REGIONE SICILIA

Provincia di Trapani

Comune di Marsala

PROGETTO DEFINITIVO MARINA DI MARSALA FUTURO PIANO REGOLATORE PORTUALE

QUESTO DOCUMENTO PUÒ ESSERE UTILIZZATO ESCLUSIVAMENTE PER LE FINALITÀ PREVISTE DAL CONTRATTO IN BASE AL QUALE LO STESSO È STATO FORNITO; LA RIPRODUZIONE, LA CESSIONE E COMUNQUE OGNI UTILIZZO PER FINALITÀ DIVERSE SONO VETATE IN ASSENZA DI PREVENTIVA AUTORIZZAZIONE DA PARTE DEL RESPONSABILE DEL DOCUMENTO. IL CONTENUTO DEL DOCUMENTO È PROTETTO DALLE NORME SUL DIRITTO D'AUTORE E LA PROPRIETÀ INFLLETTUALE

REGIONE SICILIANA

COMUNE DI MARSALA Provincia di Trapani

PROGETTO DEL PORTO TURISTICO Marina di Marsala

Committente: M.Y.R. Marsala Yachting Resort S.r.l

RELAZIONE DI CALCOLO MOLO DI RIDOSSO

MM-M-0.5 - REV 001 - RELAZIONE DI CALCOLO MOLO DI RIDOSSO 10/11 CE

INDICE

<u>1. GE</u>	NERALITÀ	1
11	DREMESSA	1
1.1.	RELAZIONI DI RIFERIMENTO	1
1.3.	DESCRIZIONE DELL'OPERA	- 2
1.4.		- 3
1.5.	RESISTENZA DI CALCOLO DEI MATERIALI	3
1.6.	MATERIALI ADOTTATI	6
<u>2. CA</u>	LCOLO DELLA STRUTTURA DEL MOLO DI RIDOSSO	8
2.4		0
Z.1.		8
2.1.1.		ð
2.1.2.		٥ 0
2.1.3.	SUVRACCARICO ACCIDENTALE SDINTA STATICA SUULA MANITELLATA	9
2.1.4.		9
2.1.5.		9 10
2.1.0.		21
2.1.7.	INCREMENTO DI SPINITA IDRALILICA PER LA PRESENZA DEI SISMA	21
2.1.0.		21
2.2.		23
2.3.	DEFINIZIONE DEI COEFFICIENTI PARZIALI	26
2.4.	COMBINAZIONI ASSUNTE PER IL CALCOLO DELLE STRUTTURE	27
2.5.	COMBINAZIONI ASSUNTE PER IL CALCOLO GEOTECNICO	28
2.6.	COMBINAZIONI ASSUNTE PER LA VERIFICA DELLE DEFORMAZIONI	29
<u>3. CA</u>	RATTERIZZAZIONE GEOTECNICA DEI TERRENI	30
3.1.	STRATIGRAFIA DI RIFERIMENTO	30
<u>4. M</u>	DDELLI NUMERICI PER IL DIMENSIONAMENTO	32
4.1.		32
4.2 .		33
4.2.1.	FASE DI INPUT DEL MODELLO	33
4.2.2. 1 7 2		34 26
4.2.3.		30
<u>5. CA</u>	LCOLO DELLA STRUTTURA	38
5.1.	FASI COSTRUTTIVE	38

5.2.	DATI DELLA STRUTTURA	38
5.3.	CARATTERISTICHE DEL TERRENO PER LE VERIFICHE STRUTTURALI E GEOTECNICHE	39
5.4.	DATI RELATIVI AI TERRENI	40
5.5.	FASI DI CALCOLO	42
5.5.1.	RISULTATI DELLA FASE 1	45
5.5.2.	RISULTATI DELLA FASE 2	46
5.5.3.	RISULTATI DELLA FASE 3	47
5.5.4.	RISULTATI DELLA FASE 4	48
5.5.5.	RISULTATI DELLA FASE 5	49
5.5.6.	RISULTATI DELLA FASE 6	51
5.5.7.	RISULTATI DELLA FASE 7	52
5.5.8.	RISULTATI DELLA FASE 8	54
5.5.9.	RISULTATI DELLA FASE 9	55
5.5.10.	RISULTATI DELLA FASE 10	57
5.5.11.	RISULTATI DELLA FASE 11	59
5.5.12.	RISULTATI DELLA FASE 12	60
5.5.13.	RISULTATI DELLA FASE 13	62
5.5.14.	RISULTATI DELLA FASE 14	63
5.5.15.	RISULTATI DELLA FASE 15	65
5.5.16.	RISULTATI DELLA FASE 16	66
5.5.17.	RISULTATI DELLA FASE 17	68
5.5.18.	RISULTATI DELLA FASE 18	69
5.6.	CARATTERISTICHE DI SOLLECITAZIONE NELLE VARIE FASI	71
5.7.	VERIFICA DELLA SEZIONE DEL PALO	71
5.8.	VERIFICA A TAGLIO DELLA SEZIONE DEI PALI	73
5.9.	VERIFICHE GEOTECNICHE DEI PALI	77
5.9.1.	METODO DI CALCOLO	77
5.9.2.	VERIFICHE GEOTECNICHE	80
5.10.	VERIFICHE DEL SOLETTONE DI COLLEGAMENTO PALI	85

1. GENERALITÀ

1.1. PREMESSA

La presente relazione si riferisce ai calcoli delle strutture del Molo di Ridosso da realizzarsi nell'ambito delle opere relative al *"Progetto del Porto Turistico Marina di Marsala"*.

Per limitare l'azione del moto ondoso all'interno del porto e quindi porre l'agitazione interna al di sotto dei limiti imposti dalle Normative Internazionali, è stato necessario prevedere in corrispondenza dell'imboccatura della darsena turistica una struttura non permeabile che assolva in parte l'azione di antiriflettenza sul lato esterno in modo da limitare la progressione delle onde che riescono a penetrare all'interno del bacino se pur protetto dal molo di sopraflutto e dal molo di sottoflutto.

Si è prevista una struttura su pali costituita da una cortina continua di pali sul lato interno e da una serie discreta di pali sul lato esterno. La struttura è completata da un solettone in cemento armato che funge da collegamento tra la fila di pali interna e la pila di pali esterna. All'interna della struttura è prevista una scogliera in scogli naturali che ha lo scopo di dissipare parte del moto ondoso incidente.

La presente relazione integra la Relazione sul molo di ridosso presentata in fase di progetto definitivo in funzione di quanto richiesto dal Genio Civile di Trapani nel parere reso in Conferenza dei Servizi del 27.Lug.2012.

In particolare, la presente relazione, viene integrata per quanto riguarda i calcoli strutturali del solettone in c.a. di collegamento tra i pali del molo di ridosso.

1.2. RELAZIONI DI RIFERIMENTO

Per la redazione per la presente relazione di calcolo si sono utilizzate le seguenti relazioni:

[1] Relazione Geologica redatta dal Dott. Geol. Piero Merk Ricordi;

[2] Aggiornamento e riorganizzazione dell'area portuale di Marsala – Progetto definitivo, Piano di Indagine Geognostica, Piano di Caratterizzazione Ambientale redatto da Si.Ar. Trivellazioni.

[3] AP-R-08 - Relazione Geotecnica

1

[4] AP-R-02 - Studio del moto ondoso sottocosta

1.3. DESCRIZIONE DELL'OPERA

Come già descritto in premessa il molo di ridosso è stato previsto su pali ed in particolare è costituito sul lato interno da una cortina di pali accostati Φ 1000 della lunghezza complessiva di e da una cortina di pali Φ 1000 posti ad interasse di 3,00 m sul lato esterno. Il molo di ridosso ha uno sviluppo di 150 m in direzione ortogonale al molo Colombo e si sviluppa per circa 42 m con un angolo di circa 15° rispetto alla direzione del primo tratto di molo. La sezione tipo del molo di ridosso è riportata in Fig. 1.1.

Fig. 1.1 – Sezione del molo di ridosso

In particolare, la cortina continua sul lato interno è costituita da pali della lunghezza complessiva di 15,50 ml ad interasse i = 3,00ml alternati in accostamento con coppie di pali della lunghezza complessiva di 12,00 ml, mentre i pali esterni hanno lunghezza complessiva di 15,50 ml. Le due file di pali sono collegate tra di loro con un solettone in cemento armato dello spessore di 0.80 m. In corrispondenza dell'opera è posta una scogliera costituita da scogli di 1° ctg con pendenza 2/3. La scogliera è posta su un riempimento costituito da 50% da pietrame e 50% in scogli di 1° ctg. Dal punto di vista strutturale il molo è sostenuto da pali Φ 1000 posti ad interasse di 3.00 m e sul lato interno sono posti dei pali accostati di lunghezza minore che costituiscono il paramento su cui è appoggiata la mantellata all'interno del molo stesso.

1.4. NORMATIVA ADOTTATA

Nei calcoli si sono adottate le seguenti norme:

- D.M. 14.01.2008: Norme tecniche per le costruzioni

- *Circ. 02.02.2009 n.ro 617* – Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni.

- Linee Guida sul Calcestruzzo Strutturale

Presidenza del Consiglio Superiore dei Lavori Pubblici –Servizio Tecnico Centrale

1.5. RESISTENZA DI CALCOLO DEI MATERIALI

Di seguito si riportano alcune relazioni che sono utili per la determinazione di parametri utili nelle calcolazioni successive.

Resistenza caratteristica cilindrica (11.2.10.1)

La resistenza del calcestruzzo é individuata dalla resistenza caratteristica cubica R_{ck} . Dalla resistenza caratteristica cubica si ottiene la resistenza caratteristica cilindrica f_{ck} con la relazione

$$f_{ck} = 0.83 R_{ck}$$

La resistenza cilindrica media é ottenuta con la relazione

$$f_{cm} = f_{ck} + 80 \text{ (kg/cmq)}$$

Modulo Elastico (11.2.10.3)

Il modulo elastico si può assumere pari a

$$E_{cm} = 22000*(f_{cm}/10)^{0.30}$$

per i calcestruzzi non maturati a vapore. Per i calcestruzzi maturati a vapore si ritiene applicabile la relazione

$$Ec = 18000 * \sqrt{(R_{ck})}$$

essendo Rck la resistenza caratteristica cubica del calcestruzzo espressa in kg/cmq. *Resistenze di calcolo dei materiali* (4.1.2.1.1)

Le resistenze di calcolo fd dei materiali sono ottenute mediante l'espressione

$$f_d = f_k / \gamma_m$$

in cui f_k é la resistenza caratteristica del materiale e γ_m é il coefficiente parziale delle resistenze che dipende dal materiale dal progetto e dalla verifica in esame.

Per gli stati limite ultimi la resistenza di calcolo a compressione del calcestruzzo f_{cd} é pari a

$$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_c$$

in cui α_{cc} é il coefficiente riduttivo per le resistenze di lunga durata ed é posto pari a 0.85, γ_c é il coefficiente parziale di sicurezza relativo al calcestruzzo e si pone pari a 1.5 e f_{ck} é la resistenza caratteristica cilindrica a compressione del calcestruzzo a 28 gg. La resistenza di calcolo a trazione f_{ctd} é pari a

$$f_{ctd} = f_{ctk} / \gamma_c$$

in cui f_{ctk} é la resistenza caratteristica a trazione del calcestruzzo ottenuta conoscendo la resistenza media data dall'espressione

$$f_{ctm} = 0.30 * f_{ck}^{(2/3)}$$

Il valore medio della resistenza a trazione per flessione è assunto pari a

$$f_{cfm} = 1.20 * f_{ctm}$$

La resistenza caratteristica a flessione é data da

$$f_{cfk} = 0.70 * f_{cfm}$$

La resistenza di calcolo dell'acciaio

$$f_{yd} = f_{yk}/\gamma_s$$

in cui γ_s é il coefficiente di sicurezza relativo all'acciaio pari a 1.15 e f_{yk} per armature ordinarie é la tensione caratteristica di snervamento mentre per le armature di precompressione é la tensione convenzionale caratteristica di snervamento del prodotto che nel caso in esame sono trefoli f_{p(1)k}.

Tens. max di compr. del cls in cond. di esercizio (4.1.2.2.5.1)

Per gli stati limite di esercizio deve risultare che la massima tensione nel calcestruzzo a compressione σ c deve rispettare le seguenti limitazioni

- per la combinazione caratteristica (rara)

$$\sigma_{c} < 0.60 * f_{ck}$$

- per la combinazione quasi permanente

$$\sigma_c < 0.45 * f_{ck}$$

Tens. max. nell'acciaio in cond. di esercizio (4.1.2.2.5.2)

La tensione massima nell'acciaio deve essere pari per la combinazione caratteristica (rara)

$$\sigma_s < 0.80 * f_{yk}$$

Per l'acciaio armonico la tensione massima deve risultare

$$\sigma_{\rm s} < 0.80 * f_{\rm p(1)k}$$

Tensioni iniziali nel calcestruzzo (4.1.8.1.4)

La tensione di compressione all'atto della precompressione (tiro) non deve superare il valore

$$\sigma_{\rm c} < 0.70^* f_{\rm ckj}$$

in cui fckj é la resistenza caratteristica del calcestruzzo all'atto del tiro.

Tensioni limite per gli acciai da precompressione (4.1.8.1.5)

Per l'acciaio la tensione iniziale deve rispettare la più restrittiva delle seguenti limitazioni

$$\label{eq:spi} \begin{split} \sigma_{spi} &< 0.90^* f_{p(1)k} \\ \sigma_{spi} &< 0.80^* f_{ptk} \end{split}$$

valide per strutture con armatura pretesa.

1.6. MATERIALI ADOTTATI

Trattandosi di strutture posta nella zona delle maree e nella zona soggetta a spruzzi dalla Tabella 12 delle [3] si evince che la classe di esposizione in funzione delle condizioni ambientali è la XS3.

Per ottenere una classe di esposizione XS3 occorre un calcestruzzo con rapporto A/C = 0.45 con contenuto minimo di cemento pari a 350 kg per ogni metro cubo di impasto e con resistenza caratteristica minima pari a 45 N/mmq.

Nei calcoli si sono adottati quindi materiali con le seguenti caratteristiche:

- Strutture in c.a. gettate in opera

C40/45

Cls $R_{ck} = 450 \text{ kg/cmq}$ (resistenza car. cubica)

\mathbf{f}_{ck}		=	400 kg/cmq	(resistenza car. cilindrica)
\mathbf{f}_{cm}		=	480 kg/cmq	(resistenza cil. media)
s.l.ultimo	\mathbf{f}_{cd}	=	226.67 kg/cmq	(resistenza di calcolo a compr.)
\mathbf{f}_{ctm}		=	35.09 kg/cmq	(resistenza media a trazione)
$f_{cfk} \\$		=	29.47 kg/cmq	(resistenza car. traz. per fles.)
\mathbf{f}_{ctd}		=	19.65 kg/cmq	(resistenza di calcolo a traz.)
s.l.eser.	$\sigma_{c(ra)}$	=	240.00 kg/cmq	(tens. max compr. rara)
	$\sigma_{c(qp)}$	=	180.00 kg/cmq	(tens. max compr. quasi perm.)
	E_c	=	352205 kg/cmq	(modulo elastico cls)
	Γ_{ca}	=	2500 kg/mc	(peso specifico c.a.)
Acciaio	B450C			
	$\mathbf{E}_{\mathbf{f}}$	=	2100000 kg/cmq	(modulo elastico acciaio)
	$f_{yk} \\$	=	4500 kg/cmq	(tensione di snervamento)
	f_{tk}	=	5400 kg/cmq	(tensione di rottura)
s.l.ultimo	\mathbf{f}_{yd}	=	3913 kg/cmq	(tensione di calcolo)
s.l.eser.	$\sigma_{s(ra)}$	=	3600 kg/cmq	(tens. max comb. rara)

CALCOLO DELLA STRUTTURA DEL MOLO DI RIDOSSO AZIONI SULLA STRUTTURA

Per la definizione delle combinazioni di calcolo occorre in primo luogo analizzare le azioni agenti sulla struttura che sono date da:

- peso proprio;
- carico permanente dovuto alla pavimentazione;
- carico accidentale;
- spinta della mantellata interna;
- incremento sismico sulla mantellata per effetto sismico;
- azione sismica sulla struttura;
- azione sismica dovuta alla presenza dell'acqua;
- tiro alla bitta;
- urto sulla banchina.

Di seguito si analizzano le singole azioni che devono essere applicate sulla struttura.

2.1.1. <u>PESO PROPRIO DELLA STRUTTURA</u>

Il peso proprio della struttura è valutato considerando un peso specifico del calcestruzzo armato pari a 25 kN/mc. Per l'acciaio si utilizza un peso specifico pari a 78.50 kN/mc.

2.1.2. CARICO PERMANENTE DOVUTO ALLA PAVIMENTAZIONE

La pavimentazione sul molo è stata prevista con una struttura in legno al di sotto della quale sono allocati gli impianti a servizio delle barche ormeggiate. Si adotta un carico permanente 2.5 kN/mq.

2.1.3. <u>SOVRACCARICO ACCIDENTALE</u>

Si assume un sovraccarico accidentale pari a 5 kN/mq trattandosi di struttura suscettibile di grande affollamento.

2.1.4. SPINTA STATICA SULLA MANTELLATA

La spinta statica della mantellata è calcolata con la teoria di Coulomb tramite la relazione:

$$\mathbf{S}_{\mathrm{s}} = (\mathbf{k}_{\mathrm{s}} * \gamma * \mathrm{H}^2)/2$$

in cui γ è il peso dell'unità di volume del terreno da considerarsi immerso, H l'altezza della mantellata e k_s definito dalla relazione

$$k_s = \cos(\varphi - \beta)^2 / [\cos(\beta)^2 \cos(\delta + \beta) (1 + B)^2]$$

in cui:

- φ = angolo di attrito interno;
- β = angolo formato dal paramento interno del muro con la verticale;

- δ = angolo di attrito interno terra-muro

- $-B = \sqrt{(\sin(\varphi + \delta) * \sin(\varphi \omega))/(\cos(\delta + \beta) * \cos(\omega \beta))}$
- ω = inclinazione del terrapieno

2.1.5. INCREMENTO DI SPINTA SISMICA SULLA MANTELLATA

La spinta della mantellata è calcolata facendo l'ipotesi, a favore di sicurezza, di terrapieno orizzontale. Le spinte statica e dinamica sono calcolate con la teoria di Coulomb tramite le relazioni:

$$S_s = (k_s * \gamma * H^2)/2$$

$$S_d = (k_d * \gamma * H^2)/2$$

dove γ è il peso dell'unità di volume del terreno, H è l'altezza della mantellata e k_d è definito da :

$$k_{d} = \frac{\cos(\varphi - \beta - \tau)^{2}}{\cos(\tau)\cos(\beta)^{2}\cos(\delta + \beta + \tau)}(1 + B)^{2}$$

in cui

- φ = angolo di attrito interno;

- β = angolo formato dal paramento interno del muro con la verticale;
- τ = arctan(α) con α =k_h coefficiente sismico orizzontale;
- δ = angolo di attrito terra-muro;

$$B = \left[\frac{\sin(\varphi + \delta)\sin(\varphi - \omega - \tau)}{\cos(\delta + \beta + \tau)\cos(\omega - \beta)}\right]^{0.5}$$

- ω = inclinazione del terrapieno.

Il coefficiente k_s è ottenuto da k_d ponendo $\alpha = 0$.

Il calcolo dell'incremento di spinta dovuto all'azione sismica è eseguito considerando il valore globale della spinta dinamica e della spinta statica e determinando il valore dell'incremento di spinta:

$$\Delta \mathbf{F} = \mathbf{S}_{\mathrm{d}} - \mathbf{S}_{\mathrm{s}}$$

La spinta statica e l'incremento di spinta per sisma sono applicate, trattandosi di opere rigide, ad h/3 altezza delle spinte statiche come meglio specificato nel § 2.1.7.

2.1.6. AZIONE SISMICA SULLA STRUTTURA

Nel seguito, le azioni sismiche saranno determinate secondo un approccio pseudostatico, ovvero facendole corrispondere ad un'azione statica equivalente costante nello spazio e nel tempo proporzionale alla massa sismica dell'opera, di un cuneo di terreno in stato di equilibrio limite attivo, e degli eventuali sovraccarichi agenti sul cuneo suddetto. Lo spostamento che genera lo stato di spinta attivo del terreno deve essere sufficientemente ampio e quindi nel caso delle strutture flessibili ciò è assicurato dalla flessione, mentre nel caso di strutture rigide a gravità ciò è assicurato tramite scorrimento e rotazione.

Nell'analisi pseudo-statica, l'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali date dal prodotto della forze di gravità per un coefficiente sismico:

$$F_{h} = k_{h} W$$
$$F_{v} = k_{v} W$$

La componente verticale dell'azione sismica deve essere considerata agente verso l'alto o verso il basso in modo da produrre gli effetti più sfavorevoli.

Nel caso di opere di sostegno flessibili, l'incremento di spinta per sisma va considerato agente a metà dell'altezza della parete, nel caso di opere di sostegno rigide va applicato all'altezza delle spinte statiche, mentre negli altri casi va applicata nel baricentro delle rispettive masse sismiche.

I coefficienti sismici orizzontale k_h e verticale k_v che interessano tutte le masse devono essere calcolati con le relazioni:

$$k_h = \beta \times (a_{max}/g)$$

 $k_v = \pm 0.5 \times k_h$

in cui a_{max} è l'accelerazione orizzontale massima attesa al sito, mentre g è l'accelerazione di gravità e β è un coefficiente di riduzione dell'accelerazione massima attesa al sito, ed è tabellato in funzione del tipo di analisi svolta.

	Categoria di sottosuolo		
	А	B , C, D , E	
	β_{s}	β_{s}	
$0,2 < a_g(g) \le 0,4$	0,30	0,28	
$0,1 < a_g(g) \le 0,2$	0,27	0,24	
$a_{g}(g) \leq 0,1$	0,20	0,20	

Tabella 2.1.6.1 – Coefficiente di riduzione βs per verifiche di Stabilità Globale (Tab. 7.11.I - D.M. 14.01.2008)

	Categoria di sottosuolo	
	А	B, C, D, E
	$\beta_{\rm m}$	β_{m}
$0,2 < a_g(g) \le 0,4$	0,31	0,31
$0,1 < a_g(g) \le 0,2$	0,29	0,24
$a_{\sigma}(g) \leq 0,1$	0,20	0,18

Tabella 2.1.6.2 – Coefficiente di riduzione βm per il calcolo dei muri di sostegno (Tab. 7.11.II - D.M. 14.01.2008)

Nella precedente espressione il valore di a_g - accelerazione orizzontale massima sul sito di riferimento rigido orizzontale - va determinato in accordo al par. 3.2 del D.M. 14/01/2008 in funzione dei seguenti elementi:

- Pericolosità Sismica di base del sito;
- Classe d'Uso dell'opera, variabile tra I e IV, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso;
- Vita Nominale dell'opera (V_N), ovvero del numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata allo scopo per la quale è destinata (Tab. 2.4.I D. M. 14/01/2008);
- Periodo di Riferimento (VR), ottenuto applicando il coefficiente C_U tabellato in funzione della Classe d'Uso (Tab. 2.4.II D. M. 14/01/2008); $(V_R = V_N \cdot C_U)$
- Categoria di Sottosuolo (Tabb. 3.2.II-3.2.III D. M. 14/01/2008);
- Probabilità di superamento nel periodo di riferimento (PVR), al variare dello stato limite considerato (Tab. 3.2.I D. M. 14/01/2008).

	TIPI DI COSTRUZIONE	Vita Nominale V _N (in anni)
1	Opere provvisorie – Opere provvisionali - Strutture in fase costruttiva ¹	≤ 10
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale	≥ 50
3	Grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica	≥ 100

¹ Le verifiche sismiche di opere provvisorie o strutture in fase costruttiva possono omettersi quando le relative durate previste in progetto siano inferiori a 2 anni.

Tabella 2.1.6.3 – Tabella 2.4.I – D.M. 14.01.2008)

CLASSE D'USO	I	Ш	III	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Se $V_R \le 35$ anni si pone comunque $V_R = 35$ anni.

Tabella 2.1.6.4 – Tabella 2.4.II – D.M. 14.01.2008)

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

- *Classe II:* Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso *III* o in Classe d'uso *IV*, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- *Classe III:* Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso *IV*. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- *Classe IV:* Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Tabella 2.1.6.5 - Classe d'Uso delle opere - par. 2.4.2 - D.M. 14.01.2008)

Stati Limite		$P_{V_{\boldsymbol{R}}}$: Probabilità di superamento nel periodo di riferimento $V_{\boldsymbol{R}}$
Stati limite di	SLO	81%
esercizio	SLD	63%
Stati limite	SLV	10%
ultimi	SLC	5%

Tabella 2.1.6.6 - Classe d'Uso delle opere - par. 3.2 - D.M. 14.01.2008)

- (SLO Stato limite di operatività)
- (SLD Stato limite di danno)
- (SLV Stato limite di salvaguardia della vita)
- (SLC Stato limite di prevenzione del collasso)

Categoria	Descrizione
A	<i>Ammassi rocciosi affioranti o terreni molto rigidi</i> caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 360 m/s e 800 m/s (ovvero $N_{SPT,30} > 50$ nei terreni a grana grossa e $c_{u,30} > 250$ kPa nei terreni a grana fina).
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero $15 < N_{SPT,30} < 50$ nei terreni a grana grossa e $70 < c_{u,30} < 250$ kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e $c_{u,30} < 70$ kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con $V_s > 800 \text{ m/s}$).

Tabella 2.1.6.7 – Tabella 3.2.II – D.M. 14.01.2008)

Categoria	Descrizione
S1	Depositi di terreni caratterizzati da valori di $V_{s,30}$ inferiori a 100 m/s (ovvero $10 < c_{u,30} < 20$ kPa), che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argille altamente organiche.
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

Tabella 2.1.6.8 – Tabella 3.2.III – D.M. 14.01.2008)

Nella stessa espressione, S_S è il coefficiente di amplificazione stratigrafica (Tabella 3.2.V del D.M. 14/01/2008), mentre S_T è il coefficiente di amplificazione topografica (Tabelle 3.2.I e 3.2.VI del D.M. 14/01/2008).

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i $\leq 15^{\circ}$
Т2	Pendii con inclinazione media i > 15°
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^\circ \le i \le 30^\circ$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i $> 30^\circ$

Tabella 2.1.6.9 – Tabella 3.2.IV – D.M. 14.01.2008)

Categoria sottosuolo	Ss
А	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$
D	$0,90 \le 2,40 - 1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80 \cdot$
Е	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$

Tabella 2.1.6.10 – Tabella 3.2.V – D.M. 14.01.2008)

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	1,2	
Т3	T3 In corrispondenza della cresta del rilievo	
T4	In corrispondenza della cresta del rilievo	1,4

Tabella 2.1.6.11 – Tabella 3.2.VI – D.M. 14.01.2008)

Nel caso in esame, si ha:

Classe d'Uso dell'opera:	Classe	= III
Vita Nominale dell'opera	$V_{\rm N}$	= 50 anni
Categoria di Sottosuolo	Cat.	= B

L'applicazione dei parametri sopra indicati ha portato, per il sito in oggetto (lat. 37.7887427 long. 12.4372530) ai seguenti risultati in termini di a_g :

Fig. 2.1.6.1 – Caratterizzazione sismica del sito (Dati STS)

Stato Limite	Tr	a _g =A _g /g	F _o	۲*,
Operativitá (SLO)	45	0.017	2.532	0.148
Danno (SLD)	75	0.023	2.485	0.195
Salvag. Vita (SLV)	712	0.055	2.516	0.329
Collasso (SLC)	1462	0.069	2.589	0.357

Parametri di Pericolositá Sismica

Fig. 2.1.6.2– Parametri di Pericolosità sismica – Tabella (Dati STS)

Se si determina il coefficiente di amplificazione stratigrafica S_S e si pone il coefficiente di amplificazione topografica $S_T = 1.00$ si ottiene il valore dell'accelerazione massima data da

$$a_{max}/g = S_S * S_T * a_g$$

per i diversi Stati limite. I valori ottenuti sono riportati nella Tabella 2.1.6.12

DETERMINAZIONE DELLA amax/g

	ag	Fo	Ss*	Ss	ST	amax/g
SLO	0.017	2.532	1.38	1.20	1.00	0.020
SLD	0.023	2.485	1.38	1.20	1.00	0.028
SLV	0.055	2.516	1.34	1.20	1.00	0.066
SLC	0.069	2.589	1.33	1.20	1.00	0.083

Tabella 2.1.6.12 – Valori di a_{max}/g in funzione dei vari SL

Per quanto riguarda la valutazione delle azioni sismiche sul molo foraneo, occorrenti sia per il dimensionamento dello stesso che per il dimensionamento dei pali di fondazione che costituiscono i ritti dell'impalcato, si fa riferimento all'analisi statica lineare che consiste nell'applicazione di forze statiche equivalenti alle forze di inerzia indotte dall'azione sismica.

La forza da applicare alla massa sismica dell'impalcato, trattandosi di una struttura con un solo impalcato, è data dalla relazione

$$\mathbf{F} = \mathbf{F}_{\mathrm{h}} = \mathbf{S}_{\mathrm{d}}(\mathrm{T1})^* \mathrm{W}^* \lambda / \mathrm{g}$$

in cui $S_d(T1)$ è l'ordinata dello spettro di progetto in corrispondenza del periodo fondamentale di vibrazione T1 che può essere stimato con la relazione

$$T1 = C1*H^{3/4} = 0.075*8.00^{3/4} = 0.36 \text{ sec}$$

(formula valida per strutture intelaiate in c.a. di altezza minore di 40 m – par. 7.3.3.2).

Lo spettro di risposta elastico in accelerazione delle componenti orizzontali X ed Y è espresso da una forma spettrale (spettro normalizzato) riferita ad uno smorzamento convenzionale del 5%, moltiplicata per il valore della accelerazione orizzontale massima a_g su sito di riferimento rigido orizzontale ed è definito dalle seguenti relazioni:

$$\begin{split} 0 &\leq T < T_{B} \\ T_{B} &\leq T < T_{C} \\ T_{C} &\leq T < T_{D} \\ T_{D} &\leq T < T_{D} \\ T_{D} &\leq T \\ \end{array} \qquad \begin{aligned} S_{e}(T) &= a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{C}}{T}\right) \\ S_{e}(T) &= a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{C}}{T}\right) \\ S_{e}(T) &= a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{C}}{T}\right) \\ S_{e}(T) &= a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{C}}{T}\right) \\ \end{aligned}$$

nelle quali T ed S_e sono, rispettivamente, il periodo di vibrazione e l'accelerazione spettrale orizzontale, S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la seguente relazione:

$$S = S_S \cdot S_T$$

essendo S_S il coefficiente di amplificazione stratigrafica ed S_T è il coefficiente di amplificazione topografica, definiti nelle tabelle 2.1.6.10 e 2.1.6.11.

Nelle espressioni dello spettro elastico, inoltre, η è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali ξ diversi dal 5%, mediante la relazione:

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$

dove ξ (espressa in percentuale) è valutata sulla base di materiali, tipologia strutturale e terreno di fondazione; F₀ è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale; T_C è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato da:

$$T_C = C_C \cdot T_C^*$$

dove T_{C}^{*} è il periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale e C_{C} è un coefficiente funzione della categoria di sottosuolo riportato nella Tabella 2.1.6.13.

Categoria sottosuolo	Cc
А	1,00
В	$1,10 \cdot (T_{\rm C}^*)^{-0,20}$
С	$1,05 \cdot (T_{\rm C}^*)^{-0,33}$
D	$1,25 \cdot (T_{\rm C}^*)^{-0.50}$
Е	$1,15 \cdot (T_{\rm C}^*)^{-0,40}$

Tabella 2.1.6.13– Valori di $C_{\rm C}$ in funzione delle categorie di suolo

 $T_B = T_C/3$ è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante; T_D , infine, è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, espresso in secondi mediante la relazione:

$$T_{\rm D} = 4.0 \cdot \frac{a_{\rm g}}{g} + 1.6$$

Si determinano quindi i valori dei periodi limiti dello spettro della componente orizzontale. Tali valori sono riportati nella Tabella 2.1.6.14.

Determinazione dei periodi limite comp. orizz.								
	Tc*	Сс	Тс	TB	TD			
SLO	0,148	1,612	0,239	0,08	1,668			
SLD	0,195	1,525	0,297	0,099	1,692			
SLV	0,329	1,374	0,452	0,151	1,82			
SLC	0,357	1,352	0,483	0,161	1,876			

Tabella 2.1.6.14 – Periodi limite della componente orizzontale

Essendo per SLC il periodo T1 = 0.36 sec compreso tra TB e TC il tratto di spettro che deve essere preso in considerazione è quello orizzontale per cui si determina il valore dello spettro elastico.

Lo spettro di progetto si ottiene dallo spettro elastico sostituendo il coefficiente η con il rapporto 1/q in cui q è il fattore di struttura.

Il valore di q dipende dalle caratteristiche della struttura e per una struttura in classe di duttilità B e per strutture a telaio in c.a. vale (per strutture a telaio ad una elevazione $\alpha_u/\alpha_1=1.1$)

$$q = 3*\alpha_u/\alpha_1 = 3*1.1 = 3.3$$

In funzione di T1 = 0.36 sec si definisce la relazione che fornisce $S_d(T1)$ che è pari per lo SLV e per lo SLC

$$S_d(TB < T1 < TC) = a_g * g * (S_s * S_T) * F_o/q$$

mentre per lo SLO e lo SLD essendo TC<T1<TD

$$S_d(TC < T1 < TD) = a_g * g * (S_s * S_T) * F_o * (T_c/T_1)/q$$

I valori degli spettri di progetto in funzione dei vari SL sono riportati nella Tabella 2.1.6.15.

Spettro di risposta elastico e di progetto orizzontale								
	ag	Fo	Ss	ST	Soe(T)	Sdo(T)		
SLO	0,017	2,532	1,20	1,00	0,034	0,010		
SLD	0,023	2,485	1,20	1,00	0,057	0,017		
SLV	0,055	2,516	1,20	1,00	0,166	0,050		
SLC	0,069	2,589	1,20	1,00	0,214	0,065		
T =	0,36	sec	q =	3,3				

Tabella 2.1.6.15 – Valori dello spettro di progetto in funzione degli SL

Per calcolare l'azione sismica occorre definire il coefficiente λ che nel nostro caso è pari a 1.00 per cui

$$F_{h} = 0.065 * W$$

Per la determinazione di W peso sismico si fa riferimento alla relazione

$$W = G_1 + G_2 + \Sigma \psi_{2j} * Q_{kj}$$

in cui G_1 è il peso proprio della struttura, G_2 sono i carichi permanenti portati, Q_{kj} è il jesimo carico variabile che nel nostro caso è il carico accidentale agente sulla banchina.

Il coefficiente ψ_{2j} si pone pari a 0.6 assimilando il carico accidentale in banchina alla cat. C della Tabella 2.5.I.

Categoria/Azione variabile	Ψ_{0j}	ψ_{1j}	Ψ_{2j}
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota $\leq 1000 \text{ m s.l.m.}$)	0,5	0,2	0,0
Neve (a quota > 1000 m s.1.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Tabella 2.5.I – Valori dei coefficienti di combinazione

Tabella 2.1.6.16 – Tabella 2.5.I – D.M. 14.01.2008

2.1.7. AZIONE SISMICA AI FINI DELLE VERIFICHE DI STABILITA' GLOBALE

Facendo riferimento a quanto riportato nella Tabella 2.1.6.1 si determina il coefficiente sismico da applicare nel caso di verifica di stabilità del pendio a valle della struttura.

Stabilità globale dei pendii: $k_h = \beta_s * (a_{max}/g) = 0.20*0.083 = 0.0166$

 $kv = \pm \ 0.5 \ kh \ = \pm \ 0.5 * 0.0166 = 0.0083$

2.1.8. INCREMENTO DI SPINTA IDRAULICA PER LA PRESENZA DEL SISMA

L'incremento di spinta dell'acqua dovuto ad un evento sismico è determinato con la formula di Westergaard in base alla quale a monte e a valle della parete verticale viene esercitata una spinta rispettivamente di compressione e di trazione pari a:

$$\delta S_{wm} = 0.70 \cdot \frac{7}{12} \gamma_w \cdot c \cdot h^2$$
$$\delta S_{wv} = \frac{7}{12} \gamma_w \cdot c \cdot h^2$$

in cui γ_w è il peso specifico dell'acqua, c=k_h e h è la profondità di imbasamento della struttura. Tali azioni sono applicate ad una distanza dal pelo libero dell'acqua pari a y_v = 0.60*h sia per l'incremento di monte che per l'incremento di valle. I valori della pressione lungo la verticale con origine in corrispondenza del pelo libero è data dall'espressione (monte)

$$p_m(y) = 0.70 \cdot \frac{7}{8} \gamma_w \cdot c \cdot h^{0.5} y^{0.5}$$

e (valle)

$$p_v(y) = \frac{7}{8} \gamma_w \cdot c \cdot h^{0.5} y^{0.5}$$

I calcoli relativi all'incremento di spinta di monte e di valle e i valori della pressione sono determinati nella Tabella seguente:

- Peso specifico dell'acqua di mare			$\gamma w =$	1,025	ton/mc		
Caratteristi	iche geometrich	e dell'ope	ra				
- Altezza dell'opera fino al pelo libero			0	h =	6,00	m	
Caratteristi	iche sismiche de	el sito					
- Categoria	ı di suolo		=	В			
- ag/g			=	0,069			
- amax/g			=	0,083			
- dalla Tab	ella 7.11.II - M	uri di soste	egno si o	leduce il coeff	ficiente $\beta =$		0,18
- Coefficie	nte sismico kh		=	0,015			
Calcolo del	l'incremento di	spinta idra	ulica al	la presenza di	sisma (Wes	tergard)	
- monte	δSwm=	0,225	ton	yv =	3,60	m	
- valle	$\delta SWV =$	0,322	ton	vv =	3.60	m	

У	pm(y) (monte)	Pm	pm(y) (valle)	Pm
0,00	0,00		0,00	
1,00	0,02	0,011	0,03	0,016
2,00	0,03	0,028	0,05	0,040
3,00	0,04	0,036	0,06	0,052
4,00	0,05	0,043	0,07	0,061
5,00	0,05	0,049	0,07	0,070
6,00	0,06	0,054	0,08	0,077
		0.221		0.315

Tabella 2.1.8.1 – Azioni di incremento della spinta idraulica in presenza di sisma

2.1.9. <u>TIRO ALLA BITTA</u>

Si considera un tiro alla bitta pari a 50 kN e considerando che si pongono bitte ad un interasse di 5 m sulla struttura si prende in esame un'azione orizzontale di 10 kN/ml.

2.2. COMBINAZIONI DI CARICO

Definizione dei coefficienti parziali (2.6.1)

Ai fini della determinazione delle combinazioni di carico occorre definire i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite.

Si definiscono i seguenti coefficienti parziali:

- γ_{G1} coefficiente parziale del peso proprio della struttura, del terreno, dell'acqua quando azioni pertinenti;
- γ_{G2} coefficiente parziale dei pesi propri di elementi non strutturali;
- γ_{Q1} coefficiente parziale dell'azione variabile dominante;
- γ_{Qi} coefficiente parziale delle azioni variabili;
- γ_P coefficiente parziale della precompressione ($\gamma P = 1$).

Definizione dei coefficienti di combinazione (2.5.2)

Nella definizione delle combinazioni delle azioni che possono agire contemporaneamente, i termini Q_{kj} rappresentano le azioni variabili della combinazione con Q_{k1} azione variabile dominante e Q_{kj} azioni variabili che possono agire contemporaneamente a quella dominante.

Le azioni variabili Q_{kj} vengono combinate con i coefficienti di combinazione ψ_{0j} , ψ_{1j} e ψ_{2j} . Con riferimento alla durata percentuale relativa ai livelli di intensità dell'azione variabile, si definiscono:

- valore quasi permanente ψ_{2j}*Q_{kj} la media della distribuzione temporale dell'intensità;
- valore frequente $\psi_{1j}^* Q_{kj}$ il valore corrispondente al frattile del 95% della distribuzione temporale dell'intensità e cioè che ha superato per una limitata frazione del periodo di riferimento;
- valore raro $\psi_{oj}^*Q_{kj}$ il valore di breve durata ma ancora significativa nei riguardi della possibile concomitanza con altre azioni variabili.

Combinazione delle azioni (2.5.3)

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

- Combinazione fondamentale

la combinazione fondamentale deve essere utilizzata per la verifica agli stati limite ultimi (SLU)

$$\gamma_{G1} * G_1 + \gamma_{G2} * G_2 + \gamma_P * P + \gamma_{Q1} * Q_{k1} + \Sigma \gamma_{Q2} * \psi^{0j} * Q_{kj}$$

- Combinazione caratteristica (rara)

la combinazione é utilizzata per gli stati limite di esercizio (SLE) irreversibili

$$G_1 * G_2 + P + Q_{k1} + \Sigma \psi_{0j} * Q_{kj}$$

- Combinazione frequente

la combinazione é utilizzata per gli stati limite di esercizio (SLE) reversibili

$$G_1+G_2+P+\psi_{11}*Q_{k1}+\Sigma\psi_{2j}*Q_{kj}$$

- Combinazione quasi permanente

la combinazione é utilizzata per gli stati limite di esercizio (SLE) per gli effetti a lungo termine

 $G_1 + G_2 + P + \psi_{21} * Q_{k1} + \Sigma \psi_{2j} * Q_{kj}$

- Combinazione sismica

la combinazione é utilizzata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

 $E+G_1+G_2+P+\psi_{21}*Q_{k1}+\Sigma\psi_{2j}*Q_{kj}$

Verifiche agli stati limite ultimi (2.6.1)

Nelle verifiche agli stati limite ultimi si distinguono:

EQU - stato limite di equilibrio come corpo rigido;

STR - stato limite di resistenza della struttura compresi gli elementi di fondazione;

GEO - stato limite di resistenza del terreno.

Per il calcolo dell'impalcato e per le verifiche strutturali si prende in esame lo stato limite STR. Si utilizza un'unica combinazione dei gruppi dei coefficienti parziali definiti per le azioni A e per la resistenza dei materiali M per cui per le azioni si impiegano i coefficienti γf riportati nelle tabelle di normativa nella colonna A1.

2.3. DEFINIZIONE DEI COEFFICIENTI PARZIALI

I coefficienti parziali per le azioni nelle verifiche SLU sono dati dalla Tabella 2.6.I delle Norme, tabella che è riportata di seguito.

			-		
		Coefficiente γ_F	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	$\gamma_{\rm G1}$	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ _{G2}	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γqi	0,0 1,5	0,0 1,5	0,0 1,3
⁽¹⁾ Nel caso in cui i carichi permane compiutamente definiti si potranno permanenti.	nti non strutt adottare per	turali (ad es. essi gli stessi	carichi peri coefficient	nanenti por i validi per	tati) siano le azioni

 Tabella 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

Tabella 2.3.1 – Tab. 2.6.I – D.M. 14.01.2008

Dalla tabella si evince che i coefficienti devono essere desunti dalla colonna A1 (STR – Stato limite di struttura), per cui

$$\begin{array}{ll} \gamma_{G1} & = 1.30 \\ \gamma_{G2} & = 1.30 \\ \gamma_{Q1} & = 1.50 \\ \gamma_{Qi} & = 1.50 \\ \gamma_{P} & = 1.00 \end{array}$$

I coefficienti di combinazione sono funzione della categoria della costruzione. Per categoria G i dati sono desunti dalla Tabella 2.5.I delle Norme riportata nella relazione nella Tabella 2.1.6.16. I valori che devono quindi essere assunti nei calcoli sono

$$\Psi_{0j} = 0.70$$

 $\Psi_{1j} = 0.50$
 $\Psi_{2j} = 0.30$

Per il tiro alla bitta si assume la categoria VENTO i cui dati sono desunti dalla Tabella 2.5.I delle Norme. I valori che devono essere assunti nei calcoli sono

 $\Psi_{0j} = 0.60$ $\Psi_{1j} = 0.20$ $\Psi_{2j} = 0.00$

2.4. COMBINAZIONI ASSUNTE PER IL CALCOLO DELLE STRUTTURE

Per il calcolo della struttura si sono assunte le seguenti combinazioni:

SLU – accidentale

Peso proprio g1 = 2.50 ton/mc – γ_{G1} = 1.30 Carico permanente pavimentazione g2 = 0.25 ton/mq - γ_{G2} = 1.30 Carico permanente spinta mantellata - γ_{G2} = 1.30 Carico accidentale q1 = 0.50 ton/mq – γ_{Q1} = 1.50 Tiro alla bitta F = 1 ton/ml - γ_{Q2} = 1.50 - Ψ_{02} = 0.60

SLU – tiro alla bitta

Peso proprio $g_1 = 2.50 \text{ ton/mc} - \gamma_{G1} = 1.00$ Carico permanente pavimentazione $g_2 = 0.25 \text{ ton/mq} - \gamma_{G2} = 1.00$ Carico permanente spinta mantellata - $\gamma_{G2} = 1.30$ Tiro alla bitta - F = 1 ton/m - $\gamma_{Q1} = 1.50$ Carico accidentale q1 = 0.50 ton/mq - $\gamma_{Q2} = 0.00$

SLU – sismica – interno-esterno

Peso proprio $g_1 = 2.50 \text{ ton/mc}$ Carico permanente pavimentazione $g_2 = 0.25 \text{ ton/mq}$ Carico permanente spinta mantellata Carico accidentale $q1 = 0.50 \text{ ton/mq} - \Psi_{21} = 0.30$ Tiro alla bitta $Q_{k2} = 1.00 \text{ ton/m} - \Psi_{22} = 0.00$ Sisma $F_h = 0.065*W$ Incremento di spinta idraulica per la presenza del sisma

SLU – sismica – esterno-interno

Peso proprio g1 = 2.50 ton/mq Carico permanente pavimentazione g2 = 0.25 ton/mq Carico permanente spinta mantellata Incremento di spinta sismica sulla mantellata Carico accidentale q1 = 0.50 ton/mq – Ψ_{21} = 0.30 Tiro alla bitta Q_{k2} = 1.00 ton/m - Ψ_{22} = 0.00 Sisma Fh = 0.065*W Incremento di spinta idraulica per la presenza del sisma

2.5. COMBINAZIONI ASSUNTE PER IL CALCOLO GEOTECNICO

Per i calcoli geotecnici si adotta l'Approccio 1 – Combinazione 2 che è la combinazione generalmente più gravosa ai fini geotecnici.

Per i calcoli geotecnici si sono assunte le seguenti combinazioni:

SLU – accidentale

Peso proprio g1 = 2.50 ton/mc – γ_{G1} = 1.00 Carico permanente pavimentazione g2 = 0.25 ton/mq - γ_{G2} = 1.00 Carico permanente spinta mantellata - γ_{G2} = 1.00 Carico accidentale q1 = 0.50 ton/mq – γ_{Q1} = 1.30 Tiro alla bitta Q_{k2} = 1.00 ton/m - γ Q2 = 1.30 - Ψ_{21} = 0.60

SLU – tiro alla bitta

Peso proprio g1 = 2.50 ton/mc – γ_{G1} = 1.00 Carico permanente pavimentazione g2 = 0.25 ton/mq - γ_{G2} = 1.00 Carico permanente spinta mantellata - γ_{G2} = 1.00 Tiro alla bitta Q_{k2} = 1.00 ton/m - $\gamma Q2$ = 1.30 Carico accidentale q1 = 0.50 ton/mq – $\gamma Q1$ = 0.00 Le combinazioni sismiche precedentemente descritte sono valide anche per le verifiche di tipo geotecnico.

2.6. COMBINAZIONI ASSUNTE PER LA VERIFICA DELLE DEFORMAZIONI

Per la verifica degli spostamenti della struttura si sono assunte le seguenti combinazioni agli SLE:

SLE – accidentale

Peso proprio g1 = 2.50 ton/mc – γ_{G1} = 1.00 Carico permanente pavimentazione g2 = 0.25 ton/mq - γ_{G2} = 1.00 Carico permanente spinta mantellata - γ_{G2} = 1.00 Carico accidentale q1 = 0.50 ton/mq - Ψ_{11} = 0.50 Tiro alla bitta Q_{k2} = 1.00 ton/m - Ψ_{21} = 0.00

SLE – tiro alla bitta

Peso proprio g1 = 2.50 ton/mc – γ_{G1} = 1.00 Carico permanente pavimentazione g2 = 0.25 ton/mq - γ_{G2} = 1.00 Carico permanente spinta mantellata - γ_{G2} = 1.00 Tiro alla bitta Q_{k1} = 1.00 ton/m - Ψ_{11} = 0.20 Carico accidentale q2 = 0.50 ton/mq – γ_{21} = 0.30

CARATTERIZZAZIONE GEOTECNICA DEI TERRENI STRATIGRAFIA DI RIFERIMENTO

Per la definizione della stratigrafia in corrispondenza dell'opera e delle caratteristiche geotecniche dei terreni interessati dall'opera si fa riferimento alla relazione geotecnica [3]. Dalla Relazione Geotecnica si evince che la stratigrafia può essere desunta dai sondaggi meccanici SM2 in corrispondenza del Molo Colombo e il sondaggio SM7 in corrispondenza dello specchio acqueo in cui deve essere realizzato il molo di ridosso. Dal sondaggio SM2 si evince che dal fondo si riscontra uno strato di limo dello spessore di 60 cm cui segue la formazione di calcareniti mista a sabbia e limo fino alla profondità di indagine. In corrispondenza del sondaggio SM7 si registra un fondale alla profondità di -6.20 m s.l.m.m., quindi uno strato di limo sabbioso fino alla profondità di -11.00 m e quindi lo strato di base formato da calcareniti miste a sabbia e limo fino alla profondità di indagine.

I pali risultano quindi per circa 6.00 m in acqua, per un metro nello strato di bonifica del fondale, per circa 4.00 m infissi nei limi e per circa 4.00 m infissi nelle calcareniti miste a sabbia e limo nella condizione stratigrafica più sfavorevole, per cui la lunghezza del palo è pari a 15.00 m. In corrispondenza del Molo Colombo, i pali si trovano per circa 6.00 m in acqua, per 1.00 m nello strato di bonifica del fondo e per circa 8.00 nelle calcareniti mista a sabbia e limo per una lunghezza complessiva del palo pari a 15.00 m.

Ai fini dei calcoli geotecnici si assumono le seguenti caratteristiche geotecniche:

- calcareniti miste a sabbie e limi

Peso dell'unità di volume $\gamma = 19.2$ kN/mc;

- Peso saturo dell'unità di volume $\gamma_{sat} = 20.0 \text{ kN/mc}$;
- Angolo di attrito interno $\phi = 38^{\circ}$;

Coesione efficace c = 6 kPa;

Modulo di elasticità E = 49000 kPa;

Coefficiente di Poisson v = 0.20

Modulo Edometrico Eed = 54000 kPa

Lo strato di limo che viene superato dai pali non si considera come strato portante ma a questo vengono comunque assegnate delle caratteristiche geotecniche per l'analisi del manufatto. In particolare si ha:

- limi $\gamma = 1.53 \text{ ton/mc}$ $\gamma_{sat} = 1.70 \text{ ton/mc}$ c = 0.06 kg/cmq $\phi = 22^{\circ}$ E = 13900 kPav = 0.20

Ai materiali che costituiscono la scogliera in pietrame e scogli naturali con lo scopo di dissipare parte del moto ondoso incidente si attribuiscono le seguenti caratteristiche geotecniche:

- Materiale lapideo e scogli di prima categoria

$$\begin{split} \gamma &= 2.10 \text{ ton/mc} \\ \gamma_{sat} &= 2.10 \text{ ton/mc} \\ c &= 0.00 \text{ kg/cmq} \\ \phi &= 40^{\circ} \\ E &= 80000 \text{ kPa} \\ v &= 0.40 \end{split}$$

Tutte le caratterizzazioni geotecniche sopra riportate per i terreni interessati dalle opere sono state schematizzate attraverso un modello alla Mohr-Coulomb.

4. MODELLI NUMERICI PER IL DIMENSIONAMENTO

4.1. PREMESSA

La realizzazione di un'opera che prevede scavi comporta inevitabilmente una zona di subsidenza circostante che deve essere contenuta quanto possibile.

In generale, l'entità e l'estensione dei movimenti indotti dalla esecuzione di uno scavo dipendono da numerosi fattori, tra i quali ricordiamo (Padfield & Mair 1983, Day 1994, Hight & Higgins 1995):

- le caratteristiche meccaniche dei terreni interessati;
- lo stato tensionale iniziale;
- le condizioni idrauliche nel sottosuolo;
- la tipologia e le caratteristiche geometriche della struttura di sostegno;
- la rigidezza degli elementi di supporto;
- la tecnica di installazione impiegata;
- la tecnica di scavo impiegata;
- la sequenza temporale delle varie fasi costruttive;
- l'esperienza e l'abilità della manodopera.

Per una stima adeguata sarebbe quindi necessario mettere in conto tutti questi fattori nel modo quanto più possibile preciso. Tuttavia, a prescindere dalla procedura di calcolo impiegata, tanto le proprietà meccaniche dei terreni coinvolti, ed il loro stato iniziale, quanto le caratteristiche geometriche e meccaniche della struttura di sostegno, la sequenza temporale delle fasi costruttive e gli effetti indotti dalla installazione della struttura nel terreno, possono essere messi in conto in sede di progetto solo in maniera più o meno approssimata.

Da ciò discende l'impossibilità di pervenire, in molte circostanze, ad una previsione accurata della risposta del sistema. Peraltro, l'obiettivo principale del progettista consiste, in questi casi, nello stabilire degli opportuni limiti inferiore e superiore per tale risposta, in base ai quali valutare l'accettabilità di una particolare soluzione o modificare opportunamente la soluzione adottata, utilizzando le procedure di calcolo a propria disposizione (Burland et al. 1979).
Per analizzare la validità e l'efficacia delle soluzioni di progetto è stato costruito un modello numerico agli Elementi Finiti (FEM) che ha consentito di simulare le fasi di costruzione e scavo e l'evoluzione degli effetti di questi sull'ambiente circostante.

È necessario premettere che la modellazione parte da una semplificazione geometrica derivante anche da uno studio di sensibilità sul modello, che consente di ottenere dei risultati comunque accurati e contemporaneamente di contenere i tempi di calcolo entro valori ragionevoli.

È da sottolineare infine che i modelli costruiti fanno riferimento a situazioni piane e che quindi le deformazioni calcolate sono da considerarsi un estremo superiore delle reali deformazioni che si stima avvengano in sito non essendo stato considerato l'effetto tridimensionale del problema. Tale effetto minimizza infatti fortemente le deformazioni calcolate numericamente tanto più quanto maggiore è la vicinanza con angoli o situazioni geometriche spiccatamente tridimensionali.

4.2. I MODELLI FEM IN PLAXIS

4.2.1. FASE DI INPUT DEL MODELLO

Per sviluppare un'analisi significativa è stato necessario utilizzare un software, specificatamente dedicato alle applicazioni geotecniche, che consente l'analisi di modelli bidimensionali: Il PLAXIS nella sua versione 2010.

La validità e l'efficacia delle soluzioni di progetto sono state quindi verificate con l'ausilio di una serie di modelli numerici agli Elementi Finiti (FEM) che hanno consentito di simulare le fasi di costruzione e scavo e l'evoluzione degli effetti di questi sull'ambiente circostante e sulle strutture stesse.

Nel seguito verranno accennate le modalità di costruzione del modello, le procedure seguite per le analisi numeriche e verranno mostrati i risultati.

Un'analisi agli elementi finiti presuppone la preventiva creazione (fase di input) di una modellazione geometrica bidimensionale nel piano x-y composta da punti, linee ed altri componenti.

La parte finale della procedura di input comporta la definizione delle condizioni iniziali relativamente alle pressioni neutre ed alle tensioni efficaci.

Per modellare gli strati di terreno e gli altri materiali del modello (elementi di volume – clusters) possono essere adoperati elementi a 6 nodi o a 15 nodi. Nel caso in esame, sono stati utilizzati elementi triangolari a 15 nodi. Il triangolo a 15 nodi fornisce un'interpolazione del quarto ordine per gli spostamenti e l'integrazione numerica adopera dodici punti di Gauss (stress points) su cui viene calcolato lo stato tensionale e deformativo; esso è un elemento molto accurato e fornisce ottimi risultati anche quando impiegato in problemi difficili.

L'uso degli elementi triangolari a 15 nodi comporta peraltro l'impiego sia di una grande quantità di memoria sia tempi di calcolo relativamente elevati.

Figura 4.2.1.1 – Elementi da 6 a 15 nodi

Un elemento a 15 nodi può essere considerato come la composizione di quattro elementi a 6 nodi, poiché il numero totale di nodi e punti d'integrazione è uguale. Un elemento a 15 nodi è tuttavia più affidabile di quattro elementi a 6 nodi.

4.2.2. <u>LA GEOMETRIA</u>

La generazione di un modello agli elementi finiti presuppone la creazione preliminare di un modello geometrico che è la rappresentazione del problema da studiare.

Un modello geometrico si compone di componenti base quali punti, linee e clusters oltre ai quali si possono assegnare al modello geometrico oggetti strutturali o condizioni speciali, in modo da simulare rivestimenti di galleria, setti, piastre, interazioni terreno-struttura o sollecitazioni. Il modello geometrico deve comprendere con analoga approssimazione, oltre alla situazione iniziale, anche quelle situazioni che si verificano nelle varie fasi di calcolo (ad esempio per simulare le diverse fasi di costruzione).

Quando il modello geometrico completo è stato definito e tutte le componenti della geometria hanno le loro proprietà iniziali, può essere generata la mesh agli elementi finiti che si identifica con il modello FEM utilizzato.

Una volta definita la geometria, e quindi determinate le basi per la generazione delle mesh di calcolo, possono essere introdotti tutti gli ulteriori elementi presenti nel modello (elementi strutturali).

Le travi (elementi Beam) o piastre sono oggetti strutturali utilizzabili per modellare strutture bi/tri-dimensionali con una significativa rigidezza flessionale e normale come fondazioni, solai o elementi strutturali resistenti a flessione e taglio. Gli elementi beam possono essere adottati per simulare l'influenza di setti, piastre, strutture o rivestimenti. Le proprietà meccaniche degli elementi beam vengono definite in funzione dei materiali che le costituiscono.

I parametri più importanti sono la rigidezza flessionale EI e la rigidezza assiale EA. Da questi due parametri viene calcolato uno spessore equivalente di piastra deq con l'equazione:

$$d_{eq} = \sqrt{\frac{12EI}{EA}}$$

Gli elementi beam possono essere attivati o disattivati nelle diverse fasi di calcolo utilizzando l'opzione Staged construction (Costruzione per fasi).

Nel modello bidimensionale agli elementi finiti gli elementi beam sono modellati con elementi trave (elementi linea) con tre gradi di libertà per nodo: due gradi di libertà traslazionale (ux, uy) ed un grado di libertà rotazionale (rotazione nel piano x-y: fz).

Figura 4.2.2.1 – Posizione dei nodi e dei punti d'integrazione in elementi trave a 3 e 5 nodi

Le molle vengono invece utilizzate per simulare tutta una serie di possibili elementi come contrasti, puntoni, parti libere dei tiranti ecc. ecc. da introdurre nel modello. Sostanzialmente tramite l'introduzione di una rigidezza di tipo assiale (prodotto tra il modulo caratteristico e l'area reagente) è possibile simulare la presenza di elementi reagenti.

4.2.3. FASI DI CALCOLO

Una volta costruita la geometria, definiti ed assegnati i materiali a tutti i clusters di terreno, definiti ed assegnati i valori agli elementi beam presenti e posizionato il livello della falda corrispondente a quello di progetto, si è pronti per eseguire il calcolo delle tensioni in – situ e delle pressioni interstiziali iniziali.

Il momento immediatamente successivo è quello della definizione delle diverse fasi di scavo e attivazione dei vari elementi componenti il problema in esame. Questo si realizza nel modulo di calcolo che precede la fase del calcolo vero e proprio.

In quest'ultima fase è possibile scegliere tra diverse possibilità di calcolo; in particolare, tra le diverse opzioni, vengono richiamate quelle che più interessano le opere in esame:

- Staged costruction: L'opzione Staged construction (Costruzione per fasi) è la più importante tra le varie opzioni disponibili. Infatti, con questa funzionalità è possibile modificare la configurazione geometrica e di carico disattivando o riattivando i carichi, i clusters di volume o gli oggetti strutturali definiti durante l'input della geometria. L'opzione può anche essere utilizzata per riassegnare le caratteristiche ai materiali nelle varie fasi o per modificare la distribuzione della pressione neutre nella geometria;
- **Total multipliers:** l'opzione dei moltiplicatori permette di simulare una fase plastica nella quale è possibile applicare un coefficiente di amplificazione o di riduzione ad una azione esterna. Tale fase risulta necessaria per applicare gradualmente i carichi (superficiali ed eventualmente profondi) al modello ed eventualmente per applicare spostamenti noti, accelerazioni di progetto o variazioni di peso ai materiali nel loro complesso.
- *phi c reduction:* Questa analisi consente di calcolare un coefficiente di sicurezza utilizzando l'approccio di ridurre contestualmente e gradualmente i

parametri di resistenza "tan ϕ " e c' del terreno fino all'ottenimento del collasso del complesso terreno-struttura.

Attraverso le precedenti opzioni si costruisce il file di calcolo dal quale si passa poi all'ambiente di output ove è possibile visualizzare i risultati del complesso di fasi di scavo e costruzione e dell'applicazione dei carichi. In tale ambiente sarà possibile visualizzare gli stati tensionali e quelli deformativi dipendenti dalle varie fasi implementate come vedremo nel seguito.

5. CALCOLO DELLA STRUTTURA

5.1. FASI COSTRUTTIVE

Per l'analisi evolutiva del complesso terreno opera con il metodo degli elementi finiti sono state prese in considerazione le seguenti fasi costruttive:

- fase 0 initial phase
- fase 1 (0) analisi delle condizioni geostazionarie
- fase 2 (1) realizzazione di pali e scogliera
- fase 3 (2) realizzazione della sovrastruttura
- fase 4 (3) attivazione carichi per analisi tipo M1 SLU Acc
- fase 5 (4) esecuzioni analisi tipo M1 SLU Acc
- fase 6 (3) attivazione carichi per analisi tipo M1 SLU Bitta
- fase 7 (6) esecuzioni analisi tipo M1 SLU Bitta
- fase 8 (3) attivazione carichi per analisi tipo M1 SLU Sisma
- fase 9 (8) esecuzioni analisi tipo M1 SLU Sisma +
- fase 10 (8) esecuzioni analisi tipo M1 SLU Sisma -
- fase 11 (3) attivazione carichi per analisi tipo M2 SLU Acc
- fase 12 (11) esecuzioni analisi tipo M2 SLU Acc
- fase 13 (3) attivazione carichi per analisi tipo M2 SLU Bitta
- fase 14 (13) esecuzioni analisi tipo M2 SLU Bitta
- fase 15 (3) attivazione carichi per analisi tipo M1 SLE Acc
- fase 16 (15) esecuzioni analisi tipo M1 SLE Acc
- fase 17 (3) attivazione carichi per analisi tipo M1 SLE Bitta
- fase 18 (17) esecuzioni analisi tipo M1 SLE Bitta

5.2. DATI DELLA STRUTTURA

Per ogni elemento strutturale si determinano le caratteristiche geometriche ed inerziali. Detta A l'area della sezione dell'elemento, J il suo momento d'inerzia baricentrico e i l'interasse, si determinano i valori di

E*A/i E*J/i e il peso p espresso in kg/mq.

I valori di input e di output relativi ad ogni elemento strutturale sono riportati nella Tabella 5.1:

	PORTO DI MARSALA - PALI MOLO DI RIDOSSO									
Rck = E = γ =	450 345 451 2 500	(kg/cm2) (kg/cm2) = (kg/m3) =	3,45E+07 25,0	(kN/m²) (kN/m³)						
PALI i=1m	Ø (ml) 1,000	interasse i (ml) 1,000	A (m ²) 0,785	EA/i (kN) 2,71E+07	J (m ⁴) 0,04909	EJ/i (kN/m ²) 1,70E+06	w/i (kN/ml) 19,635			
PALI i=3m	1,000	3,000	0,785	9,04E+06	0,04909	5,65E+05	6,545			

Tabella 5.1 – Caratteristiche strutturali delle palificate

5.3. CARATTERISTICHE DEL TERRENO PER LE VERIFICHE STRUTTURALI E GEOTECNICHE

Le caratteristiche dei terreni da utilizzarsi in funzione dell'Approccio prescelto sono riassunte nella Tabella 5.2.

VALORI NOM	VALORI NOMINALI CARATTERISTICHE GEOTECNICHE ADOTTATE PER ANALISI TIPO M1								
	ф	tan(φ)	c'	Cu	γ	Ysat			
	(°)		(kg/cm ²)	(kg/cm²)	(kN/m³)	(kN/m³)			
Limi	22,00	0,4040	0,06	0,00	15,30	17,00			
Calcareniti	38,00	0,7813	0,06	0,00	19,20	20,00			
Pietrame e Scogli	40,00	0,8391	0,00	0,00	21,00	21,00			
COEFF	ICIENTI M2	DI RIDUZIONE DE	LLE CARATTE	RISTICHE GEO	TECNICHE				
$\gamma_{M\Phi'} =$	1,25	(coefficiente M2	da applicare	a tanφ)					
$\gamma_{Mc'} =$	1,25	(coefficiente M2	da applicare	a c')					
γ _{Mcu} =	1,40	(coefficiente M2	da applicare	a c _u)					
$\gamma_{M\gamma} =$	1,00	(coefficiente M2	da applicare	аγ)					
CAR	ATTERISTICH	IE GEOTECNICHE	MODIFICATE	PER ANALISI	TIPO M2				
	ф _{м2}	tan(φ _{M2})	C' _{M2}	C _{u M3}	ү м2	γ_{satM2}			
	(°)		(kg/cm ²)	(kg/cm ²)	(kN/m³)	(kN/m³)			
Limi	17,91	0,3232	0,05	0,00	15,30	17,00			
Calcareniti	32,01	0,6250	0,05	0,00	19,20	20,00			
Pietrame e Scogli	33,87	0,6713	0,00	0,00	21,00	21,00			

Tabella 5.1 – Caratteristiche dei terreni

5.4. DATI RELATIVI AI TERRENI

Fig [5.4.1] Geometria, terreni e materiali

Table [5.4.1]	Soil data	sets	parameters
---------------	-----------	------	------------

Linear Ela	istic	4
		CLS
Туре		Non-porous
Yunsat	[kN/m ³]	25,00
γ_{sat}	[kN/m³]	25,00
k _x	[m/day]	0,000
k _y	[m/day]	0,000
e _{init}	[-]	0,500
c _k	[-]	1E15
$\mathbf{E_{ref}}$	[kN/m ²]	3000000,00
ν	[-]	0,200
G _{ref}	[kN/m ²]	12500000,000
E _{oed}	[kN/m ²]	33333333,333
Eincr	[kN/m²/m]	0,00
y _{ref}	[m]	0,000
R _{inter}	[-]	0,667
Interfac	e	Impermeable
permeabi	lity	

Mohr-Coulomb		1	2	3	5
		M1 - Pietrame	M1 - Limo	M1 - Calcareniti	M2 - Limi
Туре		Drained	Drained	Drained	Drained
γ_{unsat} [kN/m ³]		21,00	15,30	19,20	15,30

Mohr-Cou	lomb	1	2	3	5
		M1 - Pietrame	M1 - Limo	M1 - Calcareniti	M2 - Limi
γ _{sat}	[kN/m ³]	21,00	17,00	20,00	17,00
k _x	[m/day]	0,000	0,000	0,000	0,000
k _y	[m/day]	0,000	0,000	0,000	0,000
einit	[-]	0,500	0,500	0,500	0,500
c _k	[-]	1E15	1E15	1E15	1E15
$\mathbf{E_{ref}}$	[kN/m ²]	80000,000	13900,000	49000,000	13900,000
ν	[-]	0,400	0,200	0,200	0,200
G _{ref}	[kN/m ²]	28571,429	5791,667	20416,667	5791,667
E _{oed}	[kN/m ²]	171428,571	15444,444	54444,444	15444,444
c _{ref}	[kN/m ²]	0,00	6,00	6,00	5,00
φ	[°]	40,00	22,00	38,00	17,91
Ψ	[°]	10,00	0,00	8,00	0,00
Einc	[kN/m²/m]	0,00	0,00	0,00	0,00
y _{ref}	[m]	0,000	0,000	0,000	0,000
c _{increment}	[kN/m²/m]	0,00	0,00	0,00	0,00
T _{str.}	[kN/m ²]	0,00	0,00	0,00	0,00
R _{inter} .	[-]	0,67	0,67	0,67	0,67
Interfa	ce	Neutral	Neutral	Neutral	Neutral
permeabi	ility				

Mohr-Cou	lomb	6	7	8	9
		M2 - Calcareniti	M2 - Pietrame	M1 - Scogli 1°ctg	M2 - Scogli 1°ctg
Туре		Drained	Drained	Drained	Drained
Yunsat	[kN/m ³]	19,20	21,00	21,00	21,00
γ _{sat}	[kN/m³]	20,00	21,00	21,00	21,00
k _x	[m/day]	0,000	0,000	0,000	0,000
k _v	[m/day]	0,000	0,000	0,000	0,000
e _{init}	[-]	0,500	0,500	0,500	0,500
c _k	[-]	1E15	1E15	1E15	1E15
\mathbf{E}_{ref}	[kN/m ²]	49000,000	80000,000	80000,000	80000,000
ν	[-]	0,200	0,400	0,400	0,400
G _{ref}	[kN/m ²]	20416,667	28571,429	28571,429	28571,429
\mathbf{E}_{oed}	[kN/m ²]	54444,444	171428,571	171428,571	171428,571
c _{ref}	[kN/m ²]	5,00	0,00	0,00	0,00
φ	[°]	32,01	33,87	40,00	33,87
Ψ	[°]	2,01	3,87	10,00	3,87
Einc	[kN/m²/m]	0,00	0,00	0,00	0,00
y _{ref}	[m]	0,000	0,000	0,000	0,000
C increment	[kN/m²/m]	0,00	0,00	0,00	0,00
T _{str.}	[kN/m ²]	0,00	0,00	0,00	0,00
R _{inter} .	[-]	0,67	0,67	0,67	0,67
Interfac	ce	Neutral	Neutral	Neutral	Neutral
permeabi	lity				

Table [5.4.2] Beam data sets parameters

No.	Identification	EA	EI	W	ν	Мр	Np
		[kN/m]	[kNm²/m]	[kN/m/m]	[-]	[kNm/m]	[kN/m]
1	Pali i=1m	2,71E7	1,7E6	19,64	0,20	1E15	1E15
2	Pali i=3m	9,04E6	5,65E5	6,55	0,20	1E15	1E15

5.5. FASI DI CALCOLO

Phase	Ph-No.	Start	Calculation type	Load input	First sten	Last sten
1 mube	1 11 1 100	phase	culculation type	Loud mput	1 Hot Step	Lust step
Initial phase	0	0		-	0	0
M1 Condizioni	1	0	Plastic	Total multipliers	1	2
Geostatiche				-		
M1 Strutture 01	2	1	Plastic	Staged construction	3	62
M1 Strutture 02	3	2	Plastic	Staged construction	63	69
M1 SLU Acc	4	3	Plastic	Staged construction	70	72
(carichi)						
M1 SLU Acc	5	4	Plastic	Total multipliers	73	75
M1 SLU Bitta	6	3	Plastic	Staged construction	76	78
(carichi)						
M1 SLU Bitta	7	6	Plastic	Total multipliers	79	80
M1 SLU Sisma	8	3	Plastic	Staged construction	81	83
(carichi)						
M1 SLU Sisma +	9	8	Plastic	Total multipliers	84	93
M1 SLU Sisma -	10	8	Plastic	Total multipliers	94	106
M2 SLU Acc	11	3	Plastic	Staged construction	107	115
(carichi)						
M2 SLU Acc	12	11	Plastic	Total multipliers	116	128
M2 SLU Bitta	13	3	Plastic	Staged construction	129	131
(carichi)						
M2 SLU Bitta	14	13	Plastic	Total multipliers	132	133
M1 SLE Acc	15	3	Plastic	Staged construction	134	136
(carichi)						
M1 SLE Acc	16	15	Plastic	Total multipliers	137	138
M1 SLE Bitta	17	3	Plastic	Staged construction	139	141
(carichi)						
M1 SLE Bitta	18	17	Plastic	Total multipliers	142	143

Table [5.5.1] List of phases

Table [5.5.2] Staged construction info

Ph-No.	Active clusters	Inactive clusters	Active beams	Active	Active anchors
0	1 2 2 4 6 9	5 7 0 10 11 12		geotextiles	
0	1, 2, 3, 4, 0, 8.	5, 7, 9, 10, 11, 12.			
2	1, 2, 3, 4, 5, 6, 7,	9, 10.	1, 2, 3.		
	8, 11, 12.				
3	1, 2, 3, 4, 5, 6, 7,	10.	1, 2, 3.		
	8, 9, 11, 12.				
4	1, 2, 3, 4, 5, 6, 7,	10.	1, 2, 3.		
	8, 9, 11, 12.				
6	1, 2, 3, 4, 5, 6, 7,	10.	1, 2, 3.		
	8, 9, 11, 12.				
8	1, 2, 3, 4, 5, 6, 7,	10.	1, 2, 3.		
	8, 9, 11, 12.				
11	1, 2, 3, 4, 5, 6, 7,	10.	1, 2, 3.		
	8, 9, 11, 12.				
13	1, 2, 3, 4, 5, 6, 7,	10.	1, 2, 3.		
	8, 9, 11, 12.				
15	1, 2, 3, 4, 5, 6, 7,	10.	1, 2, 3.		
	8, 9, 11, 12.				
17	1, 2, 3, 4, 5, 6, 7,	10.	1, 2, 3.		
	8, 9, 11, 12.				

Ph-No.	Additional steps	Reset displacements	Ignore undrained	Delete intermediate
		to zero	behaviour	steps
1	250	No	No	Yes
2	250	Yes	No	Yes
3	250	No	No	Yes
4	250	Yes	No	Yes
5	250	No	No	Yes
6	250	Yes	No	Yes
7	250	No	No	Yes
8	250	Yes	No	Yes
9	250	No	No	Yes
10	250	No	No	Yes
11	250	Yes	No	Yes
12	250	No	No	Yes
13	250	Yes	No	Yes
14	250	No	No	Yes
15	250	Yes	No	Yes
16	250	No	No	Yes
17	250	Yes	No	Yes
18	250	No	No	Yes

 Table [5.5.3]
 Control parameters 1

Table [5.5.4] Incremental multipliers (input values)

Ph-No.	Displ.	Load A	Load B	Weight	Accel	Time	s-f
0	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
1	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
2	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
3	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
4	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
5	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
6	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
7	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
8	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
9	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
10	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
11	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
12	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
13	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
14	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
15	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
16	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
17	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
18	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Table [5.5.5]	Total	multipliers -	input	values
---------------	-------	---------------	-------	--------

Ph-No.	Displ.	Load A	Load B	Weight	Accel	Time	s-f
0	1,0000	1,0000	1,0000	1,0000	0,0000	0,0000	1,0000
1	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
2	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
3	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
4	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
5	0,0000	1,5000	0,9000	1,0000	0,0000	0,0000	1,0000
6	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
7	0,0000	0,0000	1,5000	1,0000	0,0000	0,0000	1,0000
8	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
9	0,0000	1,0000	0,0000	1,0000	-0,0650	0,0000	1,0000
10	0,0000	-1,0000	0,0000	1,0000	0,0650	0,0000	1,0000

Ph-No.	Displ.	Load A	Load B	Weight	Accel	Time	s-f
11	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
12	0,0000	1,3000	0,7800	1,0000	0,0000	0,0000	1,0000
13	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
14	0,0000	0,0000	1,3000	1,0000	0,0000	0,0000	1,0000
15	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
16	0,0000	0,5000	0,0000	1,0000	0,0000	0,0000	1,0000
17	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
18	0,0000	0,3000	0,2000	1,0000	0,0000	0,0000	1,0000

Table [5.5.6] Total multipliers - reached values

Ph-No.	Displ.	Load A	Load B	Weight	Accel	Time	s-f
0	1,0000	1,0000	1,0000	1,0000	0,0000	0,0000	1,0000
1	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
2	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
3	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
4	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
5	0,0000	1,5000	0,9000	1,0000	0,0000	0,0000	1,0000
6	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
7	0,0000	0,0000	1,5000	1,0000	0,0000	0,0000	1,0000
8	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
9	0,0000	1,0000	0,0000	1,0000	-0,0650	0,0000	1,0000
10	0,0000	-1,0000	0,0000	1,0000	0,0650	0,0000	1,0000
11	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
12	0,0000	1,3000	0,7800	1,0000	0,0000	0,0000	1,0000
13	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
14	0,0000	0,0000	1,3000	1,0000	0,0000	0,0000	1,0000
15	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
16	0,0000	0,5000	0,0000	1,0000	0,0000	0,0000	1,0000
17	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	1,0000
18	0,0000	0,3000	0,2000	1,0000	0,0000	0,0000	1,0000

5.5.1. <u>RISULTATI DELLA FASE 1</u>

Table [5.5.7] Step info phase no: 1

Step no:	2
Calculation type	PLASTIC
Extrapolation factor	1,000
Relative stiffness	1,000

Table [5.5.8] Reached multipliers phase no: 1

Multipliers	Incremental value	Total value
Prescribed displacements	-0,5000	0,0000
Load system A	-0,5000	0,0000
Load system B	-0,5000	0,0000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.9] Staged construction info phase no: 1

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,967
Active proportion of stage	0,000	0,000

Table [5.5.10] Iteration info phase no: 1

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,000	0	0	0	0	0	0	0
2	0,000	0	0	0	0	0	0	0

5.5.2. <u>RISULTATI DELLA FASE 2</u>

Table [5.5.11] Step info phase no: 2

Step no:	62
Calculation type	PLASTIC
Extrapolation factor	0,033
Relative stiffness	0,024

Table [5.5.12] Reached multipliers phase no: 2

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0000	0,0000
Load system B	0,0000	0,0000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.13] Staged construction info phase no: 2

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,987
Active proportion of stage	0,001	1,000

Table [5.5.14] Iteration info phase no: 2

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,009	1379	0	1078	0	0	117	33
2	0,008	1330	0	132	0	0	105	28

5.5.3. <u>RISULTATI DELLA FASE 3</u>

Table [5.5.15] Step info phase no: 3

Step no:	69
Calculation type	PLASTIC
Extrapolation factor	1,984
Relative stiffness	0,069

Table [5.5.16] Reached multipliers phase no: 3

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0000	0,0000
Load system B	0,0000	0,0000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.17] Staged construction info phase no: 3

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,209	1,000

Table [5.5.18] Iteration info phase no: 3

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,010	1486	0	51	0	0	171	8
2	0,009	1485	0	50	0	0	171	9

5.5.4. <u>RISULTATI DELLA FASE 4</u>

Table [5.5.19] Step info phase no: 4

Step no:	72
Calculation type	PLASTIC
Extrapolation factor	0,071
Relative stiffness	0,054

Table [5.5.20] Reached multipliers phase no: 4

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0000	0,0000
Load system B	0,0000	0,0000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.21] Staged construction info phase no: 4

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,036	1,000

Table [5.5.22] Iteration info phase no: 4

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,002	296	0	60	0	0	12	4
2	0,002	447	0	10	0	0	10	2

5.5.5. <u>RISULTATI DELLA FASE 5</u>

Table [5.5.23] Step info phase no: 5

Step no:	75
Calculation type	PLASTIC
Extrapolation factor	0,406
Relative stiffness	0,146

Table [5.5.24] Reached multipliers phase no: 5

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,4199	1,5000
Load system B	0,2520	0,9000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.25] Staged construction info phase no: 5

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,000	0,000

Table [5.5.26] Iteration info phase no: 5

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,009	1087	0	169	0	0	11	1
2	0,009	1080	0	70	0	0	11	1

Fig [5.5.1] - configurazione deformata fase 5 (M1 SLU Acc)

Fig [5.5.2] - tensioni principali efficaci nel terreno fase 5 (M1 SLU Acc)

5.5.6. <u>RISULTATI DELLA FASE 6</u>

Table [5.5.27] Step info phase no: 6

Step no:	78
Calculation type	PLASTIC
Extrapolation factor	0,071
Relative stiffness	0,054

Table [5.5.28] Reached multipliers phase no: 6

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0000	0,0000
Load system B	0,0000	0,0000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.29] Staged construction info phase no: 6

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,036	1,000

Table [5.5.30] Iteration info phase no: 6

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,002	296	0	60	0	0	12	4
2	0,002	447	0	10	0	0	10	2

5.5.7. <u>RISULTATI DELLA FASE 7</u>

Table [5.5.31] Step info phase no: 7

Step no:	80
Calculation type	PLASTIC
Extrapolation factor	0,182
Relative stiffness	0,225

Table [5.5.32] Reached multipliers phase no: 7

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0000	0,0000
Load system B	0,2576	1,5000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.33] Staged construction info phase no: 7

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,000	0,000

Table [5.5.34] Iteration info phase no: 7

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,002	760	0	225	0	0	23	19
2	0,002	749	0	62	0	0	23	0

Fig [5.5.4] - configurazione deformata fase 7 (M1 SLU Bitta)

Fig [5.5.5] - tensioni principali efficaci nel terreno fase 7 (M1 SLU Bitta)

5.5.8. <u>RISULTATI DELLA FASE 8</u>

Table [5.5.35] Step info phase no: 8

Step no:	83
Calculation type	PLASTIC
Extrapolation factor	0,071
Relative stiffness	0,054

Table [5.5.36] Reached multipliers phase no: 8

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0000	0,0000
Load system B	0,0000	0,0000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.37] Staged construction info phase no: 8

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,036	1,000

Table [5.5.38] Iteration info phase no: 8

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,002	296	0	60	0	0	12	4
2	0,002	447	0	10	0	0	10	2

5.5.9. RISULTATI DELLA FASE 9

Table [5.5.39] Step info phase no: 9

Step no:	93
Calculation type	PLASTIC
Extrapolation factor	0,142
Relative stiffness	0,122

Table [5.5.40] Reached multipliers phase no: 9

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0225	1,0000
Load system B	0,0000	0,0000
Soil weight	0,0000	1,0000
Acceleration	-0,0015	-0,0650
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.41] Staged construction info phase no: 9

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,000	0,000

Table [5.5.42] Iteration info phase no: 9

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,009	1597	0	854	0	0	293	134
2	0,008	1570	0	123	0	0	296	23

Fig [5.5.7] - configurazione deformata fase 9 (M1 SLU Sisma +)

Fig [5.5.8] - tensioni principali efficaci nel terreno fase 9 (M1 SLU Sisma +)

5.5.10. RISULTATI DELLA FASE 10

Table [5.5.43] Step info phase no: 10

Step no:	106
Calculation type	PLASTIC
Extrapolation factor	0,374
Relative stiffness	0,089

Table [5.5.44] Reached multipliers phase no: 10

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	-0,0547	-1,0000
Load system B	0,0000	0,0000
Soil weight	0,0000	1,0000
Acceleration	0,0036	0,0650
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.45] Staged construction info phase no: 10

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,000	0,000

Table [5.5.46] Iteration info phase no: 10

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,009	1388	0	798	0	0	143	94
2	0,009	1378	0	117	0	0	140	12

Fig [5.5.10] - configurazione deformata fase 10 (M1 SLU Sisma -)

Fig [5.5.11] - tensioni principali efficaci nel terreno fase 10 (M1 SLU Sisma -)

5.5.11. <u>RISULTATI DELLA FASE 11</u>

Table [5.5.47] Step info phase no: 11

Step no:	115
Calculation type	PLASTIC
Extrapolation factor	1,017
Relative stiffness	0,021

Table [5.5.48] Reached multipliers phase no: 11

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0000	0,0000
Load system B	0,0000	0,0000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.49] Staged construction info phase no: 11

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,268	1,000

Table [5.5.50] Iteration info phase no: 11

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,010	1782	0	885	0	0	53	33
2	0,009	1771	0	92	0	0	49	19

5.5.12. <u>RISULTATI DELLA FASE 12</u>

Table [5.5.51] Step info phase no: 12

Step no:	128
Calculation type	PLASTIC
Extrapolation factor	0,765
Relative stiffness	0,060

Table [5.5.52] Reached multipliers phase no: 12

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,3418	1,3000
Load system B	0,2051	0,7800
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.53] Staged construction info phase no: 12

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,000	0,000

Table [5.5.54] Iteration info phase no: 12

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,009	1384	0	124	0	0	28	5
2	0,009	1384	0	16	0	0	28	3

Fig [5.5.13] - configurazione deformata fase 12 (M2 SLU Acc)

Fig [5.5.14] - tensioni principali efficaci nel terreno fase 12 (M2 SLU Acc)

5.5.13. <u>RISULTATI DELLA FASE 13</u>

Table [5.5.55] Step info phase no: 13

Step no:	131
Calculation type	PLASTIC
Extrapolation factor	0,071
Relative stiffness	0,054

Table [5.5.56] Reached multipliers phase no: 13

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0000	0,0000
Load system B	0,0000	0,0000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.57] Staged construction info phase no: 13

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,036	1,000

Table [5.5.58] Iteration info phase no: 13

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,002	296	0	60	0	0	12	4
2	0,002	447	0	10	0	0	10	2

5.5.14. <u>RISULTATI DELLA FASE 14</u>

Table [5.5.59] Step info phase no: 14

Step no:	133
Calculation type	PLASTIC
Extrapolation factor	0,095
Relative stiffness	0,109

Table [5.5.60] Reached multipliers phase no: 14

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0000	0,0000
Load system B	0,1236	1,3000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.61] Staged construction info phase no: 14

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,000	0,000

Table [5.5.62] Iteration info phase no: 14

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,002	608	0	223	0	0	20	17
2	0,002	614	0	66	0	0	19	0
3	0,001	625	0	69	0	0	18	0
4	0,001	641	0	60	0	0	18	0

Fig [5.5.16] - configurazione deformata fase 14 (M2 SLU Bitta)

Fig [5.5.17] - tensioni principali efficaci nel terreno fase 14 (M2 SLU Bitta)

5.5.15. <u>RISULTATI DELLA FASE 15</u>

Table [5.5.63] Step info phase no: 15

Step no:	136
Calculation type	PLASTIC
Extrapolation factor	0,071
Relative stiffness	0,054

Table [5.5.64] Reached multipliers phase no: 15

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0000	0,0000
Load system B	0,0000	0,0000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.65] Staged construction info phase no: 15

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,036	1,000

Table [5.5.66] Iteration info phase no: 15

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,002	296	0	60	0	0	12	4
2	0,002	447	0	10	0	0	10	2

RISULTATI DELLA FASE 16 5.5.16.

Table [5.5.67] Step info phase no: 16

Step no:	138
Calculation type	PLASTIC
Extrapolation factor	0,473
Relative stiffness	0,265

Table [5.5.68] Reached multipliers phase no: 16

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,2055	0,5000
Load system B	0,0000	0,0000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.69] Staged construction info phase no: 16

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,000	0,000

Table [5.5.70] Iteration info phase no: 16

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,003	1034	0	28	0	0	119	1
2	0,003	1047	0	38	0	0	111	1

Fig [5.5.20] - tensioni principali efficaci nel terreno fase 16 (M1 SLE Acc)

Fig [5.5.21] – Spostamenti globali dei pali fase 16 (M1 SLE Acc)

5.5.17. <u>RISULTATI DELLA FASE 17</u>

Table [5.5.71] Step info phase no: 17

Step no:	141
Calculation type	PLASTIC
Extrapolation factor	0,071
Relative stiffness	0,054

Table [5.5.72] Reached multipliers phase no: 17

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0000	0,0000
Load system B	0,0000	0,0000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.73] Staged construction info phase no: 17

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,036	1,000

Table [5.5.74] Iteration info phase no: 17

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,002	296	0	60	0	0	12	4
2	0,002	447	0	10	0	0	10	2
5.5.18. <u>RISULTATI DELLA FASE 18</u>

Table [5.5.75] Step info phase no: 18

Step no:	143
Calculation type	PLASTIC
Extrapolation factor	0,134
Relative stiffness	0,173

Table [5.5.76] Reached multipliers phase no: 18

Multipliers	Incremental value	Total value
Prescribed displacements	0,0000	0,0000
Load system A	0,0402	0,3000
Load system B	0,0268	0,2000
Soil weight	0,0000	1,0000
Acceleration	0,0000	0,0000
Strength reduction factor	0,0000	1,0000
Time	0,0000	0,0000

Table [5.5.77] Staged construction info phase no: 18

Staged construction	Incremental value	Total value
Active proportion of total area	0,000	0,994
Active proportion of stage	0,000	0,000

Table [5.5.78] Iteration info phase no: 18

Iter. no.	Global error	Plastic points	Plastic Cap + Hard. points	Inacc. Pl. pts.	Plastic Intf. pts.	Inacc. Intf. pts.	Apex & Tension	Inacc. Apx. pts.
1	0,002	626	0	67	0	0	13	1
2	0,002	684	0	34	0	0	9	1

Fig [5.5.22] - configurazione deformata fase 16 (M1 SLE Acc)

Fig [5.5.23] - tensioni principali efficaci nel terreno fase 16 (M1 SLE Acc)

Fig [5.5.24] – Spostamenti globali dei pali fase 16 (M1 SLE Acc)

5.6. CARATTERISTICHE DI SOLLECITAZIONE NELLE VARIE FASI

Risolti i modelli strutturali per ogni combinazione si sono determinate le caratteristiche di sollecitazioni massime sui pali. A favore di sicurezza l'interasse considerato è stato posto pari a 3.00 m sia per i pali della cortina continua sul lato interno che per la serie discreta sul lato esterno. I valori ottenuti sono riportati nella Tabella 5.6.1.

i = 3,00 m

Fase	N KN/m	M KNm/m	T KN/m	T*i KNm/m	N*i KN	M*i KNm
M1 - SLU - acc	386,30	129,05	38,78	116,34	1158,90	387,15
M1 - SLU - bitta	354,41	118,37	61,31	183,93	1063,23	355,11
M1 - SLU - sisma +	321,72	149,66	210,53	631,59	965,16	448,98
M1 - SLU - sisma -	424,74	172,62	180,75	542,25	1274,22	517,86
M2 - SLU - acc	391,51	125,35	175,88	527,64	1174,53	376,05
M2 - SLU - bitta	356,22	120,78	55,34	166,02	1068,66	362,34

Tabella 5.6.1 – Caratteristiche di sollecitazione massime sui pali

5.7. VERIFICA DELLA SEZIONE DEL PALO

Ottenute le caratteristiche di sollecitazione, si eseguono le verifiche della sezione del palo. Avendo adottato l'Approccio 1 – Combinazione 1 e l'Approccio 1 – Combinazione 2, la verifica della sezione deve essere eseguita in ambo i casi considerando un coefficiente parziale sulle resistenze R1 = 1.00.

La verifica è eseguita sulla combinazione maggiormente gravosa. Nella fig. 5.7.1 si riporta il calcolo del momento di plasticizzazione della sezione dei pali della paratia, che risulta superiore a quello massimi agente, mentre nella fig. 5.7.2 si riporta il corrispondenti dominio N-M della sezione verificata.

Si adotta quindi un'armatura longitudinale pari a $24\Phi 22$ distribuita per tutta la lunghezza del palo.

Fig. 5.7.1 – Momento di plasticizzazione della sezione del palo

Fig. 5.7.2 – Diagramma N-M della sezione del palo

5.8. VERIFICA A TAGLIO DELLA SEZIONE DEI PALI

Per la verifica a taglio nel caso di elementi con armature trasversali resistenti a taglio, la resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo, rispetto all'asse della trave, deve rispettare i seguenti limiti:

$$1 \le \cot an(\theta) \le 2.5$$

La verifica di resistenza allo SLU si pone con

$$V_{Rd} \ge V_{Ed}$$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento alla sezione rettangolare e all'armatura trasversale, la resistenza di calcolo a taglio trazione si calcola con

$$V_{Rsd} = 0.90 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a taglio compressione si calcola con

$$V_{Rcd} = 0.90 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd}' \cdot \frac{(\cot \alpha + \cot \theta)}{(1 + \cot^{2} \theta)}$$

La resistenza a taglio dell'elemento è la minore delle due sopra definite per cui

$$V_{Rd} = \min(V_{Rsd}, V_{Rcd})$$

dove

d = altezza utile della sezione in mm

 $b_w = larghezza$ minima della sezione in mm

 A_{sw} = area dell'armatura trasversale

s = interasse tra due armature trasversali consecutive

 α = angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave

 $f'_{cd} = 0.50 f_{cd}$ resistenza a compressione ridotta del cls d'anima

 α_c = coefficiente maggiorativo pari a

in cui $\sigma_{cp} = N_{Ed}/A_c$ è la tensione media di compressione nella sezione (<= 0.2 f_{cd}). In presenza di significativo sforzo assiale si dovrà aggiungere la limitazione

$$\cot(\theta_I) \le \cot(\theta)$$

dove θ_1 è l'angolo di inclinazione della prima fessurazione ricavato da

$$\cot(\theta_I) = \frac{\tau}{\sigma_I}$$

mentre τ e σ_I sono rispettivamente la tensione tangenziale e la tensione principale di trazione sulla corda baricentrica della sezione intesa interamente reagente.

Le armature longitudinali dimensionate in base alle sollecitazioni flessionali dovranno essere prolungate di una misura pari a

$$a_{I} = 0.90 \cdot d \cdot \frac{(\cot \theta - \cot \alpha)}{2} \ge 0$$

Essendo la sezione del palo circolare con armatura distribuita in modo uniforme lungo il perimetro della sezione, la verifica può essere eseguita facendo riferimento ad una sezione rettangolare equivalente aventi le seguenti caratteristiche (Bollettino CEB n.ro 137 ALL. 5)

 $b_{eq} = 0.90 D$

 $d_{eq} = 0.45 \ D + 0.64 \ (d\text{-}D/2)$

in cui D è il diametro della sezione e d l'altezza utile intesa come distanza del bordo compresso dal baricentro dell'armatura longitudinale tesa.

Le verifiche della sezione del palo a taglio sono riportate nella Tabella 5.8.1

Si dispone un'armatura a taglio costituita da una spirale $\Phi 12/7.5$ " per i primi 2 metri mentre per i successivi si dispone un'armatura a spirale $\Phi 12/15$ ".

VERIFICA A TAGLIO DELLA SEZIONE DI INCASTRO DEL PALO

Caratteristiche geometriche della sezione

D =	100 cm	(diametro della sezione)		
c =	5 cm	(copriferro)		
darm. =	2.2 cm	(diametro armature longitudinali)	24Ф22	
n.ferri =	24	(numero ferri armature longitudinali)		
dstaffe =	1.2 cm	(diametro armature staffe)	1Φ12/7.5	
nbracci =	2	(numero bracci delle staffe)	Acamicia =	0.00 cmq
pstaffe =	15 cm	(passo delle staffe)		
Ac =	7850 cmq	(area della sezione di calcestruzzo)		

Caratteristiche dei materiali

Calkcestruzzo per i pali C35/45	fcd =	211.65 kg/cmq
Armatura B450C	fyd =	3913.00 kg/cmq

Caratteristiche della sezione rettangolare equivalente

Sezione con N max di compressione

NEd = x =	127.422 1 26.97 (ton cm	(s (c	forzo n listanza	orn	nale agente Ill'asse neu	e sulla sezio tro rispetto	ne) al bordo co	mpresso)
Armatura	β	cos(β)	di	n		ωf (cmq)	ωf*n (cmq)	ωf*di (cmc)	
1	7.50	0.99	95.00		2	3.7994	7.5988	721.89	
2	22.50	0.92	96.19		2	3.7994	7.5988	730.96	
3	37.50	0.79	89.67		2	3.7994	7.5988	681.37	
4	52.50	0.61	80.44		2	3.7994	7.5988	611.23	
5	67.50	0.38	69.13		2	3.7994	7.5988	525.34	
6	82.50	0.13	56.53		2	3.7994	7.5988	429.53	
7	97.50	-0.13	43.47		2	3.7994	7.5988	330.35	
8	112.50	-0.38	30.87		2	3.7994	7.5988	234.54	

60.7904 4265.20

d =	70.16 cm	(distanza del bordo compresso dal baricentro dell'armatura longitudinale tesa)
be = deq =	90.00 cm 57.90 cm	

Calcolo della resistenza allo SLU a taglio trazione

Dati di calcolo

	F7 00)			
a =	57.90 cm	(altezza della sezione in o	cm)			
bw =	90.00 cm	(larghezza minima della s	sezione in cm)			
Asw =	2.26 cmq	(area dell'armatura trasve	ersale)			
s =	7.50 cm					
α =	86.96°	(angolo di inclinazione de	ell'armatura tras	sversale risp	etto all'asse della trave	e)
f'cd =	105.825 kg/cmq	(resistenza a compressio	ne ridotta del c	ls dell'anima	l)	
σcp =	16.23 kg/cmq	(tensione media di comp	ressione della	sezione)	< 0.2*fcd =	42.33 kg/cmc
0.25*fcd =	52.91 kg/cmq					
0.50*fcd =	105.83 kg/cmq	ac =	1.08	(coeffic	iente maggiorativo per	la compressione)
fcd =	211.65 kg/cmq					
θ =	45 °					

$\cot(\alpha) =$	0.054	sen(α) =	0.999
$\cot(\theta) =$	1.001		

VRsd = 64737 kg

Calcolo della resistenza allo SLU a taglio compressione

VRcd = 281589 kg

Resistenza allo SLU a taglio

VRd = 64737 kg

Azioni agenti sulla sezione

Verifica in presenza di sforzo assiale

σ =	16.23 kg/cmq
т =	9.21 kg/cmq
R =	12.28 kg/cmq
σI =	4.16 kg/cmq
cot(0I) =	2.214

Tabella 5.8.1 – Verifica a taglio della sezione di incastro del palo

5.9. VERIFICHE GEOTECNICHE DEI PALI

5.9.1. <u>METODO DI CALCOLO</u>

Il problema del calcolo geotecnico del palo viene affrontato seguendo la Teoria di Berezantev (1961). Il carico limite Qlim di un palo viene convenzionalmente suddiviso in due componenti :la resistenza alla punta P e la resistenza laterale S. La relazione che fornisce Qlim si può quindi scrivere come

$$Q_{lim} = P + S = p^*A_p + s^*A_s$$

dove p è la resistenza unitaria alla punta, s la resistenza media laterale, A_p l'area della superficie alla punta e A_s l'area della superficie laterale. Il valore di p può esprimersi con la relazione:

$$p = c^* N_c + q^* N_q$$

in cui c è la coesione, N_c, N_q sono coefficienti funzione di φ , q = $\alpha_T^* \gamma^* H$.

I valori di φ da assumere nel calcolo della resistenza alla punta, dovrà tenere conto della densità relativa del terreno e del livello di tensione. Detto φ'_1 l'angolo di attrito del deposito indisturbato, prima della esecuzione del palo, Kishida (1967) suggerisce di assumere per pali trivellati

$$\varphi' = \varphi'_1 - 3 \setminus (\circ)$$

In condizioni non drenate si assume il valore c = cu e Nc = 9.

I valori di α_T sono espressi in funzione di ϕ e H/D e sono riportati in funzione dei valori assunti per ogni strato di terreno considerato (Berezantzev 1961). In alternativa si può utilizzare una formulazione proposta da Vesic 1977 per cui il valore di α T è dato da

$$\alpha_T = (\frac{1+2k_o}{3})$$

in cui ko è il coefficiente di spinta a riposo che può essere espresso, per terreni normalmente consolidati, dalla relazione

$$k_o = 1 - sen(\varphi')$$

Il valore di Nq è funzione dell'angolo di attrito interno φ . Il valore è desunto dalle curve proposte da Berezantezev. La curva in funzione di φ può essere espressa dalla seguente equazione

$$N_q = a\varphi^2 + b\varphi + c$$

in cui i parametri a, b, c assumono i valori riportati nella Tabella 5.9.1.

Valori di	a,b,c	per	Nq
-----------	-------	-----	----

D	< 60 cm	> 60 cm	> 60 cm
φ		< 30°	> 30°
a	7.0000E-04	4 8.3169E-03	3 1.5000E-01
b	2.8990E-02	2 9.0722E-03	3 -8.5000E+00
c	7.1000E-06	6 9.9260E-07	1 1.2875E+02

Tabella 5.9.1 – Parametri per il calcolo di Nq – Nq* (Berezantev)

Nel caso di pali di grande diametro, non è valida l'ipotesi della contemporanea mobilitazione della resistenza alla punta e della resistenza laterale. Infatti mentre la resistenza laterale si mobilita per piccoli valori dei cedimenti, quella alla punta si mobilita per cedimenti più elevati proporzionali al diametro del palo. Si utilizzano nel caso di pali di grande diametro i valori di Nq* desunti da Berezantev e da studi condotti di Whitaker e Cooke (1973).

Il valore di s è dato da:

$$s = s_o + k^* \mu^* \sigma_v$$

in cui s_o è detta adesione ed è indipendente dalla pressione normale esercitata dal terreno, k è un coefficiente adimensionale di spinta che consente di calcolare σ h conoscendo σ v, μ è il coefficiente di attrito e si assume pari a tg(ϕ).

Il valore di s_o è nullo nel caso di terreni incoerenti e assume il valore $0.3*c_u$ (c_u coesione non drenata) nel caso di terreni coerenti.

La tensione σ_v indica la tensione effettiva litostatica alla profondità z. Per pali battuti il valore di k, per effetto dell'infissione del palo, cresce fino a raggiungere il valore di rottura in condizioni di spinta passiva, mentre per pali trivellati si può raggiungere il valore dell'equilibrio limite attivo. Occorre notare che la tensione litostatica è una tensione principale, mentre la tensione verticale in corrispondenza del palo non è una tensione principale per cui il coefficiente k deve assumere un valore dipendente dalle proprietà del terreno e dalle effettive modalità esecutive del palo (battuto, trivellato). Il valore del coefficiente di attrito per pali trivellati si assume pari a

$$\mu = \tan(\varphi)$$

ma nel caso di profilati o tubi di acciaio si assume $tan(20^\circ) = 0.36$ e nel caso di calcestruzzo prefabbricato

$$\mu = \tan(\frac{3\varphi}{4})$$

Resistenza	Simbolo	I	Pali infiss	nfissi Pali trivellati		Pali ad elica continua				
	γr	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	γь	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in compressione	γ_{s}	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
Totale (*)	γt	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in trazione	$\gamma_{\rm st}$	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25

Tabella 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche.

(*) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Tabella 5.9.2 –	Coefficienti	parziali γR	. per pali
-----------------	--------------	-------------	------------

Per la verifica dei pali di fondazione si utilizza l'Approccio 2 (A1+M1+R3) per cui le azioni devono essere determinate adottando i seguenti coefficienti parziali:

- permanenti $\gamma G1 = 1.30$
- permanenti non strutturali $\gamma G2 = 1.50$
- variabili $\gamma Qi = 1.50$

come si evince dalla Tabella 1.1. Dalla Tabella 1.2 si rilevano i coefficienti parziali che devono essere utilizzati per i parametri geotecnici.

Definita la tangente dell'angolo di resistenza al taglio $tan(\varphi'k)$ si applica il coefficiente parziale $\gamma_M = 1.00$ per cui l'angolo di attrito interno determinato in precedenza è quello con cui si determina il valore di N_q e della resistenza laterale s. Il valore della resistenza di progetto è dato quindi da

$$R_d = P/\gamma_B + S/\gamma_S$$

avendo assunto i coefficienti di resistenza R3 da applicare alla combinazione (A1+M1+R3) relativa all'Approccio 2 in cui sono pari a $\gamma_B = 1.35$ per la resistenza alla punta, $\gamma_S = 1.15$ per la resistenza laterale in compressione e $\gamma_S = 1.25$ per la resistenza laterale in trazione come si evince dalla Tabella 5.9.2..

5.9.2. <u>VERIFICHE GEOTECNICHE</u>

Facendo riferimento a quanto riportato nel § 1.12 si determina il carico limite del palo per il palo di lunghezza 17.50 m e diametro 1.00 m. Il palo è caratterizzato da una lunghezza effettiva di 10.00 m di cui 4.00 m sono infissi nello strato costituito da Limi e 6.00 m nello strato costituito da Calcareniti miste a sabbie e limi. Il calcolo è riportato nella Tabella 5.9.3.

VERIFICA DEI PALI DI FONDAZIONE

Caratteristiche geometriche del palo

D =	1.00 m	Diametro del palo	(tratto libero in acqua 7.00 m)
H =	10.00 m	Lunghezza del palo	(lunghezza complessiva del palo 17.50 m)
H/D =	10.00	Rapporto lunghezza -	diametro del palo
γc =	2.50 ton/mc	Peso specifico del cla	s armato
Pp =	19.63 ton	Peso del palo	

1

Caratteristiche geotecniche del terreno di fondazione

N.ro strati di terreno i	interessati dal	palo
--------------------------	-----------------	------

	Strato	1	Limi	
Angolo di attrito interno	φ =	22 °		
Coesione	C =	0.06 ton/mq		
Peso dell'unità di volume	γ =	1.53 ton/mc		
Peso saturo dell'uniotà di volume	γsat =	1.70 ton/mc		
Altezza dello strato	h1 =	4.00 m		
	Strato	2	Calcareniti mist	e a cabbia e limo
Angolo di attrito interno	φ =	38 °		
Coesione	C =	0.06 ton/mg		
Peso dell'unità di volume	γ =	1.92 ton/mc		
Peso saturo dell'uniotà di volume	γsat =	2.00 ton/mc		
Altezza dello strato	h2 =	6.00 m		
Angolo di attrito di calcolo res. lat	erale	22.00 °	per	4.00 m
Angolo di attrito di calcolo res. lat	erale	38.00 °	per	6.00 m
Angolo di attrito di calcolo res. pu	unta	35.00 °	(Kishida 1967)	0.610865 rad

Tabella 5.9.3 - Calcolo Geotecnico Pali - Caratteristiche geotecniche assunte nei calcoli

CALCOLO DELLA RESISTENZA

a) Resistenza alla punta

P = p *	Ар		p =	= c*Nc+q*N	lq		q = αT*γ*ŀ	4		
Determ	ninazion	e del valor	e di αT - (E	Berenzantze	ev 1961)					
H/D - q	p	26	30	34	37	40		3	4 35.0	00 37
	5	0.75	0.77	0.81	0.83	0.85				
	10	0.62	0.67	0.73	0.76	0.79				
	15	0.55	0.61	0.68	0.73	0.77		0.6	8 0.7	70 0.73
	20	0.49	0.53	0.65	0.71	0.75		0.6	5 0.6	67 0.71
	25	0.44	0.53	0.63	0.70	0.74				
									H/D =	10.00
Determ	ninazion	e del valor	re di αT - (V	/esic 1977)					αT =	0.67
αT = (1	l+2*ko)/	3								
ko = [1	-sen(φ')] =	0.43							
αT = (1	l+2*ko)/	3 =	0.62							
Determ	ninazion	e del valor	e di Nq - (E	Berezantzev	v 1961)					
Nq =		1.87	(p	er D < 60 c	m)					
Nq =		11.50	(p	er D > 60 c	m e φ < 30°	')				
Nq =		15.00	(p	er D > 60 c	m e φ > 30°)				
Valore	assunto)	αΤ	· _	0.67		q =	5.9	0 ton/mg	
			v'	=	0.88 tor	n/mc	р =	88.9	8 ton/mg	
			н	=	10.00 m		•		•	
			No) =	9.00					
Valore	assunto)	No	1 =	15.00					
Coeffic	iente pa	arziale per	pali trivella	ti γB =		1.35		Ap =	0.7	79 mq
							P =	69.8	8 ton	

Tabella 5.9.4 – Calcolo Geotecnico Pali – Resistenza alla punta

b) Resistenza laterale a compressione

0 = 3 AL	s = so+k^µ^c	TV	so = α*c	u = 0.30°Cu
$k = \sigma h/\sigma v =$ $k = \sigma h/\sigma v = cos(\phi)^{2}$	0.70 (Profilati di a 1.00 (Profilati di a 1.00 (Tubo di acc 2.00 (Tubo di acc 1.00 (Cls gettato i 3.00 (Cls gettato i 0.50 (per pali trive 0.40 (per pali trive 0.67 (Brench - Ha	cciaio in terreno so cciaio in terreno de iaio chiuso in terren iaio chiuso in terren n opera in terreno n opera in terreno ellati terreno sciolto ellati terreno denso insen)	ciolto) enso) no sciolto c no denso o sciolto) denso)))	e cls prefabbricato) cls prefabbricato)
	Strato	1		
			S0 =	0.02 ton/mq
Valore assunto	k =	1.00	S =	0.58 ton/mg
	=	0.40		
	μ ν' =	0.70 ton/mc		
	γ –			40.57
	n/2 =	2.00 m	•	AL = 12.57 mg
			S =	7.33 ton
	_	_		
	Strato	2		
			so =	0.02 ton/mq
Valore assunto	k =	1.00	S =	5.48 ton/mq
	u =	0.78		
	v' =	1.00 ton/mc		
	1 LI/2	7.00 m		Al 19.95 mg
	H /2 =	7.00 m	•	
			S =	103.36 ton
Coefficiente parziale per pali trivellati γS = 1.1				
Coefficiente parziale per pa	li trivellati γS =	1.1	5	(compressione)
Coefficiente parziale per pa	li trivellati γS =	1.1	5 Stot =	(compressione) 110.69 ton
Coefficiente parziale per pa c) Resistenza laterale a tr	li trivellati γS = azione	1.1	5 Stot =	(compressione) 110.69 ton
Coefficiente parziale per pa c) Resistenza laterale a tr S = s*AL	li trivellati γS = azione s = so+k*μ*c	1.1 īv	5 Stot = so = α*c	(compressione) 110.69 ton u = 0.30*cu
Coefficiente parziale per pa c) Resistenza laterale a tr S = s*AL	li trivellati γS = azione s = so+k*μ*c <i>Strat</i> o	1.1 ™ 1	5 Stot = so = a*c	(compressione) 110.69 ton u = 0.30*cu
Coefficiente parziale per pa c) Resistenza laterale a tr S = s*AL	li trivellati γS = azione s = so+k*μ*c Strato	1.1 ™ 1	5 Stot = so = α*c	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mg
Coefficiente parziale per par c) Resistenza laterale a tra $S = s^*AL$	li trivellati γS = azione s = so+k*μ*c <i>Strato</i> k –	1.1 ™ 1 00	5 Stot = so = α*c so =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mg
Coefficiente parziale per par c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$	li trivellati γS = azione s = so+k*μ*c <i>Strato</i> k =	1.1 ™ 1.00 0.10	5 Stot = so = α*c so = s =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq
Coefficiente parziale per par c) Resistenza laterale a tra $S = s^*AL$ $s = k^*\mu^*\sigma v$	li trivellati γS = azione s = so+k*μ*c <i>Strato</i> k = μ =	1.1 7V 1.00 0.40	5 Stot = so = α*c so = s =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq
Coefficiente parziale per par c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$	li trivellati γS = azione s = so+k*μ*c Strato k = μ = γ =	1.1 TV 1.00 0.40 0.70 ton/mc	5 Stot = so = α*c so = s =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq
Coefficiente parziale per pa c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$	li trivellati γS = azione s = so+k*μ*c Strato k = μ = γ = H/2 =	1.1 1 1.00 0.40 0.70 ton/mc 2.00 m	5 Stot = so = α*c so = s =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq
Coefficiente parziale per pa c) Resistenza laterale a tr S = s*AL s = k*μ*σν	li trivellati γS = azione s = so+k*μ*c Strato k = μ = γ = H/2 =	1.1	5 Stot = so = α*c so = s = S =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq 7.10 ton
Coefficiente parziale per pa c) Resistenza laterale a tr S = s*AL s = k*μ*σν	li trivellati γS = azione s = so+k*μ*c Strato k = μ = γ = H/2 =	1.1	5 Stot = so = α*c so = s = S =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq 7.10 ton
Coefficiente parziale per par c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$	li trivellati γS = azione s = so+k*μ*c Strato k = μ = γ = H/2 = Strato	1.1 7V 1 1.00 0.40 0.70 ton/mc 2.00 m	5 Stot = so = α*c so = s = S =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq 7.10 ton
Coefficiente parziale per par c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$	li trivellati γS = azione s = so+k*μ*c Strato k = μ = γ = H/2 = Strato	1.1 7V 1 1.00 0.40 0.70 ton/mc 2.00 m 2	5 Stot = so = α*c so = s = S = S =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq 7.10 ton 0.02 ton/mg
Coefficiente parziale per par c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$	li trivellati $\gamma S =$ azione $S = SO+k*\mu*C$ Strato k = $\mu =$ $\gamma =$ H/2 = Strato k =	1.1 1.00 0.40 0.70 ton/mc 2.00 m 2 1.00	5 Stot = so = α*c so = s = S = S =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq 7.10 ton 0.02 ton/mq 5.47 ton/mq
Coefficiente parziale per par c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$ $s = k^*\mu^*\sigma v$	li trivellati $\gamma S =$ azione $s = so+k*\mu*c$ Strato k = $\mu =$ $\gamma =$ H/2 = Strato k =	1.1 1.00 0.40 0.70 ton/mc 2.00 m 2 1.00 0.70	5 Stot = $so = \alpha^*c$ so = s = S = so = s =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq 7.10 ton 0.02 ton/mq 5.47 ton/mq
Coefficiente parziale per par c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$ $s = k^*\mu^*\sigma v$	li trivellati $\gamma S =$ azione $S = so+k*\mu*c$ Strato k = $\mu =$ $\gamma =$ H/2 = Strato k = $\mu =$	1.1 1.00 0.40 0.70 ton/mc 2.00 m 2 1.00 0.78	5 Stot = $so = \alpha^*c$ so = s = S = s = s =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq 7.10 ton 0.02 ton/mq 5.47 ton/mq
Coefficiente parziale per par c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$ $s = k^*\mu^*\sigma v$	li trivellati $\gamma S =$ azione $S = SO+k*\mu*C$ Strato k = $\mu =$ $\gamma =$ H/2 = Strato k = $\mu =$ $\gamma =$ $\gamma =$	1.1 7V 1 1.00 0.40 0.70 ton/mc 2.00 m 2 1.00 0.78 1.00 ton/mc	5 Stot = so = α*c so = s = S = S = so = s =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq 7.10 ton 0.02 ton/mq 5.47 ton/mq
Coefficiente parziale per par c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$ $s = k^*\mu^*\sigma v$	li trivellati $\gamma S =$ azione $S = SO+k*\mu*c$ Strato k = $\mu =$ $\gamma =$ H/2 = Strato k = $\mu =$ $\gamma =$ $\mu =$ $\gamma =$ H/2 =	1.1 7V 1 1.00 0.40 0.70 ton/mc 2.00 m 2 1.00 0.78 1.00 ton/mc 7.00 m	5 Stot = so = α*c so = s = S = S = so = s =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq 7.10 ton 0.02 ton/mq 5.47 ton/mq AL = 18.85 mg
Coefficiente parziale per par c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$ $s = k^*\mu^*\sigma v$	li trivellati $\gamma S =$ azione $S = so+k*\mu*c$ Strato k = $\mu =$ $\gamma =$ H/2 = Strato k = $\mu =$ $\gamma =$ H/2 =	1.1 1.00 0.40 0.70 ton/mc 2.00 m 2 1.00 0.78 1.00 ton/mc 7.00 m	5 Stot = so = α*c so = s = S = S = S = S =	(compressione) 110.69 ton u = 0.30*cu 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq 7.10 ton 0.02 ton/mq 5.47 ton/mq AL = 18.85 mq 103.02 ton
Coefficiente parziale per par c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$ $s = k^*\mu^*\sigma v$	li trivellati $\gamma S =$ azione $S = so+k*\mu*c$ Strato k = $\mu =$ $\gamma =$ H/2 = Strato k = $\mu =$ $\gamma =$ H/2 =	1.1 1.00 0.40 0.70 ton/mc 2.00 m 2 1.00 0.78 1.00 ton/mc 7.00 m	5 Stot = so = α*c so = s = S = S = S = S =	(compressione) 110.69 ton $u = 0.30^{\circ}cu$ 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq 0.02 ton/mq 0.02 ton/mq 5.47 ton/mq AL = 18.85 mq 103.02 ton
Coefficiente parziale per par c) Resistenza laterale a tr $S = s^*AL$ $s = k^*\mu^*\sigma v$ $s = k^*\mu^*\sigma v$ Coefficiente parziale per par	li trivellati $\gamma S =$ azione $S = So+k*\mu*c$ Strato k = $\mu =$ $\gamma =$ H/2 = Strato k = $\mu =$ $\gamma =$ H/2 = Ni trivellati $\gamma S =$	1.1 TV 1 1.00 0.40 0.70 ton/mc 2.00 m 2 1.00 0.78 1.00 ton/mc 7.00 m 1.2	5 Stot = $so = \alpha^*c$ so = s = S = S = S = S = S =	(compressione) 110.69 ton $u = 0.30^{*}cu$ 0.02 ton/mq 0.57 ton/mq AL = 12.57 mq 0.02 ton/mq 0.02 ton/mq 5.47 ton/mq AL = 18.85 mq 103.02 ton (trazione)

Tabella 5.9.5 – Calcolo Geotecnico Pali – Resistenza laterale

11) Resistenza di progetto a compressione						
$Rd = P/\gamma B + S/\gamma S - Pp$	Rd =	128.38 ton				
d2) Resistenza di progetto a trazione						
$Rd = P/\gamma B+S/\gamma S+Pp$	Rd =	107.73 ton				

Tabella 5.9.6 – Calcolo Geotecnico Pali – Resistenze di Progetto

Essendo i valori delle resistenze di progetto sempre superiori ai valori ottenuti dalle combinazioni prescritte si può concludere che la verifica geotecnica del palo è soddisfatta sia a compressione che a trazione.

5.10. VERIFICHE DEL SOLETTONE DI COLLEGAMENTO PALI

Il solettone è caratterizzato da una soletta dello spessore di 0.80 cm che viene gettano su delle predalles dello spessore di 15 cm che non si considerano ai fini della resistenza della struttura. Le predalles sono quindi considerate come casseforme della struttura in elevazione e questo per maggiore sicurezza considrrando che non è sempre possibile assicurare un buon collegamento tra le predalles e il solettone strutturale.

Il solettone è soggetto al peso proprio, al carico permanente che si assume pari a 250 kg/mq e al carico accidentale che si assume pari a 500 kg/mq.

Il peso proprio della struttura, considerando uno spessore strutturale di 0.95 m è pari

 $g1 = 0.95 * 2.5 = 2.375 \ ton/mq$

Il carico permanente vale

g2 = 0.25 ton/mq

Il carico accidentale è pari a

q = 0.50 ton/mq

Il carico di progetto, considerando i coefficienti parziali è pari a

 $q_d = 1.30 \times 2.275 + 1.30 \times 0.25 + 1.50 \times 0.50 = 4.16$ ton/mg

Considerando il solettone incastrasto agli estremi e soggetto al carico di progetto si ha

 $M = q^{*}l^{2}/12 = 4.16^{*}6.00^{2}/12 = 12.48 \text{ ton}^{*}m$

Su una sezione di 100*80 armata con 1 Φ 22/20" superiori ed inferiori si riporta nella Fig. 5.10.1 la verifica della sezione. Nella Fig. 5.10.2 si riporta il dominio di resistenza della sezione in oggetto.

La verifica è stata eseguita anche per il momento trasmesso dal palo che nella condizione di maggiore sollecitazione vale

M = 51.786 ton*m

Tra i pali è posta una trave di collegamento che è soggetta alle azioni di taglio trasmesse dal solettone. Il carico sulla trave di collegamento è pari a

 $q_d = 4.16 * 8.00/2 = 16.64 \text{ ton/m}$

Il momento massimo sulla trave di collegamento vale

 $M_d = q^* l^2 / 12 = 16.64^* 3.00^2 / 12 = 12.48 \text{ ton}^* m$

Su una sezione 80*80 armata con 5 Φ 20 superiori ed inferiori si riporta nella Fig. 5.10.3 la verifica della sezione e nella ig. 5.10.4 il dominio di resistenza.

📅 Verifica C.A. S.L.	.U File: PALO N	OLO RIDOSSO - TAGLIO	
File Materiali Opzioni	<u>V</u> isualizza <u>P</u> rogetto	o Sez. Rett. <u>S</u> ismica Normativa: NTC 2008 <u>?</u>	
╘╔╄┠╡╗			
Titolo : VERIFICA S	EZIONE SOLETTO	NE Tipo Sezio	ne
		N* strati barre 2 Zoom O a T	e O Trapezi O Circolare
N* b [cm]	h [cm]	N* As [cm ²] d [cm] O Rettang	oli O Coord.
1 100	80	1 15./1 5	
			1
Sollecitazioni	l	P.to applicazione N	N
S.L.U. 🗲	Metodo n	Centro C Bancentro cis	
N		O Coord.[cm]	
Ed 124.87		yN U	
xEd		Tipo rottura	alcolo ———
MyEd	U	Lato calcestruzzo - Acciaio snervato S.L.U.+ 	O S.L.U
Mate	eriali	MKN m	letodo n
B450C	C35/45	-Tipo flessio	one
ε _{su} 67.5 %	ε _{c2} 2 %		🔘 Deviata
fud 391.3 N/mm	2 Equ 35	σ _c -19.83 N/mm ⁻	N* rett. 100
F 200.000	o f 1002	σ _s 391.3 N/mm ⁻²	Dominio M-N
Cs 200,000 N/mn	1 ² cd 13.03	ε _c 3.5 ‰	
Es/Ec 15	¹ cc / ¹ cd 0.8 ?	ε _s 54.51 ‰ L _o 0 c	m Col. modello
ε _{syd} 1.957 ‰	σ _{c,adm} 13.5	d 75 cm	
σ _{s,adm} 255 _{N/mm}	η ² τ _{co} 0.8	× 4.525 ×/d 0.06033	
	τ _{c1} 2.257) δ 0.7	compresso

Fig. 5.10.1 – Verifica della sezione di incastro solettone

Fig. 5.10.2 – Dominio di resistenza della sezione di incastro solettone

Fig. 5.10.3 – Verifica della sezione di incastro trave - solettone

Fig. 5.10.4 – Dominio di resistenza della sezione di incastro trave - solettone