PROGETTO IMPIANTO EOLICO "CASTELLUCCIO DEI SAURI"

RELAZIONE TECNICA GENERALE

Comune di Castelluccio dei Sauri e Deliceto (FG)

Proponente: Wind Energy Castelluccio S.r.l.

02/04/2024

REF.: Revision: A

EDP Renewables Italia Holding S.r.l.

Ing Daniele Cavallo

						03/24	DRAWN	D.CAVALLO
Α	02/04/2024	CAVALLO	CAVALLO	TIZZONI	PROGETTO ESECUTIVO	03/24	CHECKED	D CAVALLO
EDIC.	DATE	BY	CHECKED	REVISED-EDPR	MODIFICATION	03/24	REVISED-EDPR	S TIZZONI

INDICE GENERALE

INDICE GENERALE	2
1. INTRODUZIONE	3
2. DATI GENERALI	7
2.1. Dati del Proponente	7
3. DESCRIZIONE DEL PROGETTO	8
3.1. Localizzazione del progetto	8
3.2. Inquadramento catastale	10
3.3. Coordinate	11
4. CRITERI DI PROGETTO	11
4.1. Realizzazione delle linee elettriche	11
4.2. Strade di collegamento e viabilità	11
5. DESCRIZIONE DELL'IMPIANTO EOLICO	12
5.1. Descrizione generale	12
5.2. CARATTERISTICHE AEROGENERATORI	13
5.3. INFRASTRUTTURE ELETTRICHE	15
5.3.1. Elettrodotti MT	15
5.3.2. Interferenze dell'opera con sottoservizi e reticolo idraulico e idrografico	16
5.3.3. Stazione di trasformazione 150/30 kV e collegamento alla rete AT	
5.4. Opere civili	19
5.4.1. Opere civili relative all'impianto eolico	19
5.4.2. Opere civili relative alla stazione di trasformazione 150/30 kV	21
6. PRESCRIZIONI SULLA FASE DI CANTIERIZZAZIONE	21

1. INTRODUZIONE

Il presente documento fornisce la descrizione generale del progetto per la costruzione di un impianto per la produzione di energia elettrica da fonte eolica e delle relative opere connesse, da realizzarsi nei comuni di Castelluccio dei Sauri e Deliceto (FG).

La Società Wind Energy Castelluccio S.r.l. ha ottenuto, da parte della Regione Puglia, autorizzazione unica ai sensi del decreto legislativo 29 dicembre 2003 n°387, relativa alla costruzione ed all'esercizio:

- di un impianto per la produzione di energia da fonte eolica della potenza elettrica pari a 43,20
 MWe, costituito da 12 aerogeneratori della potenza uninominale pari a 3,6 MWe, sito nel comune di Castelluccio dei Sauri (FG) località "Cisterna Posta Cisternola Sterparo";
- di una stazione elettrica di trasformazione 30/150 kV collegata in antenna a 150 kV sul futuro ampliamento della stazione elettrica della RTN a 380/150 kV di Deliceto;
- del futuro ampliamento della stazione elettrica della RTN a 380/150 kV di Deliceto (Cod. Id. 201700265)

Di seguito i riferimenti autorizzativi:

- AU_AU N. 00034 del 22/02/2023 del Registro delle Determinazioni della AOO 159
- VIA_Decreto positivo di provvedimento di compatibilità ambientale DM n. 183 del 11/05/2022 (Prot. n. 71229 del 08/06/2022 del MITE)

Tuttavia, al termine della procedura di acquisto degli aerogeneratori, la società ha ritenuto vantaggioso, in termini tecnici economici, selezionare gli aerogeneratori Nordex N163 HH113 (7,0 MW e 6,8 MW) e Nordex N163 HH108 da 5,9 MW e di conseguenza rimodulare il layout eliminando l'aerogeneratore C06.

La modifica dell'aerogeneratore è stata effettuata tenendo in considerazione le risultanze della verifica di dettaglio, eseguita in sito sulla totalità delle aree interessate dalle installazioni di progetto. Di seguito tabella riepilogativa di dettaglio degli aerogeneratori;

ID Aerogeneratori	Modello WTG	
C01	Nordex N163 - HH 113 - 6,8 MW	
C02	Nordex N163 - HH 113 - 6,8 MW	
C03	Nordex N163 - HH 113 - 7,0 MW	
C04	Nordex N163 - HH 113 - 7,0 MW	
C05	Nordex N163 - HH 113 - 6,8 MW	
C07	Nordex N163 - HH 108 - 5,9 MW	
C08	Nordex N163 - HH 108 - 5,9 MW	
C09	Nordex N163 - HH 113 - 7,0 MW	
C10	Nordex N163 - HH 113 - 7,0 MW	
C11	Nordex N163 - HH 108- 5,9 MW	
C12	Nordex N163 - HH 108- 5,9 MW	
Ref. RELAZIONE TECNICA GENERALE		

Nella redazione del Progetto di variante sono stati confermati e rispettati i seguenti aspetti:

- 1. le aree interessate dalle opere previste nel progetto autorizzato restano invariate;
- 2. le particelle ove saranno installati gli aerogeneratori restano invariate ma si è provveduto ad effettuare degli spostamenti, di seguito tabella riepilogativa degli spostamenti effettuati;

ID Aerogeneratori	Spostamento
C01	24 m
C02	22 m
C03	26 m
C04	7 m
C05	0 m
C07	13 m
C06	Eliminata
C08	0 m
C09	0 m
C10	33 m
C11	13 m
C12	18 m

- 3. l'area occupata dall'impianto e dalle opere connesse non eccede quanto autorizzato;
- 4. il tracciato della rete di elettrodotti MT, sia all'interno che all'esterno dell'impianto eolico, resta inalterato rispetto a quanto autorizzato;
- 5. il numero degli aerogeneratori come già anticipato è inferiore a quelli del progetto autorizzato;
- 6. La variazione delle volumetrie di servizio è inferiore al 20% rispetto il progetto autorizzato
- 7. La variazione delle dimensioni delle pale è inferiore al 20% rispetto il progetto autorizzato

In conclusione, a seguito della presentazione della DILA con prot. n 039_24wec del 18/03/2024 secondo l'art. 6-bis del d.lgs. n. 28 del 2011 (articolo introdotto dall'art. 56, comma 1, della legge n. 120 del 2020) con la quale sono state apportate le seguenti modifiche rispetto al layout del progetto autorizzato:

- Modifica dell'aerogeneratore (Nordex N163) per esigenze tecniche-economiche e che consente di aumentare la potenza dell'impianto senza occupare ulteriori aree rispetto l'esistente (Potenza totale dell'impianto da 43,20 MW a 72 MW);
- Modifica (aumento) delle dimensioni di rotore e pale rispettando il limite del 20% imposto dall'Art. 56 del D.L. n. 76/2020;
- o Eliminazione di un aerogeneratore e quindi rimodulazione del layout

Le caratteristiche geometriche della Nordex N163 – HH113 sono le seguenti:

- Diametro rotorico pari a 163 m;
- Altezza al mozzo pari a 113 m;
- Altezza al TIP (Massima altezza) pari a 194,5 m.

Di seguito si riporta Tabella di confronto tra Aerogeneratore in progetto e quello autorizzato

Nordex N163 – HH113						
Grandezza	Autorizzato	DILA – Progetto in variante				
Potenza nominale	3,6 MW _E	7,0 MWE - 6,8 MWE				
Diametro rotorico	140 m	163 m				
Altezza mozzo (hub height)	110 m	113 m				
Altezza massima (tip height)	180 m	194,5 m				
Tipo di torre	tubolare	tubolare				
Numero di pale	3	3				
Velocità di rotazione	compresa tra 4 e 9,6 giri/min	compresa tra 6 e 11,6 giri/min				
Velocità di attivazione-bloccaggio	3,0-22 m/s	3,0-26 m/s				
Sistema di controllo	passo delle pale	passo delle pale				
Trasformatore	Interno all'aerogeneratore	Interno all'aerogeneratore				
Frequenza	50 Hz	50/60 Hz				

Tabella 1: Caratteristiche principali degli aerogeneratori a confronto Nordex N163 – HH113

Le caratteristiche geometriche della Nordex N163 – HH108 sono le seguenti:

- Diametro rotorico pari a 163 m;
- Altezza al mozzo pari a 108 m;
- Altezza al TIP (Massima altezza) pari a 189,5 m.

Di seguito si riporta Tabella di confronto tra Aerogeneratore in progetto e quello autorizzato

Nordex N163 - HH113					
Grandezza	Autorizzato	DILA – Progetto in variante			
Potenza nominale	3,6 MW _E	5,9 MWE			
Diametro rotorico	140 m	163 m			
Altezza mozzo (hub height)	110 m	108 m			
Altezza massima (tip height)	180 m	189,5 m			
Tipo di torre	tubolare	tubolare			
Numero di pale	3	3			
Velocità di rotazione	compresa tra 4 e 9,6 giri/min	compresa tra 6 e 11,6 giri/min			
Velocità di attivazione-bloccaggio	3,0-22 m/s	3,0-26 m/s			
Sistema di controllo	passo delle pale	passo delle pale			
Trasformatore	Interno all'aerogeneratore	Interno all'aerogeneratore			
Frequenza	50 Hz	50/60 Hz			

Tabella 2: Caratteristiche principali degli aerogeneratori a confronto Nordex N163 – HH108

ID Aerogeneratori	Modello WTG
C01	Nordex N163 - HH 113 - 6,8 MW
C02	Nordex N163 - HH 113 - 6,8 MW
C03	Nordex N163 - HH 113 - 7,0 MW
C04	Nordex N163 - HH 113 - 7,0 MW
C05	Nordex N163 - HH 113 - 6,8 MW
C07	Nordex N163 - HH 108 - 5,9 MW
C08	Nordex N163 - HH 108 - 5,9 MW
C09	Nordex N163 - HH 113 - 7,0 MW
C10	Nordex N163 - HH 113 - 7,0 MW
C11	Nordex N163 - HH 108- 5,9 MW
C12	Nordex N163 - HH 108- 5,9 MW
Potenza totale	72 MW

Tabella 3: Riepilogo potenze aerogeneratori

2. DATI GENERALI

2.1. DATI DEL PROPONENTE

Di seguito i dati anagrafici del soggetto proponente:

Denominazione	Wind Energy Castelluccio S.r.l.
Indirizzo sede legale ed operativa	MILANO (MI) VIA ROBERTO LEPETIT 8/10 CAP 20124
Codice Fiscale e Partita IVA	02217810684
Numero REA	MI - 2663119
Capitale Sociale	10.000,00
Socio Unico	EDP RENEWABLES EUROPE S.L.
Telefono	02 669 69 66
Fax	02 669 69 66
PEC	windcastellucciosrl@legpec.it

Tabella 2-1 - Informazioni principali della Società Proponente

3. DESCRIZIONE DEL PROGETTO

L'impianto per la produzione di energia elettrica da fonte eolica è costituito da tre parti fondamentali:

- Impianto eolico, costituito da:
 - aerogeneratori;
 - linee in cavo interrato MT 30 kV, per il collegamento degli aerogeneratori all'interno del parco eolico;
 - dorsali in cavo interrato MT 30 kV per il vettoriamento dell'energia elettrica prodotta alla stazione elettrica di trasformazione 150/30 kV;
- Impianto di utenza, costituito da:
 - stazione elettrica di trasformazione 150/30 kV (Stazione Utente), di proprietà della società;
 - elettrodotto in cavo interrato 150 kV per il collegamento tra la Stazione Utente e lo stallo arrivo produttore all'interno della Stazione RTN "Deliceto"
- Impianto di rete, costituito dallo stallo 150 kV arrivo produttore all'interno della Stazione RTN,
 di proprietà del gestore di Rete.

Per **Progetto esecutivo dell'Impianto Eolico** si intende il progetto delle opere di cui al punto 1), ed il presente documento si configura come la Relazione tecnica descrittiva del medesimo progetto.

Per **Progetto esecutivo dell'Impianto di Utenza** si intende il progetto delle opere di cui al punto 2), per le quali si rimanda alla relazione tecnica di scopo.

Per **Progetto esecutivo dell'Impianto di Rete** si intende il progetto delle opere di cui al punto 3), per le quali si rimanda alla relazione tecnica di scopo.

Le opere di costruzione della stazione elettrica di trasformazione 150/30 kV e della connessione alla Stazione Elettrica RTN 150 kV denominata DELICETO sono dettagliatamente descritte nel Progetto Esercizio dell'Impianto di Utenza e nel Progetto Esercizio dell'Impianto di Rete.

3.1. LOCALIZZAZIONE DEL PROGETTO

L'impianto eolico oggetto del presente documento sarà realizzato nel comune di Castelluccio dei Sauri (FG), località Cisterna – Posta Cisternola – Sterparo.

Il cavidotto MT relativo allo stesso impianti interesserà invece il comune di Deliceto (FG)

Le opere Utente e di Rete saranno infine realizzate interamente nel comune di Deliceto (FG).

Gli aerogeneratori saranno installati su un'area sita a circa 1,7 km a sud/sud-est dal centro abitato del comune di Castelluccio dei Sauri (località "Cisterna", "Posta Cisternola", "Sterparo)

Topograficamente l'area occupa la porzione centro orientale della tavoletta I.G.M. in scala 1:25.000:

- 174-I-NE (Bovino)
- 174 IV-SE (Deliceto)
- 175 IV-NO (Castelluccio dei Sauri)
- 175 IV-SO (Ascoli Satriano)

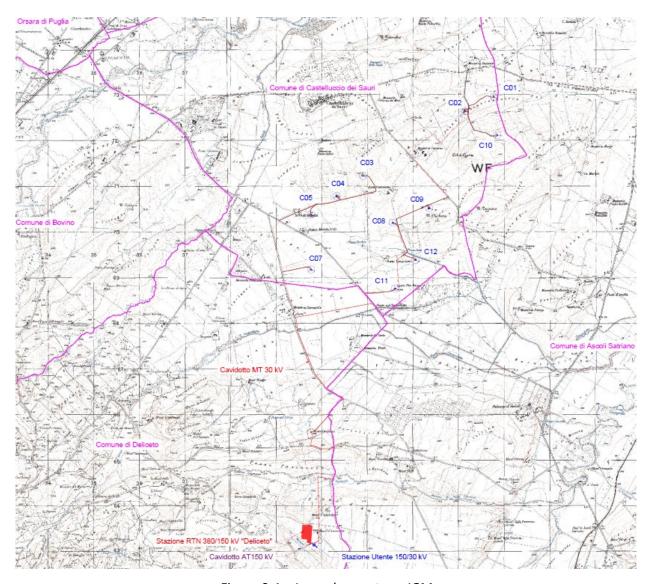


Figura 3-1 – Inquadramento su IGM

3.2. INQUADRAMENTO CATASTALE

Gli aerogeneratori sono ubicati nel comune di Castelluccio dei Sauri (FG).

Gli estremi catastali di questi terreni sono riassunti nella tabella seguente:

		F P.	5.11-	Intestatario		O villa)		Superficie				
ID	Comune	Foglio	P.lla	Generalità	Codice Fiscale	Titolo	Quota	Qualità	Classe	ha	are	ca
SET	Deliceto (FG)	42	62	NATALE ANTONIETTA nata a DELICETO (FG) il 04/07/1949	NTLNNT49L44D269J	Proprieta'	1000/1000	ULIVETO	U	1	8	93
JLI	Deliceto (Fd)	42	02	DI CARLO GIUSEPPE nato a FOGGIA (FG) il 25/04/1977	DCRGPP77D25D643M	Proprieta'	1/1	SEMINATIVO	3	1	7	93
C01	Castelluccio dei Sauri (FG)	13	49	PERNA LUCIA nata a CASTELLUCCIO DEI SAURI (FG) il 01/04/1957	PRNLCU57D41C198H	Proprieta'	10000/10000	SEMINATIVO	2	10	12	92
C02	Castelluccio dei Sauri	13	273	PASQUARIELLO CARMELO nato a ACCADIA (FG) il 08/06/1950	PSQCML50H08A015S	Proprieta'	1/2	SEMIN IRRIG	U	1	51	90
COZ	(FG)	15	273	PASQUARIELLO ROSARIA CARMELA nata a ACCADIA (FG) il 07/01/1958	PSQRRC58A47A015I	Proprieta'	1/2	SEIVIIN INNIG	U		51	90
C03	Castelluccio dei Sauri (FG)	16	51	IL DUCA DEI SAURI SOCIETA' AGRICOLA S.R.L. con sede in CASTELLUCCIO DEI SAURI (FG)	4487490718	Proprieta'	1/1	SEMINATIVO	2	4	0	50
C04	Castelluccio dei Sauri (FG)	15	35	SALVAGNO FAUSTO nato a BOVINO (FG) il 15/02/1948	SLVFST48B15B104G	Proprieta'	1/1	SEMINATIVO	4	7	0	0
C05	Castelluccio dei Sauri (FG)	18	95	AGRICOLA SOCIETA' SEMPLICE DI NOTA OLMITELLA con sede in DELICETO (FG)	3858330719	Proprieta'	1/1	SEMINATIVO	2	35	81	57
C07	Castelluccio dei Sauri (FG)	18	28	DI CARLO MARIA CONCETTA CLARA nata a FOGGIA (FG) il 08/10/1976	DCRMCN76R48D643A	Proprieta'	1/1	SEMINATIVO	2	16	7	13
C08	Castelluccio dei Sauri (FG)	19	102	BIZZARRO LEONARDO nato a ORSARA DI PUGLIA (FG) il 06/12/1961	BZZLRD61T06G125G	Proprieta'	1/1	SEMINATIVO	2	2	0	0
C09	Castelluccio dei Sauri (FG)	17	13	LEONE GIUSEPPE nato a LATINA (LT) il 08/01/1958	LNEGPP58A08E472M	Proprieta'	1/1	SEMINATIVO	3	17	20	0
C10	Castelluccio dei Sauri (FG)	13	24	FERRI ANTONIO nato a MONTE SANT'ANGELO (FG) il 04/04/1957	FRRNTN57D04F631H	Proprieta'	1000/1000	SEMINATIVO	3	5	33	83
C11	Castelluccio dei Sauri (FG)	19	48	TOMAIUOLI ROCCHINA nata a FOGGIA (FG) il 01/12/1974	TMLRCH74T41D643X	Proprieta'	1/1	SEMINATIVO	1	6	88	88
C12	Castelluccio dei Sauri (FG)	19	17	LOMBARDI ANGELO nato a BOVINO (FG) il 03/08/1957	LMBNGL57M03B104G	Proprieta'	1/1	SEMINATIVO	2	10	85	19

Tabella 2: Estremi catastali aerogeneratori e SET

3.3. COORDINATE

Le coordinate definitive degli aerogeneratori sono riportate nella seguente tabella:

ID Aerogeneratori	COORDINATE WGS	Quota s.l.m. (m)	
	EST (m)	NORD (m)	
C01	543698	4572774	191
C02	543063	4572465	200
C03	540828	4571046	267
C04	540254	4570602	230
C05	539688	4570193	211
C07	539693	4568983	216
C08	541484	4570014	211
C09	542279	4570339	235
C10	543772	4571936	209
C11	541534	4568569	196
C12	541981	4569196	189

Tabella 3: Coordinate aerogeneratori

4. CRITERI DI PROGETTO

4.1. REALIZZAZIONE DELLE LINEE ELETTRICHE

Le opere elettriche sono state progettate secondo i seguenti criteri:

- gli elettrodotti a 30 kV, e quelli per il trasporto dell'energia prodotta dal parco alla stazione di trasformazione 150/30 kV; saranno del tipo interrato, con utilizzo di adeguate protezioni meccaniche ove necessario;
- i cavi elettrici hanno caratteristiche tecniche e profondità di posa conformi alla normativa vigente; i punti di giunzione saranno accessibili ed opportunamente identificati;
- i tracciati delle linee elettriche seguono per quanto possibile quelli delle strade a servizio del parco, minimizzando in tal modo l'attraversamento di terreni agricoli; per maggiori dettagli circa il tracciato dei cavi interrati, si rimanda alle tavole di progetto.

4.2. STRADE DI COLLEGAMENTO E VIABILITÀ

È prevista la nuova costruzione di tratti di strade per assicurare il collegamento dell'impianto alla rete viaria esistente da adeguare; i tratti di nuova costruzione (650 m per la C01, 150 m per la C02, 450 m per

la C03, 120 m per la C04, 200 m per la C05, 630 m per la C07, 1300 m per l'accesso al cluster C08-C09-C12, 100 m per la C08, 150 m per la C09, 100 m per la C10, 700 m per la C11, 300 m per la C12) sono del tipo strada bianca, non bitumati; per maggiori dettagli si faccia riferimento alle tavole di progetto che mostrano i tratti di strada esistenti da adeguare e quelli invece che saranno realizzati ex-novo.

Le strade di nuova realizzazione, così come i tratti di rete esistenti riadattati, avranno pavimentazione di tipo permeabile, costituita da materiale drenante; è prevista la posa di circa 40 cm di materiale di cava e di 10 cm di misto granulare stabilizzato; come da tipici di progetto.

Per i dettagli costruttivi delle strade si deve fare riferimento alla relazione dedicata e alle tavole del progetto esecutivo.

5. DESCRIZIONE DELL'IMPIANTO EOLICO

5.1. DESCRIZIONE GENERALE

L'impianto eolico è caratterizzato dalla struttura seguente:

- N. 3 aerogeneratori, completi delle relative torri di sostegno, di potenza nominale massima di 6,8 MW;
- N. 4 aerogeneratori, completi delle relative torri di sostegno, di potenza nominale massima di 7,0 MW;
- N. 4 aerogeneratori, completi delle relative torri di sostegno, di potenza nominale massima di 5,9 MW;
- una rete interrata di cavi MT 30 kV, per il collegamento tra gli aerogeneratori e per la connessione alla stazione di trasformazione 150/30 kV;
- una stazione di trasformazione 150/30 kV completa di relative apparecchiature ausiliarie (quadri, sistemi di controllo e protezione, trasformatore ausiliario) ed elettrodotto interrato a 150 kV per il collegamento alla Stazione Elettrica RTN "Deliceto";
- stallo arrivo produttore all'interno della Stazione Elettrica RTN 150 kV "Deliceto", sita nel comune di Petralia Sottana (PA), a carico del gestore della Rete di Trasmissione Nazionale (Terna S.p.A.);
- Opere civili di servizio, consistenti principalmente in opere di viabilità e cantierizzazione e dall'edificio della sottostazione elettrica.

5.2. CARATTERISTICHE AEROGENERATORI

Gli aerogeneratori sono del tipo ad asse orizzontale, con tre pale, con regolazione del passo e sistema di regolazione tale da poter funzionare a velocità variabile ed ottimizzare costantemente l'angolo di incidenza tra pala e vento.

Le componenti principali degli aerogeneratori sono le seguenti:

- un corpo centrale (navicella), costituita da una struttura portante in acciaio, rivestita da un
 guscio in materiale composito (tipicamente fibra di vetro e resina epossidica), vincolata alla
 testa della torre tramite un cuscinetto a strisciamento che le consente di ruotare sul suo asse di
 imbardata; la navicella contiene l'albero lento, unito direttamente al mozzo delle pale, che
 trasmette la potenza captata dalle pale al generatore, anch'esso installato all'interno della
 navicella, attraverso un moltiplicatore di giri; l'accesso alla navicella avviene tramite una scala
 metallica installata all'interno della torre ed un passo d'uomo posto in prossimità del cuscinetto
 a strisciamento;
- un mozzo, cui sono collegate 3 pale in materiale composito, tipicamente formato da fibre di vetro in matrice epossidica, a loro volta costituite da due gusci collegati ad una trave portante e con inserti di acciaio che uniscono la pala al cuscinetto e quindi al mozzo;
- la torre di sostegno tubolare in acciaio sulla cui testa è montata la navicella; la torre è ancorata al terreno a mezzo di idonea fondazione in c.a.
- L'energia cinetica del vento, raccolta dalle pale rotoriche, viene utilizzata per mantenere in rotazione l'albero principale, su cui il rotore è calettato. Quindi attraverso il moltiplicatore di giri, l'energia cinetica dell'albero principale viene trasferita al generatore e trasformata in energia elettrica.

Il fattore di potenza ai morsetti del generatore è regolato attraverso un sistema di rifasamento continuo.

Le caratteristiche geometriche della Nordex N163 – HH113 sono le seguenti:

Nordex N163 – HH113					
Grandezza	Valore				
Potenza nominale	7,0 MWE - 6,8 MWE				
Diametro rotorico	163 m				
Altezza mozzo (hub height)	113 m				
Altezza massima (tip height)	194,5 m				
Tipo di torre	tubolare				
Numero di pale	3				
Velocità di rotazione	compresa tra 6 e 11,6 giri/min				
Velocità di attivazione-bloccaggio	3,0-26 m/s				
Sistema di controllo	passo delle pale				
Trasformatore	Interno all'aerogeneratore				
Frequenza	50/60 Hz				

Tabella 4: Caratteristiche principali degli aerogeneratori a confronto Nordex N163 – HH113

Le caratteristiche geometriche della Nordex N163 – HH108 sono le seguenti:

Nordex N163 - HH113					
Grandezza	Valore				
Potenza nominale	5,9 MWE				
Diametro rotorico	163 m				
Altezza mozzo (hub height)	108 m				
Altezza massima (tip height)	189,5 m				
Tipo di torre	tubolare				
Numero di pale	3				
Velocità di rotazione	compresa tra 6 e 11,6 giri/min				
Velocità di attivazione-bloccaggio	3,0-26 m/s				
Sistema di controllo	passo delle pale				
Trasformatore	Interno all'aerogeneratore				
Frequenza	50/60 Hz				

Tabella 5: Caratteristiche principali degli aerogeneratori a confronto Nordex N163 – HH108

Come mostrato in tabella, l'altezza massima al colmo dell'aerogeneratore è di 194,5 m, intendendo tale misura uguale alla somma dell'altezza della torre più l'altezza della pala (altezza pala considerata come metà del diametro rotorico).

La protezione della macchina contro i fulmini è assicurata da captatori metallici situati sulla punta di ciascuna pala, collegati a terra attraverso la struttura di sostegno dell'aerogeneratore.

La navicella dell'aerogeneratore è protetta da un sistema antincendio dedicato e attivato da appositi rilevatori di fumo e/o CO.

I sistemi di segnalazione notturna e diurna per la segnalazione aerea saranno in linea con le prescrizioni dell'ENAC (Ente Nazionale per l'Aviazione Civile).

5.3. INFRASTRUTTURE ELETTRICHE

5.3.1. Elettrodotti MT

Ciascun cavo di collegamento tra gli aerogeneratori e la stazione utente è stato dimensionato seguendo le norme specifiche, secondo i criteri di portata, corto circuito, e massima caduta di tensione.

Le sezioni di progetto saranno pari a 150 mm2, 300 mm2, 630 mm2 e 800 mm2.

	Tratta		Caratteristiche cavi				
			ie				
Linee MT	da	а	Conduttoori per fase	Sezione (mm²)	L	Materiale	Uo/U(Um)
					(m)	Cond.	(kV)
	C01	C02	1	150	875	Al	18/30 (36)
Linea MT 1	C10	C02	1	150	1400	Al	18/30 (36)
	C02	C09	1	630	3800	Al	18/30 (36)
	C09	SET	1	800	12260	Al	18/30 (36)
Linea MT 2	C03	C04	1	150	1400	Al	18/30 (36)
	C04	C05	1	300	1360	Al	18/30 (36)
	C05	C07	1	630	3000	Al	18/30 (36)
	C07	SET	1	630	8720	Al	18/30 (36)
Linea MT 3	C08	C12	1	150	1190	Al	18/30 (36)
	C12	C11	1	300	1225	Al	18/30 (36)
	C11	SET	1	630	9300	Al	18/30 (36)

Tabella 6: Dorsali MT

Ref. RELAZIONE TECNICA GENERALE - 15

Le principali caratteristiche tecniche dei cavi a 30 kV sono riportate nella tabella seguente:

Grandezza	Valore		
Tipo	Unipolari/Tripolari ad elica visibile		
Materiale conduttore	Alluminio		
Materiale isolante	XLPE/EPR		
Schermo metallico	Alluminio		
Guaina esterna	PE		
Tensione nominale (Uo/U/Um):	18/30/36 kV		
Frequenza nominale:	50 Hz		
Sezione	150/300/630/800 mm ²		

Tabella 7: Caratteristiche principali dei cavi a 30 kV

I cavi avranno caratteristiche tali da consentire la posa direttamente interrata, in accordo alle tavole di progetto.

I cavi di trasmissione dati riguardanti i vari aerogeneratori sono di tipo in F.O.

5.3.2. Interferenze dell'opera con sottoservizi e reticolo idraulico e idrografico

In fase di progettazione esecutiva sono state riscontrate e studiate tutte le interferenze tra le opere progettate e le infrastrutture esistenti, come riportate nelle tavole allegate e riassunte nella tabella seguente.

Tipologia di interferenza	Risoluzione interferenza	Coordinate (WGS84 - fuso33)
Int.1 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4572580.4464 m N 543156.3822 m E
Int.2 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4572366.0083 m N 543136.7735 m E
Int.3 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4572366.0083 m N 543136.7735 m E
Int.4 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4572366.0083 m N 543136.7735 m E
Int.5 Attraversamento cavidotto 30kV – con tombino esistente	Posa cavi MT tramite trivellazione orizzontale controllata,con profondità minima a 2,5 m rispetto al manufatto.	4572219.3332 m N 543186.9260 m E

APRILE 2024

Int.6 Attraversamento cavidotto 30kV – con tombino esistente	Posa cavi MT tramite trivellazione orizzontale controllata,con profondità minima a 2,5 m rispetto al manufatto.	4572257.1027 m N 543061.1597 m E
Int.7 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4572096.5831 m N 542859.3738 m E
Int.8 Attraversamento cavidotto 30Kv – con condotta consorzio	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4572058.3334 m N 542817.7466 m E
Int.9 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4571781.9750 m N 542562.3050 m E
Int.10 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4571762.8263 m N 542535.2817 m E
Int.11 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4571660.4979 m N 541869.6371 m E
Int.12 Attraversamento cavidotto 30kV – con gasdotto Italgas	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4571598.5507 m N 541771.5347 m E
Int.13 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT tramite trivellazione orizzontale controllata, con profondità minima a 1,0 m rispetto alla condotta idrica e profondità minima a 2,5 m rispetto al manufatto.	4571446.4087 m N 541913.7826 m E
Int.14 Attraversamento cavidotto 30kV – con tombino esistente	Posa cavi MT tramite trivellazione orizzontale controllata, con profondità minima a 1,0 m rispetto alla condotta idrica e profondità minima a 2,5 m rispetto al manufatto.	4571446.4087 m N 541913.7826 m E
Int.15 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4571048.6025 m N 542272.4428 m E

APRILE 2024

	1	
Int. 16 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4570663.4986 m N 542626.7944 m E
Int. 17 Attraversamento cavidotto 30kV – con corso d'acqua	Posa cavi MT tramite trivellazione orizzontale controllata,con profondità minima a 2,5 m rispetto al manufatto.	4570262.5451 m N 541949.0407 m E
Int. 18 Attraversamento cavidotto 30kV – con corso d'acqua	Posa cavi MT tramite trivellazione orizzontale controllata, con profondità minima a 2,5 m rispetto al manufatto.	4570262.5451 m N 541949.0407 m E
Int. 19 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT tramite trivellazione orizzontale controllata, con profondità minima a 1,0 m rispetto alla condotta idrica e profondità minima a 2,5 m rispetto al manufatto di nuova realizzazione.	4570135.1906 m N 541647.8703 m E
Int. 20 Attraversamento cavidotto 30kV – con corso d'acqua	Posa cavi MT tramite trivellazione orizzontale controllata, con profondità minima a 1,0 m rispetto alla condotta idrica e profondità minima a 2,5 m rispetto al manufatto di nuova realizzazione.	4570135.1906 m N 541647.8703 m E
Int. 21 Attraversamento cavidotto 30kV – con condotta consorzio	Posa cavi MT in tubo di acciaio con profondità minima di 0,50 m rispetto alla condotta idrica	4570051.5292 m N 541575.9029 m E
Int. 22 Attraversamento cavidotto 30kV – con tombino esistente	Posa cavi MT tramite trivellazione orizzontale controllata,con profondità minima a 2,5 m rispetto al manufatto.	4569381.4693 m N 541799.5386 m E
Int. 23 Attraversamento cavidotto 30kV – con tombino esistente	Posa cavi MT tramite trivellazione orizzontale controllata,con profondità minima a 2,5 m rispetto al manufatto.	4568982.8959 m N 541586.3678 m E
Int. 24 Attraversamento cavidotto 30kV – con tombino esistente	Posa cavi MT tramite trivellazione orizzontale controllata,con profondità minima a 2,5 m rispetto al manufatto.	4570589.3002 m N 540665.1862 m E
St. 01 Interferenza strada parco con corso d'acqua	Posa di nuovo tombino scatolare per attraversamento delle dimensioni 2,5 x 1,0	4570262.5451 m N 541949.0407 m E
St. 02 Interferenza strada parco con corso d'acqua	Posa di nuovo tombino scatolare per attraversamento delle dimensioni 2,5 x 1,0	4570262.5451 m N 541949.0407 m E
St. 03 Interferenza strada parco con corso d'acqua	Posa di nuovo tombino scatolare per attraversamento delle dimensioni 2,5 x 1,2	4570262.5451 m N 541949.0407 m E

Tabella 8: Interferenze

5.3.3. Stazione di trasformazione 150/30 kV e collegamento alla rete AT

Le dorsali di collegamento in Media Tensione a 30 kV sono collegate al quadro in media tensione a 30 kV installato nella cabina della Stazione di Trasformazione 150/30 kV, di proprietà della Società. Tale stazione sarà a sua volta collegata, mediante un elettrodotto interrato a 150 kV, con la sezione a 150 kV della Stazione Elettrica RTN "Deliceto", di proprietà di Terna S.p.A.

Per maggiori dettagli sulle opere di connessione dell'impianto eolico si rimanda al Progetto Esecutivo dell'Impianto di Utenza/Impianto di Rete

5.4. OPERE CIVILI

Le opere civili previste per la realizzazione del parco eolico possono essere suddivise in:

- Opere civili relative all'impianto eolico
 - o Fondazioni degli aerogeneratori;
 - Piazzole di montaggio degli aerogeneratori, aree di stoccaggio temporaneo "blade" e piazzole ausiliarie;
 - Piazzole di manutenzione in fase di esercizio;
 - Strade e cavidotti.
- Opere civili relative alla stazione di trasformazione 150/30 kV
 - Fondazioni delle apparecchiature elettriche;
 - Edifici;
 - Sistema di trattamento acque di prima pioggia.
- Attività di ripristino ambientale.

5.4.1. Opere civili relative all'impianto eolico

5.4.1.1. Fondazioni degli aerogeneratori

Sulla base delle risultanze della relazione geologica e delle calcolazioni geotecniche, si prevedono fondazioni circolari di diametro 21 e 23 m, di spessore variabile da un minimo di 1,10 m (sul bordo esterno) ad un massimo di 2,89 m in corrispondenza della zona centrale di attacco della torre (fig. successiva). Entrambe le tipologie di fondazione saranno su pali.

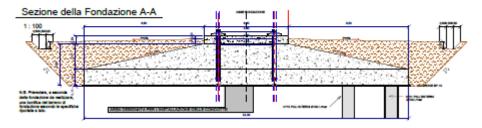


Figura 5-1 – Tipico fondazione tipo 1 aerogeneratore

RELAZIONE TECNICA GENERALE

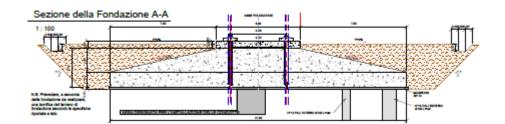


Figura 5-2 – Tipico fondazione tipo 2 aerogeneratore

Per i dettagli costruttivi della fondazione si rimanda alle tavole costruttive.

5.4.1.2. <u>Piazzole di stoccaggio e montaggio degli aerogeneratori e piazzole ausiliarie per il montaggio</u> della gru

Le piazzole di montaggio degli aerogeneratori e le piazzole ausiliarie sono opere temporanee che vengono realizzate allo scopo di consentire i montaggi meccanici degli aerogeneratori con gru:

- Le piazzole di montaggio sono quelle deputate ad ospitare la gru per il montaggio degli aerogeneratori.
- Le piazzole ausiliarie sono utilizzate invece per il posizionamento della gru secondaria, utilizzata per il montaggio del braccio della gru principale e durante i sollevamenti.
- Le piazzole di stoccaggio delle "blade" sono degli spazi dedicati al posizionamento temporaneo delle pale prima di essere sollevati dalla gru.

A montaggio ultimato la superficie eccedente delle piazzole per costruzione (piazzola di montaggio, piazzole ausiliare, arre di stoccaggio temporaneo "blade") verrà ripristinata come nella situazione "ante operam", prevedendo il riporto di terreno vegetale e consentendo la semina e la piantumazione delle specie vegetali ove previsto per la rinaturalizzazione dei versanti.

Per i dettagli relativi alle opere civili e ai relativi movimenti terra, nonché alla gestione delle terre e rocce da scavo di rimanda alla documentazione di dettagli inclusa nel progetto.

5.4.1.3. Piazzole di manutenzione

Terminate le operazioni di montaggio, si procederà alla riduzione e risagomatura delle piazzole per costruzione, in modo tale da dare luogo alle piazzole di servizio degli aerogeneratori, necessarie per l'accesso e la manutenzione periodica delle macchine.

Il layout finale del parco eolico in fase di esercizio, con le strade finali e le piazzole di manutenzione è mostrato nelle tavole di progetto.

5.4.1.4. Strade e cavidotti

Si rimanda alle tavole esecutive per i dettagli realizzativi delle nuove strade di parco, sia in fase di costruzione che in fase di esercizio, nonché per i dettagli delle vie cavi.

5.4.2. Opere civili relative alla stazione di trasformazione 150/30 kV

Per maggiori dettagli sulle opere civili della sottostazione si rimanda al Progetto Esecutivo dell'Impianto di Utenza/Impianto di Rete

6. PRESCRIZIONI SULLA FASE DI CANTIERIZZAZIONE

Gli scavi in genere per qualsiasi lavoro, a mano o con mezzi meccanici, saranno eseguiti secondo i disegni di progetto esecutivo e la relazione geologica e geotecnica, di cui al D.M. LL.PP. 11 marzo 1988 riguardante le norme tecniche sui terreni e i criteri di esecuzione delle opere di sostegno e di fondazione e la relativa Circ. M. LL. PP. 24 settembre 1988, n. 30483, che sono stati programmati e saranno realizzati a breve.

Le materie provenienti dagli scavi saranno successivamente utilizzate, e pertanto preventivamente individuate delle aree di deposito temporaneo dalle quali riprendere le materie a tempo opportuno. In ogni caso le materie depositate non saranno di danno ai lavori, alle proprietà pubbliche o private e al libero deflusso delle acque scorrenti in superficie.

Al fine di garantire assenza di trasporto solido di terre di scavo in stoccaggio in aree dedicate, da parte delle acque piovane, sarà previsto un adeguato sistema di copertura impermeabile dei materiali in stoccaggio atto a garantire anche assenza di trasporto atmosferico nelle condizioni di vento intenso.

Gli scavi di fondazione saranno di norma eseguiti a pareti verticali sostenute con armatura e sbadacchiature adeguate. Questi potranno però, ove ragioni speciali non lo vietino, essere eseguiti con pareti a scarpata, provvedendo al successivo riempimento del vuoto rimasto intorno alle murature di fondazione dell'opera con materiale adatto, e al necessario costipamento di quest'ultimo.

Analogamente si dovrà procedere a riempire i vuoti che dovessero rimanere attorno alle strutture stesse, pure essendosi eseguiti a pareti verticali, in conseguenza della esecuzione delle strutture con riseghe in fondazione.

A protezione degli scavi, le aree di lavoro saranno delimitate con sbarramenti provvisori; saranno costruiti percorsi protetti per i pedoni e collocati i necessari cartelli stradali per segnalare ostacoli, interruzioni e pericoli.

Per la formazione dei rilevati o per qualunque opera di rinterro, ovvero per riempire i vuoti tra le pareti degli scavi e le fondazioni, si impiegheranno, fino al loro totale esaurimento, tutte le materie provenienti dagli scavi di qualsiasi genere eseguiti per il cantiere.

Nella formazione del corpo stradale e relative pertinenze e nelle operazioni di movimentazione di materie, sarà fatto riferimento in generale alle norme CNR-UNI-10006.

Si provvederà, ove previsto ed entro i limiti della fascia del terreno messa a disposizione, all'apertura della pista di lavoro e al suo spianamento, in accordo con le caratteristiche di cui sopra, compresa la rimozione degli ostacoli che durante la fase di lavoro dovessero presentarsi sul tracciato, quali siepi, arbusti, recinti, conformazioni particolari del terreno, ecc. e la posa in sito di tutte le opere necessarie al transito e al passaggio del personale o dei mezzi.

Gli scavi e i rilevati occorrenti per la formazione del corpo stradale, e per ricavare i relativi fossi, cunette, accessi, passaggi, rampe e simili, saranno eseguiti conformi alle previsioni di

APRILE 2024

PROGETTO IMPIANTO EOLICO "CASTALLUCCIO DEI SAURI" Comune di Castelluccio dei Sauri e Deliceto (FG)

progetto; sarà usata ogni esattezza nello scavare i fossi, nello spianare e sistemare i marciapiedi o banchine, nel configurare le scarpate e nel profilare i cigli della strada, che dovranno perciò risultare paralleli all'asse stradale.

Nell'esecuzione degli scavi si procederà in modo che i cigli siano diligentemente profilati, le scarpate raggiungano l'inclinazione prevista o che sarà ritenuta necessaria allo scopo di impedire scoscendimenti.

Per la formazione dei rilevati si impiegheranno, fino al loro totale esaurimento, tutte le materie provenienti dagli scavi.

Il suolo costituente la base sulla quale si dovranno impiantare i rilevati che formano il corpo stradale, od opere consimili, sarà accuratamente preparato, espurgandolo da piante, cespugli, erbe, canne, radici e da qualsiasi altra materia eterogenea, e trasportando fuori della sede del lavoro le materie di rifiuto.

La base dei suddetti rilevati, se ricadente su terreno pianeggiante, sarà inoltre arata, e se cadente sulla scarpata di altro rilevato esistente o su terreno e declivio trasversale superiore al quindici per cento, sarà preparata a gradini alti circa 30 cm, con inclinazione inversa a quella del rilevato esistente o del terreno.

La terra da trasportare nei rilevati sarà anch'essa preventivamente espurgata da erbe, canne, radici e da qualsiasi altra materia eterogenea e dovrà essere disposta in rilevato a cordoli alti da 0,30 m a 0,50 m, ben pigiata e assodata con particolare diligenza.

Il terreno interessato dalla risistemazione del corpo stradale e delle aree che dovranno sopportare direttamente il passaggio dei mezzi di trasporto e le operazioni di installazione, saranno preparati asportando il terreno vegetale per tutta la superficie e per la profondità fissata dal progetto esecutivo.

I piani di posa dovranno anche essere liberati da qualsiasi materiale di altra natura vegetale, quali radici, cespugli, alberi.

Le massicciate, sia se devono formare la definitiva carreggiata vera e propria portante il traffico dei veicoli e di per sé resistente, che se debbano eseguirsi per consolidamento o sostegno di pavimentazione destinata a costituire la carreggiata stessa, saranno eseguite con pietrisco o ghiaia aventi le dimensioni appropriate al tipo di carreggiata da formare. Tutti i materiali da impiegare per la formazione della massicciata stradale dovranno soddisfare alle "Norme per l'accettazione dei pietrischi, dei pietrischetti, delle graniglie, delle sabbie e degli additivi per costruzioni stradali" di cui al "Fascicolo n. 4" del Consiglio Nazionale delle Ricerche, edizione 1953.

6.1. INTERFERENZE CON IL TRAFFICO LOCALE E PERICOLI PER LE PERSONE

In fase di realizzazione delle opere saranno predisposti i seguenti accorgimenti:

- I lavori saranno realizzati in modo da non ostacolare le infrastrutture esistenti (viabilità presente, linea ferrata, corsi d'acqua presenti, ecc.).
- Durante la fase di cantiere verranno usate macchine operatrici (escavatori, dumper, ecc.) a norma, sia per quanto attiene le emissioni in atmosfera che per i livelli di rumorosità; periodicamente sarà previsto il carico, il trasporto e lo smaltimento, presso una discarica autorizzata, dei materiali e delle attrezzature di rifiuto in modo da ripristinare, a fine lavori, l'equilibrio del sito.