COMMITTENTE:

PROGETTAZIONE:

TROOL TRAZIONE.					GRUPPO FERR		LFERR O STATO ITALIANE
U.O. OPERE CIVIL	_l						
PROGETTO DEFII	OVITIVO						
RADDOPPIO DELLA	LINEA GEN	OVA-VE	NTIMIGL	IA			
TRATTA FINALE LIGI	JRE-ANDOF	RA					
OPERE PRINCIPALI - VI02 - Viadotto su Tor Relazione di calcolo pila	rente Marem	nola/Gius		a km 71+	327 a km ī	71+361	
							SCALA:
							-
COMMESSA LOTTO FA	ASE ENTE T	C L	OPERA/D	SCIPLINA	PROGR.	REV.	
Rev Descrizione A Emissione esecutiva	G. Grimaldi	Data Febbraio 2022	Verificato D_Güerci	Data Febbraio 2022	Approvato	Data Febbraio 2022	Autorizzato Data Oro Oper Chill & Griffor State Ordine delli Ingellia State Ordine de
File: IV0I00D09CLVI02E5002A						n	. Elab.:

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA IVOI

LOTTO CODIFICA

00 D 09 CL

DOCUMENTO VI 02 E5 002 REV.

FOGLIO 2 di 57

INDICE

1	PRE	MESSA	4
-	1.1	DESCRIZIONE DELL'OPERA	
	1.2	ASPETTI LEGATI ALLE OPERE DI FONDAZIONE	
^			
2		ERIMENTI NORMATIVI	
3	MAT	TERIALI	
	3.1	CALCESTRUZZO	9
	3.2	ACCIAIO	10
	3.3	VERIFICA S.L.E.	11
	3.3.1	Verifiche alle tensioni	11
	3.3.2	Verifiche a fessurazione	12
4	ANA	ALISI E VERIFICHE PILA	13
	4.1	Generalità	13
	4.2	MODELLI A MENSOLA PER LA VERIFICA DELLE PILE	14
	4.3	CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO	14
	4.4	SISTEMI DI RIFERIMENTO ED UNITÀ DI MISURA	18
	4.5	GEOMETRIA DELLA PILA	19
	4.6	Analisi dei carichi	
	4.6.1		
	4.6.2		
		•	
	4.6.3	•	
	4.6.4		
	4.6.5	Effetti dinamici	30
	4.6.6	Carichi da traffico orizzontali	30
	4.6.7	Azione sismica	32
	4.6.8	Analisi Dinamica Lineare	35

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

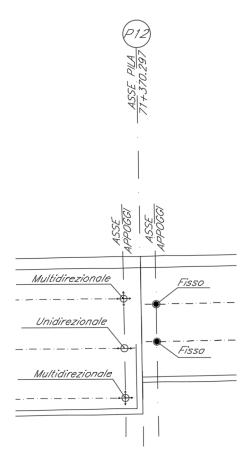
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI 02 E5 002
 A
 3 di 57

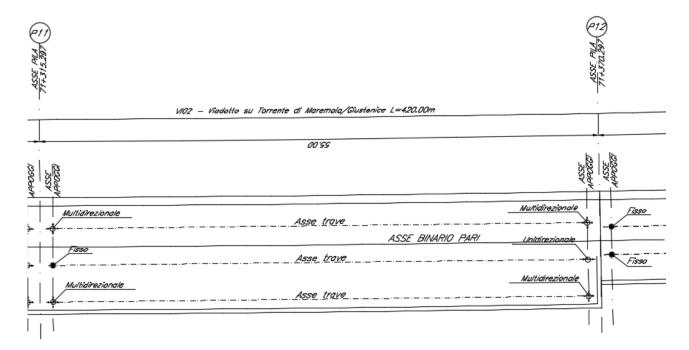
4.6.9 Calcolo delle sollecitazioni in testa pali	38
4.6.10 Riepilogo risultati	39
4.7 SOLLECITAZIONI	40
4.7.1 Base Pila	40
4.7.2 Plinto di fondazione	43
4.8 PALI DI FONDAZIONE	46
4.9 VERIFICHE DEGLI ELEMENTI STRUTTURALI	49
4.9.1 Pila	49
102 Zattara di fondazione	56

1 PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle Pile del viadotto ferroviario VI02, Viadotto su Torrente Maremola/Giustenice.


In particolare si tratterà la Pila 12 che presenta su cui appoggiano due impalcati di luce 55m e 25m.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018


1.1 Descrizione dell'opera

Il viadotto ferroviario VI02 (lato dispari) ha una lunghezza totale di circa 420 m, il è costituito da 14 impalcati di luci variabili. Il viadotto è previsto a singolo binario.

Pile e spalle sono realizzate in c.a. gettato in opera.

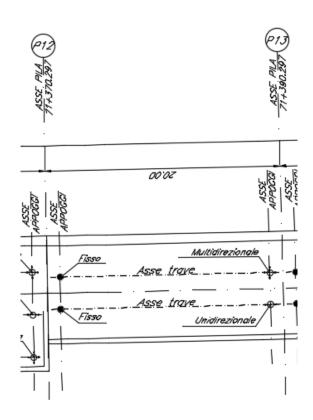


Figura 1 -schema appoggi impalcati convergenti sulla pila.

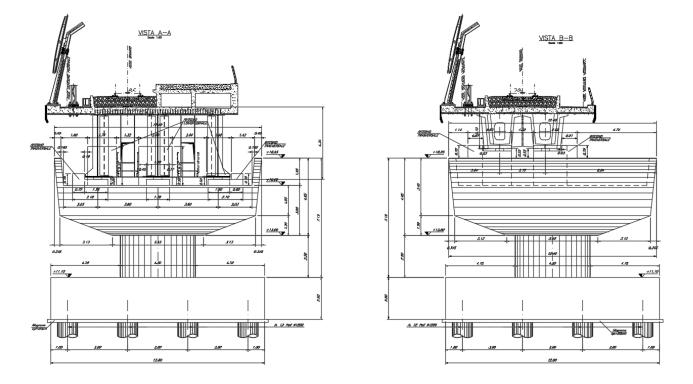


Figura 2 - sezione trasversale impalcato sx e dx

1.2 Aspetti legati alle opere di fondazione

Le fondazioni sono realizzate sia per le pile che per le spalle con plinti su pali di grande diametro.

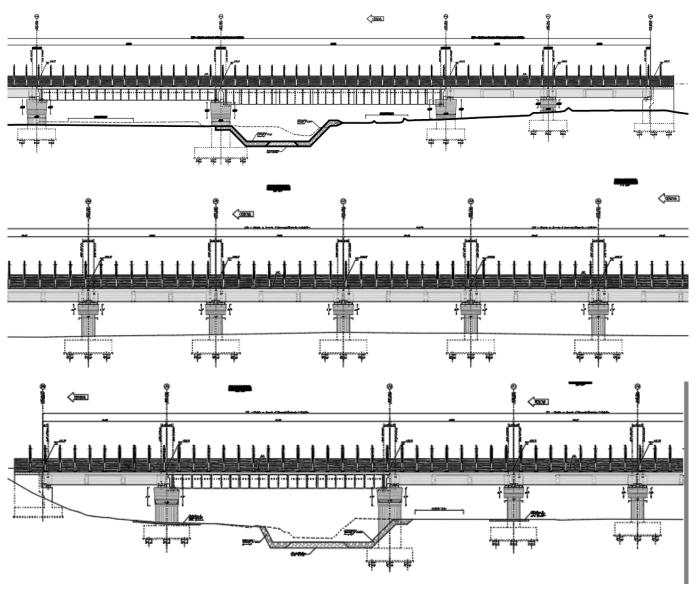


Figura 3 – sviluppo longitudinale del viadotto- binario dispari

RADDOPPIO DELLA LINEA GENOVA-VENTIMIGLIA TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI 02 E5 002
 A
 8 di 57

2 RIFERIMENTI NORMATIVI

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 17 gennaio 2018, Aggiornamento delle «Norme tecniche per le costruzioni».
- Ministero delle Infrastrutture e Trasporti, Circolare 21 gennaio 2019, n. 7/C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 17 gennaio 2018»
- Istruzione RFI DTC SI PS MA IFS 001 Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- Istruzione RFI DTC SI CS MA IFS 001 Manuale di Progettazione delle Opere Civili Parte II Sezione 3 Corpo Stradale
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;"

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 100 00 D 09 CL VI 02 E5 002 A 9 di 57

3 MATERIALI

3.1 calcestruzzo

Caratteristiche CLS secondo NTC 2018/UNI EN 206/UNI 11104

Elemento		plinti	elevazione pile/spalle	soletta sezioni miste	travi incorporate
Corrosione indotta da					
Carbonatazione	XC	XC2	XC4	XC3	XC3
Cloruri (altre fonti)	XD	-	-	-	-
Cloruri acqua di mare	XS	-	XS1	XS1	XS1
Gelo/disgelo	XF	-	-	-	-
Chimico	XA	-	-	-	-
Condizioni ambientali	-	ordinarie	aggressive	aggressive	aggressive
Classe di resistenza minima	-	C32/40	C32/40	C35/45	C35/45
Contenuto minimo di cemento	kg/mc	300	340	340	340
Rapporto massimo acqua/cemento	-	0.60	0.50	0.50	0.50
Classe di consistenza (Slump)	-	S4	S4	S4	S4
Tipo di cemento	-	CEM III÷V	CEM III÷V	CEM I÷V	CEM I÷V
Diametro massimo dell'inerte	mm	32	25	20	20
Calcolo copriferro secondo NTC 2018					
Copriferro minimo	mm	20	35	35	35
Incremento per tolleranze di posa	mm	10	10	10	10
Incremento per VN=100 anni	mm	0	0	0	0
Decremento per controllo qualità	mm	0	0	0	0
Incremento per C≤Cmin	mm	0	0	0	0
Copriferro nominale (minimo da NTC)	mm	30	45	45	45
Copriferro nominale (MdP)		40	40+10	35+10	35+10
Copriferro nominale adottato	mm	40	50	45	45

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IVOI	00	D 09 CL	VI 02 E5 002	Α	10 di 57

Opera Ferroviaria					
Limiti Tensionali					
Resistenza cilindrica caratteristica (fck)	MPa	25	32	35	35
SLE rara (sc≤0.55*fck)	MPa	13.75	17.60	19.25	19.25
SLE frequente (-)	MPa	-	-	-	-
SLE q.perm. (sc≤0.40*fck)	MPa	10.00	12.80	14.00	14.00
Limiti Fessurativi					
tipo armatura		poco sensibile	poco sensibile	poco sensibile	poco sensibile
SLE rara gr4		w1=0.2mm	w1=0.2mm	w1=0.2mm	w1=0.2mm
SLE frequente		-	-	-	-
SLE q.perm.		-	-	_	-

3.2 Acciaio

Per le travi e tutti gli elementi strutturali in acciaio dell'impalcato si utilizza

Acciaio S355J2

Tab. 4.2.I – Laminati a caldo con profili a sezione aperta piani e lunghi

	Spessore nominale "t" dell'elemento					
Norme e qualità degli acciai	t ≤ 40	t ≤ 40 mm		≤ 80 mm		
	f _{yk} [N/mm ²]	f _{tk} [N/mm ²]	f _{yk} [N/mm²]	f _{tk} [N/mm ²]		
UNI EN 10025-2						
S 235	235	360	215	360		
S 275	275	430	255	410		
S 355	355	510	335	470		
S 450	440	550	420	550		

Figura 4 – valori nominali delle tensioni caratteristiche di snervamento fyk e di rottura ftk

Per l'armatura della soletta e degli elementi in calcestruzzo armato si prevede

ACCIAIO PER CALCESTRUZZO ARMATO B450C

f _{y nom}	450 N/mm ²
f _{t nom}	540 N/mm ²

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IVOI	00	D 09 CL	VI 02 E5 002	Α	11 di 57

3.3 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.3.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente a trazione" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{sk};
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

3.3.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Cruppi di		Armatura				
Gruppi di esigenza	Condizioni ambientali	Combinazione di azione	Sensibile	Poco sensibile		
esigenza			Stato limite	wd	Stato limite	wd
0	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	\leq w ₃
a	Ordinarie	quasi permanente	ap. fessure	\leq w ₁	ap. fessure	\leq w ₂
b	Aggressive	frequente	ap. fessure	\leq w ₁	ap. fessure	\leq w ₂
U	Agglessive	quasi permanente	decompressione	-	ap. fessure	\leq w ₁
c Molto Aggressive		frequente	formazione fessure	-	ap. fessure	$\leq w_1$
С	Wiolio Agglessive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

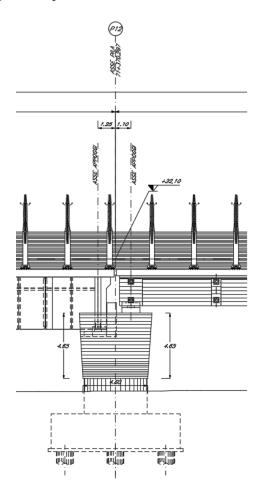
Data la maggior restrittività, alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel DM 14.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

- Combinazione Caratteristica (Rara) $\delta_f \leq w_1 = 0.2 \ mm$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura riportata al C4.1.2.2.4.5 della Circolare n. 7/19.

4 ANALISI E VERIFICHE PILA


4.1 Generalità

La pila presenta una sezione circolare di diametro 4,50m, un'altezza complessiva di 2,50m.

Il pulvino è costituito da una sezione piena di dimensione 5,18 x 12,40m ed altezza 4,65m.

Le fondazioni sono realizzate su pali di diametro f= 1,20m collegati in testa da una platea di spessore 2,50 m.

Per le verifiche dei singoli elementi della pila (pali, platea di fondazione ed elevazioni) è stata effettuata un'analisi dei carichi agenti sul piano appoggi e allo spiccato della fondazione; l'analisi viene riportata nelle pagine seguenti.

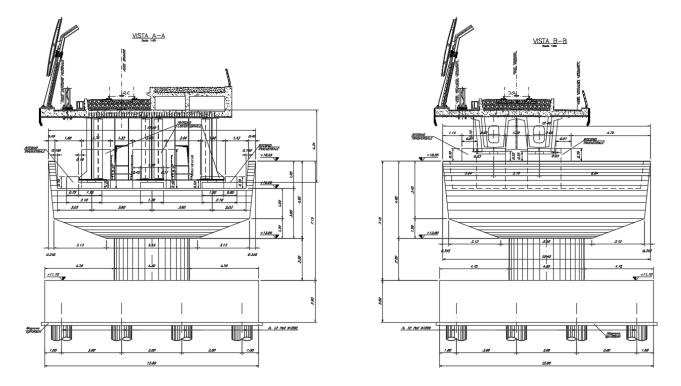


Figura 5 – prospetti pila

4.2 Modelli a mensola per la verifica delle pile

Le sollecitazioni di verifica della pila sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali vanno combinate le azioni determinate dalle azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture.

Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali fusto pila e plinto.

Per l'analisi e la verifica del plinto di fondazione, si è utilizzato un modello, a seconda della geometria, di tirantepuntone o trave inflessa.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC18, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i

	GENOVA-VENTIMIGLIA

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI 02 E5 002
 A
 15 di 57

[2.5.1]

coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

2.5.3. COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + ...$$

- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + ...$$
 [2.5.2]

- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 [2.5.3]

– Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:
$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 [2.5.4]

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 [2.5.5]

- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_i \psi_{2i} Q_{kj}$$
. [2.5.7]

Nelle combinazioni si intende che vengano omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Tab. 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ^(t)	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2· Υε3· Υε 4	0,00 1,20	0,00 1,20	0,00 1,00

⁽ii) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

⁽a) Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

REV.

Α

FOGLIO

16 di 57

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA LOTTO CODIFICA DOCUMENTO

IVOI 00 D 09 CL VI 02 E5 002

Tab. 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi- nazione	Coefficiente ψ_1 (valori frequenti)	Coefficiente ψ_2 (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e, quindi , alle verifiche strutturali.

	A1 - SLU - sc A1 - SLU Gm	A1 - SLU Gmin - 8r.1 A1 - SLU Gmin - 8r.1 A1 - SLU Gmin - 8r.1 A1 - SLU Gmin - 8r.3 A1 - SLU Gmin - 8r.3 A1 - SLU Gmin - 8r.3 A1 - SLU Gmin - 9r.3
		,35 1,35 1,35 1,35 1,35 1,35 1,35
		.50 1,50 1,50 1,50 1,50 1,50 1,50 .50 1,50 1,50 1,50 1,50 1,50 1,50
Comb. Nmax Qv 1,25 0,00 0,00 1,25 0,00 0,00 1,25 0,00 0,00 1,25 0,00 0,00 1,25 0,00 0,00 1,45 0,00 0,00 1,45 0,00 0,00 1,45 0,00 0,00 1,45 0,00 0,00 1,45 0,00 0,00 1,45 0,00 0,00 1,45 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	0,00 0,00 1	,45 0,00 0,00 1,45 0,00 0,00 0,00
	0,00 0,00 0 0.00 0.00 1	.73 0.00 0.00 1.45 0.00 0.00 0.00 .45 0.00 0.00 0.73 0.00 0.00 0.00
		,45 0,00 0,00 0,73 0,00 0,00 0,00 ,45 0,00 0,00 0,73 0,00 0,00 0,00
Comb. MTmax Qv 0.00 1.25 0.00 0.00 1.25 0.00 0.00 1.25 0.00 0.00 1.25 0.00 0.00 1.25 0.00 0.00 0.00 1.25 0.00 0.00 0.00 1.25 0.00 0.00 0.00 1.45 0.00 0.00 1.45		,00 1,45 0,00 0,00 1,45 0,00 0,00
Comb. MTmax Q Terenture 0.00 0.63 0.00 0.00 1.25 0.00 0.00 0.00 0.83 0.00 0.00 0.25 0.00 0.00 0.85 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.25 0.00 0.	0,00 00,00 00,0	00 0,73 0,00 0,00 1,45 0,00 0,00 00 1,45 0,00 0,00 0,73 0,00 0,00
Comb. MTmax Q serpeggio 0.00 1.25 0.00 0.00 0.63 0.00 0.00 0.00 0.00 0.00	0,00 0,00 0	,00 1,45 0,00 0,00 0,73 0,00 0,00
Comb. M.I.max Qr		00 0,00 1,45 0,00 0,00 1,45 0,00 00 0,00 0,73 0,00 0,00 1,45 0,00
Comb. MLmax Q centrifuga 0.00 0.00 1.25 0.00 0.00 0.63 0.00 0.00 1.25 0.00 0.00 0.00 1.25 0.00 0.00 0.00 1.25 0.00 0.00 0.00 1.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0,73 0,00 0	,00 0,00 1,45 0,00 0,00 0,73 0,00
		,00 0,00 1,45 0,00 0,00 0,73 0,00
		00 0,00 0,00 0,00 0,00 0,00 1,50 00 0,90 0,90 0,90 0,90 0,90 0,90
Attrito permanente 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	,00 1,00 1	,00 1,00 1,00 1,00 1,00 1,00 1,00
		,45 1,45 1,45 1,25 1,25 1,25 0,00 ,00 0,00 0,00 0,00 0,00 0,00 0,00
Sisma trasversale 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0,00 0,00 0	00,0 0,00 0,00 0,00 0,00 0,00 0,00
		00,0 0,00 0,00 0,00 0,00 0,00 0,00
Ventox 0.00 0.00 0.78 0.00 0.00 0.78 0.00 <	0,90 0,00 0 0,00 1,50 0	0,00 0,00 0,90 0,00 0,00 0,00 0,00 0,00
	1,00	50 000 000 000 000
SLE rara - N max gr.1 SLE rara - MT max gr.1 SLE rara - MT max gr.3 SLE rara - N max gr.3 SLE rara - N max gr.3 SLE rara - Vento ponte scarico SLE freq. MT max gr.3 SLE freq. MT max gr.3 SLE freq. MT max gr.3 SLE freq. WI max gr.3 SLY - MT max	iLV - ML max SLV - N min	
rara - N më rara - M II m rara - MI m rara - MI m rara - MI m rara - MI m rara - Nento searico freq - M m freq - M m freq - M m freq - M m searico guasi perm SLV - M m SLV - M m SLV - M m	SLV - MI	
	Si Si	
SLE rara - NI SLE rara - Ver SLE rara - Ver SLE rara - Ver SLE freq - NI		
		20.7
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00		00 Peso proprio g1
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	. , ,.	00 Permanenti G2
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0 1,00 1,0	00 Ballast
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,00 0,2	20 Comb. Nmax Qv
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,00 0,2	20 Comb. Nmax Q frenatura
1,00 0,00 0,00 0,50 0,00 0,00 0,00 0,80 0,00 0,0	0 0.00 0.2	20 Comb. Nmax Q centrifuga
1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00	,,	20 Comb. Nmax O serpeggio
1,00 1,00 0,00 0,00 1,00 0,00 0,00 0,00		00 Comb. MTmax Ov
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
0.00 1.00 0.00 0.00 0.50 0.00 0.00 0.00		00 Comb. MTmax Q centrifuga
0.00 1.00 0.00 0.00 0.50 0.00 0.00 0.00	, ,	
0,00 0,00 1,00 0,00 0,00 1,00 0,00 0,00		00 Comb. MLmax Qv
0,00 0,00 0,50 0,00 0,00 1,00 0,00 0,00	0 0,20 0,0	00 Comb. MLmax Q frenatura
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0,20 0,0	00 Comb. MLmax Q centrifuga
0,00 0,00 1,00 0,00 0,00 0,50 0,00	0 0,20 0,0	00 Comb. MLmax Q serpeggio
0,00 0,00	0.00 0.0	00 Vento Ponte Scarico
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		00 Vento Ponte Carico
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00		50 Attrito permanente
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	, ,	
		80 Sisma longitudinale
0,00 0,30 1,00 0,30 1,00	, ,	30 Sisma trasversale
0,00 0,		00 Sisma verticale
I area area area area area area area are	0,00 0,0	00 Vento x
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse longitudinale del ponte;
- asse Y coincidente con l'asse trasversale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

RADDOPPIO DELLA LINEA GENOVA-VENTIMIGLIA
--

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 09 CL	VI 02 E5 002	Α	18 di 57

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

Occorre precisare che con il segno negativo verranno indicate le azioni aventi direzione positiva delle Z (ovvero dirette verso l'alto).

4.4 Sistemi di riferimento ed unità di misura

- Asse X parallelo all'asse longitudinale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale

- Lunghezze = m

- Forze = kN

4.5 Geometria della Pila

Generali			
Peso cls	γcls	25	kN/m³
Peso terreno	γ_{t}	20	kN/m³
Sovraccarico accidentale sul rilevato	q _{acc}	0,0	kN/m ²
Altezza appoggio + baggiolo	h _{ap}	0,55	m
Distanza piano appoggi-intradosso plinto	H_1	5,55	m
Pulvino			
Altezza	H_p	4,65	m
Lunghezza lungo asse X	b_p	5,18	m
Lunghezza lungo asse Y	L_p	12,40	m
Area Sezione		64,23	m ²
% Vuoti sezione		0%	
Coordinata X del baricentro rispetto fondazione	X_p	0,00	m
Pila			
Altezza	H_{m}	2,50	m
Lunghezza lungo asse X (o diametro se circolare)	b_m	4,50	m
Lunghezza lungo asse Y	L_{m}	4,50	m
Area Sezione		15,90	m ²
% Vuoti sezione		0%	
Coordinata X del baricentro rispetto fondazione	X _m	0,00	m
Distanza asse baggioli- asse pila (sx)	X _{m1}	-1,25	m
Distanza asse baggioli- asse asse pila (dx)	X _{m2}	1,10	m

Plinto			
Altezza	$\mathrm{H_{f}}$	2,50	m
Lunghezza lungo asse X	b_{f}	9,20	m
Lunghezza lungo asse Y	$L_{\mathbf{f}}$	12,80	m
Spessore ricoprimento medio	h _t	1,60	m
Distanza asse baggioli - baricentro plinto (sx)		-1,25	m
Distanza asse baggioli - baricentro plinto (dx)		1,10	m
Terreno			
Angolo d'attrito interno (φ)		35	0
Coefficiente per il calcolo della spinta a riposo	▼ Ko= 0.426		+26 271
Sisma			
S_s		1,200	
a_{g}		0,130	
Coefficiente sismico orizzontale	k_h	0,156	
F_0		2,499	

Tabella 2 – Dati di input

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI 02 E5 002
 A
 21 di 57

4.6 Analisi dei carichi

4.6.1 Peso proprio elementi strutturali

Impalcato SINISTRO

- G₁: peso strutturale portante, dato dalla somma dei seguenti contributi:
 - Peso proprio cassoni in CAP;
 - o Peso proprio soletta in c.a. e paraballast;
- G₂: peso strutturale portato, dato dalla somma dei seguenti contributi:
 - o Peso proprio della barriera antirumore, assunto pari a 15 kN/m per ogni barriera;
 - o Peso del ballast, assunto pari a

$$L_{vasca}[4,05m] * h_{vasca}[0,8m] * \gamma_{ballast}[18 \text{ kN/}_{m^3}] = 58,32 \text{ kN/}_{m}$$

- Peso del sentiero pedonale e dell'impermeabilizzazione del marciapiedi, assunto pari a 1,5 kN/m;
- Peso della canaletta, assunto pari a 2,1 kN/m;
- o Peso della veletta, assunto pari a 2,5 kN/m per ciascuna veletta;

Impalcato DESTRO

- G₁: peso strutturale portante, dato dalla somma dei seguenti contributi:
 - Peso proprio travi in acciaio;
 - o Peso proprio soletta in c.a. e paraballast;
- G₂: peso strutturale portato, dato dalla somma dei seguenti contributi:
 - O Peso proprio della barriera antirumore, assunto pari a 15 kN/m per ogni barriera;
 - Peso del ballast, assunto pari a

$$L_{vasca}[3,8m] * h_{vasca}[0,8m] * \gamma_{ballast} [18 \ ^{kN}/_{m^3}] = 54,72 \ ^{kN}/_{m}$$

- o Peso del sentiero pedonale e dell'impermeabilizzazione del marciapiedi, assunto pari a 1,5 kN/m;
- o Peso della canaletta, assunto pari a 2,1 kN/m;
- o Peso della veletta, assunto pari a 2,5 kN/m;
- o Peso del pacchetto di pavimentazione della banchina, assunto pari a 34,8 kN/m;
- o Peso proprio della sovrastruttura della banchina, assunto pari a 50 kN/m.

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IVOI	00	D 09 CL	VI 02 E5 002	Α	22 di 57

Impalcato (sx)						
N° Binari		1				
Lunghezza	L	25	m			
Peso Proprio	G_1	227	kN/m			
Permanenti portati + ballast	G_2	97	kN/m			
n° totale appoggi sulla pila	n	2				
Reazione appoggio $i = (G_1*L/2)/n$	R_{i}	1418,8	kN			
Reazione appoggio $i = (G_2*L/2)/n$	R_{i}	606,3	kN			
Reazione appoggio $i = (G_2*L/2)/n$ (ballast)	R_{i}	0	kN			

Impalcato (dx)						
N° Binari		1				
Lunghezza	L	55	m			
Peso Proprio	G_1	176	kN/m			
Permanenti portati + ballast	G_2	176	kN/m			
n° totale appoggi sulla pila	n	3				
Reazione appoggio $i = (G_1*L/2)/n$	Ri	1613,3	kN			
Reazione appoggio $i = (G_2*L/2)/n$	Ri	1613,3	kN			
Reazione appoggio $i = (G_2*L/2)/n$ (ballast)	Ri	0	kN			

4.6.2 Carichi trasmessi dall'impalcato

Si riportano di seguito gli scarichi agli appoggi dedotti dall'analisi dell'impalcato, per la campata sinistra e destra:

sx L=25	ai								
APPOGGIO	REAZIONE	Y	REAZ LM71	REAZ SW2	α (LM71)	α (SW2)	ф3	REAZ LM71	REAZ SW2
1	0,500	-1,36	1238,6	1511,2	1,1	1	1,20	1638	1817
3	0,500	1,36	1238,6	1511,2	1,1	1	1,20	1638	1817
	Σ	3,7							
dx = 55	ai								
APPOGGIO	REAZIONE	Y	REAZ LM71	REAZ SW2	α (LM71)	α (SW2)	ф3	REAZ LM71	REAZ SW2
1	0,082	-3,6	2442,4	3255	1,1	1	1,04	2782	3371
2	0,333	0	2442,4	3255	1,1	1	1,04	2782	3371
3	0,585	3,6	2442,4	3255	1,1	1	1,04	2782	3371
	Σ	25,9							
ML MAX	ai	caricato so	olo impalcato di de	estra L= 55					
APPOGGIO	REAZIONE	Y	REAZ LM71	REAZ SW2	α (LM71)	α (SW2)	ф3	REAZ LM71	REAZ SW2
1	0,082	-3,6	2743	3620	1,1	1	1,04	3125	3749
2	0,333	0	2743	3620	1,1	1	1,04	3125	3749

Per il calcolo di a_i, coefficiente di Courbon, si è utilizzata la seguente formula:

$$a_i = \frac{1}{n} + \frac{e \cdot y_i}{\sum_{i=1}^n y_i^2}$$

Dove:

- n è il numero di appoggi
- e è l'eccentricità dell'asse binario rispetto all'asse della trave (che tiene conto dell'eccentricità del carico ferroviario secondo NTC2018 capitolo 5.2.2.2.1.1)
- yi è la distanza tra l'asse della trave e l'asse dell'impalcato

I carichi verticali dovuti al traffico sono calcolati tenendo conto della posizione che massimizza le reazioni sulla pila, per la loro definizione si rimanda al paragrafo 4.6.4.

Questi, dopo essere ripartiti con il metodo di Courbon, forniscono i risultati in tabella seguente.

REAZIONI VINCOLARI [kN,m]

SX

Appoggio		A			В			C		
	FZ	FX	FY	FZ	FX	FY	FZ	FX	FY	biz
Descrizione carico	[kN]	[m]								
Peso proprio g1	1419						1419			0,00
Permanenti G2	606						606			0,00
Ballast										0,00
Comb. Nmax Qv	908						908			0,00
Comb. Nmax Q frenatura		438						438		0,00
Comb. Nmax Q centrifuga										0,00
Comb. Nmax Q serpeggio			28						28	3,30
Comb. MTmax Qv	908						908			0,00
Comb. MTmax Q frenatura		438						438		0,00
Comb. MTmax Q centrifuga										0,00
Comb. MTmax Q serpeggio			28						28	3,30
Comb. MLmax Qv	482						268			0,00
Comb. MLmax Q frenatura		438						438		0,00
Comb. MLmax Q centrifuga										0,00
Comb. MLmax Q serpeggio			28						28	3,30
Vento Ponte Scarico			161						161	3,65
Vento Ponte Carico			155						155	3,65
Attrito permanente		12						12		0,00
Attrito carichi mobili		27						27		0,00
Sisma longitudinale		2160						2160		0,00
Sisma trasversale			1080						1080	3,30
Sisma verticale	352						352			0,00
Sisma longitudinale		2383						2383		0,00
Sisma trasversale			1191						1191	3,30
Sisma verticale	352						352			0,00
Sisma longitudinale		3241						3241		0,00
Sisma trasversale			1620						1620	3,30
Sisma verticale	352						352			0,00

TRATTA FINALE LIGURE-ANDORA

00

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA LOTTO IV0I

CODIFICA D 09 CL

DOCUMENTO VI 02 E5 002

REV. FOGLIO

Α 25 di 57

REAZIONI VINCOLARI [kN,m]

Appoggio		A			В			C		
D	FZ	FX	FY	FZ	FX	FY	FZ	FX	FY	biz
Descrizione carico	[kN]	[m]								
Peso proprio g1	1613			1613			1613			0,00
Permanenti G2	1613			1613			1613			0,00
Ballast										0,00
Comb. Nmax Qv	1971			1124			276			0,00
Comb. Nmax Q frenatura										0,00
Comb. Nmax Q centrifuga										0,00
Comb. Nmax Q serpeggio						55				5,00
Comb. MTmax Qv	1971			1124			276			0,00
Comb. MTmax Q frenatura										0,00
Comb. MTmax Q centrifuga										0,00
Comb. MTmax Q serpeggio						55				5,00
Comb. MLmax Qv	2192			1250			307			0,00
Comb. MLmax Q frenatura										0,00
Comb. MLmax Q centrifuga										0,00
Comb. MLmax Q serpeggio						55			0	5,00
Vento Ponte Scarico						707				5,00
Vento Ponte Carico						680				5,00
Attrito permanente		19			19			19		0,00
Attrito carichi mobili		66			37			9		0,00
Sisma longitudinale										0,00
Sisma trasversale						3704				5,00
Sisma verticale	352			352			352			0,00
Sisma longitudinale		0			0			0		0,00
Sisma trasversale			0			4086			0	5,00
Sisma verticale	352			352			352			0,00
Sisma longitudinale		0			0			0		0,00
Sisma trasversale			0			5557			0	5,00
Sisma verticale	352			352			352			0,00

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Troidziono di odiocio pila lipo o bindito diopan	IVOI	00	D 09 CL	VI 02 E5 002	Α	26 di 57

4.6.3 Azione del Vento

Il calcolo dell'azione del vento si effettua prendendo come riferimento il sito effettivo del viadotto posto in zona 7, in prossimità del livello del mare.

Condizione (ponte carico o scarico)		scarico	carico	
Altitudine sul livello del mare	as	10	10	m
Zona	Z	7	7	
Parametri	Vb,0	28	28	m/s
Parametri	a0	1000	1000	m
Parametri	ks	0,54	0,54	1/s
	vb=vb0 * (1+			
Velocità di riferimento (Tr=50anni)	ks(as/ao-1)	28	28	m/s
Periodo di ritorno considerato	TR	112,5	112,5	anni
	αR	1,05	1,05	
Velocità di riferimento	Vb(TR)	29,28	29,28	m/s
Densità dell'aria	ρ	1,25	1,25	kg/mc
Pressione cinetica di riferimento	$qb=0.5*\rho*vb^2$	0,54	0,54	kN/mq
Classe di rugostità del terreno		D	D	
Distanza dalla costa		1,5	1,5	km
Altitudine sul livello del mare		<750	< 750	m
Categoria di esposizione del sito	Cat	III	III	
Vento su impalcato				
Parametri	kr	0,2	0,2	
Parametri	z0	0,1	0,1	m
Parametri	zmin	4	4	m
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6)	Z	15	15	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	2,41	2,41	
Larghezza impalcato	ь	11,4	11,4	m
Altezza impalcato	h1	4,34	5,04	m
Altezza treno o parapetto	h2	5	4	m
Altezza totale impalcato (comprese le barriere o treno)	dtot	9,34	9,04	m
Rapporto di forma	b/dtot	1,22	1,26	
Coefficiente di forza (figura 8.3 EC)	cfx	2,13	2,12	

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

FOGLIO

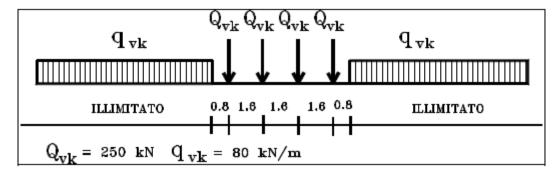
27 di 57

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IVOI 00 D 09 CL VI 02 E5 002 A

Riepilogo						
Pressione cinetica di riferimento	qb	0,54	0,54	kN/mq		
Coefficiente di esposizione	ce	2,41	2,41			
Coefficiente di forza	cfx	2,13	2,12			
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	9,34	9,04	m		
Forza statica equivalente a m/l	f=prodotto	25,7	24,7	kN/m		
Pressione statica equivalente	p=f/d	2,75	2,74	kN/mq		
Pressione statica equivalente (minima considerata)	pmin	1,5	1,5	kN/mq		
Forza statica equivalente a m/l considerata	f	25,7	24,7	kN/m		
Vento impalcato a ponte scarico		SX	dx			
Forza statica equivalente	f	25,7	25,7	kN/m		
Luce impalcato	L	25	55	m		
Forza trasversale al piano appoggi	FT=f*L/2	321	707	kN va		
Vento impalcato a ponte carico						
Forza statica equivalente	f	24,7	24,7	kN/m		
Luce impalcato	L	25	55	m		
Forza trasversale al piano appoggi	FT=f*L/2	309	680	kN		

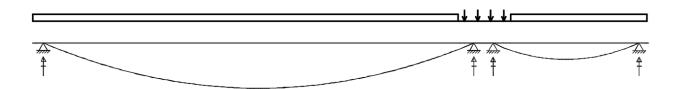

4.6.4 Carichi da traffico verticali

L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2.

Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

➤ Modello di carico LM71

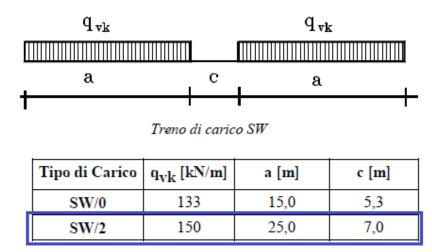
Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.

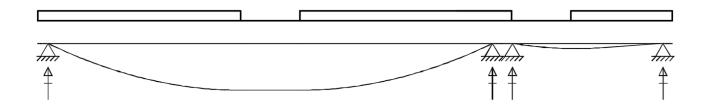


Treno di carico LM 71

Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;

<u>Carico distribuito</u>: 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata


Nella pila presa in esame, la posizione dei carichi da traffico che massimizza le reazioni sugli appoggi è la seguente:



➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

Nella pila presa in esame, la posizione dei carichi da traffico che massimizza le reazioni sugli appoggi è la seguente:

Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001 A).

MODELLO DI CARICO	COEFFICIENTE "α"
LM71	1,10
SW/0	1,10
SW/2	1,00

4.6.5 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par. 5.2.2.2.3 del DM 14.1.2018 che per l'opera in esame riporta:

$$\Phi_3 = \frac{2,16}{\sqrt{L_6} - 0,2} + 0,73$$
 con la limitazione $1,00 \le \Phi_3 \le 2,00$ [5.2.7]

4.6.6 Carichi da traffico orizzontali

Si riporta l'estratto da NTC2018 per il calcolo delle azioni di avviamento e frenatura:

Le forze di frenatura e di avviamento agiscono sulla sommità del binario, nella direzione longitudinale dello stesso. Dette forze sono da considerarsi uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato.

I valori caratteristici da considerare sono i seguenti:

avviamento: $Q_{la,k} = 33 \text{ [kN/m]} \cdot \text{L[m]} \le 1000 \text{ kN}$ per modelli di carico LM 71, SW/0, SW/2

frenatura: $Q_{lb,k} = 20 \text{ [kN/m]} \cdot \text{L[m]} \le 6000 \text{ kN}$ per modelli di carico LM 71, SW/0

Q_{lb,k} = 35 [kN/m] · L[m] per modelli di carico SW/2

25	m T. T.
	T 13.6
	per Treno LM
25	71
	per Treno
25	SW/0
25	per SW/2
	per Treno LM
550	71
	per Treno
550	SW/0
875	per SW/2
550	kN
550	kN
875	kN
	25 25 550 550 875 550

Avviamento						
L	25	m				
		per Treno LM				
Leale	25	71				
	25	per Treno SW/0				
	25	per SW/2				
		per Treno LM				
Qla,k	907,5	71				
Qla,k	907,5	per Treno SW/0				
Qla,k	825	per SW/2				
Qla,k (filtrata)per Treno						
LM 71	908	kN				
Qla,k (filtrata)per Treno						
SW/0	908	kN				
Qla,k(filtrata)per SW/2	825	kN				

Il serpeggio è stato assegnato al modello in base alle seguenti disposizioni da NTC2018 :

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva.

Il valore caratteristico di tale forza sarà assunto pari a Q_{sk} = 100 kN. Tale valore deve essere moltiplicato per α , (se α >1), ma non per il coefficiente Φ .

Questa forza laterale deve essere sempre combinata con i carichi verticali.

S	erpeggio	
FT=100kN	100	kN*m
Treno LM 71		
α	1,1	
FT*α	110	kN
Treno SW/0		
α	1,1	
FT*α	110	kN
T CW/0		
Treno SW/2		
α	1	
FT*α	100	kN

Lø 22,8 m ø3 Coeff. Dinamico 1,202

4.6.7 Azione sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 2018 e relativa circolare applicativa.

Nel progetto delle pile si prevedono i seguenti parametri sismici:

q = 1.5

 $V_n = 75$ anni

 $C_u = 1.5$

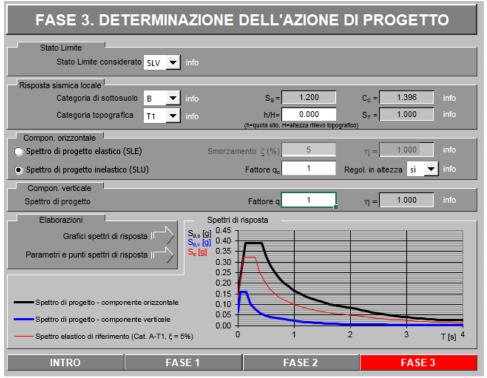
Categoria terreno: B

➤ Valori di progetto

L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

Di seguito si riportano gli spettri di risposta orizzontale e verticale allo Stato limite di salvaguardia della vita SLV utilizzati per il calcolo dell'azione sismica.

TRATTA FINALE LIGURE-ANDORA


VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

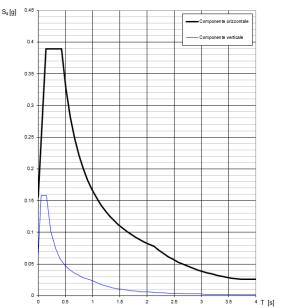
 IV0I
 00
 D 09 CL
 VI 02 E5 002
 A
 33 di 57

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IVOI	00	D 09 CL	VI 02 E5 002	Α	34 di 57

Relazione di calcolo pila tipo 6 binario dispari


Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
ao	0.130 g
F _o	2.499
T _C	0.304 s
Ss	1.200
Сс	1.396
S _T	1.000
q	1.000

Parametri dipendenti

S	1.200
η	1.000
T _B	0.141 s
Tc	0.424 s
T _D	2.119 s

Calcolo dell'azione Sismica

Per il calcolo delle azioni sismiche si utilizza un'analisi statica lineare, come riportata nel cap. 7.9.4.1 delle Normative. Qualora le ipotesi non siano soddisfate, si è fatto riferimento ad una Analisi Dinamica Modale, attraverso la costruzione di un modello tridimensionale agli Elementi Finiti semplificato.

I Fattori di struttura utilizzati sono:

- q= 1.5 per la verifica a presso flessione della pila
- q= 1.5/1.1 per la verifica a capacità portante verticale dei pali e verifica del plinto
- q= 1 per le verifiche a taglio degli elementi strutturali (vedi anche punto successivo), verifiche a capacità portante orizzontale dei pali.
- Solo per la verifica a taglio dello spiccato della pila, il criterio adottato è quello della gerarchia delle resistenze, così come indicato al punto 7.9.5.5.1 delle NTC
- Per l'azione sismica verticale si adotta q=1

4.6.8 Analisi Dinamica Lineare

Per applicare l'analisi statica lineare secondo NTC 7.9.4.1 devono essere soddisfatti i seguenti requisiti :

- a) per entrambe le direzioni longitudinale e trasversale, in ponti a travate semplicemente appoggiate e purché la massa efficace di ciascuna pila non sia superiore ad 1/5 della massa di impalcato da essa portata;
- nella direzione longitudinale, per ponti rettilinei a travata continua e purché la massa efficace complessiva delle pile facenti parte del sistema resistente al sisma non sia superiore ad 1/5 della massa dell'impalcato;
- c) nella direzione trasversale, per ponti che soddisfino la condizione b) e siano simmetrici rispetto alla mezzeria longitudinale, o abbiano un'eccentricità non superiore al 5% della lunghezza del ponte. L'eccentricità è la distanza tra baricentro delle masse e centro delle rigidezze delle pile facenti parte del sistema resistente al sisma nella direzione trasversale.

Non essendo soddisfatti i suddetti criteri per l'analisi statica si svolge una Analisi Dinamica Lineare. L'analisi viene svolta considerando per la pila una rigidezza non fessurata e fessurata con riduzione della rigidezza pari ad al 50%.

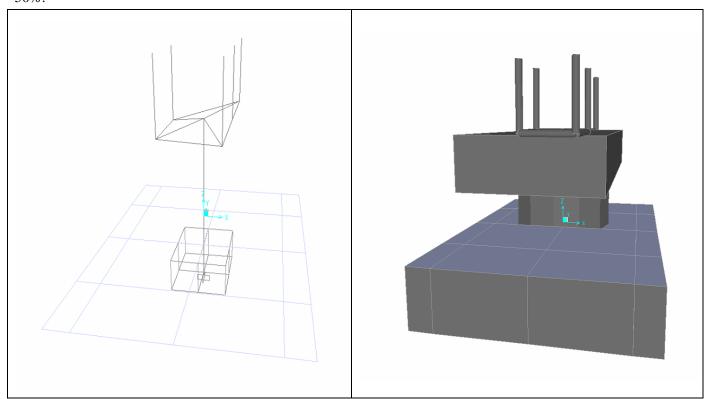


Figura 1: Modello FEM

Si riportano di seguito i risultati della analisi modale:

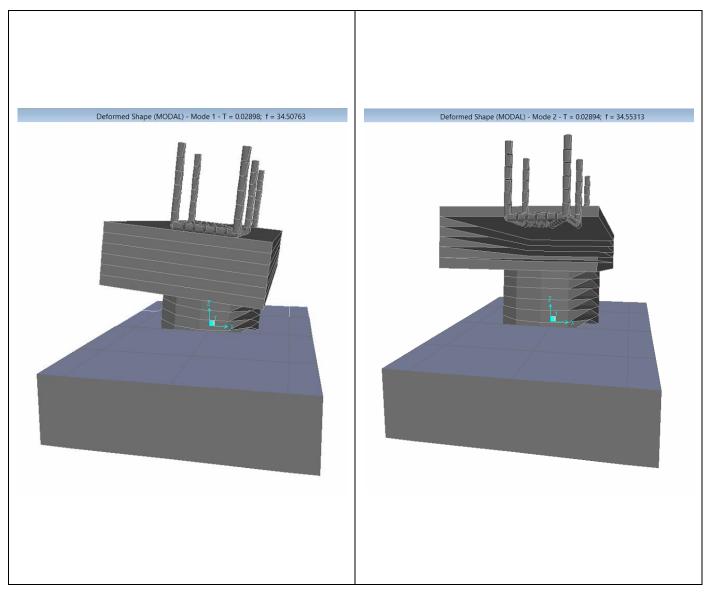


Figura 2: Modello FEM – Analisi Modale (100% rigidezza)

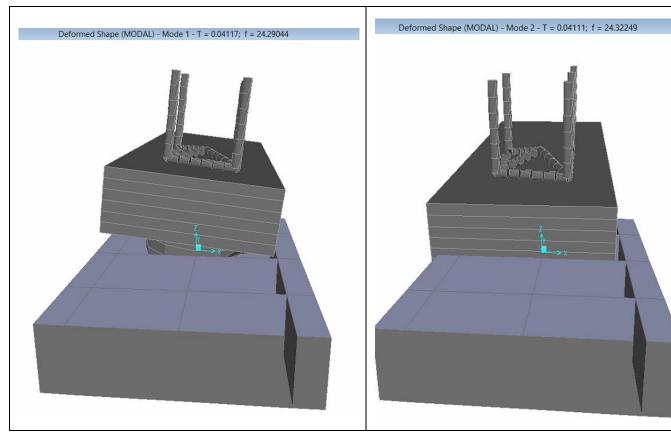


Figura 3: Modello FEM – Analisi Modale (50% rigidezza)

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 09 CL	VI 02 E5 002	Α	38 di 57

4.6.9 Calcolo delle sollecitazioni in testa pali

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove

 N, M_1, M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, n è il numero di pali e Jl, Jt sono le inerzie longitudinale e trasversale della palificata

$$J_{l} = \sum y_{i}^{2} \qquad \qquad J_{t} = \sum x_{i}^{2}$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_l^2 + H_t^2}}{n}$$

dove H₁, H₁ sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

4.6.10 Riepilogo risultati

Il foglio automatico, sulla base di calcoli sviluppati nei fogli successivi, restituisce, per ciascuna combinazione i risultati del controllo di verifica.

Per ciascuna combinazione vengono riassunti:

- Le sollecitazioni al livello del piano di fondazione in termini di sforzo normale N, forza orizzontale T e momento ribaltante M.
- Per i carichi sui pali in termini di N_{max} , N_{min} , T ed M.

	S	PICCATO	PILA: con	dizione st	atica						
Descrizione carico	$\mathbf{F}_{\mathbf{Z}}$	$\mathbf{F}_{\mathbf{X}}$	$\mathbf{F}_{\mathbf{Y}}$	b _{ix}	b _{iy}	b _{iz}	M _x	M_{v}			
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]			
Pila	8461			0,00	0,00	0	0	0			
Vento su pila dir. x		158		0,00	0,00	7,15	0	1128			
Vento su pila dir.y			62,9	0,00	0,00	7,15	450	0			
INTRADOSSO FONDAZIONE: condizione statica											
Descrizione carico	$\mathbf{F}_{\mathbf{Z}}$	$\mathbf{F}_{\mathbf{X}}$	$\mathbf{F}_{\mathbf{Y}}$	b _{ix}	b _{iv}	$\mathbf{b_{iz}}$	$\mathbf{M}_{\mathbf{x}}$	$\mathbf{M}_{\mathbf{v}}$			
	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]			
Pila	8461			0,00	0,00	0	0	0			
Plinto	7360			0,00	0,00	1,25	0,00	0			
Rinterro	3120			0,00	0,00	0,00	0,00	0			
Vento su pila dir. x		158		0,00	0,00	9,65	0	1522			
Vento su pila dir.y			62,9	0,00	0,00	9,65	607	0			
	INTRAD	OSSO FO	NDAZION	E: condizi	ione sismi	ca					
Descrizione carico	$\mathbf{F}_{\mathbf{Z}}$	$\mathbf{F}_{\mathbf{X}}$	$\mathbf{F}_{\mathbf{Y}}$	$\mathbf{b_{ix}}$	b _{iv}	$\mathbf{b_{iz}}$	$\mathbf{M}_{\mathbf{x}}$	$\mathbf{M}_{\mathbf{v}}$			
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]			
Plinto sisma x		1148		0,00	0,00	1,25	0,00	1435			
Plinto sisma y			1148	0,00	0,00	1,25	1435	0			
Plinto sisma z	574			0,00	0,00	1,25	0	0			
Rinterro sisma z	243			0,00	0,00	0,00	0	0			

4.7 Sollecitazioni

4.7.1 Base Pila

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA LOTTO

IV0I 00

CODIFICA D 09 CL DOCUMENTO VI 02 E5 002 REV. FOGLIO

A 41 di 57

	c	ARATTERISTICHE DELLA SOLLECITA	AZIONEINTE	RNA ALLA B	ASE DELLA	PILA	
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
	Nz,A _{max}	A2 - SLU - N max gr.1	30491	838	958	9992	14977
Q	Tx,A _{max}	A2 - SLU - ML max gr.3	29630	1508	69	2500	22255
5	Ty,A _{max}	A2 - SLU - Vento ponte scarico	24007	82	1418	10992	7362
SLU GEO	Mxx max	A2 - SLU - Vento ponte scarico	24007	82	1418	10992	7362
V 1	Myy max	A2 - SLU - ML max gr.3	29630	1508	69	2500	22255
	Nz,A _{max}	Al - SLU - N max gr.1	38388	959	1107	10810	17579
K	Tx,A _{max}	Al - SLU - ML max gr.3	37389	1702	80	2181	25758
SLU STR	Ty,A _{max}	A1 - SLU - Vento ponte scarico	30866	82	1636	11926	8746
$\mathbf{S}\mathbf{\Gamma}$	Mxx max	A1 - SLU - Vento ponte scarico	30866	82	1636	11926	8746
	Myy max	A1 - SLU - ML max gr.3	37389	1702	80	2181	25758
	Nz,A _{max}	SLE rara - N max gr.1	27379	687	741	6985	12312
SLE RARA	Tx,A _{max}	SLE rara - ML max gr.3	26690	1219	55	1295	18107
.	Ty,A _{max}	SLE rara - N max gr.1	27379	687	741	6985	12312
SLE	Mxx max	SLE rara - N max gr.1	27379	687	741	6985	12312
	Myy max	SLE rara - ML max gr.3	26690	1219	55	1295	18107
SLE RAR	Tx,A _{max}	SLE RARA ML max gr.4	21352	1044	88	1557	15005
R	Ty,A _{max}	SLE RARA N max gr.4	21903	949	719	7100	12928
$\mathbf{S}\Gamma$	Myy max	SLE RARA ML max gr.4	21352	1044	88	1557	15005
\mathbf{SI}		SLE quasi permanente	22191	82	0	-5508	6220
	Nz,A _{max}	SLV - N max	24989	1546	1781	15764	18057
=1.5	Tx,A _{max}	SLV - ML max gr.1	23619	4570	1781	16939	41499
SLV q=1.5	Ty,A _{max}	SLV - MT max gr.1	23757	1546	5887	66002	17860
\mathbf{SL}	Mxx max	SLV - MT max gr.3	22701	1546	5887	66576	17691
	Myy max	SLV - ML max gr.1	23619	4570	1781	16939	41499
9	Nz,A _{max}	SLV - N max	24989	1679	1963	24911	19085
=1.36	Tx,A _{max}	SLV - ML max gr.1	23619	5015	1963	25048	44924
SLV q=	Ty,A _{max}	SLV - MT max gr.1	23757	1679	6491	79580	18888
SLV	Mxx max	SLV - MT max gr.1	23757	1679	6491	79580	18888
	Myy max	SLV - ML max gr.1	23619	5015	1963	25048	44924
	Nz,A _{max}	SLV - N max	24989	2194	2661	26386	23048
<u>1</u> =1	Tx,A _{max}	SLV - ML max gr.1	23619	6731	2661	27560	58134
SLV q=1	Ty,A _{max}	SLV - MT max gr.1	23757	2194	8819	101407	22851
\mathbf{S}	Mxx max	SLV - MT max gr.3	22701	2194	8819	101981	22682
	Myy max	SLV - ML max gr.1	23619	6731	2661	27560	58134

Tabella 3 – Sollecitazioni della base della pila – Analisi Statica

TABLE: Sect	ion Cut Forces	s - Analysis							
SectionCut	OutputCase	CaseType	StepType	F1	F2	F3	M1	M2	M3
Text	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
base pila	EX_3	Combination	Max	647,351	194,587	18983,428	-8161,6093	-3786,725	0,0001455
base pila	EX_3	Combination	Min	-647,345	-194,616	18983,427	-10166,5891	-10466,8428	-0,003
base pila	EX_2	Combination	Max	647,351	194,587	18983,428	-8161,6093	-3786,725	0,0001455
base pila	EX_2	Combination	Min	-647,345	-194,616	18983,427	-10166,5891	-10466,8428	-0,003
base pila	EX_1	Combination	Max	647,351	194,587	18983,428	-8161,6093	-3786,725	0,0001455
base pila	EX_1	Combination	Min	-647,345	-194,616	18983,427	-10166,5891	-10466,8428	-0,003
base pila	EX_4	Combination	Max	647,351	194,587	18983,428	-8161,6093	-3786,725	0,0001455
base pila	EX_4	Combination	Min	-647,345	-194,616	18983,427	-10166,5891	-10466,8428	-0,003
base pila	EY_1	Combination	Max	194,214	648,634	18983,428	-5822,5868	-6124,7301	-0,0002838
base pila	EY_1	Combination	Min	-194,209	-648,663	18983,426	-12505,6117	-8128,8377	-0,0026
base pila	EY_2	Combination	Max	194,214	648,634	18983,428	-5822,5868	-6124,7301	-0,0002838
base pila	EY_2	Combination	Min	-194,209	-648,663	18983,426	-12505,6117	-8128,8377	-0,0026
base pila	EY_3	Combination	Max	194,214	648,634	18983,428	-5822,5868	-6124,7301	-0,0002838
base pila	EY_3	Combination	Min	-194,209	-648,663	18983,426	-12505,6117	-8128,8377	-0,0026
base pila	EY_4	Combination	Max	194,214	648,634	18983,428	-5822,5868	-6124,7301	-0,0002838
base pila	EY_4	Combination	Min	-194,209	-648,663	18983,426	-12505,6117	-8128,8377	-0,0026

Tabella 4 – Sollecitazioni della base della pila Dinamica 50%(EI)

TABLE: Sect	ion Cut Forces	s - Analysis							
SectionCut	OutputCase	CaseType	StepType	F1	F2	F3	M1	M2	M3
Text	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
base pila	EX_3	Combination	Max	589,633	177,297	18983,424	-8252,4328	-4089,4945	5,365E-07
base pila	EX_3	Combination	Min	-589,637	-177,308	18983,423	-10075,8467	-10164,128	-0,0014
base pila	EX_2	Combination	Max	589,633	177,297	18983,424	-8252,4328	-4089,4945	5,365E-07
base pila	EX_2	Combination	Min	-589,637	-177,308	18983,423	-10075,8467	-10164,128	-0,0014
base pila	EX_1	Combination	Max	589,633	177,297	18983,424	-8252,4328	-4089,4945	5,365E-07
base pila	EX_1	Combination	Min	-589,637	-177,308	18983,423	-10075,8467	-10164,128	-0,0014
base pila	EX_4	Combination	Max	589,633	177,297	18983,424	-8252,4328	-4089,4945	5,365E-07
base pila	EX_4	Combination	Min	-589,637	-177,308	18983,423	-10075,8467	-10164,128	-0,0014
base pila	EY_1	Combination	Max	176,892	590,991	18983,424	-6125,171	-6215,6	-0,0001928
base pila	EY_1	Combination	Min	-176,895	-591,002	18983,423	-12203,1085	-8038,0225	-0,0012
base pila	EY_2	Combination	Max	176,892	590,991	18983,424	-6125,171	-6215,6	-0,0001928
base pila	EY_2	Combination	Min	-176,895	-591,002	18983,423	-12203,1085	-8038,0225	-0,0012
base pila	EY_3	Combination	Max	176,892	590,991	18983,424	-6125,171	-6215,6	-0,0001928
base pila	EY_3	Combination	Min	-176,895	-591,002	18983,423	-12203,1085	-8038,0225	-0,0012
base pila	EY_4	Combination	Max	176,892	590,991	18983,424	-6125,171	-6215,6	-0,0001928
base pila	EY_4	Combination	Min	-176,895	-591,002	18983,423	-12203,1085	-8038,0225	-0,0012

Tabella 5 – Sollecitazioni della base della pila Dinamica 100%(EI)

RADDOPPIO DELLA LINEA GENOVA-VENTIMIGLIA	

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Troidziono di calcolo pila lipo e sinano dispan	IVOI	00	D 09 CL	VI 02 E5 002	Α	43 di 57

Come si può vedere dai valori massimi indicati in grassetto (per q=1), le sollecitazioni della Analisi Lineare Statica sono superiori rispetto a quelli ottenuti dall'analisi Dinamica; pertanto in favore di sicurezza si adotteranno quelli ricavate dalla Analisi Lineare Statica.

4.7.2 Plinto di fondazione

Nella tabella che segue sono indicati la risultante e momento risultante rispetto al baricentro del plinto di fondazione.

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA LOTTO CO

CODIFICA DO

D 09 CL VI

DOCUMENTO REV.
VI 02 E5 002 A

FOGLIO 44 di 57

	c	CARATTERISTICHE DELLA SOLLECITAZIONE	INTERNA IN	TRADOSSO	FONDAZIO	NE	
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
	Nz,A _{max}	A2 - SLU - N max gr.1	41908	838	958	12388	17072
EO	Tx,A _{max}	A2 - SLU - ML max gr.3	41047	1508	69	2672	26024
SLU GEO	Ty,A _{max}	A2 - SLU - Vento ponte scarico	35423	82	1418	14538	7568
\mathbf{SL}	Mxx max	A2 - SLU - Vento ponte scarico	35423	82	1418	14538	7568
	Myy max	A2 - SLU - ML max gr.3	41047	1508	69	2672	26024
	Nz,A _{max}	A1 - SLU - N max gr.1	53004	959	1107	13576	19976
IR	Tx,A _{max}	A1 - SLU - ML max gr.3	52006	1702	80	2380	30013
SLU STR	Ty,A _{max}	A1 - SLU - Vento ponte scarico	45482	82	1636	16017	8952
\mathbf{SL}	Mxx max	A1 - SLU - Vento ponte scarico	45482	82	1636	16017	8952
	Myy max	A1 - SLU - ML max gr.3	52006	1702	80	2380	30013
	Nz,A _{max}	SLE rara - N max gr.1	37859	687	741	8839	14029
SLE RARA	Tx,A _{max}	SLE rara - ML max gr.3	37170	1219	55	1432	21154
8	Ty,A _{max}	SLE rara - N max gr.1	37859	687	741	8839	14029
SLE	Mxx max	SLE rara - N max gr.1	37859	687	741	8839	14029
	Myy max	SLE rara - ML max gr.3	37170	1219	55	1432	21154
Æ	Tx,A _{max}	SLE RARA ML max gr.4	29736	1044	88	1777	17615
SLE FRE	Ty,A _{max}	SLE RARA N max gr.4	30287	949	719	8898	15302
\mathbf{SL}	Myy max	SLE RARA ML max gr.4	29736	1044	88	1777	17615
\mathbf{S}		SLE quasi permanente	32671	82	0	-5508	6426
	Nz,A _{max}	SLV - N max	36286	1890	2126	20649	22352
SLV q=1.5	Tx,A _{max}	SLV - ML max gr.1	34344	5719	2126	21823	54360
_b /	Ty,A _{max}	SLV - MT max gr.1	34482	1890	7035	82154	22155
\mathbf{SL}	Mxx max	SLV - MT max gr.3	32936	1890	7035	82728	21986
	Myy max	SLV - ML max gr.1	34344	5719	2126	21823	54360
10	Nz,A _{max}	SLV - N max	36286	2024	2307	30248	23714
=1.36	Tx,A _{max}	SLV - ML max gr.1	34344	6163	2307	30385	58897
5	Ty,A _{max}	SLV - MT max gr.1	34482	2024	7639	97242	23516
SLV	Mxx max	SLV - MT max gr.1	34482	2024	7639	97242	23516
	Myy max	SLV - ML max gr.1	34344	6163	2307	30385	58897
-	Nz,A _{max}	SLV - N max	36286	2538	3006	33469	28963
<u>[</u> _	Tx,A _{max}	SLV - ML max gr.1	34344	7879	3006	34644	76396
SLV q=1	Ty,A _{max}	SLV - MT max gr.1	34482	2538	9967	124890	28766
\mathbf{SI}	Mxx max	SLV - MT max gr.3	32936	2538	9967	125464	28597
	Myy max	SLV - ML max gr.1	34344	7879	3006	34644	76396

Tabella 6 – Sollecitazioni ad intradosso del baricentro fondazione

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI 02 E5 002
 A
 45 di 57

TABLE: Sect	ion Cut Forces	s - Analysis							
SectionCut	OutputCase	CaseType	StepType	F1	F2	F3	M1	M2	M3
Text	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
base pila	EX_3	Combination	Max	589,633	177,297	18983,424	-8252,4328	-4089,4945	5,365E-07
base pila	EX_3	Combination	Min	-589,637	-177,308	18983,423	-10075,8467	-10164,128	-0,0014
base pila	EX_2	Combination	Max	589,633	177,297	18983,424	-8252,4328	-4089,4945	5,365E-07
base pila	EX_2	Combination	Min	-589,637	-177,308	18983,423	-10075,8467	-10164,128	-0,0014
base pila	EX_1	Combination	Max	589,633	177,297	18983,424	-8252,4328	-4089,4945	5,365E-07
base pila	EX_1	Combination	Min	-589,637	-177,308	18983,423	-10075,8467	-10164,128	-0,0014
base pila	EX_4	Combination	Max	589,633	177,297	18983,424	-8252,4328	-4089,4945	5,365E-07
base pila	EX_4	Combination	Min	-589,637	-177,308	18983,423	-10075,8467	-10164,128	-0,0014
base pila	EY_1	Combination	Max	176,892	590,991	18983,424	-6125,171	-6215,6	-0,0001928
base pila	EY_1	Combination	Min	-176,895	-591,002	18983,423	-12203,1085	-8038,0225	-0,0012
base pila	EY_2	Combination	Max	176,892	590,991	18983,424	-6125,171	-6215,6	-0,0001928
base pila	EY_2	Combination	Min	-176,895	-591,002	18983,423	-12203,1085	-8038,0225	-0,0012
base pila	EY_3	Combination	Max	176,892	590,991	18983,424	-6125,171	-6215,6	-0,0001928
base pila	EY_3	Combination	Min	-176,895	-591,002	18983,423	-12203,1085	-8038,0225	-0,0012
base pila	EY_4	Combination	Max	176,892	590,991	18983,424	-6125,171	-6215,6	-0,0001928
base pila	EY_4	Combination	Min	-176,895	-591,002	18983,423	-12203,1085	-8038,0225	-0,0012

Tabella 7 – Sollecitazioni intradosso fondazione - Dinamica 100%(EI)

TABLE: Sect	ion Cut Forces	s - Analysis							
SectionCut	OutputCase	CaseType	StepType	F1	F2	F3	M1	M2	M3
Text	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
base pila	EX_3	Combination	Max	647,351	194,587	18983,428	-8161,6093	-3786,725	0,0001455
base pila	EX_3	Combination	Min	-647,345	-194,616	18983,427	-10166,5891	-10466,8428	-0,003
base pila	EX_2	Combination	Max	647,351	194,587	18983,428	-8161,6093	-3786,725	0,0001455
base pila	EX_2	Combination	Min	-647,345	-194,616	18983,427	-10166,5891	-10466,8428	-0,003
base pila	EX_1	Combination	Max	647,351	194,587	18983,428	-8161,6093	-3786,725	0,0001455
base pila	EX_1	Combination	Min	-647,345	-194,616	18983,427	-10166,5891	-10466,8428	-0,003
base pila	EX_4	Combination	Max	647,351	194,587	18983,428	-8161,6093	-3786,725	0,0001455
base pila	EX_4	Combination	Min	-647,345	-194,616	18983,427	-10166,5891	-10466,8428	-0,003
base pila	EY_1	Combination	Max	194,214	648,634	18983,428	-5822,5868	-6124,7301	-0,0002838
base pila	EY_1	Combination	Min	-194,209	-648,663	18983,426	-12505,6117	-8128,8377	-0,0026
base pila	EY_2	Combination	Max	194,214	648,634	18983,428	-5822,5868	-6124,7301	-0,0002838
base pila	EY_2	Combination	Min	-194,209	-648,663	18983,426	-12505,6117	-8128,8377	-0,0026
base pila	EY_3	Combination	Max	194,214	648,634	18983,428	-5822,5868	-6124,7301	-0,0002838
base pila	EY_3	Combination	Min	-194,209	-648,663	18983,426	-12505,6117	-8128,8377	-0,0026
base pila	EY_4	Combination	Max	194,214	648,634	18983,428	-5822,5868	-6124,7301	-0,0002838
base pila	EY_4	Combination	Min	-194,209	-648,663	18983,426	-12505,6117	-8128,8377	-0,0026

Tabella 8 – Sollecitazioni intradosso fondazione - Dinamica 50%(EI)

Come si può vedere dai valori massimi indicati in grassetto (per q=1), le sollecitazioni della Analisi Lineare Statica sono superiori rispetto a quelle ottenute dall'analisi Dinamica; pertanto in favore di sicurezza si adotteranno quelle ricavate dalla Analisi Lineare Statica.

4.8 Pali di fondazione

Le sollecitazioni risultanti sono riportati nelle seguenti tabelle:

GEO SLU SOLL. TOTALI N	EL BAR	ICENTRO	DELLA	PALIFIC	CATA			
C.C.	N	T _x	T_{y}	$\mathbf{M}_{\mathbf{x}}$	$\mathbf{M}_{\mathbf{y}}$	N _{max/palo}	N _{min/palo}	$T_{/palo}$
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
A2 - SLU - N max gr.1	41908	838	958	14879	14580	4412	2573	106
A2 - SLU - MT max gr.1	41908	838	958	14879	14580	4412	2573	106
A2 - SLU - ML max gr.1	41047	961	138	4016	20089	4230	2611	81
A2 - SLU - N max gr.3	41908	1385	890	13714	26251	4785	2200	137
A2 - SLU - MT max gr.3	41908	1385	890	13714	26251	4785	2200	137
A2 - SLU - ML max gr.3	41047	1508	69	2851	25845	4397	2444	126
A2 - SLU - Vento ponte scarico	35423	82	1418	18225	3881	3593	2311	118
A2 - SLU Gmin - N max gr.1	41908	838	958	14879	19251	4574	2411	106
A2 - SLU Gmin - MT max gr.1	41908	838	958	14879	19251	4574	2411	106
A2 - SLU Gmin - ML max gr.1	41047	961	138	4016	22945	4329	2512	81
A2 - SLU Gmin - N max gr.3	41908	1385	890	13714	26251	4785	2200	137
A2 - SLU Gmin - MT max gr.3	41908	1385	890	13714	26251	4785	2200	137
A2 - SLU Gmin - ML max gr.3	41047	1508	69	2851	29945	4540	2302	126
A2 - SLU Gmin - Vento ponte scarico	35423	82	1418	18225	3881	3593	2311	118
		_			•	4785	2200	137

Tabella 9 – Sollecitazioni massime sul singolo palo C.C. GEO SLU

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI 02 E5 002
 A
 47 di 57

STR SLU SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA								
C.C.	N	T _x	T _y	$\mathbf{M}_{\mathbf{x}}$	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
A1 - SLU - N max gr.1	53004	959	1107	16453	17483	5481	3353	122
A1 - SLU - MT max gr.1	53004	959	1107	16453	17483	5481	3353	122
A1 - SLU - ML max gr.1	52006	1101	160	3939	21021	5173	3494	93
A1 - SLU - N max gr.3	53004	1560	1027	15102	30162	5884	2950	156
A1 - SLU - MT max gr.3	53004	1560	1027	15102	30162	5884	2950	156
A1 - SLU - ML max gr.3	52006	1702	80	2587	25588	5294	3373	142
A1 - SLU - Vento ponte scarico	45482	82	1636	20272	8738	4657	2924	137
A1 - SLU Gmin - N max gr.1	53004	959	1107	16453	22469	5654	3180	122
A1 - SLU Gmin - MT max gr.1	53004	959	1107	16453	22469	5654	3180	122
A1 - SLU Gmin - ML max gr.1	52006	1101	160	3939	26745	5372	3296	93
A1 - SLU Gmin - N max gr.3	53004	1560	1027	15102	30162	5884	2950	156
A1 - SLU Gmin - MT max gr.3	53004	1560	1027	15102	30162	5884	2950	156
A1 - SLU Gmin - ML max gr.3	52006	1702	80	2587	34438	5601	3066	142
A1 - SLU Gmin - Vento ponte scarico	45482	82	1636	20272	8738	4657	2924	137
						5884	2924	156

Tabella 10 – Sollecitazioni massime sul singolo palo C.C. STR SLU

SIS M1 Q 1,36 SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA								
C.C.	N	T_{x}	T_{y}	$\mathbf{M}_{\mathbf{x}}$	$\mathbf{M_y}$	N _{max/palo}	N _{min/palo}	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
SLV - N max	36286	2024	2307	36246	28975	5037	1011	256
SLV - MT max gr.1	34482	2024	7639	117102	28778	7126	-1379	659
SLV - ML max gr.1	34344	6163	2307	36383	74922	6474	-750	548
SLV - MT max gr.3	32936	2024	7639	117102	28609	6991	-1502	659
SLV - ML max gr.3	32798	6163	2307	36383	74753	6339	-873	548
SLV - N min	31131	2024	2307	36246	28412	4588	601	256
						7126	-1502	659

Tabella 11 – Sollecitazioni massime sul singolo palo C.C. SLV q=1.36

SIS M1 Q 1 SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA								
C.C.	N	T_{x}	T_{y}	$\mathbf{M}_{\mathbf{x}}$	$\mathbf{M_y}$	N _{max/palo}	N _{min/palo}	$T_{/palo}$
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
SLV - N max	36286	2538	3006	41284	35563	5405	642	328
SLV - MT max gr.1	34482	2538	9967	150805	35366	8291	-2543	857
SLV - ML max gr.1	34344	7879	3006	42458	96881	7405	-1681	703
SLV - MT max gr.3	32936	2538	9967	151379	35197	8172	-2682	857
SLV - ML max gr.3	32798	7879	3006	43033	96712	7287	-1820	703
SLV - N min	31131	2538	3006	43199	35000	5010	179	328
						8291	-2682	857

Tabella 12 – Sollecitazioni massime sul singolo palo C.C. SLV q=1

SLE RARA SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA								
C.C.	N	T _x	T_{y}	$\mathbf{M}_{\mathbf{x}}$	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
SLE rara - N max gr.1	37859	687	741	10766	12243	3879	2431	84
SLE rara - MT max gr.1	37859	687	741	10766	12243	3879	2431	84
SLE rara - ML max gr.1	37170	781	110	2507	14660	3676	2519	66
SLE rara - N max gr.3	37859	1124	686	9834	21415	4172	2138	110
SLE rara - MT max gr.3	37859	1124	686	9834	21415	4172	2138	110
SLE rara - ML max gr.3	37170	1219	55	1575	17985	3766	2429	102
SLE rara - Vento ponte scarico	32671	49	680	5982	5961	3096	2349	57
		_		_		4172	2138	110

Tabella 13 – Sollecitazioni massime sul singolo palo C.C. SLE

SLE RARA GR 4 SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA								
C.C.	N	T _x	T_{y}	$\mathbf{M}_{\mathbf{x}}$	$\mathbf{M}_{\mathbf{y}}$	N _{max/palo}	N _{min/palo}	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
SLE RARA N max gr.4	30287	949	719	10769	12833	3269	1779	99
SLE RARA MT max gr.4	30287	949	719	10769	12833	3269	1779	99
SLE RARA ML max gr.4	29736	1044	88	2006	14900	3051	1905	87
						3269	1779	99

D 09 CL

00

REV.

Α

VI 02 E5 002

FOGLIO

49 di 57

Tabella 14 - Sollecitazioni massime sul singolo palo C.C. SLE RARA GR 4

4.9 Verifiche degli elementi strutturali

Per tutti gli elementi strutturali della pila vengono svolte le seguenti verifiche:

- verifiche a rottura (pressoflessione e taglio) per le combinazioni allo stato limite ultimo (SLU).
- verifiche tensionali per le combinazioni rare, frequenti e quasi permanenti (SLE)
- verifiche a fessurazione per le combinazioni rara (SLE)

4.9.1 Pila

Taglio di progetto:

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IVOI 00 D 09 CL VI 02 E5 002 A 50 di 57

Direzione		Long.(Myy,Tx)	Trasv(Mxx,Ty)	
Altezza pila	Н	7,7	7,7	m
Fattore di struttura		1,5	1,5	
Fattore di sovraresistenza (eq. 7.9.7)	γRd	1	1	
Fattore di sovraresistenza filtrato (eq. 7.9.7)	γRd	1	1	
Taglio agente (q=1)	V	6731	8819	kN
Momento agente (q=1)	M	58134	101407	kN*m
Taglio agente (con q)	VEd	4570	5887	kN
Momento agente (con q)	MEd	41499	66002	kN*m
Momento Resistente	MRd	164500	127564,9	kN*m
Rapporto di sovraresistenza	MRd/MEd	3,96	1,93	
Tipo sezione (EC8-2; eq. 6.11)		NON CRITICA	NON CRITICA	
Angolo inclinazione bielle compresse	Teta	da calc.	da calc.	
Limite superiore Vgr	Vgr.max= V	6731	8819	kN
Taglio di progetto per la gerarchia della resistenza (eq. 7.9.12)	Vgr	18117	11378	kN
Taglio di progetto per la gerarchia della resistenza filtrato (eq. 7.9.12)	Vgr	6731	8819	kN
fattore di sicurezza aggiuntivo per la resistenza a taglio (eq. 7.9.10)	γBd	1	1,25	
fattore di sicurezza aggiuntivo per la resistenza a taglio filtrato (eq. 7.	γBd	1	1,25	
Riassumendo				
Taglio di calcolo	Vgr	6731	8819	kN
fattore di sicurezza aggiuntivo filtrato (eq. 7.9.10)	γBd	1,23	1,25	
Angolo inclinazione bielle compresse	Teta	da calc.	da calc.	

La sezione è armata con:

 $A_s = \phi 30/10 + \phi 30/10$ staffe $\phi 16/10$

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Resis. compr. ridotta fcd': Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C32/40 18.8 9.4 0.0020 0.0035	MPa MPa
	Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: Resis. media a trazione fctm: Coeff. Omogen. S.L.E.:	Parabola-Rettangolo 33643.0 3.10 15.00	MPa MPa
	Sc limite S.L.E. comb. Rare: Sc limite S.L.E. comb. Frequenti: Ap.Fessure limite S.L.E. comb. Freque Sc limite S.L.E. comb. Q.Permanenti: Ap.Fess.limite S.L.E. comb. Q.Perm.:	18.3 18.3 Inti: 0.200 13.3 0.200	MPa MPa mm MPa mm
ACCIAIO -	Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di progetto fyd:	B450C 450.0 450.0 391.3	MPa MPa MPa

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** 00 D 09 CL VI 02 E5 002 Α 51 di 57

391.3 Resist. ultima di progetto ftd: MPa Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo §1*§2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Circolare Classe Calcestruzzo: C32/40

Raggio circ.: 225.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Xcentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Ycentro

Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Numero di barre generate equidist. disposte lungo la circonferenza N°Barre

Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	210.0	120	30
2	0.0	0.0	200.0	120	30

ARMATURE A TAGLIO

Diametro staffe: 16 mm Passo staffe: 10.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Ν Mx

Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.

Momento flettente [kNm] intorno all'asse y princ. d'inerzia

Му con verso positivo se tale da comprimere il lembo destro della sez.

Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Vy

Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	30491.00	9992.00	14977.00	958.00	838.00
2	29630.00	2500.00	22255.00	69.00	1508.00
3	24007.00	10992.00	7362.00	1418.00	82.00
4	24007.00	10992.00	7362.00	1418.00	82.00
5	29630.00	2500.00	22255.00	69.00	1508.00
6	38388.00	10810.00	17579.00	1107.00	959.00
7	37389.00	2181.00	25758.00	80.00	1702.00
8	30866.00	11926.00	8746.00	1636.00	82.00

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
reciazione di calcolo pila lipo o binano dispan	IV0I	00	D 09 CL	VI 02 E5 002	Α	52 di 57

9	30866.00	11926.00	8746.00	1636.00	82.00
10	37389.00	2181.00	25758.00	80.00	1702.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

- N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
- Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione
- My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	27379.00	6985.00	12312.00
2	26690.00	1295.00	18107.00
3	27379.00	6985.00	12312.00
4	27379.00	6985.00	12312.00
5	26690.00	1295.00	18107.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

- N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
- Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione
- My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	21352.00	1557.00 (27609.82)	15005.00 (266079.19)
2	21903.00	7100.00 (190957.32)	12928.00 (347703.70)
3	21352.00	1557.00 (27609.82)	15005.00 (266079.19)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

- N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
- Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione
- My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	My
1	22191.00	-5508.00 (0.00)	6220.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

REV. COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO D 09 CL VI 02 E5 002 53 di 57 IVOI 00 Α

My Res

Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Totale
1	S	30491.00	9992.00	14977.00	30490.79	87561.50	131254.30	8.76	1696.5(477.1)
2	S	29630.00	2500.00	22255.00	29630.03	17511.29	155849.94	7.00	1696.5(477.1)
3	S	24007.00	10992.00	7362.00	24007.04	124990.56	83728.23	11.37	1696.5(477.1)
4	S	24007.00	10992.00	7362.00	24007.04	124990.56	83728.23	11.37	1696.5(477.1)
5	S	29630.00	2500.00	22255.00	29630.03	17511.29	155849.94	7.00	1696.5(477.1)
6	S	38388.00	10810.00	17579.00	38387.84	87007.49	141490.95	8.05	1696.5(477.1)
7	S	37389.00	2181.00	25758.00	37388.99	13935.49	164500.36	6.39	1696.5(477.1)
8	S	30866.00	11926.00	8746.00	30865.88	127564.90	93546.05	10.70	1696.5(477.1)
9	S	30866.00	11926.00	8746.00	30865.88	127564.90	93546.05	10.70	1696.5(477.1)
10	S	37389.00	2181.00	25758.00	37388.99	13935.49	164500.36	6.39	1696.5(477.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
	Deform. unit. massima del calcestruzzo a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	187.2	-149.2	0.00309	176.1	114.4	-0.00844	-176.1	-114.4
2	0.00350	223.6	108.3	0.00308	208.8	22.0	-0.00854	-208.8	-22.0
3	0.00350	125.2	23.2	0.00306	114.4	176.1	-0.00924	-114.4	-176.1
4	0.00350	125.2	111.0	0.00306	114.4	176.1	-0.00924	-114.4	-176.1
5	0.00350	223.6	16.1	0.00308	208.8	22.0	-0.00854	-208.8	-22.0
6	0.00350	191.7	117.9	0.00312	176.1	114.4	-0.00760	-176.1	-114.4
7	0.00350	224.2	19.0	0.00311	208.8	22.0	-0.00770	-208.8	-22.0
8	0.00350	133.1	181.4	0.00309	123.4	169.9	-0.00840	-123.4	-169.9
9	0.00350	133.1	181.4	0.00309	123.4	169.9	-0.00840	-123.4	-169.9
10	0.00350	224.2	19.0	0.00311	208.8	22.0	-0.00770	-208.8	-22.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 a, b, c x/d C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000022838	0.000015236	-0.002677040		
2	0.000027511	0.000003090	-0.002728858		
3	0.000016298	0.000024334	-0.003089603		
4	0.000016298	0.000024334	-0.003089603		
5	0.000027511	0.000003090	-0.002728858		
6	0.000021742	0.000013370	-0.002243013		
7	0.000025661	0.000002173	-0.002294435		

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA	LOTTO 00	CODIFICA D 09 CL	DOCUMENTO VI 02 E5 002	REV.	FOGLIO 54 di 57
1001	00	D 09 CL	VI 02 E3 002	A	34 ui 37

8	0.000016178	0.000022060	-0.002655210	
9	0.000016178	0.000022060	-0.002655210	
10	0.000025661	0.000002173	-0.002294435	

VERIFICHE A TAGLIO

Diam. Staffe: 16 mm

Passo staffe: 10.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Vcd Taglio compressione resistente [kN] lato calcestruzzo [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

La resistenza dei pilastri è calcolata assumendo il valore di z (coppia interna))

I pesi della media sono le lunghezze delle strisce.(Sono esluse le strisce totalmente non compresse).

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo Acw Coefficiente maggiorativo della resistenza a taglio per compressione

Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh legat proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	1228.77	47285 11	25797.43375	81 335 0	394.1	2.500	1.102	3.7	78.5(0.0)
2	S	1506.28		25860.36376		392.6	2.500	1.099	4.6	78.5(0.0)
3	S	1223.79	46279.24	26167.71377	.8 340.7	387.9	2.500	1.080	3.7	78.5(0.0)
4	S	1223.79	46279.24	26167.71377	.8 340.7	387.9	2.500	1.080	3.7	78.5(0.0)
5	S	1506.28	47093.69	25860.36376	.3 336.7	392.6	2.500	1.099	4.6	78.5(0.0)
6	S	1396.77	48339.04	25388.06373	.8 330.5	399.9	2.500	1.128	4.3	78.5(0.0)
7	S	1702.68	48269.39	25421.64373	.8 330.9	400.0	2.500	1.125	5.3	78.5(0.0)
8	S	1367.76	47312.67	25782.24375	.8 335.7	394.1	2.500	1.103	4.2	78.5(0.0)
9	S	1367.76	47312.67	25782.24375	.8 335.7	394.1	2.500	1.103	4.2	78.5(0.0)
10	S	1702.68	48269.39	25421.64373	.8 330.9	400.0	2.500	1.125	5.3	78.5(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min
Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

As eff.	Ac eff.	Ys min	Xs min	Ss min	Yc max	Xc max	Sc max	Ver	N°Comb
		-105.0	-181.9	4.8	0.0	195.7	2.73	S	1
28.3	1095	-11.0	-209.7	-0.8	0.0	224.4	3.05	S	2
		-105.0	-181.9	4.8	0.0	195.7	2.73	S	3
		-105.0	-181.9	4.8	0.0	195.7	2.73	S	4
28.3	1095	-11.0	-209.7	-0.8	0.0	224.4	3.05	S	5

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 09 CL	VI 02 E5 002	Α	55 di 57

				•			ľ	V0I	1 00	O 09 CL	VI 02 E5 0	02	A 55
e1								razione -) valu					
e2 k1								zione -) valuta	ita in sezione	iessurata			
kt				lerenza miglio				[cfr. eq.(7.9)E	=C21				
k2								[eq.(7.13)EC2					
k3								[eq.(1.10)LO2	-]				
k4			= 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali										
Ø			Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]										
Čf				calcolato con					o [oq.()				
e sm	- e cm							[(7.8)EC2 e (C4.1.7)NTC1				
				minimo = 0.6					, .,				
sr ma	Х	Massim	a distanza tra	le fessure [mi	m]	- `	, ,	, ·					
wk		Apertura	a fessure in m	ım calcolata =	sr max	(*(e_sm -	e_cm) [(7	.8)EC2 e (C4.1	1.7)NTC]. Va	lore limite	tra parentesi		
Mx fe	SS.	Compor	nente moment	to di prima fes	surazio	one intorno	all'asse	X [kNm]					
My fe	SS.	Compor	nente moment	to di prima fes	surazio	one intorno	all'asse	Y [kNm]					
Comb.	Ver	e1	e2	k2	Ø	Cf		6	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000								0.000 (0.20)	0.00	0.00
2	S	-0.00001	0.00000		30.0	135		0.0000	. (0,0000)	6E7	, ,		358943.92
	S				30.0	133		0.00000	0.00000)	657	0.002 (0.20)		
3		0.00000									0.000 (0.20)	0.00	0.00
4	S	0.00000				405		0.0000		057	0.000 (0.20)	0.00	0.00
5	S	-0.00001	0.00000	0.500	30.0	135		0.00000	0.00000)	657	0.002 (0.20)	256/1.42	358943.92
COMBIN	NAZION	I FREQUEN	ITI IN ESER	CIZIO - MA	ASSIN	IE TENS	IONI NO	RMALI ED A	APERTURA	FESSU	RE (NTC/EC2)		
			., .,			., .							
N°Comb	Ver	Sc max	Xc max Yc	max S	s min	Xs min	Ys min	Ac eff.	As eff.				
1	S	2.49	223.8	0.0	-1.4	-208.8	-22.0	931	21.2				
2	Š	2.49	197.2	0.0		-181.9	-105.0	1090	28.3				
3	S	2.49	223.8	0.0		-208.8	-22.0	931	21.2				
J	0	۷.43	223.0	0.0	-1.4	-200.0	-22.0	331	۷۱.۷				

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1 2 3	S S S	-0.00001 -0.00001 -0.00001	0.00000 0.00000 0.00000	0.500 0.500 0.500	30.0	135 135 135	0.00000 (0.00000) 683 0.00000 (0.00000) 656 0.00000 (0.00000) 683	0.001 (0.20) 1	190957.32	347703.70

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max \	∕c max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.94	168.4	0.0	7.8	-156.1	140.5		

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361

Relazione di calcolo pila tipo 6 binario dispari

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI 02 E5 002
 A
 56 di 57

4.9.2 Zattera di fondazione

Per la valutazione delle sollecitazioni nel plinto di fondazione, è necessario valutare preventivamente le sollecitazioni agenti nei pali di fondazione. Tali sollecitazioni sono state valutate mediate una ripartizione rigida delle sollecitazioni agenti a base plinto.

Si vedano i paragrafi precedenti da cui risulta:

 $N_{max} = 5884 \text{ kN (CC. SLU)}$

 $N_{max} = 7126 \text{ kN (CC. SLV q=1.36)}$

 $T_{max} = 659 \text{ kN (CC. SLV q=1.36)}$

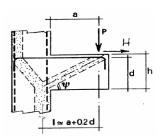
Il plinto fondazione è stato verificato ipotizzando un meccanismo di tirante puntone. Si riporta di seguito la verifica. La larghezza di diffusione è stata valutata in corrispondenza del filo esterno della pila, mediante una diffusione a 45° a partire dal piano medio del palo, mentre l'altezza della biella compressa è stata valutata pari a 0.2 d_p (con d_p altezza utile della sezione del plinto).

La verifica è stata eseguita in corrispondenza del palo più sollecitato.

Di seguito si riportano i risultati delle verifiche strutturali del plinto di fondazione, condotte con riferimento al metodo usualmente utilizzato per la verifica delle mensole tozze, ovvero il metodo del tirante-puntone, di cui nel seguito si riporta lo schema e di verifica generale e relative formulazioni.

TRATTA FINALE LIGURE-ANDORA

VI02 - Viadotto su Torrente Maremola/Giustenice da km 71+327 a km 71+361


Relazione di calcolo pila tipo 6 binario dispari

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI 02 E5 002
 A
 57 di 57

VERIFICA MENSOLE TOZZE - MECCANISMO TIRANTE PUNTONE

VERIFICA - MECCANISMO TIRANTE PUNTONE.

P,H: Carichi Esterni di Progetto (P_{ED},H_{ED})

Pr: Portanza mensola in termini di resistenza dell'armatura metallica

$$P_{R} = P_{Rs} = \left(A_{s}f_{yd} - H_{Ed}\right)\frac{1}{\lambda} \qquad \qquad \lambda = ctg\psi \cong l/(0.9d).$$

Pr : Portanza mensola in termini di resistenza della Biella compressa

$$P_{Rc} = 0,4bdf_{cd} \frac{c}{1+\lambda^2} \ge P_{Rs}$$

CONDIZIONI DI VERIFICA

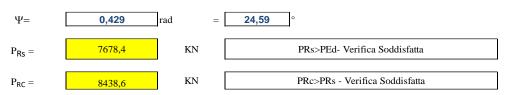
$$\begin{array}{ll} 1 & P_R \! \geq \! P_{Ed} \\ 2 & \qquad \geq P_{Rs} \end{array}$$

Dati di progetto

b(m)=	2,80	m	dimensione trasversale verifica
$P_{\text{Ed}}(KN) =$	7126,00	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
$H_{\text{Ed}}\left(KN\right)=$	659,00	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	4,24	m	distanza P da incastro
h(m) =	2,50	m	spessore mensola
$\delta(m) =$	0,10	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	2,40	m	altezza utile
l(m) =	4,72	m	a+0,2d
λ. =	2.19		$\lambda = \text{ctgw} = 1/(0.9\text{d})$.

Tipo di mensola (Valutazione coefficiente $\bf c$)

sblazi di piastre (no staffatura)		
c(m) =	1,00	


Caratteristiche Materiali

fcd =	18,1	MPa	Calcestruzzo
fyd =	391,0	MPa	Acciaio

Caratteristiche Armature di Progetto

Registro tipo		R1				
n° R1=	•	1	φ1(mm) =	26,0	p1(cm) = 10,0	θ1° = 0,0
$A\phi i (mm^2) =$	•	530,93	nb tot 1=	28,0	$A\phi TOT (mm^2) = 14866,00$	$A\phi CAL(mm^2) = 14866,00$
Registro tipo		R2				
n° R2=	•	1	φ2(mm) =	26,0	p2(cm) = 10,0	θ2° =
$A\phi i (mm^2) =$	•	530,93	nb tot 2 =	28,0	$A\phi TOT (mm^2) = 14866,00$	$A\phi CAL(mm^2) = 14866,00$
Registro tipo		R3				
n° R3=	•	1	φ3(mm) =	26,0	p3(cm) = 10,0	θ3° = 0,0
$A\phi i (mm^2) =$	•	530,93	nb tot 3 =	28,0	$A\phi TOT (mm^2) = 14866,00$	$A\phi CAL(mm^2) = 14866,00$

Verifiche di resistenza

