PROPONENTE:

SOCIETA' APPARTENENTE AL GRUPPO

Progetto Definitivo

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DI POTENZA MASSIMA PARI A 41,54 MWp CON SISTEMA DI ACCUMULO ELETTROCHIMICO DI POTENZA PARI A 20 MW PER 4 ORE E RELATIVE OPERE DI CONNESSIONE NEL **COMUNE DI CHIARAVALLE (AN)**

Rimodulazione Progetto con riduzione di potenza installata a 38,159 MW + 20 MW di accumulo in adeguamento alle Ossevazioni degli Enti

TITOLO ELABORATO

RELAZIONE INVARIANZA IDRAULICA AI SENSI DELLA DGR 53/2014 E ASSEVERAZIONE SULLA COMPATIBILITA' IDRAULICA DELLE TRASFORMAZIONI TERRITORIALI

CODICE ELABORATO	SCALA	FOGLIO	FORMATO
R. 02/GEOL	-	1 di 1	

02	01/07/2024		Mascitti A.		
01	11/12/2023		Mascitti A.		
REV.	DATA	DESCRIZIONE	ESEGUITO	REVISIONATO	APPROVATO

PROGETTAZIONE:

gae | studio geology architecture engineering

Progetto Definitivo	Impianto Agro
Voltaico "Chi	iaravalle"

Analisi Invarianza Idraulica ed Analisi	
Idrologica Opere di Regimazione	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	1 di 46

INDICE

ANALISI INVARIANZA IDRAULICA ed IDROLOGICA-IDRAULICA AREA IMPIANTO

1. PREMESSA 2. VALUTAZIONI RISPETTO DELL'INVARIANZA IDRAULICA (D.G.R. 53/2014) AREA IMPIANTO 3. ANALISI IDROLOGICA ed IDRAULICA	2 4 13
ANALISI INVARIANZA IDRAULICA AREA SSE-BES	
4. VALUTAZIONI RISPETTO DELL'INVARIANZA IDRAULICA (D.G.R. 53/2014) SSE-BES	32

Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	2 di 46

1. PREMESSA

Il presente documento costituisce la "Verifica di Compatibilità Idraulica e di Invarianza" relativamente al progetto di "REALIZZAZIONE DI UN IMPIANTO SOLARE AGRO VOLTAICO CONNESSO ALLA RETE ELETTRICA NAZIONALE DELLA POTENZA MASSIMA IN IMMISSIONE DI 41,54 MWp" denominato "CHIARAVALLE", sito nel comune di Chiaravalle (AN).

Le seguenti considerazioni sono state redatte sulla base delle "Norme in materia di riqualificazione urbana sostenibile e assetto idrogeologico e modifiche alle Leggi regionali 5 agosto 1992, n. 34 "Norme in materia urbanistica, paesaggistica e di assetto del territorio" e 8 ottobre 2009, n. 22 "Interventi della regione per il riavvio delle attività edilizie al fine di fronteggiare la crisi economica, difendere l'occupazione, migliorare la sicurezza degli edifici e promuovere tecniche di edilizia sostenibile" ed in particolare si farà riferimento all'art. 10 della L.R. 22/2011 Regione Marche e sulla base della DELIBERA DI GIUNTA REGIONALE N. 53/27-1-2014, e della Legge Regionale 30 novembre 2023, n. 19 «Norme della pianificazione per il governo del territorio» prevede, al Titolo VII, Capo II, «Disposizioni in materia di assetto idrogeologico del territorio» e, in particolare, all'articolo 31:

< per "gli strumenti di pianificazione del territorio e loro varianti da cui derivi una trasformazione in grado di modificare il regime idraulico" l'esecuzione di una "verifica di compatibilità idraulica" (cfr commi 1 e 2);

per «ogni trasformazione del suolo che provochi una variazione di permeahilità superficiale» la previsione di misure compensative rivolte al perseguimento "dell'invarianza idraulica" (cfr comma 3).al fine di valutare se necessari eventuali interventi mitigatori e/o di compensazione in relazione al progetto in esame. Nrllo specifico lo studio è relatrivo all'area di impianto e le opere connesse (viahilità interna, cahine, etc). >

Il Produttore e Soggetto Responsabile, è la Società BLUSOLAR Chiaravalle 1 SRL, del Gruppo Carlo Maresca SpA, la quale dispone dell'autorizzazione all'utilizzo dell'area su cui sorgerà l'impianto in oggetto. La denominazione dell'impianto, prevista nell'iter autorizzativo, è "AV Chiaravalle".

Blusolar Chiaravalle 1 Srl

Blusolar Chiaravalle 1 Srl - Via Caravaggio 125 - 65125 Pescara Tel. +39 085 388801 - Fax +39 085 3888200

Reg. Imp. Pescara, C.F. e P. Iva 02276690688 - Cap. Soc. € 10.000 i.v.

Email info@carlomaresca.it - PEC blusolarchiaravalle1@legpec.it

Società soggetta all'attività di direzione e coordinamento della "Carlo Maresca Spa" - www.carlomaresca.it

In particolare a seguito della richiesta di integrazioni documentali del AUBAC - Settore Gestione rischio idraulico trasmessa al MASE e registrata con prot. 0.0087075.13-05-2024, si analizza di seguito l'aspetto relativo al p.to 7 dell'istruttoria inerente gli aspetti di impermeabilizzazione di suolo ed invarianza idraulica dell'area impianto agrivoltaico e dell'area di connessione / BES.

Per l'area impianto, la prima parte dello studio (paragrafo 2), determinerà per mezzo della scheda di calcolo di riferimento allegata alla DGR il volume di compensazione da invasare necessario a seguito delle opere in progetto, quindi i volumi e le portate ammissibili di laminazione e le relative considerazioni di compatibilità rispetto all'invarianza idraulica.

La seconda parte tratterà l'analisi idrologica ed idraulica (paragrafo 3) inerentemente le opere di regimazione delle acque meteoriche dell'area di impianto, che fungeranno allo stesso tempo anche come opere di compensazione sotto l'aspetto di volumetria invasabile, con definizione e verifica delle sezioni minime necessarie al deflusso della portata di progetto calcolata con Tr30 anni e Tr200 anni.

La definizione delle curve segnalatrici di possibilità pluviometrica (LSPP) del sito in esame, non strumentato, all'interno del territorio regionale marchigiano, con relativa interrogazione in ambiente gis e determinazione dei parametri pioggia indice, n, a è stata eseguita sulla base delle mappe prodotte nell'elaborazione : "LA MODELLAZIONE E DEFINIZIONE DELLE GRANDEZZE IDROLOGICHE UTILI ALLA PROGETTAZIONE PER LA MESSA IN SICUREZZA STRUTTURALE E NON STRUTTURALE DEL

Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	3 di 46

RETICOLO IDROGRAFICO PRINCIPALE DELLA REGIONE MARCHE" - 2014, CIMA Research Foundation.

A seguire al paragrafo 4 si analizzerà il layout relativo alle opere di connessione e BES e si determinerà anche in questo caso per mezzo della scheda di calcolo di riferimento allegata alla DGR il volume di compensazione da invasare necessario a seguito delle opere in progetto, quindi i volumi e le portate ammissibili di laminazione e le relative considerazioni di compatibilità rispetto all'invarianza idraulica.

Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina	4 di 46

2. VALUTAZIONI RISPETTO DELL'INVARIANZA IDRAULICA (D.G.R. 53/2014) AREA IMPIANTO

Le seguenti considerazioni sono state redatte sulla base delle "Norme in materia di riqualificazione urbana sostenibile e assetto idrogeologico e modifiche alle Leggi regionali 5 agosto 1992, n. 34 "Norme in materia urbanistica, paesaggistica e di assetto del territorio" e 8 ottobre 2009, n. 22 "Interventi della regione per il riavvio delle attività edilizie al fine di fronteggiare la crisi economica, difendere l'occupazione, migliorare la sicurezza degli edifici e promuovere tecniche di edilizia sostenibile" ed in particolare si farà riferimento all'art. 10 della L.R. 22/2011 Regione Marche e sulla base della DELIBERA DI GIUNTA REGIONALE N. 53/27-1-2014 e della Legge Regionale 30 novembre 2023, n. 19 «Norme della pianificazione per il governo del territorio», al fine di valutare se necessari eventuali interventi mitigatori e/o di compensazione in relazione al progetto denominato "Chiaravalle" all'interno del Comune di Chiaravalle (AN) relativamente all'area di impianto.

Nel dettaglio l'intervento prevede la realizzazione di un impianto fotovoltaico seguendo il layout di seguito allegato.

Dettagliatamente si prevedono le seguenti superfici occupate da locali tecnici e/o dalle strutture di sostegno dei pannelli / recinzione / illuminazione distinte per tipologia / sezione-superficie:
-SUP del lotto al netto del fabbricato tutelato e annessi = 522897 mq

Progetto Definitivo Impianto Agro	
Voltaico "Chiaravalle"	

Analisi Invarianza Idraulica ed Analisi	
Idrologica Opere di Regimazione	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	5 di 46

-SUP Moduli Fv (in posizione orizzontale) = 166253 mq

-SUP cabina smistamento (n.1) = 98 mg

-SUP Power Station (n.7) = 106 mq

-SUP Cabina elettrica= 25 mq

-SUP Stalla = 900 m

Complessivamente le superfici impermeabilizzate – permeabili post operam risultano le sequenti:

SUPERFICI ED ELEMENTI DI PROGETTO	(mq)
SUP Catastale	523576
SUP Lotto al netto del fabbricato tutelato	522897
SUP Moduli FV (in posizione orizzontale)	166253
SUP Cabina smistamento	98
SUP Power Station	106
SUP Cabina Elettrica	25
SUP Stalla esistente	900
SUP totale imp stato ante operam	1579
SUP totale perm stato ante operam	521997
SUP totale imp stato post operam	168061
SUP totale perm stato post operam	355515

Considerando anche l'apporto di impermeabilizzazione della viabilità di progetto, cabine, etc il valore complessivo considerando cautelativamente anche la proiezione dei pannelli fotovoltaici in posizione orizzontale a terra come impermeabilizzazione si ottiene un valore pari a 168'061 mq e di area non impermeabilizzata pari a 355'515 mq rispetto ad una superficie complessiva catastale di 523'576 mq.

La misura del **volume minimo di invaso** da prescrivere in aree sottoposte a una quota di trasformazione I (% dell'area che viene trasformata) e in cui viene rilasciata inalterata una quota P (tale che I+P=100%) è data dalla seguente formula:

Requisiti richiesti per ogni classe sulla base del volume minimo di laminazione determinato:

w=w°
$$(\phi/\phi^\circ)^{(1/(1-n))}$$
 - 15 I - w°P
 ϕ° = 0.9Imp°+ 0.2 Per° ϕ = 0.9Imp+ 0.2 Per

w°=50 mc/ha volume "convenzionale" d'invaso prima della trasformazione

φ= coefficiente di deflussopost tra sformazione φ°=coefficiente di deflus so ante tra sformazione

n = 0.48 I e P es pressi come frazione dell'area trasformata

Imp e Per espressi come frazion e totale dell'area impermeabile e permeabile prima della trasformazion e (se connotati dall'apice°) o dopo (se non c'è l'apice°)

VOLUME RICAVATO dalla formula va moltiplicato per la Superficie territoriale dell'intervento

Il calcolo del volume di invaso è determinato attraverso la definizione delle seguenti grandezze:

- a) quota dell'area di progetto che viene interessata dalla trasformazione (I); è da notare che anche le aree che non vengono pavimentate con la trasformazione, ma vengono sistemate e regolarizzate, devono essere incluse a computare la quota I;
- b) quota dell'area di progetto non interessata dalla trasformazione (P): essa è costituita solo da quelle parti che non vengono significativamente modificate, mediante regolarizzazione del terreno o altri interventi anche non impermeabilizzanti;

Progetto Definitivo Impianto Agro
Voltaico "Chiaravalle"

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	6 di 46

- c) quota dell'area da ritenersi permeabile (Per): tale grandezza viene valutata prima e dopo la trasformazione;
- d) quota dell'area da ritenersi impermeabile (Imp) : tale grandezza viene valutata prima e dopo la trasformazione.

INDICAZIONI PER LE AREE DI TRASFORMAZIONE URBANA

Sulla base della dimensione dell'intervento urbanistico si definiscono le seguenti classi di intervento:

Classe di Intervento	Definizione
Trascurabile impermeabilizzazione potenziale	intervento su superfici di estensione inferiore a 0.1 ha
Modesta impermeabilizzazione potenziale	Intervento su superfici comprese fra 0.1 e 1 ha
Significativa impermeabilizzazione potenziale	Intervento su superfici comprese fra 1 e 10 ha; interventi su superfici di estensione oltre 10 ha con Imp<0,3
Marcata impermeabilizzazione potenziale	Intervento su superfici superiori a 10 ha con Imp>0,3

Alla luce di queste considerazioni, sono stati stabiliti i seguenti criteri da applicare se non diversamente previsto nella parte dispositiva del documento tecnico di riferimento:

- a) nel caso di **trascurabile impermeabilizzazione potenziale**, è sufficiente che i volumi disponibili per la laminazione soddisfino i requisiti dimensionali della formula di calcolo ad esclusione degli interventi comportanti la realizzazione di impermeabilizzazione per una superficie pari o inferiore a 100 mq;
- b) nel caso di **modesta impermeabilizzazione**, oltre al soddisfacimento dei requisiti della formula (1) è opportuno che le luci di scarico non eccedano le dimensioni di un tubo di diametro 200 mm e che i tiranti idrici ammessi nell'invaso non eccedano il metro;
- c) nel caso di **significativa impermeabilizzazione**, si consiglia di dimensionare le luci di scarico e i tiranti idrici ammessi nell'invaso in modo da garantire la conservazione della portata massima defluente dall'area in trasformazione ai valori precedenti l'impermeabilizzazione, almeno per una durata di pioggia di 2 ore e un tempo di ritorno di 30 anni;
- d) nel caso di marcata impermeabilizzazione, si richiede la presentazione di uno studio di maggiore dettaglio.

I volumi calcolati con i metodi sopra descritti indicano i volumi minimi da realizzare al fine di garantire l'**invarianza idraulica** In termini di portata scaricata al recapito finale e devono essere realizzati in modo tale da essere pienamente efficienti.

I volumi calcolati nel caso di **trascurabile impermeabilizzazione**, non necessitano di manufatto di regolazione delle portate, è sufficiente che siano protetti in sezione di chiusura da valvole di non ritorno di tipo a clapet.

Diversamente i volumi calcolati nel caso di **modesta e significativa impermeabilizzazione** devono essere afferenti ad un manufatto di regolazione delle portate per esempio un manufatto con bocca tarata o una stazione di sollevamento. Per quanto concerne il caso di **marcata impermeabilizzazione**, i manufatti di protezione devono essere stabiliti e dimensionati in relazione agli esiti degli studi di maggiore dettaglio.

Fatto salvo quanto previsto dal **Titolo IV della DGR n. 53 del 27/01/2014** (pubblicata sul BURM n. 19 del 17/02/2014), il valore determinato dal dimensionamento dell'invarianza idraulica rappresenta un elemento prestazionale da conseguire attraverso la realizzazione di interventi derivanti da un'opportuna combinazione di una o più soluzioni tipologiche.

In sede di redazione/variazione degli strumenti di pianificazione territoriale, vanno considerate le misure relative all'invarianza idraulica, ancorché la loro definizione ed attuazione possa essere rimandata a fasi successive.

Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	7 di 46

Valutazioni:

Nel caso in esame l'intervento rientra tra i casi di **Significativa impermeabilizzazione potenziale** con una superficie complessiva di impermeabilizzazione dell'intervento pari a 168'061 mq (caso maggiormente cautelativo considerando l'impermeabilizzazione completa della proiezione dei pannelli fotovoltaici a terra considerando la suborizzontalità degli stessi) su una superficie catastale complessiva **523'576 mq**.

In relazione alla configurazione geologico-stratigrafica, alla dimensione dell'intervento al layout di impianto ed alle opere previste relative alla viabilità interna in particolare, ai sensi della D.G.R. 53/2014, si è progettato un sistema funzionale di regimazione delle acque superficiali per mezzo di canalette e scoline trapezoidali lungo tutta la viabilità interna come visibile dalla tavola di progetto delle opere di regimazione.

Tale sistema ha funzione oltre che di regimazione delle acque superficiali anche di volumetria invasabile come intervento di mitigazione al fine del rispetto e conseguimento dell'invarianza idraulica.

Tipologie di soluzioni progettuali:

- a) vasca in c.a. o altro materiale "rigido" posta a monte del punto di scarico, sia aperta e sia coperta (sia in serie, sia in parallelo; in quest'ultimo caso, è richiesto uno studio idraulico);
- b) invaso in terra posto a monte del punto di scarico (sia in serie, sia in parallelo; in quest'ultimo caso, è richiesto uno studio idraulico);
- c) depressione in area verde o in piazzale posta a monte del punto di scarico;
- d) dimensionamento con "strozzatura" delle caditoie in modo da consentire un invaso su strade e piazzali (*);
- e) dimensionamento con "strozzatura" delle grondaie e tetti piatti con opportuno bordo di invaso in modo da consentire un invaso sulle coperture (*, #);
- f) sovradimensionamento delle fognature interne al lotto (1 mc di tubo o canale = 0,8 mc di invaso);
- g) mantenimento di aree allagabili (es. verde, piazzali) con "strozzatura" adeguata degli scarichi (*);
- h) scarico in acque costiere o comunque che non subiscono effetti idraulici dagli apporti meteorici;
- i) scarico in vasche adibite ad altri scopi (sedimentazione, depurazione ecc.) purché il volume di invaso si aggiunga al volume previsto per altri scopi, e purché siano comunque rispettati i vincoli e i limiti allo scarico per motivi di qualità delle acque;
- j) scarico a dispersione in terreni agricoli senza afflusso diretto alle reti di drenaggio sia superficiale, sia tubolare sotterraneo.

ANALISI CASO IN ESAME

Il caso in studio ricade tra gli interventi di **Significativa impermeabilizzazione potenziale** con superficie complessiva di impermeabilizzazione dell'intervento pari a 168'061 mq (caso maggiormente cautelativo considerando l'impermeabilizzazione completa della proiezione dei pannelli fotovoltaici a terra considerando la suborizzontalità degli stessi) su una superficie catastale complessiva **523'576 mq**.

La superficie impermeabile ante intervento risulta pari a 1'579 mq (relativa ai corpi fabbrica esaistenti).

In tale scenario si è calcolato il valore del COEFFICIENTE DI DEFLUSSO ANTE E POST OPERAM in relazione alle superfici di intervento ed alla loro destinazione finale.

Il dato ottenuto mostra che il valore POST OPERAM risulta pari a **0,42** e risulta necessario il rispetto del valore di invaso determinato dal calcolo definito dalla formula (1), di seguito riportata, che ha fornito un valore di **169,75** mc/ha con portata ammissibile del corpo idrico recettore come da regolamento pari a **20,00** l/sec/ha.

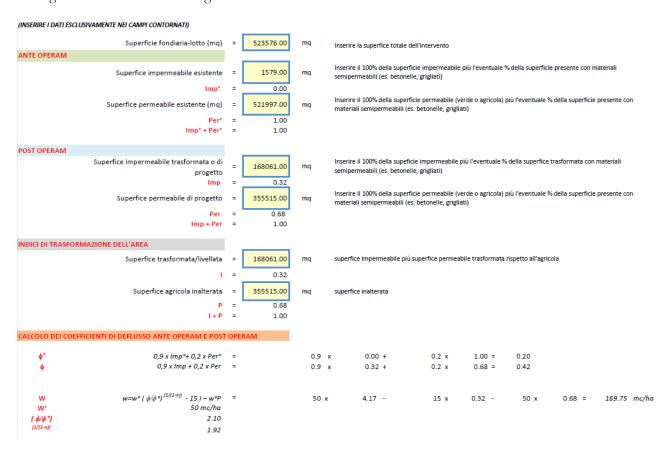
Il layout di impianto è stato discretizzato in n.2 CLUSTER principali a loro volta suddivisi in n.3 sub Clusters idraulicamente per i quali sono stati determinati i valori di :

- Superficie scolante
- Lunghezza dell'opera di invaso/regimazione e convogliamento acque meteoriche (canaletta trapezoidale perimetrale con sviluppo lungo la viabilità di impianto interna con dimensioni B=1,0m / b=0,8m / h=0,45m e sezione idraulica S=0,405mq)
- Portata ammissibile in uscita (in base al valore di riferimento di 20 l/s/ha).

Da tali dati si evince che la lunghezza complessiva delle opere di regimazione / invaso con sviluppo lungo la viabilità interna di impianto (opere dettagliate nella tavola grafica allegata alla documentazione tecnica) risulta pari a 7'414,10m da cui si ottiene una volumetria disponibile di invaso (considerando la sezione sopra calcolata) pari a

Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	8 di 46


3'000mc che risulta superiore al valore necessario prescritto sulla base del precedente rapporto di 169,75 mc/ha moltiplicato per la superficie impermeabilizzata 168'161mq con un volume necessario pari a 2'852 mc circa.

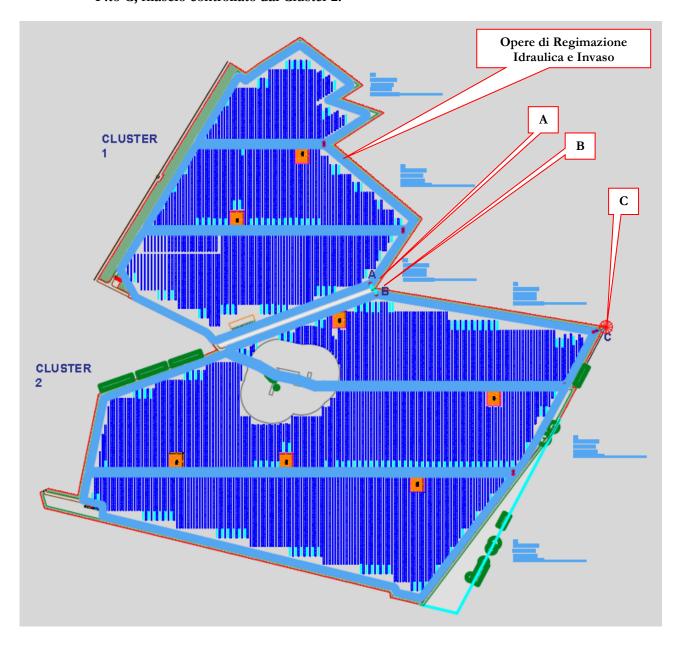
La geometria della sezione idraulica adottata per le opere di regimazione idraulica ed invaso risulta la seguente:

Si allega la scheda di calcolo di seguito.

Progetto Definitivo	Impianto Agro
Voltaico "Chi	iaravalle"

Analisi Invarianza Idraulica ed And	alisi
Idrologica Opere di Regimazion	e

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	9 di 46


CONSIDERAZIONI FINALI IN MERITO ALL'INVARIANZA IDRAULICA

La trasformazione da realizzare nel presente progetto ricopre una superficie complessiva di 523'576 mq, per un volume da compensare nella situazione post intervento urbanistico pari a 2'852 mc.

Per l'intervento in oggetto risulta compatibile ed idoneo, in considerazione dell'ubicazione, della configurazione geologico-geomorfologico-stratigrafica-idrogeologica, della moderata pericolosità idraulica del sito, della disponibilità di ampia superficie inerente l'area di intervento , prevedere un sitema di invaso per mezzo di rete di canali/scoline con sviluppo lungo la viabilità interna di impianto con il rilascio delle acque meteoriche scolanti ai recettori esistenti e limitrofi mantenendo gli attuali p.ti di scolo naturali ed integrandoli con opere di rilascio controllato (tombino idraulico e tubazione pve calibrata) sulla base del valore di riferimento di 20 1/s/ha per ogni comparto / cluster così come riportati nella tavola di progetto di regimazione delle acque meteoriche.

I p.ti di rilascio ai ricettori risultano pertanto:

- P.to A, rilascio controllato dal Cluster 1
- P.to B, rilascio controllato dal Cluster 2
- P.to C, rilascio controllato dal Cluster 2.

Progetto	Definitivo	Impianto Agro
Vo	ltaico "Ch	iaravalle"

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	10 di 46

1.1	
Sup=0,030kmq	
Lramo=250m	
L1=810,30m	
20 1/s*ha : 60 1/s (portata ammissibile in	
uscita dal cluster)	
1.2	
Sup=0,053kmq	
Lramo=460m	CLUSTER 1
L2=1094,35m	CLOSTER
20 1/s*ha : 106 1/s (portata ammissibile	
in uscita dal cluster)	
1.3	
Sup=0,064kmq	
Lramo=550m	
L3=1157,15m	
20 1/s*ha : 128 1/s (portata ammissibile	
in uscita dal cluster)	
2.1	
Sup=0,071kmq	
Lramo=650m	
L4=1382,50m	
20 1/s*ha : 142 1/s (portata ammissibile	
in uscita dal cluster)	
2.2	
Sup=0,138kmq	
Lramo=750m	CLUCTED A
L5=1285,80m	CLUSTER 2
20 1/s*ha : 276 1/s (portata ammissibile	
in uscita dal cluster)	
2.3	
Sup=0,100kmq	
Lramo=750m	
L6=1711,00m	
20 1/s*ha : 200 1/s (portata ammissibile	
in uscita dal cluster)	

Totale Cluster 1

20 l/s*ha: 404 l/s (portata ammissibile in uscita dal cluster 1)

sezione tubazione in uscita: d=250mm (riempimento calibrato all'80%)

Totale Cluster 2

20 l/s*ha: 718 l/s (portata ammissibile in uscita dal cluster 2)

suddiviso in n.2 subcluster in uscita:

2.1 = 2.2 : 359 l/s

sezione tubazione in uscita : d=250mm (riempimento calibrato all'80%)(n.2 p.ti di uscita)

geology architecture engineering

Progetto Definitivo Impianto Agro Voltaico "Chiaravalle"


Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione Codice Elaborato: R.02

Data: 09/07/2024

Revisione: 02

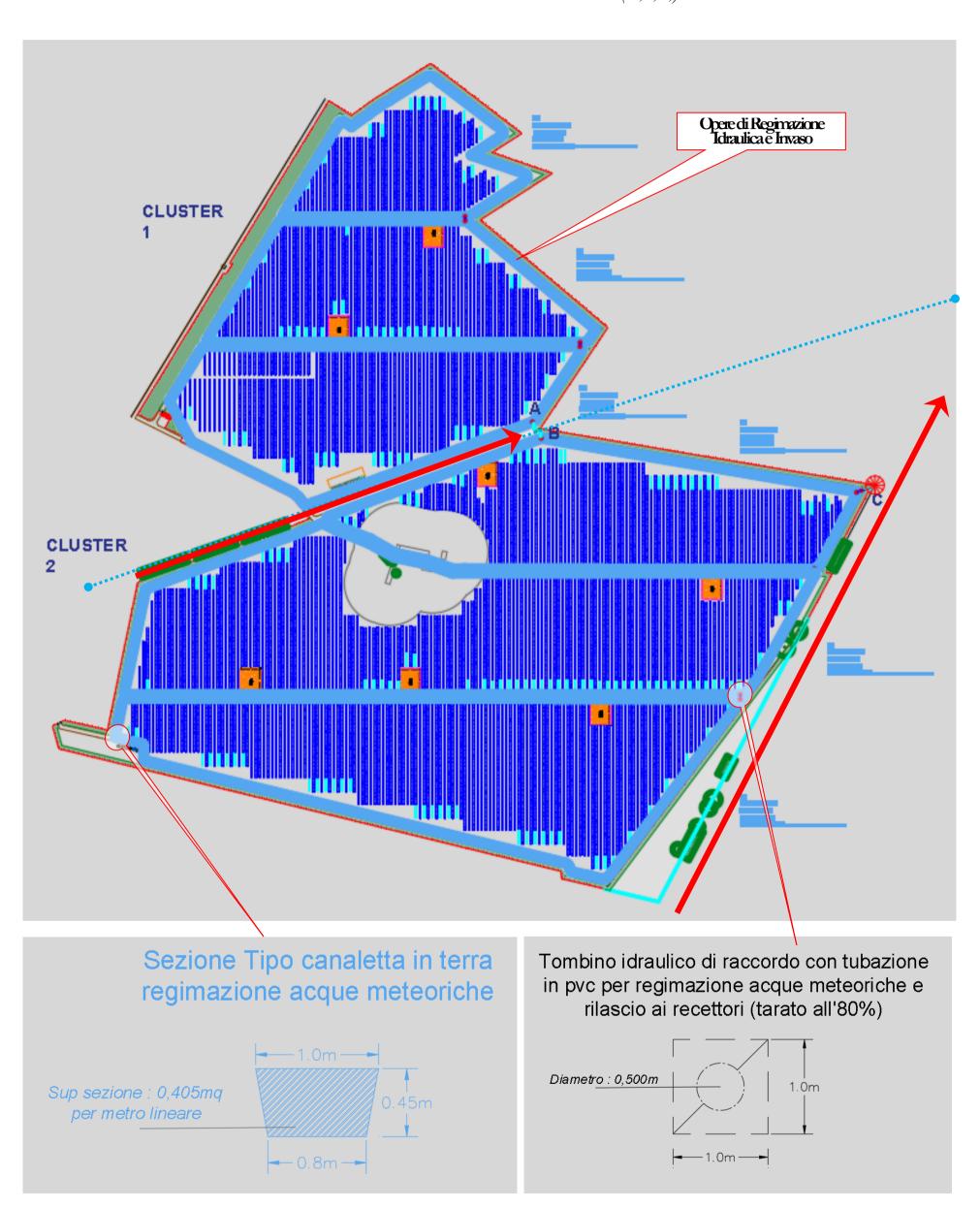

Pagina: 11 di 46

IMMAGINE SATELLITARE CON AREA DI INTERVENTO E P.TI DI RILASCIO CONTROLLATI ALLA RETE IDRAULICA ESISTENTE

	Progetto Definitivo Impianto Agro	Codice Elaborato:	R02
gae studic	Voltaico "Chiaravalle"	Data:	09/07/2024
geology architecture engineering	Analisi Invarianza Idraulica ed Analisi	Revisione:	02
	Idrologica Opere di Regimazione	Pagina:	12di 46

LAYOUT IMPIANTO CON OPERE DI REGIMAZIONE DELLE ACQUE E P.TI DI RILASCIO CONTROLLATI ALLA RETE IDRAULICA ESISTENTE (A,B,C,)

Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	13 di 46

3. ANALISI IDROLOGICA ed IDRAULICA

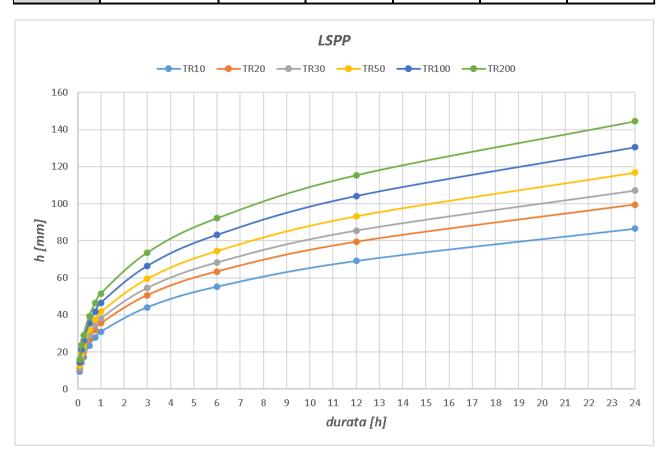
In merito alla definizione delle opere di regimentazione delle acque superficiali meteoriche sull'area di intervento oggetto di installazione dell'impianto fotovoltaico, sulla base dell'attuale configurazione morfologico-topografica e del rilievo eseguito in loco di eventuali presidi idraulici e scoli naturali (sul fondo agricolo) già esistenti, si è valutata la soluzione progettuale di mantenere la configurazione attuale del reticolo di drenaggio superficiale finale (recettori) con idonea rete di canalette e scoline lungo la viabilità di impianto interna con idonea manutenzione e regolarizzazione, al fine di uniformare la geometria delle sezioni sviluppate sulla base dei calcoli idraulici eseguiti.

La rete di drenaggio delle acque meteoriche risulta pertanto composta da n.6 sub clusters con internamente canali di scolo in terra come visibile dallo schema di progetto allegato nella tavola di progetto. Ogni sub cluster risulta in continuità idraulica con gli altri per mezzo di tombini idraulici connessi per mezzo di tubazione in pvc. In uscita dal sistema di invaso e raccolta delle acque meteoriche si sono individuati e mantenuti gli scoli esistenti ai recettori presenti con nello specifico n.3 p.ti di rilascio controllato (A,B,C) con valore di portata che rispetta le prescrizioni della DGR 53/2014 per mezzo di installazione di tombino idraulico e tubazione in pvc tarata all'80% della sezione disponibile.

Come anticipato, la definizione delle curve segnalatrici di possibilità pluviometrica (LSPP) del sito in esame, non strumentato, all'interno del territorio regionale marchigiano, con relativa interrogazione in ambiente gis e determinazione dei parametri pioggia indice, n, a è stata eseguita sulla base delle mappe prodotte nell'elaborazione : "LA MODELLAZIONE E DEFINIZIONE DELLE GRANDEZZE IDROLOGICHE UTILI ALLA PROGETTAZIONE PER LA MESSA IN SICUREZZA STRUTTURALE E NON STRUTTURALE DEL RETICOLO IDROGRAFICO PRINCIPALE DELLA REGIONE MARCHE" – 2014, CIMA Research Foundation.

I valori ottenuti per il caso in esame risultano i seguenti:

- Pioggia Indice: 41,72 mm (50 anni)
- a = 37
- n = 0.324

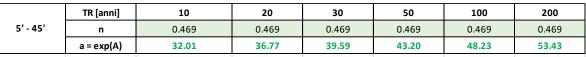


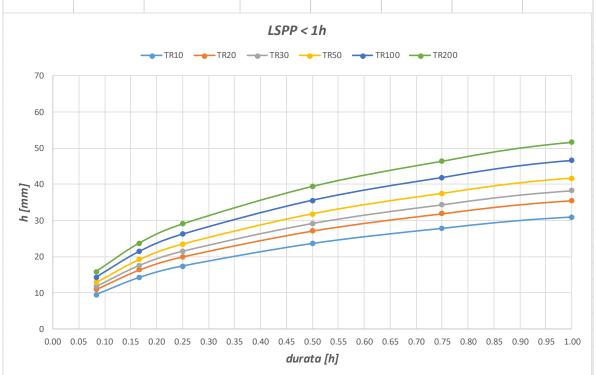
Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	14 di 46

Studi Meteo-Nivo-Idrologici Protezione civile e Sicurezza - Regione Marche https://www.regione.marche.it/Regione-Utile/Protezione-Civile/Progetti-e-Pubblicazioni/Studi-Meteo-Idro#Studi-Idrologici-e-Idraulici

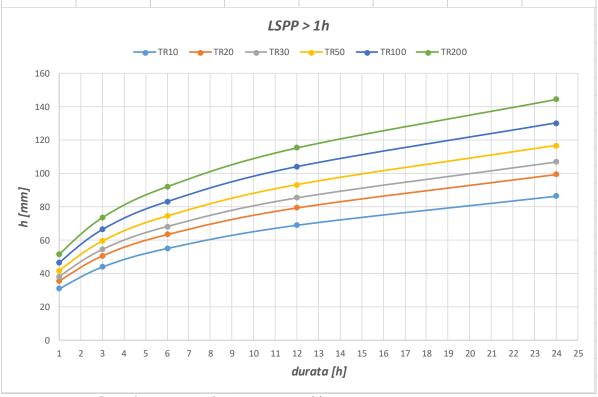
	10	20	30	50	100	200
	Altezze di pioggia [mm]					
	T _R 10 T _R 20 T _R 30 T _R 50 T _R 100 T _R 200					T _R 200
5'	9.51	10.92	11.76	12.83	14.32	15.87
10'	14.23	16.34	17.60	19.20	21.44	23.75
15'	17.40	19.98	21.51	23.48	26.21	29.04
30'	23.61	27.12	29.20	31.87	35.58	39.41
45'	27.78	31.91	34.36	37.49	41.86	46.37
1h	30.91	35.51	38.23	41.72	46.58	51.60
3h	44.13	50.69	54.58	59.56	66.49	73.66
6h	55.24	63.45	68.32	74.55	83.24	92.21
12h	69.15	79.43	85.52	93.33	104.19	115.42
24h	86.56	99.43	107.06	116.83	130.43	144.49


Curve Segnalatrici LSPP al variare del Tr (anni)e durata evento (h)


Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02

15 di 46



Pagina:

Curve Segnalatrici LSPP al variare del Tr (anni) con durata evento (< 1h)

	TR [anni]	10	20	30	50	100	200
1h - 24h	n	0.324	0.324	0.324	0.324	0.324	0.324
	a = exp(A)	30.91	35.51	38.23	41.72	46.58	51.60

Curve Segnalatrici LSPP al variare del Tr (anni) con durata evento (>1h)

Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	16 di 46

L'area realativa alla superficie del bacino scolante (considerata come la totale superficie a livello catastale dei Cluster 1 + 2) è pari a **523'576 mq** < 1 kmq.

Procedendo con il calcolo della portata di progetto Q200 e Q30 si adotta la seguente relazione del metodo razionale (Turazza).

CALCOLO DELLA PORTATA DI PROGETTO (Q_{200_S}, Q_{30_S}) Canale Consorziale:

Si adotta il metodo razionale introdotto da Turazza:

$$Q = k \cdot C \cdot i_c \cdot A$$

ove:

k = fattore di correzione delle unità di misura = 0,278

C= coefficiente di afflusso

i_c= intensità della pioggia di progetto (mm/h)

A = Superficie del bacino (kmq)

In relazione alla tipologia di suolo ed area di intervento si determina il coefficiente di afflusso C.

Stima del coefficiente di afflusso (C)

Il coefficiente di afflusso deve essere determinato dal progettista. Si riporta, a riferimento, la tabella proposta da G. Benini ("Sistemazioni idraulico forestali" - 1990)

		Tipo di suolo			
		Terreno leggero	Terreno di	Terreno	
Vegetazione e pendenza			medio impasto	compatto	
Boschi	< 10 %	0,13	0,18	0,25	
	> 10 %	0,16	0,21	0,36	
Pascoli	< 10 %	0,16	0,16	0,22	
	> 10 %	0,22	0,42	0,62	
Colture agrarie	< 10 %	0,40	0,60	0,70	
	> 10 %	0,52	0,72	0,82	

Quindi si determina il tempo di corrivazione per ogni sub_cluster analizzato (n.3 per ogni Cluster) con quindi n.6 sottobacini totali in relazione al reticolo che si andrà a sviluppare con n.6 canali di scolo.

La formula adottata nel calcolo per il caso in esame è quella di Ongaro per zone di pianura con A< 1,0 kmq.

Per ogni sub_cluster viene di seguito si riportato il dettaglio del calcolo con il valore ottenuto di tc=0,44 ore relativamente al tratto longitudinale nord/sud di sviluppo del cluster adottato come lunghezza dell'asta fluviale del sub_cluster considerato (L1,L2,L3,L4,L5,L6) con i relativi dati di pendenza, superficie.

Segue quindi la scheda di calcolo della portata sulla base dell'intensità di pioggia con TR30 e 200 anni dedotti dalla modellazione CIMA, 2014 per il sito di intervento.

Progetto Definitivo Impianto Agro
Voltaico "Chiaravalle"

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	17 di 46

CLUSTER 1 - SUB_CLUSTER1 - L1

Calcolo del tempo di corrivazione

Per i bacini di montagna si adotta la formula di Pezzoli (1970):

 $t_c = 0.055 \frac{L}{i^{0.5}}$ ove:

t_c= tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa fino allo spartiacque (Km)

i= pendenza media dell'asta principale

Per i canali di pianura si adotta la formula di Ongaro (Atot < 1,0 Kmq)

 $t_{c} = 0.18\sqrt[3]{A_{tot}L}$

t_c= tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa allo spartiacque (Km)

A_{tot}=estensione bacino idrografico (Kmq)

i_{tot}= pendenza media dell'intera asta principale (m/m)

Tipologia bacino (m/p):

p 0.03 kmq

 $A_{tot} = L = I_{tot} = I_{tot}$

0.25 Km 0.01500 m/m

= 0.85 ore

A questo punto sulla base della definizione dei parametri di ingresso Pindice, a ed n si calcola la portata di progetto alla sezione da verificare al variare dei tempi di ritorno Tr30 e Tr200 come segue.

Per il caso in esame si adotta, a discrezione del progettista:

TR 30

a 38.23

n 0.324

h_p 36.21 mm

i_p 42.82 mm/h

TR 200

a 51.6

n 0.324

h_p 48.87 mm

i_p 57.79 mm/h

Calcolo della portata di progetto alla sezione terminale dello scolo

 $Q = k \cdot C \cdot i_c \cdot A_{ot}$

 $Q_{30, TOT} =$

0.18 m³/sec

q₃₀=

5.9518 m³/sec/Km²

Q_{200. TOT} =

0.24 m³/sec

q₂₀₀=

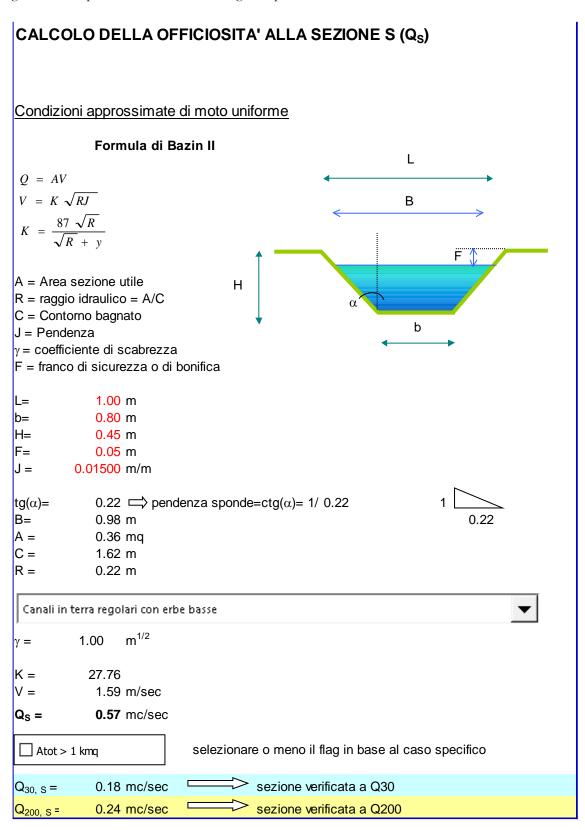
8.0334 m³/sec/Km²

Calcolo della portata di progetto alla sezione da verificare

 $A_S =$

0.03 Km²

Area bacino chiuso alla sezione da verificare


 $Q_{30, S} = 0.18 \text{ m}^3/\text{sec}$ $Q_{200, S} = 0.24 \text{ m}^3/\text{sec}$

Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pogino	18 di 46

Sulla base delle portate sopra calcolate si verifica la sezione necessaria al deflusso idrico. Nello specifico in relazione alla configurazione attuale dei luoghi ed alle opere già esistenti, la sezione in terra verificata è di geometria trapezia con dimensioni di seguito specificate.

Progetto Definitivo Impianto A	gro
Voltaico "Chiaravalle"	

Codice Elaborato: R.02

Data: 09/07/2024

Revisione: 02

Pagina: 19 di 46

Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione

CLUSTER 1 - SUB_CLUSTER2 - L2

Calcolo del tempo di corrivazione

Per i bacini di montagna si adotta la formula di Pezzoli (1970):

 $t_c = 0.055 \frac{L}{i^{0.5}}$ ove:

t_c= tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa fino allo spartiacque (Km)

i= pendenza media dell'asta principale

Per i canali di pianura si adotta la formula di Ongaro (Atot < 1,0 Kmq)

 $t_{c} = 0.18\sqrt[3]{A_{tot}L}$

t_c= tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa allo spartiacque (Km)

A_{tot}=estensione bacino idrografico (Kmq)

i_{tot}= pendenza media dell'intera asta principale (m/m)

Tipologia bacino (m/p):

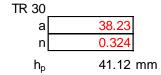
p 0.05 kmq

A_{tot} = L=

0.46 Km

 $i_{tot} =$

0.01500 m/m


t. =

1.25 ore

A questo punto sulla base della definizione dei parametri di ingresso Pindice, a ed n si calcola la portata di progetto alla sezione da verificare al variare dei tempi di ritorno Tr30 e Tr200 come segue.

İρ

Per il caso in esame si adotta, a discrezione del progettista:

TR 200

a 51.6

n 0.324

h_p 55.51 mm

Calcolo della portata di progetto alla sezione terminale dello scolo

32.83 mm/h

 $Q = k \cdot C \cdot i_c \cdot A_{tot}$

 $Q_{30, TOT} = 0.24 \text{ m}^3/\text{sec}$ $Q_{200, TOT} = 0.33 \text{ m}^3/\text{sec}$

İρ

 q_{30} = 4.5634 m³/sec/Km²

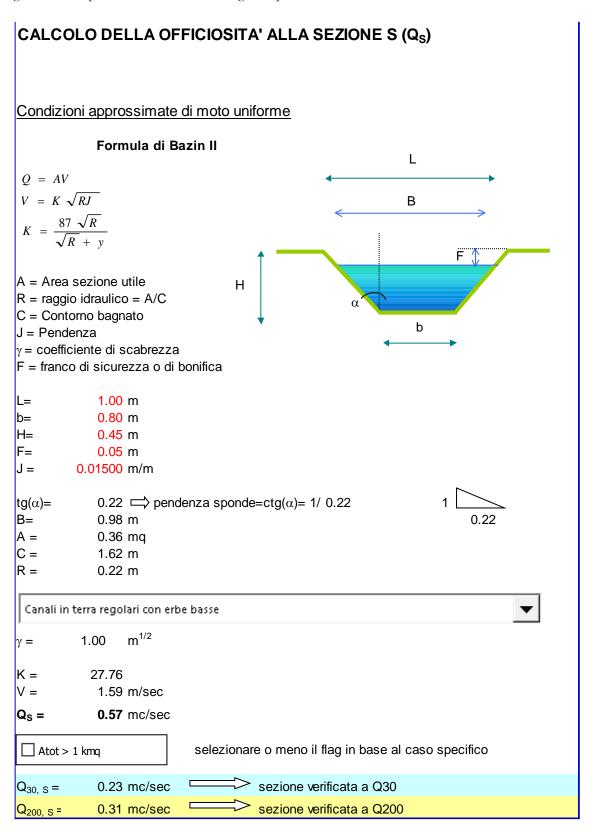
 $q_{200} =$

44.31 mm/h

6.1593 m³/sec/Km²

Calcolo della portata di progetto alla sezione da verificare

A_S= 0.05 Km² Area bacino chiuso alla sezione da verificare


 $Q_{30, S} = 0.23 \text{ m}^3/\text{sec}$ $Q_{200, S} = 0.31 \text{ m}^3/\text{sec}$

Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	20 di 46

Sulla base delle portate sopra calcolate si verifica la sezione necessaria al deflusso idrico. Nello specifico in relazione alla configurazione attuale dei luoghi ed alle opere già esistenti, la sezione in terra verificata è di geometria trapezia con dimensioni di seguito specificate.

Progetto Definitivo Impianto Agro
Voltaico "Chiaravalle"

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina.	21 di 46

CLUSTER 1 - SUB_CLUSTER3 - L3

Calcolo del tempo di corrivazione

Per i bacini di montagna si adotta la formula di Pezzoli (1970):

 $t_c = 0.055 \frac{L}{i^{0.5}}$ ove:

t_c= tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa fino allo spartiacque (Km)

i= pendenza media dell'asta principale

Per i canali di pianura si adotta la formula di Ongaro (Atot < 1,0 Kmq)

 $t_{c} = 0.18\sqrt[3]{A_{tot}L}$

t_c= tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa allo spartiacque (Km)

A_{tot}=estensione bacino idrografico (Kmq)

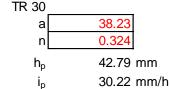
i_{tot}= pendenza media dell'intera asta principale (m/m)

Tipologia bacino (m/p):

p 0.06 kmq

 $A_{tot} =$ L=

0.55 Km


 $i_{tot} =$

0.01500 m/m

= 1.42 ore

A questo punto sulla base della definizione dei parametri di ingresso Pindice, a ed n si calcola la portata di progetto alla sezione da verificare al variare dei tempi di ritorno Tr30 e Tr200 come segue.

Per il caso in esame si adotta, a discrezione del progettista:

TR 200	
а	51.6
n	0.324
h_p	57.75 mm
İn	40.79 mm/h

Calcolo della portata di progetto alla sezione terminale dello scolo

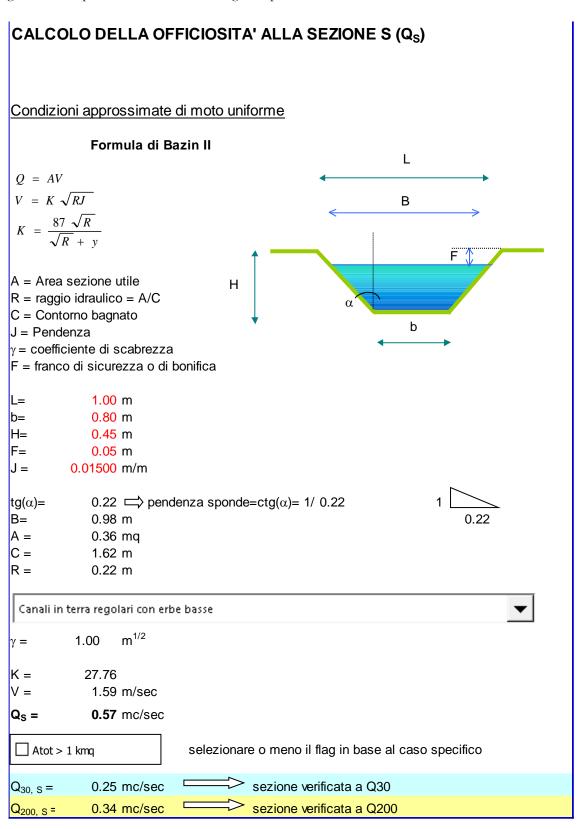
$$Q = k \cdot C \cdot i_c \cdot A_{tot}$$

Q _{30, TOT} =	0.27 m ³ /sec	q ₃₀ =	4.2009 m ³ /sec/Km ²
Q _{200, TOT} =	0.36 m ³ /sec	q ₂₀₀ =	5.6701 m ³ /sec/Km ²

Calcolo della portata di progetto alla sezione da verificare

A_S= 0.06 Km² Area bacino chiuso alla sezione da verificare

Q _{30, S} =	0.25 m ³ /sec	
Q _{200, S} =	0.34 m ³ /sec	



Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Analisi	Invarianza	Idraulica	ed Analisi
Idroi	logica Oper	re di Regin	nazione

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	22 di 46

Sulla base delle portate sopra calcolate si verifica la sezione necessaria al deflusso idrico. Nello specifico in relazione alla configurazione attuale dei luoghi ed alle opere già esistenti, la sezione in terra verificata è di geometria trapezia con dimensioni di seguito specificate.

Progetto Definitivo Impianto Agro
Voltaico "Chiaravalle"

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	23 di 46

CLUSTER 2- SUB_CLUSTER1 - L4

Calcolo del tempo di corrivazione

Per i bacini di montagna si adotta la formula di Pezzoli (1970):

 $t_c = 0.055 \frac{L}{i^{0.5}}$ ove:

t_c= tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa fino allo spartiacque (Km)

i= pendenza media dell'asta principale

Per i canali di pianura si adotta la formula di Ongaro (Atot < 1,0 Kmq)

 $t_{c} = 0.18\sqrt[3]{A_{tot}L}$

t_c= tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa allo spartiacque (Km)

A_{tot}=estensione bacino idrografico (Kmq)

i_{tot}= pendenza media dell'intera asta principale (m/m)

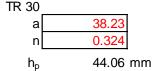
Tipologia bacino (m/p):

p 0.07 kmq

A_{tot} =

0.65 Km

 $i_{tot} =$


0.01500 m/m

t -

1.55 ore

A questo punto sulla base della definizione dei parametri di ingresso Pindice, a ed n si calcola la portata di progetto alla sezione da verificare al variare dei tempi di ritorno Tr30 e Tr200 come segue.

Per il caso in esame si adotta, a discrezione del progettista:

TR 200 a 51.6 n 0.324

 h_p

i_p 28.43 mm/h

i_p 38.38 mm/h

59.47 mm

Calcolo della portata di progetto alla sezione terminale dello scolo

 $Q = k \cdot C \cdot i_c \cdot A_{tot}$

 $Q_{30, TOT} = 0.28 \text{ m}^3/\text{sec}$ $Q_{200, TOT} = 0.38 \text{ m}^3/\text{sec}$

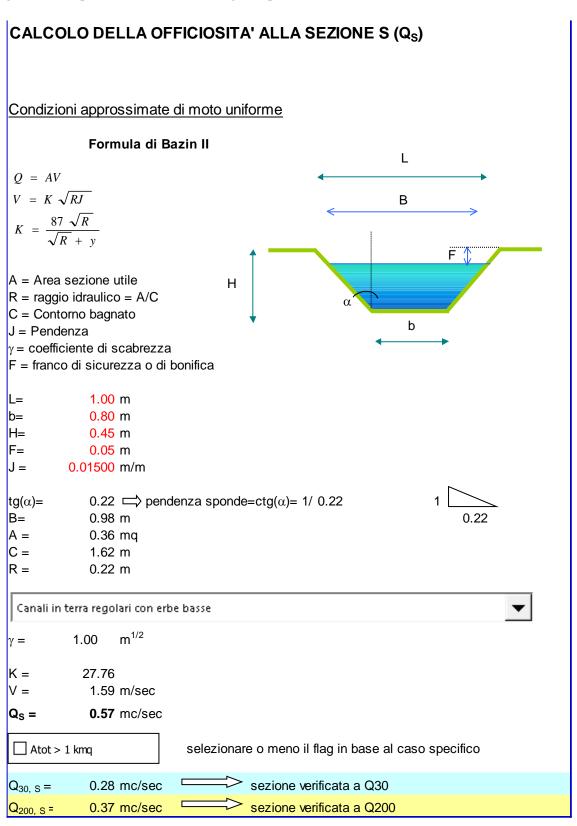
 q_{30} = 3.9522 m³/sec/Km²

q₂₀₀= 5.3344 m³/sec/Km²

Calcolo della portata di progetto alla sezione da verificare

A_S= 0.07 Km² Area bacino chiuso alla sezione da verificare

 $Q_{30, S} = 0.28 \text{ m}^3/\text{sec}$ $Q_{200, S} = 0.37 \text{ m}^3/\text{sec}$



Progetto Definitivo Impianto A	gro
Voltaico "Chiaravalle"	

Analisi Invarianza Idraulica ed Analisi	
Idrologica Opere di Regimazione	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Dogina	24 di 46

Sulla base delle portate sopra calcolate si verifica la sezione necessaria al deflusso idrico. Nello specifico in relazione alla configurazione attuale dei luoghi ed alle opere già esistenti, la sezione in terra verificata è di geometria trapezia con dimensioni di seguito specificate.

Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	25 di 46

CLUSTER 2- SUB_CLUSTER2 - L5

Calcolo del tempo di corrivazione

Per i bacini di montagna si adotta la formula di Pezzoli (1970):

 $t_c = 0.055 \frac{L}{i^{0.5}}$ ove:

t_c= tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa fino allo spartiacque (Km)

i= pendenza media dell'asta principale

Per i canali di pianura si adotta la formula di Ongaro (Atot < 1,0 Kmq)

 $t_{c} = 0.18\sqrt[3]{A_{tot}L}$

t_c= tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa allo spartiacque (Km)

A_{tot}=estensione bacino idrografico (Kmq)

i_{tot}= pendenza media dell'intera asta principale (m/m)

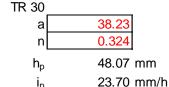
Tipologia bacino (m/p):

p 0.14 kmq

 $A_{tot} =$

0.75 Km

 $i_{tot} =$


0.01500 m/m

t -

2.03 ore

A questo punto sulla base della definizione dei parametri di ingresso Pindice, a ed n si calcola la portata di progetto alla sezione da verificare al variare dei tempi di ritorno Tr30 e Tr200 come segue.

Per il caso in esame si adotta, a discrezione del progettista:

TR 200

a 51.6

n 0.324

h_p 64.89 mm i_p 31.99 mm/h

Calcolo della portata di progetto alla sezione terminale dello scolo

 $Q = k \cdot C \cdot i_c \cdot A_{tot}$

 $Q_{30, TOT} = 0.45 \text{ m}^3/\text{sec}$

 $q_{30} =$

3.2946 m³/sec/Km²

Q_{200, TOT} = 0.61 m³/sec

 $q_{200} =$

4.4468 m³/sec/Km²

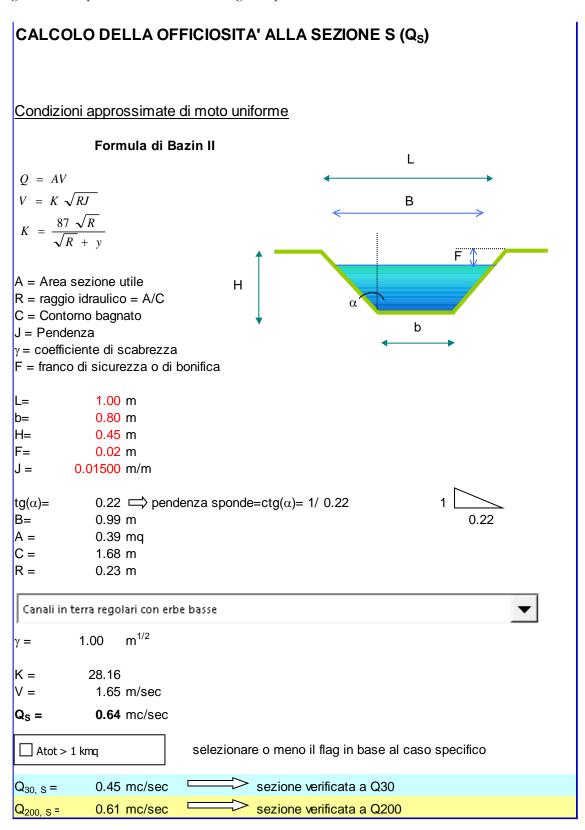
Calcolo della portata di progetto alla sezione da verificare

A_S=

0.14 Km²

Area bacino chiuso alla sezione da verificare

 $Q_{30, S} = 0.45 \text{ m}^3/\text{sec}$


Q_{200, S} = 0.61 m³/sec

Progetto Definitivo Impianto A	gro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	26 di 46

Sulla base delle portate sopra calcolate si verifica la sezione necessaria al deflusso idrico. Nello specifico in relazione alla configurazione attuale dei luoghi ed alle opere già esistenti, la sezione in terra verificata è di geometria trapezia con dimensioni di seguito specificate.

Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	27 di 46

CLUSTER 2- SUB_CLUSTER3 - L6

Calcolo del tempo di corrivazione

Per i bacini di montagna si adotta la formula di Pezzoli (1970):

 $t_c = 0.055 \, \frac{L}{i^{0.5}}$

t_c= tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa fino allo spartiacque (Km)

i= pendenza media dell'asta principale

Per i canali di pianura si adotta la formula di Ongaro (Atot < 1,0 Kmq)

 $t_{c} = 0.18\sqrt[3]{A_{tot}L}$

t_c= tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa allo spartiacque (Km)

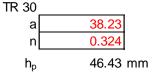
A_{tot}=estensione bacino idrografico (Kmq)

i_{tot}= pendenza media dell'intera asta principale (m/m)

Tipologia bacino (m/p):

0.10 kmq

 $A_{tot} =$


0.75 Km 0.01500 m/m

 $i_{tot} =$

1.82 ore

A questo punto sulla base della definizione dei parametri di ingresso Pindice, a ed n si calcola la portata di progetto alla sezione da verificare al variare dei tempi di ritorno Tr30 e Tr200 come segue.

Per il caso in esame si adotta, a discrezione del progettista:

TR 200

25.49 mm/h

62.67 mm h_p 34.40 mm/h i_p

Calcolo della portata di progetto alla sezione terminale dello scolo

 $Q = k \cdot C \cdot i_c \cdot A_{ot}$

0.35 m³/sec $Q_{30, TOT} =$

 $q_{30} =$

3.5426 m³/sec/Km²

 $Q_{200, TOT} =$

0.48 m³/sec

 $q_{200} =$

4.7815 m3/sec/Km2

Calcolo della portata di progetto alla sezione da verificare

A_S=

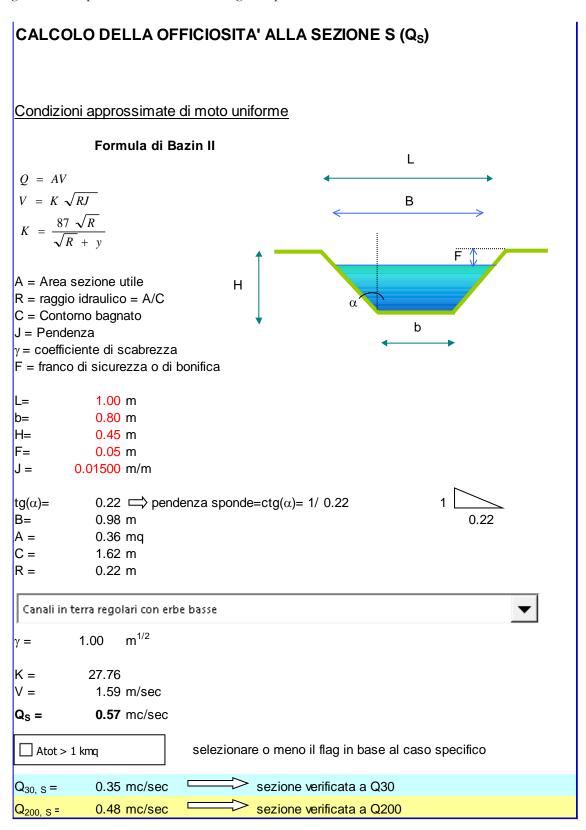
0.10 Km²

Area bacino chiuso alla sezione da verificare

 $Q_{30, S} =$

0.35 m³/sec

 $Q_{200, S} =$


0.48 m³/sec

Progetto Definitivo Impianto A	gro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	28 di 46

Sulla base delle portate sopra calcolate si verifica la sezione necessaria al deflusso idrico. Nello specifico in relazione alla configurazione attuale dei luoghi ed alle opere già esistenti, la sezione in terra verificata è di geometria trapezia con dimensioni di seguito specificate.

Definiti i parametri geometrici della sezione tipo, con una pendenza media dei canali considerati pari a 1,5%, larghezza B = 1,00m, altezza H = 0,45m, base minore del canale b = 0,80m con franco compreso tra 0,05m e

Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	29 di 46

0,02m, definita per ogni caso la portata specifica Qs, confrontata con le portate di progetto Q30,s e Q200,s si evidenzia che le opere risultano idoneamente dimensionate in relazione ai parametri idrologici del sito in esame. Altresì la rete di drenaggio fungendo da voluime compensativo anche ai fini dell'invarianza idraulica rappresenterebbe una volumetria complessiva disponibile pari alla sezione media (A=0,405mq) dei canali ipotizzati per la lunghezza media complessiva (circa 7'414m) che equivale ad un valore pari a circa 3'000mc disponibili per invasare eventuali acque meteoriche rispettando il valore calcolto in precedenza sulla base delle superfici impermeabilizzate pari a 169,75 mc/ha.

Altresì nella modellizzazione idraulica si è analizzata l'opera per mezzo di tombino idraulico con tubazione in pvc da adottare in corrispondenza dei n.3 p.ti di rilascio controllato alla rete idrica in esercizio dei recettori esistenti (A,B,C) che permetterà il deflusso suddiviso in tre aliquote così dettagliate numericamente:

Si riportano di seguito le schede analitiche delle tubazioni verificate con uscita tarata all'80% della sezione disponibile nel rispetto dei valori di riferimento di 20 l/s/ha ai fini dell'invarianza idraulica per superficie scolante per p.to di recapito.

La sezione idonea al caso risulta pari a 500mm di diametro con pendenza di circa il 2% per tutti i casi analizzati con portata di progetto applicata pari a 0,404 mc/sec per il p.to di rilascio A (Cluster 1) e pari a 0,359 mc/sec per il p.to B e C (Cluster 2 – 2.1 e 2.2).

Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	30 di 46

DATI SEZIONE CIR	COLARE:		Qmax=	0.40400	mc/s	_		CLUS	STER 1_A
RAGGIO interno: r	m	0.250	Diamet	ro Interno:	500	mm			
Materiale	- "	pvc	Diamot	TO IIICOTTIO.					
n di Manning	s/m^1/3	0.016							
Pendenza fondo: i	n°	2.000%	,	r					
0.1.001.201	**	2.000%	<u> </u>		>				
Altezza d'acqua: h	m								
Area bagnata: A	mq			fi					
Perimetro bagnato: P	m								
Raggio Idraulico:R	m								
Portata: Q	mc/s		DN A	\dottato =	500	mm	h/D=	0.8	
/elocità: V	m/s		2117	14000400			, 2	0.0	
	, 5	h	fi/p	Α	Р	R	Q	Vmax	
Step fi/p :	0.15	- 11	11/ μ	^	F	K	W W	VIIIax	
στερ τι/ β .	0.15	0.01	0.20	0.0012667	0.16	0.01	0.00045	0.36	1
		0.01	0.20	0.0012667	0.10	0.01	0.00045	0.36	
		0.04	0.50	0.0178374	0.39	0.05	0.02007	1.13	1
		0.07	0.65	0.0359696	0.51	0.07	0.05424	1.13	1
		0.12	0.80	0.0601715	0.63	0.10	0.11133	1.85	
		0.23	0.95	0.0883775	0.75	0.12	0.18840	2.13	
		0.29	1.10	0.117649	0.86	0.14	0.27525	2.34	
		0.35	1.25	0.1448155	0.98	0.15	0.35734	2.47	
	1.61	0.40	1.40	0.16717	1.10	0.15	0.42088	2.52	verificato
		0.44	1.55	0.1830362	1.22	0.15	0.45745	2.50	1.
		0.47	1.70	0.1921789	1.34	0.14	0.46653	2.43	1.
				Sc	ala di I	Defluss	o		
			0.50000						
			0.45000						
			0.40000						
		a in mc/s	.35000						
		<u> </u>	.30000						
		ie o	.25000						
		rai o	.20000						
		ō	0.15000						
		_	0.10000						
			0.05000						
		C	0.0000	0.10	0.20	0.30	0.40	0.50	
			0.00					0.50	
				Liv	ello dell	'acqua (m)		

Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina	31 di 46

DATI SEZIONE CIR	COLARE:		Qmax=	0.35900	mc/s			CLUST	ER 2_B-C
RAGGIO interno: r	m	0.250	Diamet	ro Interno:	500	mm			
Materiale	- "	pvc	Diamee	in internet	500	111111			
n di Manning	s/m^1/3	0.016							
Pendenza fondo: i	n°	2.000%							
		2.0007.0							
Altezza d'acqua: h	m								
Area bagnata: A	mq			f					
Perimetro bagnato: P	m .								
Raggio Idraulico: R	m								
Portata: Q	mc/s		DN A	Adottato =	500	mm	h/D=	0.8	
Velocità: V	m/s								
		h	fi/p	Α	Р	R	Q	Vmax	
Step fi/p:	0.15								
		0.01	0.20	0.0012667	0.16	0.01	0.00045	0.36	
		0.04	0.35	0.006517	0.27	0.02	0.00475	0.73	-
		0.07 0.12	0.50 0.65	0.0178374	0.39 0.51	0.05 0.07	0.02007 0.05424	1.13 1.51	
		0.12	0.80	0.0559696	0.63	0.07	0.03424	1.85	
		0.17	0.80	0.0883775	0.03	0.10	0.11133	2.13	
		0.29	1.10	0.117649	0.75	0.12	0.18640	2.13	
		0.25	1.10	0.1448155	0.98	0.15	0.35734	2.47	
	1.43	0.40	1.40	0.16717	1.10	0.15	0.42088	2.52	verificato
	1.45	0.44	1.55	0.1830362	1.22	0.15	0.45745	2.50	1 401 11 10 4 00
		0.47	1.70	0.1921789	1.34	0.14	0.46653	2.43	†
		5117	•	011021700		J	0.10000	20	
				Sc	ala di	Defluss	5 0		
		0.5	50000						
			15000						
			10000						
		2	35000						
		<u>.</u> 0.3	30000						
			25000						
		0.2 0.2 0.1	20000						
		<u>ک</u> 0.1	15000						
		0.1	10000						
			5000						
			00000						
		5.0	0.00	0.10	0.20	0.30	0.40	0.50	
				Liv	ello dell	'acqua (m)		
			1						

Progetto	Definitivo	Impianto	Agro
Vo	Itaico "Chi	iaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	32 di 46

4. VALUTAZIONI RISPETTO DELL'INVARIANZA IDRAULICA (D.G.R. 53/2014) SSE-BES

Le seguenti considerazioni sono state redatte sulla base delle "Norme in materia di riqualificazione urbana sostenibile e assetto idrogeologico e modifiche alle Leggi regionali 5 agosto 1992, n. 34 "Norme in materia urbanistica, paesaggistica e di assetto del territorio" e 8 ottobre 2009, n. 22 "Interventi della regione per il riavvio delle attività edilizie al fine di fronteggiare la crisi economica, difendere l'occupazione, migliorare la sicurezza degli edifici e promuovere tecniche di edilizia sostenibile" ed in particolare si farà riferimento all'art. 10 della L.R. 22/2011 Regione Marche e sulla base della DELIBERA DI GIUNTA REGIONALE N. 53/27-1-2014 e della Legge Regionale 30 novembre 2023, n. 19 «Norme della pianificazione per il governo del territorio», al fine di valutare se necessari eventuali interventi mitigatori e/o di compensazione in relazione al progetto denominato "Chiaravalle" all'interno del Comune di Chiaravalle (AN) relativamente all'area SSE/BES. Di seguito si riporta stralcio del layout relativo a tali opere di connessione ed accumulo.

Dettagliatamente si prevedono le seguenti superfici occupate da locali tecnici / cabine / stalli / materiale stabilizzato per tipologia / superficie:

- -SUP del lotto catastale = 30'508,60 mq (part.lla 191)
- -SUP impermeabile ante operam = 0 mq

SSE

- -SUP impermeabile post operam Stallo = 359,08 mq
- -SUP impermeabile Cabina = 206,60 mg
- SUP modificata altra area Stallo = 1'581,72 mg
- -SUP permeabile brecciolino = 1721,50 mq
- SUP impermeabile PCS (n.6) = 116,19 mq
- SUP impermeabile Container batterie = 355,47 m
- SUP permeabile stabilizzato = 1517,01 mq

Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	33 di 46

- SUP permeabile brecciolino = 1618,36 mq

Complessivamente le superfici impermeabilizzate – permeabili post operam risultano le seguenti:

SUPERFICI ED ELEMENTI DI PROGETTO	(mq)
SUP Catastale	30508.6
SUP impermeabile Stallo	359.08
SUP impermeabile Cabina	206.6
SUP permeabile brecciolino	1721.5
SUP modificata altra Area Stallo	1581.72
SUP impermeeabile PCS (n.6)	116.19
SUP impermeeabile Container Batterie	355.47
SUP permeabile stabilizzato	1517.01
SUP permeabile brecciolino	1618.36
SUP totale imp stato ante operam	0
SUP totale perm stato ante operam	30508.6
SUP totale imp stato post operam	1037.34
SUP totale perm stato post operam	29471.26

Considerando anche l'apporto di impermeabilizzazione della viabilità di progetto, cabine, etc il valore complessivo considerando cautelativamente anche la proiezione dei pannelli fotovoltaici in posizione orizzontale a terra come impermeabilizzazione si ottiene un valore pari a 1'037,34 mq e di area non impermeabilizzata pari a 29'471,26 mq rispetto ad una superficie complessiva catastale di 30'508,60 mq.

La misura del **volume minimo di invaso** da prescrivere in aree sottoposte a una quota di trasformazione I (% dell'area che viene trasformata) e in cui viene rilasciata inalterata una quota P (tale che I+P=100%) è data dalla seguente formula:

Requisiti richiesti per ogni classe sulla base del volume minimo di laminazione determinato:

$$w=w^{\circ} (\phi/\phi^{\circ})^{(1/(1-n))} - 15 I - w^{\circ}P$$

 $\phi^{\circ}= 0.9Imp^{\circ}+ 0.2 Per^{\circ} \qquad \phi= 0.9Imp+0.2 Per$

w°=50 mc/ha volume "convenzionale" d'invaso prima della trasformazione

φ= coefficiente di defluss opost tra sformazione φ°=coefficiente di deflus so ante tra sformazione

n = 0.48 I e P es pressi come frazione dell'area tras formata

Imp e Per espressi come frazion e totale dell'area impermeabile e permeabile prima della trasformazion e (se connotati dall'apice°) o dopo (se non c'è l'apice°)

VOLUME RICAVATO dalla formula <u>va moltiplicato per la Superficie territoriale dell'intervento</u>

Il calcolo del volume di invaso è determinato attraverso la definizione delle seguenti grandezze:

- a) quota dell'area di progetto che viene interessata dalla trasformazione (I); è da notare che anche le aree che non vengono pavimentate con la trasformazione, ma vengono sistemate e regolarizzate, devono essere incluse a computare la quota I;
- b) quota dell'area di progetto non interessata dalla trasformazione (P): essa è costituita solo da quelle parti che non vengono significativamente modificate, mediante regolarizzazione del terreno o altri interventi anche non impermeabilizzanti;

Progetto Definitivo Impianto Agro			
Voltaico "Chiaravalle"			

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	34 di 46

- c) quota dell'area da ritenersi permeabile (Per): tale grandezza viene valutata prima e dopo la trasformazione;
- d) quota dell'area da ritenersi impermeabile (Imp) : tale grandezza viene valutata prima e dopo la trasformazione.

INDICAZIONI PER LE AREE DI TRASFORMAZIONE URBANA

Sulla base della dimensione dell'intervento urbanistico si definiscono le seguenti classi di intervento:

Classe di Intervento	Definizione
Trascurabile impermeabilizzazione potenziale	intervento su superfici di estensione inferiore a 0.1 ha
Modesta impermeabilizzazione potenziale	Intervento su superfici comprese fra 0.1 e 1 ha
Significativa impermeabilizzazione potenziale	Intervento su superfici comprese fra 1 e 10 ha; interventi su superfici di estensione oltre 10 ha con Imp<0,3
Marcata impermeabilizzazione potenziale	Intervento su superfici superiori a 10 ha con Imp>0,3

Alla luce di queste considerazioni, sono stati stabiliti i seguenti criteri da applicare se non diversamente previsto nella parte dispositiva del documento tecnico di riferimento:

- a) nel caso di **trascurabile impermeabilizzazione potenziale**, è sufficiente che i volumi disponibili per la laminazione soddisfino i requisiti dimensionali della formula di calcolo ad esclusione degli interventi comportanti la realizzazione di impermeabilizzazione per una superficie pari o inferiore a 100 mq;
- b) nel caso di **modesta impermeabilizzazione**, oltre al soddisfacimento dei requisiti della formula (1) è opportuno che le luci di scarico non eccedano le dimensioni di un tubo di diametro 200 mm e che i tiranti idrici ammessi nell'invaso non eccedano il metro;
- c) nel caso di **significativa impermeabilizzazione**, si consiglia di dimensionare le luci di scarico e i tiranti idrici ammessi nell'invaso in modo da garantire la conservazione della portata massima defluente dall'area in trasformazione ai valori precedenti l'impermeabilizzazione, almeno per una durata di pioggia di 2 ore e un tempo di ritorno di 30 anni;
- d) nel caso di marcata impermeabilizzazione, si richiede la presentazione di uno studio di maggiore dettaglio.

I volumi calcolati con i metodi sopra descritti indicano i volumi minimi da realizzare al fine di garantire l'**invarianza idraulica** In termini di portata scaricata al recapito finale e devono essere realizzati in modo tale da essere pienamente efficienti.

I volumi calcolati nel caso di **trascurabile impermeabilizzazione**, non necessitano di manufatto di regolazione delle portate, è sufficiente che siano protetti in sezione di chiusura da valvole di non ritorno di tipo a clapet.

Diversamente i volumi calcolati nel caso di **modesta e significativa impermeabilizzazione** devono essere afferenti ad un manufatto di regolazione delle portate per esempio un manufatto con bocca tarata o una stazione di sollevamento. Per quanto concerne il caso di **marcata impermeabilizzazione**, i manufatti di protezione devono essere stabiliti e dimensionati in relazione agli esiti degli studi di maggiore dettaglio.

Fatto salvo quanto previsto dal **Titolo IV della DGR n. 53 del 27/01/2014** (pubblicata sul BURM n. 19 del 17/02/2014), il valore determinato dal dimensionamento dell'invarianza idraulica rappresenta un elemento prestazionale da conseguire attraverso la realizzazione di interventi derivanti da un'opportuna combinazione di una o più soluzioni tipologiche.

In sede di redazione/variazione degli strumenti di pianificazione territoriale, vanno considerate le misure relative all'invarianza idraulica, ancorché la loro definizione ed attuazione possa essere rimandata a fasi successive.

Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	35 di 46

Valutazioni:

Nel caso in esame l'intervento rientra tra i casi di Modesta impermeabilizzazione potenziale con una superficie complessiva di impermeabilizzazione dell'intervento pari a 1'037,34 mq su una superficie catastale complessiva 30'508,60 mq.

In relazione alla configurazione geologico-stratigrafica, alla dimensione dell'intervento al layout delle opere previste alla superficie libera a verde disponibile, ai sensi della D.G.R. 53/2014, si è valutato come idoneo al caso un sistema composito che risulta dalla combinazione dei p.ti tipolgici di intervento di seguito descritti alle lettere c) – g) – j) con previsione di un'area a verde, allagabile, leggeremente depressa rispetto al circostante piano campagna con funzione di invaso e dispersione graduale senza afflusso diretto alle reti di drenaggio anche per mezzo di tubolari sotterranei.

Tale sistema ha di regimazione delle acque superficiali e di volumetria invasabile nonché drenaggio come intervento di mitigazione al fine del rispetto e conseguimento dell'invarianza idraulica per l'area relativa alle opere di connessione alla rete e di accumulo.

Tipologie di soluzioni progettuali:

- a) vasca in c.a. o altro materiale "rigido" posta a monte del punto di scarico, sia aperta e sia coperta (sia in serie, sia in parallelo; in quest'ultimo caso, è richiesto uno studio idraulico);
- b) invaso in terra posto a monte del punto di scarico (sia in serie, sia in parallelo; in quest'ultimo caso, è richiesto uno studio idraulico);
- c) depressione in area verde o in piazzale posta a monte del punto di scarico;
- d) dimensionamento con "strozzatura" delle caditoie in modo da consentire un invaso su strade e piazzali (*);
- e) dimensionamento con "strozzatura" delle grondaie e tetti piatti con opportuno bordo di invaso in modo da consentire un invaso sulle coperture (*, #);
- f) sovradimensionamento delle fognature interne al lotto (1 mc di tubo o canale = 0,8 mc di invaso);
- g) mantenimento di aree allagabili (es. verde, piazzali) con "strozzatura" adeguata degli scarichi (*);
- h) scarico in acque costiere o comunque che non subiscono effetti idraulici dagli apporti meteorici;
- i) scarico in vasche adibite ad altri scopi (sedimentazione, depurazione ecc.) purché il volume di invaso si aggiunga al volume previsto per altri scopi, e purché siano comunque rispettati i vincoli e i limiti allo scarico per motivi di qualità delle acque;
- j) scarico a dispersione in terreni agricoli senza afflusso diretto alle reti di drenaggio sia superficiale, sia tubolare sotterraneo.

ANALISI CASO IN ESAME

Il caso in studio ricade tra gli interventi di **Modesta impermeabilizzazione potenziale** con una superficie complessiva di impermeabilizzazione dell'intervento pari a **1'037,34 mq** su una superficie catastale complessiva **30'508,60 mq**..

SUP trasformata o regolarizzata post operam	2619.06
SUP inalterata post operam	27889.54

In tale scenario si è calcolato il valore del COEFFICIENTE DI DEFLUSSO ANTE E POST OPERAM in relazione alle superfici di intervento ed alla loro destinazione finale.

Il dato ottenuto mostra che il valore POST OPERAM risulta pari a **0,22** (rispetto al valore ante operam pari a **0,20**) e risulta necessario il rispetto del valore di invaso determinato dal calcolo definito dalla formula (1), di seguito riportata, che ha fornito un valore di **15,07 mc/ha** con volume necessario di invaso pari complessivamente a **43,99 mc** e con **portata ammissibile del corpo idrico recettore come da regolamento pari a 20,00 1/sec/ha** cioè pari a **61,02 1/s** complessivi.

Sulla base dei precedenti dati di input, si è progettata e sviluppata un'area a verde allagabile leggermente depressaa rispetto al piano campagna (sistema di bioritenzione-superficie permeabile) con funzione di drenaggio sotterraneo ed invaso con superficie complessiva pari a St=265,0 mq. La superficie interna S1=140,0 mq avrà una profondità rispetto al piano campagna attuale pari a -0,30m (da cui si ottiene una volumetria pari a V1=0,30m x 140mq=42,0mc) mentre l'ulteriore fascia interna all'area depressa si raccorderà gradualmente al piano campagna da -0,30m a 0,00m con profondità quindi media pari a -0,15m per una superficie di St-

Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02

Pagina:

36 di 46

S1=265,0mq-140,0mq=125,0mq e quindi una ulteriore volumetria aggiuntiva V2 pari a 0,15mx125,0mq=18,75mc. Complessivamente l'opera di invaso e drenaggio permetterà di gestire un Volume totale pari a V1+V2=(42,0+18,75)mc=60,75mc complessivi > al volume necessario da invasare calcolato pari a 43,99mc.


Volendo considerare la possibilità di rilascio controllato della volumetria invasata alla rete idrica limitrofa o rete pubblica, secondo le prescrizioni della DGR 53/2014, il valore da rispettare risulterebbe pari a 61,02 1/s per il quale risulta necessario adottare in base al calcolo risportato di seguiito per mezzo di scheda analitica, una sezione tubolare in pvc con diametro d=250mm tarato all'80% con Vmin=0,97 m/s e Vmax=1,59 m/s.

Progetto Definitivo Impianto Agro	
Voltaico "Chiaravalle"	

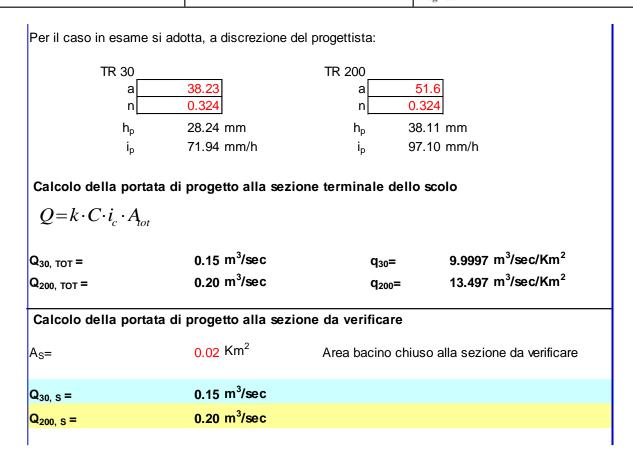
Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	37 di 46

Dettaglio geometria dell'area di invaso con relative Superfici St ed S1

Progetto	Definitivo	Impianto	Agro
Vo	Itaico "Chi	aravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	38 di 46

DATI SEZIONE CIR	COLARE:		Qmax	0.06102	mc/s			ARI	A BES
RAGGIO interno: r	m	0.125	Diam	etro Interno:	250	mm			
Vateriale	-	pvc	2.0						
n di Manning	s/m^1/3	0.016							
Pendenza fondo: i	n°	2.0009							
					1				
Altezza d'acqua: h	m				\cdot				
Area bagnata: A	mq			1					
Perimetro bagnato: P	m								
Raggio Idraulico: R	m								
Portata: Q	mc/s		DN	Adottato =	250	mm	h/D=	0.8	
/elocità: V	m/s						,		
	, i	h	fi/p	Α	Р	R	Q	Vmax	
Step fi/p:	0.15		1.7		-			7111011	
		0.01	0.20	0.0003167	0.08	0.00	0.00007	0.22	
		0.02	0.35	0.001629	0.14	0.01	0.00075	0.46	
		0.04	0.50	0.0044593	0.20	0.02	0.00316	0.71	
		0.06	0.65	0.0089924	0.26	0.04	0.00854	0.95	
		0.09	0.80	0.0150429	0.31	0.05	0.01753	1.17	
		0.12	0.95	0.0220944	0.37	0.06	0.02967	1.34	
		0.14	1.10	0.0294123	0.43	0.07	0.04335	1.47	
		0.17	1.25	0.0362039	0.49	0.07	0.05628	1.55	
	0.97	0.20	1.40	0.04179	0.55	0.08	0.06628	1.59	verificato
		0.22	1.55	0.045759	0.61	0.08	0.07204	1.57	
		0.24	1.70	0.0480447	0.67	0.07	0.07347	1.53	
				Ca	ماء ما:	Deflue	_]
				30	aia di	Defluss	60		
			0.08000						
			0.07000						
		s/	0.06000						
		m c'	0.05000						
		.⊑	0.04000						
		Portata in mc/s	0.04000						
		ort	0.03000						
			0.02000						
			0.01000						
			0.00000						
			0.00	0.05	0.10	0.15	0.20	0.25	
				Liv	ello dell	l'acqua (m)		


Volendo inoltre calcolare la sezione idraulica idonea per eventuali opere in terra di collegamento all'area di invaso, secondo la metodologia in precedenza illustrata, con input i dati relativi all'area SE/BES, si otterrebbero i seguenti valori di portata di progetto per Tr30 e 200anni (considerando due rami L1 ed L2 di suddivisione dell'intero bacino considerato in ingresso all'area a verde d'invaso).

Progetto Definitivo Impianto A	gro
Voltaico "Chiaravalle"	

Analisi Invarianza Idraulica ed Analisi	
Idrologica Opere di Regimazione	

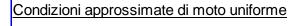
Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	39 di 46

Da cui la sezione necessaria presenta una geometria trapezoidale con L=0,60m - b=0,40m - H=0,40m e pendenza J=1,5% idonea per le portate di progetto calcolate.

Chiaramente nel rispetto della portata di progetto potranno essere utilizzate e considerate soluzioni alternative quali tubazioni o canalette di forme geometriche differenti.

Relativamente alle Schede delle Opere Tipologiche riportate nelle "Linee Guida" all'Allegato B dell'Invarianza Idraulica ai sensi della DGR 53/2014 si può far riferimento ai casi D4-D5-D10 di seguito illustrati.

Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	


Analisi Invarianza Idraulica ed Analisi	
Idrologica Opere di Regimazione	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina	40 di 46

L

В

b

Formula di Bazin II

$$Q = AV$$

$$V = K \sqrt{RJ}$$

$$K = \frac{87 \sqrt{R}}{\sqrt{R} + v}$$

A = Area sezione utile

R = raggio idraulico = A/C

C = Contorno bagnato

J = Pendenza

γ = coefficiente di scabrezza

F = franco di sicurezza o di bonifica

$$tg(\alpha)=$$
 0.25 \Longrightarrow pendenza sponde= $ctg(\alpha)=$ 1/ 0.25

B= 0.59 m

A = 0.19 mq

C = 1.18 m

R = 0.16 m

Canali in terra regolari senza vegetazione. Canali in cemento deteriorato

 $\gamma = 0.85 \text{ m}^{1/2}$

K = 27.78

V = 1.36 m/sec

 $Q_S = 0.26 \text{ mc/sec}$

Atot > 1 kmq selezionare o meno il flag in base al caso specifico

 $Q_{30, S} = 0.18 \text{ mc/sec}$ sezione verificata a Q30 $Q_{200, S} = 0.24 \text{ mc/sec}$ sezione verificata a Q200

San Benedetto del Tronto 09.07.2024

Dott. Geol. Alessandro Mascitti

Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	41 di 46

Schede Tipologiche di Interventi dall'Allegato B

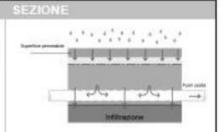
D4

Superfici permeabili

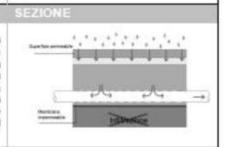
Sono marciapiedi o parcheggi che permettono alla pioggia di infiltrarsi attraverso la superficie pavimentata in uno strato di raccolta inferiore, dove l'acqua è contenuta prima di essere infiltrata nel terreno, riutilizzata, o rilasciata ad altri dispositivi drenanti.

PROCESSO		GEST	IONE		DESTINAZION	IE D'USO_
Infiltrazione	SI	Controllo loca	ile	SI	Residenziale a bassa densità	SI
Detenzione/ attenuazione	SI	Controllo nell'intorno		NO	Residenziale ad alta densità	SI
Trasporto	NO	Controllo terri	itoriale	NO	Strade	NO
Riutilizzo	SI				Commerciale	SI
					Industriale	SI
					di Riqualifica	SI
					Contaminata	SI
SPAZIO DIS	SPONI	BILE		TIF	O DI TERRENO)
Basso	SI		Impern	neabile	s SI	1
Alto	SI		Perme	abile	SI	
	ı	RIDUZIONE [DEL RIS	SCHIC)	
Idraulico		Riduzione dei	i Picchi d	di deflu	isso	BUONO
		Riduzione de	l Volume	e di def	flusso	BUONO
		Corpi sospesi	i			ALTO
Inquinamento		Nutrienti				ALTO
		Metalli pesan	ti			ALTO
VALORE ECOLOGICO VALORE ESTETIC		ORE ESTETIC	0			
BAS	SE				MEDIO	

Progetto	Definitivo	Impianto	Agro
Vo	ltaica "Chi	aravalle"	


Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02

42 di 46


Tarotogica opere at Hogimaziene

L'acqua passa attraverso la superficie permeabile (dove può essere detenuta temporaneamente) per poi essere rilasciata e flitrata negli strati inferiori del terreno. Per evitare che il dispositivo si saturi, e diventi meno efficiente, un sistema di troppo pieno deve provvedere a trattare e trasferire l'acqua in eccesso durante eventi particolarmente critici;

Concettualmente simile alla tipologia A, vede l'inserimento di una serie di tubi forati che alutano a trasferire ad altri sistemi di drenaggio parte dell'acqua piovana che il dispositivo non è in grado di inflitrare nel terreno;

Non permette l'Inflitrazione. Viene posta una membrana Impermeabile alla base del dispositivo che impedisce all'acqua filtrata attraverso I vari strati superiori della struttura di infiltrarsi nel terreno. Viene e trasferita attraverso un sistema di tubazioni forate simile a quella della tipologia B. Viene spesso usata dove il terreno ha una bassa permeabilità, quando l'aogua deve essere conservata e riutilizzata o quando ci sono seri rischi di Inquinamento delle faida acquifera.

VANTAGGI

- Rimozione dell'inquinamento urbano.
- Significativa riduzione dei deflussi di scorrimento dell'acqua piovana.
- Ottimi per aree ad alta densità.
- Buon utilizzo nella ristrutturazione.
- Bassi costi di manutenzione.
- Rimozione del canali di scolo e tombini.

SVANTAGGI

- Non consigliato per aree con abbondanti formazioni di sedimenti.
- Accumulo di detriti e sporcizia se la pulizia non viene garantita.

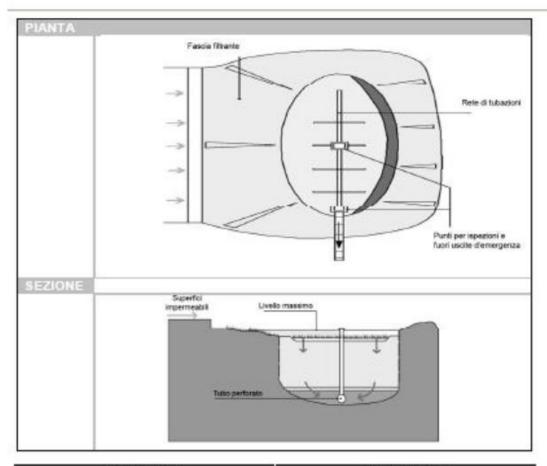
Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	43 di 46

D5

Sistemi di bioritenzione

Le aree di bioritenzione sono zone depresse poco profonde costituite da substrati di terreno drenante ricoperti da fitta vegetazione. Svolgono un trattamento dell'acqua piovana che permette di rimuovere parte dell'inquinamento e riduce il volume dei deflussi d'acqua.


PROCESSO)	GEST	IONE		DESTINAZIONE	D'USO
Infiltrazione	SI	Controllo loca	ile	SI	Residenziale a bassa densità	SI
Detenzione/ attenuazione	SI	Controllo nell'intorno		SI	Residenziale ad alta densità	SI
Trasporto	NO	Controllo terri	toriale	NO	Strade	SI
Riutilizzo	МО				Commerciale	SI
					Industriale	SI
					di Riqualifica	SI
					Contaminata	SI
SPAZIO DI	SPONI	BILE		TIF	O DI TERRENO	
Basso	NO		Impern	neabile	e si	
Alto	SI		Perme	abile	SI	
	ı	RIDUZIONE [DEL RIS	SCHIC)	
Idraulico		Riduzione dei	i Picchi e	di deflu	ISSO	MEDIO
		Riduzione del	Volume	e di dei	flusso	MEDIO
		Corpi sospesi	i			ALTO
Inquinamento		Nutrienti				BASSO
		Metalli pesan	ti			ALTO
VALORE E	COLO	GICO		VAI	LORE ESTETICO)
ME	DIO				BUONO	

gae | studio geology architecture engineering

Progetto D	efinitivo	Impianto	Agro
Volts	aico "Chi	aravalle"	

Analisi Invarianza Idraulica ed Analisi Idrologica Opere di Regimazione

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	44 di 46

VANTAGGI

- Facilmente inseribile entro spazi aperti.
- Promuove l'inflitrazione.
- Facile da costruire.
- Può essere usato come pre-trattamento.
- Bassi costi di realizzazione e manutenzione.

SVANTAGGI

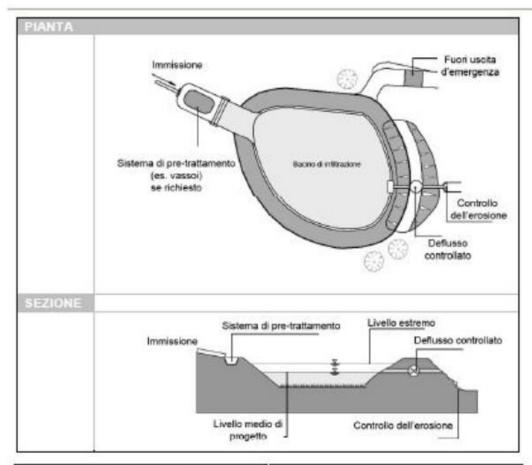
- Non consigliato per aree scoscese.
- Grandi spazi richiesti.
- Non consigliabili in aree il cui esiste il rischio di inquinamento delle faide freatiche.
- Non significativi per ridurre il deflusso delle acque per eventi particolarmente critici.

Progetto Definitivo Impianto	Agro
Voltaico "Chiaravalle"	

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	45 di 46

D10

Bacini di infiltrazione


Sono superfici depresse di vegetazione studiate per trattenere l'acqua piovana in eccesso e farla infiltrare successivamente nel terreno, facilitando un lento deflusso delle acque durante fenomeni di piogge intense

PROCESSO		GESTIC	ONE	DESTINAZION	E D'USO
Infiltrazione	SI	Controllo locale	NO	Residenziale a bassa densità	SI
Detenzione/ attenuazione	SI	Controllo nell'intorno	SI	Residenziale ad alta densità	NO
Trasporto	NO	Controllo territo	riale NO	Strade	SI
Riutilizzo	NO			Commerciale	SI
				Industriale	NO
				di Riqualifica	SI
				Contaminata	SI
SPAZIO DI	SPONI	BILE	TIP	O DI TERRENC)
Basso	NO	1	mpermeabile	NO	
Alto	SI	F	Permeabile	SI	
		RIDUZIONE DE	L RISCHIC)	
Idraulico		Riduzione dei P	icchi di deflu	550	MEDIO
, and an a		Riduzione del V	olume di def	lusso	BUONO
		Corpi sospesi			ALTO
Inquinamento		Nutrienti			MEDIO
		Metalli pesanti			ALTO
VALORE ECOLOGICO VALORE ESTETICO			3		
VALURE E	COLO	3100	VAL	ONL LOTE I ICO	,

Progetto Definitivo Impiant	o Agro
Voltaico "Chiaravalle	"

Codice Elaborato:	R.02
Data:	09/07/2024
Revisione:	02
Pagina:	46 di 46

VANTAGGI

- SVANTAGGI
- Buona riduzione volumi dei deflussi d'acqua.
- Buona riduzione velocità del flussi d'acqua.
- Buona rimozione dell'inquinamento.
- Contribuiscono alla ricarica della faida freatica.
- Richiede un a specifica conoscenza geotecnica.
- Richiede ampi spazi.

L.R 23 NOVEMBRE 2011 N. 22 — ART. 10, C. 4 - CRITERI, MODALITÀ E INDICAZIONI TECNICO-OPERATIVE PER LA REDAZIONE DELLA VERIFICA DI COMPATIBILITÀ IDRAULICA DEGLI STRUMENTI DI PIANIFICAZIONE TERRITORIALE E PER L'INVARIANZA IDRAULICA DELLE TRASFORMAZIONI TERRITORIALI

REGIONE MARCHE – L.R. 22 DEL 23/11/2011, ART. 10 COMPATIBILITA' IDRAULICA DELLE TRASFORMAZIONI TERRITORIALI

DGR N. 53 DEL 2014

ASSEVERAZIONE SULLA COMPATIBILITA' IDRAULICA DELLE TRASFORMAZIONI TERRITORIALI

(Verifica di Compatibilità Idraulica e/o Invarianza Idraulica)

II/I sottoscritto/i	ALESSANDRO MASCITTI
ii 03.08.1974	ENEDETTO DEL TR. in via FILENI
in possesso di diploma/laurea incaricato/a, nel professionale/amn soggetto). BLUSC	scienze geologiche ind. Rischi e Risorse geolombientali rispetto delle vigenti disposizioni che disciplinano l'esercizio di attività ninistrativa, da (ente pubblico o altro DLAR CHIARAVALLE 1 SRL
(DA REPLICARE PER	con Determina/Delibera (altro), OGNI SOGGETTO INCARICATO) secondo i casi trattati: sola verifica di compatibilità idraulica, sola invarianza idraulica, entrambe)
☐ di redige pianificazi	re la Verifica di Compatibilità Idraulica del seguente strumento di one del territorio, in grado di modificare il regime idraulico:
per la se	le misure compensative rivolte al perseguimento dell'invarianza idraulica, guente trasformazione/intervento che può provocare una variazione di ità superficiale:
RETELELE	ZIONE DI UN IMPIANTO AGROVOLTAICO CONNESSO ALLA TTRICA NAZIONALE DELLA POTENZA MASSIMA IN IMMISSIONE DI

LR 23 NOVEMBRE 2011 N. 22 – ART. 10, C, 4 - CRITERI, MODALITÀ E INDICAZIONI TECNICO-OPERATIVE PER LA REDAZIONE DELLA VERIFICA DI COMPATIBILITÀ IDRAULICA DEGLI STRUMENTI DI PIANIFICAZIONE TERRITORIALE E PER L'INVARIANZA IDRAULICA DELLE TRASFORMAZIONI TERRITORIALI

DICHIARA / DICHIARANO

	di aver criteri e stessa	redatto la Verifica di Compatibilità Idraulica prevista dalla L.R. n. 22/2011 conformemente ai e alle indicazioni tecniche stabilite dalla Giunta Regionale ai sensi dell'art. 10, comma 4 della legge.
	che la Region	. Verifica di Compatibilità Idraulica ha almeno i contenuti minimi stabiliti dalla Giunta nale.
	eventi	r ricercato, raccolto e consultato le mappe catastali, le segnalazioni/informazioni relativi a di esondazione/allagamento avvenuti in passato e dati su criticità legate a fenomeni di azione/allagamento in strumenti di programmazione o in altri studi conosciuti e disponibili.
Х	che l'a	rea interessata dallo strumento di pianificazione
	⊠ non stralcio	ricade / □ ricade parzialmente / □ ricade integralmente, nelle aree mappate nel Piano o di bacino per l'Assetto Idrogeologico (PAI - ovvero da analoghi strumenti di pianificazione di redatti dalle Autorità di Bacino/Autorità di distretto).
	di aver	sviluppato i seguenti livelli/fasi della Verifica di Compatibilità Idraulica:
	_	Preliminare;
	0	Semplificata;
	0	Completa.
		re adeguatamente motivato, a seguito della Verifica Preliminare, l'esclusione dai successivi i analisi della Verifica di Compatibilità Idraulica.
	di aver Verifica	re adeguatamente motivato l'utilizzo della sola Verifica Semplificata, senza necessità della a Completa.
	che co	o di sviluppo delle analisi con la Verifica Completa, di aver individuato la pericolosità idraulica intraddistingue l'area interessata dallo strumento di pianificazione secondo i criteri stabiliti iliunta Regionale.
Х	che lo 1, Titol	strumento di pianificazione/trasformazione/intervento ricade nella seguente classe (rif. Tab. o III, dei criteri stabiliti dalla Giunta Regionale) – barrare quella maggiore:
	0	trascurabile impermeabilizzazione potenziale;
	0	modesta impermeabilizzazione potenziale;
	Q	significativa impermeabilizzazione potenziale;
	0	marcata impermeabilizzazione potenziale.
X	di aver stabiliti	definito le misure volte al perseguimento dell'invarianza idraulica, conformemente ai criteri dalla Giunta Regionale ai sensi dell'art. 10, comma 4 della stessa legge.
X	che la conten	valutazione delle misure volte al perseguimento dell'invarianza idraulica ha almeno i uti minimi stabiliti dalla Giunta Regionale.
X	funzion	misure volte al perseguimento dell'invarianza idraulica sono quelle migliori conseguibili in de delle condizioni esistenti, ma inferiori a quelli previsti per la classe di appartenenza (rif. Titolo III), ricorrendo le condizioni di cui al Titolo IV, Paragrafo 4.1.

LR 23 NOVEMBRE 2011 N. 22 — ART. 10, C. 4 - CRITERI, MODALITÀ E INDICAZIONI TECNICO-OPERATIVE PER LA REDAZIONE DELLA VERIFICA DI COMPATIBILITÀ IDRAULICA DEGLI STRUMENTI DI PIANIFICAZIONE TERRITORIALE E PER L'INVARIANZA IDRAULICA DELLE TRASFORMAZIONI TERRITORIALI

II/I dichiarante/i

ASSEVERA / ASSEVERANO

X	la compatibilità tra lo strumento di pianificazione e le pericolosità idrauliche presenti, secondo i criteri stabiliti dalla Giunta Regionale ai sensi dell'art. 10, comma 4 della stessa legge.
	che per ottenere tale compatibilità sono previsti interventi per la mitigazione della pericolosità e del rischio, dei quali è stata valutata e indicata l'efficacia.
X	la compatibilità tra la trasformazione/intervento previsto e il perseguimento dell'invarianza idraulica, attraverso l'individuazione di adeguate misure compensative, secondo i criteri stabiliti dalla Giunta Regionale ai sensi dell'art. 10, comma 4 della stessa legge.

Luogo, data San Benedetto del Tronto, 09.07.2024

MD