COMMITTENTE:

PROGETTAZIONE:

U.O. OPERE CIVILI

PROGETTO DEFINITIVO

RADDOPPIO DELLA LINEA GENOVA – VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

VI03 - Viadotto su Torrente Varatello da km 77+427 e 77+473

Relazione di calcolo spalla B – VI03

SCALA:
_

COMMESSA	LOTTO FASE	ENTE TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV
I V 0 I	0 0 D	0 9 C L	V I 0 3 0 4	0 0 2	Α

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione esecutiva	G.Grimaldi	Feb. 2022	D.Guerci	Feb. 2022	G.Fadda	Feb. 2022	A.Villozzi
		4		B		gresso		S.p.A. itone delle variant itone delle variant Witterstein ille covincia di ano in zorozori in covincia di ano in covin
								And
								TALE Ivilli Pegn N
								IT Opere Civ Dott. degli Ing
								U.O. Opere Do dine degli
								U.O.
								ŏ

File: IV0I00D09CLVI0304002A.doc		n. Elab.: X
---------------------------------	--	-------------

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

COMMESSA

CODIE

DOCUMENTO

REV. FOGLIO

Relazione di calcolo spalla B - VI03

IV0I

D 09 CL

LOTTO

00

VI0304 002

2 di 79

INDICE

1	GE	NERALITA'	4
2	NO	RMATIVA E DOCUMENTI DI RIFERIMENTO	
	2.1	ELABORATI DI RIFERIMENTO	8
3	MA	TERIALI	9
	3.1	CALCESTRUZZO PER GETTI IN OPERA SPALLE E PILE – FONDAZIONI E ELEVAZIONI	9
	3.2	ACCIAIO PER C.A	9
4	МО	DELLO DI CALCOLO	10
5	AN	ALISI DEI CARICHI	11
	5.1	PESO PROPRIO	11
	5.2	PESO PROPRIO DEL TERRENO	11
	5.3	SPINTA DEL TERRENO	11
	5.4	CARICHI PERMANENTI SULLA SPALLA	12
	5.5	CARICHI VARIABILI	12
	5.5.	1 Carichi da traffico ferroviario	12
	5.6	SPINTA DOVUTA AI CARICHI VARIABILI	14
	5.7	CARICHI DERIVANTI DALL'IMPALCATO	15
	5.8	AZIONI SISMICHE	15
	5.8.	1 Inquadramento sismico	17
	5.9	SPINTA ATTIVA IN CONDIZIONI SISMICHE	20
6	CO	MBINAZIONI DI CARICO	21
7	VEI	RIFICHE SPALLA B (FISSA)	25
	7.1	FONDAZIONE	25
	7.1.	1 Sollecitazioni massime	25
	7.1.	2 Verifiche agli Stati Limite	31
	7.2	MURO FRONTALE	42

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

COMMESSA

CODIFICA

DOCUMENTO

FOGLIO

Relazione di calcolo spalla B - VI03

LOTTO IV0I 00 D 09 CL

VI0304 002

3 di 79

	7.2.1	Sollecitazioni massime	42
	7.2.2	Verifiche agli Stati Limite	46
	7.3 P	PARAGHIAIA	54
	7.3.1	Sollecitazioni massime	54
	7.3.2	Verifiche agli Stati Limite	58
	7.4 N	MURI LATERALI	66
	7.4.1	Sollecitazioni massime	66
	7.4.2	Verifiche agli Stati Limite	70
8	SCAR	ICHI SULLA PALIFICATA	78
9	VALU	TAZIONE DELLA ACCETTABILITA' DEI RISULTATI OTTENUTI (RIF.PAR.10.2 DM 17/01/2018)	80

GRUPPO FERROVIE DELLO STATO ITALIANE			GENOVA - V GURE - ANDC			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	A	4 di 79

1 GENERALITA'

Oggetto della presente relazione e' il calcolo delle sollecitazioni e le conseguenti verifiche di resistenza della spalla B (spalla fissa) del viadotto VI03 sul Torrente Varatello, da costruirsi per il raddoppio della linea Genova – Ventimiglia, nella tratta Finale Ligure - Andora.

Il viadotto in esame si sviluppa su una campata a doppio binario di luce pari a 46 m. Essendo il viadotto a ridosso del torrente Varatello, per il quale viene prevista un'opportuna sistemazione idraulica, e stato necessario prevedere adeguate opere provvisionali per la realizzazione delle spalle.

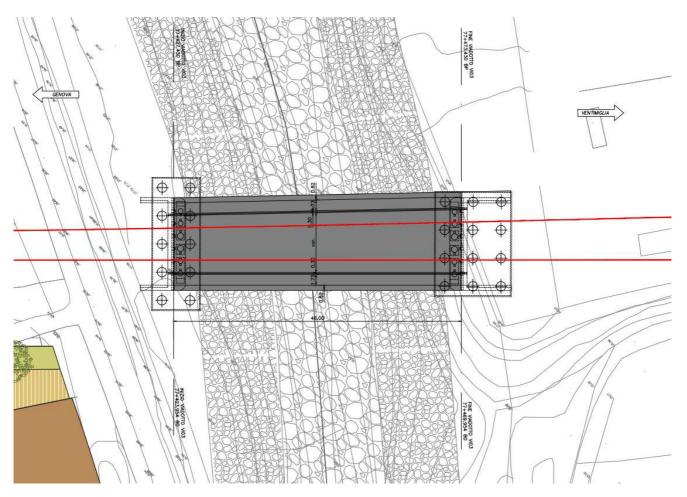


Figura 1: planimetria generale

GRUPPO FERROVIE DELLO STATO ITALIANE	_	-	GENOVA - V GURE - ANDC			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	Α	5 di 79

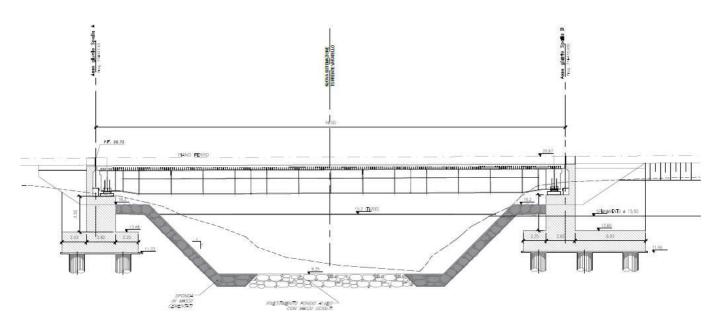


Figura 2: Profilo longitudinale

La spalla B su cui poggia l'impalcato in struttura mista acciaio-calcestruzzo ha un plinto di fondazione a pianta rettangolare di dimensioni pari a $12.00 \times 16.50 \text{m}$ e spessore 2.00 m. Il muro di testata spesso 2.82 m è alto 3.50. Il muro paraghia è spesso 0.60 m, mentre i muri andatori hanno spessore 0.80 m. La spalla è fondata su dodici pali.

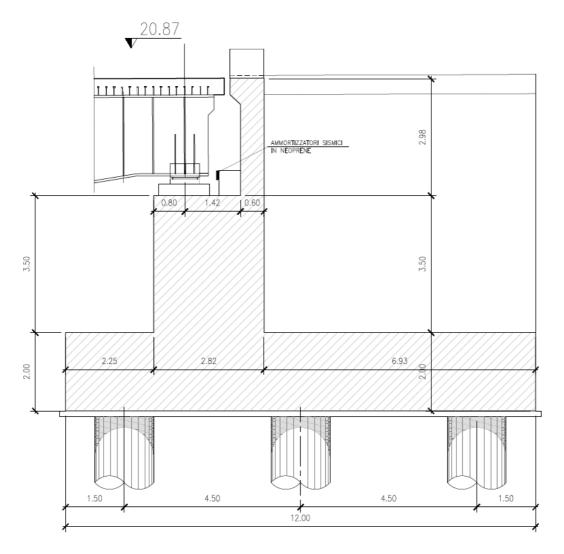


Figura 5: Spalla B

Unità di misura

- lunghezza [m]

- forze [kN]

- angoli [rad]

- tensioni [N/mm²]

2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

- Rif. [1] Ministero delle Infrastrutture, DM 17 gennaio 2018, «Aggiornamento delle "Norme tecniche per le costruzioni"»
- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 21 gennaio 2019, n. 7 C.S.LL.PP., Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.
- Rif. [3] Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- Rif. [4] Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- Rif. [5] Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- Rif. [6] Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- Rif. [7] Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- Rif. [8] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif. [9] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Rif. [10] EC2-1-1-2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo

2.1 Elaborati di riferimento

Viadotto su Torrente Varatello da Km 77+389 a Km 77+619																						
Relazione tecnico descrittiva	-	I	٧	0	Ι	0	0	D	0	9	R	Н	٧	Ι	0	3	0	0	0	0	1	В
Relazione geotecnica e di calcolo fondazioni		I	٧	0	Τ	0	0	D	0	9	O	L	٧	Ι	0	3	0	3	0	0	1	Α
Relazione di calcolo spalla A	-	-	٧	0	_	0	0	D	0	9	О	Г	<	Τ	0	З	0	4	0	0	1	Α
Relazione di calcolo spalla B	-	I	٧	0	Τ	0	0	D	0	9	O	L	٧	Ι	0	3	0	4	0	0	2	Α
Planimetria generale dell'intervento	1:200	-	٧	0	_	0	0	D	0	9	Р	9	٧	Τ	0	3	0	0	0	0	1	В
Prospetto e Sezione longitudinale bin. Dispari	1:100	-	٧	0	_	0	0	D	0	9	Α	Ζ	٧	_	0	3	0	0	0	0	1	В
Planimetria scavi ed opere provvisionali	1:100	I	٧	0	Ι	0	0	D	0	9	Ρ	Α	٧	Ι	0	3	0	3	0	0	2	В
pianta fondazioni		I	٧	0	I	0	0	D	0	9	Р	Α	٧	I	0	3	0	3	0	0	1	В
Carpenteria spalla A tav.1/2	varie	I	٧	0	Ι	0	0	D	0	9	В	Z	٧	-	0	3	0	4	0	0	1	Α
Carpenteria spalla A tav. 2/2		I	٧	0	Ι	0	0	D	0	9	В	Z	٧	Ι	0	3	0	4	0	0	2	Α
Carpenteria spalla B tav.1/2		-	٧	0	_	0	0	D	0	9	В	Ζ	٧	Τ	0	3	0	4	0	0	3	Α
Carpenteria spalla B tav. 2/2		I	٧	0	I	0	0	D	0	9	В	Z	٧	1	0	3	0	4	0	0	4	Α
Opere provvisionali		-	٧	0	_	0	0	D	0	9	В	Ζ	٧	Τ	0	3	0	3	0	0	1	Α
Particolari, dettagli e finiture 1 di 2	varie	I	٧	0	Ι	0	0	D	0	9	В	Z	٧	Ι	0	3	0	0	0	0	1	В
Fasi realizzative e opere provvisionali	varie	I	٧	0	I	0	0	D	0	9	Р	Z	٧	I	0	3	0	0	0	0	1	Α
Schema di vincolo appoggi e giunti		I	٧	0	Ι	0	0	D	0	9	D	Z	٧	Ι	0	3	0	7	0	0	1	Α
Schema di montaggio e varo		-	٧	0	_	0	0	D	0	9	D	Ζ	٧	Τ	0	3	0	0	0	0	1	Α
Relazione di calcolo impalcato in acc/cls L=46m (SPA-SPB)	-	I	٧	0	Ι	0	0	D	0	9	С	L	٧	-	0	3	0	9	0	0	1	Α
Relazione di calcolo opere provvisionali	-	Ι	٧	0	Ι	0	0	D	0	9	С	L	٧	Ι	0	3	0	3	0	0	1	Α
Carpenteria impalcato acc/cls		I	٧	0	Ι	0	0	D	0	9	В	В	٧	Ī	0	3	0	9	0	0	1	В

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		_	GENOVA - V GURE - ANDO			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	Α	9 di 79

3 MATERIALI

Si riportano di seguito i materiali previsti per la realizzazione delle strutture, suddivisi per elemento costruttivo.

3.1 Calcestruzzo per getti in opera spalle e pile – fondazioni e elevazioni

Classe	C32/40		
Rck =	40	MPa	resistenza caratteristica cubica
fck =	32	MPa	resistenza caratteristica cilindrica
fcm =	40	MPa	valor medio resistenza cilindrica
αcc=	0.85		coef. rid. Per carichi di lunga durata
gM=	1.5	_	coefficiente parziale di sicurezza SLU
fcd =	18.13	MPa	resistenza di progetto
fctm =	3.02	MPa	resistenza media a trazione semplice
fcfm =	3.63	MPa	resistenza media a trazione per flessione
fctk =	2.12	MPa	valore caratteristico resistenza a trazione
Ecm =	33346	MPa	Modulo elastico di progetto
		wira	Coefficiente di Poisson
ν =	0.2		Modulo alastico Tangangialo di progetto
Gc =	13894	MPa	Modulo elastico Tangenziale di progetto

3.2 Acciaio per c.a.

B450C			
$f_{yk} \ge$	450	MPa	tensione caratteristica di snervamento
$f_{tk} \ge$	540	MPa	tensione caratteristica di rottura
$(f_t/f_y)_k \ge$	1,15		
$(f_t/f_y)_k \le$	1,35		
$g_s =$	1,15	-	coefficiente parziale di sicurezza SLU
$f_{yd} =$	391,3	MPa	tensione caratteristica di snervamento
$E_s =$	200000	MPa	Modulo elastico di progetto
$\varepsilon_{\mathrm{yd}}$ =	0,196%		deformazione di progetto a snervamento
$\varepsilon_{uk} = (A_{gt})_k$	7,50%		deformazione caratteristica ultima

GRUPPO FERROVIE DELLO STATO ITALIANE			GENOVA - VI GURE - ANDO		
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV. FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	A 10 di 79

4 MODELLO DI CALCOLO

Lo studio del comportamento strutturale delle spalle viene effettuato tramite un modello tridimensionale realizzato con l'ausilio del programma di calcolo ad elementi finiti *Midas Gen*.

Gli elementi costituenti la spalla vengono schematizzati mediante elementi bidimensionali di tipo "Plate".

Si riporta di seguito una immagine illustrativa della modellazione tridimensionale realizzata.

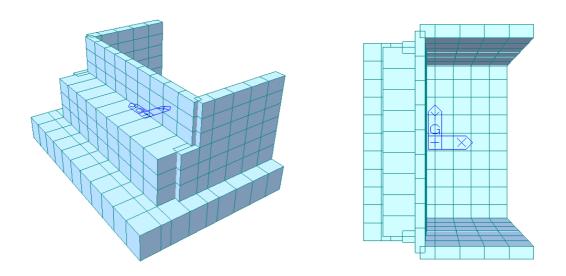


Figura 2 -Viste 3d del modello di calcolo spalla B (fissa)

I nodi superiori degli elementi plate dell'estremità superiore del muro frontale sono collegati ai nodi inferiori del paraghiaia attraverso braccetti rigidi che ne vincola rigidamente gli spostamenti.

Gli appoggi del ponte sono schematizzati tramite elementi rigidi alle cui estremità sono applicati i carichi derivanti dall'analisi dell'impalcato che vengono scaricati sulla spalla, oggetto di dimensionamento e verifica.

I pali di fondazione sono stati schematizzati come vincoli fissi (cerniere).

Per l'estrazione degli scarichi da applicare sulla palificata, è stato realizzato un secondo modello con l'applicazione di un vincolo rigido a tutti i nodi della fondazione (zattera infinitamente rigida) e un unico vincolo incastro al baricentro della palificata.

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

COMMESSA

CODIFICA

DOCUMENTO

REV. FOGLIO

Relazione di calcolo spalla B - VI03

IVOI 00

LOTTO

D 09 CL

VI0304 002

11 di 79

5 ANALISI DEI CARICHI

Nel presente paragrafo si descrivono i carichi agenti sull'impalcato, utilizzati per il calcolo delle sollecitazioni agenti negli elementi strutturali dell'impalcato.

5.1 Peso proprio

Il peso proprio delle strutture viene considerato automaticamente dal software di calcolo utilizzato. Il carico delle strutture in c.a. e c.a.p. viene valutato considerando un peso di volume pari a 25 kN/mc.

5.2 Peso proprio del terreno

Il peso proprio del terreno da rilevato è valutato in ragione di 20.0 kN/m³ e grava sulla fondazione della spalla.

I carichi applicati alla fondazione delle due spalle sono dunque pari a:

Spalla A

Parte interna $q_{terr} = 20kN/mc \cdot 6.50 \text{ m} = 130.0 \text{ kN/m}^2$

Parte esterna $q_{terr} = 20 \text{kN/mc} \cdot 2.70 \text{ m} = 54 \text{ kN/m}^2$

Spalla B

Parte interna $q_{terr} = 20 \text{kN/mc} \cdot 6.50 \text{ m} = 130.0 \text{ kN/m}^2$

Parte esterna $q_{terr} = 20kN/mc \cdot 2.70 \text{ m} = 54 \text{ kN/m}^2$

5.3 Spinta del terreno

La spinta dovuta al peso proprio del terreno sugli elementi verticali della spalla è calcolato secondo la seguente formula:

$$S_{terr} = k_0 \cdot \gamma_d \cdot H [kN/m^2]$$

 $k_0 = 1$ -sen (ϕ_d)

dove:

 $\gamma_{\rm d} = 20.0 \, \rm kN/m^3$

peso di progetto terreno per unità di volume

 $\phi_d = 38^{\circ}$ angolo di attrito interno di progetto del terreno

 $K_0 = 0.384$ coefficiente di spinta a riposo

H = 0.00 - 8.50 m altezza di spinta

 S_{terr} massima (H = 8.50 m) = 65.28 kN/m²

5.4 Carichi permanenti sulla spalla

Si considera la presenza del ballast al di sopra del rilevato, pari a $0.80~m~x~18~kN/m^3=14.4~kN/m^2$.

5.5 Carichi variabili

5.5.1 Carichi da traffico ferroviario

Per quanto riguarda le azioni prodotte dai sovraccarichi verticali da traffico, vista la geometria dell'opera e la presenza del singolo binario, sono state esaminate, separatamente, le condizioni di carico corrispondenti al passaggio di ciascuno dei treni di carico previsti dalla normativa; di seguito si riportano una descrizione dei treni ed i risultati ottenuti.

5.5.1.1 Treno di carico LM71

Il Treno di carico LM71 è schematizzato nella figura seguente.

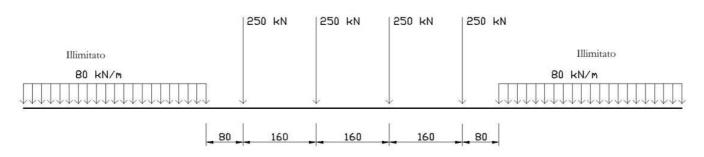


Figura 3 - Treno di carico LM71

Per questo modello di carico è prevista una eccentricità del carico rispetto all'asse del binario pari a s/18, con s=1435 mm. Quindi, l'eccentricità considerata nel modo più sfavorevole per le strutture è pari a: e=80 mm

5.5.1.2 Treno di carico SW

Il Treno di carico SW/2 è schematizzato nella figura seguente.

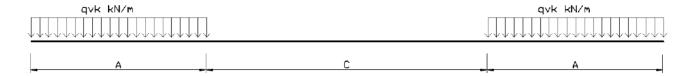


Figura 4 - Treno di carico SW

Tabella 1 - caratterizzazione treni di carico SW

Tipo di carico	Qvk	Α	С
	[kN/m]	[m]	[m]
SW/0	133	15.0	5.3
SW/2	150	25.0	7.0

Nel presente documento, si è considerato solo il modello di carico SW/2.

I valori caratteristici dei carichi attribuiti ai modelli di carico debbono moltiplicarsi per il coefficiente " α " che deve assumersi come da tabella seguente:

Tabella 2 - coefficienti α per modelli di carico

MODELLO DI CARICO	COEFFICIENTE "α"
LM71	1.1
SW/0	1.1
SW/2	1.0

5.5.1.3 Valori risultanti

Ai fini delle verifiche locali, la condizione di carico più sfavorevole è data dalla presenza del locomotore LM71.

La diffusione longitudinale e trasversale dei carichi è stata effettuata, a partire dall'intradosso della traversa, nell'ipotesi di ripartizione nel ballast e nella soletta rispettivamente nei rapporti 4:1 e 1:1.

Si considera quindi il carico risultante di 250 kN, applicato su un'impronta di 1.60 m x 2.80 m.

Ai fini delle verifiche globali, per tener conto del traffico ferroviario, si applica un sovraccarico uniformemente distribuito di 40 kN/m², su tutta la larghezza della spalla.

5.6 Spinta dovuta ai carichi variabili

La spinta dovuta al carico accidentale è calcolata secondo la seguente formula:

 $Sacc = k0 \cdot q_{acc} [kN/m2]$

 $k_0 = 1$ -sen(ϕd)

dove:

 $q0 = 40 \text{ kN/m}^2$ carico accidentale dovuto al traffico ferroviario

 $\phi d = 38^{\circ}$ angolo di attrito interno di progetto del terreno

 $K_0 = 0.384$ coefficiente di spinta a riposo

 $S_{acc} = 15.37 \text{ kN/m}^2$

Ai fini delle verifiche locali del paraghiaia, si considera la spinta dovuta al carico variabile dallo schema di carico LM71 sull'impronta di 1.60 m x 2.80 m.

Pressione verticale $q_v = 250 / (1.60 \text{ x } 2.80) = 55.80 \text{ kN/m}^2$

 $K_0 = 0.384$ coefficiente di spinta a riposo

 $q_h = 0.384 \text{ x } 55.80 = 21.43 \text{ kN/m}^2$

5.7 Carichi derivanti dall'impalcato

Le azioni derivanti dall'impalcato per i vari casi di carico sono state assegnate alle spalle in corrispondenza dei dispositivi di appoggio. Per il dettaglio degli scarichi, si rimanda alla relazione di calcolo dell'impalcato.

5.8 Azioni sismiche

In accordo al § 7.9 delle NTC2018 e al MdP 2021, per determinare le sollecitazioni sismiche di progetto sulle sottostrutture del cavalcavia viene eseguita un'analisi sismica "lineare statica".

Si adotta un comportamento strutturale dissipativo con classe di duttilità "Bassa".

Per calcolare le sollecitazioni di progetto nelle tre direzioni (longitudinale, trasversale e verticale), si considerano i seguenti contributi:

Spalla fissa

Direzione X (longitudinale, coincidente con l'asse dell'impalcato)

• Forze d'inerzia ottenute moltiplicando le masse dei carichi permanenti (parte di impalcato di competenza della spalla, spalla, fondazione e terreno al di sopra della fondazione) per l'accelerazione Se (T_B), ordinata massima dello spettro allo SLV (plateau) con

q = 1.5 (elevazione)

q = 1.5/1.1 = 1.36 (fondazioni: pali e plinto);

• Spinta attiva in condizioni sismiche, calcolata con il metodo Mononobe-Okabe.

Direzione Y (trasversale, ortogonale all'asse dell'impalcato)

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

Relazione di calcolo spalla B - VI03

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IV0I 00 D 09 CL VI0304 002 A 16 di 79

• Forze d'inerzia ottenute moltiplicando le masse dei carichi permanenti (parte di impalcato di competenza della spalla, spalla, fondazione e terreno al di sopra della fondazione) per

$$k h = \beta s x a max$$
 con $\beta s = 1$ quindi,

$$k h = a max = a_g x Ss x S_T$$

Direzione Z (verticale)

• Forze d'inerzia ottenute moltiplicando le masse dei carichi permanenti (parte di impalcato di competenza della spalla, spalla, fondazione e terreno al di sopra della fondazione) per

$$k v = \pm 0.5 x k h$$

Spalla mobile

Direzione X (longitudinale, coincidente con l'asse dell'impalcato)

• Forze d'inerzia ottenute moltiplicando le masse dei carichi permanenti (parte di impalcato di competenza della spalla, spalla, fondazione e terreno al di sopra della fondazione) per

$$k h = \beta s x a max$$
 con $\beta s = 1$ quindi,

$$k h = a max = a_g x Ss x S_T$$

• Spinta attiva in condizioni sismiche, calcolata con il metodo Mononobe-Okabe.

Direzione Y (trasversale, ortogonale all'asse dell'impalcato)

• Forze d'inerzia ottenute moltiplicando le masse dei carichi permanenti (parte di impalcato di competenza della spalla, spalla, fondazione e terreno al di sopra della fondazione) per

$$k h = \beta s x a max$$
 con $\beta s = 1$ quindi,

$$k h = a max = a_g x Ss x S_T$$

Direzione Z (verticale)

• Forze d'inerzia ottenute moltiplicando le masse dei carichi permanenti (parte di impalcato di competenza della spalla, spalla, fondazione e terreno al di sopra della fondazione) per

$$k v = \pm 0.5 x k h$$

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

Relazione di calcolo spalla B - VI03

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI0304 002
 A 17 di 79

5.8.1 Inquadramento sismico

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione del viadotto e sono pari a:

Longitudine: 8.230525

Latitudine: 44.118776

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

Vita nominale $V_N = 75$ anni

Classe d'uso: III

Coefficiente d'uso $C_U = 1.5$

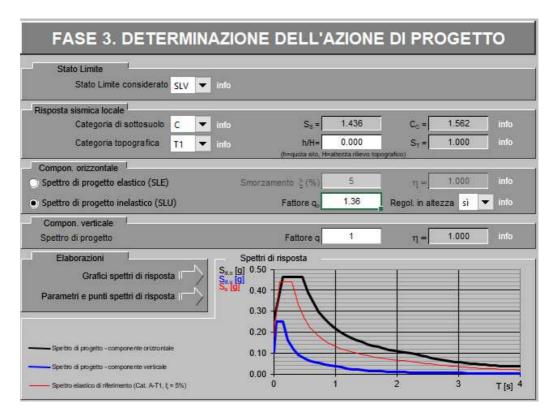
Categoria di suolo: C

Condizione topografica: T1

Fattore di struttura componente orizzontale q = 1.5 per la struttura della spalla

Fattore di struttura componente orizzontale q = 1.5/1.1 = 1.36 per le fondazioni

Fattore di struttura componente verticale q = 1


Le masse considerate sono quelle dovute a tutti i carichi permanenti e al 20% dei carichi da traffico.

L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

I parametri per la determinazione dei punti dello spettro di risposta sono:

SLATO	T _R	\mathbf{a}_{g}	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.038	2.545	0.213
SLD	113	0.050	2.529	0.243
SLV	1068	0.155	2.469	0.301
SLC	2193	0.207	2.493	0.315

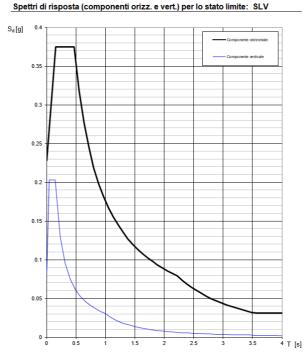
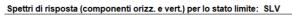



Figura 5: Spettro di risposta orizzontale e verticale allo SLV (q=1.5)

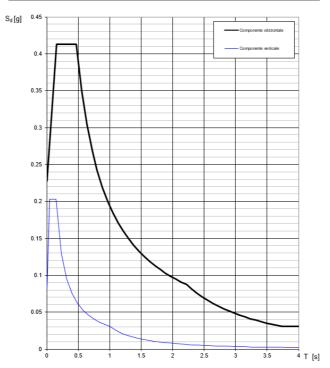


Figura 6: Spettro di risposta orizzontale e verticale allo SLV (q=1.36)

DOCUMENTO

FOGLIO

CODIFICA

Relazione di calcolo spalla B - VI03 IVOI D 09 CL VI0304 002 00 20 di 79

Per le verifiche della struttura si opererà sommando gli effetti delle tre componenti Ex, Ey e Ez ponendo alternativamente una al 100% e le due restanti al 30%, secondo le seguenti espressioni:

Caso 1 (Sisma X al 100%): $E=\pm 1.00 \cdot E_X \pm 0.30 \cdot E_Y \pm 0.30 \cdot E_Z$

Caso 2 (Sisma Y al 100%): $E=\pm 0.30 \cdot E_x \pm 1.00 \cdot E_y \pm 0.30 \cdot E_z$

Caso 3 (Sisma Z al 100%): $E=\pm 0.30 \cdot E_X \pm 0.30 \cdot E_Y \pm 1.00 \cdot E_Z$

5.9 Spinta attiva in condizioni sismiche

Per la spinta sismica in condizioni sismiche è stata utilizzata la formulazione di Mononobe-Okabe.

Per il caso in esame si ha:

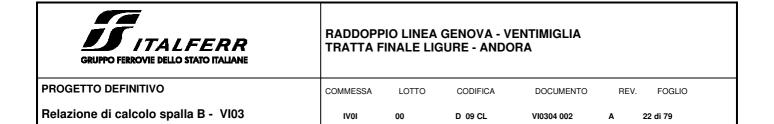
 $\varphi' = 38^{\circ}$ $\gamma t = 20 \text{ kN/mc}$ k h = 0.228

per cui si ottiene k a = 0.368

6 COMBINAZIONI DI CARICO

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella seguente tabella:

Tab. 5.2.IV -Valutazione dei carichi da traffico


140. J.L.1V - Villatid Libra del cur del								
TIPO DI CARICO	Azioni v	erticali		Azioni orizzont				
Gruppi di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti		
Gruppo 1	1,0	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale		
Gruppo 2 (2)	-	1,0	0,0	1,0 (0,0)	1,0 (0,0)	stabilità laterale		
Gruppo 3 (2)	1,0 (0,5)	-	1,0	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale		
Gruppo 4	0,8 (0,6;0,4)	-	0,8 (0,6;0,4)	0,8 (0,6;0,4)	0,8 (0,6;0,4)	Fessurazione		

⁽¹⁾ Includendo tutti i valori (F; a; etc..)

Il gruppo 4 è da considerarsi esclusivamente per le verifiche a fessurazione. I valori indicati fra parentesi si assumeranno pari a: (0,6) per impalcati con 2 binari caricati e (0,4) per impalcati con tre o più binari caricati.

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1.0), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1,2 e 3 senza che ciò abbia significative conseguenze progettuali

I valori campiti in grigio rappresentano l'azione dominante.

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	nte		EQU(1)	A1	A2
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast(3)	favorevoli	YΒ	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γQ	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli	~	1,45	1,45	1,25
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00
	sfavorevoli	~	1,50	1,50	1,30
Precompressione	favorevole	γP	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00%	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	ΥCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		Ψ_0	Ψ1	ψ 2
Azioni singole	Carico sul rilevato a tergo delle	0,80	0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr₃	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

⁽¹⁾0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tabella 3 - Valutazione dei carichi da traffico (da "Istruzioni per la progettazione e l'esecuzione dei font ferroviari")

Le azioni di cui ai paragrafi precedenti sono combinate tra loro, al fine di ottenere le sollecitazioni di progetto relative agli elementi strutturali di volta in volta considerati in base a quanto prescritto dal D.M. 17 Gennaio 2018 ai paragrafi § 2.5.3 e §5.2.3.

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

$$\gamma_{G_1} \cdot G_1 + \gamma_{G_2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q_1} \cdot Q_{k_1} + \gamma_{Q_2} \cdot \psi_{0_2} \cdot Q_{k_2} + \gamma_{Q_3} \cdot \psi_{0_3} \cdot Q_{k_3} + \dots$$

[2.5.1]

- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:
$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 [2.5.2]

Combinazione frequente, generalmente impiegata per gli stati finite di esercizio (SLE) reversibili
$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 [2.5.3]

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 [2.5.4]

– Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:
$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$
 [2.5.5]

– Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A:
$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_i \psi_{2i} Q_{kj}$$
 [2.5.7]

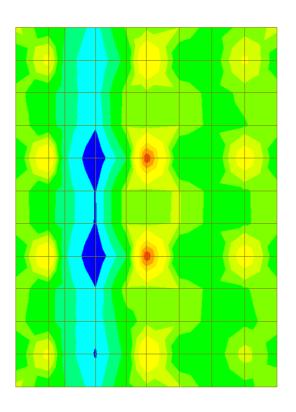
Nella tabella seguente si riportano i valori di combinazioni adottati per analisi e verifiche. I valori riportati in tabella considerano già i coefficienti di combinazione previsti dalla normativa.

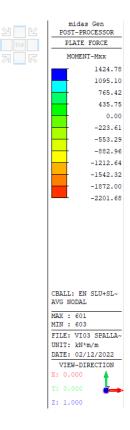
Tipo Combinazione	Azione dominante	G1	G2	gr_traffico	Sp_var	Fw_Vento	Tk_ΔT	Peso_terr	Sp_terr
SLU 01	gr1	1.35	1.5	1.45	1.45	0.9	0.9	1.35	1.35
SLU 02	gr2	1.35	1.5	1.45	1.45	0.9	0.9	1.35	1.35
SLU 03	gr3	1.35	1.5	1.45	1.45	0.9	0.9	1.35	1.35
SLU 04	Fw	1.35	1.5	1.16	1.16	1.5	0.9	1.35	1.35
SLU 05	Fw	1.35	1.5	1.16	1.16	1.5	0.9	1.35	1.35
SLU 06	Fw	1.35	1.5	1.16	1.16	1.5	0	1.35	1.35
SLU 07	Fw	1.35	1.5	1.16	1.16	1.5	0.9	1.35	1.35
SLU 08	Tk	1.35	1.5	1.16	1.16	0.9	1.5	1.35	1.35
RARA 01 (Caratteristica)	gr1	1	1	1	1	0.6	0.6	1	1
RARA 02(Caratteristica)	gr2	1	1	1	1	0.6	0.6	1	1
RARA 03(Caratteristica)	gr3	1	1	1	1	0.6	0.6	1	1
RARA 04 (Caratteristica)	gr4	1	1	1	1	0.6	0.6	1	1
RARA 05 (Caratteristica)	Fw	1	1	0	0	1	0.6	1	1
RARA 06 (Caratteristica)	Fw	1	1	1	1	1	0.6	1	1
RARA 07 (Caratteristica)	Fw	1	1	0.8	0.8	1	0.6	1	1
RARA 08 (Caratteristica)	Tk	1	1	0.8	0.8	1	0.6	1	1

GRUPPO FERROVIE DELLO STATO ITALIANE			GENOVA - VI GURE - ANDO			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	A	24 di 79

	_			_	_	_	_	_	_	_	_
RARA	nα										ı
IVAIVA	05	ar1	1	1	0.0	0.0	0.6	1	1	1	1
(Carattoristica)		gi I			0.6	0.0	0.6				1
i (Caratteristica)											1

7 VERIFICHE SPALLA B (FISSA)

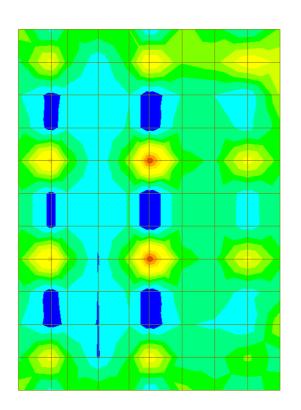

7.1 Fondazione

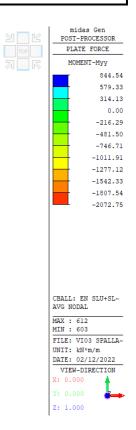

7.1.1 Sollecitazioni massime

Si riportano le sollecitazioni massime e minime nella fondazione della spalla, nelle varie combinazioni di carico agli Stati Limite. Per brevità di notazione si riportano i diagrammi delle sole azioni massime e minime nella condizione di inviluppo delle combinazioni agli stati limite ultimi (SLU + SLV)

La direzione X coincide con la direzione longitudinale (asse impalcato) e la direzione Y con quella trasversale.

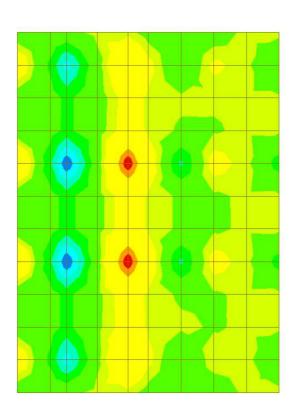
Il momento positivo tende le fibre inferiori della fondazione.

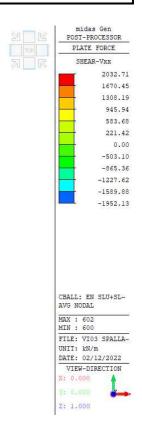




Inviluppo momento flettente in direzione X - SLU + SLV

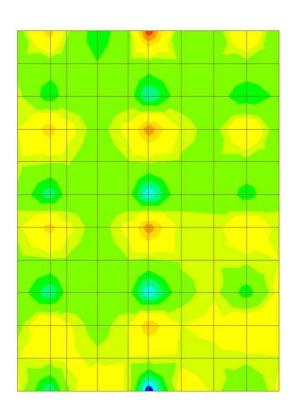
GRUPPO FERROVIE DELLO STATO ITALIANE			GENOVA - V GURE - ANDO			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	Α	26 di 79

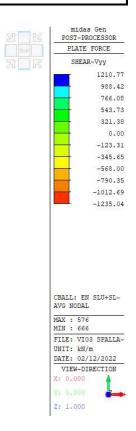




Inviluppo momento flettente in direzione Y - SLU + SLV

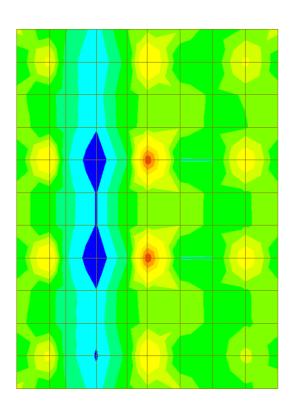
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			GENOVA - V GURE - ANDO			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	Α	27 di 79

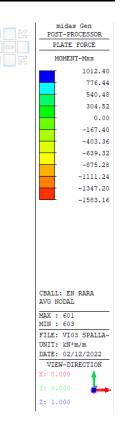




Inviluppo azione di taglio in direzione X - SLU + SLV

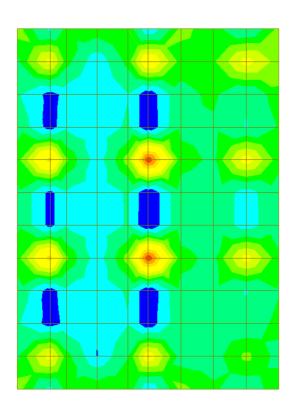
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV. FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	A 28 di 79

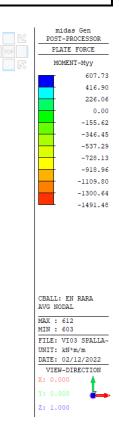




Inviluppo azione di taglio in direzione Y - SLU + SLV

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	_	_	GENOVA - V GURE - ANDO			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	A	29 di 79





Inviluppo momento flettente in direzione X - SLE RARA

GRUPPO FERROVIE DELLO STATO ITALIANE	_	_	GENOVA - V GURE - ANDO			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	Α	30 di 79

Inviluppo momento flettente in direzione Y - SLE RARA

7.1.2 Verifiche agli Stati Limite

La fondazione è armata con maglie di ϕ 18/10x10 disposte al lembo superiore ed inferiore. Il copriferro netto à pari 40 mm. Lo strato di armatura esterno viene posato in direzione Y e quello interno in direzione X.

A taglio si utilizzano spilli φ12/30x30.

Si riportano nel seguito le verifiche strutturali agli stati limite ultimi e di esercizio.

Le verifiche si effettuano con le sollecitazioni mediate per una lunghezza confrontabile all'altezza utile della piastra.

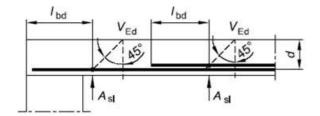
<u>DEFINIZIONE DEI MATERIALI</u>		
Calcestruzzo - Rif. UNI EN 1992 - 1 - 1 : 2005		
Resistenza caratteristica cubica	R_{ck}	40 [MPa]
Resistenza caratteristica cilindrica	f_{Ck}	33.2 [MPa]
Coefficiente di sicurezza parziale per il calcestruzzo	γς	1.5 [-]
Coefficiente che tiene conto degli effetti di lungo termine	αςς	0.85 [-]
Valore medio della resistenza a compressione cilindrica	f_{cm}	41.2 [MPa]
Valore medio della resistenza a trazione assiale del calcestruzzo	f_{ctm}	3.1 [MPa]
Valore caratteristico della resistenza a trazione assiale (frattile 5%)	f _{ctk;0,05}	2.2 [MPa]
Valore caratteristico della resistenza a trazione assiale (frattile 95%)	f _{ctk;0,95}	4.0 [MPa]
Modulo di elasticità secante del calcestruzzo	E _{cm}	33643 [MPa]
Deformazione di contrazione nel calcestruzzo alla tensione f _c	$\epsilon_{\!\scriptscriptstyle C1}$	0.0020 [-]
Deformazione ultima di contrazione nel calcestruzzo	$\epsilon_{\!\scriptscriptstyle extsf{CU}}$	0.0035 [-]
Resistenza di progetto a compressione del calcestruzzo	f _{cd}	18.81 [MPa]
Resistenza di progetto a trazione del calcestruzzo	f _{ctd}	1.45 [MPa]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	σ c,caratt.	19.92 [MPa]
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	σ c,q.p.	14.94 [MPa]

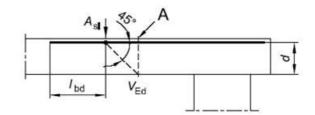
Acciaio - Rif. UNI EN 1992 - 1 - 1 : 2005		
Resistenza a snervamento dell'acciaio	f_{yk}	450 [MPa]
Coefficiente di sicurezza parziale per l'acciaio	γ_{s}	1.15 [-]
Modulo di elasticità secante dell'acciaio	Es	200000 [MPa]
Deformazione a snervamento dell'acciaio	$\epsilon_{ extsf{yd}}$	0.001957 [-]
Deformazione ultima dell'acciaio	$oldsymbol{arepsilon}_{ extsf{SU}}$	0.01 [-]
Resistenza di progetto a trazione dell'acciaio	f _{yd}	391.3 [MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	σs	360 [MPa]

Verifiche in direzione X

Verifica a flessione

SEZIONE TRASVERSALE		
Altezza della sezione trasversale di calcestruzzo	h	2000 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	79 [mm]
Altezza utile della sezione	d	1921 [mm]
ARMATURA TESA		
Diametro dei ferri correnti	ϕ_{l}	18 [mm]
Numero dei ferri correnti	n_1	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	0 [mm]
Numero dei ferri di eventuale infittimento	n_2	0 [-]
Area dell'armatura tesa	A_s	2545 [mm ²]
ARMATURA COMPRESSA		
Diametro dei ferri correnti	φ'1	18 [mm]
Numero dei ferri correnti	n' ₁	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2'	0 [mm]
Numero dei ferri di eventuale infittimento	n' ₂	0 [-]
Area dell'armatura compressa	A's	2545 [mm ²]
Momento resistente della sezione	M _{Rd}	1834.17 [kNm]
Momento sollecitante a SLU assunto in valore assoluto	M _{Ed}	1428.0 [kNm]

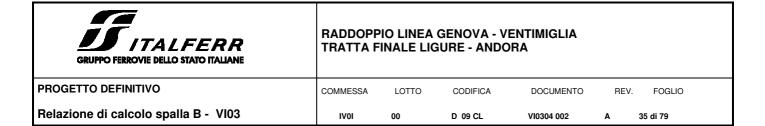



Verifica a taglio

§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTEN	NTI A TAGLIO		
Azione di Taglio sollecitante a Stato Limite Ultimo	V_{Ed}	1278	[kN]
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]
Coefficiente C _{Rd,C}	$C_{Rd,c}$	0.12	[-]
Coefficiente k	k	1.32	[-]
		1.32	[-]
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0.0013247	[-]
		0.0013247	[-]

figura 6.3 Definizione di A_{si} nella espressione (6.2) Legenda

A Sezione considerata


Resistenza a taglio offerta dal calcestruzzo teso	$V_{Rd,c}$	499.54 [kN]
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	589.30 [kN]
Resistenza a taglio offerta dal calcestruzzo teso	V _{Rd}	589.30 [kN]
§ 4.1.2.1.3.2 - ELEMENTI CON ARMATURE TRASVERSALI RESISTEN	TI A TAGLIO	
Diametro delle staffe	ф	12 [mm]
Numero di braccia	n_b	3.3 [-]
Passo delle staffe	S	300 [mm]
Inclinazione tra il puntone compresso e l'asse della trave	θ	22 [°]
Inclinazione dell'armatura trasversale rispetto all'asse della trave	α	90 [°]
Area della sezione trasversale dell'armatura a taglio	A_{sw}	373 [mm²]
Braccio della coppia interna	Z	1728.9 [mm]
Cotangente di θ	cotθ	2.48 [-]
		2.48 [-]
Cotangente di α	$\cot \alpha$	0.00 [-]
Seno di α	$sin \alpha$	1.00 [-]
Resistenza offerta dall'armatura a taglio (meccanismo taglio - trazione)	V_{Rsd}	2083.15 [kN]
Resistenza a compressione ridotta del calcestruzzo d'anima	f'cd	9.41 [MPa]
Resistenza offerta dai puntoni (meccanismo taglio - compressione)	V_{Rcd}	5648.68 [kN]
Massima area efficace di armatura a taglio per $\cot \theta = 1$	$A_{sw,max}$	4327.07 [mm]
Resistenza a taglio della sezione armata trasversalmente	V _{Rd}	2083.15 [kN]
§ 4.1.2.1.3.3 - TAGLIO MASSIMO SOPPORTABILE DALLA TI	RAVE	
Resistenza massima a taglio della trave	V_{Rd}	9035.10 [kN]

Verifica delle tensioni massime (SLE)

Controllo tensionale per la Combinazione Caratterist	ica	
Momento sollecitante assunto in valore assoluto	M_{Ed}	865.0 [kNm]
Coefficiente di omogeneizzazione	n	15.0 [-]
Altezza della sezione trasversale di calcestruzzo	h	2000 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	79 [mm]
Altezza utile della sezione	d	1921 [mm]
Area dell'armatura tesa	As	2545 [mm ²]
Area dell'armatura compressa	A's	2545 [mm ²]
Posizione dell'asse neutro	X	321.79 [mm]
Momento d'inerzia della sezione rispetto a x	J	1.10977E+11 [mm ⁴]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	σ c,caratt.	19.92 [MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]
Tensione nel calcestruzzo	σ c	2.51 [MPa]
Tensione nell'armatura tesa	σs	186.97 [MPa]

DETERMINAZIONE DELLE TENSIONI A SLS				
Controllo tensionale per la Combinazione Quasi Perman	ente			
Momento sollecitante assunto in valore assoluto	M_{Ed}	556.0 [kNm]		
Coefficiente di omogeneizzazione	n	15.0 [-]		
Altezza della sezione trasversale di calcestruzzo	j	2000 [-]		
Larghezza della sezione trasversale di calcestruzzo	b	1000 [-]		
Copriferro	d'	79 [-]		
Altezza utile della sezione	d'	1921 [-]		
Area dell'armatura tesa	As	2545 [mm²]		
Area dell'armatura compressa	A's	2545 [mm ²]		
Posizione dell'asse neutro	X	321.79 [mm]		
Momento d'inerzia della sezione rispetto a x	J	1.10977E+11 [mm⁴]		
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	$\sigma_{\!\scriptscriptstyle C,q.p.}$	14.94 [MPa]		
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]		
Tensione nel calcestruzzo	σ c	1.61 [MPa]		
Tensione nell'armatura tesa	σs	120.18 [MPa]		

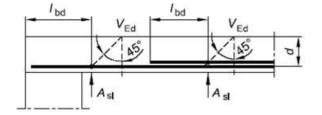
Verifica della fessurazione (comb.rara con Gr.4)

Calcolo dell'ampiezza delle fessure - Combinazione Caratteristica				
Momento sollecitante per la combinazione Caratteristica	M _{Ed,caratt} .	789 [kNm]		
Durata del carico		lunga [-]		
Posizione dell'asse neutro dal lembo superiore	X	321.79 [mm]		
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\scriptscriptstyle S}$	170.55 [MPa]		
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3.1 [MPa]		
Fattore dipendente dalla durata del carico	k _t	0.4 [-]		
Altezza efficace	$h_{c,eff}$	197.5 [mm]		
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	197500 [mm²]		
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0.01288 [-]		
Rapporto tra E _s /E _{cm}	$lpha_{ m e}$	5.94 [-]		
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	ε _{sm} - ε _{cm}	0.000335 [-]		
		0.000512 [-]		
Determinazione del diametro equivalente delle barre tese	Феq	18.00 [mm]		
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0.8 [-]		
Coefficiente che tiene conto della flessione pura	k_2			
	k ₃	3.4 [-]		
	k ₄	0.425 [-]		
Distanza massima tra le fessure	S _{r,max}	380.29 [mm]		
		380.29 [mm]		
Ampiezza delle fessure	Wk	0.1946 [mm]		
Ampiezza massima delle fessure	W _{max}	0.2 [mm]		

Verifiche in direzione Y

Verifica a flessione

SEZIONE TRASVERSALE		
Altezza della sezione trasversale di calcestruzzo	h	2000 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	61 [mm]
Altezza utile della sezione	d	1939 [mm]
ARMATURA TESA		
Diametro dei ferri correnti	ϕ_1	18 [mm]
Numero dei ferri correnti	n_1	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	0 [mm]
Numero dei ferri di eventuale infittimento	n_2	0 [-]
Area dell'armatura tesa	A_s	2545 [mm ²]
ARMATURA COMPRESSA		
Diametro dei ferri correnti	ϕ'_1	18 [mm]
Numero dei ferri correnti	n'ı	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ'_2	0 [mm]
Numero dei ferri di eventuale infittimento	n' ₂	0 [-]
Area dell'armatura compressa	A's	2545 [mm ²]
Momento resistente della sezione	M _{Rd}	1870.02 [kNm]
Momento sollecitante a SLU assunto in valore assoluto	M _{Ed}	1152.0 [kNm]



Verifica a taglio

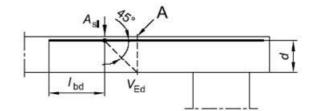

§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTEN	NTI A TAGLIO		
Azione di Taglio sollecitante a Stato Limite Ultimo	V_{Ed}	698	[kN]
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]
Coefficiente C _{Rd,C}	$C_{Rd,c}$	0.12	[-]
Coefficiente k	k	1.32	[-]
		1.32	[-]
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0.0013124	[-]
		0.0013124	[-]

figura 6.3 **Definizione di A_{si} nella espressione (6.2)** Legenda

A Sezione considerata

Resistenza a taglio offerta dal calcestruzzo teso

 $V_{\text{Rd,c}}$

502.09 [kN]

	· Ra,c		F
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	593.81	[kN]
Resistenza a taglio offerta dal calcestruzzo teso	V _{Rd}	593.81	[kN]
§ 4.1.2.1.3.2 - ELEMENTI CON ARMATURE TRASVERSALI RESISTEN	TI A TAGLIO		
Diametro delle staffe	фsw	12	[mm]
Numero di braccia	n_b	3.3	[-]
Passo delle staffe	S	300	[mm]
Inclinazione tra il puntone compresso e l'asse della trave	θ	22	[°]
Inclinazione dell'armatura trasversale rispetto all'asse della trave	α	90	[°]
Area della sezione trasversale dell'armatura a taglio	A_{sw}	373	$[mm^2]$
Braccio della coppia interna	Z	1745.1	[mm]
Cotangente di θ	cotθ	2.48	[-]
		2.48	
Cotangente di α	$\cot \alpha$	0.00	
Seno di α	sinα	1.00	[-]
Resistenza offerta dall'armatura a taglio (meccanismo taglio - trazione)	V_{Rsd}	2102.67	[kN]
Resistenza a compressione ridotta del calcestruzzo d'anima	f'cd	9.41	[MPa]
Resistenza offerta dai puntoni (meccanismo taglio - compressione)	V_{Rcd}	5701.61	[kN]
Massima area efficace di armatura a taglio per $\cot \theta = 1$	$A_{sw,max}$	4327.07	[mm]
Resistenza a taglio della sezione armata trasversalmente	V_{Rd}	2102.67	[kN]
§ 4.1.2.1.3.3 - TAGLIO MASSIMO SOPPORTABILE DALLA TR	RAVE		
Resistenza massima a taglio della trave	V_{Rd}	9119.76	[kN]
			-

Verifiche delle tensioni

Controllo tensionale per la Combinazione Caratteris	tica	
Momento sollecitante assunto in valore assoluto	M_{Ed}	831.0 [kNm]
Coefficiente di omogeneizzazione	n	15.0 [-]
Altezza della sezione trasversale di calcestruzzo	h	2000 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	61 [mm]
Altezza utile della sezione	d	1939 [mm]
Area dell'armatura tesa	As	2545 [mm ²]
Area dell'armatura compressa	A's	2545 [mm ²]
Posizione dell'asse neutro	X	321.79 [mm]
Momento d'inerzia della sezione rispetto a x	J	1.13533E+11 [mm ⁴]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	$\sigma_{\!\scriptscriptstyle C,Caratt.}$	19.92 [MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]
Tensione nel calcestruzzo	σ c	2.36 [MPa]
Tensione nell'armatura tesa	σs	177.56 [MPa]

DETERMINAZIONE DELLE TENSIONI A SLS		
Controllo tensionale per la Combinazione Quasi Perman	ente	
Momento sollecitante assunto in valore assoluto	M_{Ed}	635.0 [kNm]
Coefficiente di omogeneizzazione	n	15.0 [-]
Altezza della sezione trasversale di calcestruzzo	j	2000 [-]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [-]
Copriferro	d'	61 [-]
Altezza utile della sezione	d'	1939 [-]
Area dell'armatura tesa	As	2545 [mm ²]
Area dell'armatura compressa	A's	2545 [mm ²]
Posizione dell'asse neutro	Χ	321.79 [mm]
Momento d'inerzia della sezione rispetto a x	J	1.13533E+11 [mm ⁴]
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	$\sigma_{\!\scriptscriptstyle C,q.p.}$	14.94 [MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]
Tensione nel calcestruzzo	σ c	1.80 [MPa]
Tensione nell'armatura tesa	σs	135.68 [MPa]

Verifica della fessurazione (comb. rara con Gr.4)

Calcolo dell'ampiezza delle fessure - Combinazione Car	atteristica	
Momento sollecitante per la combinazione Caratteristica	$M_{Ed,caratt.}$	790 [kNm]
Durata del carico		lunga [-]
Posizione dell'asse neutro dal lembo superiore	X	321.79 [mm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\scriptscriptstyle S}$	168.80 [MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3.1 [MPa]
Fattore dipendente dalla durata del carico	k _t	0.4 [-]
Altezza efficace	h _{c,eff}	152.5 [mm]
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	152500 [mm ²]
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0.01669 [-]
Rapporto tra E _s /E _{cm}	$lpha_{ extsf{e}}$	5.94 [-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	E _{sm} - E _{cm}	0.000436 [-]
		0.000506 [-]
Determinazione del diametro equivalente delle barre tese	Феq	18.00 [mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0.8 [-]
Coefficiente che tiene conto della flessione pura	k_2	0.5 [-]
	k ₃	3.4 [-]
	k ₄	0.425 [-]
Distanza massima tra le fessure	S _{r,max}	326.18 [mm]
		326.18 [mm]
Ampiezza delle fessure	Wk	0.1652 [mm]
Ampiezza massima delle fessure	W _{max}	0.2 [mm]

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

Relazione di calcolo spalla B - VI03

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI0304 002
 A
 40 di 79

Verifica a punzonamento

Caratteristiche	del cl:	s della _l	oiastra
-----------------	---------	----------------------	---------

Resistenza caratteristica a compressione cubica del cls	R_{ck}	=
Resistenza caratteristica a compressione cilindrica del cls	f _{ck}	=
Resistenza caratteristica a compressione di calcolo del cls	f _{cd}	=
Spessore della piastra	t _p	=
Copriferro nominale	Cs	=
Caratteristiche dell'acciaio d'armatura		
Resistenza di progetto a trazione dell'acciaio	\mathbf{f}_{yd}	=
Diametro dei tondini tesi in direzione y	$oldsymbol{\phi}_{\sf sly}$	=
Passo dei tondini tesi in direzione y	\mathbf{p}_{y}	=
Diametro dei tondini tesi di raffittimento in direzione y	$oldsymbol{\phi}_{\sf sly,add}$	=
Passo dei tondini tesi di raffittimento in direzione y	$\mathbf{p}_{y,add}$	=
Diametro dei tondini tesi in direzione z	$oldsymbol{\phi}_{slz}$	=
Passo dei tondini tesi in direzione z	p _z	=
Diametro dei tondini tesi di raffittimento in direzione z	$oldsymbol{\phi}_{slz,add}$	=
Passo dei tondini tesi di raffittimento in direzione z	$p_{z,add}$	=
Altezza utile della sezione in direzione y	\mathbf{d}_{y}	=

Tipologia	del	pilastro	

Sallecitazioni di progetto
Perimetro critico massimo
Perimetro critico attorno al pilastro
Dimensione del pilastro in direzione z
Dimensione del pilastro in direzione y

Altezza utile della sezione in direzione z Altezza utile di calcolo della sezione

Sollecitazioni di progetto

Pilastro superiore: azione assiale

Pilastro superiore: momento flettente in direzione y
Pilastro superiore: momento flettente in direzione z
Pilastro inferiore: azione assiale

Pilastro inferiore: momento flettente in direzione y

Pilastro inferiore: momento flettente in direzione z *Azioni di punzonamento*

Azione di progetto di punzonamento
Momento flettente di progetto in direzione y
Momento flettente di progetto in direzione z

Cs	=	40	mm
f_{yd}	=	391.30	N/mm ²
Ø sly	=	18	mm
р _у	=	100	mm
Ø _{sly,add}	=	0	mm
$\mathbf{p}_{y,add}$	=	0	mm
Ø _{slz}	=	18	mm
p _z	=	100	mm
Ø _{slz,add}	=	0	mm
p _{z,add}	=	0	mm
d _y	=	1933	mm
dz	=	1951	mm
d _{eff}	=	1942	mm

40

33.20

18.81

2000

N/mm²

 N/mm^2

 N/mm^2

mm

A pianta cir	colare	▼	
C _y C _z Un	= =	1200 3770	mm mm mm
u ₀ U ₁	=	28174	mm
$N_{\text{Ed,sup}}$	=	9843	kN
$M_{Ed,y,sup}$	=	0	kNm
$M_{\text{Ed,z,sup}}$ $N_{\text{Ed,inf}}$	= =	0	kNm kN
$M_{Ed,y,inf}$	=		kNm
$M_{Ed,z,inf}$	=		kNm
\mathbf{V}_{Ed}	=	9843	kN
$\mathbf{M}_{Ed,y}$	=	0	kNm
$M_{\text{Ed,z}}$	=	0	kNm

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

CODIFICA

DOCUMENTO

FOGLIO

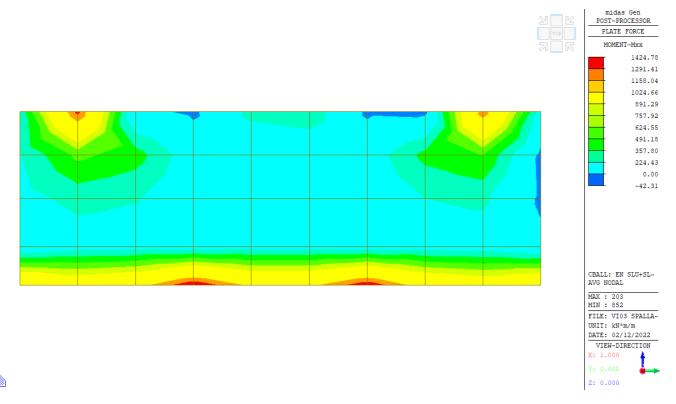
41 di 79

LOTTO

PROGETTO DEFINITIVO

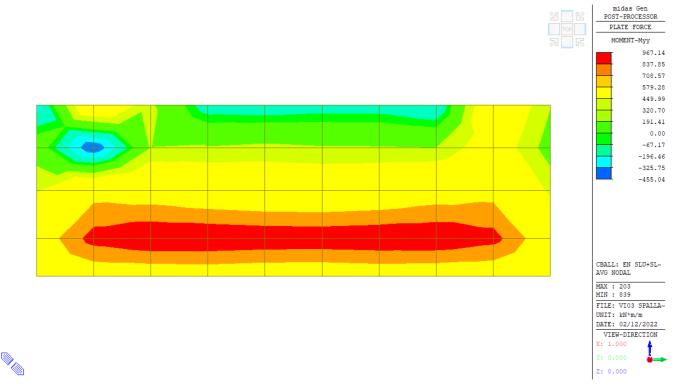
Relazione di calcolo spalla B - VI03 IV0I 00 D 09 CL VI0304 002

COMMESSA

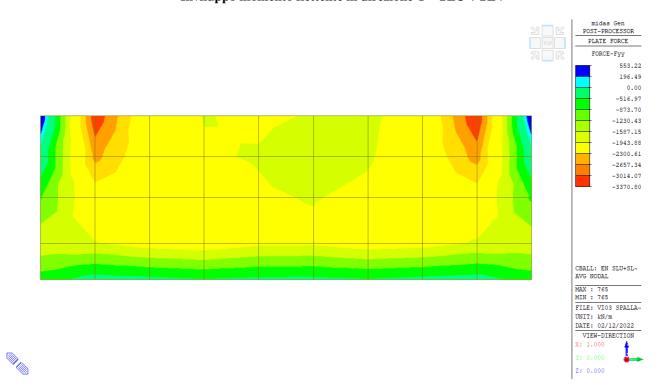

Eccentricità dell'azione di punzonamento in direzione y	\mathbf{e}_{y}	=	0	mm
Eccentricità dell'azione di punzonamento in direzione z	e _z	=	0	mm
Dimensione del perimetro di verifica in direzione y	\mathbf{b}_{y}	=	14087	mm
Dimensione del perimetro di verifica in direzione z	b _z	=	14087	mm
Coefficiente amplificativo	β	=	1.00	
Tensione massima di punzonamento su perimetro critico minimo	$\mathbf{v}_{Ed,0}$	=	1.34	N/mm²
Tensione massima di punzonamento su perimetro critico massimo	$V_{\text{Ed,1}}$	=	0.18	N/mm²
Resistenze a punzonamento				
Coefficiente di riduzione della resistenza del cls fessurato per taglio	ν	=	0.52	
Resistenza a punzonamento massima	V _{Rd,max}	=	4.89	N/mm²
Verifica a punzonamento sullo spessore della piastra	$ ho_{max}$	=	0.27	
Fattore dipendente dall'altezza utile della sezione	k	=	1.32	
Rapporto geometrico dell'armatura tesa	ρ ιy	=	0.001	
Rapporto geometrico dell'armatura tesa	ρ_{lz}	=	0.001	
Rapporto geometrico dell'armatura longitudinale tesa	ρι	=	0.001	
Tensione massima di punzonamento del cls	V _{Rd,c}	=	0.26	N/mm²
Verifica a punzonamento senza armatura a punzonamento	$ ho_c$	=	0.70	

GRUPPO FERROVIE DELLO STATO ITALIANE			GENOVA - V GURE - ANDO			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	Α	42 di 79

7.2 MURO FRONTALE

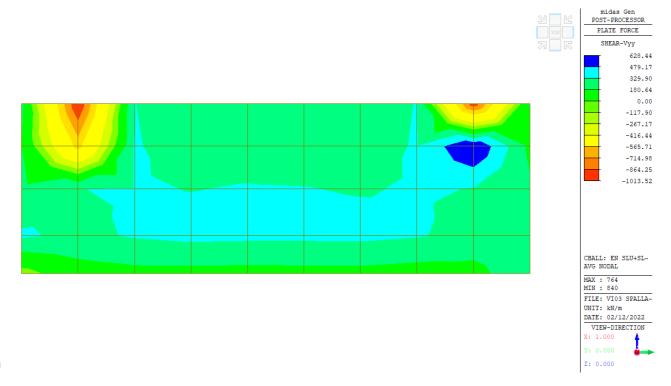

7.2.1 Sollecitazioni massime

Il sistema di riferimento adottato è quello locale. L'asse X coincide con la direzione orizzontale e l'asse Y con quella verticale.

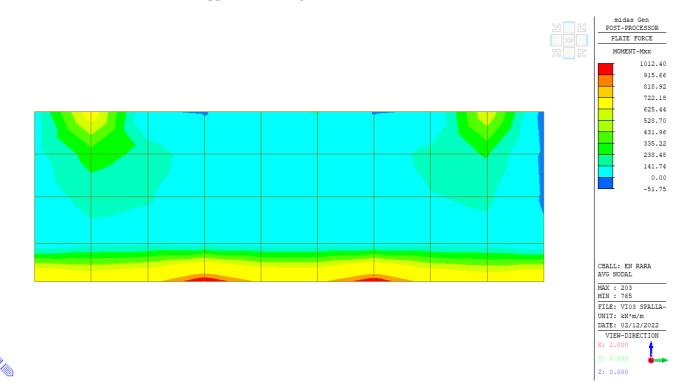


Inviluppo momento flettente in direzione X - SLU + SLV

GRUPPO FERROVIE DELLO STATO ITALIANE			GENOVA - V GURE - ANDC				
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	Α	43 di 79	

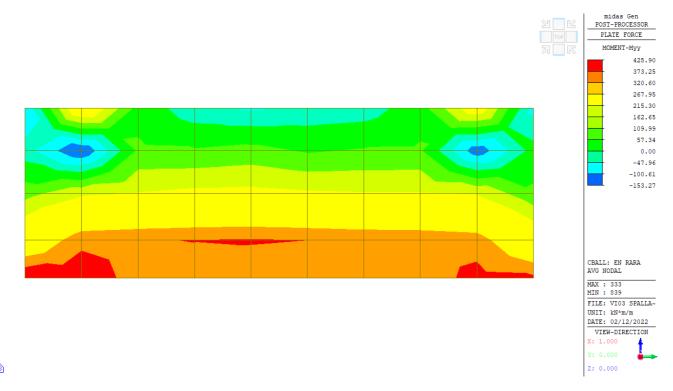


Inviluppo momento flettente in direzione Y - SLU + SLV



Inviluppo azione assiale verticale - SLU + SLV

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			GENOVA - V GURE - ANDO		
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV. FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	A 44 di 79



Inviluppo azione di taglio in direzione Y - SLU + SLV

Inviluppo momento flettente in direzione X - SLE RARA

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	_	-	GENOVA - V GURE - ANDC			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	Α	45 di 79

Inviluppo momento flettente in direzione Y - SLE RARA

GRUPPO FERROVIE DELLO STATO ITALIANE	_	_	GENOVA - V GURE - ANDO			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	Α	46 di 79

7.2.2 Verifiche agli Stati Limite

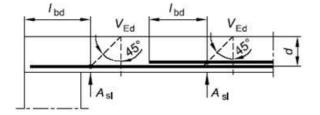
Il muro frontale è armato con armatura corrente ϕ 18/10 verticali e con ϕ 18/10 orizzontali, disposti entrambi sia sul lato esterno, che sul lato interno del muro. Il copriferro netto è pari a 50 mm.

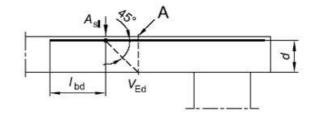
Si riportano nel seguito le verifiche strutturali agli stati limite ultimi e di esercizio.

Verifiche in direzione X

Verifica a flessione

SEZIONE TRASVERSALE		
Altezza della sezione trasversale di calcestruzzo	h	2820 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	59 [mm]
Altezza utile della sezione	d	2761 [mm]
ARMATURA TESA		
Diametro dei ferri correnti	ϕ_l	18 [mm]
Numero dei ferri correnti	n_1	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	0 [mm]
Numero dei ferri di eventuale infittimento	n_2	0 [-]
Area dell'armatura tesa	A_s	2545 [mm ²]
ARMATURA COMPRESSA		
Diametro dei ferri correnti	ϕ'_1	18 [mm]
Numero dei ferri correnti	n'ı	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	0 [mm]
Numero dei ferri di eventuale infittimento	n' ₂	0 [-]
Area dell'armatura compressa	A's	2545 [mm ²]
Momento resistente della sezione	M _{Rd}	2690.51 [kNm]
Momento sollecitante a SLU assunto in valore assoluto	M _{Ed}	1424.0 [kNm]




Verifica a taglio

§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTE	NTI A TAGLIO	1	
Azione di Taglio sollecitante a Stato Limite Ultimo	V_{Ed}	733	[kN]
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]
Coefficiente C _{Rd,c}	$C_{Rd,c}$	0.12	[-]
Coefficiente k	k	1.27	[-]
		1.27	[-]
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0.0009217	[-]
		0.0009217	[-]

figura 6.3 **Definizione di A_{si} nella espressione (6.2)** Legenda

A Sezione considerata


Resistenza a taglio offerta dal calcestruzzo teso V _{Rd}	796.10 [kN]
Resistenza minima del calcestruzzo teso V _{Rd,min}	796.10 [kN]
Resistenza a taglio offerta dal calcestruzzo teso V _{Rd,c}	610.46 [kN]

Verifica delle tensioni massime (SLE)

Controllo tensionale per la Combinazione Caratteristica					
Momento sollecitante assunto in valore assoluto	M_{Ed}	1012.0 [kNm]			
Coefficiente di omogeneizzazione	n	15.0 [-]			
Altezza della sezione trasversale di calcestruzzo	h	2820 [mm]			
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]			
Copriferro	d'	59 [mm]			
Altezza utile della sezione	d	2761 [mm]			
Area dell'armatura tesa	As	2545 [mm ²]			
Area dell'armatura compressa	A's	2545 [mm ²]			
Posizione dell'asse neutro	X	393.88 [mm]			
Momento d'inerzia della sezione rispetto a x	J	2.38528E+11 [mm ⁴]			
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	$\sigma_{\!\scriptscriptstyle C,Caratt.}$	19.92 [MPa]			
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]			
Tensione nel calcestruzzo	σ c	1.67 [MPa]			
Tensione nell'armatura tesa	σs	150.64 [MPa]			

DETERMINAZIONE DELLE TENSIONI A SLS						
Controllo tensionale per la Combinazione Quasi Permanente						
Momento sollecitante assunto in valore assoluto	M_{Ed}	683.0 [kNm]				
Coefficiente di omogeneizzazione	n	15.0 [-]				
Altezza della sezione trasversale di calcestruzzo	j	2820 [-]				
Larghezza della sezione trasversale di calcestruzzo	b	1000 [-]				
Copriferro	d'	59 [-]				
Altezza utile della sezione	d'	2761 [-]				
Area dell'armatura tesa	As	2545 [mm ²]				
Area dell'armatura compressa	A's	2545 [mm ²]				
Posizione dell'asse neutro	Χ	393.88 [mm]				
Momento d'inerzia della sezione rispetto a x	J	2.38528E+11 [mm ⁴]				
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	$\sigma_{\!\scriptscriptstyle C,q,p.}$	14.94 [MPa]				
Tensione ammissibile nell'acciaio per le combinazioni a SLS	σs	360 [MPa]				
Tensione nel calcestruzzo	σ c	1.13 [MPa]				
Tensione nell'armatura tesa	σs	101.67 [MPa]				

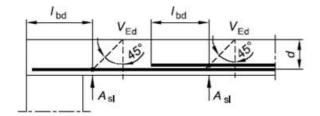
Verifica della fessurazione (comb. rara con Gr.4)

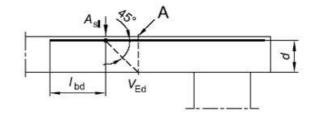
Calcolo dell'ampiezza delle fessure - Combinazione Caratteristica						
Momento sollecitante per la combinazione Caratteristica	$M_{Ed,caratt.}$	874 [kNm]				
Durata del carico		lunga [-]				
Posizione dell'asse neutro dal lembo superiore	X	393.88 [mm]				
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!\scriptscriptstyle S}$	130.10 [MPa]				
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3.1 [MPa]				
Fattore dipendente dalla durata del carico	k _t	0.4 [-]				
Altezza efficace	h _{c,eff}	147.5 [mm]				
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	147500 [mm ²]				
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0.01725 [-]				
Rapporto tra E₅/Ecm	$lpha_{ ext{e}}$	5.94 [-]				
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	E _{sm} - E _{cm}	0.000254 [-]				
		0.000390 [-]				
Determinazione del diametro equivalente delle barre tese	ф eq	18.00 [mm]				
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0.8 [-]				
Coefficiente che tiene conto della flessione pura	k_2	0.5 [-]				
	k ₃	3.4 [-]				
	k ₄	0.425 [-]				
Distanza massima tra le fessure	S _{r,max}	320.17 [mm]				
		320.17 [mm]				
Ampiezza delle fessure	Wk	0.1250 [mm]				
Ampiezza massima delle fessure	W _{max}	0.2 [mm]				

Verifiche in direzione Y

Verifica a flessione

SEZIONE TRASVERSALE		
Altezza della sezione trasversale di calcestruzzo	h	2820 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	77 [mm]
Altezza utile della sezione	d	2743 [mm]
ARMATURA TESA		
Diametro dei ferri correnti	ϕ_1	18 [mm]
Numero dei ferri correnti	n_1	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	0 [mm]
Numero dei ferri di eventuale infittimento	n_2	0 [-]
Area dell'armatura tesa	A_s	2545 [mm ²]
ARMATURA COMPRESSA		
Diametro dei ferri correnti	ϕ'_1	18 [mm]
Numero dei ferri correnti	n' ₁	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ'_2	0 [mm]
Numero dei ferri di eventuale infittimento	n' ₂	0 [-]
Area dell'armatura compressa	A's	2545 [mm ²]
Momento resistente della sezione	M _{Rd}	2654.67 [kNm]
Momento sollecitante a SLU assunto in valore assoluto	M _{Ed}	967.0 [kNm]




Verifica a taglio

§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTE	NTI A TAGLIO		
Azione di Taglio sollecitante a Stato Limite Ultimo	V_{Ed}	628	[kN]
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]
Coefficiente C _{Rd,c}	$C_{Rd,c}$	0.12	[-]
Coefficiente k	k	1.27	[-]
		1.27	[-]
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0.0009277	[-]
		0.0009277	[-]

figura 6.3 **Definizione di A_{si} nella espressione (6.2)** Legenda

A Sezione considerata

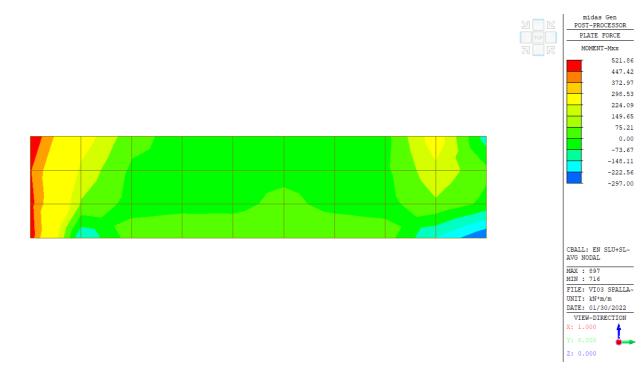
Resistenza a taglio offerta dal calcestruzzo teso	V _{Rd}	791.74 [kN]
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	791.74 [kN]
Resistenza a taglio offerta dal calcestruzzo teso	$V_{Rd,C}$	608.23 [kN]

Verifica delle tensioni massime

Controllo tensionale per la Combinazione Caratterist	ica	
Momento sollecitante assunto in valore assoluto	M_{Ed}	425.0 [kNm]
Coefficiente di omogeneizzazione	n	15.0 [-]
Altezza della sezione trasversale di calcestruzzo	h	2820 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	77 [mm]
Altezza utile della sezione	d	2743 [mm]
Area dell'armatura tesa	As	2545 [mm ²]
Area dell'armatura compressa	A's	2545 [mm ²]
Posizione dell'asse neutro	X	393.88 [mm]
Momento d'inerzia della sezione rispetto a x	J	2.3484E+11 [mm ⁴]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	$\sigma_{\!\scriptscriptstyle C,Caratt.}$	19.92 [MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]
Tensione nel calcestruzzo	σ c	0.71 [MPa]
Tensione nell'armatura tesa	σs	63.77 [MPa]

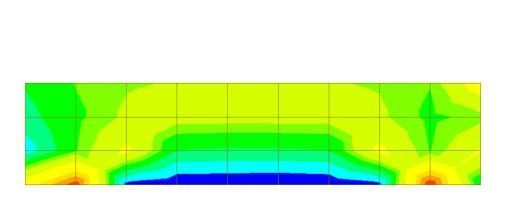
DETERMINAZIONE DELLE TENSIONI A SLS						
Controllo tensionale per la Combinazione Quasi Permanente						
Momento sollecitante assunto in valore assoluto	M_{Ed}	297.0 [kNm]				
Coefficiente di omogeneizzazione	n	15.0 [-]				
Altezza della sezione trasversale di calcestruzzo	j	2820 [-]				
Larghezza della sezione trasversale di calcestruzzo	b	1000 [-]				
Copriferro	d'	77 [-]				
Altezza utile della sezione	d'	2743 [-]				
Area dell'armatura tesa	As	2545 [mm ²]				
Area dell'armatura compressa	A's	2545 [mm ²]				
Posizione dell'asse neutro	Х	393.88 [mm]				
Momento d'inerzia della sezione rispetto a x	J	2.3484E+11 [mm ⁴]				
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	$\sigma_{\!\scriptscriptstyle C,q.p.}$	14.94 [MPa]				
Tensione ammissibile nell'acciaio per le combinazioni a SLS	σs	360 [MPa]				
Tensione nel calcestruzzo	σ c	0.50 [MPa]				
Tensione nell'armatura tesa	σs	44.56 [MPa]				

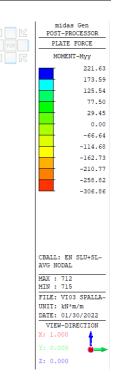
Verifica della fessurazione (comb. rara con Gr.4)

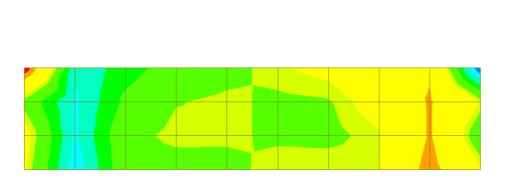

Calcolo dell'ampiezza delle fessure - Combinazione Caratteristica					
Momento sollecitante per la combinazione Caratteristica	$M_{Ed,caratt.}$	387 [kNm]			
Durata del carico		lunga [-]			
Posizione dell'asse neutro dal lembo superiore	X	393.88 [mm]			
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!\scriptscriptstyle S}$	58.07 [MPa]			
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3.1 [MPa]			
Fattore dipendente dalla durata del carico	k _t	0.4 [-]			
Altezza efficace	h _{c,eff}	192.5 [mm]			
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	192500 [mm ²]			
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0.01322 [-]			
Rapporto tra E₅/Ecm	$lpha_{ ext{e}}$	5.94 [-]			
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	E _{sm} - E _{cm}	-0.000215 [-]			
		0.000174 [-]			
Determinazione del diametro equivalente delle barre tese	ф eq	18.00 [mm]			
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0.8 [-]			
Coefficiente che tiene conto della flessione pura	k_2	0.5 [-]			
	k ₃	3.4 [-]			
	k ₄	0.425 [-]			
Distanza massima tra le fessure	S _{r,max}	374.28 [mm]			
		374.28 [mm]			
Ampiezza delle fessure	Wk	0.0652 [mm]			
Ampiezza massima delle fessure	W _{max}	0.2 [mm]			

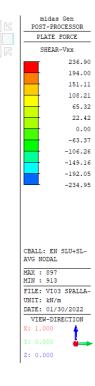
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	Α	54 di 79

7.3 PARAGHIAIA

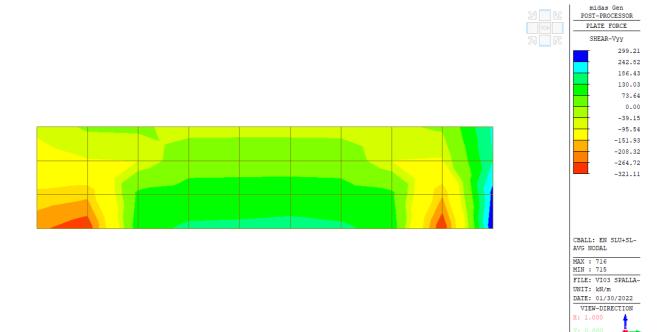

7.3.1 Sollecitazioni massime

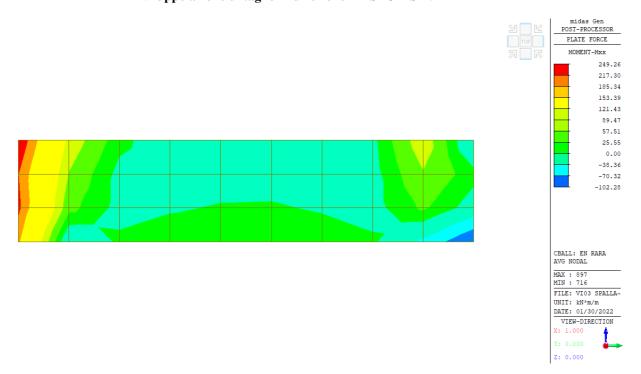

Il sistema di riferimento adottato è quello locale. L'asse X coincide con la direzione orizzontale e l'asse Y con quella verticale.


Inviluppo momento flettente in direzione X - SLU + SLV

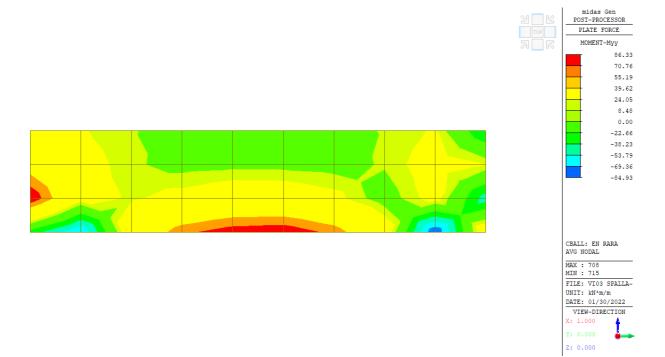


Inviluppo momento flettente in direzione Y - SLU + SLV





Inviluppo azione di taglio in direzione X - SLU + SLV


Inviluppo azione di taglio in direzione Y - SLU + SLV

Inviluppo momento flettente in direzione X - SLE RARA

Z: 0.000

GRUPPO FERROVIE DELLO STATO ITALIANE		RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA				
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	Α	57 di 79

Inviluppo momento flettente in direzione Y - SLE RARA

7.3.2 Verifiche agli Stati Limite

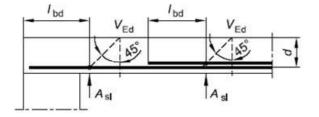
Il paraghiaia è armato con barre ϕ 18/10 verticali e con ϕ 18/10 orizzontali, disposti entrambi sia sul lato esterno, che sul lato interno del muro. Il copriferro netto à pari 50 mm.

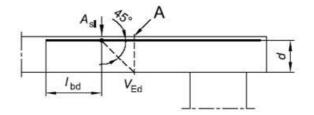
I risultati delle verifiche sono i seguenti.

Verifiche in direzione X

Verifica a flessione

SEZIONE TRASVERSALE		
Altezza della sezione trasversale di calcestruzzo	h	600 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	59 [mm]
Altezza utile della sezione	d	541 [mm]
ARMATURA TESA		
Diametro dei ferri correnti	ϕ_{l}	18 [mm]
Numero dei ferri correnti	n_1	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	0 [mm]
Numero dei ferri di eventuale infittimento	n_2	0 [-]
Area dell'armatura tesa	A_s	2545 [mm ²]
ARMATURA COMPRESSA		
Diametro dei ferri correnti	ϕ'_1	18 [mm]
Numero dei ferri correnti	n' ₁	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ'_2	0 [mm]
Numero dei ferri di eventuale infittimento	n' ₂	0 [-]
Area dell'armatura compressa	A's	2545 [mm ²
Momento resistente della sezione	M _{Rd}	479.95 [kNm]
Momento sollecitante a SLU assunto in valore assoluto	M _{Ed}	373.0 [kNm]




Verifica a taglio

§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTEN	NTI A TAGLIO		
Azione di Taglio sollecitante a Stato Limite Ultimo	$V_{\sf Ed}$	236	[kN]
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]
Coefficiente C _{Rd,c}	$C_{Rd,c}$	0.12	[-]
Coefficiente k	k	1.61	[-]
		1.61	[-]
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0.0047037	[-]
		0.0047037	[-]

figura 6.3 **Definizione di A_{si} nella espressione (6.2)** Legenda

A Sezione considerata

Resistenza a taglio offerta dal calcestruzzo teso V _{Rd}	260.93 [kN]
Resistenza minima del calcestruzzo teso V _{Rd,min}	222.47 [kN]
Resistenza a taglio offerta dal calcestruzzo teso V _{Rd,c}	260.93 [kN]

Verifica delle tensioni massime (SLE)

Controllo tensionale per la Combinazione Caratteristica					
Momento sollecitante assunto in valore assoluto	M_{Ed}	185.0 [kNm]			
Coefficiente di omogeneizzazione	n	15.0 [-]			
Altezza della sezione trasversale di calcestruzzo	h	600 [mm]			
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]			
Copriferro	d'	59 [mm]			
Altezza utile della sezione	d	541 [mm]			
Area dell'armatura tesa	As	2545 [mm ²]			
Area dell'armatura compressa	A's	2545 [mm ²]			
Posizione dell'asse neutro	X	150.89 [mm]			
Momento d'inerzia della sezione rispetto a x	J	7276432292 [mm ⁴]			
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	σ c,caratt.	19.92 [MPa]			
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]			
Tensione nel calcestruzzo	σc	3.84 [MPa]			
Tensione nell'armatura tesa	σs	148.78 [MPa]			

DETERMINAZIONE DELLE TENSIONI A SLS					
Controllo tensionale per la Combinazione Quasi Permanente					
Momento sollecitante assunto in valore assoluto	M_{Ed}	105.0 [kNm]			
Coefficiente di omogeneizzazione	n	15.0 [-]			
Altezza della sezione trasversale di calcestruzzo	j	600 [-]			
Larghezza della sezione trasversale di calcestruzzo	b	1000 [-]			
Copriferro	d'	59 [-]			
Altezza utile della sezione	d'	541 [-]			
Area dell'armatura tesa	As	2545 [mm²]			
Area dell'armatura compressa	A's	2545 [mm ²]			
Posizione dell'asse neutro	Χ	150.89 [mm]			
Momento d'inerzia della sezione rispetto a x	J	7276432292 [mm ⁴]			
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	$\sigma_{\!\scriptscriptstyle C,q.p.}$	14.94 [MPa]			
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]			
Tensione nel calcestruzzo	σ c	2.18 [MPa]			
Tensione nell'armatura tesa	σs	84.44 [MPa]			

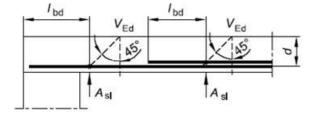
Verifica della fessurazione (comb. rara con Gr.4)

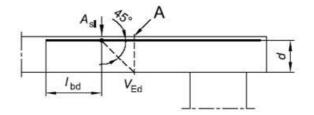
Calcolo dell'ampiezza delle fessure - Combinazione Caratteristica				
Momento sollecitante per la combinazione Caratteristica	M _{Ed,caratt} .	162 [kNm]		
Durata del carico		lunga [-]		
Posizione dell'asse neutro dal lembo superiore	X	150.89 [mm]		
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\scriptscriptstyle S}$	130.28 [MPa]		
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3.1 [MPa]		
Fattore dipendente dalla durata del carico	k _t	0.4 [-]		
Altezza efficace	$h_{c,eff}$	147.5 [mm]		
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	147500 [mm ²]		
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0.01725 [-]		
Rapporto tra E _s /E _{cm}	$lpha_{ ext{e}}$	5.94 [-]		
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	€ _{sm} - € _{cm}	0.000255 [-]		
		0.000391 [-]		
Determinazione del diametro equivalente delle barre tese	Феq	18.00 [mm]		
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0.8 [-]		
Coefficiente che tiene conto della flessione pura	k_2	0.5 [-]		
	k ₃	3.4 [-]		
	k ₄	0.425 [-]		
Distanza massima tra le fessure	S _{r,max}	320.17 [mm]		
		320.17 [mm]		
Ampiezza delle fessure	Wk	0.1251 [mm]		
Ampiezza massima delle fessure	W _{max}	0.2 [mm]		

Verifiche in direzione Y

Verifica a flessione

SEZIONE TRASVERSALE		
Altezza della sezione trasversale di calcestruzzo	h	600 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	77 [mm]
Altezza utile della sezione	d	523 [mm]
ARMATURA TESA		
Diametro dei ferri correnti	ϕ_{l}	18 [mm]
Numero dei ferri correnti	n_1	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	0 [mm]
Numero dei ferri di eventuale infittimento	n_2	0 [-]
Area dell'armatura tesa	A_s	2545 [mm ²]
ARMATURA COMPRESSA		
Diametro dei ferri correnti	ϕ'_1	18 [mm]
Numero dei ferri correnti	n' ₁	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	0 [mm]
Numero dei ferri di eventuale infittimento	n' ₂	0 [-]
Area dell'armatura compressa	A's	2545 [mm ²]
Momento resistente della sezione	M _{Rd}	444.10 [kNm]
Momento sollecitante a SLU assunto in valore assoluto	M _{Ed}	307.0 [kNm]

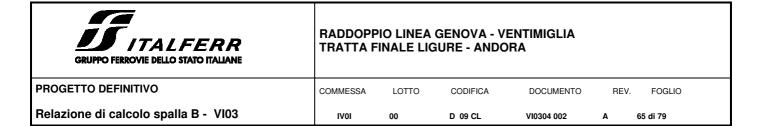



Verifica a taglio

§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTE	NTI A TAGLIO		
Azione di Taglio sollecitante a Stato Limite Ultimo	V_{Ed}	208	[kN]
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]
Coefficiente C _{Rd,c}	$C_{Rd,c}$	0.12	[-]
Coefficiente k	k	1.62	[-]
		1.62	[-]
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0.0048656	[-]
		0.0048656	[-]

figura 6.3 **Definizione di A_{si} nella espressione (6.2)** Legenda

A Sezione considerata

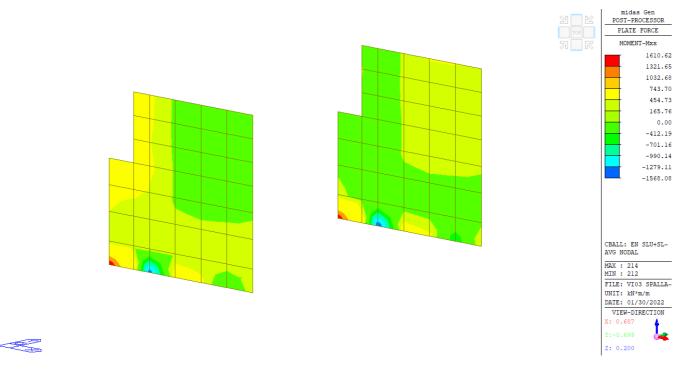

Resistenza a taglio offerta dal calcestruzzo teso	V _{Rd}	256.76 [kN]
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	217.15 [kN]
Resistenza a taglio offerta dal calcestruzzo teso	$V_{Rd,c}$	256.76 [kN]

Verifica delle tensioni massime (SLE)

Controllo tensionale per la Combinazione Caratteristica				
Momento sollecitante assunto in valore assoluto	M_{Ed}	86.0 [kNm]		
Coefficiente di omogeneizzazione	n	15.0 [-]		
Altezza della sezione trasversale di calcestruzzo	h	600 [mm]		
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]		
Copriferro	d'	77 [mm]		
Altezza utile della sezione	d	523 [mm]		
Area dell'armatura tesa	As	2545 [mm ²]		
Area dell'armatura compressa	A's	2545 [mm ²]		
Posizione dell'asse neutro	X	150.89 [mm]		
Momento d'inerzia della sezione rispetto a x	J	6638834683 [mm ⁴]		
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	σ c,caratt.	19.92 [MPa]		
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]		
Tensione nel calcestruzzo	σ c	1.95 [MPa]		
Tensione nell'armatura tesa	σs	72.31 [MPa]		

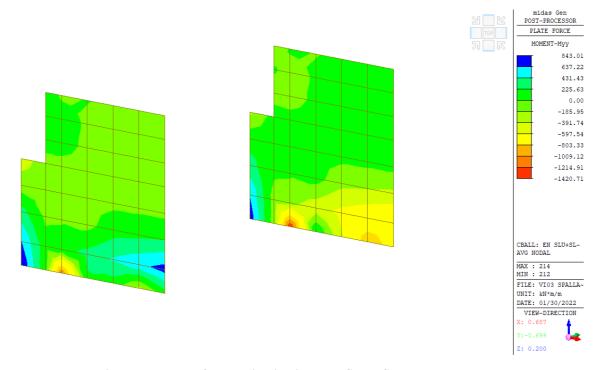
DETERMINAZIONE DELLE TENSIONI A SLS				
Controllo tensionale per la Combinazione Quasi Perman	ente			
Momento sollecitante assunto in valore assoluto	M_{Ed}	52.0 [kNm		
Coefficiente di omogeneizzazione	n	15.0 [-]		
Altezza della sezione trasversale di calcestruzzo	j	600 [-]		
Larghezza della sezione trasversale di calcestruzzo	b	1000 [-]		
Copriferro	d'	77 [-]		
Altezza utile della sezione	d'	523 [-]		
Area dell'armatura tesa	As	2545 [mm		
Area dell'armatura compressa	A's	2545 [mm		
Posizione dell'asse neutro	Χ	150.89 [mm		
Momento d'inerzia della sezione rispetto a x	J	6638834683 [mm		
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	$\sigma_{\!\scriptscriptstyle C,q.p.}$	14.94 [MPa		
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa		
Tensione nel calcestruzzo	σ c	1.18 [MPa		
Tensione nell'armatura tesa	σs	43.72 [MPa		

Verifica della fessurazione (comb. rara con Gr.4)

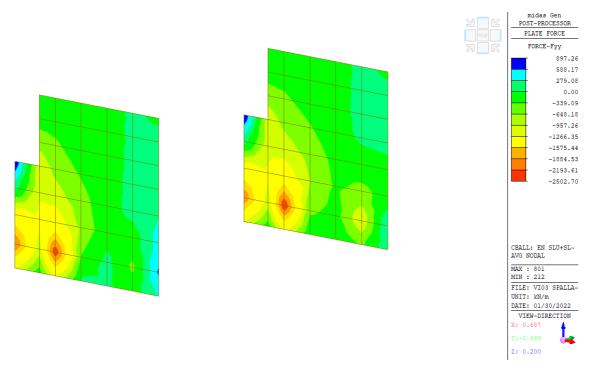

Calcolo dell'ampiezza delle fessure - Combinazione Caratteristica				
Momento sollecitante per la combinazione Caratteristica	$M_{Ed,caratt.}$	69 [kNm]		
Durata del carico		lunga [-]		
Posizione dell'asse neutro dal lembo superiore	Χ	150.89 [mm]		
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!\scriptscriptstyle S}$	58.01 [MPa]		
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3.1 [MPa]		
Fattore dipendente dalla durata del carico	k _t	0.4 [-]		
Altezza efficace	$h_{c,eff}$	149.704408 [mm]		
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	149704.408 [mm ²]		
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0.01700 [-]		
Rapporto tra E _s /E _{cm}	$lpha_{ extsf{e}}$	5.94 [-]		
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	ϵ_{sm} - ϵ_{cm}	-0.000111 [-]		
		0.000174 [-]		
Determinazione del diametro equivalente delle barre tese	Фeq	18.00 [mm]		
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0.8 [-]		
Coefficiente che tiene conto della flessione pura	k ₂	0.5 [-]		
	k ₃	3.4 [-]		
	k_4	0.425 [-]		
Distanza massima tra le fessure	S _{r,max}	322.82 [mm]		
		322.82 [mm]		
Ampiezza delle fessure	Wk	0.0562 [mm]		
Ampiezza massima delle fessure	W _{max}	0.2 [mm]		

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	Α	66 di 79

7.4 MURI LATERALI

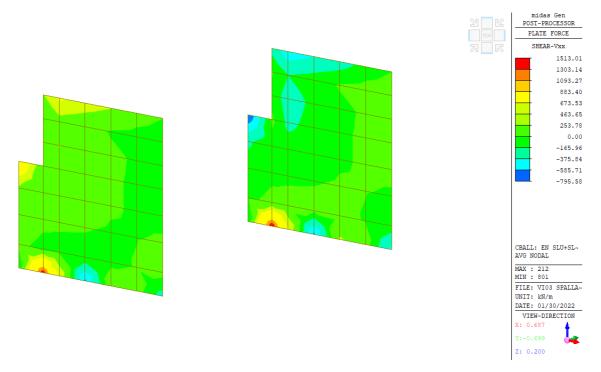

7.4.1 Sollecitazioni massime

Il sistema di riferimento adottato è quello locale. L'asse X coincide con la direzione orizzontale e l'asse Y con quella verticale.

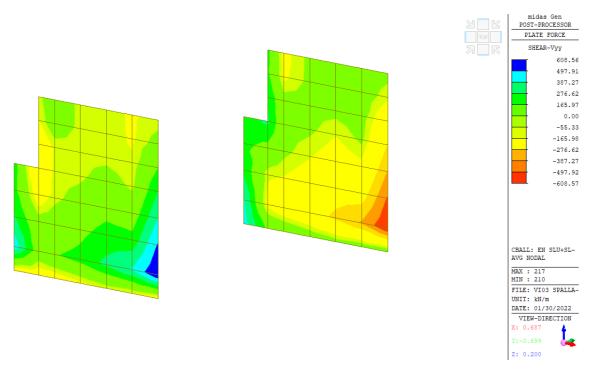


Inviluppo momento flettente in direzione X - SLU+ SLV

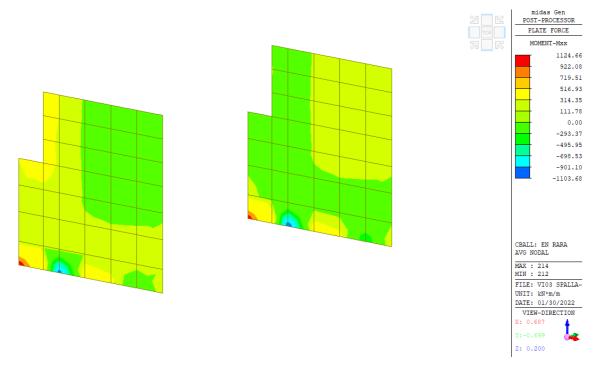
STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV. FOGLIO
Relazione di calcolo spalla B - VI03	IVOI	00	D 09 CL	VI0304 002	A 67 di 79



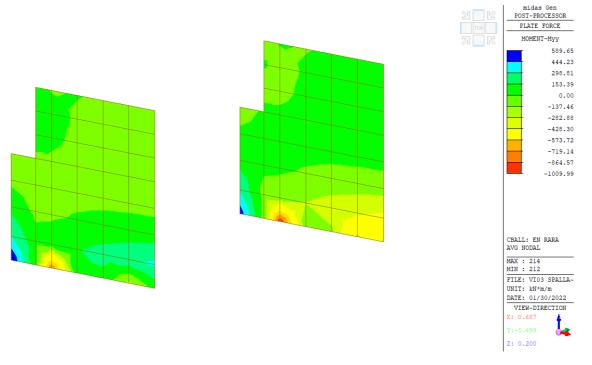
Inviluppo momento flettente in direzione Y - SLU+ SLV



Inviluppo azione assiale verticale - SLU+ SLV



Inviluppo azione di taglio in direzione X - SLU+ SLV



Inviluppo azione di taglio in direzione Y - SLU+ SLV

Inviluppo momento flettente in direzione X – SLE RARA

Inviluppo momento flettente in direzione Y - SLE RARA

7.4.2 Verifiche agli Stati Limite

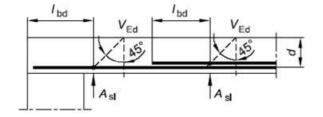
I muri laterali sono armati con barre ϕ 20/10 verticali e con ϕ 18/10 orizzontali, disposti entrambi sia sul lato esterno, che sul lato interno del muro. Il copriferro netto à pari 50 mm.

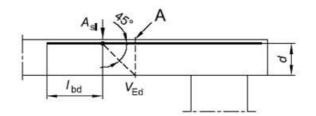
I risultati delle verifiche sono i seguenti.

Verifiche in direzione X

Verifica a flessione

SEZIONE TRASVERSALE		
Altezza della sezione trasversale di calcestruzzo	h	800 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	59 [mm]
Altezza utile della sezione	d	741 [mm]
ARMATURA TESA		
Diametro dei ferri correnti	ϕ_l	18 [mm]
Numero dei ferri correnti	n_1	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	0 [mm]
Numero dei ferri di eventuale infittimento	n_2	0 [-]
Area dell'armatura tesa	A_s	2545 [mm ²]
ARMATURA COMPRESSA		
Diametro dei ferri correnti	ϕ'_1	18 [mm]
Numero dei ferri correnti	n'ı	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	0 [mm]
Numero dei ferri di eventuale infittimento	n' ₂	0 [-]
Area dell'armatura compressa	A's	2545 [mm ²]
Momento resistente della sezione	M_{Rd}	679.10 [kNm]
Momento sollecitante a SLU assunto in valore assoluto	M _{Ed}	598.0 [kNm]

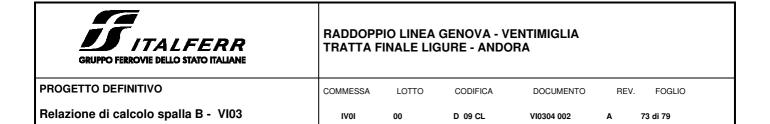



Verifica a taglio

§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTEI	NTI A TAGLIO		1
Azione di Taglio sollecitante a Stato Limite Ultimo	V_{Ed}	287	[kN]
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]
Coefficiente C _{Rd,c}	$C_{Rd,c}$	0.12	[-]
Coefficiente k	k	1.52	[-]
		1.52	[-]
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0.0034341	[-]
		0.0034341	[-]

figura 6.3 **Definizione di A_{si} nella espressione (6.2)** Legenda

A Sezione considerata


Resistenza a taglio offerta dal calcestruzzo teso	V_{Rd}	304.11 [kN]
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	279.91 [kN]
Resistenza a taglio offerta dal calcestruzzo teso	$V_{Rd,C}$	304.11 [kN]

Verifica delle tensioni massime (SLE)


Controllo tensionale per la Combinazione Caratterist	ica	
Momento sollecitante assunto in valore assoluto	M_{Ed}	334.5 [kNm]
Coefficiente di omogeneizzazione	n	15.0 [-]
Altezza della sezione trasversale di calcestruzzo	h	800 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	59 [mm]
Altezza utile della sezione	d	741 [mm]
Area dell'armatura tesa	As	2545 [mm ²]
Area dell'armatura compressa	A's	2545 [mm ²]
Posizione dell'asse neutro	X	182.31 [mm]
Momento d'inerzia della sezione rispetto a x	J	14514487718 [mm ⁴]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	$\sigma_{\!\scriptscriptstyle C,Caratt.}$	19.92 [MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]
Tensione nel calcestruzzo	σ c	4.20 [MPa]
Tensione nell'armatura tesa	σs	193.13 [MPa]

DETERMINAZIONE DELLE TENSIONI A SLS		
Controllo tensionale per la Combinazione Quasi Perman	ente	
Momento sollecitante assunto in valore assoluto	M_{Ed}	299.0 [kNm
Coefficiente di omogeneizzazione	n	15.0 [-]
Altezza della sezione trasversale di calcestruzzo	j	800 [-]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [-]
Copriferro	d'	59 [-]
Altezza utile della sezione	d'	741 [-]
Area dell'armatura tesa	As	2545 [mm
Area dell'armatura compressa	A's	2545 [mm
Posizione dell'asse neutro	Χ	182.31 [mm]
Momento d'inerzia della sezione rispetto a x	J	14514487718 [mm
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	$\sigma_{\!\scriptscriptstyle C,q.p.}$	14.94 [MPa
Tensione ammissibile nell'acciaio per le combinazioni a SLS	σs	360 [MPa
Tensione nel calcestruzzo	σ c	3.76 [MPa
Tensione nell'armatura tesa	σs	172.64 [MPa

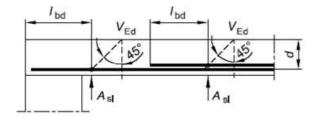
Verifica della fessurazione (comb. rara con Gr.4)

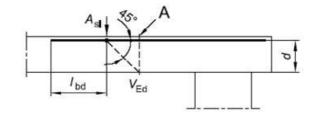
Calcolo dell'ampiezza delle fessure - Combinazione Caratteristica			
Momento sollecitante per la combinazione Caratteristica	$M_{Ed,caratt.}$	329 [kNm]	
Durata del carico		lunga [-]	
Posizione dell'asse neutro dal lembo superiore	X	182.31 [mm]	
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!\scriptscriptstyle S}$	189.96 [MPa]	
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3.1 [MPa]	
Fattore dipendente dalla durata del carico	k _t	0.4 [-]	
Altezza efficace	h _{c,eff}	147.5 [mm]	
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	147500 [mm ²]	
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0.01725 [-]	
Rapporto tra E _s /E _{cm}	$lpha_{ extsf{e}}$	5.94 [-]	
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	€ _{sm} - € _{cm}	0.000554 [-]	
		0.000570 [-]	
Determinazione del diametro equivalente delle barre tese	ф eq	18.00 [mm]	
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0.8 [-]	
Coefficiente che tiene conto della flessione pura	k_2	0.5 [-]	
	k ₃	3.4 [-]	
	k ₄	0.425 [-]	
Distanza massima tra le fessure	S _{r,max}	320.17 [mm]	
		320.17 [mm]	
Ampiezza delle fessure	Wk	0.1825 [mm]	
Ampiezza massima delle fessure	W _{max}	0.2 [mm]	

Verifiche in direzione Y

Verifica a flessione

SEZIONE TRASVERSALE		
Altezza della sezione trasversale di calcestruzzo	h	800 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	78 [mm]
Altezza utile della sezione	d	722 [mm]
ARMATURA TESA		
Diametro dei ferri correnti	ϕ_1	20 [mm]
Numero dei ferri correnti	n_1	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	0 [mm]
Numero dei ferri di eventuale infittimento	n_2	0 [-]
Area dell'armatura tesa	A_s	3142 [mm ²]
ARMATURA COMPRESSA		
Diametro dei ferri correnti	φ'1	20 [mm]
Numero dei ferri correnti	n' ₁	10 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	0 [mm]
Numero dei ferri di eventuale infittimento	n' ₂	0 [-]
Area dell'armatura compressa	A's	3142 [mm ²]
Momento resistente della sezione	M _{Rd}	791.68 [kNm]
Momento sollecitante a SLU assunto in valore assoluto	M _{Ed}	458.0 [kNm]

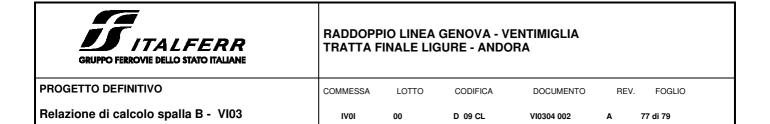



Verifica a taglio

§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTEN	NTI A TAGLIO		1
Azione di Taglio sollecitante a Stato Limite Ultimo	$V_{\sf Ed}$	303	[kN]
Considerare o meno il contributo dell'armatura tesa nel calcolo		si	[-]
Coefficiente C _{Rd,c}	$C_{Rd,c}$	0.12	[-]
Coefficiente k	k	1.53	[-]
		1.53	[-]
Rapporto geometrico d'armatura che si estende per non meno di l _{bd} + d	ρι	0.0043512	[-]
		0.0043512	[-]

figura 6.3 **Definizione di A_{si} nella espressione (6.2)** Legenda

A Sezione considerata


Resistenza a taglio offerta dal calcestruzzo teso	V_{Rd}	322.07 [kN]
Resistenza minima del calcestruzzo teso	$V_{Rd,min}$	274.56 [kN]
Resistenza a taglio offerta dal calcestruzzo teso	$V_{Rd,c}$	322.07 [kN]

Verifica delle tensioni massime (SLE)

Controllo tensionale per la Combinazione Caratteristi	ca	
Momento sollecitante assunto in valore assoluto	M_{Ed}	408.0 [kNm]
Coefficiente di omogeneizzazione	n	15.0 [-]
Altezza della sezione trasversale di calcestruzzo	h	800 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	78 [mm]
Altezza utile della sezione	d	722 [mm]
Area dell'armatura tesa	As	3142 [mm ²]
Area dell'armatura compressa	A's	3142 [mm ²]
Posizione dell'asse neutro	Χ	196.06 [mm]
Momento d'inerzia della sezione rispetto a x	J	16204048035 [mm ⁴]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	σ c,caratt.	19.92 [MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]
Tensione nel calcestruzzo	σ c	4.94 [MPa]
Tensione nell'armatura tesa	σs	198.64 [MPa]

<u>DETERMINAZIONE DELLE TENSIONI A SLS</u>				
Controllo tensionale per la Combinazione Quasi Permanente				
Momento sollecitante assunto in valore assoluto	M_{Ed}	293.0 [kNm]		
Coefficiente di omogeneizzazione	n	15.0 [-]		
Altezza della sezione trasversale di calcestruzzo	j	800 [-]		
Larghezza della sezione trasversale di calcestruzzo	b	1000 [-]		
Copriferro	d'	78 [-]		
Altezza utile della sezione	d'	722 [-]		
Area dell'armatura tesa	As	3142 [mm ²]		
Area dell'armatura compressa	A's	3142 [mm ²]		
Posizione dell'asse neutro	Χ	196.06 [mm]		
Momento d'inerzia della sezione rispetto a x	J	16204048035 [mm ⁴]		
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	$\sigma_{\!\scriptscriptstyle C,q.p.}$	14.94 [MPa]		
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	360 [MPa]		
Tensione nel calcestruzzo	σ c	3.55 [MPa]		
Tensione nell'armatura tesa	σs	142.65 [MPa]		

Verifica della fessurazione (comb. rara con Gr.4)

Calcolo dell'ampiezza delle fessure - Combinazione Caratteristica			
Momento sollecitante per la combinazione Caratteristica	$M_{Ed,caratt.}$	378 [kNm]	
Durata del carico		lunga [-]	
Posizione dell'asse neutro dal lembo superiore	X	196.06 [mm]	
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!\scriptscriptstyle S}$	184.03 [MPa]	
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3.1 [MPa]	
Fattore dipendente dalla durata del carico	k _t	0.4 [-]	
Altezza efficace	h _{c,eff}	195 [mm]	
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	195000 [mm²]	
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0.01611 [-]	
Rapporto tra E _s /E _{cm}	$lpha_{ extsf{e}}$	5.94 [-]	
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	€ _{sm} - € _{cm}	0.000499 [-]	
		0.000552 [-]	
Determinazione del diametro equivalente delle barre tese	þ eq	20.00 [mm]	
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0.8 [-]	
Coefficiente che tiene conto della flessione pura	k_2	0.5 [-]	
	k ₃	3.4 [-]	
	k ₄	0.425 [-]	
Distanza massima tra le fessure	S _{r,max}	353.84 [mm]	
		353.84 [mm]	
Ampiezza delle fessure	Wk	0.1954 [mm]	
Ampiezza massima delle fessure	W _{max}	0.2 [mm]	

8 SCARICHI SULLA PALIFICATA

Nella seguente tabella si riportano gli scarichi della struttura sulla palificata di fondazione, derivanti dallo studio della sovrastruttura con zattera di fondazione infinitamente rigida.

SPALLA FISSA SLE

Load	FX	FY	FZ	MX	MY	MZ
Comb	kN	kN	kN	kNm	kNm	kNm
RARA01	6106	164	55137	13159	31035	-928
RARA02	5099	175	48861	14273	11066	-975
RARA03	7101	221	55183	12900	36601	-1028
RARA04	6701	185	53828	13300	31287	-951
RARA05	3751	136	45827	14789	8300	-871
RARA06	5352	9	51244	14446	29557	-512
RARA07	5635	577	53379	11448	26728	-1949
RARA08	4830	586	48358	12340	10753	-1987
RARA09	6432	623	53415	11241	31182	-2029

SPALLA FISSA SLU-SLV

FX	FY	FZ	MX	MY	MZ
kN	kN	kN	kNm	kNm	kNm
8479	254	76012	17568	45658	-1328
7019	270	66912	19183	16703	-1397
9922	337	76078	17192	53729	-1473
8187	33	74282	19426	40071	-781
7019	45	67001	20719	16907	-836
9342	99	74334	19125	46529	-897
8478	-609	75713	21635	44965	797
5063	203	62520	19988	12709	-1224
-4945	-4388	46337	28249	-18583	-202
-4945	-4388	47968	28249	-13736	-202
-4945	4330	46337	830	-18583	-748
-4945	4330	47968	830	-13736	-748
13388	-4388	46337	28249	36957	-202
13388	-4388	47968	28249	41804	-202
13388	4330	46337	830	36957	-748
13388	4330	47968	830	41804	-748
1471	-14559	46337	60238	856	435
1471	-14559	47968	60238	5703	435
	kN 8479 7019 9922 8187 7019 9342 8478 5063 -4945 -4945 -4945 13388 13388 13388 13388	kN kN 8479 254 7019 270 9922 337 8187 33 7019 45 9342 99 8478 -609 5063 203 -4945 -4388 -4945 -4388 -4945 4330 13388 -4388 13388 -4388 13388 4330 13388 4330 13388 4330 1471 -14559	kN kN kN 8479 254 76012 7019 270 66912 9922 337 76078 8187 33 74282 7019 45 67001 9342 99 74334 8478 -609 75713 5063 203 62520 -4945 -4388 46337 -4945 4330 46337 -4945 4330 47968 13388 -4388 46337 13388 -4388 47968 13388 4330 46337 13388 4330 47968 1471 -14559 46337	kN kN kNm 8479 254 76012 17568 7019 270 66912 19183 9922 337 76078 17192 8187 33 74282 19426 7019 45 67001 20719 9342 99 74334 19125 8478 -609 75713 21635 5063 203 62520 19988 -4945 -4388 46337 28249 -4945 -4388 47968 28249 -4945 4330 46337 830 13388 -4388 46337 28249 13388 -4388 47968 28249 13388 4330 46337 830 13388 4330 46337 830 13388 4330 47968 830 1471 -14559 46337 60238	kN kN kNm kNm 8479 254 76012 17568 45658 7019 270 66912 19183 16703 9922 337 76078 17192 53729 8187 33 74282 19426 40071 7019 45 67001 20719 16907 9342 99 74334 19125 46529 8478 -609 75713 21635 44965 5063 203 62520 19988 12709 -4945 -4388 46337 28249 -18583 -4945 -4388 47968 28249 -13736 -4945 4330 46337 830 -18583 -4945 4388 46337 28249 36957 13388 -4388 46337 830 36957 13388 4330 46337 830 36957 13388 4330 47968 830

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

Relazione di calcolo spalla B - VI03 IV0I 00 D 09 CL VI0304 002 A 79 di 79

Load	FX	FY	FZ	MX	MY	MZ
Comb	kN	kN	kN	kNm	kNm	kNm
SLV11	6971	-14559	46337	60238	17518	435
SLV12	6971	-14559	47968	60238	22365	435
SLV13	1471	14500	46337	-31159	856	-1385
SLV14	1471	14500	47968	-31159	5703	-1385
SLV15	6971	14500	46337	-31159	17518	-1385
SLV16	6971	14500	47968	-31159	22365	-1385
SLV17	1471	-4388	44435	28249	-4799	-202
SLV18	1471	4330	44435	830	-4799	-748
SLV19	6971	-4388	44435	28249	11863	-202
SLV20	6971	4330	44435	830	11863	-748
SLV21	1471	-4388	49870	28249	11358	-202
SLV22	1471	4330	49870	830	11358	-748
SLV23	6971	-4388	49870	28249	28020	-202
SLV24	6971	4330	49870	830	28020	-748

9 VALUTAZIONE DELLA ACCETTABILITA' DEI RISULTATI OTTENUTI (RIF.PAR.10.2 DM 17/01/2018)

Le analisi della struttura sono state condotte con un programma agli elementi finiti (MIDAS).

L'affidabilità del codice di calcolo è confermata dai test di validazione allegati alla release del programma e dalla sua ampia diffusione che lo pone tra i software specialistici standard previsti dalla specifica tecnica Italferr PPA.0002851.

I risultati ottenuti sono stati considerati attendibili dallo scrivente a fronte di verifiche condotte con metodi semplificati o con altri codici di calcolo nonché dal confronto critico con i risultati presentati dai documenti di progettazione definitiva.