

La vasca di disoleazione presenta un volume minimo risultante dal valore della portata per il tempo utile minimo di separazione oli/idrocarburi. La velocità ascensionale, non risulta essere superiore a 30 mt/ora.

Gli oli minerali /idrocarburi trascinati dall'acqua piovana sono prudenzialmente calcolati in ragione di 20 mg/litro; tale valore riprodotto per la portata (espressa in litri/ora) determina la quantità oraria di oli/idrocarburi trattenuti nella vasca disoleatore. La quantità oraria di oli/idrocarburi trattenuti nella vasca disoleatore, è da considerare al massimo per 2 ore al giorno, in quanto tale tempo è sufficiente per raccogliere e trascinare con l'acqua tutti gli oli ed idrocarburi presenti nel piazzale.

Per il piazzale di stazione è previsto l'uso di due disoleatori, per il parcheggio è sufficiente un solo disoleatore, tutti di dimensioni tali da essere in grado di trattare i primi 5 mm di pioggia ricadenti su una superficie di circa 8000mq ai sensi delle Linee Guida ARPA LG28/DT – Criteri di applicazione DGR 286/05 e 1860/06.

I criteri adottati per il dimensionamento degli elementi di trattamento delle acque ed annesse vasche di raccolta sono quelli necessari a garantire il trattamento in continuo dell'intero volume d'acque di prima pioggia, con la finalità di poter immettere al recapito finale le acque ottenute a valle del ciclo di bonifica.

Volume totale delle vasche = volume V_{PP} + V_{SFD}

Volume di prima pioggia: $V_{PP} = S \times 5 mm$

Portata: $Q = S \times i$

Volume di sedimentazione (volume dei fanghi): $V_{SED} = Q \times C_f$

 V_{PP} : Volume utile della vasca di prima pioggia m^3

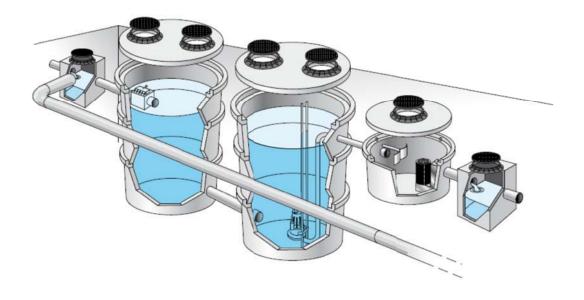
Q: Portata dei reflui dovuta all'evento meteorico l/s

S: Superficie scolante drenante servita dalla rete di drenaggio Ha

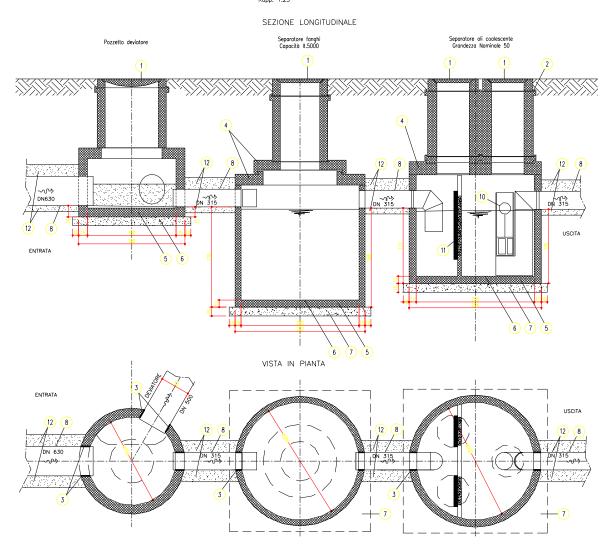
i: Intensità delle precipitazioni piovose definita pari a 0,0056 l/s m²

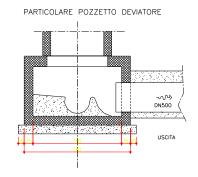
C_f Coefficiente della quantità di fango prevista per le singole tipologie di lavorazione

 $V_{\it SED}$: Volume utile della vasca di sedimentazione dei fanghi m^3


Volume del disoleatore:

$$V_{DIS} = Q_P x t_s$$


 V_{DIS} : Volume disoleatore m^3


 Q_{P} : Portata della pompa dell'impianto l/s . Deve essere maggiore/uguale di 1 l/s.

 t_s : Tempo di separazione \emph{min} . È in funzione della densità dell'olio.

DISOLEATORE PER SUPERFICI FINO A 7.500 mq

Superficie piazzale		mq	4000	5000	6000	7000	8000	9000	10000
Volume acque di prima pie	oggia	mc	20	25	30	35	40	45	50
Portata istantanea		1/s	22,20	27,77	33,33	38.88	44,44	49,99	55,55
N. bacini previsti		n.	3	3	3	3	3	3	3
- diametro	D1	cm	220	220	220	324	324	324	324
- altezza	Hl	cm	279	329	379	260	260	335	335
Tipo separatore previsto		-	SA/PU NG8						
- diametro	D2	cm	220	220	220	220	220	220	220
- altezza	H2	cm	129	129	129	129	129	129	129
Portata nominale	1,10,10	1/s	8	8	8	8	8	8	8
Potenza installata		kW	1,2	1,2	1,2	1.2	1,2	1,2	1,2
Peso complessivo		q.li	159	185	211	447	447	507	507
Peso del pezzo più pesan	te	q.li	30	30	30	26	26	26	26

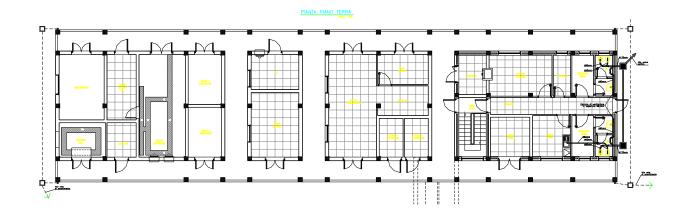
2. ALLEGATI DI CALCOLO

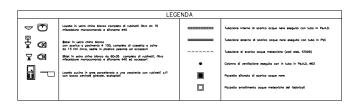
2.1. Piazzale di stazione

		()	61.41.			lc ,	0 (1)	.,,,	()	()	DN	0.0	
pozzetto	tratto	Lt (m)	St (ha)	tc (ore)	hc (mm)	(mm/ora)	Q (mc/s)	i (m/m)	v (m/s)	y (m)	DN	GR	tipo
PC1	1.0	5.05	0.044	0.000	40.04	040.00	0.000	0.005	0.00	0.004	400	1/ 00/	DVO
PC2	1-2	5.35	0.014	0.086	18.31	213.62	0.008	0.005	0.63	0.064	400	16.9%	PVC
PC3	2-3	5.35	0.027	0.088	18.52	211.41	0.016	0.005	0.78	0.089	400	23.5%	PVC
PC4	3-4	5.35	0.041	0.089	18.71	209.53	0.024	0.005	0.88	0.108	400	28.5%	PVC
PC5	4-5	6.60	0.054	0.091	18.92	207.44	0.031	0.005	0.95	0.126	400	33.0%	PVC
PC6	5-6	17.90	0.068	0.094	19.25	204.30	0.038	0.020	1.65	0.098	400	25.7%	PVC
PC7	6-7	17.90	0.106	0.097	19.53	201.64	0.060	0.020	1.87	0.123	400	32.4%	PVC
PC8										0.000			
PC9	8-9	6.60	0.007	0.087	18.48	211.81	0.004	0.005	0.47	0.050	400	13.1%	PVC
PC10	9-10	15.00	0.014	0.092	18.99	206.78	0.008	0.015	0.91	0.050	400	13.1%	PVC
PC11	10-11	15.00	0.052	0.095	19.32	203.66	0.030	0.015	1.38	0.093	400	24.3%	PVC
PC12	11-12	20.00	0.071	0.098	19.67	200.36	0.039	0.019	1.66	0.100	400	26.2%	PVC
PC13	12-13	20.00	0.097	0.101	20.01	197.38	0.053	0.018	1.75	0.119	400	31.2%	PVC
PC14	13-14	20.00	0.123	0.105	20.34	194.52	0.066	0.014	1.74	0.141	400	37.0%	PVC
PC16										0.000			
PC15	16-15	21.00	0.020	0.093	19.14	205.29	0.011	0.003	0.59	0.086	400	22.5%	PVC
PC14	15-14	21.00	0.044	0.101	19.99	197.58	0.024	0.003	0.74	0.126	400	33.0%	PVC
PC17										0.000			
PC18	17-18	20.00	0.019	0.093	19.13	205.42	0.011	0.003	0.57	0.086	400	22.5%	PVC
PC19	18-19	20.00	0.047	0.101	19.93	198.07	0.026	0.003	0.74	0.132	400	34.7%	PVC
PC14			0.167	0.105						0.000			
PC19	14-19	31.00	0.194	0.111	21.01	189.00	0.102	0.005	1.30	0.215	500	45.2%	PVC
PC19			0.241	0.111						0.000			
PC20	19-20	17.00	0.278	0.114	21.34	186.41	0.144	0.005	1.43	0.263	500	55.3%	PVC
PC21	20-21	15.00	0.316	0.117	21.61	184.28	0.162	0.005	1.47	0.283	500	59.5%	PVC
PC7	21-7	15.00	0.362	0.120	21.88	182.27	0.183	0.005	1.51	0.308	500	64.8%	PVC
PC7			0.469	0.120						0.000			
P1	9-P1	5.20	0.509	0.121	21.97	181.65	0.257	0.005	1.65	0.325	630	54.2%	PVC
PC22										0.000			
PC23	22-23	5.35	0.007	0.087	18.40	212.68	0.004	0.005	0.47	0.050	400	13.1%	PVC
PC24	23-24	5.35	0.014	0.089	18.66	209.99	0.008	0.005	0.63	0.065	400	17.2%	PVC
PC25	24-25	6.60	0.021	0.091	18.95	207.14	0.012	0.005	0.70	0.080	400	20.9%	PVC
PC26	25-26	15.50	0.028	0.095	19.33	203.55	0.016	0.019	1.25	0.064	400	16.9%	PVC
PC27	26-27	15.50	0.059	0.098	19.62	200.84	0.033	0.019	1.57	0.091	400		PVC

					. , ,	lc .	- ,						
pozzetto	tratto	Lt (m)	St (ha)	tc (ore)	hc (mm)	(mm/ora)	Q (mc/s)	i (m/m)	v (m/s)	y (m)	DN	GR	tipo
PC28	27-28	15.50	0.094	0.100	19.88	198.55	0.052	0.019	1.79	0.115	400	30.2%	PVC
PC29										0.000			
PC30	29-30	5.35	0.014	0.086	18.31	213.62	0.008	0.005	0.63	0.064	400	16.9%	PVC
PC31	30-31	6.60	0.027	0.088	18.57	210.91	0.016	0.005	0.78	0.089	400	23.5%	PVC
PC32	31-32	16.00	0.041	0.091	18.95	207.15	0.023	0.015	1.30	0.082	400	21.5%	PVC
PC33										0.000			
P5	33-P5	5.00	0.021	0.085	18.26	214.07	0.012	0.005	0.70	0.081	400	21.3%	PVC
PC32	P5-32	11.00	0.046	0.089	18.65	210.16	0.027	0.005	0.90	0.117	400	30.7%	PVC
PC32			0.086	0.091						0.000			
PC34	32-34	18.00	0.105	0.094	19.26	204.14	0.059	0.016	1.73	0.130	400	34.1%	PVC
PC35	34-35	20.00	0.126	0.097	19.59	201.11	0.071	0.016	1.82	0.142	400	37.4%	PVC
PC36	35-36	20.00	0.152	0.100	19.92	198.20	0.083	0.014	1.81	0.162	400	42.5%	PVC
PC37	36-37	20.00	0.177	0.103	20.22	195.55	0.096	0.014	1.91	0.174	400	45.6%	PVC
PC38	37-38	20.00	0.203	0.106	20.54	192.85	0.109	0.011	1.79	0.200	400	52.7%	PVC
PC40										0.000			
PC39	40-39	15.00	0.014	0.091	18.90	207.60	0.008	0.003	0.54	0.073	400	19.1%	PVC
PC38	39-38	15.00	0.030	0.097	19.58	201.24	0.017	0.003	0.67	0.104	400	27.4%	PVC
PC38			0.233	0.106						0.000			
PC43	38-43	25.40	0.258	0.112	21.09	188.36	0.135	0.004	1.29	0.271	500	57.0%	PVC
PC41										0.000			
PC42	41-42	15.00	0.013	0.092	19.00	206.72	0.007	0.003	0.49	0.072	400	19.1%	PVC
PC43	42-43	15.00	0.030	0.098	19.68	200.34	0.016	0.003	0.66	0.103	400	27.2%	PVC
PC43			0.287	0.112						0.000			
PC44	43-44	15.00	0.311	0.115	21.40	185.95	0.161	0.004	1.34	0.304	500	63.9%	PVC
PC45	44-45	15.00	0.337	0.118	21.70	183.66	0.172	0.004	1.36	0.319	500	67.1%	PVC
PC46	45-46	15.00	0.365	0.121	21.99	181.51	0.184	0.004	1.40	0.285	630	47.5%	PVC
PC47	46-47	15.00	0.398	0.124	22.27	179.48	0.198	0.004	1.42	0.297	630	49.6%	PVC
PC28	47-28	15.50	0.447	0.127	22.54	177.51	0.220	0.004	1.46	0.316	630	52.8%	PVC
PC28			0.541	0.127						0.000			
P3	34-P3	5.20	0.583	0.128	22.62	176.95	0.287	0.005	1.69	0.347	630	58.0%	PVC

2.2. Parcheggio


pozzetto	tratto	Lt (m)	St (ha)	tc (ore)	hc (mm)	Ic (mm/ora)	Q (mc/s)	i (m/m)	v (m/s)	y (m)	DN	GR	tipo
PC48													
PC49	55-56	17.00	0.042	0.090	18.77	208.91	0.022	0.003	0.72	0.120	400	31.4%	PVC


PC50	56-57	17.00	0.088	0.095	19.36	203.30	0.045	0.003	0.88	0.174	400	45.9%	PVC
PC51	57-58	17.00	0.134	0.100	19.87	198.62	0.067	0.003	0.98	0.220	400	57.8%	PVC
PC52	58-59	17.00	0.180	0.105	20.35	194.47	0.088	0.003	1.03	0.267	400	70.2%	PVC
PC53	59-60	17.00	0.226	0.109	20.78	190.83	0.108	0.003	1.10	0.257	500	54.0%	PVC
PC54	60-61	17.00	0.272	0.113	21.20	187.51	0.127	0.003	1.14	0.286	500	60.1%	PVC
PC55	61-62	18.00	0.318	0.117	21.61	184.28	0.146	0.003	1.18	0.314	500	66.1%	PVC
P11	62-P11	12.40	0.358	0.120	21.90	182.17	0.163	0.003	1.19	0.343	500	72.2%	PVC
P12	P11-P12	4.70	0.358	0.121	22.00	181.39	0.162	0.003	1.19	0.342	500	72.0%	PVC
PC56	0	0.00								0.000			
PC57	63-64	17.00	0.027	0.091	18.88	207.89	0.014	0.003	0.63	0.094	400	24.6%	PVC
PC58	64-65	17.00	0.072	0.096	19.49	202.06	0.037	0.003	0.84	0.156	400	40.9%	PVC
PC59	65-66	17.00	0.118	0.101	20.02	197.29	0.058	0.003	0.94	0.204	400	53.6%	PVC
PC60	66-67	17.00	0.164	0.106	20.50	193.15	0.079	0.003	1.01	0.248	400	65.2%	PVC
PC61	67-68	17.00	0.210	0.111	20.95	189.50	0.100	0.003	1.08	0.245	500	51.6%	PVC
PC62	68-69	17.00	0.250	0.115	21.37	186.19	0.116	0.003	1.12	0.270	500	56.7%	PVC
P13	15-P13	19.30	0.282	0.119	21.83	182.70	0.129	0.003	1.14	0.289	500	60.9%	PVC
P12	P13-P12	19.30	0.282	0.124	22.28	179.38	0.126	0.003	1.13	0.286	500	60.3%	PVC
P12										0.000			
disol	P12-disol	1.00	0.639	0.124	22.30	179.24	0.286	0.003	1.38	0.414	630	69.0%	PVC

2.3. Impianto scarico fabbricato di stazione

L'impianto di scarico acque reflue relativo al fabbricato di stazione che contempla n. 2 locali servizi, è realizzato come riportato nello specifico elaborato progettuale.

A valle degli elementi esterni di raccolta (pozzetti) è previsto il collegamento ad una vasca settica tipo Imhoff nella quale eseguire la raccolta ed il trattamento acque.

Per tale tipologia di installazione **deve essere preventivamente richiesta** l'autorizzazione allo scarico fuori fognatura per sistema statico.

Infatti la fossa biologica o fossa settica è una fognatura di tipo statico, che viene di norma utilizzata nel caso di costruzioni isolate ed in generale di tutte quelle utenze non servite dalla fognatura dinamica.

Tale sistema, raccogliendo e trattando le acque nere (toilette) e grigie (lavabi, ecc.) provenienti dall'utenza, permette di soddisfare le esigenze igieniche senza porre in atto opere di depurazione.

All'interno di tale tipologia di presidio, in progetto, è prevista l'installazione di una vasca tipo Imhoff che è costituita da una vasca superiore, avente sezione a tramoggia, dove avviene la sedimentazione e una vasca inferiore, comunicante con la precedente, dove avviene la digestione anaerobica.

L'affluente entra quindi nella vasca superiore, ove avviene la sedimentazione del materiale, che, attraverso l'apertura, confluisce nella vasca di digestione dove avviene la digestione anaerobica.

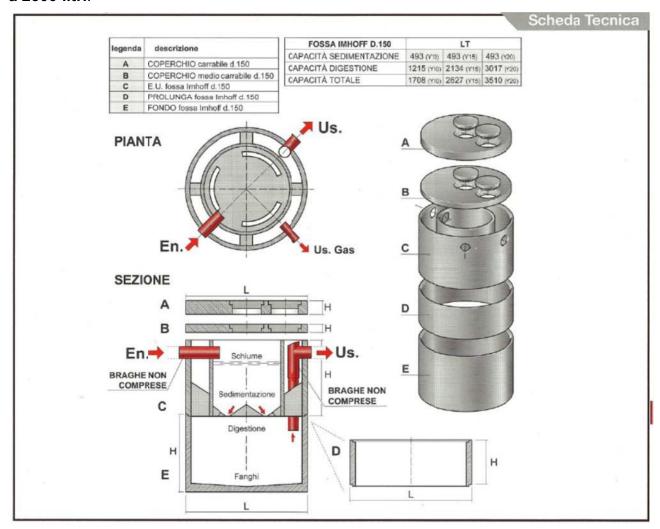
La condotta di efflusso provvista di paratia paraschiuma, in comunicazione con la vasca superiore permette l'allontanamento del refluo chiarificato ancora allo stato fresco, grazie al basso tempo di detenzione dello stesso,e non entrando in alcun modo in contatto con il comparto di digestione .

Il refluo finale di una fossa settica tipo Imhoff, a differenza di quello in uscita da una fossa settica tradizionale, presenta un basso valore settico, facilmente trattabile per vie naturali quali la subirrigazione o la fitodepurazione.

Tali soluzioni risultano ammesse dall'art. 27 comma 4 e dall'art. 62 comma 7 del D.L. n. 152/99 e s.m.i.

Più in dettaglio dettaglio Il liquame in arrivo incontra un paraschiume che lo costringe a passare sotto di esso per entrare nella camera di sedimentazione lasciando anteriormente la materia galleggiante tra cui anche i grassi liberi, cioè non aderenti alle materie solide. Le parti in sospensione si accumulano formando una spessa crosta, che periodicamente deve essere rimossa. Nella camera di sedimentazione cadono più o meno lentamente le materie più grossolane sedimentabili, le quali scivolano sulle pareti inclinate della tramoggia e raggiungono, attraverso la fessura, la camera sottostante. Il liguame, dopo aver attraversato con flusso orizzontale la camera di sedimentazione, incontra un secondo paraschiume, il quale ha il compito di intercettare le materie galleggianti che casualmente, trascinate dalla corrente, fossero passate al di sotto del primo. Passando al di sotto del secondo paraschiume il liquame risale ed imbocca il canale di scarico. I fanghi sedimentati si accumulano nel compartimento inferiore dove subiscono il processo digestivo operato da batteri anaerobici, mentre il gas biologico prodotto dalla fermentazione si libera dagli sfiati posti lateralmente al foro di entrata. Il fango digerito viene estratto per mezzo di un tubo che pesca sul fondo del pozzo, dove si trova il fango più vecchio, e convogliato verso i letti di essiccamento o altro sistema di essiccazione dei fanghi. L'acqua dopo un tempo di ritenzione esce chiarificata, non entrando in alcun modo in contatto con il comparto inferiore. Nella parte superiore è presente un tubo di sfiato dei gas, che facilita anche l'ingresso dei liquami in arrivo, evitando il generarsi di sovrapressione all'interno della vasca stessa.

Nelle condizioni di impiego, che riguardano portate estremamente contenute, la vasca Imhoff è sufficiente per assicurare il rispetto dei parametri indicati nel D. Lgs.152/99, ma risulta ammessa dall'art. 3 dell'allegato 5 che recita:


"Possono essere considerati come appropriati i sistemi di smaltimento per scarichi di insediamenti civili provenienti da agglomerati con meno di 50 A.E. come quelli già indicati nella delibera del Comitato dei Ministri per la tutela delle acque dall'inquinamento del 4/02/77".

La frequenza minima di espurgo dei fanghi è prescritta annuale.

La fossa è provvista di chiusini superficiali che ne permettono l'ispezione; a valle è predisposto un pozzetto che consenta agli organi di vigilanza di effettuare prelievi del liquido in uscita. La fossa va provvista di un tubo di ventilazione per eliminare i gas biologici che deve avere una sezione non inferiore a 10 cm.

Il vantaggio indiscutibile di questo sistema è che il refluo finale ha un contenuto batterico ridotto ed è più facilmente trattabile con sistemi naturali; si tratta di una depurazione primaria in grado di ridurre la carica batterica del liquido in ingresso del 30-35%, perciò all'uscita risulterà essere smaltito su suolo o sottosuolo attraverso vari sistemi (subirrigazione, pozzi assorbenti, fitodepurazione).

Nello specifico è stata prevista e dimensionata una vasca settica di **volume minimo pari** a **2500 litri**.

La capacità adottata consente il soddisfacimento delle necessità di 8/9 utenti, ampiamente compatibile con la presenza media degli addetti nell'edificio.