COMMITTENTE:

PROGETTAZIONE:

U.O. OPERE CIVILI

PROGETTO DEFINITIVO

RADDOPPIO DELLA LINEA GENOVA – VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

VI04 - Viadotto su Torrente Varatello da km 77+516 e 77+616 Relazione di calcolo impalcato VI04

SCALA:

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	G.Grimaldi	Feb. 2022	D.Guerci	Feb. 2022	G.Fadda	Feb. 2022	A. Vittozzi
		5		B		gresso		S.p.A. ione delle varianti govinciali delle varianti provinciali delle varianti provinciali delle varianti in provinciali dell
								ERR Seri de A207
								TALF tng.
								IT Opere Civ Dott. I degli Ingr
								U.O. Opere Do dine degli i
								U.O.
								ő

File: IV0I00D09CLVI0408002A.doc n. Elab.: X

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

COMMESSA

CODIFICA

DOCUMENTO

EV. FOGLIO

Relazione di calcolo impalcato VI04

IV0I

D 09 CL

LOTTO

00

VI0408 002

2 di 153

INDICE

1	GEN	IERALITA'	5
2	NOR	RMATIVA E DOCUMENTI DI RIFERIMENTO	9
	2.1	ELABORATI DI RIFERIMENTO	10
3	MAT	TERIALI	11
	3.1	CALCESTRUZZO PER TRAVI IN C.A.P. E TRAVERSI	11
	3.2	CALCESTRUZZO PER GETTI IN OPERA IMPALCATO	11
	3.3	ACCIAIO PER C.A	12
	3.4	ACCIAIO PER C.A.P.	12
4	ANA	ALISI DEI CARICHI	13
	4.1	CARPENTERIA DI BASE	13
	4.2	PESO PROPRIO (G1)	14
	4.3	CARICHI PERMANENTI NON STRUTTURALI (G2)	14
	4.4	AZIONI VARIABILI	15
	4.4.1	Coefficienti di amplificazione dinamica e di adattamento	15
	4.4.2	? Treni di carico	16
	4.4.3	Carichi sui marciapiedi	21
	4.4.4	Forza centrifuga	22
	4.4.5	5 Serpeggio	22
	4.4.6	6 Avviamento e frenatura	23
	4.5	AZIONI AMBIENTALI	23
	4.5.1	Variazione termica uniforme	24
	4.5.2	Pariazione termica non uniforme	24
	4.5.3	3 Vento	24
	4.6	AZIONI AEREODINAMICI ASSOCIATI AL PASSAGGIO DEI CONVOGLI	33
	4.7	AZIONI ECCEZIONALI	34

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

COMMESSA

CODIFICA

DOCUMENTO

FOGLIO

Relazione di calcolo impalcato VI04

IV0I

D 09 CL

LOTTO

00

VI0408 002

3 di 153

	4.7.1	Azioni dovute al deragliamento	34
	4.8	Azioni indirette	37
	4.8.1	Ritiro	37
	4.8.2	Viscosità	40
	4.8.3	Resistenze passive dei vincoli	45
	4.9	AZIONI SISMICHE	45
	4.9.1	Inquadramento sismico	45
5	FASI	COSTRUTTIVE E MODELLAZIONE	48
	5.1	Modellazione: Generalità	49
	5.1.1	Modello fase 0	49
	5.1.2	Modello fase 1	50
	5.1.3	Modello fase 2	52
	5.1.4	Modello fase 3	5 <i>t</i>
	5.2	COMBINAZIONI DI CARICO	60
6	EFFE	ГТІ GLOBALI - IMPALCATO	64
	6.1	STATO LIMITE DI ESERCIZIO - SLE	64
	6.1.1	Sollecitazioni	66
	6.1.2	Verifiche tensionali	79
	6.2	STATO LIMITE ULTIMO – SLU	107
	6.2.1	Verifiche a presso-flessione trave centrale	107
	6.2.2	Verifiche a presso-flessione trave di riva	110
7	TRAV	PRECOMPRESSI	113
	7.1	SOLLECITAZIONI	113
	7.2	CARATTERISTICHE DELLA SEZIONE	116
	7.2.1	Sezione iniziale	116
	7.2.2	Sezione composta – breve termine	117

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

COMMESSA

CODIFICA

DOCUMENTO

EV. FOGLIO

Relazione di calcolo impalcato VI04

IV0I 00

LOTTO

D 09 CL

VI0408 002

4 di 153

Α

	7.2.3	Sezione composta – lungo termine	118
,	7.3 V	ERIFICHE STATO LIMITE DI ESERCIZIO – SLE	119
	7.3.1	Verifiche tensionali	119
	7.3.2	Verifica a fessurazione	126
	7.3.3	Verifica a sollevamento	127
,	7.4 V	'ERIFICHE STATO LIMITE ULTIMO - SLU	129
	7.4.1	Verifiche a presso-flessione	129
	7.4.2	Verifica a taglio	130
8	EFFET	TI LOCALI	132
;	8.1 S	OLETTA	132
	8.1.1	Modellazione	132
	8.1.2	Sollecitazioni	134
	8.1.3	Verifiche sezione in mezzeria	138
	8.1.4	Verifiche sezione sullo sbalzo	143
9	VERIE	TICA DEFORMAZIONI TORSIONALI (SGHEMBO)	146
10	SCAR	ICHI IMPALCATO	147
	10.1 V	ALUTAZIONE DELL'AZIONE SUGLI APPOGGI	147
11	VARC	HI E GIUNTI	151
12	VALU	TAZIONE DELLA ACCETTABILITA' DEI RISULTATI OTTENUTI (RIF.PAR.10.2 DM 17/01/2018)	152

GRUPPO FERROVIE DELLO STATO ITALIANE		RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA										
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO						
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	5 di 153						

1 GENERALITA'

Oggetto della presente relazione e' il calcolo delle sollecitazioni e le conseguenti verifiche di resistenza dell'impalcato del viadotto sul Torrente Varatello, da costruirsi per il raddoppio della linea Genova – Ventimiglia, nella tratta Finale Ligure - Andora tra le progressive chilometriche 77+516 e 77+616.

Il viadotto in esame si sviluppa su 4 campate di luce pari a 25.00 m. Delle 4 campate 2 sono risolte con due impalcati a singolo binario mentre le altre 2 sono risolte con un impalcato a doppio binario.

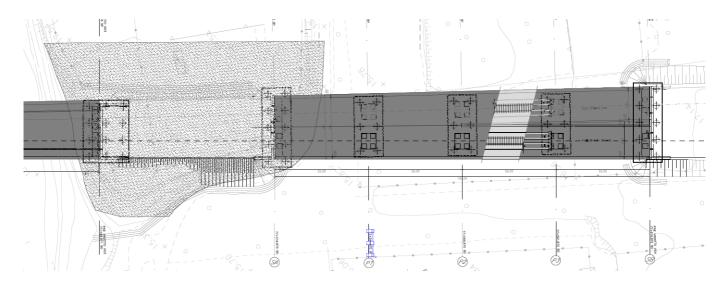


Figura 1: planimetria generale

GRUPPO FERROVIE DELLO STATO ITALIANE		RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA										
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	. FOGLIO						
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	6 di 153						

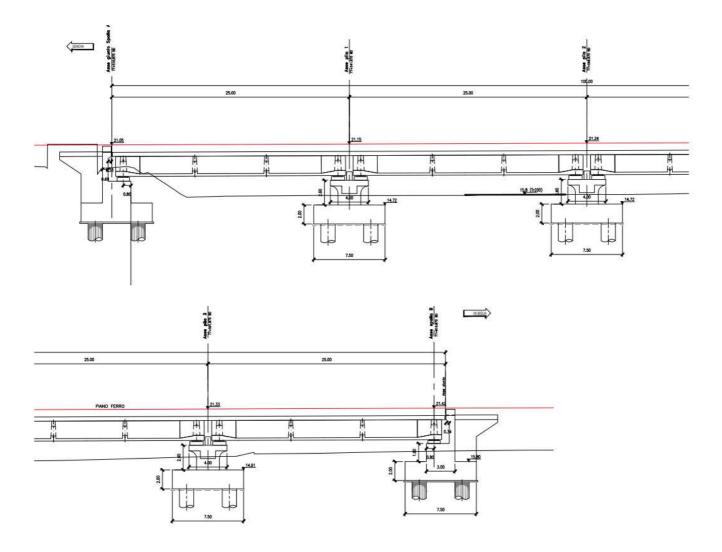


Figura 2: Profilo longitudinale

La luce di 25.00 m viene superata mediante impalcati in cemento armato precompresso. Ciascun impalcato a singolo binario da 25.00 m è costituito da 2 travi in C.A.P. a cassoncino prefabbricate solidarizzate da 4 traversi, rispettivamente due di testata e due di campata, prefabbricati anch'essi e una soletta superiore in C.A. gettata in opera, mentre quelli a doppio binario sono realizzati con la stessa modalità fatta eccezione per il numero di travi che passa a quattro. Ogni impalcato è caratterizzato da un armamento di tipo tradizionale su ballast.

GRUPPO FERROVIE DELLO STATO ITALIANE		RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA									
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV. FOGLIO						
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A 7 di 153						

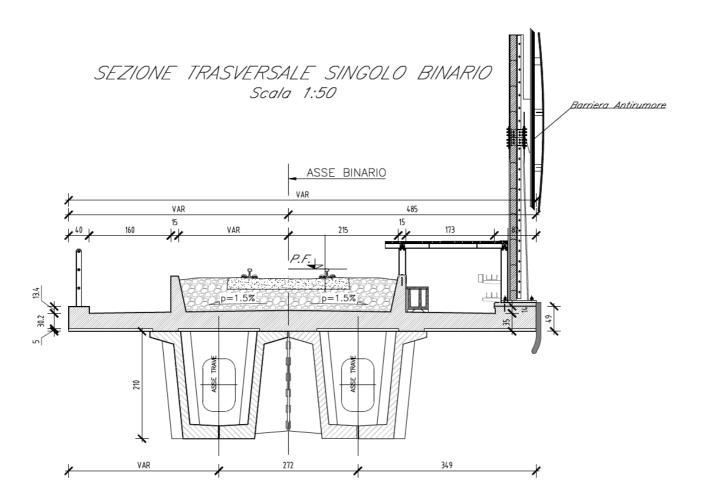


Figura 3: sezione tipo impalcato singolo binario

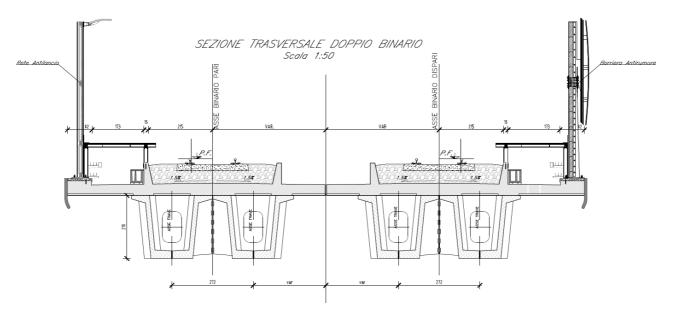


Figura 3: sezione tipo impalcato doppio binario

Unità di misura

- lunghezza [m]
- forze [kN]
- angoli [rad]
- tensioni [N/mm²]

IVOI

2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

Rif. [1] Ministero delle Infrastrutture, DM 17 gennaio 2018, «Aggiornamento delle "Norme tecniche per le costruzioni"»

00

D 09 CL

VI0408 002

9 di 153

- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 21 gennaio 2019, n. 7 C.S.LL.PP., Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.
- Rif. [3] Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- Rif. [4] Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- Rif. [5] Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- Rif. [6] Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- Rif. [7] Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- Rif. [8] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif. [9] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Rif. [10] EC2-1-1-2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	_	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA										
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO						
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	10 di 153						

2.1 Elaborati di riferimento

Viadotto su Torrente Varatello da Km 77+389 a Km 77+619																						
Relazione descrittiva viadotto VI04	-	Τ	٧	0	-	0	0	D	0	9	R	Н	٧	Ι	0	4	0	0	0	0	1	В
Relazione di calcolo spalla A	-	1	٧	0	Ι	0	0	D	0	9	С	L	٧	1	0	4	0	4	0	0	1	Α
Relazione di calcolo spalla B		Ι	٧	0	Ι	0	0	D	0	9	С	L	٧	1	0	4	0	4	0	0	2	Α
Relazione di calcolo pila tipo	-	1	٧	0	1	0	0	D	0	9	С	L	٧	1	0	4	0	5	0	0	1	Α
Relazione geotecnica e di calcolo fondazioni		Ι	٧	0	Ι	0	0	D	0	9	С	L	٧	1	0	4	0	5	0	0	2	Α
Relazione di calcolo impalcato c.a.p.binario singolo L=25m (P3-SPB)	-	Ι	٧	0	-	0	0	D	0	9	С	L	٧	1	0	4	0	8	0	0	2	Α
Relazione di calcolo opere provvisionali	-	1	٧	0	Ι	0	0	D	0	9	С	L	٧	1	0	4	0	3	0	0	1	Α
Carpenteria impalcato c.a.p. binario singolo L=25m (P3-SPB)	1:50	Ι	٧	0	-	0	0	D	0	9	В	В	٧	1	0	4	0	8	0	0	1	В
Carpenteria spalla A TAV.1/2	1:50	1	٧	0	Ι	0	0	D	0	9	В	Z	٧	1	0	4	0	4	0	0	1	Α
Carpenteria spalla A TAV.2/2		1	٧	0	Ι	0	0	D	0	9	В	Z	٧	1	0	4	0	4	0	0	2	Α
Carpenteria spalla B TAV.1/2	1:50	1	٧	0	Ι	0	0	D	0	9	В	Z	٧	1	0	4	0	4	0	0	3	Α
Carpenteria spalla B TAV.2/2		Ι	٧	0	-	0	0	D	0	9	В	Z	٧	1	0	4	0	4	0	0	4	Α
Carpenteria pila P1	1:50	1	٧	0	Ι	0	0	D	0	9	В	В	٧	1	0	4	0	5	0	0	1	Α
Carpenteria pila P2	1:50	Ι	٧	0	-	0	0	D	0	9	В	В	٧	1	0	4	0	5	0	0	2	Α
Carpenteria pila P3	1:50	1	٧	0	1	0	0	D	0	9	В	В	٧	1	0	4	0	5	0	0	3	Α
Opere provvisionali		1	٧	0	Ι	0	0	D	0	9	В	Z	٧	1	0	4	0	3	0	0	1	Α
Particolari, dettagli e finiture	varie	1	٧	0	1	0	0	D	0	9	В	Z	٧	1	0	4	0	0	0	0	1	В
Schema di vincolo appoggi e giunti		1	٧	0	Ι	0	0	D	0	9	D	Z	٧	1	0	4	0	7	0	0	1	Α
Prospetto longitudinale BINARIO DISPARI	1:100	Ι	٧	0	-	0	0	D	0	9	Α	Z	٧	1	0	4	0	0	0	0	1	В
Prospetto longitudinale BINARIO PARI	1:100	1	٧	0	-	0	0	D	0	9	Α	Z	٧	1	0	4	0	0	0	0	2	В
Planimetria generale dell'intervento	1:200	Ι	٧	0	-	0	0	D	0	9	Ρ	9	٧	Ι	0	4	0	0	0	0	1	В
Planimetria opere di fondazione	1:100	1	٧	0	1	0	0	D	0	9	Р	Α	٧	1	0	4	0	3	0	0	1	В
Planimetria scavi ed opere provvisionali	1:100	ı	٧	0	I	0	0	D	0	9	Ρ	Α	٧	1	0	4	0	3	0	0	2	В
Carpenteria trave in c.a.p.	varie	1	٧	0	1	0	0	D	0	9	В	Z	٧	1	0	4	0	8	0	0	1	В

GRUPPO FERROVIE DELLO STATO ITALIANE	_	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA										
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	. FOGLIO						
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	11 di 153						

3 MATERIALI

Si riportano di seguito i materiali previsti per la realizzazione delle strutture, suddivisi per elemento costruttivo.

3.1 Calcestruzzo per travi in c.a.p. e traversi

Classe	C45/55		
$R_{ck} =$	55	MPa	resistenza caratteristica cubica
$f_{ck} =$	45	MPa	resistenza caratteristica cilindrica
$f_{cm} =$	53	MPa	valor medio resistenza cilindrica
$\alpha_{cc}=$	0,85		coef. rid. Per carichi di lunga durata
$g_{M}=$	1,5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	25,50	MPa	resistenza di progetto
$f_{ctm} =$	3,80	MPa	resistenza media a trazione semplice
$f_{cfm} =$	4,55	MPa	resistenza media a trazione per flessione
$f_{ctk} =$	2,66	MPa	valore caratteristico resistenza a trazione
$E_{cm} =$	36283	MPa	Modulo elastico di progetto
ν =	0,2		Coefficiente di Poisson
$G_c =$	15118	MPa	Modulo elastico Tangenziale di progetto

3.2 Calcestruzzo per getti in opera impalcato

C35/45		
45	MPa	resistenza caratteristica cubica
35	MPa	resistenza caratteristica cilindrica
43	MPa	valor medio resistenza cilindrica
0.85		coef. rid. Per carichi di lunga durata
1.5	-	coefficiente parziale di sicurezza SLU
19.83	MPa	resistenza di progetto
3.21	MPa	resistenza media a trazione semplice
3.85	MPa	resistenza media a trazione per flessione
2.25	MPa	valore caratteristico resistenza a trazione
34077	MPa	Modulo elastico di progetto
0.2		Coefficiente di Poisson
	45 35 43 0.85 1.5 19.83 3.21 3.85 2.25 34077	45 MPa 35 MPa 43 MPa 0.85 1.5 - 19.83 MPa 3.21 MPa 3.85 MPa 2.25 MPa 34077 MPa

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

D 09 CL

PROGETTO DEFINITIVO

 $G_c =$

Relazione di calcolo impalcato VI04

14199

MPa

COMMESSA LOTTO CODIFICA

DOCUMENTO
VI0408 002

REV

FOGLIO

12 di 153

Modulo elastico Tangenziale di progetto

00

IV0I

3.3 Acciaio per c.a.

B450C			
$f_{yk} \ge$	450	MPa	tensione caratteristica di snervamento
$f_{tk}\!\geq\!$	540	MPa	tensione caratteristica di rottura
$(f_t/f_y)_k \ge$	1,15		
$(f_t/f_y)_k \le$	1,35		
$g_s =$	1,15	-	coefficiente parziale di sicurezza SLU
$f_{yd} =$	391,3	MPa	tensione caratteristica di snervamento
$E_s =$	200000	MPa	Modulo elastico di progetto
ε_{yd} =	0,196%		deformazione di progetto a snervamento
$\varepsilon_{uk} = (A_{gt})_k$	7,50%		deformazione caratteristica ultima

3.4 Acciaio per c.a.p.

Trefoli Φ0.6" A=139 mmq

$f_{pk} \ge$	1860	MPa	tensione caratteristica di rottura
$f_{p(0,1)k}\!\geq\!$	-	MPa	tensione caratteristica allo 0,1% di def. Residua
$f_{p(1)k}\!\geq\!$	1670	MPa	tensione caratteristica allo 1% di def. Totale
$\varepsilon_{\mathrm{uk}} =$	3,50%	-	Allung. per carico max.
$E_p =$	195.000	MPa	Modulo elastico di progetto
γ_s =	1,15	-	coefficiente parziale di sicurezza SLU
$f_{pd} =$	1456	MPa	tensione caratteristica di snervamento
$\varepsilon_{ypd} = f_{pd} / E_p$	0,75%		deformazione di progetto a snervamento
$\varepsilon_{ud} = 0.9 \text{ x } \varepsilon_{uk}$	3,15%		deformazione caratteristica ultima

4 ANALISI DEI CARICHI

Nel presente paragrafo si descrivono i carichi agenti sull'impalcato, utilizzati per il calcolo delle sollecitazioni agenti negli elementi strutturali dell'impalcato.

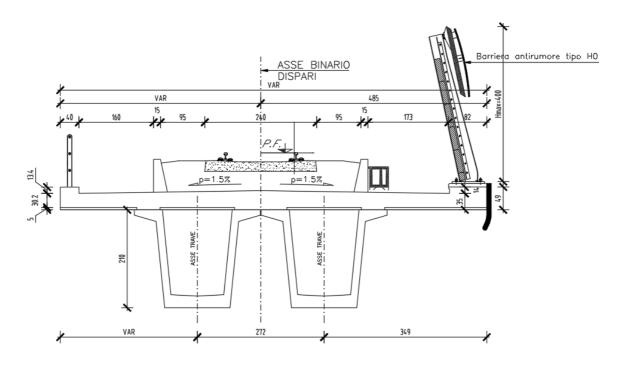
4.1 Carpenteria di base

La trave prefabbricata a cassone presenta diverse sezioni, nello specifico si distinguono una sezione corrente, una sezione ringrossata agli appoggi e una sezione di raccordo a spessori variabili.

sviluppo totale impalcato	L	=	25	m
luce appoggio-appoggio	L_0	=	22.8	m
asse giunto/asse appoggi	d	=	1.1	m
retrotrave	$L_{\rm r}$	=	0.8	m
sviluppo carpenteria	L'	=	24.4	m
sviluppo ringrosso appoggi	L_1	=	1.07	m
sviluppo transizione	L_2	=	1.48	m
Area sezione in mezzeria	A_{mez}	=	1.13	$m^2 \\$
Area sezione in appoggio	A_{ap}	=	2.01	$m^2 \\$
numero di travi	\mathbf{n}_1	=	2/4	m
larghezza traverso mezzeria	$d_{\text{mez}} \\$	=	0.25 - 0.40	m
larghezza traverso appoggio	d_{ap}	=	0.35 - 0.48	m
area foro	Af	=	0.55	$m^2 \\$
area della trave al di sotto del traverso	Aes	=	0.38	m
lunghezza del traverso	L	=	4.92	m
altezza traverso	h	=	1.85	m
numero di traversi in mezzeria	n_2	=	2	

GRUPPO FERROVIE DELLO STATO ITALIANE	_	-	GENOVA - V GURE - ANDO				
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	14 di 153	

4.2 Peso proprio (G1)


Il peso proprio delle strutture viene considerato automaticamente dal software di calcolo utilizzato. Il carico delle strutture in c.a. e c.a.p. viene valutato considerando un peso di volume pari a 25 kN/mc.

Di seguito si riporta la stima dei pesi propri considerati.

$q_{pp} \\$	= 1.13 mq x 25 kN/mc = 28.25 kN/m
$q_{pp1} \\$	= 2.01 mq x 25 kN/mc = 50.25 kN/m
$q_{pp2} \\$	= 1.57 mq x 25 kN/mc = 39.25 kN/m
\mathbf{W}_{t}	= 0.415 m x 5.058 mq x 25 kN/mc = 52.48 kN
\mathbf{w}_{t2}	$= 0.325 \text{ m } \times 6.818 \text{ mq } \times 25 \text{ kN/mc} = 55.40 \text{ kN}$
q_{pp3}	$= 0.345 \text{ m} \times 3.26 \text{ m} \times 25 \text{ kN/mc} = 28.12 \text{ kN/m}$
q_{pp3}	$= 0.345 \text{ m} \times 4.85 \text{ m} \times 25 \text{ kN/mc} = 41.83 \text{ kN/m}$
	q_{pp2} W_t W_{t2} q_{pp3}

4.3 Carichi permanenti non strutturali (G2)

Nel seguito si riportano i carichi permanenti portati considerati.

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

D 09 CL

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

VI0408 002

15 di 153

Impermeabilizzazione	1.75 m x 1.30 kN/mq	= 2.28 kN/m	tr.esterne
Muretti paraballast	0.25 m x 0.89 m x 25 kN/mc	= 5.56 kN/m	a trave
Canalette portacavi		= 1.50 kN/m	tr.esterne
Cordolo laterale	0.26 m x 0.82 m x 25 kN/mc	= 5.33 kN/m	tr.esterne
Velette		= 1.30 kN/m	tr.esterne
Barriera antirumore		= 15 kN/m	tr.esterne
Parapetto		= 1.00 kN/m	tr.esterne
Ballast	2.075 x 0.80 m x 18 kN/mc	= 29.88 kN/m	a trave
			
Totale carichi permanenti (tr.e	esterne)	= 61.85 kN/m	a trave
Totale carichi permanenti (tr.i	nterne)	= 35.44 kN/m	a trave

IVOI

00

4.4 Azioni variabili

4.4.1 Coefficienti di amplificazione dinamica e di adattamento

La linea in esame è a normale standard manutentivo, per cui il coefficiente di amplificazione è pari a:

$$\Phi_3 = \frac{2.16}{\sqrt{L_{\phi}} - 0.2} + 0.73 = 1.202$$
 per la verifica delle travi (L_{\phi} = 22.8 m)

L'infrastruttura in esame è di categoria "A", per cui il coefficiente di adattamento α è stato assunto pari a:

α=1.1 per i modelli di carico LM71 e SW/0

 α =1 per il modello di carico SW/2.

Per il calcolo dei traversi e della soletta (effetti locali) si ha

$$\Phi_3 = \frac{2.16}{\sqrt{L_{\Phi}} - 0.2} + 0.73 = 1.867$$
 per effetti locali – traversi e soletta

Dove alla lunghezza caratteristica L_{Φ} si attribuisce il valore più gravoso tra:

$$L_{\Phi} = 3 \text{ x Lc} = 3 \text{ x } 1.47 = 4.41 \text{ m}$$
 (Lc = 1.47 = interasse nervature cassone)

$$L_{\Phi} = 2 \text{ x Lc} = 2 \text{ x } 2.72 = 5.44 \text{ m}$$
 (Lc = 2.72 = interasse cassoni)

4.4.2 Treni di carico

I carichi verticali sono definiti per mezzo dei modelli di carico elencati nella seguente tabella. I valori caratteristici dei carichi attribuiti ai modelli di carico debbono moltiplicarsi per il coefficiente " α " che deve assumersi come da tabella seguente:

Tabella 1 - coefficienti α per modelli di carico

MODELLO DI CARICO	COEFFICIENTE "α"
LM71	1.1
SW/0	1.1
SW/2	1.0

Non si considera il modello di carico SW/0 perché l'impalcato non è continuo.

4.4.2.1 Treno di carico LM71

Il Treno di carico LM71 è schematizzato nella figura seguente.

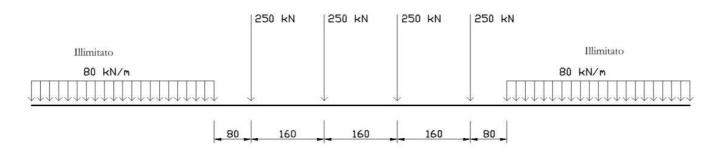


Figura 2 - Treno di carico LM71

Per questo modello di carico è prevista una eccentricità del carico rispetto all'asse del binario pari a s/18, con s=1435 mm. Quindi, l'eccentricità considerata nel modo più sfavorevole per le strutture è pari a: $e=\sim80$ mm

4.4.2.2 Treno di carico SW

Il Treno di carico SW/2 è schematizzato nella figura seguente.

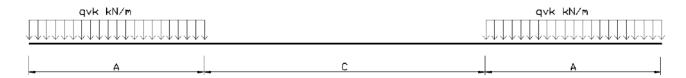


Figura 3 - Treno di carico SW

Tabella 2 - caratterizzazione treni di carico SW

Tipo di carico	Qvk	Α	С
	[kN/m]	[m]	[m]
SW/0	133	15.0	5.3
SW/2	150	25.0	7.0

Nel presente documento, si è considerato solo il modello di carico SW/2.

4.4.2.3 Treno scarico

Alcuni scenari di carico prevedono l'impiego del treno scarico, convenzionalmente costituito da un carico uniformemente distribuito pari a 10.00 kN/m.

4.4.2.4 Ripartizione locale dei carichi

La condizione di carico più sfavorevole ai fini delle verifiche locali sulla soletta è data dalla presenza del locomotore LM71.

La diffusione longitudinale e trasversale dei carichi è stata effettuata, a partire dall'intradosso della traversa, nell'ipotesi di ripartizione nel ballast e nella soletta rispettivamente nei rapporti 4:1 e 1:1. Lo spessore della soletta è stato valutato in corrispondenza dell'asse binario – che risulta coerente con il valore medio dell'analisi globale - mentre a favore di sicurezza è stato assunto lo spessore minimo del ballast sotto la traversa.

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA

LOTTO

CODIFICA

DOCUMENTO

REV. FOGLIO

IVOI 00 D 09 CL VI0408 002 18 di 153

4.4.2.5 <u>Ripartizione longitudinale</u>

Nelle analisi si sono considerati i seguenti meccanismi di ripartizione longitudinale dei carichi.

La superficie di riferimento è la superficie di appoggio del ballast.

Nel caso specifico, la ripartizione viene valutata a partire dai seguenti parametri medi:

Profondità traversine: B = 0.30 m

Interasse traversine: i = 0.60 m

Altezza di diffusione: h = 0.40 m

 $b = B + 2 \times h/4 = 0.50 \text{ m} < i$ Larghezza di diffusione:

Il valore appena calcolato per la larghezza di diffusione sarà impiegato per la valutazione degli effetti locali trasversali.

Nello specifico II carico complessivo Q agente su una striscia di soletta di lunghezza unitaria vale:

Qvk =
$$\alpha \times \Phi \times (125 + 2 \times 62.5 \times 0.325/0.85) / 1 = 354.9 \text{ kN/m}$$

4.4.2.6 Ripartizione trasversale

Il carico appena valutato si ripartisce trasversalmente per una larghezza valutata, a favore di sicurezza, trascurando lo spessore strutturale della soletta.

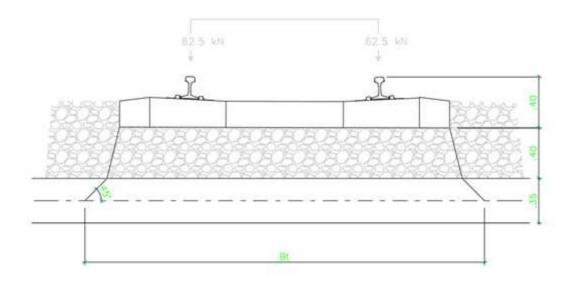


Figura 4 – meccanismo di ripartizione trasversale per mezzo di traversa e ballast

Larghezza traversine: L = 2.60 m

Altezza di diffusione: h = 0.40 m

Larghezza di diffusione: Bt = L + 2 x h/4 = 2.80 m

Il carico verticale unitario diffuso trasversalmente vale:

$$q_{vk} = 354.9 / 2.8 = 126.7 \text{ kN/mq}$$

In presenza del traffico pesante i valori dei carichi unitari verticali risultano:

$$\mathbf{q}_{vk} = \alpha \mathbf{x} \mathbf{\Phi} \times 150/2.8 = 100.01 \text{ kN/mq}$$
 < $\mathbf{q}_{vk(LM71)}$
 $\mathbf{q}_{vk} = \alpha \mathbf{x} \mathbf{\Phi} \times 133/2.8 = 88.68 \text{ kN/mq}$ < $\mathbf{q}_{vk(LM71)}$

Il coefficiente di incremento dinamico vale 1.867 così come esplicitato nel calcolo degli effetti locali nei paragrafi successivi.

4.4.2.7 Eccentricità

L'applicazione dei carichi accidentali sugli elementi strutturali dell'impalcato dipende trasversalmente dall'eccentricità di questi rispetto all'asse impalcato. L'eccentricità considerata per il carico è pari a

$$e = 143.5/18 = 0.08 \text{ m}$$

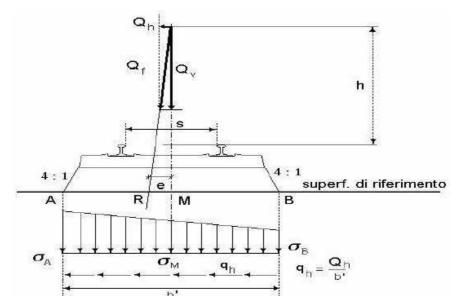


Figura 5 – meccanismo di ripartizione trasversale per mezzo di traversa e ballast

Nel modello di calcolo si è provveduto a traslare i carichi per effetto dell'eccentricità. Sono stati considerati due diverse configurazioni di carico, corrispondenti alla posizione centrata e a quella con eccentricità massima:

carico senza eccentricità

Qv = 126.7 kN/mq

carico con eccentricità massima:

$$\Delta\Theta$$
 = ± 6 Δ M / Bt² = ±6[Qvk x Bt] e / Bt² = ± 21.7 kN/mq

 $Qvk_{max} = 148.4 \text{ kN/mq}$

 $Qvk_{min} = 105.0 \text{ kN/mq}$

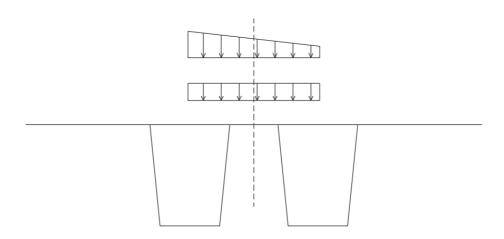


Figura 6 - configurazione di carico modello locare con e senza eccentricità

4.4.3 Carichi sui marciapiedi

I marciapiedi non aperti al pubblico sono utilizzati solo dal personale autorizzato. I carichi accidentali sono schematizzati da un carico uniformemente ripartito del valore di 10 kN/mq.

Questo carico non deve considerarsi contemporaneo al transito dei convogli ferroviari e deve essere applicato sopra i marciapiedi in modo da dare luogo agli effetti locali più sfavorevoli. Per questo tipo di carico distribuito non deve applicarsi l'incremento dinamico.

4.4.4 Forza centrifuga

Il tracciato della ferrovia è rettifilo in corrispondenza del viadotto. Pertanto, la forza centrifuga non è applicabile.

4.4.5 Serpeggio

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva.

Il valore caratteristico di tale forza è stato assunto pari a Qsk=100 kN. Tale valore deve essere moltiplicato per α , ma non per il coefficiente di incremento dinamico.

Questa forza laterale deve essere sempre combinata con i carichi verticali.

4.4.5.1 Ripartizione locale del carico

Localmente l'azione orizzontale indotta dal serpeggio, applicata alla sommità della rotaia più alta, viene assorbita dalla soletta attraverso il ballast e produce effetti ai fini delle verifiche locali della soletta in direzione trasversale. Tale azione viene presa in conto considerando una diffusione della forza laterale a partire dal piano di intradosso delle traverse e su una lunghezza longitudinale di tre traverse.

BL= 2it + bt+
$$2x(sb/4 + ss/2)$$
= 2.08 m
hS= 0.16 + 0.35/2 + 0.8 = 1.135 m

Gli effetti sulla sezione trasversale di larghezza unitaria equivalgono ad un'azione orizzontale e ad una verticale distribuita con andamento lineare a farfalla a risultante verticale nulla e valutata considerando la diffusione dalla traversa fino al piano medio della soletta:

fo= Qsk / BL =
$$48.1 \text{ kN/m}$$

M= fo hs = 54.6 kN/m m
f*= fo/Bt = 17.18 kN/mq
 $\Delta\Theta^*$ = 6 M*/ Bt²= 41.79 kN/mq

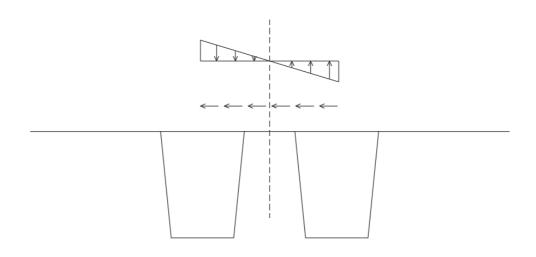


Figura 7 - condizione di carico locale serpeggio

4.4.6 Avviamento e frenatura

Le forze di frenatura e di avviamento si considera come azione agente sulla sommità del binario, nella direzione longitudinale dello stesso, come carico uniformemente distribuito. A vantaggio di sicurezza si trascurano gli effetti di interazione binario struttura.

Si considerano i seguenti valori delle azioni:

<u>Avviamento</u>

Qla	=	$33 \times 25 \times 1.1 = 907.5 \text{ kN} < 1000 \text{ kN}$	per LM71
Qla	=	$33 \times 25 \times 1 = 825 \text{ kN} \le 1000 \text{ kN}$	per SW/2

<u>Frenatura</u>

Qlb	$= 20 \times 25 \times 1.1 = 550 \text{ kN} < 6000 \text{ kN}$	per LM71
Qlb	$= 20 \times 25 \times 1 = 875 \text{ kN} < 6000 \text{ kN}$	per SW/2

Le azioni di frenatura ed avviamento si combinano con i relativi carichi da traffico verticali.

4.5 Azioni ambientali

4.5.1 Variazione termica uniforme

Si considera una variazione termica uniforme pari a ±15°C. Per il calcolo delle escursioni dei giunti e degli apparecchi d'appoggio si considera una variazione di temperatura incrementata del 50 %.

4.5.2 Variazione termica non uniforme

In aggiunta alla variazione termica uniforme, si considera un gradiente di temperatura di 5 °C fra soletta e travi prefabbricate, considerando i due casi di intradosso a temperatura superiore ed inferiore rispetto all'estradosso.

4.5.2.1 Variazione termica non uniforme locale

Nella valutazione degli effetti locali, si è considerato un gradiente termico lineare di 5 °C nello spessore delle pareti tra esterno ed interno dei cassoncini.

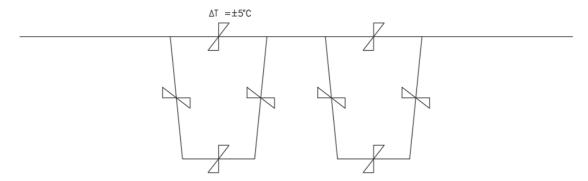


Figura 8 - Condizione di carico: variazioni termiche (+/-),(-/+)

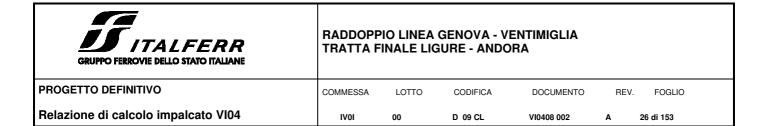
4.5.3 Vento

L'azione del vento è valutata in accordo alla normativa vigente NTC18, secondo quanto riportato nel Eurocodice 1991-1-4 ed in linea con il MdP. La valutazione delle azioni e degli effetti del vento sull'impalcato in esame procede secondo il seguente schema:

- definizione delle caratteristiche del sito ove sorge l'opera valutando quindi la velocità di progetto e la pressione cinetica di picco del vento;
- definizione della forma, dimensioni e l'orientamento dell'implacato, ovvero si valutano le azioni aerodinamiche di picco esercitate dal vento sull'impalcato;
- valutazione delle azioni statiche equivalenti.

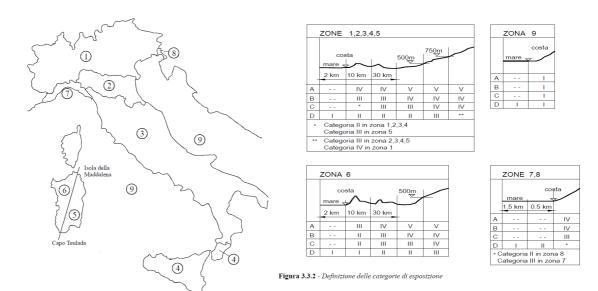
La risposta dinamica alle azioni del vento, le azioni e gli effetti dinamici e aeroelastici dovuti al distacco dei vortici e altri fenomeni aeroelastici non caratterizzano l'opera in esame e sono pertanto ritenuti trascurabili in relazione alla tipologia strutturale in esame di impalcato "standard" con un peso ragguardevole, sagoma "tozza" e staticamente ben vincolata.

Si considerano i dati seguenti


INPUT DATI DI PROGETTO								
Proprietà della costruzione	Costruzione ordinaria		▼					
Zona di riferimento	Zona di riferimento Zona 7							
Classe di rugosità	Classe D		▼					
Categoria di esposizione	Categoria III		▼					
Altitudine del sito	(valore massimo: 1500)	as	10 m.s.l.m.					
Coefficiente di topografia	(valore consigliato: 1)	Ct	1.00					
Coefficiente dinamico	(valore consigliato: 1)	Cd	1.00					
CALCOLO	DELL'AZIONE DEL V	ENTO						
Periodo di ritorno		T _R	50 anni					
Vita nominale della costruzione		V_N	50 anni					
Velocità base di riferimento al I	ivello del mare	$v_{b,0}$	28.00 m/s					
Parametri (funzione della zona	accarefice)	\mathbf{a}_0	1000 m					
raiameni (iunzione dena zona	geogranica)	k _a	0.54 s ⁻¹					
Coefficiente di altitudine	Ca	1.00						
Velocità di base di riferimento		\mathbf{v}_{b}	28.00 m/s					
Coefficiente di ritorno		Cr	1.00					
Velocità di riferimento del vento	$\mathbf{v}_{\mathbf{r}}$	28.00 m/s						
Fattore di terreno (dip. da categoria di esposizione)			0.20					
Lunghezza di rugosità (dip. da d	\mathbf{z}_0	0.10 <i>m</i>						
Altezza minima (dip. da categoria di esposizione)			5.00 m					
Densità media di massa dell'aria	a	ρ	1.25 kg/m ³					
Pressione cinetica di riferimento	0	q r	0.49 kN/m ²					

Assumendo una sagoma limite dei mezzi transitanti sul ponte pari a 4.0 m e considerando la dislocazione dell'opera rispetto al P.C. circostante si assume cautelativamente una altezza massima di 7.25 m + 10.5 m, per un' altezza media di riferimento di 14.13 m (z_{min}). Il valore del coefficiente di esposizione è pertanto pari a:

$$c_e = k_r^2 \times c_t \times \ln(z/z_0) \times [7 + c_t \times \ln(z/z_0)] \cong 2.38$$


La pressione cinetica di picco è pertanto pari a:

$$q_p = 1/2 \times \rho \times v_r^2 \times c_e (z) \times c_r \cong 1.166 \text{ kPa};$$

con

 $\rho = 1.25 \text{ kg/m}^3 - \text{densità media dell'aria.}$

Tabella	3.3.I -	Valori	dei	parametri	v _{b,0} ,	a ₀ ,	k _a	

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	ka [1/s]
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della provincia di Trieste)	25	1000	0,010
2	Emilia Romagna	25	750	0,015
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,020
4	Sicilia e provincia di Reggio Calabria	28	500	0,020
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,015
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,020
7	Liguria	28	1000	0,015
8	Provincia di Trieste	30	1500	0,010
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,020

Tabella 3.3.III - Classi di rugosità del terreno

Classe di rugosità del terreno	Descrizione				
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15m				
В	Aree urbane (non di classe A), suburbane, industriali e boschive				
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D				
D	Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,)				
L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Affinché una costruzione possa dirsi ubicata in classe A o B è necessario che la situazione che contraddistingue la classe					

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Affinch una costruzione possa dirsi ubicata in classe A o B è necessario che la situazione che contraddistingue la class permanga informo alla costruzione per non meno di 1 km e comunque non meno di 20 volte l'altezza della costruzione Laddove sussistano dubbi sulla scelta della classe di rugosità, a meno di analisi dettagliate, verrà assegnata la classe pi sfavorevole.

Figura 9 - parametri e mappa del territorio italiano per la determinazione dell'azione del vento (NTC18 - 3.3.)

Si assume che il vento agisca in direzione prevalentemente orizzontale, ortogonalmente all'asse dell'impalcato: esercita nel piano della sezione un sistema di azioni aerodinamiche per unità di lunghezza riconducibili ad una

GRUPPO FERROVIE DELLO STATO ITALIANE						
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	. FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	27 di 153

forza parallela alla direzione del vento " f_X ", a una forza verticale " f_Z " e ad un momento intorno alla linea d'asse " m_Y ".

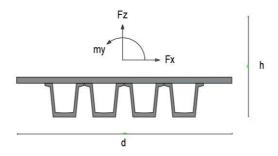


Figura 10 - sistema di riferimento ed azioni del vento

Tali azioni sono quantificate mediante una coppia di *coefficienti di forza* " c_{fX} " e " c_{fZ} " e mediante un *coefficiente di momento* " c_{mY} ". Le azioni aerodinamiche f_X , f_Z e m_Y si considerano simultanee e combinate con i segni che producono gli effetti più onerosi. Considerando che in presenza di traffico l'altezza h_{tot} deve comprendere la sagoma dei convogli in transito, nel caso in esame si ha:

$$d_{tot} \cong (2.45+0.80+4) \cong 7.25 \text{ m}$$

 $b = 9.20 \text{ m};$

Per la valutazione dei coefficienti di forza e di momento per unità di lunghezza si fa riferimento ai diagrammi e formulazioni del Eurocodice 1991-1-4:

Illustrazione del fattore di forza cfx,0

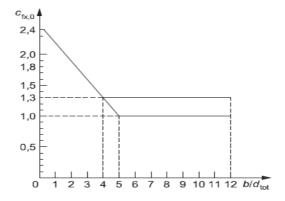
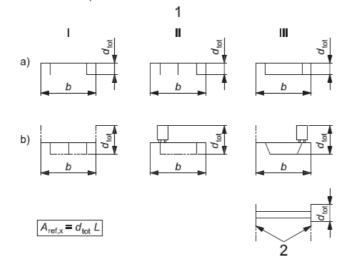


Figura 11 - Fattore di forza trasversale - Eurocodice 1991-1-4



 $c_{f,x} = c_{fx,0}$

dove:

 $c_{\mathrm{fx,0}}$ indica il coefficiente di forza relativo all'impalcato in assenza di flusso di estremità libera

- a) Fase di costruzione, parapetti aperti (aperti più del 50%) e barriere di sicurezza aperte
- b) Parapetti solidi, barriere antirumore, barriere di sicurezza solide o traffico
- 1 Tipo di ponte
- 2 Travi reticolari separatamente

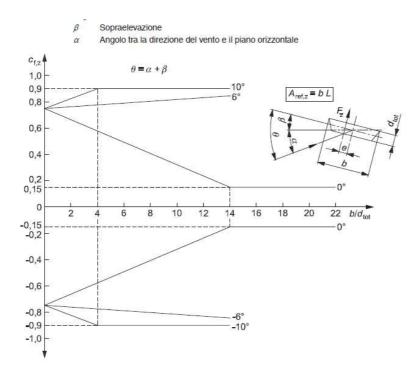


Figura 12 – Area effettiva e coefficiente di forza verticale - Eurocodice 1991-1-4

$$c_{fX} = 2.10$$
 [b/d_{tot}=1.27] $c_{fY} = 0.90$.

Le forze sull'impalcato sono pari a:

$$\begin{split} f_X &= q_p(z) \times d \text{ tot } \times c_{fX} \cong 17.75 \text{ kN/m}; \\ f_Y &= q_p(z) \times b \times c_{fY} \cong 10.18 \text{ kN/m}; \\ m_Z &= f_X \times e \cong 34.61 \text{ kN×m/m}. \end{split}$$

dove l'eccentricità è tra il baricentro dell'impalcato e l'altezza della risultante orizzontale pari a e = 1.95 m.

Secondo quanto prescritto nel capitolo 5.2.3.2.2 delle norme tecniche, l'azione risultate, compresa degli effetti aerodinamici, dovrà essere maggiore di un valore di 1.50 kN/mq. Di seguito i calcoli che hanno portato alle forze sovrastanti:

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI0408 002
 A 30 di 153

tab. 3.3.I	Zona	7	
tab.3.3.II	Categoria	III	
tab. 3.3.III	Classe rug	D	
velocità di base di riferimento slm	Vbo	28	m/s
parametro di quota	ao	1000	m
altitudine sul livello del mare	as	10	m
coefficiente di altitudine	ca	1	
velocità di base di riferimento	Vb	28	m/s
tempo di ritorno azione del vento	Tr	50.0	anni
coefficiente di ritorno	cr	1.00	
velocità di riferimento	Vr	28	m/s
fattore di terreno	kr	0.20	
lunghezza di rugosità	Zo	0.10	m
altezza minima	Zmin	5	m
ponte carico			
altezza spalla	z1	6.82	m
altezza baggioli e app. appoggio	z2	0.5	m
altezza all'intradosso	Zintradosso	7.22	m
altezza di riferimento	<u>z</u>	11.22	m
coefficiente di topografia	ct	1	
coefficiente di esposizione	ce	2.38	
densità dell'aria convenzionale	ro	1.25	kg/m3
pressione statica di riferimento	qr	0.49	kN/m ²
pressione statica di picco	q1 Qpicco	1.166	kN/m ²
pressione statica di pieco	фиссо	1.100	KI WIII
lunghezza totale impalcato	Limp	25	m
larghezza impalcato	d	9.70	m
altezza impalcato+soletta	z3	2.45	m
armamento	z4	0.80	m
altezza treno	z5a	4	m
altezza barriere	z5b	4	m
			_

altezza di impatto treno o barriere eccentricità verticale angolo di inclinazione forza	htot e 9 d/h	7.25 2.40 26.6 1.338	m m gradi
coefficiente di forza trasversale	$\mathbf{c}_{\mathbf{fx}}$	2.10	
coefficiente di forza trasversale	$\mathbf{c}_{\mathbf{fz}}$	0.90	
pressione del vento	q	2.44	kN/m ²
forza trasversale	$\mathbf{f}_{\mathbf{x}}$	18.13	kN/m
forza verticale	$\mathbf{f_z}$	10.18	kN/m
braccio del vento - G to d/2	e	1.95	m
momento trasversale	my	35.35	kN/m m
ponte scarico altezza di impatto treno o barriere	htot	6.45	m
rapporto geometrico	d/h	1.50	m
rapporto geometrico	u/II	1.50	
coefficiente di forza trasversale	$\mathbf{c}_{\mathbf{fx}}$	2.05	
coefficiente di forza verticale	$\mathbf{c}_{\mathbf{fz}}$	0.90	
forza trasversale forza verticale	$egin{aligned} \mathbf{f_x} \ \mathbf{f_z} \end{aligned}$	16.13 10.18	kN/m kN/m

4.5.3.1 Ripartizione locale del carico

L'azione del vento è stata valutata considerando una pressione statica precedentemente individuata e considerando, in condizioni di carico distinte, il vento agente sulla struttura scarica, con e senza barriere antirumore, e in presenza dei convogli ferroviari.

Vento su barriere antirumore

Si considera la pressione del vento sulle barriere antirumore di altezza 4.0 m dal piano della soletta e si valutano le azioni equivalenti in corrispondenza del piano medio della soletta nella sezione di estremità:

altezza di impatto totale - barriere	htot	4.35	m
diffusione longitudinale dell'azione	B_{L}	1	m
forza trasversale sulla barriera	$\mathbf{f}_{\mathbf{x}}$	10.88	kN/m
eccentricità della risultante	$\mathbf{e}_{\mathbf{z}}$	2.175	m

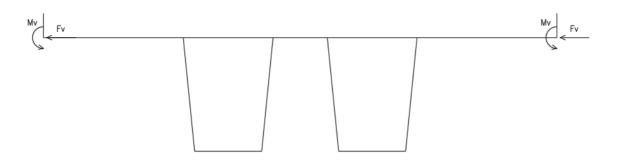


Figura 13 - Condizione di carico locale - barriere

Vento sul convoglio ferroviario

Si considera la pressione del vento su una superficie esposta di altezza 4.0 m dal piano del ferro e si valutano le azioni equivalenti in corrispondenza del piano medio della soletta in asse al binario caricato:

altezza di impatto totale - convogli	htot	4	m
forza trasversale sul convoglio	f_x	10.00	kN/m
eccentricità della risultante	e_z	2.98	m

Gli effetti sulla sezione trasversale di larghezza unitaria equivalgono ad un'azione orizzontale e ad una verticale distribuita con andamento lineare a farfalla a risultante verticale nulla e valutata considerando la diffusione dalla traversa fino al piano medio della soletta:

larghezza trasversale di ripartizione	\mathbf{B}_{T}	2.80	m
forza trasversale ripartita	$\mathbf{f}_{\mathbf{x}}$	3.57	kN/mq

estremo farfalla equivalente Δf_z 22.8 kN/mq

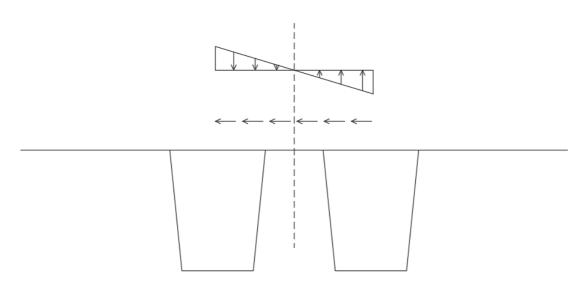


Figura 14 - Condizione di carico locale - convogli

4.6 Azioni Aereodinamici associati al passaggio dei convogli

Gli effetti aerodinamici associati al passaggio dei treni agenti sulle barriere antirumore sono analoghi a quelli del vento su struttura scarica per la determinazione degli effetti locali. La determinazione dei carichi equivalenti associati alle pressioni indotte sulle barriere avviene secondo le seguenti ipotesi:

velocita della linea	V	200	km/h
distanza parate verticale asse binario	$a_{\rm g}$	4.45	m
tipologia di convoglio	tre	ni aerodina	mici
coefficiente di forma convoglio	\mathbf{K}_1	0.6	
coeff di forma elemento strutturale	K_2	1	
azione caratteristica del vento	q_{k1}	0.353	kN/m2

Tali azioni sono quindi già state tenute in conto secondo quanto prescritto dal capitolo 5.2.3.2 del MdP:

[&]quot;Il valore minimo della risultante della combinazione del vento e dell'azione aerodinamica si assumerà pari a 1.50 KN/m per linee percorse a velocità V≤200 Km h e pari a 2,50 KN/m per linee percorse a velocità V>200 Km/h".

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	34 di 153

4.7 Azioni eccezionali

4.7.1 Azioni dovute al deragliamento

In alternativa ai modelli di carico verticale da traffico ferroviario, ai fini della verifica della struttura si dovrà tenere conto della possibilità che un locomotore o un carro pesante deragli. La normativa propone due diverse situazioni di progetto;

Caso 1

Si considerano due carichi verticali lineari q_{A1d} = 60 kN/m (comprensivo dell'effetto dinamico) ciascuno. Trasversalmente i carichi distano fra loro di S (scartamento del binario) e possono assumere tutte le posizioni comprese entro i limiti indicati in Fig. 5.2.12.

Per questa condizione sono tollerati danni locali, purché possano essere facilmente riparati, mentre sono da evitare danneggiamenti delle strutture portanti principali.

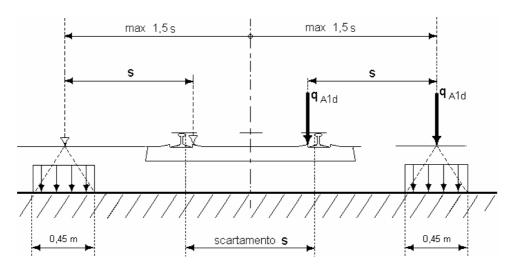
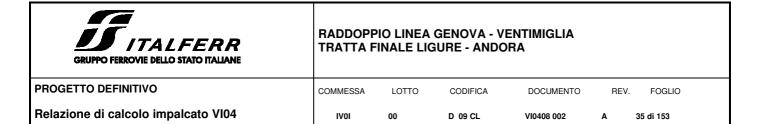



Figura 15 - posizione azioni da deragliamento - caso 1

Caso 2

Si considera un unico carico lineare q_{A2d} =80 x1.4 kN/m esteso per 20 m e disposto con una eccentricità massima, lato esterno, di 1.5 s rispetto all'asse del binario. Tale caso deve essere applicato solo per effetti globali.

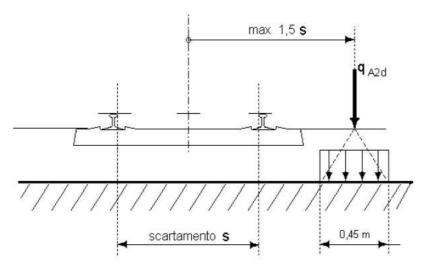


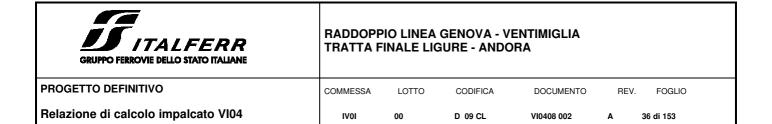
Figura 16 – posizione azioni da deragliamento – caso 2

4.7.1.1 Ripartizione locale del carico

Caso 1

È stata considerata la situazione che massimizza le azioni flettenti in mezzeria della campata centrale.

carichi verticali lineari q_{A1d} = 60 kN/m spostamento massimo dall'asse binario d= 2.15 m


Diffusione trasversale del carico deragliato

Bt=
$$0.45 + 0.35/2 = 0.625 \text{ m}$$

q= qA1d / Bt = 96 kN/mq

Diffusione trasversale del carico su traversa

Le azioni indotte dal secondo carico lineare q_{A1d} che si diffonde a partire dalla traversa sono:

$$Bt = 2.80 m$$

 $q = qA1d / Bt = 21.43 kN/mq$

$$e = d - s = 0.72$$
 m $\Delta q = 6$ M/ Bt $^2 = 6$ (qA1d e)/ Bt $^2 = 32.83$ kN/mq

$$qd_{,max} = 54.26 kN/mq$$

 $qd_{,min} = -11.4 kN/mq$

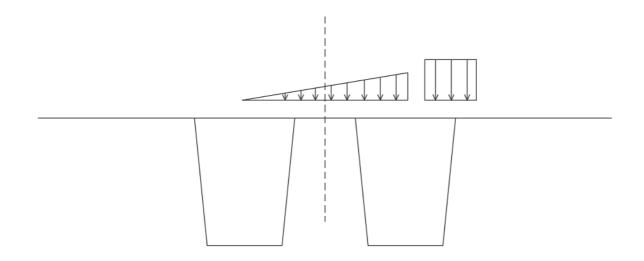


Figura 17 – Condizione di carico per deragliamento – caso 1

Caso 2

Si considera un unico carico lineare q_{A2d} =80 x1.4 kN/m esteso per 20 m e disposto con una eccentricità massima, lato esterno, di 1.5 s rispetto all'asse del binario. Tale caso deve essere applicato solo per effetti globali.

Diffusione trasversale del carico deragliato

$$q = qA1d / Bt = 179.2 kN/mq$$

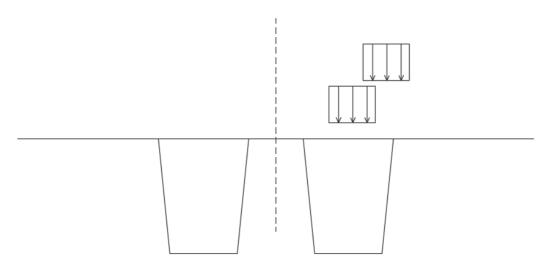


Figura 18 - Condizione di carico per deragliamento - caso 2

4.8 Azioni indirette

4.8.1 Ritiro

Di seguito si valutano le deformazioni da ritiro della trave, sulla base della sua geometria, nell'ipotesi di una umidità relativa pari al 70%. Sotto l'ipotesi progettuale di assenza di additivi speciali, il ritiro del calcestruzzo può essere valutato come da Norme Tecniche delle Costruzioni 2018.

Per la valutazione del ritiro è stata considerata la geometria della sezione corrente ed è stato considerato cautelativamente come istante iniziale del ritiro autogeno il giorno del getto delle travi (t=0), mentre per quello indotto dall'essicamento il 30esimo giorno dal getto.

4.8.1.1 Ritiro della trave in C.A.P.

giorno attuali	t	150	giorni
età del calcestruzzo per la quali inizia l'essiccamento	t_s	30	giorni
percentuala di umidità relativa	RH	70	%
ritiro differito nel tempo o tutto insieme?		tutto insieme	
giorno attuali di calcolo	t	10000.0	giorni
Ritiro Cassoncino			
perimetro di cls esposto all'aria	u	11846.6	mm
dimensione fittizia pari a 2A _c /u	h_0	198.1	mm
umidità relativa	UR	70	%

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	38 di 153	

deformazione massima per essiccamento	€ c0	-0.0002938	
parametro per calcolo deformazione a tempo $ \infty $	\mathbf{k}_{h}	0.853	
deformazione per ritiro da essiccamento a tempo \propto	Ecd∞	-0.00025	
coefficiente di calcolo per lo sviluppo temporale	$\beta_{ds}(t,t_s)$	0.989	
deformazione per ritiro da essiccamento a tempo ${\mathfrak t}$	$\epsilon_{cd}(t)$	-2.5E-04	
resistenza caratteristica del cacestruzzo	f_{ck}	45	MPa
valore medio della deformazione per ritiro autogen	0 <i>Eca</i>	-8.8E-05	
deformazione totale per ritiro	$\varepsilon_{cs} = \varepsilon_{cd}(t) + \varepsilon_{ca}$	-3.4E-04	
deform. totale per ritiro a tempo infinito	$\varepsilon_{cs} = \varepsilon_{cd}(too) + \varepsilon_{ca}$	-3.3E-04	
Perdite fase 1 per ritiro	$\Delta\sigma_{rit\;(t1)}$	-71.6	MPa
Perdite fase 4 per ritiro	$\Delta\sigma_{rit\;(t3)}$	0.0	MPa
Perdite totali per ritiro	$\Delta\sigma_{rit(too)}$	-64.9	Mpa

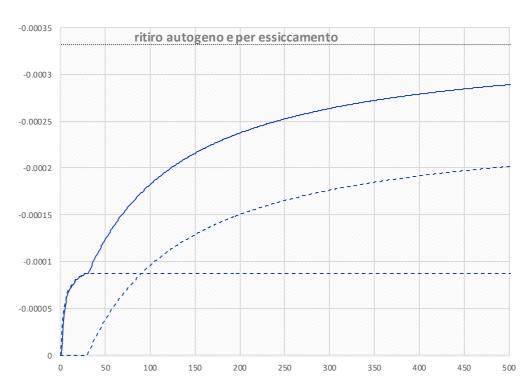


Figura 19 – Andamento del ritiro della trave in C.A.P.

A vantaggio di sicurezza, si considera completamente esaurito il ritiro della trave prefabbricata all'atto del getto della soletta. Di seguito si calcola il ritiro della soletta gettata in opera a tempo infinito (5000 gg), coincidente con il ritiro differenziale soletta-travi.

4.8.1.2 Ritiro della soletta gettata

età del calcestruzzo per la quali inizia			
l'essiccamento	ts	180.0	giorni
giorno attuali	t	170	giorni
giorno attuali di calcolo	t	5000.0	giorni
Ritiro Soletta			
perimetro di cls esposto all'aria	u	4850.00	mm
dimensione fittizia pari a 2A _c /u Ac	h ₀	600.0	mm
deformazione massima per essiccamento	€c0	-0.0003313	
parametro per calcolo deformazione a temp		0.7	
deformazione per ritiro da essiccamento a te	empo £‱	-0.00028	
∞ coefficiente di calcolo		0.891	
	$\beta_{ds}(t,t_s)$	-2.5E-04	
deformazione per ritiro da essiccamento a te	empo t ε _{cd} (t)	-2.5E-U4	
unintaria annattariation del constitucion	•	25	N 4 D =
reistenza caratteristica del cacestruzzo	f_ck	35	MPa
valore m della deformazione per ritiro auto	geno $arepsilon_{oldsymbol{ca}}$	-6.3E-05	
deformazione totale per ritiro	$\varepsilon_{cs} = \varepsilon_{cd}(t) + \varepsilon_{ca}$	-3.1E-04	
deform. totale per ritiro a tempo infinito	$\varepsilon_{cs} = \varepsilon_{cd}(too) + \varepsilon_{ca}$	-3.1E-04	

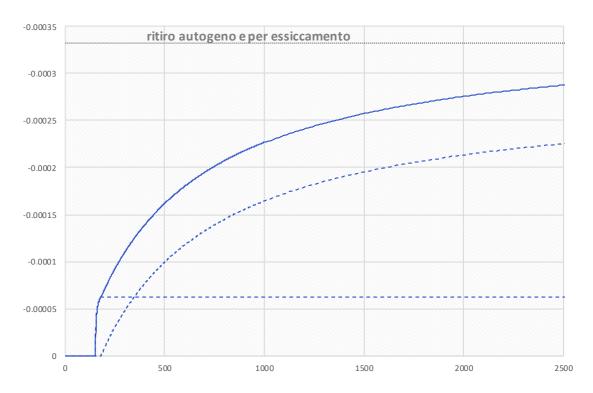
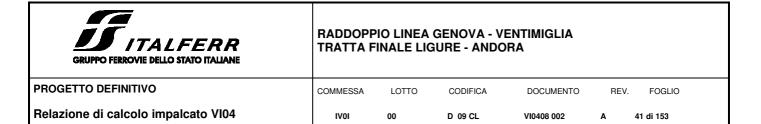


Figura 20 - Andamento del ritiro della soletta


4.8.2 Viscosità

Gli effetti conseguenti alla viscosità del calcestruzzo per azioni di lunga durata (sovraccarichi permanenti, ritiro, ecc.) possono essere in diversi modi tra cui l'analisi più accurata prevede la sovrapposizione al passo (SPP), partendo proprio dalla curva di viscosità. L'unica ipotesi necessaria è l'indipendenza della deformazione viscosa dalla variazione tensionale antecedente. Allora, la deformazione all'instante considerato è fornita dall'espressione:

$$\varepsilon_{(t_i;t_0)} = \frac{\sigma_0}{\varepsilon_{t_0}} \left[1 + \phi_{(t_i;t_0)} \right] + \sum_j \frac{\Delta \sigma_i}{\varepsilon_r} \left[1 + \phi_{(t_i;\tau_j)} \right]$$

Per quanto riguarda le caratteristiche inerziali della sezione si identificano i coefficienti di omogeneizzazione a lungo termine in funzione del coefficiente viscoso $\phi_{r_{qq}}$ di seguito, ovvero mediante il modulo di elasticità ridotto:

$$E_c^* = E_c / (1+\phi)$$
 modulo di elasticità ridotto

Di seguito è riportata la valutazione del coefficiente di viscosità ridotto per la valutazione degli effetti della viscosità sulle perdite di precompressione.

t_0	9	giorni
t_1	150	giorni
RH	70	%
h ₀	198.1	mm
χ(t, t0)	0.80	
	tutta insieme	
	Classe N	
	t ₁ RH h ₀	$\begin{array}{ccc} t_1 & \textbf{150} \\ \text{RH} & \textbf{70} \\ h_0 & \textbf{198.1} \\ \chi(t,t0) & \textbf{0.80} \\ & \textbf{tutta} \\ & \textbf{insieme} \end{array}$

Viscosità lineare NTC

coefficiente di viscosità a tempo infinito $\phi(t,00)$ 2.85

Viscosità lineare EC2-1-1-2005 appendice B

si utilizza il coefficiente fornito dall'EC perché funzione del tempo

effetto del tipo di cemento sulla viscosità	α	0	
tempo equivalente di applicazione del carico	t_0	9.00	giorni
età del calcestruzzo al momento considerato	t_1	10000	giorni
coef. Funzione della resistenza del cls	$\beta(f_{cm})$	2.31	
resistenza media del calcestruzzo	f_{cm}	53.00	N/mm²
coef. Funzione della maturazione del cls	$\beta(t_0)$	0.61	
coef. Funzione dell u.r. e di ho	β_{H}	500.3	
coef. Che descrive l'evoluzione viscosa	$\beta(t, t_0)$	0.99	
coef. Per tenere conto della resistenza del cls	α_3	0.81	
coef. Per tenere conto della resistenza del cls	α_2	0.92	
coef. Per tenere conto della resistenza del cls	α_1	0.75	
coef. Funzione dell'umidità relativa	ϕ_{RH}	1.354	
coefficiente normale di viscosità	ϕ_0	1.982	
coefficiente di viscosità	$\phi_0(t,t_0)$	1.864	

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	_	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	42 di 153	

coefficiente di viscosità a tempo infinito $\phi_0(t_{oo},t_0)$ 1.864

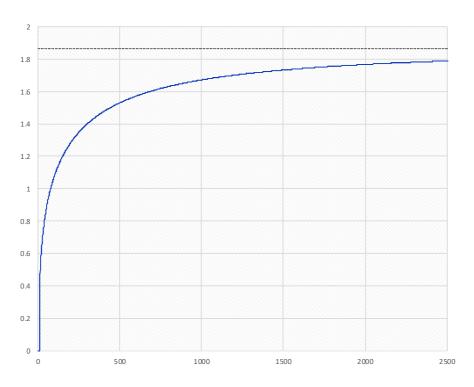


Figura 21 - Andamento del coefficiente di viscosità della trave in C.A.P.

4.8.2.1 <u>Viscosità per la valutazione delle caratteristiche della sezione composta a t = inf e sollecitazione per ritiro differenziato</u>

Si identifica la curva di viscosità della soletta per il calcolo dell'effetto differenziato del ritiro. dimensione fittizia pari a $2A_c/u$ Ac h_0 **600.0** mm

ipotizzo che una volta gettata la soletta passino pochi giorni prima dell'applicazione dei carichi

tempo equivalente di applicazione del carico t_0 20.00 giorni coef. Funzione della maturazione del cls $\beta(t_0)$ 0.52 tempo di carico 170 giorni coefficiente di viscosità $\phi_0(t,t_0)$ 0.000

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	43 di 153

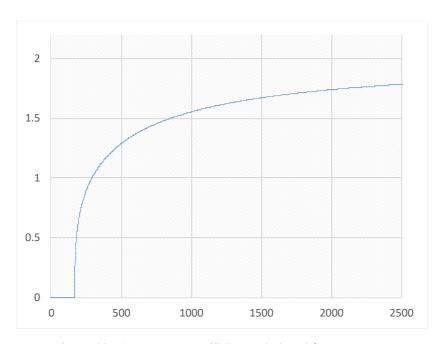


Figura 22 - Andamento coefficiente di viscosità della soletta

Per quanto riguarda il fenomeno della viscosità dell'acciaio si parla di perdita di tensione per rilassamento e nel caso specifico si è adottato il metodo del tempo equivalente del EC2-1-1, per il quale la perdita per rilassamento totale è la somma delle perdite di rilassamento ai vari intervalli di tempo finzione dell'espressione *rilassamento-tempo*:

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IV0I 00 D 09 CL VI0408 002 A 44 di 153

Classe 1
$$\frac{\Delta \sigma_{\text{pr}}}{\sigma_{\text{pl}}}$$
 = 5,39 $\rho_{1\,000} e^{6.7\mu} \left(\frac{t}{1\,000}\right)^{0.75(1-\mu)} 10^{-5}$

Classe 2
$$\frac{\Delta \sigma_{\text{pr}}}{\sigma_{\text{pl}}}$$
 = 0,66 $\rho_{1\,000} e^{9.1\mu} \left(\frac{t}{1\,000}\right)^{0.75(1-\mu)} 10^{-5}$

Classe 3
$$\frac{\Delta \sigma_{pr}}{\sigma_{pl}}$$
 = 1,98 $\rho_{1\,000} e^{8\mu} \left(\frac{t}{1\,000}\right)^{0.75(1-\mu)} 10^{-5}$

dove:

Δσ_{or} è il valore assoluto delle perdite per rilassamento;

 $\sigma_{\rm pl}$ per le armature post-tese $\sigma_{\rm pl}$ è il valore assoluto della tensione iniziale $\sigma_{\rm pl} = \sigma_{\rm pm0}$ [vedere anche punto 5.10.3 (2)].

Per le armature pre-tese σ_{pl} è la massima tensione di trazione applicata al cavo meno le perdite immediate che si verificano durante il procedimento di messa in tensione, vedere comma (i) del punto 5.10.4(1);

è il tempo dopo la messa in tensione (in ore);

μ = σ_p/f_{pk}, dove f_{pk} è il valore caratteristico della resistenza a trazione dell'acciaio da precompressione;

 $ho_{1\,000}$ è il valore della perdita per rilassamento (in percentuale) a 1 000 h dopo la messa in tensione e a una temperatura media di 20 °C.

ovvero:

$$\Delta \sigma_{\rm pr,j} = 0.66 \rho_{1.000} {\rm e}^{9.03 \mu} \left(\frac{t_{\rm e} + \Delta t_{\rm i}}{1.000}\right)^{0.75(1-\mu)} \left\{\sigma_{\rm p,i}^{\star} + \sum_{\rm i}^{\rm i-1} \Delta \sigma_{\rm pr,j}\right\} 10^{-5} - \sum_{\rm i}^{\rm i-1} \Delta \sigma_{\rm pr,j}$$

Di seguito è riportata la valutazione della curva di rilassamento e delle perdite associate.

tensione iniziale del cavo	$\begin{array}{c} \sigma_1 \\ \Delta \sigma_1 \\ t_1 \end{array}$	1,380	MPa
tensione nel cavo per def. elastica cls		-69.49	MPa
tempo di riferimento		0	giorni
variazione di tensione nel cavo per ritiro	$\Delta\sigma_{r,2}$ $\Delta\sigma_{e+v,2}$ t_2	-71.62	MPa
variazione di ten per def visco-elastica		-205.25	MPa
tempo di riferimento		23000	giorni
percetuale di perdita a 1000h	ρ ₁₀₀₀	2.50	%
rapporto tra valore carat. e tensione	μ	0.78	
perdite per rilassamento a tempo t	$\Delta\sigma_{\text{pr (t)}}$ $\Delta\sigma_{\text{pr (t4)}}$	75.45	MPa
perdita per rilassamento al tempo t4		0.00	MPa

perdite per rilassamento a tempo too $\Delta\sigma_{pr (too)}$ 75.45 MPa

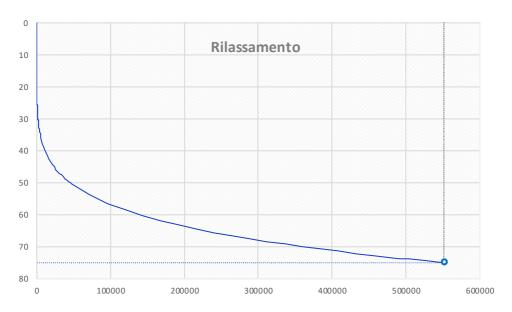


Figura 23 - Andamento delle perdite per rilassamento del cavo

4.8.3 Resistenze passive dei vincoli

Per la valutazione delle coazioni generate all'atto dello scorrimento dei vincoli, è stato considerato un coefficiente d'attrito pari al 4% applicato alle azioni verticali agenti sugli apparecchi d'appoggio.

4.9 Azioni sismiche

Le azioni sismiche non sono dimensionanti ai fini delle verifiche relative all'impalcato e non vengono quindi considerate nelle analisi dello stesso. Le azioni sismiche considerate per la progettazione delle sottostrutture (pile, spalle e fondazioni) sono riportate nelle corrispondenti relazioni di calcolo.

La valutazione delle azioni sismiche qui riportate è valida per la progettazione dei dispositivi di appoggio.

4.9.1 Inquadramento sismico

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione del viadotto e sono pari a:

Longitudine: 8.186776

Latitudine: 44.074091

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

Classe d'uso: III

Coefficiente d'uso $C_U = 1.5$

Vita nominale $V_N = 75$ anni

Categoria di suolo: C

Condizione topografica: T1

Fattore di struttura componente orizzontale q = 1

Fattore di struttura componente verticale q = 1

Smorzamento critico 10%

L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

I parametri per la determinazione dei punti dello spettro di risposta sono:

SLATO	T_{R}	\mathbf{a}_{g}	Fo	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.041	2.574	0.223
SLD	113	0.056	2.559	0.243
SLV	1068	0.179	2.461	0.300
SLC	2193	0.238	2.485	0.316

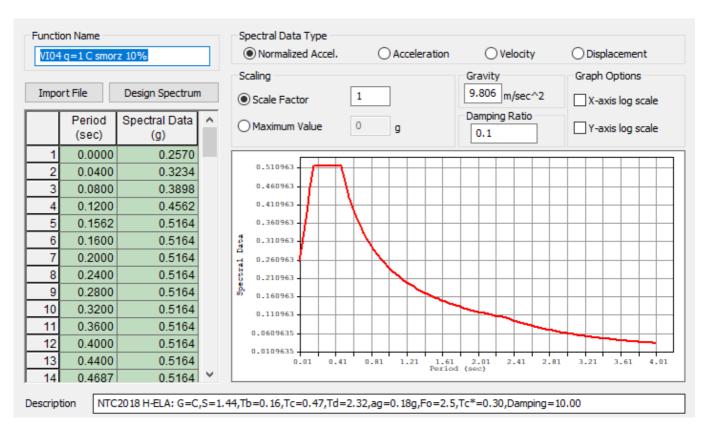


Figura 24: Spettro di risposta orizzontale e verticale allo SLV

Le masse considerate sono quelle dovute a tutti i carichi permanenti e al 20% dei carichi da traffico.

5 FASI COSTRUTTIVE E MODELLAZIONE

L'analisi delle sollecitazioni è stata effettuata considerando le fasi costruttive descritte di seguito.

Fase 0: condizione a vuoto

In questa fase si verifica la condizione della trave prefabbricata alla tesatura in stabilimento, secondo le seguenti ipotesi.

- Azione di precompressione alla tesatura.
- Peso proprio della trave prefabbricata agente con schema statico di trave appoggiata sui lembi estremi della trave (L = L_{trave}).
- Sezione resistente della sola trave prefabbricata.

Fase 1: getto della soletta e valutazione effetti di ritiro e viscosità del cassoncino

In questa fase si verifica la condizione della trave prefabbricata al getto della soletta di impalcato, secondo le seguenti ipotesi.

- Precompressione a perdite per rilassamento e ritiro completamente esaurite.
- Perdite per rilassamento del cavo completamente esaurite.
- Peso proprio trave prefabbricata e del getto della soletta agenti con schema statico di trave appoggiata sugli appoggi finali (L = i_{appoggi}).
- Sezione resistente della sola trave.

Fase 2: carichi permanenti e valutazione degli effetti di ritiro differenziale

In questa fase si verifica la condizione della trave prefabbricata (ora collaborante con la soletta di impalcato) soggetta all'effetto dei carichi permanenti, secondo le seguenti ipotesi.

- Carichi permanenti agenti con schema statico di trave appoggiata sugli appoggi finali (L = Lappoggi).
- Sezione resistente trave+soletta.

Valutazione degli effetti di ritiro differenziale e viscosità.

Fase 3: condizione di servizio a breve termine

In questa fase si verifica la condizione della trave prefabbricata (collaborante con la soletta di impalcato) soggetta all'effetto dei carichi di sevizio, secondo le seguenti ipotesi.

- Carichi di servizio agenti con schema statico di trave appoggiata sugli appoggi finali (L = L_{appoggi}).
- Sezione resistente trave+soletta.

Fase 4: condizione di servizio a lungo termine

In questa fase si verifica la condizione della trave prefabbricata (collaborante con la soletta di impalcato) soggetta all'effetto dei carichi di sevizio, secondo le seguenti ipotesi.

- Carichi di servizio agenti con schema statico di trave appoggiata sugli appoggi finali (L = L_{appoggi}).
- Caratteristiche meccaniche della sezione modificate dal coefficiente di omogeneizzazione.
- Sezione resistente trave+soletta.

5.1 Modellazione: Generalità

Le sollecitazioni relative ad ogni fase sono state valutate con adeguati modelli e combinate secondo quanto previsto dalla normativa. In riferimento alle verifiche tensionali previste dalla normativa, gli effetti sugli elementi resistenti sono stati valutati e verificati ad ogni fase e cumulati ove necessario.

L'analisi delle sollecitazioni è stata effettuata con l'ausilio di modelli di calcolo realizzati con il software MIdas Gen 2021 v3.1.

Sono state realizzati diversi modelli per valutare le fasi costruttive dell'impalcato per valutare adeguatamente le sezioni reagenti e la ripartizione dei carichi.

5.1.1 Modello fase 0

Il modello replica l'elemento prefabbricato, appoggiato alle estremità della trave stessa.

I carichi applicati sono relativi al peso proprio e sono definiti automaticamente dal software, una volta definito il peso di volume del materiale. Di seguito si riporta una vista del modello di calcolo.

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	50 di 153

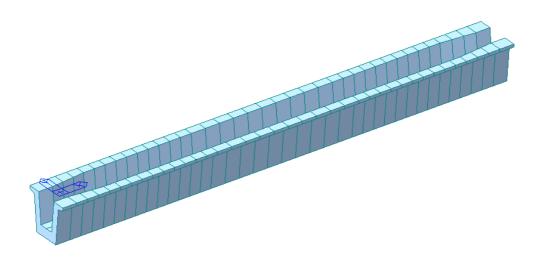
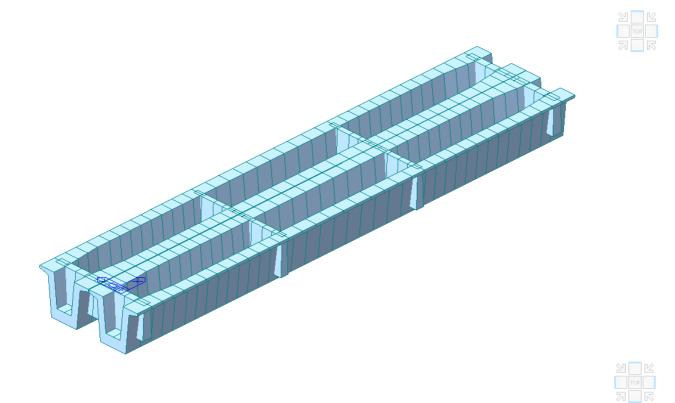



Figura 25 – modello di calcolo f.e.m. fase 0

5.1.2 Modello fase 1

Il modello replica l'elemento prefabbricato, comprensivo dei traversi, appoggiato in corrispondenza degli appoggi previsti per l'impalcato. La sezione è stata modella in modo tale da poter differire l'entrata della propria parte di soletta, sia in termini di peso che di rigidezza. Questo è equivalente ad inserire un carico uniformemente ripartito su ciascuna trave con il criterio dell'area di influenza.

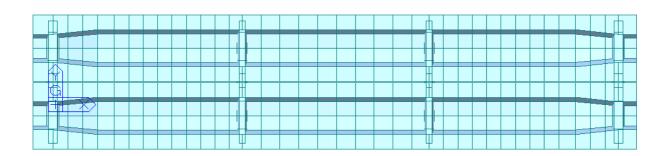


Figura 26 - modello di calcolo f.e.m. fase 1

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	. FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	52 di 153

5.1.3 Modello fase 2

Il modello replica l'impalcato, comprensivo di travi, traversi e soletta, appoggiato in corrispondenza degli appoggi previsti per l'impalcato. I carichi applicati sono quelli relativi ai sovraccarichi permanenti, valutati in coerenza con quanto definito nell'analisi dei carichi.

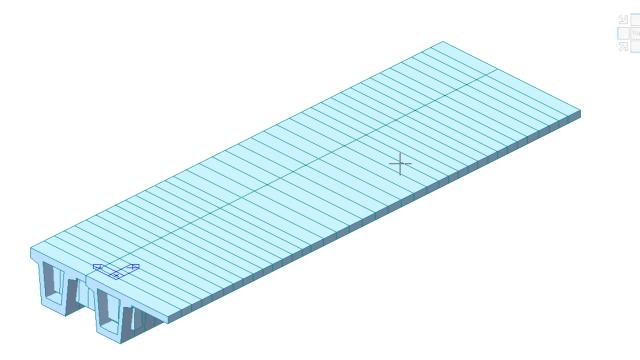


Figura 27 – Modello di calcolo f.e.m. fase 2

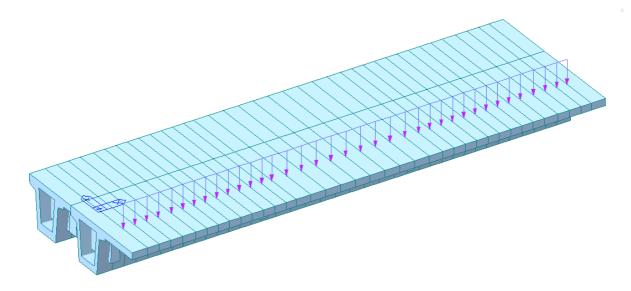


Figura 28 - Modello fase 2 - carico impermeabilizzazione

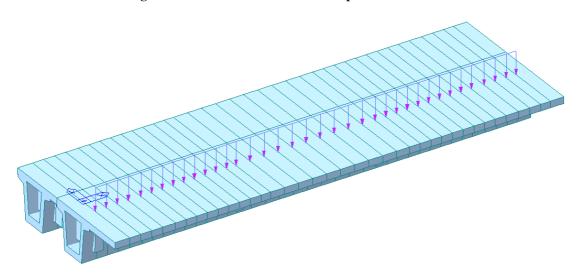


Figura 29 – Modello fase 2 – carico muretti paraballast

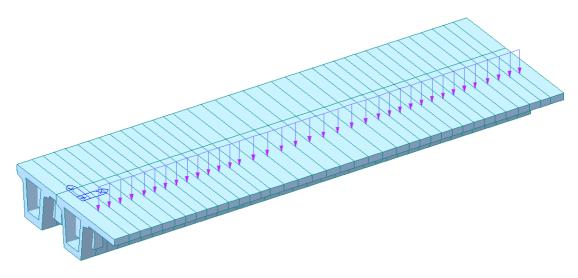


Figura 30 – Modello fase 2 – carico canalette prefabbricate

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	54 di 153

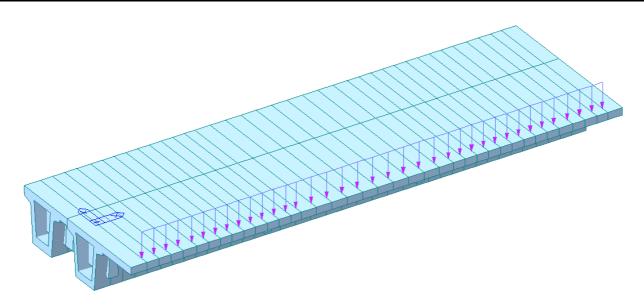


Figura 31 – Modello fase 2 – carico cordoli laterali

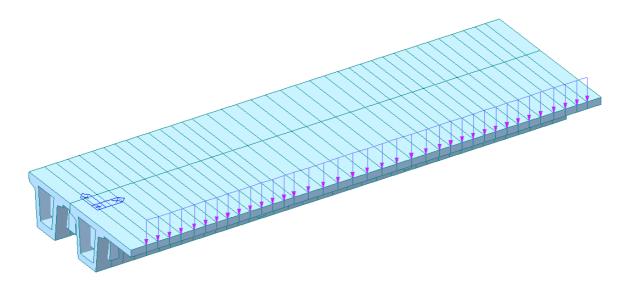


Figura 32 – Modello fase 2 – carico velette prefabbricate

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA						
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	55 di 153	

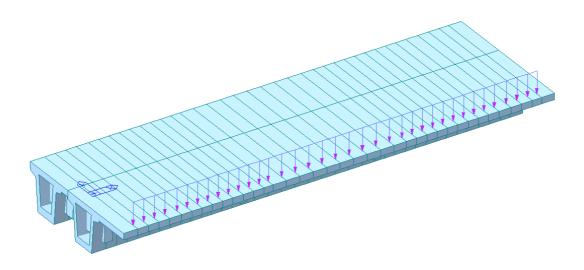


Figura 33 – Modello fase 2 – carico barriere antirumore

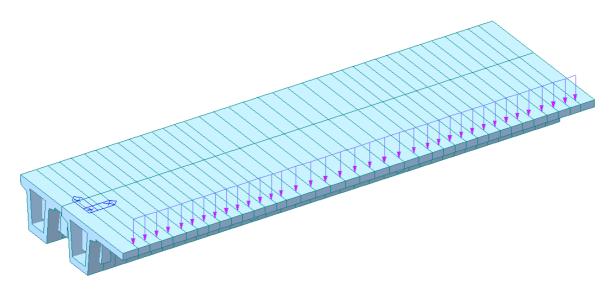


Figura 34 – Modello fase 2 – carico parapetti

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	_	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA						
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	56 di 153		

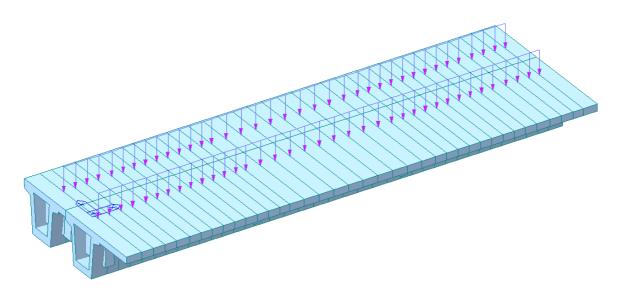


Figura 35 – Modello fase 2 – carico ballast

5.1.4 Modello fase 3

Il modello replica l'impalcato, comprensivo di travi, traversi e soletta, appoggiato in corrispondenza degli appoggi previsti per l'impalcato. I carichi applicati sono quelli relativi ai carichi di servizio, valutati in coerenza con quanto definito nell'analisi dei carichi (traffico, vento, termica).

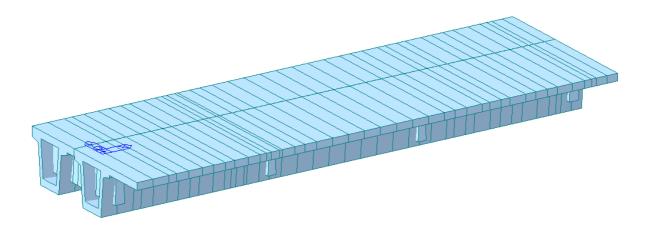


Figura 36 – modello di calcolo f.e.m. fase 3

I carichi da traffico ferroviario sono applicati al modello mediante linee di carico.

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	57 di 153

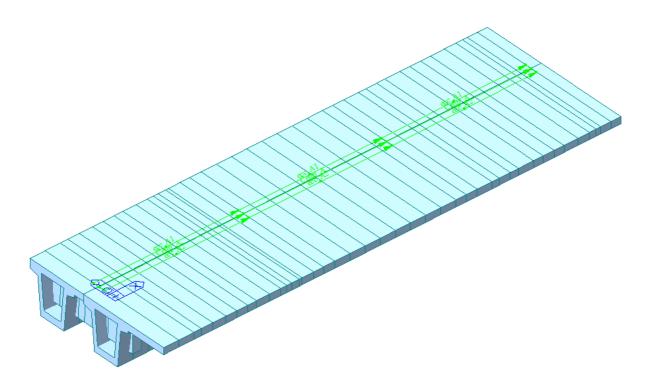


Figura 37 - Linee di carico ferroviario

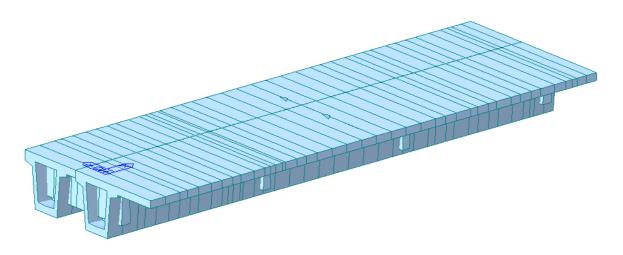


Figura 38 – modello fase 3 – Serpeggio

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	58 di 153

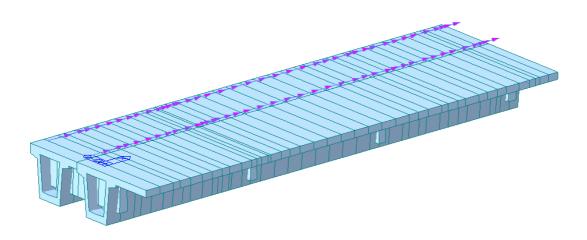


Figura 39 – modello fase 3 – Forze di avviamento e frenatura

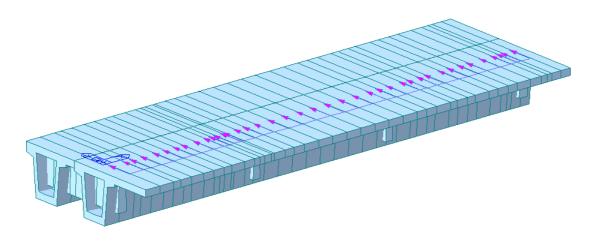


Figura 40 - Vento trasversale

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	. FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	59 di 153



Figura 41 - Vento di rollio

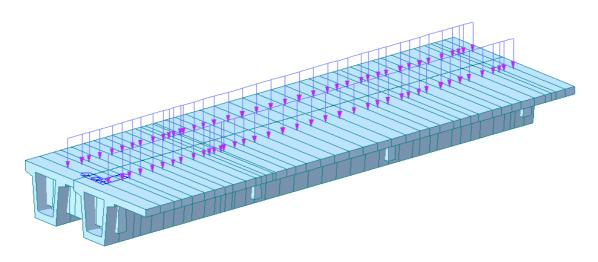
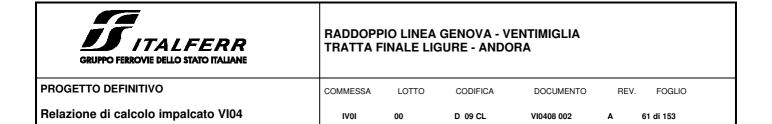


Figura 42 - Vento verticale

5.2 Combinazioni di carico

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella seguente tabella:

Tab. 5.2.IV -Valutazione dei carichi da traffico


140. 5.2.1V - vaniazione aci carton da majico										
TIPO DI CARICO	Azioni v	erticali		Azioni orizzont	ali					
Gruppi di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti				
Gruppo 1	1,0	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale				
Gruppo 2 (2)	-	1,0	0,0	1,0 (0,0)	1,0 (0,0)	stabilità laterale				
Gruppo 3 (2)	1,0 (0,5)	-	1,0	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale				
Gruppo 4	0,8 (0,6;0,4)	-	0,8 (0,6;0,4)	0,8 (0,6;0,4)	0,8 (0,6;0,4)	Fessurazione				

⁽¹⁾ Includendo tutti i valori (F; a; etc..)

Il gruppo 4 è da considerarsi esclusivamente per le verifiche a fessurazione. I valori indicati fra parentesi si assumeranno pari a: (0,6) per impalcati con 2 binari caricati e (0,4) per impalcati con tre o più binari caricati.

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1.0), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1,2 e 3 senza che ciò abbia significative conseguenze progettuali

I valori campiti in grigio rappresentano l'azione dominante.

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	nte		EQU(t)	A1	A2
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast ⁽³⁾	favorevoli	YΒ	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γQ	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli	~	1,45	1,45	1,25
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00
	sfavorevoli	~	1,50	1,50	1,30
Precompressione	favorevole	γP	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00%	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	ΥCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		Ψ ₀	Ψ1	ψ 2
Azioni singole	Carico sul rilevato a tergo delle	0,80	0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr₃	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

⁽¹⁾0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tabella 3 - Valutazione dei carichi da traffico (da "Istruzioni per la progettazione e l'esecuzione dei font ferroviari")

Le azioni di cui ai paragrafi precedenti sono combinate tra loro, al fine di ottenere le sollecitazioni di progetto relative agli elementi strutturali di volta in volta considerati in base a quanto prescritto dal D.M. 17 Gennaio 2018 ai paragrafi § 2.5.3 e §5.2.3.

 $^{^{(2)}}$ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 [2.5.1]

- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:
$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 [2.5.2]

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 [2.5.3]

– Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:
$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$
 [2.5.5]

– Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A:
$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_i \psi_{2i} Q_{ki}$$
 [2.5.7]

L'analisi ragionata delle combinazioni di carico previste dalla normativa ha consentito di ridurre il numero di combinazioni considerate. Nella tabella seguente si riportano i valori di combinazioni adottati per analisi e verifiche. I valori riportati in tabella considerano già i coefficienti di combinazione previsti dalla normativa.

Tipo Combinazione	Azione principale	G1	G2	gr_traffico	Fw_Vento	Tk_ΔT	Ritiro	Viscosità	P_Precompr
SLU	gr1	1.35	1.5	1.45	0.9	0.9	1.2	1.2	1
SLU	gr2	1.35	1.5	1.45	0.9	0.9	1.2	1.2	1
SLU	gr3	1.35	1.5	1.45	0.9	0.9	1.2	1.2	1
SLU	Fw	1.35	1.5	1.16	1.5	0.9	1.2	1.2	1
SLU	Fw	1.35	1.5	1.16	1.5	0.9	1.2	1.2	1
SLU	Fw	1.35	1.5	1.16	1.5	0	1.2	1.2	1
SLU	Fw	1.35	1.5	1.16	1.5	0.9	1.2	1.2	1
SLU	Tk	1.35	1.5	1.45	0.9	1.5	1.2	1.2	1
SLU	Tk	1.35	1.5	1.45	0.9	1.5	1.2	1.2	1
ECCEZIONALE	Der	1	1	1	0	0.5	1	1	1
RARA (Caratteristica)	gr1	1	1	1	0.6	0.6	1	1	1
RARA (Caratteristica)	gr2	1	1	1	0.6	0.6	1	1	1
RARA (Caratteristica)	gr3	1	1	1	0.6	0.6	1	1	1
RARA (Caratteristica)	gr4	1	1	1	0.6	0.6	1	1	1
RARA (Caratteristica)	Fw	1	1	0	1	0.6	1	1	1
RARA (Caratteristica)	Fw	1	1	0	1	0.6	1	1	1

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

PROGETTO DEFINITIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

Relazione di calcolo impalcato VI04

IVOI 00 D 09 CL VI0408 002 A 63 di 153

1	I_						l .	I .	l .	
RARA (Caratteristica)	Fw	1	1	0	1	0.6	1	1	1	
RARA (Caratteristica)	Fw	1	1	1	1	0.6	1	1	1	
RARA (Caratteristica)	Tk	1	1	0.8	0.6	1	1	1	1	
RARA (Caratteristica)	Tk	1	1	0.8	0.6	1	1	1	1	
RARA (Caratteristica)	Tk	1	1	0.8	0.6	1	1	1	1	
RARA (Caratteristica)	Tk	1	1	1	0.6	1	1	1	1	
FREQUENTE	gr1	1	1	0.6	0	0.5	1	1	1	
FREQUENTE	gr2	1	1	0.6	0	0.5	1	1	1	
FREQUENTE	gr3	1	1	0.6	0	0.5	1	1	1	
FREQUENTE	Fw	1	1	0	0.5	0.5	1	1	1	
FREQUENTE	Fw	1	1	0	0.5	0.5	1	1	1	
FREQUENTE	Fw	1	1	0	0.5	0.5	1	1	1	
FREQUENTE	Tk	1	1	0	0	0.6	1	1	1	
FREQUENTE	Tk	1	1	0	0	0.6	1	1	1	
FREQUENTE	Tk	1	1	0	0	0.6	1	1	1	
									_	
QP	Tk	1	1	0	0	0.5	1	1	1	

6 EFFETTI GLOBALI - IMPALCATO

6.1 Stato limite di esercizio - SLE

Per ogni fase sono state verificate le tensioni ai lembi superiore e inferiore della trave e, una volta che la soletta diventa collaborante, anche la tensione ai lembi superiore e inferiore della soletta stessa. I limiti tensionali per l'acciaio da precompressione e per il calcestruzzo nelle varie fasi sono definiti nel D.M. 17 Gennaio 2018 al §4.1.8.1 e nel Manuale di progettazione di opere civile – parte II al §2.5.1.8.3.2.1. I limiti tensionali considerati, tengono conto del livello di maturazione del cls, secondo quanto di seguito definito.

Fase 0 e 1:

- Il tempo di maturazione per il rilascio della post-tensione è imposta ad un minimo di 9 giorni
- Il tempo di maturazione per il sollevamento della trave è imposto ad un minimo di 12 giorni
- test cls sup.: si verifica che il lembo superiore della sezione non sia in trazione per i carichi considerati
- test cls inf. : si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.60 x f_{ck}
- test precompr. : si verifica che la tensione di trazione nell'armatura di precompressione non sia superiore al limite imposto dal minimo tra $0.90 \text{ x f}_{p(0,1)k}$ e 0.80 x f_{ptk}

Fase 2 e 3:

- per massimizzare gli effetti il tempo maturazione è imposto a 10'000 giorni
- test cls sup.soletta : si verifica che la tensione di compressione al lembo superiore della sezione non sia superiore al limite 0.55 x f_{ck} per combinazioni rare, 0.40 x f_{ck} per combinazioni quasi permanenti.
- test cls inf.soletta : si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.55 x f_{ck} per combinazioni rare, 0.40 x f_{ck} per combinazioni quasi permanenti.
- test cls inf.soletta: si verifica che il lembo inferiore della sezione della sezione non sia superiore al limite f_{ctm} / 1.2.
- test cls sup. : si verifica che la tensione di compressione al lembo superiore della sezione non sia superiore al limite 0.55 x f_{ck} per combinazioni rare, 0.40 x f_{ck} per combinazioni quasi permanenti.

- test cls inf.compr. : si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.55 x f_{ck} per combinazioni rare, 0.40 x f_{ck} per combinazioni quasi permanenti.
- test els inf.trazione. : si verifica che il lembo inferiore della sezione non sia in trazione per i carichi considerati.
- test precompr. : si verifica che la tensione di trazione nell'armatura di precompressione non sia superiore al limite $0.80 \text{ x f}_{p(0,1)k}$

Tali verifiche sono state effettuate, a partire dalla sezione di appoggio, circa ogni 2m fino alla sezione di mezzeria. Le principali informazioni posso essere riassunte:

- Sezione 0: sezione ringrossata all'appoggio (x=0 m), 40 trefoli
- Sezione 1: sezione corrente posta alla fine del tratto a sez. variabile (x=1.80 m), 40 trefoli
- Sezione 4: sezione corrente in corrispondenza del primo traverso intermedio (x=7.6 m), 70 trefoli
- Sezione 6: sezione corrente in mezzeria (x=11.3 m), 70 trefoli

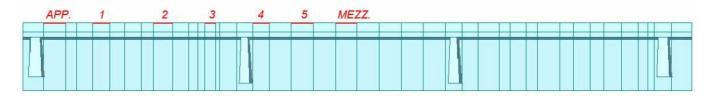


Figura 43 - Schema sezioni di calcolo

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	66 di 153

6.1.1 Sollecitazioni

Si riportano di seguito le sollecitazioni riscontrate nelle sezioni di verifica, dovute ai carichi elementari precedentemente descritti.

Fase 0 – condizione a vuoto – Peso Proprio

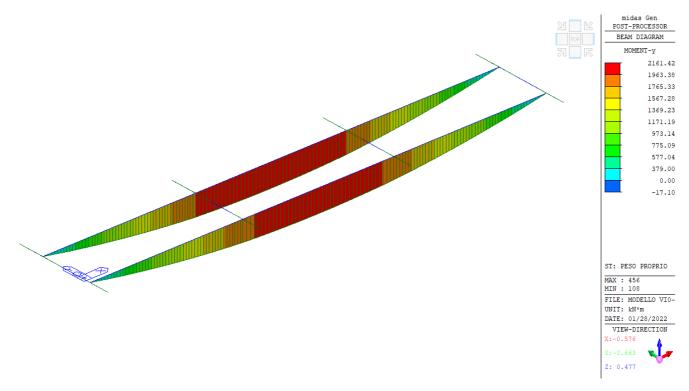


Figura 44 - Sollecitazione flessionale – peso proprio

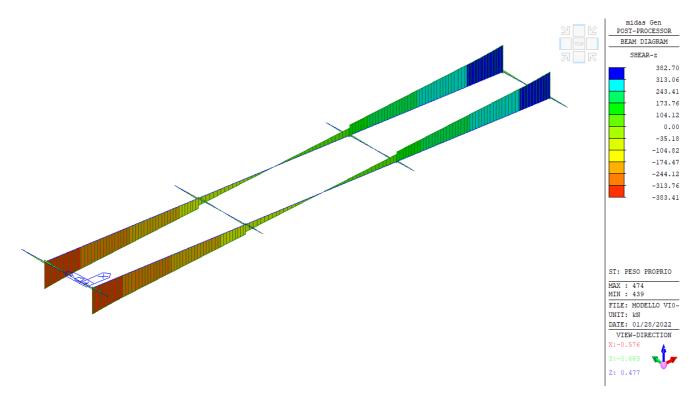


Figura 45 - Sollecitazione di taglio – peso proprio

_		
	M (kN m)	T (kN)
appoggio	0	-383
sezione 1	620	-312
sezione 2	1147	-261
sezione 3	1676	-195
sezione 4	1961	-106
sezione 5	2130	-42
mezzeria	2161	1

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	68 di 153

Fase 1 – getto della soletta

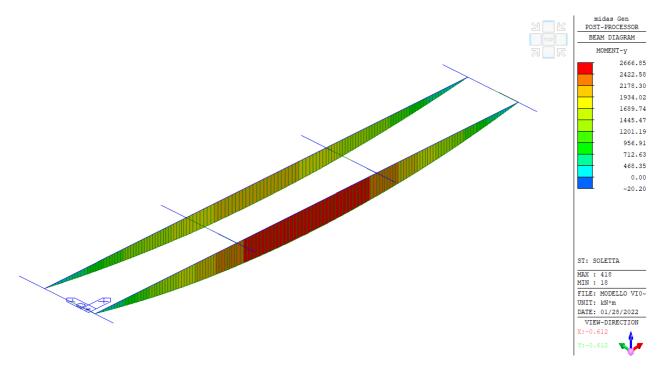


Figura 46 - Sollecitazione flessionale - Getto della soletta

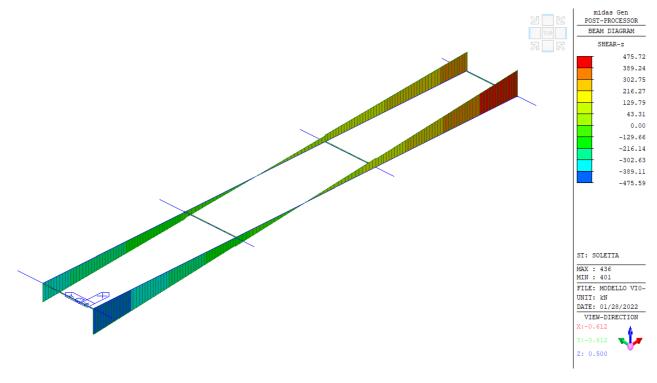


Figura 47 - Sollecitazione di taglio - Getto della soletta

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	_	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	69 di 153	

Si riportano le sollecitazioni cumulative agenti sulle travi (Fase 1 = peso proprio + getto soletta) e quelle del solo getto della soletta.

			_		
	M (kN m)	T (kN)	_	M (kN m)	T (kN)
appoggio	-5	-852		-5	-468
sezione 1	1388	-703		768	-391
sezione 2	2562	-572		1415	-312
sezione 3	3698	-407		2022	-212
sezione 4	4268	-269		2307	-162
sezione 5	4695	-106		2565	-64
mezzeria	4774	2	_	2613	1

Fase 2 – carichi permanenti

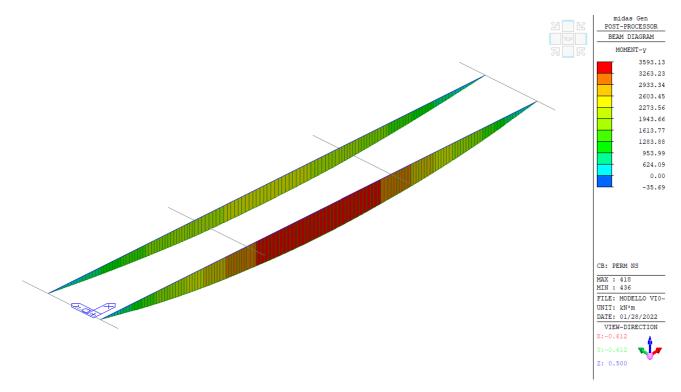


Figura 48 - Sollecitazione flessionale – carichi permanenti

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	70 di 153

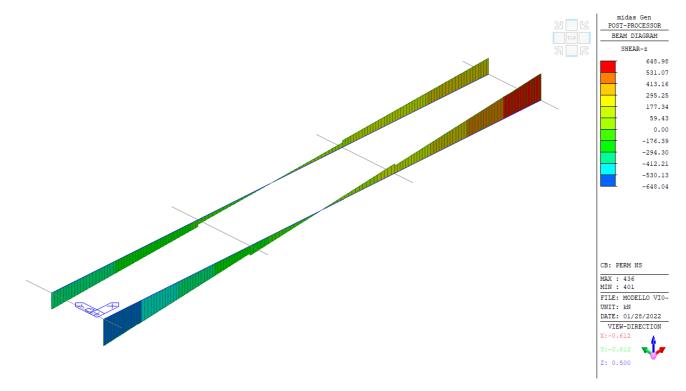


Figura 49 - Sollecitazione di taglio – carichi permanenti

Si riportano le sollecitazioni cumulative agenti sulle travi (Fase 2 = Fase 1 + carichi permanenti) e quelle dei soli carichi permanenti.

	M (kN m)	T (kN)	<u>-</u>	M (kN m)	T (kN)
appoggio	-36	-1500		-31	-648
sezione 1	2452	-1243		1064	-540
sezione 2	4515	-999		1953	-426
sezione 3	6473	-690		2776	-283
sezione 4	7424	-501		3156	-232
sezione 5	8221	-198		3525	-92
mezzeria	8367	4	_	3593	2

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	. FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	71 di 153

Fase 3: condizione di servizio

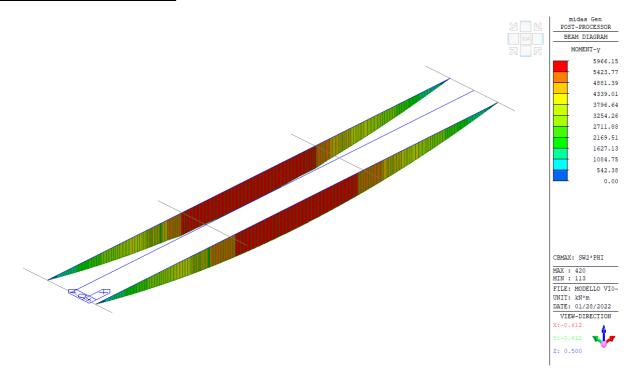


Figura 50 - Sollecitazione flessionale - inviluppo carichi da traffico - max tra SW2 e LM71

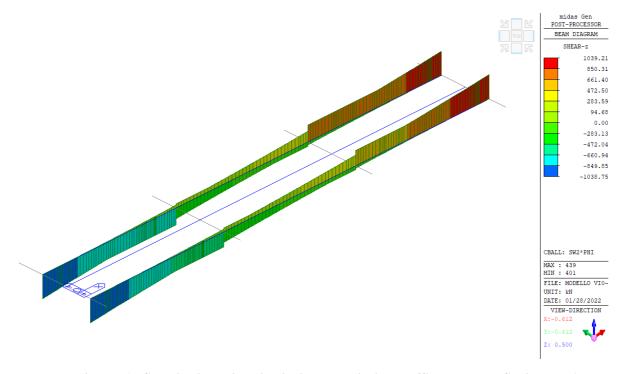


Figura 51 - Sollecitazione di taglio - inviluppo carichi da traffico - max tra SW2 e LM71

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA				
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	72 di 153

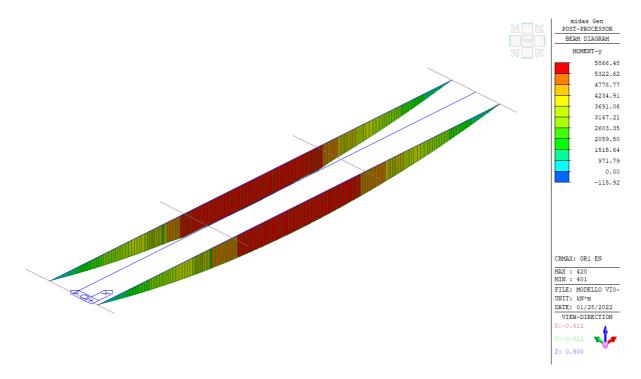


Figura 52 - Sollecitazione flessionale - inviluppo carichi da traffico - Gruppo 1

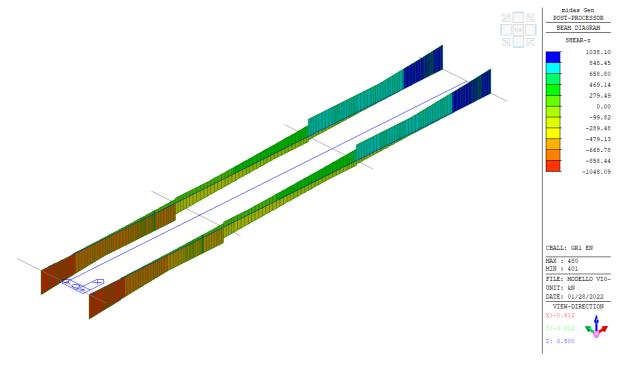


Figura 53 - Sollecitazione di taglio - inviluppo carichi da traffico - Gruppo 1

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	73 di 153

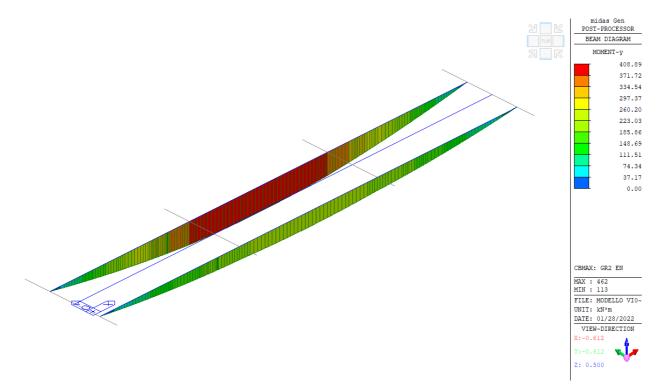


Figura 54 - Sollecitazione flessionale - inviluppo carichi da traffico - Gruppo 2

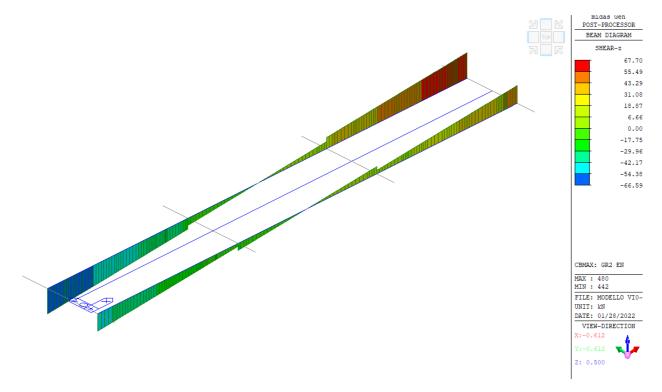


Figura 55 - Sollecitazione di taglio - inviluppo carichi da traffico - Gruppo 2

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	74 di 153

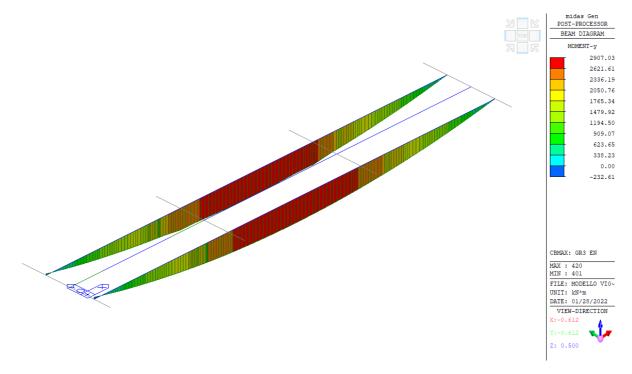


Figura 56 - Sollecitazione flessionale - inviluppo carichi da traffico - Gruppo 3

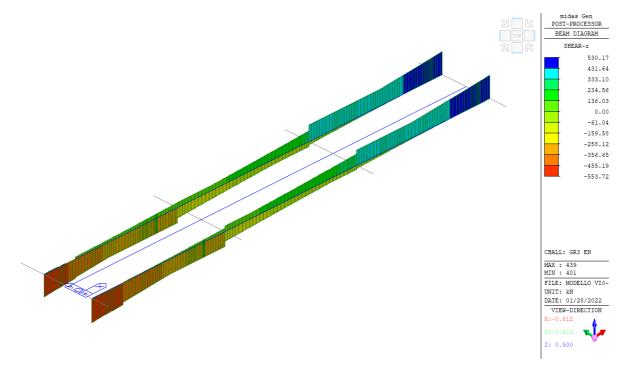


Figura 57 - Sollecitazione di taglio - inviluppo carichi da traffico - Gruppo 3

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	75 di 153

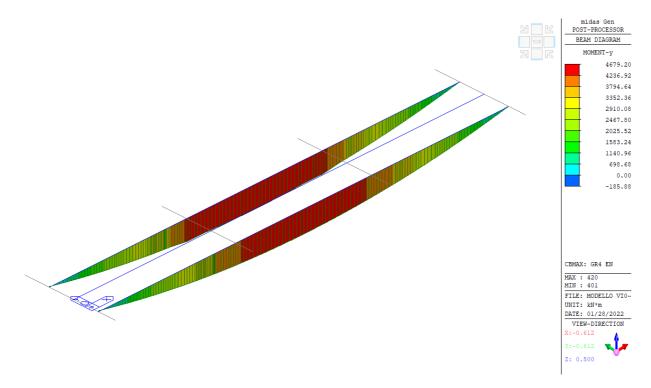


Figura 58 - Sollecitazione flessionale - inviluppo carichi da traffico - Gruppo 4

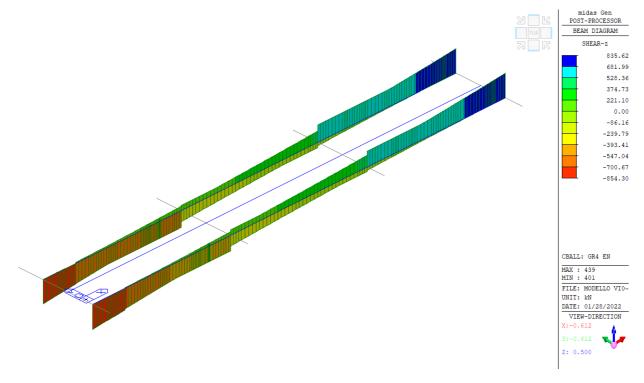


Figura 59 – Sollecitazione di taglio - inviluppo carichi da traffico – Gruppo 4

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	_	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA						
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	76 di 153		

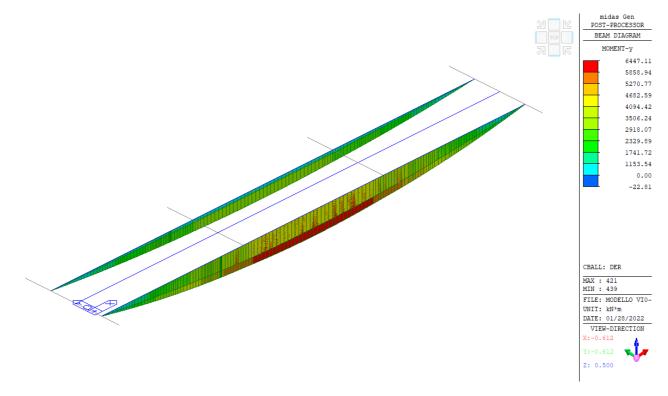


Figura 60 - Sollecitazione flessionale - inviluppo Deragliamento

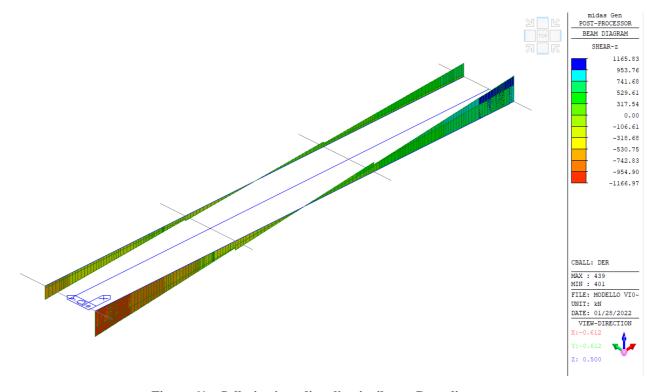


Figura 61 – Sollecitazione di taglio - inviluppo Deragliamento

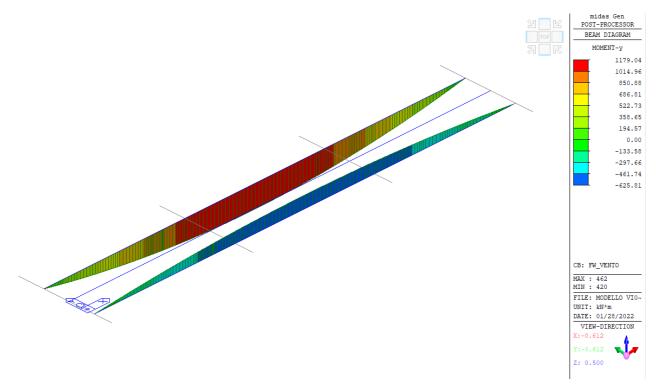


Figura 62 - Sollecitazione flessionale - carico da vento

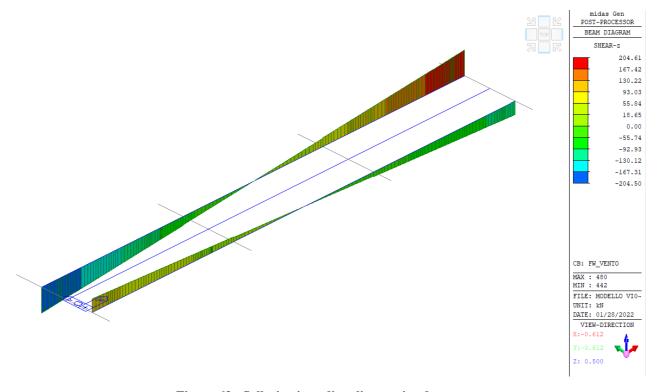



Figura 63 - Sollecitazione di taglio - carico da vento

Si riportano le sollecitazioni cumulative agenti sulle travi (Fase 3) in combinazione rara e frequente, e quelle dei soli carichi variabili.

Combinazione rara

	Mmax (kN		•	Mmax	Tmax
	m)	Tmax (kN)	_	(kN m)	(kN m)
appoggio	-251	-2670		-215	-1171
sezione 1	4292	-2226		1840	-983
sezione 2	8349	-1775		3834	-776
sezione 3	11531	-1409		5058	-719
sezione 4	13281	-1011		5856	-510
sezione 5	14511	-624		6290	-427
mezzeria	14942	320		6575	316
			-		

Combinazione frequente

	Mmax (kN m)	Tmax (kN)	Mmax (kN m)	Tmax (kN)
appoggio	-165	-2128	-129	-629
sezione 1	3433	-1771	981	-527
sezione 2	6566	-1417	2051	-418
sezione 3	9181	-1085	2707	-395
sezione 4	10559	-783	3135	-282
sezione 5	11588	-439	3368	-241
mezzeria	11888	194	3521	189

6.1.2 Verifiche tensionali

Si riportano di seguito le verifiche tensionali previste per gli SLE. Nello specifico si esplicitano i calcoli per la sezione di mezzeria della trave interna e della trave di riva, mentre per le sezioni intermedie si mostrano solo i risultati in forma grafica.

6.1.2.1 Verifiche trave centrale

6.1.2.1.1 Caratteristiche delle sezioni

Cassoncino

area della sezione in calcestruzzo	A_{cls}	11310	cm^2
inerzia rispetto al proprio baricentro	I _{xCLS, G}	6.35E+07	cm ⁴
inerzia rispetto al baricentro omegenizzato	I _{xCLS, hom1}	6.36E+07	cm ⁴
momento statico rispetto all'asse x	$S_{\text{xCLS, G}}$	1076930	cm^3
Armatura tesa			
coefficiente di omogenizzazione	n _{acc}	5.37	
coefficiente di omogenizzazione di calcolo	n _{acc}	4.37	
area totale armatura tesa	A_S	97.3	cm^2
inerzia rispetto al proprio baricentro	I _{xS, G}	2.52E+05	cm ⁴
inerzia rispetto al bararicentro omegenizzato	I _{xS, hom1}	4.60E+05	cm ⁴
momento statico rispetto all'asse x	S _{xS, G}	4601	cm³
Sezione Netta			
area netta del calcestruzzo	A_{cls}	11213	cm^2
baricentro sezione	x_G	0	cm
baricentro sezione	УG	95.21927	cm
inerzia sezione netta	I_{xG}	6.31E+07	cm^4
momento statico sezione netta	S_x	1.07E+06	cm3
	J _X	1.076+00	CIIIJ
Sociono	\mathcal{S}_χ	1.072+00	CITIS
<u>Sezione</u> <u>Omogenizzata1</u>	Эx	1.072+00	CITIS
	A _{hom1}	11736	cm ²
Omogenizzata1			
Omogenizzata1 area omogenizzata al calcestruzzo	A_{hom1}	11736	cm^2

inerzia sezione omogenizzata	I_{xG}	6.56E+07	cm ⁴
momento statico sezione omogenizzata	S_x	1.10E+06	cm^3

Sezione di Calcolo

area omogenizzata al calcestruzzo	Ahom1	11735.63	cm^2
baricentro sezione omogenizzata	хG	0	cm
baricentro sezione omogenizzata	уG	93.48082	cm
inerzia sezione omogenizzata	IxG	6.56E+07	cm ⁴
momento statico sezione omogenizzata	Sx	1.10E+06	cm ³

6.1.2.1.1.1 Sezione iniziale

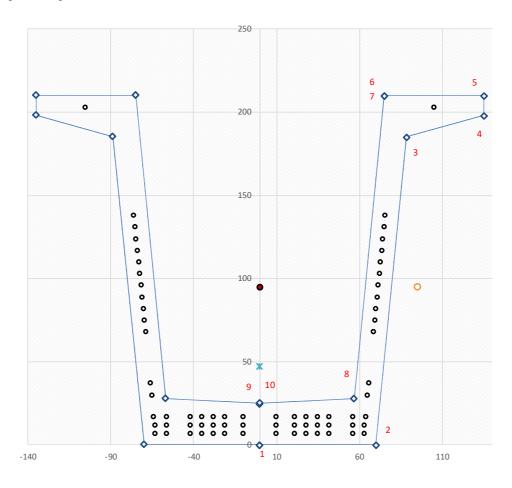


Figura 64 - Sezione iniziale

D 09 CL

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

VI0408 002

81 di 153

6.1.2.1.1.2 Sezione composta – breve termine

Cassoncino

area della sezione in calcestruzzo	A_{cls}	11310	cm ²
inerzia rispetto al proprio baricentro	I _{xCLS, G}	6.35E+07	cm ⁴
inerzia rispetto al baricentro omegenizzato	I _{xCLS, hom2}	9.43E+07	cm ⁴
momento statico rispetto all'asse x	S _{xCLS} , G	1076930	cm^3

IV0I

00

<u>Soletta</u>

coefficiente di omogenizzazione di calcolo	n sol	0.94	
area della sezione in calcestruzzo	A_{sol}	8160	cm^2
inerzia rispetto al proprio baricentro	I _{xsol, G}	6.12E+05	cm ⁴
inerzia rispetto al baricentro omegenizzato	I _{xsol, hom2}	5.63E+07	cm ⁴
momento statico rispetto all'asse x	S _{xsol, G}	1.88E+06	cm ³

Armatura tesa

coefficiente di omogenizzazione	n _{acc}	5.37	
coefficiente di omogenizzazione di calcolo	n _{acc}	4.37	
area totale armatura tesa	A_S	97.30	cm^2
inerzia rispetto al proprio baricentro	I _{xS, G}	2.52E+05	cm ⁴
inerzia rispetto al bararicentro omegenizzato	I _{xS, hom2}	1.23E+06	cm ⁴
momento statico rispetto all'asse x	S _{xS, G}	4601	cm ³

Sezione omogenizzata2

area omogenizzata al calcestruzzo	A_{hom2}	19399	cm ²
baricentro sezione omogenizzata	\mathbf{X}_{G}	0.00	cm
baricentro sezione omogenizzata	y G	147.41	cm
inerzia sezione omogenizzata	I_{xG}	1.53E+08	cm ⁴
momento statico sezione omogenizzata	S_{x}	2.86E+06	cm³

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	82 di 153

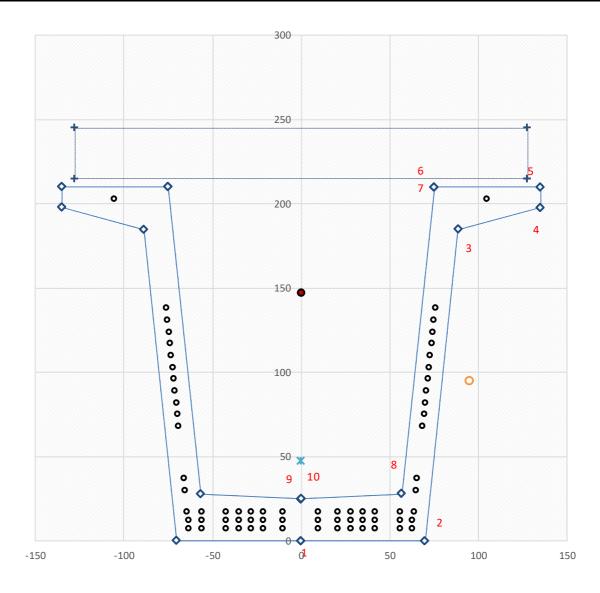


Figura 65 - Sezione omogenizzata - breve termine

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IVOI	00	D 09 CL	VI0408 002	A	83 di 153

6.1.2.1.1.3 Sezione composta – lungo termine

coeffieciente di viscosità a tempo infinito cassone	$\phi_{00}(t,t_{00})$	1.864
coeffieciente di viscosità a tempo infinito soletta	$\phi_{00}(t,t_{00})$	1.945
coefficiente di omogenizzazione di calcolo	n sol	0.91
coefficiente di omogenizzazione di calcolo	n _{acc}	12.53

Sezione omogenizzata3

area omogenizzata al calcestruzzo	$A_{\text{hom}3}$	19983	cm^2
baricentro sezione omogenizzata	X _G	0.00	cm
baricentro sezione omogenizzata	y G	142.57	cm
inerzia sezione omogenizzata	I_{xG}	1.61E+08	cm ⁴
momento statico sezione omogenizzata	Sv	2.85F+06	cm ³

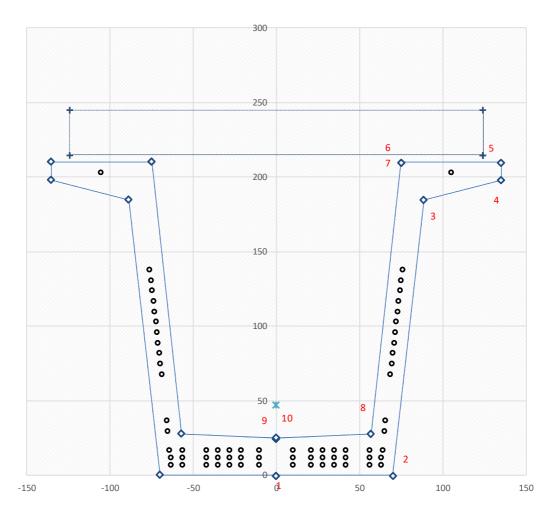


Figura 66 - Sezione omogenizzata - lungo termine

6.1.2.1.2 Fase 0 - Rilascio precompressione e PP

Limitazioni tensionali alla tesatura

tensione massima sull'armatura in fase di tesatura	σt,0 max	1488	MPa
ten. max al martinetto garantendo il \pm 5% di precisione	σt',0 max	1572	MPa
ten. max sull'armatura in esercizione (perdite avvenute)	Ot.1 max	1336	MPa

CODIFICA

DOCUMENTO

REV.

FOGLIO

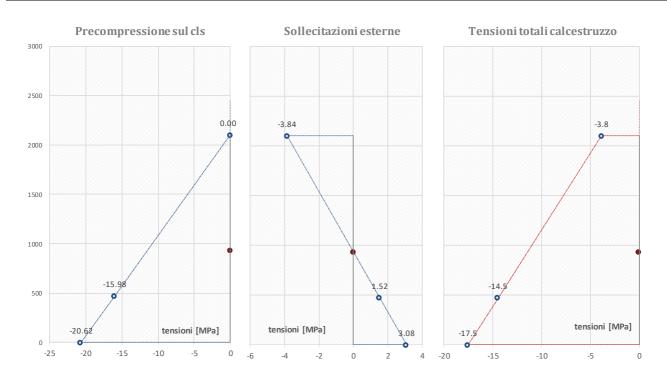
LOTTO

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04 1V0I 00 D 09 CL VI0408 002 A 85 di 153

COMMESSA

tensione del cavo sul banco di tiraggio	σ t,0	1,380	MPa
forza di precompressione sulla pista di tensione	Po	13,427	KN
distanza tra il baricentro della sezione e il cavo	у	479	mm
area dei cavi precompressi	A_{t}	9,730	mm²
modulo elastuco del calcestruzzo al tempo t	Е	34,658	MPa
coefficiente di omogenizzazione	n	4.37	
area della sezione omogenizzata	A_{hom1}	1.17E+06	mm^2
inerzia della sezione omogenizzata	I_{hom1}	6.56E+11	mm ⁴
forza di prec. al momento del taglio (perdite elastiche)	P_1	12,751	KN
tensione del cavo al momento del taglio (perdite elastiche)	$\sigma_{t,1}$	1,311	MPa
perdita di tensione nel cavo per def. elastica cls	$\Delta \sigma$ t,1	69.5	MPa
perdite istantanee di precompressione		5.0%	
spostamento del cavo all'atto della tesatura	90	7.1E-03	mm/ m
spostamento adimens del calcestruzzo	9с	3.6E-11	mm/ m
spostamento adimens dell'acciao	ðs	5.3E-10	mm/ m
Forza rimanente dopo il recupero del cavo	P_1	12,570	KN
perdite istantanee di precompressione	$\Delta \sigma$ t,1	88.1	MPa
		6.4%	
momento dovuto al peso proprio della trave	$M_{pp,trave}$	2161	kN m
tensione nel cavo a fine fase 0	σt,F0	1,299	MPa



PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI0408 002
 A 86 di 153

Limitazioni tensionali del calcestruzzo

tensione limite all'atto della precompressione tensione limite di esercizio a cadute avvenute

tensione del calcestruzzo nel lembo superiore tensione del calcestruzzo nel baricentro del cavo tensione del calcestruzzo nel lembo inferiore tensione nel cavo a fine fase 0

σt,1 max	22.49	MPa	
σt,0 max	24.75	MPa	
σcls,1	-3.85	> -22.49	MPa
σcls',1	-14.45	> -22.49	MPa
σcls",1	-17.54	> -22.49	MPa
σt,F0	1,299	< 1336	MPa

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI0408 002
 A 87 di 153

6.1.2.1.3 Fase 1 - Getto della soletta

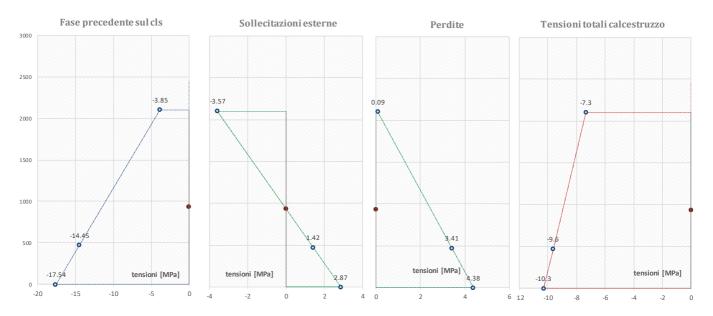
momento dovuto al peso della soletta Ritiro	Msol,trave	2010	kN m
giorno attuale per calcolo ritiro del cassoncino	t	10000	giorni
perimetro di cls esposto all'aria	u	11846.6	mm
dimensione fittizia pari a 2A _c /u Ac	h_0	198.1	mm
umidità relativa	UR	70	%
deformazione massima per essiccamento	€ c0	-0.000294	
parametro per calcolo deformazione a tempo ∞	k _h	0.853	
deformazione per ritiro da essiccamento a tempo ∞	ε _{cd∞}	-0.000251	
coefficiente di calcolo	$\beta_{ds}(t,t_s)$	0.9895912	
deformazione per ritiro da essiccamento a tempo t	ε _{cd} (t)	-0.00028	
, , , , , , , , , , , , , , , , , , ,	550(-)		
reistenza caratteristica del cacestruzzo	f_{ck}	45	MPa
valore m della deformazione per ritiro autogeno	Eca	-8.75E-05	
·			
deformazione totale per ritiro	$\varepsilon_{cs} = \varepsilon_{cd}(t) + \varepsilon_{ca}$	-3.67E-04	
variazione tensionale nel caso per effetto del ritiro	$\Delta \sigma_{cs} = -E_s \epsilon_{cs}$	-71.62	MPa
Viscosità			
effetto del tipo di cemento sulla viscosità	α	0	
tempo equivalente di applicazione del carico	t_{o}	9	giorni
coef. Funzione della resistenza del cls	$\beta(f_{cm})$	2.31	
reistenza media del calcestruzzo	$f_{\sf cm}$	53.00	N/mm²
coef. Funzione della maturazione del cls	$eta(t_0)$	0.61	
coef. Funzione dell u.r. e di ho	$eta_{ ext{H}}$	500.3	
coef. Che descrive l'evoluzione viscosa	$\beta(t, t_0)$	0.99	
	E (-) -v/		
coef. Per tenere conto dell resistenza del cls	α_3	0.813	
coef. Per tenere conto dell resistenza del cls	α_2	0.920	
coef. Per tenere conto dell resistenza del cls	$lpha_1$	0.748	

PROGETTO DEFINIT

Relazione di calcolo impalcato VI04

IVOI	00	D 09 CI	VI0408 002	Δ	88 di 153	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

coef. Funzione dell'umidità relativa	ϕ_{RH}	1.354	
coefficiente normale di viscosità	ϕ_0	1.982	
coefficiente di viscosità al tempo t0	$\phi_0(t,t_0)$	1.864	
coefficiente di viscosità al tempo t1	$\phi_0(t,t_1)$	1.856	
controllo tensione massima CLS <0.45fcm =>		viscosità lineare	
coefficiente di viscosità di riferimento al tempo t	$\phi_0(t,t_0)$	1.864	
coefficiente di viscosità di riferimento al tempo t	$\phi_0(t,t_1)$	1.856	
modulo del calcestruzzo al tempo to	E _{to}	36283	MPa
funzione di fluage iniziale - (della sola parte viscosa)	$J(t, t_0)$	5.4E-05	
coefficiente di invecchiamento	$\chi(t, t_0)$	0.80	
funzione di fluage incremento di carico - (della sola parte viscosa)	$J(t, t_1)$	4.3E-05	
deformazione totale indotta dalla viscosità Gcavo $\epsilon_v = \sigma_{to} J_{to}$	- + Δσ _{t1} J _{t1}	-1.05E-03	
variazione tensionale nel caso per effetto della viscosità	$\Delta \sigma_{\rm v} = -E_{\rm s} \epsilon_{\rm v}$	-205.25	MPa


Rilassamento

classe di armatura di precompressione		Classe 2	
percetuale di perdita a 1000h	ρ_{1000}	2.50	%
rapporto tra valore carat. e tensione	μ	0.78	
perdite per rilassamento a tempo t	$\Delta\sigma_{\text{ril (t)}}$	-75.45	MPa

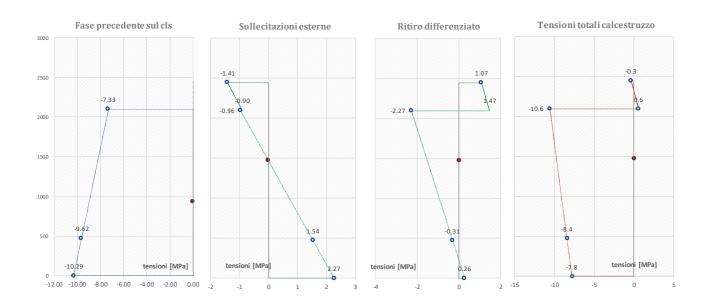
inerzia della sezione in cls	I_{cls}	6.56E+07	cm ⁴
area della sezione in cls	A_{cls}	11213	cm^2
eccentricità del cavo rispetto al baricentro cls	е	47.93	cm
perdita totale di precompressione nel cavo al tempo t	$\Delta\sigma_{\text{pr (t)}}$	-297.98	cm
perdita di precompressione (corrisponde a trazione nel cls)	$\Delta N_{pr(t)}$	2899	kN

coefficiente di omogenizzazione	n	4.37	
area della sezione omogenizzata	A_{hom1}	1.17E+06	$\mathrm{mm^2}$
inerzia della sezione omogenizzata	I_{hom1}	6.56E+11	mm ⁴
tensione nel cavo a fine fase 1	σt,1	1006.76	MPa

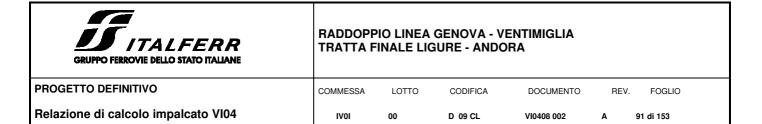
6.1.2.1.4 Fase 2 - Permanenti non strutturali

momento dovuto al peso dei non strutturali	MG2	2347	kN m
giorno attuale per calcolo delle perdite lente	t	170	giorni
Effetto del ritiro differenziale			
variazione di deformazione per effetto del ritito differenziale	Δετί	-3.1E-04	
tensione da ritiro propria della soletta	σri	-10.59	MPa
coefficiente di viscositò al tempo t2 della soletta	φ ₀ (t,	t2) 1.9	5
modulo elastio soletta la tempo t2	Es ((t) 33704	I.59 MPa
tensione nella soletta per ritiro differenziale (viscosità)	σ_{v}	i -3.6	0 MPa

Si ipotizza che la forza di compressione trasmessa al cassoncino sia proprio uguale alla tensione media da ritiro quindi la forza di compressione

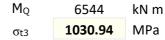

PROGETTO DEFINITIVO

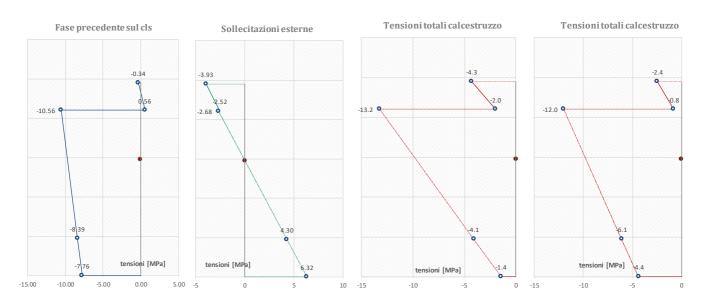
Relazione di calcolo impalcato VI04


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI0408 002
 A 90 di 153

sforzo di compressione sul cassoncino	N_{ri}	-2935	kN
distanza superficie di contatto baricentro sezione	е	625.9	mm
eccentricità del cavo rispetto al baricentro della sezione	е	100.13	cm
perdita totale di precompressione nel cavo al tempo t	$\Delta\sigma_{\text{pr}(t)}$	0.00	cm
perdita di precompressione (corrisponde a trazione nel cls)	$\Delta N_{\text{pr (t)}}$	0	kN
coefficiente di omogenizzazione soletta	n	0.94	
coefficiente di omogenizzazione acciaio	n	4.37	
area della sezione omogenizzata	A_{hom2}	1.94E+06	$\mathrm{mm^2}$
inerzia della sezione omogenizzata	I_{hom2}	1.53E+12	mm ⁴
tensione nel cavo a fine fase 2	σt,2	1012.15	MPa

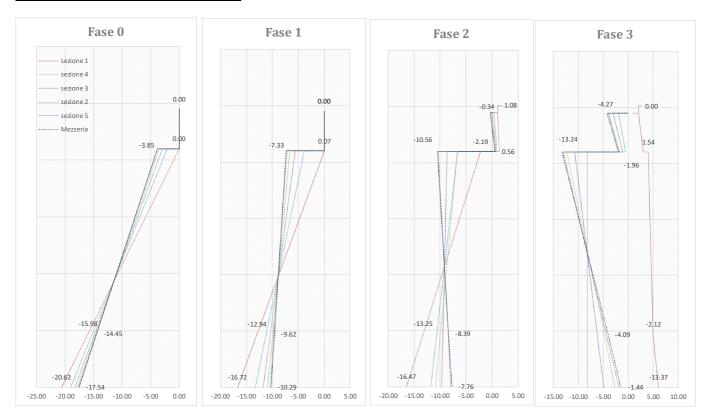



tensione del calcestruzzo nel lembo superiore soletta tensione del calcestruzzo lembo inferiore soletta $\sigma_{cls,3}$ -0.34 > -18.39 MPa $\sigma_{cls',3}$ 0.56 < 2.57 MPa

6.1.2.1.5 Fase 3 - Carichi variabili

momento dovuto ai carichi da traffico tensione nel cavo a fine fase

Comb. rara


tensione del calcestruzzo nel lembo superiore soletta	$\sigma_{\text{cls,3}}$	-4.27	> -19.25	MPa
tensione del calcestruzzo lembo inferiore soletta	σ _{cls'} ,3	-1.96	> -19.25	MPa
tensione del calcestruzzo nel lembo superiore	$\sigma_{\text{cls,1}}$	-13.24	> -24.75	MPa
tensione del calcestruzzo nel baricentro del cavo	σcls',1	-4.09	> -24.75	MPa
tensione del calcestruzzo nel lembo inferiore	$\sigma_{\text{cls}",1}$	-1.44	> -24.75	MPa
tensione nel cavo a fine fase 3	σt,F3	1,031	< 1336	MPa

Comb. frequente

tensione del calcestruzzo nel lembo superiore soletta	σcls,3	-2.4	> -14	MPa
tensione del calcestruzzo lembo inferiore soletta	σcls',3	-0.8	> -14	MPa
tensione del calcestruzzo nel lembo superiore	σcls,1	-12.0	> -18	MPa
tensione del calcestruzzo nel baricentro del cavo	σcls',1	-6.1	> -18	MPa
tensione del calcestruzzo nel lembo inferiore	σcls",1	-4.4	> -18	MPa
tensione nel cavo a fine fase 3	σt,F3	1,002	< 1336	MPa

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	92 di 153

Riassunto verifiche sezioni intermedie

6.1.2.1.6 Verifiche a fessurazione

Secondo il §4.1.2.2.4 delle Norme Tecniche lo stato limite di formazione delle fessure si ha quando la tensione massima di trazione della sezione supera

fctm
$$/ 1.2 = 3.16$$
 MPa

È stato verificato che che il lembo inferiore della sezione non sia in trazione per i carichi considerati. Pertanto, le verifiche a fessurazione sono soddisfatte.

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI0408 002
 A 93 di 153

6.1.2.2 Verifiche trave di riva

6.1.2.2.1 Caratteristiche delle sezioni

Cassoncino

area della sezione in calcestruzzo	A_{cls}	11310	cm ²
inerzia rispetto al proprio baricentro	I _{xCLS, G}	6.35E+07	cm ⁴
inerzia rispetto al baricentro omegenizzato	I _{xCLS, hom1}	6.36E+07	cm ⁴
momento statico rispetto all'asse x	S _{xCLS. G}	1076930	cm³

<u>Armatura tesa</u>

coefficiente di omogenizzazione	n _{acc}	5.37	
coefficiente di omogenizzazione di calcolo	n _{acc}	4.37	
area totale armatura tesa	A_S	97.3	cm^2
inerzia rispetto al proprio baricentro	I _{xS, G}	2.52E+05	cm ⁴
inerzia rispetto al bararicentro omegenizzato	$I_{xS, hom1}$	4.60E+05	cm ⁴
momento statico rispetto all'asse x	$S_{xS, G}$	4601	cm³

Sezione Netta

area netta del calcestruzzo	A_{cls}	11213	cm^2
baricentro sezione	X_G	0	cm
baricentro sezione	УG	95.21927	cm
inerzia sezione netta	I_{xG}	6.31E+07	cm^4
momento statico sezione netta	S_{x}	1.07E+06	cm3

Sezione

Omogenizzata1

area omogenizzata al calcestruzzo	A_{hom1}	11736	cm^2
baricentro sezione omogenizzata	x_G	0.00	cm
baricentro sezione omogenizzata	УG	93.48	cm
inerzia sezione omogenizzata	I_{xG}	6.56E+07	cm^4
momento statico sezione omogenizzata	S_x	1.10E+06	cm ³

Sezione di Calcolo

area omogenizzata al calcestruzzo	Ahom1	11735.63	cm ²
baricentro sezione omogenizzata	хG	0	cm

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			GENOVA - V GURE - ANDO			
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	94 di 153

baricentro sezione omogenizzata	уG	93.48082	cm
inerzia sezione omogenizzata	IxG	6.56E+07	cm^4
momento statico sezione omogenizzata	Sx	1.10E+06	cm ³

6.1.2.2.1.1 Sezione iniziale

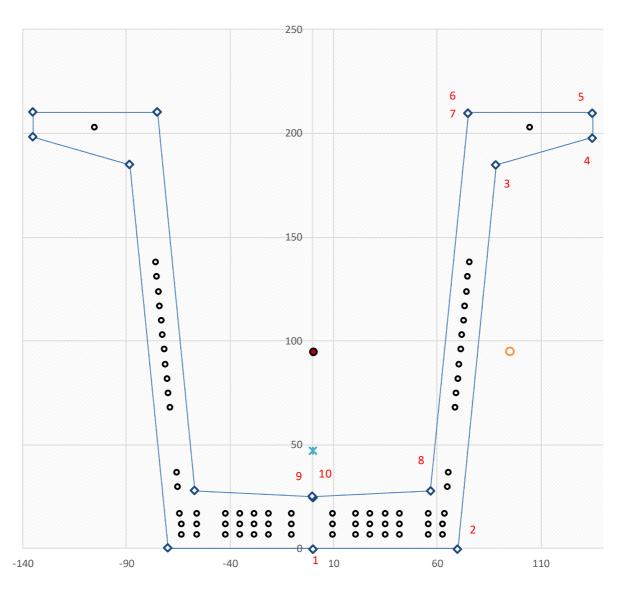


Figura 67 - Sezione iniziale

D 09 CL

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

VI0408 002

95 di 153

6.1.2.2.1.2 Sezione composta – breve termine

Cassoncino

area della sezione in calcestruzzo	A_{cls}	11310	cm ²
inerzia rispetto al proprio baricentro	I _{xCLS, G}	6.35E+07	cm ⁴
inerzia rispetto al baricentro omegenizzato	I _{xCLS, hom2}	1.22E+08	cm ⁴
momento statico rispetto all'asse x	S _{xCLS} , G	1076930	cm^3

IV0I

00

<u>Soletta</u>

coefficiente di omogenizzazione di calcolo	n _{sol}	0.94	
area della sezione in calcestruzzo	A_{sol}	14550	cm^2
inerzia rispetto al proprio baricentro	I _{xsol, G}	1.09E+06	cm ⁴
inerzia rispetto al baricentro omegenizzato	I _{xsol, hom2}	5.90E+07	cm ⁴
momento statico rispetto all'asse x	S _{xsol, G}	3.35E+06	cm ³

Armatura tesa

coefficiente di omogenizzazione	n _{acc}	5.37	
coefficiente di omogenizzazione di calcolo	n _{acc}	4.37	
area totale armatura tesa	A_S	97.30	cm^2
inerzia rispetto al proprio baricentro	I _{xS, G}	2.52E+05	cm ⁴
inerzia rispetto al bararicentro omegenizzato	I _{xS, hom2}	1.64E+06	cm ⁴
momento statico rispetto all'asse x	S _{xS, G}	4601	cm³

Sezione omogenizzata2

area omogenizzata al calcestruzzo	A_{hom2}	25401	cm ²
baricentro sezione omogenizzata	\mathbf{x}_{G}	-57.30	cm
baricentro sezione omogenizzata	y G	166.93	cm
inerzia sezione omogenizzata	I_{xG}	1.84E+08	cm ⁴
momento statico sezione omogenizzata	S_x	4.24E+06	cm ³

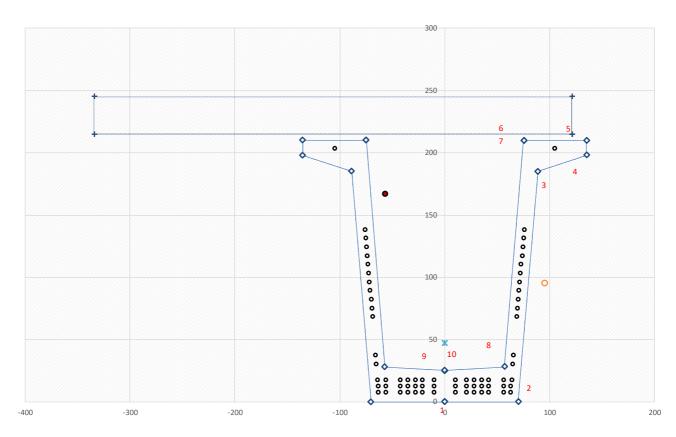


Figura 68 - Sezione omogenizzata - breve termine

6.1.2.2.1.3 Sezione composta – lungo termine

coeffieciente di viscosità a tempo infinito cassone	$\phi_{00}(t,t_{00})$	1.864
coeffieciente di viscosità a tempo infinito soletta	$\phi_{00}(t,t_{00})$	1.945
coefficiente di omogenizzazione di calcolo	n sol	0.91
coefficiente di omogenizzazione di calcolo	n _{acc}	12.53

Sezione omogenizzata3

area omogenizzata al calcestruzzo	A_{hom3}	25820	cm^2
baricentro sezione omogenizzata	XG	-55.73	cm
baricentro sezione omogenizzata	y G	162.33	cm
inerzia sezione omogenizzata	I_{xG}	1.96E+08	cm ⁴

momento statico sezione omogenizzata

 S_x 4.19E+06 cm³

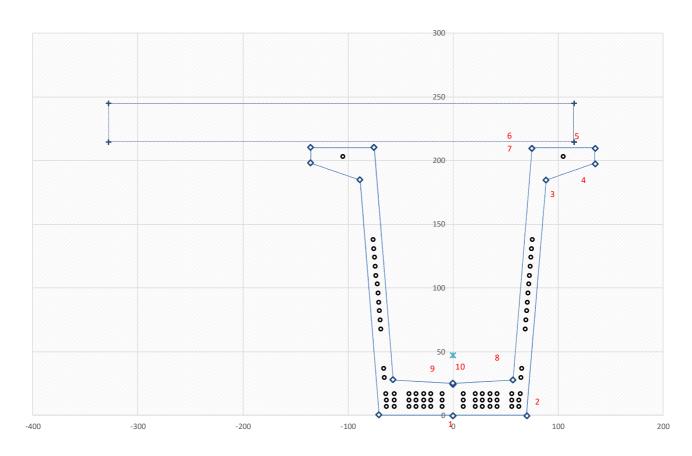


Figura 69 - Sezione omogenizzata - lungo termine

6.1.2.2.2 Fase 0 - Rilascio precompressione e PP

Limitaz	ioni	tonci	onali	alla	tesatura
LIIIIILUZ	IOIII	rensi	unan	ana	iesaiura

tensione massima sull'armatura in fase di tesatura	σt,0 max	1488	MPa
ten. max al martinetto garantendo il \pm 5% di precisione	σt',0 max	1572	MPa
ten. max sull'armatura in esercizione (perdite avvenute)	σt,1 max	1336	MPa

tensione del cavo sul banco di tiraggio $\sigma_{t,0}$ 1,380 MPa

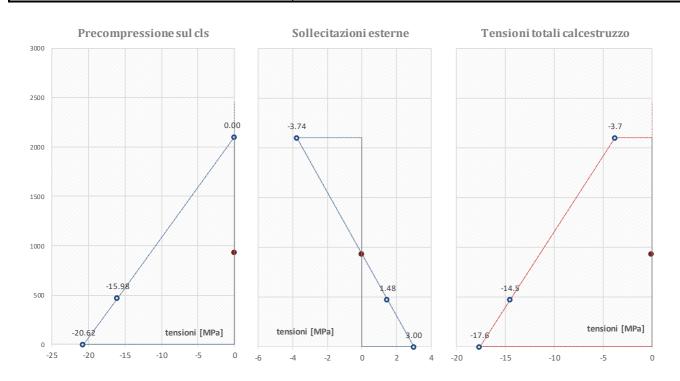
CODIFICA

DOCUMENTO

REV.

FOGLIO

PROGETTO DEFINITIVO


Relazione di calcolo impalcato VI04 IV0I 00 D 09 CL VI0408 002 A 98 di 153

LOTTO

COMMESSA

forza di precompressione sulla pista di tensione	P_0	13,427	KN
distanza tra il baricentro della sezione e il cavo	у	479	mm
area dei cavi precompressi	A_{t}	9,730	mm²
modulo elastuco del calcestruzzo al tempo t	Е	34,658	MPa
coefficiente di omogenizzazione	n	4.37	
area della sezione omogenizzata	A_{hom1}	1.17E+06	mm^2
inerzia della sezione omogenizzata	I_{hom1}	6.56E+11	$\rm mm^4$
forza di prec. al momento del taglio (perdite elastiche)	P_1	12,751	KN
tensione del cavo al momento del taglio (perdite elastiche)	σt,1	1,311	MPa
perdita di tensione nel cavo per def. elastica cls	$\Delta \sigma$ t,1	69.5	MPa
perdite istantanee di precompressione		5.0%	
spostamento del cavo all'atto della tesatura	90	7.1E-03	mm/ m
spostamento adimens del calcestruzzo	дc	3.6E-11	mm/ m
spostamento adimens dell'acciao	дs	5.3E-10	mm/ m
Forza rimanente dopo il recupero del cavo	P_1	12,570	KN
perdite istantanee di precompressione	$\Delta \sigma$ t,1	88.1	MPa
		6.4%	
momento dovuto al peso proprio della trave	$M_{pp,trave}$	2107	kN m
tensione nel cavo a fine fase 0	σt,F0	1,298	MPa

Limitazioni tensionali del calcestruzzo

tensione limite all'atto della precompressione tensione limite di esercizio a cadute avvenute	σt,1 max σt,0 max	22.49 24.75	MPa MPa	
tensione del calcestruzzo nel lembo superiore	σcls,1	-3.75	> -22.49	MPa
tensione del calcestruzzo nel baricentro del cavo	Ocls',1	-14.49	> -22.49	MPa
tensione del calcestruzzo nel lembo inferiore	σcls'',1	-17.61	> -22.49	MPa
tensione nel cavo a fine fase 0	σt,F0	1,298	< 1336	MPa

D 09 CL

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

VI0408 002

100 di 153

Α

6.1.2.2.3 Fase 1 - Getto della soletta

momento dovuto al peso della soletta	$M_{sol,trave}$	2667	kN m
Ritiro giorno attuale per calcolo ritiro del cassoncino	t	10000	giorni
perimetro di cls esposto all'aria dimensione fittizia pari a 2A _c /u Ac umidità relativa	u h₀ UR	11846.6 198.1 70	mm mm %
deformazione massima per essiccamento parametro per calcolo deformazione a tempo ∞ deformazione per ritiro da essiccamento a tempo ∞ coefficiente di calcolo deformazione per ritiro da essiccamento a tempo $\mathbf t$	ϵ_{c0} k_h $\epsilon_{cd \infty}$ $\beta_{ds}(t,t_s)$ $\epsilon_{cd}(t)$	-0.000294 0.853 -0.000251 0.9895912 -0.00028	
reistenza caratteristica del cacestruzzo valore m della deformazione per ritiro autogeno	f _{ck} <i>€ca</i>	45 -8.75E-05	MPa
deformazione totale per ritiro	$\varepsilon_{cs} = \varepsilon_{cd}(t) + \varepsilon_{ca}$	-3.67E-04	
deformazione totale per ritiro variazione tensionale nel caso per effetto del ritiro	$ \varepsilon_{cs} = \varepsilon_{cd}(t) + \varepsilon_{ca} $ $ \Delta\sigma_{cs} = -\varepsilon_{s} \varepsilon_{cs} $	-3.67E-04 -71.62	MPa
variazione tensionale nel caso per effetto del ritiro Viscosità effetto del tipo di cemento sulla viscosità	$\Delta \sigma_{cs} = -E_s \epsilon_{cs}$ α	- 71.62 0	
variazione tensionale nel caso per effetto del ritiro Viscosità	$\Delta \sigma_{cs} = -E_s \varepsilon_{cs}$	-71.62	MPa giorni
variazione tensionale nel caso per effetto del ritiro Viscosità effetto del tipo di cemento sulla viscosità tempo equivalente di applicazione del carico	$\Delta \sigma_{cs} = -E_s \epsilon_{cs}$ α t_0	- 71.62 0 9	
variazione tensionale nel caso per effetto del ritiro Viscosità effetto del tipo di cemento sulla viscosità tempo equivalente di applicazione del carico coef. Funzione della resistenza del cls	$\Delta \sigma_{cs} = -E_s \epsilon_{cs}$ α t_0 $\beta(f_{cm})$	- 71.62 0 9 2.31	giorni
Viscosità effetto del tipo di cemento sulla viscosità tempo equivalente di applicazione del carico coef. Funzione della resistenza del cls reistenza media del calcestruzzo coef. Funzione della maturazione del cls coef. Funzione della maturazione del cls coef. Funzione della u.r. e di ho	$\Delta\sigma_{cs} = -E_s \epsilon_{cs}$ α t_0 $\beta(f_{cm})$ f_{cm} $\beta(t_0)$ β_H	- 71.62 0 9 2.31 53.00 0.61 500.3	giorni

IV0I

00

GRUPPO FERROVIE DELLO STATO ITALIANE	IIIAIIAI	INALE LIC	OKE - ANDC	MA		
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IV0I	00	D 09 CL	VI0408 002	A	101 di 153
coef. Per tenere conto dell resistenza del c	cls		$lpha_{ exttt{1}}$	0.748		
coef. Funzione dell'umidità relativa			ϕ_{RH}	1.354		
coefficiente normale di viscosità			ϕ_0	1.982		
coefficiente di viscosità al tempo t0			$\phi_0(t,t_0)$	1.864		
coefficiente di viscosità al tempo t1			$\phi_0(t,t_1)$	1.856		
controllo tensione massima CLS < 0.45fcm	=>			viscosità lineare		
coefficiente di viscosità di riferimento al te	empo t		$\phi_0(t,t_0)$	1.864		
coefficiente di viscosità di riferimento al te	empo t		$\phi_0(t,t_1)$	1.856		
modulo del calcestruzzo al tempo to			E_{t0}	36283	MPa	
funzione di fluage iniziale - (della sola parte	viscosa)		$J(t, t_0)$	5.4E-05		
coefficiente di invecchiamento			$\chi(t, t_0)$	0.80		
funzione di fluage incremento di carico - (d	lella sola parte v	iscosa)	$J(t, t_1)$	4.3E-05		
deformazione totale indotta dalla viscosità	à Gcavo	$\varepsilon_{\mathbf{v}} = \sigma_{to} J_{to}$	$_{0}$ + $\Delta\sigma_{t1}$ J_{t1}	-1.10E-03		
variazione tensionale nel caso per effetto	della viscos	ità	$\Delta \sigma_{\rm v} = -E_{\rm s}$ $\epsilon_{\rm v}$	-215.44	MPa	
Rilassamento						
classe di armatura di precompressione				Classe 2		
percetuale di perdita a 1000h			ρ_{1000}	2.50	%	
rapporto tra valore carat. e tensione			μ	0.78		
perdite per rilassamento a tempo t			Δσ _{ril (t)}	-75.45	MPa	

inerzia della sezione in cls	I_{cls}	6.56E+07	cm ⁴
area della sezione in cls	A_{cls}	11213	cm^2
eccentricità del cavo rispetto al baricentro cls	e	47.93	cm

CODIFICA

σt,1

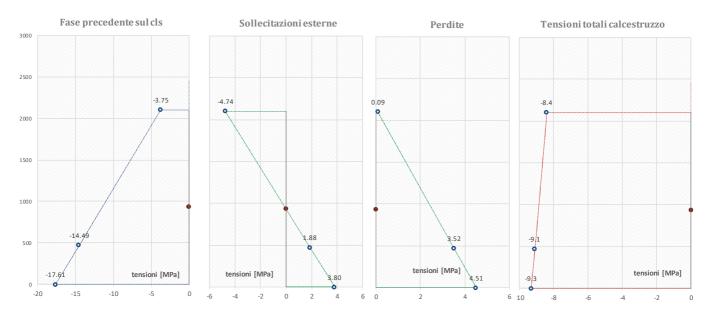
LOTTO

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04 D 09 CL IVOI 00 VI0408 002

COMMESSA

elazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	102 di 153
perdita totale di precompressione nel cavo	•		$\Delta\sigma_{pr(t)}$	-306.98	cm	
perdita di precompressione (corrisponde a trazion	ne nel cls)		$\Delta N_{pr(t)}$	2987	kN	
coefficiente di omogenizzazione			n	4.37	2	
area della sezione omogenizzata			A _{hom1}	1.17E+06	mm²	
inerzia della sezione omogenizzata			I _{hom1}	6.56E+11	mm ⁴	


DOCUMENTO

999.62

MPa

FOGLIO

tensione nel cavo a fine fase 1

6.1.2.2.4 Fase 2 - Permanenti non strutturali

momento dovuto al peso dei non strutturali giorno attuale per calcolo delle perdite lente

M_{G2}	3593	kN m
t	170	giorni

Effetto del ritiro differenziale

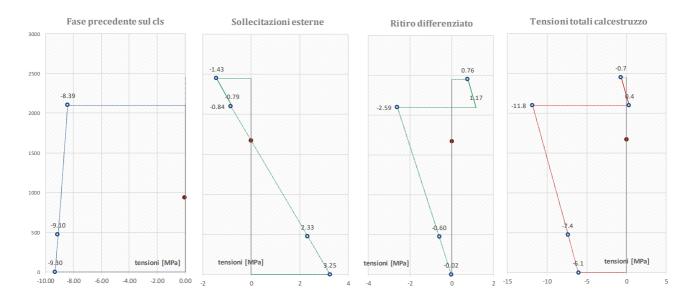
il ritiro differenziale induce uno stato di compressione sulla trave ed di trazione sulla soletta.

variazione di deformazione per effetto del ritito differenziale		-3.1E-04		
tensione da ritiro propria della soletta	σ_{ri}	-10.59	MPa	

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

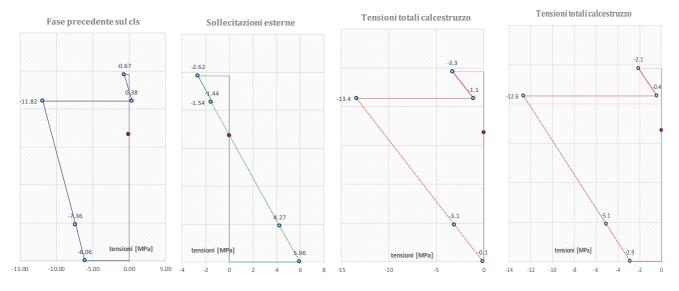

IVOI	00	D 09 CL	VI0408 002	Δ	103 di 153	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	


coefficiente di viscositò al tempo t2 della soletta	φ_0 (t,t2)	1.95	
modulo elastio soletta la tempo t2	Es (t)	33704.59	MPa
tensione nella soletta per ritiro differenziale (viscosità)	σ_{vi}	-3.60	MPa

Si ipotizza che la forza di compressione trasmessa al cassoncino sia proprio uguale alla tensione media da ritiro

quindi la forza di compressione

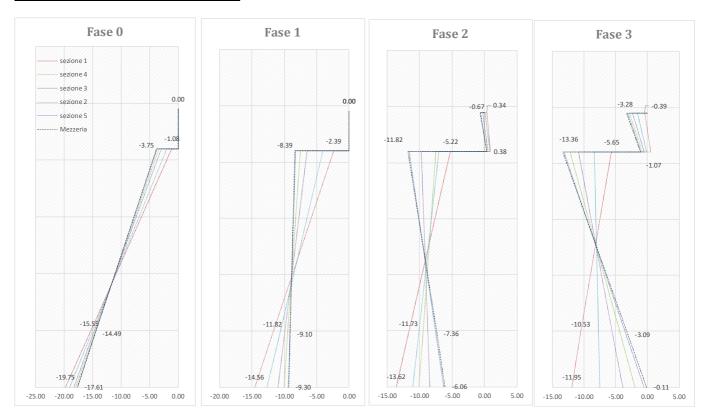
sforzo di compressione sul cassoncino	N_{ri}	-5233	kN
distanza superficie di contatto baricentro sezione	е	430.7	mm
eccentricità del cavo rispetto al baricentro della sezione	е	119.64	cm
perdita totale di precompressione nel cavo al tempo t	$\Delta\sigma_{\text{pr}(t)}$	0.00	cm
perdita di precompressione (corrisponde a trazione nel cls)	$\Delta N_{\text{pr (t)}}$	0	kN
coefficiente di omogenizzazione soletta	n	0.94	
coefficiente di omogenizzazione acciaio	n	4.37	
area della sezione omogenizzata	A_{hom2}	2.54E+06	mm^2
inerzia della sezione omogenizzata	I_{hom2}	1.84E+12	mm ⁴
tensione nel cavo a fine fase 2	σt,2	1007.21	MPa



tensione del calcestruzzo nel lembo superiore soletta tensione del calcestruzzo lembo inferiore soletta

6.1.2.2.5 Fase 3 - Carichi variabili

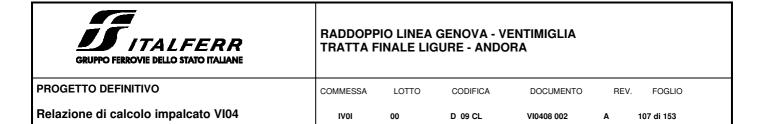
momento dovuto ai carichi da traffico tensione nel cavo a fine fase


Comb. rara

GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA FINALE LIGURE - ANDORA						
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENT	O REV.	FOGLIO	
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	105 di 153	
tensione del calcestruzzo nel lembo superiore soletta			$\sigma_{\text{cls,3}}$	-3.28	> -19.25	MPa	
tensione del calcestruzzo lembo inferiore se	oletta		$\sigma_{cls',3}$	-1.07	> -19.25	MPa	
tensione del calcestruzzo nel lembo superio	ore		$\sigma_{\text{cls,1}}$	-13.36	> -24.75	MPa	
tensione del calcestruzzo nel baricentro del cavo			$\sigma_{\text{cls'},1}$	-3.09	> -24.75	MPa	
tensione del calcestruzzo nel lembo inferiore			σcls",1	-0.11	> -24.75	MPa	
tensione nel cavo a fine fase 3			σt,F3	1,026	< 1336	MPa	
Comb. frequente							
tensione del calcestruzzo nel lembo superio	ore soletta		σcls,3	-2.1	> -14	MPa	
tensione del calcestruzzo lembo inferiore se	oletta		σcls',3	-0.4	> -14	MPa	
tensione del calcestruzzo nel lembo superio	ore		σcls,1	-12.6	> -18	MPa	
tensione del calcestruzzo nel baricentro de	l cavo		σcls',1	-5.1	> -18	MPa	
tensione del calcestruzzo nel lembo inferio	re		σcls",1	-2.9	> -18	MPa	
tensione nel cavo a fine fase 3			σt,F3	1,017	< 1336	MPa	

GRUPPO FERROVIE DELLO STATO ITALIANE			GENOVA - V GURE - ANDO				
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	106 di 153	

Riassunto verifiche sezioni intermedie



6.1.2.2.6 Verifiche a fessurazione

Secondo il §4.1.2.2.4 delle Norme Tecniche lo stato limite di formazione delle fessure si ha quando la tensione massima di trazione della sezione supera

fctm
$$/ 1.2 = 3.16$$
 MPa

È stato verificato che che il lembo inferiore della sezione non sia in trazione per i carichi considerati. Pertanto, le verifiche a fessurazione sono soddisfatte.

6.2 Stato limite ultimo – SLU

6.2.1 Verifiche a presso-flessione trave centrale

Si riporta di seguito la verifica allo SLU per presso-flessione retta per la sezione di mezzeria della trave centrale.

Si riporta inoltre la verifica dove si tiene conto dei fenomeni locali successivamente riportati.

a inoltre la verifica dove si tiene conto dei fenomeni locali succe	essivamente i	riportati.	
<u>Pesi propri e portati</u>			
momento della trave e della soletta	M_{perm}	4171	kN m
taglio della trave e della soletta	V_{perm}	852	kN
sforzo assiale della trave e della soletta	N_{perm}	0	kN
coefficiente amplificativo	Y G1	1.35	
momento dei pesi portati	M_pp	2347	kN m
taglio dei pesi portati	V_{pp}	648	kN
sforzo assiale dei pesi portati	N_{pp}	0	kN
coefficiente amplificativo	Y G2	1.5	
sforzo assiale dedotto dall'inviluppo allo SLU	$N_{Traffico}$	682	kN
taglio massimo dedotto dall'inviluppo allo SLU	$V_{Traffico}$	1575	kN
momento massimo dedotto dall'inviluppo allo SLU	$M_{Traffico}$	9276	kN m
torsione massima dedotta dall'inviluppo SLU	$T_{Traffico}$	5322	kN m
Effetti a lungo termine			
momento dovuto al ritiro differenziale	M_{ritdif}	1837	kN m
sforzo assiale dovuto al ritiro differenziale	$N_{\rm rit\ dif}$	2935	kN
coefficiente amplificativo	γ rit	1.2	
·			
resistenza passiva dei vincoli	N_{ritdif}	102.8	kN
eccentricità dal baricentro	e	147.40	cm

Perdite di precompressione

coefficiente amplificativo

1.5

γQ

tensione iniziale del cavo	σ_0	1,380	Мра
perdite totale di tensione	$\Delta\sigma_{pr}$	-386.1	Мра
recupero tensionale indotto dai pesi	$\Delta\sigma_{\text{G}}$	37.0	Мра
tensione del cavo risultante per calcolo SLU	$\sigma_{c.v}$	1031	Mpa

Riassumendo, le sollecitazioni nella condizione più gravosa (mezzeria e appoggio) per le verifiche in resistenza risultano:

M_{SLU} = 9276 + 9151 + 2431 = 20858 KN m In mezzeria

 $N_{SLU} = -681.5 + 0 + 3368 = 2686.5 \text{ KN}$

V_{SLU} = 1574.7 + 1150 + 972.06 = 3696.76 kN in appoggio

 $T_{SLU} = 5321.5 \text{ kN m}$

Si riportano di seguito le verifiche tensionali previste per gli SLU. La sezione è stata modellata per intero considerando cavi di pre-tensione aderenti al calcestruzzo. In questo modo si è potuto valutare il dominio reale di resistenza della sezione e confrontarlo con le sollecitazioni precedentemente individuate. A favore di sicurezza la sezione della soletta è relativa ai cassoni centrali e omogenizzata a lungo termine, senza considerare l'armatura lenta. Le verifiche sono state condotte con il software VCA-SLU.

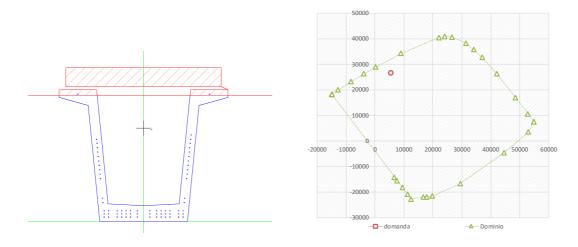


Figura 70 - Sezione e Dominio di resistenza

Momento agente = 20858 kN m

Momento resistente = 27379 kN m

Coefficiente di sicurezza = 0.76 < 1

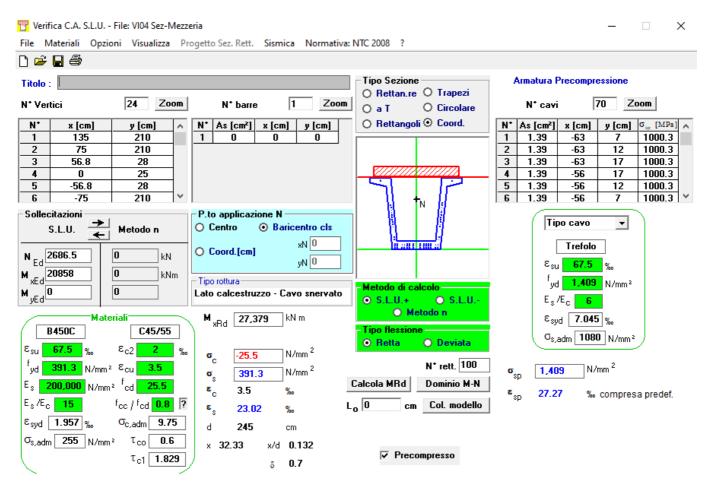


Figura 71 - Schermata di calcolo

6.2.2 Verifiche a presso-flessione trave di riva

Si riporta di seguito la verifica allo SLU per presso-flessione retta per la sezione di mezzeria della trave di riva.

Si riporta inoltre la verifica dove si tiene conto dei fenomeni locali successivamente riportati.

Pesi propri e portati

coefficiente amplificativo

momento della trave e della soletta	M_{perm}	4774	kN m
taglio della trave e della soletta	V_{perm}	0	kN
sforzo assiale della trave e della soletta	N_{perm}	0	kN
coefficiente amplificativo	Y G1	1.35	
momento dei pesi portati	M_{pp}	3593	kN m
taglio dei pesi portati	V_{pp}	0	kN
sforzo assiale dei pesi portati	N_{pp}	0	kN
coefficiente amplificativo	Y G2	1.5	

Carichi variabili

variabili			
sforzo assiale dedotto dall'inviluppo allo SLU	$N_{Traffico}$	326	kN
taglio massimo dedotto dall'inviluppo allo SLU	$V_{Traffico}$	1698	kN
momento massimo dedotto dall'inviluppo allo SLU	$M_{Traffico}$	9534	kN m
torsione massima dedotta dall'inviluppo SLU	$T_{Traffico}$	305	kN m
Effetti a lungo termine			
momento dovuto al ritiro differenziale	$M_{\text{rit dif}}$	2254	kN m
sforzo assiale dovuto al ritiro differenziale	$N_{rit\;dif}$	5233	kN
coefficiente amplificativo	γ rit	1.2	
			1
resistenza passiva dei vincoli	$N_{rit\;dif}$	102.8	kN
eccentricità dal baricentro	е	166.90	cm

1.5

γq

<u>Perdite di precompressione</u>			
tensione iniziale del cavo	σ_0	1,380	Мра
perdite totale di tensione	$\Delta\sigma_{pr}$	-395.1	Мра
recupero tensionale indotto dai pesi	$\Delta\sigma_{\text{G}}$	41.0	Мра
tensione del cavo risultante per calcolo SLU	$\sigma_{c.v}$	1026	Мра

Riassumendo, le sollecitazioni nella condizione più gravosa (mezzeria e appoggio) per le verifiche in resistenza risultano:

M_{SLU} = 9534 + 11835 + 2962 = 24331 KN m In mezzeria

 $N_{SLU} = -326.25 + 0 + 6125 = 5798.75 \text{ KN}$

 $V_{SLU} = 1697.95 + 0 + 0 = 1697.95 \text{ kN}$ in appoggio

 $T_{SLU} = 304.5 \text{ kN m}$

Si riportano di seguito le verifiche tensionali previste per gli SLU. La sezione è stata modellata per intero considerando cavi di pre-tensione aderenti al calcestruzzo. In questo modo si è potuto valutare il dominio reale di resistenza della sezione e confrontarlo con le sollecitazioni precedentemente individuate. A favore di sicurezza la sezione della soletta è relativa ai cassoni centrali e omogenizzata a lungo termine, senza considerare l'armatura lenta. Le verifiche sono state condotte con il software VCA-SLU.

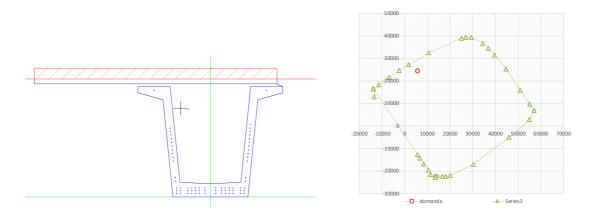


Figura 72 - Sezione e Dominio di resistenza

Momento agente = 24331 kN m

Momento resistente = 29701 kN m

Coefficiente di sicurezza = 0.82 < 1

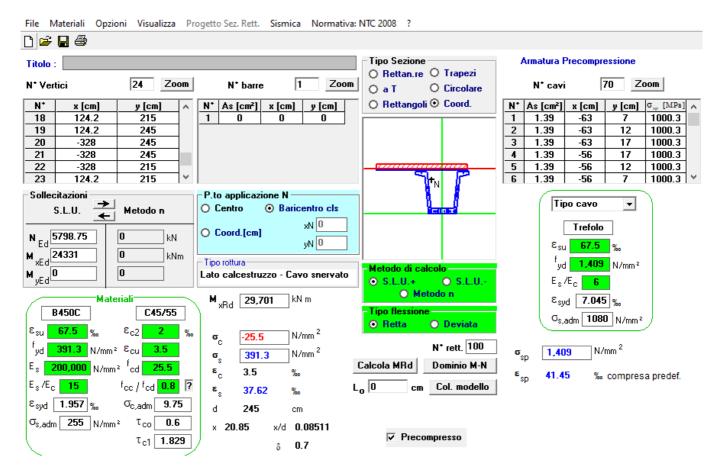


Figura 73 - Schermata di calcolo

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	113 di 153

7 TRAVERSI PRECOMPRESSI

Vengono di seguito riportate le verifiche dei traversi. La precompressione viene effettuata con due cavi da 8 trefoli 0.6" post-tesi ad una tensione di 1300 MPa, prima del getto della soletta. Si mantengono le medesime ipotesi della progettazione e verifica della trave in c.a.p.

Viene riportata per intero la procedura di verifica del traverso più sollecitato con coefficienti di sicurezza più gravosi agli stati limiti elastici e ultimi.

7.1 Sollecitazioni

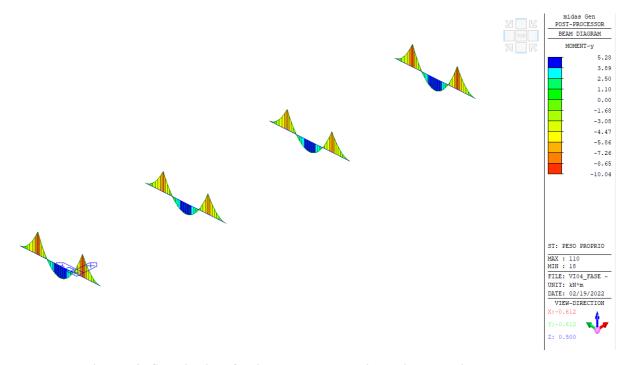


Figura 74 - Sollecitazione flessionale – peso proprio travi e traversi

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA				
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV. FOGLIO	
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A 114 di 153	

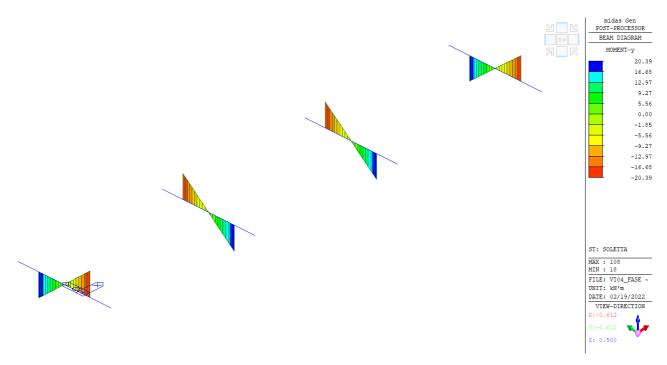


Figura 75 - Sollecitazione flessionale – peso soletta

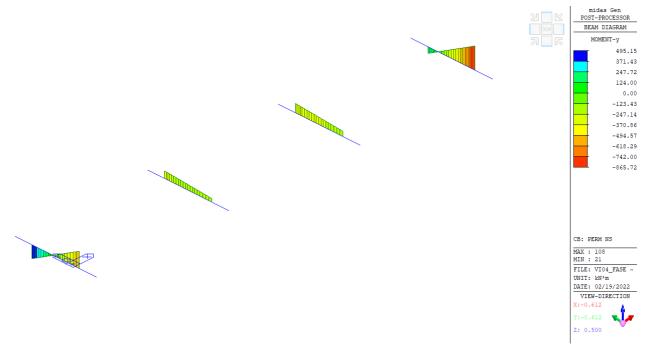


Figura 76 - Sollecitazione flessionale – carichi permanenti non strutturali

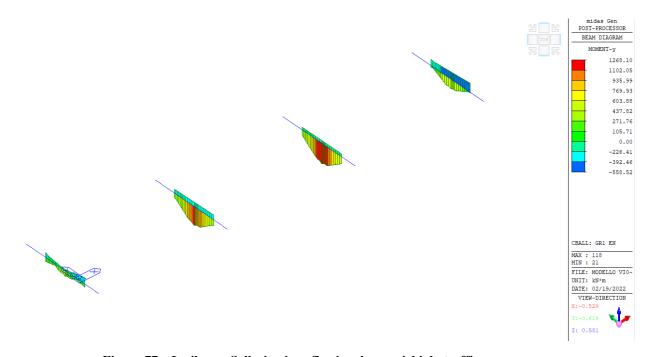


Figura 77 – Inviluppo Sollecitazione flessionale – carichi da traffico

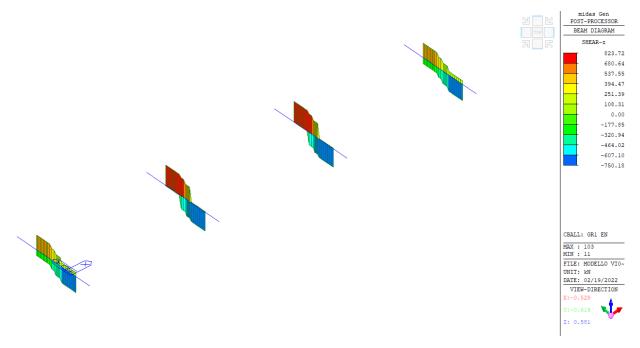


Figura 78 – Inviluppo Sollecitazione di taglio – carichi da traffico

D 09 CL

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA LOTTO CODIFICA

00

IV0I

DOCUMENTO VI0408 002

FOGLIO

116 di 153

7.2 Caratteristiche della sezione

7.2.1 Sezione iniziale

<u>Traverso</u>			
area della sezione in calcestruzzo	A_{cls}	6013	cm^2
inerzia rispetto al proprio baricentro	I _{xCLS, G}	1.68E+07	cm ⁴
inerzia rispetto al baricentro omegenizzato	I _{xCLS, hom1}	1.68E+07	cm ⁴
momento statico rispetto all'asse x	$S_{xCLS, G}$	513375	cm^3
<u>Armatura tesa</u>			
coefficiente di omogenizzazione	n _{acc}	5.79	
coefficiente di omogenizzazione di calcolo	n _{acc}	4.79	
area totale armatura tesa	A_S	22.24	cm^2
inerzia rispetto al proprio baricentro	I _{xS, G}	9.40E+04	cm ⁴
inerzia rispetto al bararicentro omegenizzato	I _{xS, hom1}	9.44E+04	cm ⁴
momento statico rispetto all'asse x	$S_{xS, G}$	2002	cm^3
<u>Sezione di Calcolo</u>			
area netta del calcestruzzo	Arls	5990.26	cm ²

area netta del calcestruzzo	Acls	5990.26	cm^2
baricentro sezione	хG	0	cm
baricentro sezione	уG	85.38462	cm
inerzia sezione netta	IxG	1.67E+07	cm ⁴
momento statico sezione netta	Sx	5.11E+05	cm ³

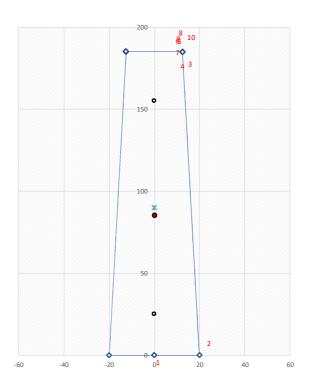


Figura 79 – Traverso - Sezione iniziale

7.2.2 Sezione composta – breve termine

<u>Soletta</u>

coefficiente di omogenizzazione di calcolo	n sol	0.94	
area della sezione in calcestruzzo	A_{sol}	2400	cm ²
inerzia rispetto al proprio baricentro	I _{xsol, G}	1.80E+05	cm ⁴
inerzia rispetto al baricentro omegenizzato	I _{xsol, hom2}	1.85E+07	cm ⁴
momento statico rispetto all'asse x	S _{xsol. G}	4.92E+05	cm ³

Sezione omogenizzata2

area omogenizzata al calcestruzzo	A_{hom2}	8373	cm^2
baricentro sezione omogenizzata	\mathbf{x}_{G}	0.00	cm
baricentro sezione omogenizzata	y G	117.64	cm
inerzia sezione omogenizzata	I_{xG}	4.10E+07	cm ⁴
momento statico sezione omogenizzata	S_{x}	9.85E+05	cm³

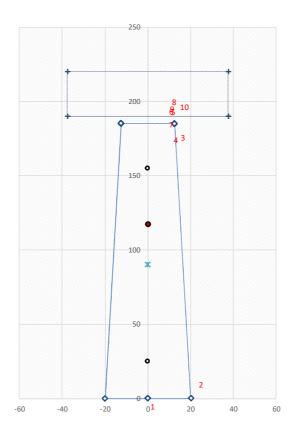


Figura 80 - sezione omogenizzata - breve termine

7.2.3 Sezione composta – lungo termine

coeffieciente di viscosità a tempo infinito cassone coeffieciente di viscosità a tempo infinito soletta

coefficiente di omogenizzazione di calcolo coefficiente di omogenizzazione di calcolo

Sezione omogenizzata3

area omogenizzata al calcestruzzo	$A_{hom3} \\$	8624	cm^2
baricentro sezione omogenizzata	\mathbf{X}_{G}	0.00	cm
baricentro sezione omogenizzata	y G	117.35	cm
inerzia sezione omogenizzata	I_{xG}	4.24E+07	cm ⁴
momento statico sezione omogenizzata	S_{x}	1.01E+06	cm^3

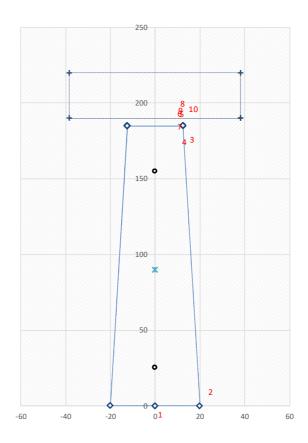


Figura 81 - sezione omogeneizzata - lungo termine

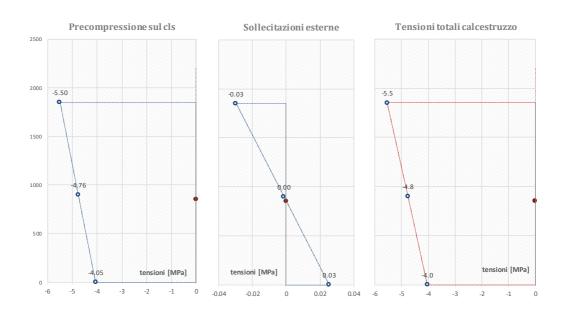
7.3 Verifiche stato limite di esercizio – SLE

7.3.1 Verifiche tensionali

7.3.1.1 Fase 0 – Post-tensione

forza di precompressione a fine tesatura	P1	2,891	KN
tensione del cavo a fine tesatura	σt,1	1,300	MPa
momento dovuto al peso proprio della trave	$M_{pp,trave}$	5	kN m
tensione nel cavo a fine fase 0	σt,F0	1,300	MPa

D 09 CL


PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

VI0408 002

120 di 153

00

IVOI

Limitazioni tensionali del calcestruzzo

tensione limite all'atto della precompressione tensione limite di esercizio a cadute avvenute	σt,1 max σt,0 max	22.49 24.75	MPa MPa	
tensione del calcestruzzo nel lembo superiore	σcls,1	-5.53	> -22.49	MPa
tensione del calcestruzzo nel baricentro del cavo	σcls',1	-4.76	> -22.49	MPa
tensione del calcestruzzo nel lembo inferiore	σ _{cls''} ,1	-4.03	> -22.49	MPa
tensione nel cavo a fine fase 0	Ot FO	1.300	< 1336	MPa

7.3.1.2 Fase 2 – Getto della soletta

momento dovuto al peso della soletta

Ritiro

giorno attuale per calcolo ritiro del cassoncino

perimetro di cls esposto all'aria dimensione fittizia pari a 2A_c/u Ac umidità relativa

IVOI

00

D 09 CL

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

VI0408 002

121 di 153

deformazione massima per essiccamento parametro per calcolo deformazione a tempo ∞ deformazione per ritiro da essiccamento a tempo ∞ coefficiente di calcolo deformazione per ritiro da essiccamento a tempo $\mathbf t$

reistenza caratteristica del cacestruzzo valore m della deformazione per ritiro autogeno

deformazione totale per ritiro variazione tensionale nel caso per effetto del ritiro

Viscosità
effetto del tipo di cemento sulla viscosità
tempo equivalente di applicazione del carico

coef. Funzione della resistenza del cls reistenza media del calcestruzzo

coef. Funzione della maturazione del cls

coef. Funzione dell u.r. e di ho

coef. Che descrive l'evoluzione viscosa

coef. Per tenere conto dell resistenza del cls

coef. Per tenere conto dell resistenza del cls

coef. Per tenere conto dell resistenza del cls

coef. Funzione dell'umidità relativa coefficiente normale di viscosità coefficiente di viscosità al tempo t0 coefficiente di viscosità al tempo t1

controllo tensione massima CLS <0.45fcm => coefficiente di viscosità di riferimento al tempo t coefficiente di viscosità di riferimento al tempo t

D 09 CL

IVOI

00

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

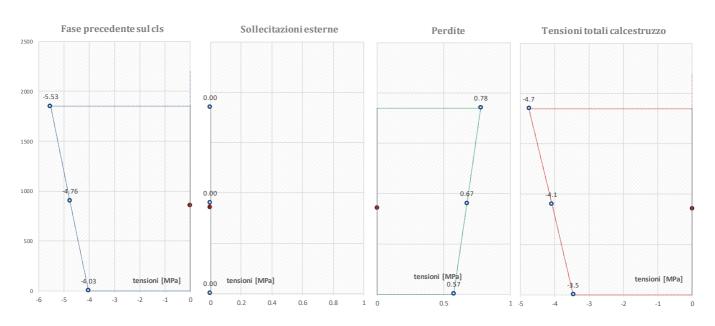
VI0408 002

122 di 153

modulo del calcestruzzo al tempo to funzione di fluage iniziale - (della sola parte viscosa) coefficiente di invecchiamento funzione di fluage incremento di carico - (della sola parte viscosa)

deformazione totale indotta dalla viscosità Gcavo

variazione tensionale nel caso per effetto della viscosità


Rilassamento

classe di armatura di precompressione percetuale di perdita a 1000h rapporto tra valore carat. e tensione

perdite per rilassamento a tempo t

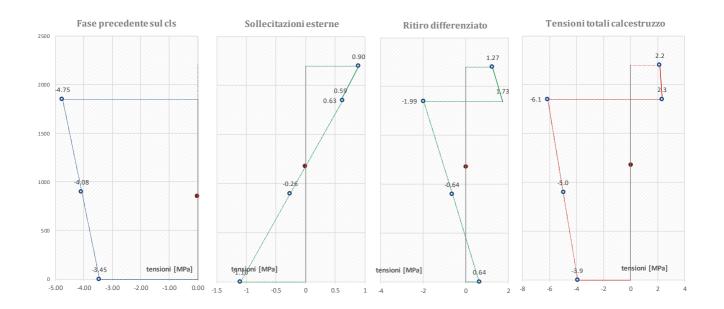
inerzia della sezione in cls	I_{cls}	1.73E+07	cm ⁴
area della sezione in cls	A_{cls}	5990	cm^2
eccentricità del cavo rispetto al baricentro cls	е	-4.62	cm
perdita totale di precompressione nel cavo al tempo t	$\Delta\sigma_{\text{pr (t)}}$	-180.09	cm
perdita di precompressione (corrisponde a trazione nel cls)	$\Delta N_{pr(t)}$	401	kN
coefficiente di omogenizzazione	n	4.79	
area della sezione netta di calcestruzzo	A_{hom1}	5.99E+05	mm^2
inerzia della sezione netta di calcestruzzo	I_{hom1}	1.67E+11	mm ⁴
tensione nel cavo a fine fase 1			

7.3.1.3 <u>Fase 2 – Permanenti non strutturali</u>			
momento dovuto al peso dei non strutturali	M_{G2}	-383	kN m
giorno attuale per calcolo delle perdite lente	t	170	giorni
perimetro di cls esposto all'aria	u	800.0	0 mm
dimensione fittizia pari a 2A _c /u Ac	h_0	600.0	0 mm
deformazione massima per essiccamento	ϵ_{c0}	-0.0003	31
parametro per calcolo deformazione a tempo ∞	\mathbf{k}_{h}	0.7	
deformazione per ritiro da essiccamento a tempo ∞	E _{cd∞}	-0.0002	82
coefficiente di calcolo	$\beta_{\text{ds}}(t,t_{\text{s}})$	0.89129	24
deformazione per ritiro da essiccamento a tempo ${f t}$	$\epsilon_{cd}(t)$	-2.5E-0)4
valore medio della deformazione per ritiro autogeno	Еса	-6.3E-0)5
	$\varepsilon_{cs} = \varepsilon_{cd}(t) +$		_
deformazione totale per ritiro	εca	-3.1E-(04
sforzo di compressione sul cassoncino	N _{ri}	-863	kN
distanza superficie di contatto baricentro sezione	е	673.6	mm
eccentricità del cavo rispetto al baricentro della sezione	e	27.64	cm
perdita totale di precompressione nel cavo al tempo t	$\Delta\sigma_{\text{pr}(t)}$	0.00	cm

CODIFICA

DOCUMENTO

2.16


FOGLIO

LOTTO

PROGETTO DEFINITIVO

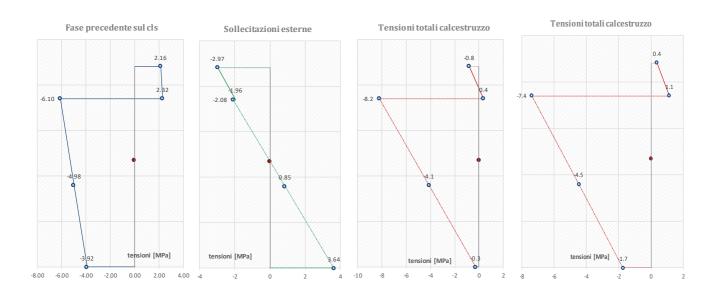
COMMESSA Relazione di calcolo impalcato VI04 IV0I D 09 CL VI0408 002 124 di 153 00 Α


perdita di precompressione (corrisponde a trazione nel cls)	$\Delta N_{\text{pr (t)}}$	0	kN
coefficiente di omogenizzazione soletta coefficiente di omogenizzazione acciaio	n n	0.94 4.79	
area della sezione netta di calcestruzzo	A_{hom2}	8.37E+05	mm^2
inerzia della sezione netta di calcestruzzo	I _{hom2}	4.10E+11	mm ⁴
tensione nel cavo a fine fase 2	σt,2	1115.61	MPa

tensione del calcestruzzo nel lembo superiore soletta

< 2.57 MPa σcls,3

2.32 tensione del calcestruzzo lembo inferiore soletta < 2.57 MPa σcls',3



kN m

MPa

7.3.1.4 Fase 3 – Carichi variabili

 M_{Q} momento dovuto ai carichi da traffico 1268 tensione nel cavo a fine fase 1119.70 σt3

Combinazione rara

tensione del calcestruzzo nel lembo superiore soletta tensione del calcestruzzo lembo inferiore soletta tensione del calcestruzzo nel lembo superiore tensione del calcestruzzo nel baricentro del cavo tensione del calcestruzzo nel lembo inferiore tensione nel cavo a fine fase 3	Gcls,3 Gcls',3 Gcls,1 Gcls',1 Gcls'',1 Gt,F3	-0.81 0.37 -8.19 -4.13 -0.28 1,120	> -19.25 < 2.67 > -24.75 > -24.75 > -24.75 < 1336	MPa MPa MPa MPa MPa MPa
Combinazione frequente				
tensione del calcestruzzo nel lembo superiore soletta	σcls,3	0.4	< 2.67	MPa
tensione del calcestruzzo lembo inferiore soletta	σcls',3	1.1	< 2.67	MPa
tensione del calcestruzzo nel lembo superiore	σcls,1	-7.4	> -18	MPa
tensione del calcestruzzo nel baricentro del cavo	σcls',1	-4.5	> -18	MPa
tensione del calcestruzzo nel lembo inferiore	σcls'',1	-1.7	> -18	MPa
tensione nel cavo a fine fase 3	σt,F3	1,118	< 1336	MPa

7.3.2 Verifica a fessurazione

Le combinazioni SLE Frequenti presentano sollecitazioni inferiori a quelle delle combinazioni Rare analizzate nelle verifiche tensionali sopra riportate.

Secondo il \$4.1.2.2.4.1 delle Norme Tecniche lo stato limite di formazione delle fessure si ha quando la tensione massima di trazione della sezione supera fctm / 1.2 = 3.16 Mpa.

Si ha quindi che le combinazioni frequenti non portano mai alla formazione di fessure in quanto già nelle combinazioni RARE la tensione massima non supera il valore sopra riportato.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	127 di 153

7.3.3 Verifica a sollevamento

Si esegue la verifica del traverso in condizioni di sollevamento necessario ai fini dell'eventuale sostituzione degli apparecchi d'appoggio. Durante tale operazione si considerano agenti i carichi dei pesi propri della trave, della soletta e i carichi permanenti portanti. Il sollevamento avviene mediante 4 martinetti. Considerando lo schema riportato di seguito, si valutano le sollecitazioni e si verifica lo stato tensionale del traverso in appoggio secondo i precedenti capitolo.

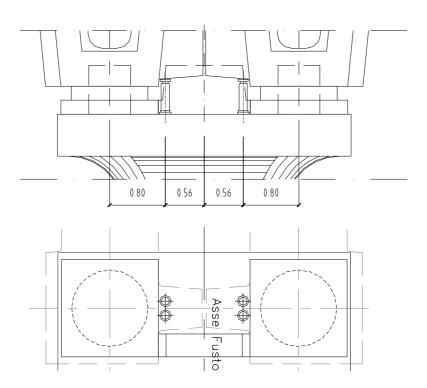


Figura 82: Schema sollevamento impalcato

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	128 di 153

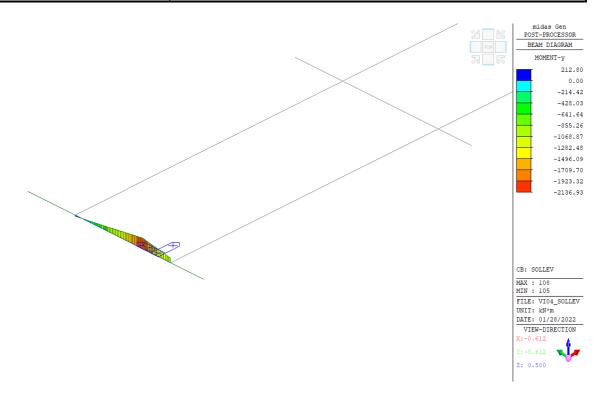
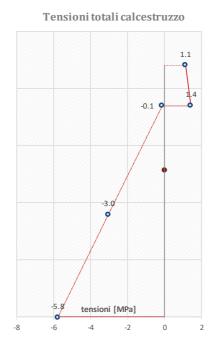



Figura 83: Sollecitazione flessionale sollevamento

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A	129 di 153

tensione del calcestruzzo nel lembo superiore soletta	$\sigma_{cls,3}$	1.13	< 2.3	MPa
tensione del calcestruzzo lembo inferiore soletta	σ _{cls',3}	1.43	< 2.3	MPa
tensione del calcestruzzo nel lembo superiore	$\sigma_{\text{cls,1}}$	-0.14	> -24.75	MPa
tensione del calcestruzzo nel baricentro del cavo	σ _{cls',1}	-3.03	> -24.75	MPa
tensione del calcestruzzo nel lembo inferiore	σcls",1	-5.76	> -24.75	MPa
tensione nel cavo a fine fase 3	σt.F3	958	< 1336	MPa

7.4 Verifiche stato limite ultimo - SLU

7.4.1 Verifiche a presso-flessione

Si riportano di seguito le verifiche tensionali previste per gli SLU. La sezione è stata modellata per intero considerando cavi di post-tensione aderenti al calcestruzzo.

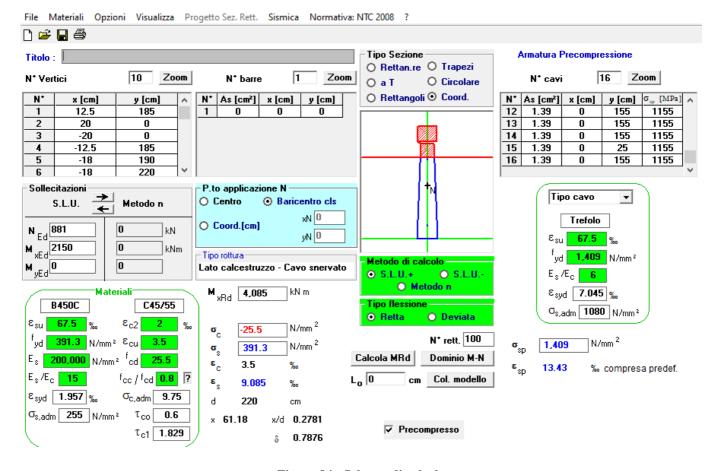


Figura 84 - Schema di calcolo

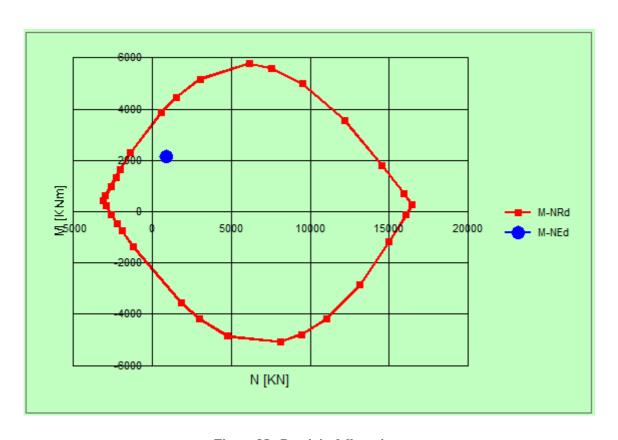


Figura 85 - Dominio della sezione

7.4.2 Verifica a taglio

Caratteristiche dei materiali:

Resistenza caratteristica a compressione cubica cls
Resistenza caratteristica a compressione cilindrica cls
Resistenza di calcolo a compressone del cls
Resistenza di calcolo a trazione dell'acciaio

Sollecitazioni di verifica (S.L.U.):

Valore di calcolo dello sforzo di taglio agente $Valore \ di \ calcolo \ della \ forza \ assiale \ associata \ a \ V_{Ed}$ $Valore \ di \ calcolo \ del \ momento \ flettente \ associato \ a \ V_{Ed}$

R _{ck}	=	55	N/mm²
f _{ck}	=	46	N/mm²
f _{cd}	=	25.87	N/mm²
f _{yd}	=	391.30	N/mm²
V _{Ed} N (V _{Ed})	=	1323.00	kN kN
M (V _{Ed})	=	0.00	kNm

Caratteristiche geometriche della sezione:

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IVOI	00	D 09 CL	VI0408 002	Α	131 di 153

 $V_{Rd} = 2384.05 \text{ kN}$

Altezza utile della sezione Larghezza minima della sezione	d b _w	=	1750 250	mm mm
Armatura della sezione in zona tesa:				
Diametro ferri longitudinali	Ø	=	10	mm
Numero tondini longitudinali utilizzati	n	=	22	
Area totale di armatura longitudinale in zona tesa	A_{sl}	=	1738	$\rm mm^2$
Rapporto geometrico dell'armatura longitudinale (≤ 0.02)	ρι	=	0.0040	

VERIFICA SENZA ARMATURA TRASVERSALE RESISTENTE A TAGLIO

Resistenza ultima a taglio (V _{Rd} ≥ V _{Rd,min})	V_{Rd}	=	184.56	kN
Resistenza ultima a taglio minima	$V_{Rd,min}$	=	160.13 184.56	kN
Tensione media di compressione nella sezione (≤ 0.2×f _{cd})	$\sigma_{\sf cp}$	=	0.00	N/mm²
Tensione dipendente dal fattore k e dalla resistenza del cls	V _{min}	=	0.37	N/mm²
Fattore dipendente dall'altezza utile della sezione (≤ 2)	k	=	1.34	

VERIFICA NON SODDISFATTA:

occorre procedere al dimensionamento dell'armatura trasversale resistente a taglio.

VERIFICA CON ARMATURA TRASVERSALE RESISTENTE A TAGLIO

Armatura	aggiuntiva	resistent	e a	taglio:
----------	------------	-----------	-----	---------

Angolo di inclinazione armatura trasv. su asse dell'elemento	α	=	90	0
Diametro ferri a taglio	Øsw	=	16	mm
Numero dei bracci in sezione trasversale	n _{sw}	=	2	
Passo in direzione asse elemento	s	=	150	mm
Area totale di armatura a taglio	A_{sw}	=	402	mm²
Fattori di resistenza a compressione:				
Controllo duttilità (SI = duttile)	4.19	<	12.93	SI
Angolo di inclinazione dei puntoni di cls	θ	=	34.71	0
Resistenza a compressione ridotta del cls d'anima	f 'cd	=	12.93	N/mm²

	- cu	_		,
Tensione media di compressione nella sezione	$\sigma_{\sf cp}$	=	0.00	N/mm ²
Coefficiente maggiorativo per membrature compresse	αc	=	1.00	
Resistenza di calcolo a "taglio trazione" dell'armatura	V_{Rsd}	=	2384.05	kN
Resistenza di calcolo a "taglio compressione" del cls	V _{Rcd}	=	2384.05	kN

Resistenza ultima a taglio *VERIFICA SODDISFATTA.*

8 EFFETTI LOCALI

L'analisi degli effetti locali è stata condotta su un modello di calcolo agli E.F. a telaio che discretizza un tronco di impalcato di larghezza unitaria in corrispondenza della sezione trasversale corrente.

8.1 SOLETTA

8.1.1 Modellazione

La soletta superiore in c.a. è formata in opera su predalle prefabbricate autoportanti disposte all'estradosso delle travi in c.a.p. in corrispondenza dei martelli superiori e su banchinaggio continuo alle estremità degli sbalzi.

La soletta ha uno spessore complessivo variabile da 35.0 cm ai bordi fino a 41.0 cm in mezzeria per garantire la pendenza trasversale del 1.5% e presenta uno spessore medio del getto in opera di 38 cm.

I tratti delle anime verticali comprese fra il raccordo inferiore e il martello superiore hanno uno spessore costanti pari a 16 cm; la contro-soletta ha uno spessore variabile, che nella sezione di mezzeria, è pari a un minimo di 25.0 cm in asse alla trave, fino ad un valore massimo di 28.0 cm nelle zone di raccordo con le anime verticali.

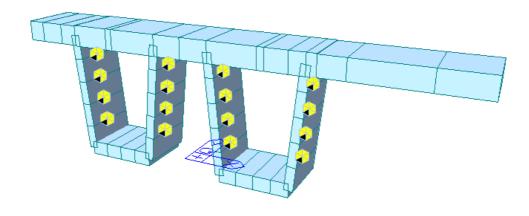


Figura 86 - Sezione trasversale dell'impalcato

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	_	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV. FOGLIO		
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A 133 di 153		

I vincoli del modello sono costituiti da molle elastiche concentrate nei nodi dei frames che discretizzano le nervature dei cassoni prefabbricati; le molle elastiche ubicate in corrispondenza delle nervature fanno insorgere reazioni verticali in tutto simili alle azioni taglianti effettivamente agenti sul tronco di impalcato oggetto della discretizzazione strutturale. A tal scopo è stata preventivamente calcolata la freccia in mezzeria dell'impalcato sottoposto ad un puntuale di 400 kN; è risultato:

 $f \approx 0.85 \text{ mm}.$

Se si ammette di operare con il tronco centrale dell'impalcato, la rigidezza complessiva delle molle elastiche vale:

$$K_y = 400 / 0.85 = 470.6 \text{ kN/mm}.$$

Poiché si opera con 16 molle (nodi presenti nelle nervature) si assume:

$$K_{y,i} = 470.6 / 16 = 29.4 \text{ kN/mm}.$$

Sempre nei nodi si inseriscono molle orizzontali:

$$K_{x,i} = 20 \text{ x Ky,i} = 588.2 \text{ kN/mm,}$$

che simulano un elevato (e fisicamente corretto) ritegno elastico trasversale del reticolo.

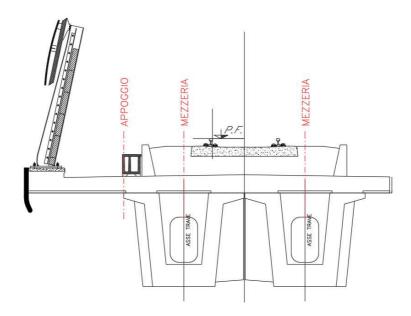


Figura 87 - Schema sezioni di verifica

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV. FOGLIO	
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A 134 di 153	

8.1.2 Sollecitazioni

Si riportano di seguito gli inviluppi delle sollecitazioni riscontrate nella sezione di verifica, dovute ai carichi elementari precedentemente descritti.

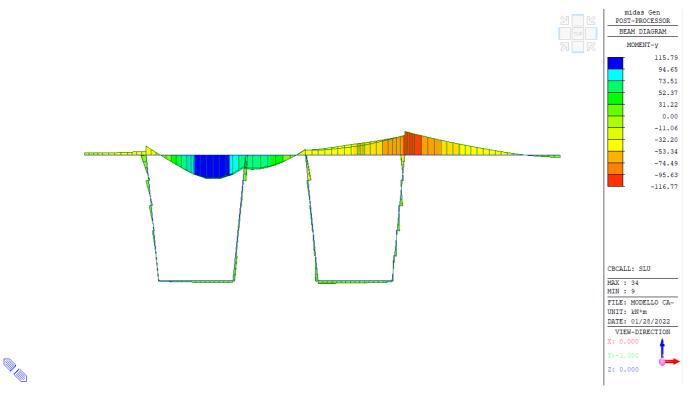


Figura 88 - Sollecitazione flessionale - SLU

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA						
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato VI04	IV0I	00	D 09 CL	VI0408 002	Α	135 di 153	

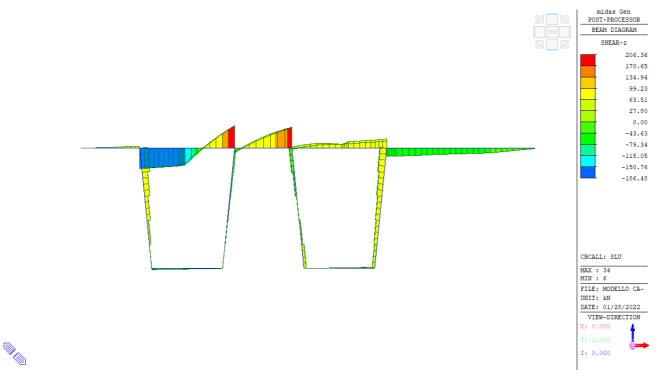


Figura 89 - Sollecitazione di taglio - SLU

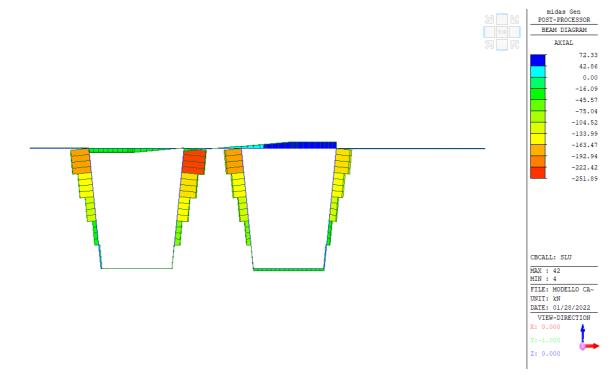


Figura 90 - Sollecitazione assiale - SLU

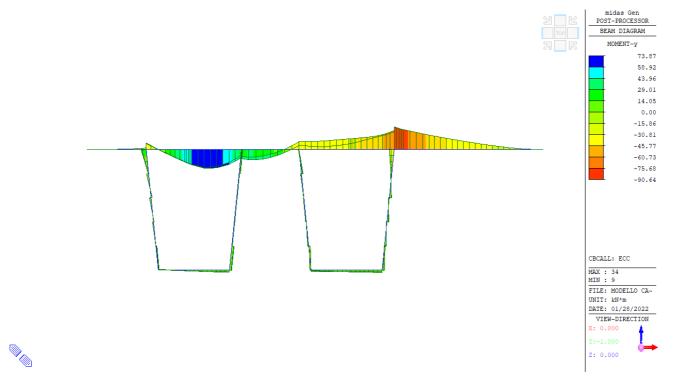


Figura 91 - Sollecitazione flessionale - comb. eccezionale

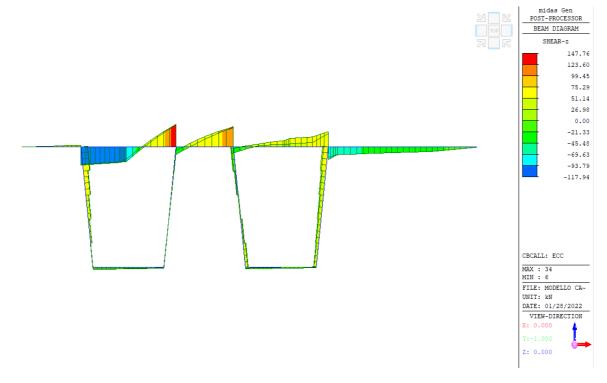


Figura 92 - Sollecitazione di taglio - comb. Eccezionale

GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV. FOGLIO	
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	A 137 di 153	

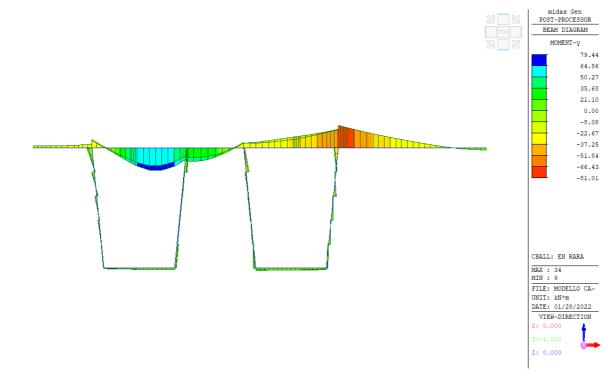


Figura 93 - Sollecitazione flessionale - combinazione rara

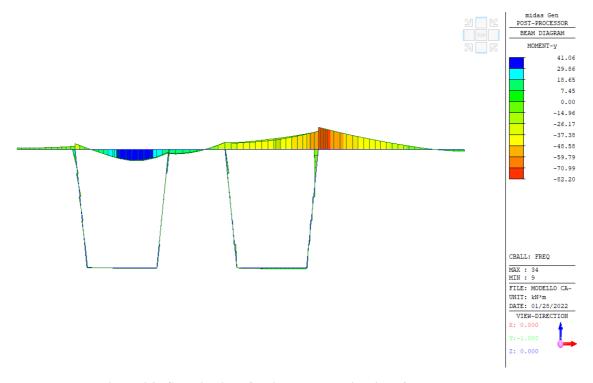


Figura 94 - Sollecitazione flessionale – combinazione frequente

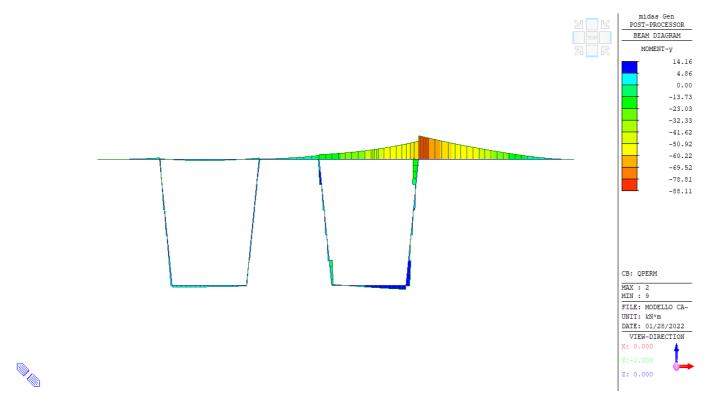


Figura 95 - Sollecitazione flessionale – combinazione quasipermanente

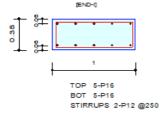
8.1.3 Verifiche sezione in mezzeria

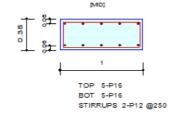
8.1.3.1 <u>Verifica a pressoflessione</u>

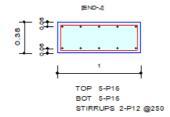
L'armatura ordinaria sulla soletta risulta essere:

 \emptyset 16/20 strato sup.

 \emptyset 16/20 strato inf.




1. Design Information


Design Code Eurocode2:04 & NTC2018 Unit System kN, m

Material Data fck = 30000, fyk = 450000, fyw = 450000 KPa

 Section Property
 100x38 (No : 1)
 Beam Span
 0.888292m

2. Bending Moment Capacity

	END-I	MID	END-J
(-) Load Combination No.	6-	6-	6-
Moment (M_Ed)	116.77	113.65	107.50
Factored Strength (M_Rd)	127.46	127.46	127.46
Check Ratio (M_Ed/M_Rd)	0.9161	0.8916	0.8434
Neutral Axis (x/d)	0.1418	0.1418	0.1418
(+) Load Combination No.	6+	6+	6+
Moment (M_Ed)	115.61	115.79	95.90
Factored Strength (M_Rd)	127.46	127.46	127.46
Check Ratio (M_Ed/M_Rd)	0.9070	0.9085	0.7524
Neutral Axis (x/d)	0.1418	0.1418	0.1418
Using Rebar Top (As_top)	0.0010	0.0010	0.0010
Using Rebar Bot (As_bot)	0.0010	0.0010	0.0010

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI0408 002
 A 140 di 153

8.1.3.2 Verifica a Taglio

Sono state inserite spille $\phi 12/20x30$.

Caratteristiche dei materiali:

Resistenza caratteristica a compressione cubica cls	R _{ck}	=	45	N/mm²
Resistenza caratteristica a compressione cilindrica cls	f _{ck}	=	37	N/mm²
Resistenza di calcolo a compressone del cls	f _{cd}	=	21.17	N/mm²
Resistenza di calcolo a trazione dell'acciaio	f _{yd}	=	391.30	N/mm²
Sollecitazioni di verifica (S.L.U.):				
Valore di calcolo dello sforzo di taglio agente	V_{Ed}	=	206.00	kN
Valore di calcolo della forza assiale associata a V_{Ed}	N (V _{Ed})	=	0.00	kN
Valore di calcolo del momento flettente associato a V_{Ed}	M (V _{Ed})	=	0.00	kNm
Caratteristiche geometriche della sezione:				
Altezza utile della sezione	d	=	320	mm
Larghezza minima della sezione	b _w	=	1000	mm
Armatura della sezione in zona tesa:				
Diametro ferri longitudinali	Ø	=	16	mm
Numero tondini longitudinali utilizzati	n	=	5	
Area totale di armatura longitudinale in zona tesa	A _{sl}	=	1005	mm²
Rapporto geometrico dell'armatura longitudinale (≤ 0.02)	ρι	=	0.0031	

VERIFICA SENZA ARMATURA TRASVERSALE RESISTENTE A TAGLIO

Fattore dipendente dall'altezza utile della sezione (≤ 2)	k	=	1.79	
Tensione dipendente dal fattore k e dalla resistenza del cls	V_{min}	=	0.51	N/mm²
Tensione media di compressione nella sezione (≤ 0.2×fcd)	σср	=	0.00	N/mm²
Resistenza ultima a taglio minima	$V_{Rd,min}$	=	164.00	kN
Resistenza ultima a taglio (V _{Rd} ≥ V _{Rd,min})	V_{Rd}	=	164.00	kN

VERIFICA NON SODDISFATTA:

occorre procedere al dimensionamento dell'armatura trasversale resistente a taglio.

VERIFICA CON ARMATURA TRASVERSALE RESISTENTE A TAGLIO

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	RE	V. FOGLIO
IVOI	00	D 09 CL	VI0408 002	Α	141 di 153

Armatura aggiuntiva resistente a taglio:

α	=	90	0
$\emptyset_{\sf sw}$	=	12	mm
n_{sw}	=	5	
S	=	300	mm
\mathbf{A}_{sw}	=	565	mm²
0.74	<	10.58	SI
θ	=	22.00	0
f 'cd	=	10.58	N/mm²
$\sigma_{\sf cp}$	=	0.00	N/mm²
$lpha_{ m c}$	=	1.00	
l v		E0E 00	LANI
	=		kN
V_{Rcd}	=	1058.58	kN
V_{Rd}	=	525.32	kN
	Øsw nsw S Asw 0.74 θ f'cd σcp αc VRsd	$\begin{array}{cccc} \varnothing_{\text{sw}} & = & \\ n_{\text{sw}} & = & \\ s & = & \\ A_{\text{sw}} & = & \\ \end{array}$ $\begin{array}{cccc} 0.74 & < & \\ \theta & = & \\ f'_{\text{cd}} & = & \\ \sigma_{\text{cp}} & = & \\ \alpha_{\text{c}} & = & \\ V_{\text{Rcd}} & = & \\ \end{array}$	

VERIFICA SODDISFATTA.

8.1.3.3 Verifiche agli Stati Limite di Esercizio

2. Stress Check

	END)-I	MIC	MID		MID		L-J
	Concrete	Rebar	Concrete	Rebar	Concrete	Rebar		
(-) Load Combination No.	12(Q)	12(Q)	12(Q)	12(Q)	12(Q)	12(Q)		
Stress(s)	3.38	28.17	3.30	27.48	3.13	26.10		
Allowable Stress(sa)	18.00	360.00	18.00	360.00	18.00	360.00		
Stress Ratio(s/sa)	0.1878	0.0783	0.1832	0.0763	0.1740	0.0725		
(+) Load Combination No.	9(C)	9(C)	9(C)	9(C)	9(C)	9(C)		
Stress(s)	3.05	25.38	3.05	25.40	2.52	21.00		
Allowable Stress(sa)	18.00	360.00	18.00	360.00	18.00	360.00		
Stress Ratio(s/sa)	0.1692	0.0705	0.1693	0.0706	0.1400	0.0583		

3. Check Linear Creep

	END-I	MID	END-J	
(-) Load Combination No.	12(Q)	12(Q)	12(Q)	
Stress(s)	3.38	3.30	3.13	
Allowable Stress(sa)	13.50	13.50	13.50	
Stress Ratio(s/sa)	0.2504	0.2442	0.2320	
Result	Linear Creep	Linear Creep	Linear Creep	
(+) Load Combination No.	12(Q)	12(Q)	12(Q)	
Stress(s)	0.16	0.16	0.16	
Allowable Stress(sa)	13.50	13.50	13.50	
Stress Ratio(s/sa)	0.0121	0.0121	0.0121	
Result	Linear Creep	Linear Creep	Linear Creep	

4. Crack Control

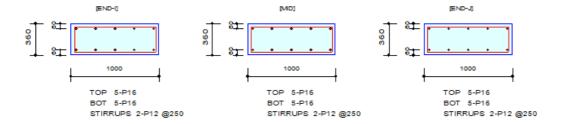
	END-I	MID	END-J	
(-) Load Combination No.	12(Q)	12(Q)	12(Q)	
Crack Width(w)	0.04	0.04	0.04	
Allowable Crack Width(wa)	0.20	0.20	0.20	
Check Ratio(w/wa)	0.1910	0.1863	0.1770	
(+) Load Combination No.	11(F)	11(F)	11(F)	
Crack Width(w)	0.02	0.02	0.01	
Allowable Crack Width(wa)	0.20	0.20	0.20	
Check Ratio(w/wa)	0.0890	0.0890	0.0725	

8.1.4 Verifiche sezione sullo sbalzo

8.1.4.1 Verifica a pressoflessione

L'armatura ordinaria sulla soletta risulta essere:

Ø16/20 arm. sup.


 \emptyset 16/20 arm. inf.

1. Design Information

Design Code Eurocode2:04 & NTC2018 Unit System N, mm

Material Data fck = 30, fyk = 450, fyw = 450 MPa

Section Property 100x36 (No : 4) Beam Span 1232.5mm

2. Bending Moment Capacity

	END-I	MID	END-J
(-) Load Combination No.	6-	6-	6-
Moment (M_Ed)	104460945.73	96428259.08	80959600.16
Factored Strength (M_Rd)	119809051.77	119809051.77	119809051.77
Check Ratio (M_Ed/M_Rd)	0.8719	0.8048	0.6757
Neutral Axis (x/d)	0.1514	0.1514	0.1514
(+) Load Combination No.	8-	6-	6-
Moment (M_Ed)	0.00	8956500.00	10647000.00
Factored Strength (M_Rd)	119809051.77	119809051.77	119809051.77
Check Ratio (M_Ed/M_Rd)	0.0000	0.0748	0.0889
Neutral Axis (x/d)	0.1514	0.1514	0.1514
Using Rebar Top (As_top)	1005.0000	1005.0000	1005.0000
Using Rebar Bot (As_bot)	1005.0000	1005.0000	1005.0000

PROGETTO DEFINITIVO

Relazione di calcolo impalcato VI04

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 09 CL
 VI0408 002
 A 144 di 153

8.1.4.2 Verifica a Taglio

Caratteristiche dei materiali:

Resistenza caratteristica a compressione cubica cls	R _{ck}	=	45	N/mm²
Resistenza caratteristica a compressione cilindrica cls	f _{ck}	=	37	N/mm²
Resistenza di calcolo a compressone del cls	f _{cd}	=	21.17	N/mm²
Resistenza di calcolo a trazione dell'acciaio	f yd	=	391.30	N/mm²
Sollecitazioni di verifica (S.L.U.):				
Valore di calcolo dello sforzo di taglio agente	V_{Ed}	=	72.00	kN
Valore di calcolo della forza assiale associata a V _{Ed}	N (V _{Ed})	=	0.00	kN
Valore di calcolo del momento flettente associato a V _{Ed}	M (V _{Ed})	=	0.00	kNm
Caratteristiche geometriche della sezione:				
Altezza utile della sezione	d	=	280	mm
Larghezza minima della sezione	b _w	=	1000	mm
Armatura della sezione in zona tesa:				
Diametro ferri longitudinali	Ø	=	16	mm
Numero tondini longitudinali utilizzati	n	=	5	
Area totale di armatura longitudinale in zona tesa	A _{sl}	=	1005	mm²
Rapporto geometrico dell'armatura longitudinale (≤ 0.02)	ρι	=	0.0036	

VERIFICA SENZA ARMATURA TRASVERSALE RESISTENTE A TAGLIO

Fattore dipendente dall'altezza utile della sezione (≤ 2)	k	=	1.85	
Tensione dipendente dal fattore k e dalla resistenza del cls	V _{min}	=	0.54	N/mm²
Tensione media di compressione nella sezione ($\leq 0.2 \times f_{cd}$)	$\sigma_{\sf cp}$	=	0.00	N/mm ²
Resistenza ultima a taglio minima	$V_{Rd,min}$	=	150.11	kN
Resistenza ultima a taglio (V _{Rd} ≥ V _{Rd,min})	V_{Rd}	=	150.11	kN

VERIFICA SODDISFATTA:

non occorre armatura trasversale resistente a taglio.

8.1.4.3 Verifiche agli Stati Limite di Esercizio

2. Stress Check

	END)-I	MID		END-J	
	Concrete	Rebar	Concrete	Rebar	Concrete	Rebar
(-) Load Combination No.	12(Q)	12(Q)	12(Q)	12(Q)	12(Q)	12(Q)
Stress(s)	3.40	27.60	3.16	25.65	2.70	21.92
Allowable Stress(sa)	18.00	360.00	18.00	360.00	18.00	360.00
Stress Ratio(s/sa)	0.1888	0.0767	0.1755	0.0713	0.1499	0.0609
(+) Load Combination No.	12(Q)	12(Q)	10(C)	10(C)	10(C)	10(C)
Stress(s)	0.00	0.00	0.25	2.07	0.30	2.46
Allowable Stress(sa)	0.00	0.00	18.00	360.00	18.00	360.00
Stress Ratio(s/sa)	0.0000	0.0000	0.0141	0.0057	0.0169	0.0068

3. Check Linear Creep

	END-I	MID	END-J
(-) Load Combination No.	12(Q)	12(Q)	12(Q)
Stress(s)	3.40	3.16	2.70
Allowable Stress(sa)	13.50	13.50	13.50
Stress Ratio(s/sa)	0.2517	0.2340	0.1999
Result	Linear Creep	Linear Creep	Linear Creep
(+) Load Combination No.	12(Q)	12(Q)	12(Q)
Stress(s)	0.00	0.00	0.00
Allowable Stress(sa)	0.00	0.00	0.00
Stress Ratio(s/sa)	0.0000	0.0000	0.0000

4. Crack Control

	END-I	MID	END-J	
(-) Load Combination No.	12(Q)	12(Q)	12(Q)	
Crack Width(w)	0.04	0.03	0.03	
Allowable Crack Width(wa)	0.20	0.20	0.20	
Check Ratio(w/wa)	0.1805	0.1678	0.1433	
(+) Load Combination No.	12(Q)	11(F)	11(F)	
Crack Width(w)	0.00	0.00	0.00	
Allowable Crack Width(wa)	0.00	0.20	0.20	
Check Ratio(w/wa)	0.0000	0.0108	0.0134	

9 VERIFICA DEFORMAZIONI TORSIONALI (SGHEMBO)

La condizione più severa si realizza in corrispondenza della zona di appoggio dell'impalcato. Di seguito si riporta la verifica di sghembo, riferita agli abbassamenti massimi riscontrati nella soletta di impalcato. I valori degli abbassamenti massimi, rilevati in nodi posti in posizioni coerenti con quanto prevede la normativa per tale tipo di verifica, sono:

 $\delta_v = 1.91 \text{ mm}$

 $\delta_2 = 0.56 \text{ mm}$

Figura 96 - Sghembo ammissibile

Lo sghembo, amplificato dinamicamente, è pari a:

$$t \cong \Phi_2 \times [(\delta_2 - \delta_1)] = 1.569 \text{ x } (1.91 - 0.56) = 0.988 \text{ mm}/3\text{m}$$

Il valore di t appena calcolato è inferiore al valore limite previsto dalla normativa e pari a 3 mm/3m per il caso 120 < $V_{max} \le 200$ km/h.

GRUPPO FERROVIE DELLO STATO ITALIANE	_	RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
PROGETTO DEFINITIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato VI04	IVOI	00	D 09 CL	VI0408 002	Α	147 di 153	

10 SCARICHI IMPALCATO

Di seguito si riporta la valutazione degli scarichi sui dispositivi di appoggio da impiegare per la tipologia di impalcati oggetto del presente documento e le relative escursioni.

10.1 Valutazione dell'azione sugli appoggi

Nel seguito si riepilogano i valori delle azioni sugli appoggi per effetto dei carichi descritti in precedenza. Ove opportuno, i valori delle singole azioni elementari sono state arrotondate per eccesso, a partire dai valori di calcolo derivati dagli scenari di carico considerati.

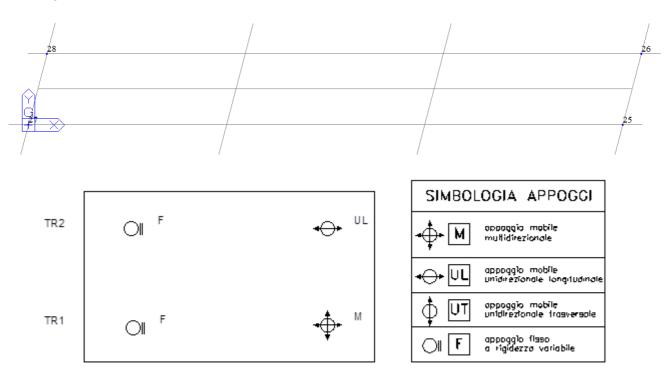


Figura 97 – Schema degli appoggi

Tabella 4 - Scarichi delle condizioni elementari – lato appoggi fissi

	27			28			
	Fisso			Fisso			
	N (kN)	T _{long} (kN)	T _{trasv} (kN)	N (kN)	T _{long} (kN)	T _{trasv} (kN)	
Peso proprio	409	0	1	433	0	-1	
Soletta	491	-4	0	330	4	0	
Perm NS	1058	18	340	-14	-18	-338	
Treno scarico	62	0	19	52	0	-19	
LM71*a*Phi	1161	-5	311	1161	5	-310	
SW2*Phi	1264	3	340	1181	-3	-340	
Centrifuga	0	0	0	0	0	0	
Serp LM71	0	0	-33	0	0	-22	
Serp SW/2	0	0	-30	0	0	-20	
Avv LM71	-17	-494	-92	-12	-334	86	
Avv SW/2	-15	-449	-83	-11	-304	79	
Fren LM71	-10	-299	-56	-7	-202	52	
Fren SW/2	-9	-272	-51	-7	-184	48	
Fw_vento	-101	-1	-115	198	1	-97	
Deragliamento	1338	12	270	527	-12	-269	

Tabella 5 - Scarichi delle condizioni elementari - lato appoggi mobili

	26			25		
	UL			M		
	N (kN)	T _{long} (kN)	T _{trasv} (kN)	N (kN)	T _{long} (kN)	T _{trasv} (kN)
Peso proprio	432	0	0	408	0	0
Soletta	330	0	0	490	0	0
Perm NS	-15	0	-2	1060	0	0
Treno scarico	52	0	0	62	0	0
LM71*a*Phi	1161	0	1	1161	0	0
SW2*Phi	1181	0	0	1265	0	0
Centrifuga	0	0	0	0	0	0
Serp LM71	0	0	-55	0	0	0
Serp SW/2	0	0	-50	0	0	0
Avv LM71	12	0	5	17	0	0
Avv SW/2	11	0	5	15	0	0
Fren LM71	7	0	3	10	0	0
Fren SW/2	7	0	3	9	0	0
Fw_vento	198	0	-212	-101	0	0
Deragliamento	526	0	-1	1327	0	0

Tabella 6 – Scarichi massimi di combinazione a seconda della tipologia di appoggio

	Fisso				
	N (kN) T_{long} (kN) T_{trasv} (kN)				
EN SLU	4394	-491	1524		

	Fisso				
	N (kN) T_{long} (kN) T_{trasv} (kN)				
EN SLV	2024	209	1065		

	UL			
	N (kN) T long (kN) T trasv (kN			
EN SLU	3142	0	-383	

	UL			
	N (kN)	T _{long} (kN)	T _{trasv} (kN)	
EN SLV	1023	0	-1044	

	M			
	N (kN)	T _{long} (kN)	T _{trasv} (kN)	
EN SLU	4398	0	0	

	M			
	N (kN)	T _{long} (kN)	T _{trasv} (kN)	
EN SLV	2027	0	0	

11 VARCHI E GIUNTI

Per il calcolo dell'escursione totale dei giunti E_L sono stati assunti i valori minimi degli spostamenti indicati nel §2.3.2.1.5 del MDP RFI. Gli spostamenti ottenuti da calcolo sono infatti risultati minori.

$$E_L \ge 2.3 \cdot \frac{L}{1000} + 0.073$$
 e $E_L \ge 0.10m$ per le zone classificate sismiche con ag(SLV) < 0.25 g

La corsa degli apparecchi d'appoggio mobili è stata calcolata come:

$$\pm$$
 (E_L/2 + E_L/8) con un minimo di \pm (E_L/2 + 15 mm).

Il giunto tra le testate deve dunque garantire un'escursione pari a:

$$\pm (E_L/2 + 10 \text{ mm})$$

Il varco previsto è pari a:

$$V \ge E_{t}/2 + V_{0}$$
 ove $V_{0} = 20 \text{ mm}$

In Tabella 7 si riportano le caratteristiche dei varchi e dei giunti previsti.

Limp (m)	E _L (mm)	Corsa appoggi (mm)	Escursione giunti (mm)	Varco soletta min (mm)	V assunto (mm)	min/max giunto (mm)
25.0	131	85	80	90	100	20/180

Tabella 7 – Caratteristiche dei varichi e dei giunti

12 VALUTAZIONE DELLA ACCETTABILITA' DEI RISULTATI OTTENUTI (RIF.PAR.10.2 DM 17/01/2018)

Le analisi della struttura sono state condotte con un programma agli elementi finiti (MIDAS).

L'affidabilità del codice di calcolo è confermata dai test di validazione allegati alla release del programma e dalla sua ampia diffusione che lo pone tra i software specialistici standard previsti dalla specifica tecnica Italferr PPA.0002851.

I risultati ottenuti sono stati considerati attendibili dallo scrivente a fronte di verifiche condotte con metodi semplificati o con altri codici di calcolo nonché dal confronto critico con i risultati presentati dai documenti di progettazione definitiva.

Lo schema statico è di trave appoggiata e la tipologia di impalcato rientra negli standard tipologici adottata da RFI. Il calcolo a graticcio condotto è stato verificato con metodi semplificati di ripartizione trasversale dei carichi (metodo dei trasversi rigidi) applicabile in funzione dei rapporti geometrici dell'impalcato e del numero dei traversi presenti.