COMMITTENTE:

PROGETTAZIONE:

						GRUPPO FER	TALFERR ROVIE DELLO STATO
U.O	OPERE CIVILI						
PRO	OGETTO DEFIN	IITIVO					
RAI	DDOPPIO DELL	.A LINEA GEI	NOVA - N	/ENTIN	/IIGLIA		
TRA	ATTA FINALE L	IGURE - AND	ORA				
VI08_VIADOTTO SU TORRENTE MERULA DA KM 97+025 A KM 97+175 Relazione di calcolo fondazioni							
							SCALA:
	MESSA LOTTO FAS	E ENTE TIPO DO		DISCIPLIN		GR. REV	<i>I</i> .
Rev.	Descrizione Emissione esecutiva	Redatto Data G.Grimaldi Feb. 2022	Verificato L.Utzeri	Data Feb. 2022	Approvato G-Fadda	Data Feb. 2022	ITALEER S.p.A. Civili Cestione delle variant tri ing. The Application of the variant from ingeneri delle Revisione di Romie variant delle Revisione di Romie va A 20783

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione esecutiva	G.Grimaldi	Feb. 2022	L.Utzeri	Feb. 2022	G.Fadda	Feb. 2022	A.Vittozura di R
			,	Am		71000		S.p.A. tione delle go Vittozzi Hingoviny
			·					TALEERR vill e pes lng. Argeneri de N° A20
								Doere Ci Dott.
								U.O. Opdine de
File: IV	0100D09CLV10803001A.doc	;						n. Elab.:

U.O OPERE CIVILI

PROGETTO DEFINITIVO

RADDOPPIO LINEA GENOVA – VENTIMIGLIA – TRATTA FINALE L.-ANDORA

Relazione di calcolo fondazioni COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IV0I 00 D 09 CL VI0803001 A 2 di 30

INDICE

1	PRE	MESSA	4
	1.1	DESCRIZIONE GENERALE DELL'OPERA	4
2	RIF	ERIMENTI NORMATIVI	6
3	MA	ΓERIALI	7
	3.1	Calcestruzzo	7
	3.2	ACCIAIO PER CALCESTRUZZO	7
4	SCH	EMA STRATIGRAFICO E PARAMETRI GEOTECNICI	8
5	RES	ISTENZA DEI PALI	10
	5.1	CARICO LIMITE VERTICALE	10
	5.1.1	Calcolo del carico limite verticale su un singolo palo (Q_{lim})	10
	5.1.2	? Carico limite verticale – Pali Spalla A	12
	5.1.3	3 Carico limite verticale – Pali Spalla B	14
	5.2	CARICO LIMITE LATERALE	16
	5.2.1	Carico limite laterale – Pali Spalla A e Spalla B	16
6	AZI	ONI SULLE OPERE DI FONDAZIONE	18
	6.1	AZIONI SUI PALI DELLA SPALLA A	19
	6.2	AZIONI SUI PALI DELLA SPALLA B	19
	6.3	AZIONI SULLA FONDAZIONE A POZZO DELLA PILA 1	20
7	VER	RIFICHE GEOTECNICHE	21
	7.1	VERIFICA DELLA CAPACITÀ PORTANTE VERTICALE - PALI.	21
	7.1.1	Verifica della capacità portante verticale – Pali Spalla A	21
	7.1.2	? Verifica della capacità portante verticale – Pali Spalla B	21
	7.2	VERIFICA A CAPACITÀ PORTANTE LATERALE - PALI	21
	7.2.1	Verifica della capacità portante laterale – Pali Spalla A	21

U.O OPERE CIVILI

PROGETTO DEFINITIVO

RADDOPPIO LINEA GENOVA – VENTIMIGLIA – TRATTA FINALE L.-ANDORA

Relazione di calcolo fondazioni COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IV0I 00 D 09 CL VI0803001 A 3 di 30

	7.2.2	2 Verifica della capacità portante laterale – Pali Spalla B	21
	7.3	VERIFICA DELLA CAPACITÀ PORTANTE LIMITE – FONDAZIONE A POZZO	22
8	VER	RIFICHE STRUTTURALI	24
	8.1	VERIFICA A TAGLIO – PALI SPALLE A E B	24
	8.2	VERIFICA A PRESSO-FLESSIONE DEVIATA – PALI SPALLA A E B	27
	8.3	VERIFICA A FLESSIONE DEVIATA – FONDAZIONE A POZZO PILA 1	29
9	VAI	LUTAZIONE DI ACCETTABILITA' DEI RISULTATI OTTENUTI (RIF.PAR.10.2 DM 17/01/2018)	30

GRUPPO FERROVIE DELLO STATO	U.O OPERE (PROGETTO RADDOPPIO ANDORA	DEFINITI	_	VENTIMIGLIA –	TRATTA	FINALE L
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IVOI	00	D 09 CL	VI0803001	Α	4 di 30

1 PREMESSA

La presente relazione ha per oggetto il dimensionamento delle opere di fondazione del viadotto ferroviario sul torrente Merula, denominato VI08 e ubicato tra le progressive chilometriche 97+025 e 97+175, previsto dal progetto definitivo di raddoppio della linea Genova-Ventimiglia tratta Finale Ligure-Andora.

1.1 Descrizione generale dell'opera

Il viadotto in esame si compone di due campate, ciascuna di luce pari a 75.00 m, coperte mediante due travate reticolari metalliche a doppio binario.

La fondazione della spalla A (lato Genova), spalla fissa, è costituita da 28 pali trivellati in c.a. con un diametro pari a 1.50 m, lunghi 24.00 m e collegati tramite un plinto di fondazione spesso 2.00 m. La base del plinto è rettangolare con dimensioni pari a 40.00x16.65 m.

La fondazione della spalla B (lato Ventimiglia), spalla mobile, è costituita da 12 pali trivellati in c.a. con un diametro pari a 1.50 m, lunghi 44.00 m e collegati tramite un plinto di fondazione spesso 2.00 m. La base del plinto è rettangolare con dimensioni pari a 12.00x16.50 m.

La fondazione della Pila 1 è costituita da un plinto a pianta circolare con diametro pari a 16.00 m e di spessore 3.00 m poggiante su un pozzo cavo costituito da 41 trivellati in c.a. con un diametro pari a 1.50 m disposti a forma di due anelli concentrici.

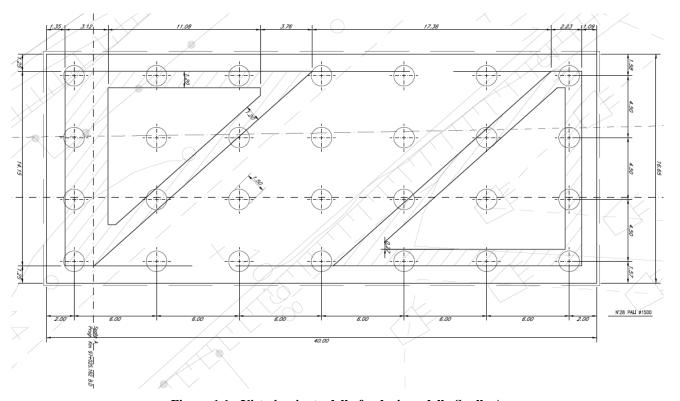


Figura 1.1 - Vista in pianta della fondazione della Spalla A

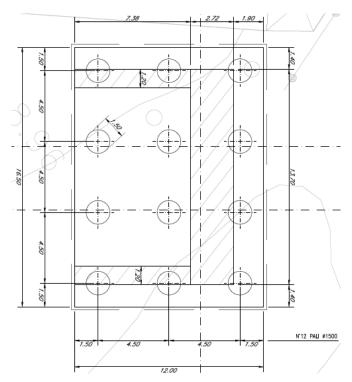


Figura 1.2 - Vista in pianta della fondazione della Spalla B

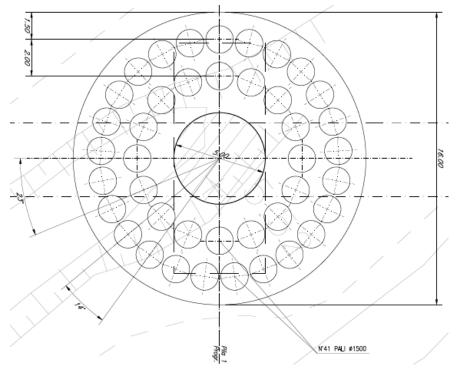


Figura 1.3 - Vista in pianta della fondazione della Pila 1

GRUPPO FERROVIE DELLO STATO	U.O OPERE PROGETTO RADDOPPIO ANDORA	DEFINITI	_	VENTIMIGLIA –	TRATTA	FINALE L
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Troidziono di odiodio fondazioni	IVOI	00	D 09 CL	VI0803001	Α	6 di 30

2 RIFERIMENTI NORMATIVI

Nell'esecuzione dei calcoli si fa riferimento alla legislazione vigente con particolare riferimento alle seguenti normative e riferimenti:

- Ministero delle Infrastrutture, DM 17 gennaio 2018, «Aggiornamento delle "Norme tecniche per le costruzioni"»
- Ministero delle Infrastrutture e Trasporti, circolare 21 gennaio 2019, n. 7 C.S.LL.PP., Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.
- Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- EC2-1-1-2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo
- Profilo e parametri geotecnici.

ITALFERR GRUPPO FERROVIE DELLO STATO	U.O OPERE CIVILI PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA – VENTIMIGLIA – TRATI ANDORA				TRATTA	FINALE L
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
TOTALIONO AT GATGOTO TOTALLION	IVOI	00	D 09 CL	VI0803001	Α	7 di 30

3 MATERIALI

3.1 Calcestruzzo

Per i pali è stato definito l'utilizzo di un calcestruzzo di classe C25/30 le cui caratteristiche sono riassunte nel seguito:

-	Classe calcestruzzo	C25/30
---	---------------------	--------

-	Resistenza caratteristica cubica	$R_{ck} = 30 \text{ N/mm}^2$
---	----------------------------------	------------------------------

- Resistenza caratteristica cilindrica
$$f_{ck} \approx 25 \text{ N/mm}^2$$

- Resistenza di calcolo a compressione
$$f_{cd} = 14.17 \text{ N/mm}^2$$

- Resistenza media a trazione
$$f_{ctm} = 2.56 \text{ N/mm}^2$$

- Resistenza a trazione di progetto
$$f_{ctd} = 1.20 \text{ N/mm}^2$$

- Modulo elastico secante
$$E_{cm} = 31476 \text{ N/mm}^2$$

Inoltre:

_	Clacce	di	esposizione	amhientale	XC2
-	Classe	uı	CODOSIZIONE	amouchiaic	Λ C2

- Classe	cemento	CEM III-V
----------	---------	-----------

- Classe di consistenza S4

- Copriferro minimo 60mm

3.2 Acciaio per calcestruzzo

Per le strutture in c.a. si utilizza un acciaio tipo B450C le cui caratteristiche sono riassunte nel seguito:

- Tensione caratteristica a rottura $f_{tk} = 540 \ N/mm^2$

• Tensione caratteristica di snervamento $f_{yk} = 450 \text{ N/mm}^2$

- Tensione di snervamento di progetto $f_{yd} \approx 391 \text{ N/mm}^2$

- Modulo elastico $E_s = 200000 \text{ N/mm}^2$

GRUPPO FERROVIE DELLO STATO	U.O OPERE CIVILI PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA – VENTIMIG ANDORA		VENTIMIGLIA –	TRATTA	FINALE L	
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IVOI	00	D 09 CL	VI0803001	Α	8 di 30

4 SCHEMA STRATIGRAFICO E PARAMETRI GEOTECNICI

Il calcolo delle opere di fondazione è stato fatto con riferimento ai seguenti profili stratigrafici e parametri geotecnici:

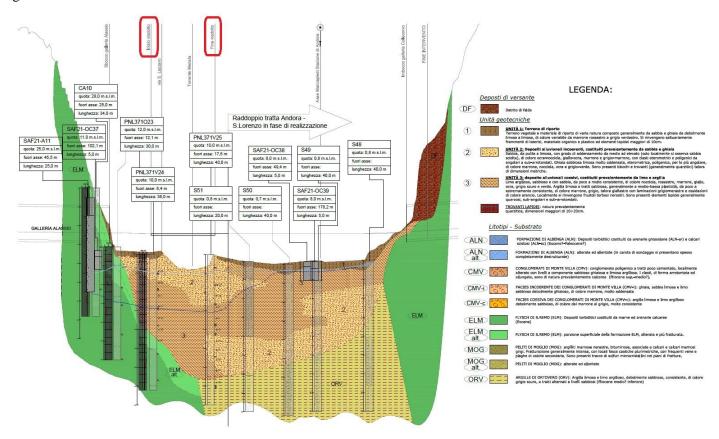


Figura 4.1 - Profilo stratigrafico.

Per i tre elementi calcolati gli schemi stratigrafici considerati sono:

• Spalla A:

_	$z = +10.00 \div +9.00 \text{ mslm}$	Unità 1
_	$z=+9.00 \div +2.00 \text{ mslm}$	Unità 2
-	$z=+2.00 \div -10.00 \text{ mslm}$	Unità 3
_	z = < -10.00 mslm	ELM (alt)

• Spalla B:

_	$z = +10.00 \div -4.00 \text{ mslm}$	Unità 2
_	$z = -4.00 \div -11.00 \text{ mslm}$	Unità 3
_	$z=-11.00 \div -18.00 \text{ mslm}$	Unità 2

GRUPPO FERROVIE DELLO STATO	U.O OPERE PROGETTO RADDOPPIO ANDORA	DEFINITI	_	VENTIMIGLIA –	TRATTA	FINALE L
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IVOI	00	D 09 CL	VI0803001	Α	9 di 30

- z= -18.00 \div -23.00 mslm Unità 3 - z= < -23.00 mslm ORV

• Pile:

La falda è stata cautelativamente assunta al livello massimo riportato nella relazione geotecnica +7.15 m s.l.m.

La caratterizzazione geotecnica, con riferimento ai parametri fisico-meccanici, è quella riportata nella Relazione Geotecnica e riassunta nella seguente tabella:

Unità	Descrizione -	γ kN/m³	φ .	c' kPa	cu kPa	E MPa	Vs m/s	v -	σ _c MPa
1	Materiale di riporto eterogeneo composto da ghiaia con sabbia limosa	19	24	0	-	10	180	0.3	-
2	Ghiaia eterometrica sabbiosa debolmente limosa e moderatamente addensata	20	33 z >-10mslm 35 z <-10mslm	0	-	35 z >-10mslm 45 z <-10mslm	250- 350	0.3	-
3	Limo sabbioso ghiaioso da moderatamente consistente a consistente	20	26	20	30-70	5-10	250- 350	0.25	-
ORV	Limo argilloso molto consistente	20	24	10	100	3	600	0.25	-
ELM/ ELMalt	Calcare marnoso da parzialmente destrutturato a poco fratturato	26	22	2000	-	2000	>800	0.25	70

GRUPPO FERROVIE DELLO STATO	U.O OPERE (PROGETTO RADDOPPIO ANDORA	DEFINITI		VENTIMIGLIA –	TRATTA	FINALE L
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IVOI	00	D 09 CL	VI0803001	Α	10 di 30

5 RESISTENZA DEI PALI

Per le verifiche a stato limite ultimo (SLU) deve essere verificata la condizione

 $E_d \leq R_d$

In cui

E_d= valore di progetto dell'azione;

R_d= valore di progetto della resistenza.

Nel caso specifico la verifica è stata condotta secondo l'Approccio 2 - Combinazione (A1+M1+R3) delle Norme Tecniche per le Costruzioni NTC18.

Il valore E_d è quello fornito direttamente dall'analisi strutturale alla quale si rimanda per i dettagli, mentre per il calcolo della resistenza R_d sono stati considerati i parametri geotecnici determinati a partire dal valore caratteristico, diviso per i relativi coefficienti parziali γ_M indicati dalla Normativa, ed è stato applicato il relativo coefficiente parziale γ_R .

5.1 Carico limite verticale

5.1.1 Calcolo del carico limite verticale su un singolo palo (Q_{lim})

Il carico limite del palo è stato calcolato mediante le cosiddette formule statiche, ipotizzando cioè che il carico limite Q_{lim} del palo sia la somma della resistenza laterale lungo il palo (Q_s) e della resistenza alla punta del palo (Q_p) , al netto del peso del palo W ovvero:

$$Q_{lim} = Q_p + Q_s - W$$

5.1.1.1 Resistenza alla punta (Q_p)

La resistenza alla punta del palo è stata calcolata mediante la seguente formula:

$$Q_p = A_p * q_p$$

 A_p indica l'area della punta del palo e q_p la resistenza unitaria alla punta.

Nel caso di un terreno dotato di coesione e di attrito e pali a sezione circolare, l'espressione di q_p cui si perviene è la seguente:

$$q_p = N_c *_C + N_q *_{QL}$$

dove N_c e N_q sono fattori adimensionali funzioni dell'angolo d'attrito (φ) e del rapporto L/d, c è la coesione del mezzo e q_L è la pressione sul piano orizzontale passante per la punta del palo.

La valutazione del carico limite alla punta in terreni coerenti può essere semplificata con la seguente espressione:

$$q_p = 9*C_u + \Sigma(\gamma i*Li)$$

5.1.1.2 Resistenza laterale (Q_s)

La resistenza laterale è stata calcolata mediante la seguente formula:

$$Q_s = A_s *q_s$$

 A_s indica l'area della superficie laterale del palo e q_s la tensione tangenziale media lungo la superficie laterale del palo.

La tensione tangenziale media lungo la superficie laterale del palo q_s è stata calcolata con la seguente espressione:

$$q_p = q_a + \mu * \kappa * \sigma_v$$

dove q_a è un termine di adesione indipendente dalla tensione normale, μ è il coefficiente d'attrito terreno palo $(\operatorname{tg}(\varphi))$, e κ è un coefficiente adimensionale che esprime il rapporto fra tensione normale alla profondità z sulla superficie del palo e la tensione verticale alla stessa profondità $(\sigma_v = \Sigma(\gamma i^* L i))$.

Il valore di κ varia in funzione del tipo di terreno, del tipo de palo e della modalità esecutive. Il valore di κ è stato assunto pari a 0.5 sulla base della seguente tabella:

Tipo di palo		k per stato samento denso	Valori di μ
Battuto: Profilato d'acciaio Tubo d'acciaio chiuso	0,7 1,0	1,0 2,0	tg20° = 0,36
Calcestruzzo prefabbricato	1,0	-2,0	tg (3φ/4)
Calcestruzzo gettato in opera	1,0	_3,0	tg φ
Trivellato	0,5	0,4	tgφ
Trivellato-pressato con elica continua	0,7	0,9	tg φ

Nella valutazione della tensione tangenziale media lungo la superficie laterale del palo in terreni incoerenti q_a è pari a 0

D'altra parte, in terreni coerenti il calcolo della tensione tangenziale media lungo la superficie laterale del palo viene calcolata secondo la seguente espressione:

$$q_p = q_a = \alpha * C_u$$

dove il valore di α varia in funzione della modalità esecutiva del palo e del valore della coesione non drenata del terreno. Il valore di α è stato definito sulla base della seguente tabella:

Tipo di palo	Valori di c _u (kPa)	Valori di α
Battuto	$c_{\mathbf{u}} \le 25$ $25 < c_{\mathbf{u}} < 70$ $c_{\mathbf{u}} \ge 70$	1,0 1 - 0,011(c _u - 25) 0,5
Trivellato	$c_{\mathbf{u}} \le 25$ $25 < c_{\mathbf{u}} < 70$ $c_{\mathbf{u}} \ge 70$	0,7 0,7 - 0,008(c _u - 25) 0,35

5.1.2 Carico limite verticale – Pali Spalla A

GEOMETRIA E PESO PROPRIO DEL PALO

Caratteristiche del Palo									
Φ_{PALO}	1500	mm							
L_{PALO}	24.00	m							
A_{BASE}	1.767	m2							
γ _{palo}	25	kN/m3							
W PALO	1060.29	kN							

STRATIGRAFIA DEL TERRENO

	STRATIGRAFIA											
STRATO Da [m] a [m] Φ [°] c' [kPa] γ [kN/m³] C _u [kPa] α												
S2	0	-2.96	33	0	20	0	0	0				
S3	-2.96	-14.96	26	20	20	50	0.5	25				
ELM	-14.96	-40	22	2000	26	0	0	0				

PARAMETRI PER IL COMPUTO DEL CARICO LIMITE VERTICALE

STRATO	Terreno	Da	a	Altezza	m	K	γ	α	Cu	σ _V '_sup	σ_{V} _inf	σ_{med} '
		[m]	[m]	[m]			$[kN/m^3]$		[kPa]	[kPa]	[kPa]	[kPa]
S2	Granulare	0.00	-2.96	2.96	0.649	0.5	20	0.0	0.0	22	52	37
S 3	Coesivo	-2.96	-14.96	12.00	0.488	0.5	20	0.5	50.0	52	172	112
ELM	Granulare	-14.96	-24.00	9.04	0.404	0.5	26	0.0	0.0	172	316	244

RESISTENZA ALLA PUNTA

	Q _{testa palo}	0.00	m
_	Q _{base palo}	-24.00	m
CALCOLO PORTATA DI PUNTA	Strato:	ELM	
A T	Tipo:	Granulare	
	$\Phi_{ m calcolo}$	19	0
	c	2000	kPa
	γ	26.0	kN/m3
	C_{u}	0.0	kPa
CA	N_c	4.6	
	N_q	2.60	
	q [kPa]	316.14	

Portata ultima alla punta
Coefficiente parziale γ_R

PORTATA ALLA PUNTA Qp=

17875.46 kN 1.35 13241.08 kN

TALFERR GRUPPO FERROVIE DELLO STATO	U.O OPERE PROGETTO RADDOPPIC ANDORA	DEFINITI		VENTIMIGLIA –	TRATTA	FINALE L
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IV0I	00	D 09 CL	VI0803001	Α	13 di 30

RESISTENZA LATERALE

STRATO	Portata laterale COESIVA	Portata laterale GRANULAR E	
	[kN]	[kN]	
S2	0.00	412.67	
S 3	117.75	6782.40	
ELM	0.00	5003.81	
	117.75	12198.88	

Totale 12316.63 kN

Portata laterale 12316.63 kN Coefficiente parziale γ_R 1.15 PORTATE LATERALE Qs= 10710.12 kN

CARICO LIMITE VERTICALE

 $\begin{array}{ccc} & & & & 1.7 \\ PORTATA \ TOTALE (Qp+Qs-W) & Qlim= & \boxed{13465.24} \ kN \end{array}$

La resistenza verticale di progetto per i pali della spalla A è pari a:

PALI SPALLA A (L= 20 m): Qlim = 13465 kN

5.1.3 Carico limite verticale – Pali Spalla B

GEOMETRIA E PESO PROPRIO DEL PALO

Caratteristiche del Palo						
Φ_{PALO}	1500	mm				
L_{PALO}	44.00	m				
A_{BASE}	1.767	m2				
γ_{palo}	25	kN/m3				
W PALO	1943.86	kN				

STRATIGRAFIA DEL TERRENO

	STRATIGRAFIA								
STRATO	Da [m]	a [m]	Φ [°]	c' [kPa]	$\gamma [kN/m^3]$	C _u [kPa]	α	S [kPa]	
S2	5.12	-4	33	0	20	0	0	0	
S3	-4	-11	26	20	20	50	0.5	25	
S2'	-11	-18	35	0	20	0	0	0	

PARAMETRI PER IL COMPUTO DEL CARICO LIMITE VERTICALE

STRATO	Terreno	Da	a	Altezza	m	K	γ		C_{u}	σ_{V} '_sup	$\sigma_V{'_inf}$	σ_{med} '
SIKAIU	Terreno	[m]	[m]	[m]	m	K	$[kN/m^3]$	α	[kPa]	[kPa]	[kPa]	[kPa]
S2	Granulare	5.12	-4.00	9.12	0.649	0.5	20	0.0	0.0	24	116	70
S3	Coesivo	-4.00	-11.00	7.00	0.488	0.5	20	0.5	50.0	116	186	151
S2'	Granulare	-11.00	-18.00	7.00	0.700	0.5	20	0.0	0.0	186	256	221
S3	Coesivo	-18.00	-23.00	5.00	0.488	0.5	20	0.5	50.0	256	306	281
ORV	Coesivo	-23.00	-38.88	15.88	0.445	0.5	20	0.4	100.0	306	464	385

RESISTENZA ALLA PUNTA

	Q _{testa palo}	5.12	m
_	Q _{base palo}	-38.88	m
T.	Strato:	ORV	
A ZT	Tipo:	Coesivo	
	$\Phi_{ m calcolo}$	21	0
	c	10	kPa
	γ	20.0	kN/m3
CALCOLO PORTATA DI PUNTA	C_{u}	100.0	kPa
CA	N_c	9.0	
	N_q	1.00	
	q [kPa]	305.50	

Portata ultima alla punta Coefficiente parziale γ_R

2130.29 kN 1.35 **1578.00 kN**

PORTATA ALLA PUNTA

Qp=

ITALFERR GRUPPO FERROVIE DELLO STATO	U.O OPERE CIVILI PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA – VENTIMIGLIA – TRATTA FINALE ANDORA					
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
TOTALISTIC AT CATOGO TOTALALIOTT	IVOI	00	D 09 CL	VI0803001	Α	15 di 30

RESISTENZA LATERALE

STRATO	Portata laterale COESIVA	Portata laterale GRANULARE		
	[kN]	[kN]		
S2	0.00	3917.51		
S3	117.75	2307.90		
S2'	0.00	2307.90		
	117.75	8533.31		

Totale 21988.58 kN

Portata laterale $Coefficiente\ parziale\ \gamma_R$

21988.58 kN

PORTATE LATERALE

19120.50 kN

CARICO LIMITE VERTICALE

 $\begin{array}{ccc} & & & & & 1.7 \\ PORTATA TOTALE(Qp+Qs-W) & & Qlim= & \boxed{11032.14} \ kN \end{array}$

La resistenza verticale di progetto per i pali della spalla B è pari a:

Qs =

PALI SPALLA B (L=23 m): Qlim = 11032 kN

ITALFERR GRUPPO FERROVIE DELLO STATO	U.O OPERE CIVILI PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA – VENTIMIGLIA – TRATTA FINAL ANDORA					FINALE L
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IVOI	00	D 09 CL	VI0803001	Α	16 di 30

5.2 Carico limite laterale

La resistenza del complesso palo terreno nei confronti delle azioni trasversali è stata calcolata secondo la teoria proposta da Broms (1964), in ipotesi di

- Comportamento flessionale del palo rigido- perfettamente plastico (dopo il raggiungimento del valore del momento di plasticizzazione;
- Pressione di interazione palo terreno dipendente solo dal tipo di terreno e dal diametro del palo;
- Terreno a comportamento rigido plastico, con mobilitazione completa della resistenza per ogni non nullo dello spostamento.

La teoria di Broms fornisce stime sempre molto cautelative dell'effettivo carico limite trasversale del palo.

In generale il massimo carico trasversale esperibile dal palo dipende dalla geometria (lunghezza, diametro), dalle condizioni di vincolo in testa del palo, dalle caratteristiche strutturali del palo (il momento di plasticizzazione My), dalla resistenza del terreno e dal meccanismo di rottura, ovvero dalla eventuale formazione di cerniere plastiche lungo il fusto del palo che avviene quando in una data sezione il momento agente eguaglia il momento di plasticizzazione.

I possibili meccanismi di rottura possono essere indicati come rottura a palo "corto", "intermedio" e "lungo".

Nel presente caso i pali sono sempre incastrati in testa, sono armati con 367 cm² di armatura longitudinale (che conferiscono alla sezione un momento di plasticizzazione di 7650 kN-m) e si comportano da "pali lunghi" (cioè a rottura si verifica la formazione di due cerniere plastiche, una in testa ed una più in profondità lungo il fusto).

Cautelativamente è stato ipotizzato che il palo sia interamente immerso nel terreno da cui si ricava la minore capacità laterale.

5.2.1 Carico limite laterale – Pali Spalla A e Spalla B

Carico laterale ricavato per il palo immerso nel messo denominato unità n. 2:

Peso specifico terreno γ	20.00	kN/m^3
Diametro Φ	1500	mm
Momento plasticizzazione palo M _y	7650.00	kNm
Terreno laterale		
Coesione drenata c	0.00	MPa
	33.00	0
Angolo d'attrito φ	0.5760	rad
$K_p = (1 + \text{sen}\phi)/(1 - \text{sen}\phi)$	3.392	
$R_{terreno, palo lungo} =$	4317.40	kN
Coefficiente sicurezza R ₃	1.30	
Portata laterale	3321.08	kN
Efficienza per effetto di gruppo	0.8	
Portata laterale	2656.86	kN

GRUPPO FERROVIE DELLO STATO	U.O OPERE PROGETTO RADDOPPIO ANDORA	DEFINITI	_	VENTIMIGLIA -	TRATTA	FINALE L
Relazione di calcolo fondazioni	COMMESSA IV0I	LOTTO 00	CODIFICA D 09 CL	DOCUMENTO VI0803001	REV.	FOGLIO 17 di 30

Carico laterale ricavato per il palo immerso nel messo denominato unità n. 3:

Peso specifico terreno γ	20.00	kN/m^3
Diametro Φ	1500	mm
Momento plasticizzazione palo M _y	7650.00	kNm
Terreno laterale		
Coesione non drenata c _u	50.00	MPa
Rapporto L/Φ	15.33	
$R_{terreno, palo lungo} =$	6784.84	kN
Cerniera plastiche (palo lungo) z _c	2.26	m
Coefficiente sicurezza R ₃	1.30	
Portata laterale	5219.11	kN
Efficienza per effetto di gruppo	0.8	
Portata laterale	4175.29	kN

La resistenza laterale di progetto per i pali della spalla A è a:

PALI SPALLA A (L=20 m): Qlat = 2656 kN

PALI SPALLA B (L=23 m): Qlat = 2656 kN

GRUPPO FERROVIE DELLO STATO	U.O OPERE CIVILI PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA – VENTIMIGLIA – TRATTA FINALE ANDORA					FINALE L
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IVOI	00	D 09 CL	VI0803001	Α	18 di 30

6 AZIONI SULLE OPERE DI FONDAZIONE

Le azioni sui pali delle spalle e sulla fondazione a pozzo per la pila centrale sono state ricavate nelle seguenti condizioni:

- Stato Limite Ultimo in condizioni statiche come definito dalle NTC18;
- Stato Limite Ultimo in condizioni sismiche come definito dalle NTC18.

Si riportano le reazioni vincolari nel baricentro delle palificate ottenute dai modelli di calcolo delle due spalle:

Spalla A:

Node	Load	FX (kN)	FY (kN)	FZ (kN)	MX (kN*m)	MY (kN*m)	MZ (kN*m)
*******	******	*****	******	******	******	******	******
7687	G3_A1_SLU7	12033	-370	189583	5757	510129	-84656
7687	G3_SLER5	1106	-267	133849	1843	273329	-65589
7687	G3_A1_SLU13	3701	-167	87631	756	67203	-62582
7687	G1_A1_SLU1	4991	-747	189583	9761	442068	-85097
7687	G1_A1_SLU5	3817	-747	191358	6759	418467	-88948
7687	G1_A1_SLU13	3758	-553	87631	5099	67471	-63034
7687	G1_A1_SLU3	4337	-747	180314	38132	458114	-87224
7687	G3_A1_SLU10	10087	-370	179840	-25814	516893	-78371
7687	G3_A1_SLU10	10087	-370	179840	-25814	516893	-78371
7687	G3_A1_SLU13	3701	-167	87631	756	67203	-62582
7687	G3_SLER10	7142	-267	125906	-17860	357596	-58365
7687	G3_A1_SLU9	10087	-370	180314	34129	513713	-90941

Spalla B:

Node	Load	FX (kN)	FY (kN)	FZ (kN)	MX (kN*m)	MY (kN*m)	MZ (kN*m)
******	******	******	*******	*******	******	******	******
1949	SLV21	7257	6028	52456	-23653	-17910	726
1949	SLV2	-17946	-6309	52132	24833	-49685	10
1949	SLV16	-17474	6430	52456	-24514	-48173	-1012
1949	SLV3	-17474	-6510	52456	25264	-48173	880
1949	G1_A1_SLU3	-6103	-1979	85719	8203	-76508	5155
1949	G1_A1_SLU7	-3563	-386	44656	3976	-2444	-1109
1949	SLV27	-17474	-6510	56307	25264	-50110	880
1949	SLV16	-17474	6430	52456	-24514	-48173	-1012
1949	G3_A1_SLU7	-3432	0	44656	4	-1787	0
1949	G1_A1_SLU6	-9429	-404	83942	7446	-88685	-1664
1949	G3_A1_SLU3	-6025	-1602	85719	4475	-76114	6064
1949	G1_A1_SLU4	-6103	936	85719	1956	-76508	-7460

Di seguito vengono riportate le azioni massime e minime in testa ai pali (Assiale, taglio nelle due direzioni e momento flettente nelle due direzioni):

6.1 Azioni sui pali della Spalla A

Node	Load Comb.	FX (kN)	FY (kN)	FZ (kN)	MY (kN*m)	MZ (kN*m)
3392	SLV57	1871	-1428	510	1020	-2857
3070	G3_A1_SLU7	-13137	284	522	1044	568
3056	SLV93	-11353	2070	374	749	4140
3364	SLV81	-5977	-1477	643	1286	-2955
3378	SLV43	-2362	137	1768	3535	274
3112	SLV37	-5026	688	-1443	-2885	1376
3056	G1_A1_SLU1	-9799	401	95	190	802
3056	G1_A1_SLU1	-9799	401	95	190	802
3378	SLV43	-2362	137	1768	3535	274
3112	SLV37	-5026	688	-1443	-2885	1376
3056	SLV93	-11353	2070	374	749	4140
3364	SLV81	-5977	-1477	643	1286	-2955

Tabella 6-1 – Azioni massime – Pali Spalla A

6.2 Azioni sui pali della Spalla B

Node	Load Comb.	FX (kN)	FY (kN)	FZ (kN)	MY (kN*m)	MZ (kN*m)
1949	SLV57	-125	-1592	80	-100	1989
1955	G1_A1_SLU6	-10490	-47	1077	-1346	59
1950	SLV64	-2173	1925	514	-643	-2406
1953	SLV51	-2173	-1930	514	-643	2413
1949	SLV42	-6916	686	1721	-2151	-857
1956	SLV34	-4393	-488	-760	950	610
1947	G1_A1_SLU1	-3233	-47	417	-521	58
1947	G1_A1_SLU1	-3233	-47	417	-521	58
1956	SLV34	-4393	-488	-760	950	610
1949	SLV42	-6916	686	1721	-2151	-857
1953	SLV51	-2173	-1930	514	-643	2413
1950	SLV64	-2173	1925	514	-643	-2406

Tabella 6-2 – Azioni massime – Pali Spalla B

Di seguito vengono presentate le azioni massime e minime in testa al pozzo:

GRUPPO FERROVIE DELLO STATO	U.O OPERE PROGETTO RADDOPPIO ANDORA	DEFINITI		VENTIMIGLIA –	TRATTA	FINALE L
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tronzento di calcolo fortuazioni	IV0I	00	D 09 CL	VI0803001	Α	20 di 30

6.3 Azioni sulla fondazione a pozzo della Pila 1

Node	Load Comb.	FX (kN)	FY (kN)	FZ (kN)	MX (kN*m)	MY (kN*m)	MZ (kN*m)
1406	SLV24	13623	8611	46753	-49449	147480	-4500
1406	SLV3	-15237	486	52631	37833	-169398	1797
1406	SLV43	3173	17657	48908	-132518	31816	-598
1406	SLV27	-5351	-8561	51828	128627	-61393	598
1406	G1_A1_SLU2	-3877	6633	91324	-12388	-52649	364
1406	G1_A1_SLU4	0	4936	30012	-7727	0	0
1406	SLV27	-5351	-8561	51828	128627	-61393	598
1406	SLV48	3737	17657	47556	-140243	39475	-3302
1406	SLV24	13623	8611	46753	-49449	147480	-4500
1406	SLV3	-15237	486	52631	37833	-169398	1797
1406	SLV4	-15218	486	52705	37452	-169133	1897
1406	G3_A1_SLU3	-3870	6231	80985	-59868	-52100	-19602

Tabella 6-3 – Azioni massime – Fondazione a pozzo Pila 1

Sulla base delle azioni precedentemente definite e prendendo in considerazione lo scalzamento massimo per la pila 1 pari a 14.8 m, sono state calcolate le azioni critiche per la verifica del pozzo.

Azioni alla base della pila						
permanenti tempor						
N [kN]	52631.0					
M [kNm]	-169398.0					
H [kN]	15237.0					

Azioni di calcolo per il pozzo					
N [kN] 57057.2					
M [kNm]	-394905.6				
H [kN]	15237.0				

Queste azioni sono state ricavate in riferimento alla condizione più gravosa per la verifica a carico limite del pozzo la quale corrisponde al caso di maggior momento flettente (Comb. SLV3 della Tabella 6-3).

GRUPPO FERROVIE DELLO STATO	U.O OPERE PROGETTO RADDOPPIO ANDORA	DEFINITI	_	VENTIMIGLIA –	TRATTA	FINALE L
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IVOI	00	D 09 CL	VI0803001	Α	21 di 30

7 VERIFICHE GEOTECNICHE

7.1 Verifica della capacità portante verticale - Pali

Questa verifica consiste nel confronto tra l'azione assiale massima sul palo e la corrispondente resistenza.

7.1.1 Verifica della capacità portante verticale – Pali Spalla A

La portata verticale massima Qlim per i pali della spalla A corrisponde a 13465 kN.

La azione assiale massima Ned per i pali della spalla A corrisponde a 13137 kN.

VERIFICA SODDISFATTA	
Coeff. di Sfruttamento	97.6%

7.1.2 Verifica della capacità portante verticale – Pali Spalla B

La portata verticale massima Nrd per i pali della spalla B corrisponde a 11032 kN.

La azione assiale massima Ned per i pali della spalla B corrisponde a 10490 kN.

VERIFICA SODDISFATTA	
Coeff. di Sfruttamento	95.1%

7.2 Verifica a capacità portante laterale - Pali

Questa verifica consiste nel confronto tra l'azione laterale massima sul palo e la corrispondente resistenza.

7.2.1 Verifica della capacità portante laterale – Pali Spalla A

La portata laterale massima Qlat per i pali della spalla A corrisponde a 2656 kN.

La forza risultante massima per l'azione laterale Ved per i pali della spalla A corrisponde a 2114 kN.

Considerando che Ved<Qlat, la verifica risulta soddisfatta.

7.2.2 Verifica della capacità portante laterale – Pali Spalla B

La portata laterale massima Qlat per i pali della spalla B corrisponde a 2656 kN.

La forza risultante massima per l'azione laterale Ved per i pali della spalla B corrisponde a 2141 kN.

Considerando che Ved<Qlat, la verifica risulta soddisfatta.

ITALFERR GRUPPO FERROVIE DELLO STATO	U.O OPERE PROGETTO RADDOPPIO ANDORA	DEFINITI		VENTIMIGLIA –	TRATTA	FINALE L
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Troidziono di calcolo fondazioni	IVOI	00	D 09 CL	VI0803001	Α	22 di 30

7.3 Verifica della capacità portante limite – Fondazione a pozzo

Questa verifica consiste nel confronto tra l'azione verticale massima sulla fondazione a pozzo e la corrispondente resistenza.

Sollecitazioni alla base del pozzo

$$N_b = 74395.89$$
 (kN)

$$M_b = 395450.30$$
 (kNm)

Sottospinta idrostatica alla base del pozzo

$$N_{\rm w} = 0.00 \qquad (kN)$$

Pressioni verticali alla base del pozzo

$$s_{zmax} = (N_b - N_w)/A_b + (3DH)/(bR)$$

$$s_{zmin} = (N_b - N_w)/A_b - (3DH)/(bR)$$

$$s_{zmax} = 1771.79 (kN/m^2)$$

$$s_{zmin} = -870.73 \quad (kN/m^2)$$

VERIFICHE GEOTECNICHE

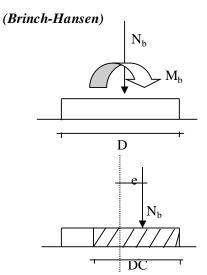
Capacità portante limite

$$q_{lim} = c'N_{csc} + qN_{qsq} + 0.5gBNgsg$$

 $q_{lim} = c_uN_csc + q$

$$q = 102.00 (kN/m^2)$$

$$N_{q} = 7.82$$
 (-)


$$N_c = 16.88$$
 (-)

$$N_g = 7.13$$
 (-)

$$sc = 1 + (B/L)*(Nq/Nc)$$

$$sq = 1 + (B/L)*tang(j')$$

$$sg = 1 - 0,4*(B/L)$$

U.O OPERE CIVILI

PROGETTO DEFINITIVO

LOTTO

00

RADDOPPIO LINEA GENOVA – VENTIMIGLIA – TRATTA FINALE L. ANDORA

Relazione di calcolo fondazioni

COMMESSA

CODIFICA D 09 CL DOCUMENTO VI0803001 REV.

FOGLIO 23 di 30

DC=2(R-e)

$$AB = \sqrt{R^2 - e^2}$$

$$\frac{AB}{CD} = \frac{L^*}{B^*}$$

$$h' = R - e$$

$$B^* \cdot L^* = A^* = 2 \left(R^2 \cos^{-1} \left(\frac{R - h'}{R} \right) - (R - h') \sqrt{(2Rh' - h'^2)} \right)$$

$$h' = 1.93$$
 $A* = 26.20$

$$L^* = 8.17$$

$$(m^2)$$
 (m)

$$B^* = 3.21$$

$$B^*/L^* = 0.39$$

$$sc = 1.182$$

$$sq = 1.159$$

$$sg = 0.843$$

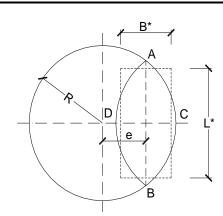
$$q_{lim} = \qquad 41077.98$$

$$(kN/m^2)$$

Sforzo Verticale limite nel terreno

$$N_{lim} = q_{lim} *A*$$

$$N_{lim} = 1076277.50$$
 (kN)


Sforzo Verticale massimo nel terreno

$$N_b - N_w = 74395.89$$
 (kN)

Coefficiente di Sicurezza

$$F_s = N_{lim} / (N_b - N_w)$$

$$Fs = 14.47$$

GRUPPO FERROVIE DELLO STATO	U.O OPERE CIVILI PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA – VENTIMIGLIA – TRATTA FINA ANDORA					FINALE L
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IV0I	00	D 09 CL	VI0803001	Α	24 di 30

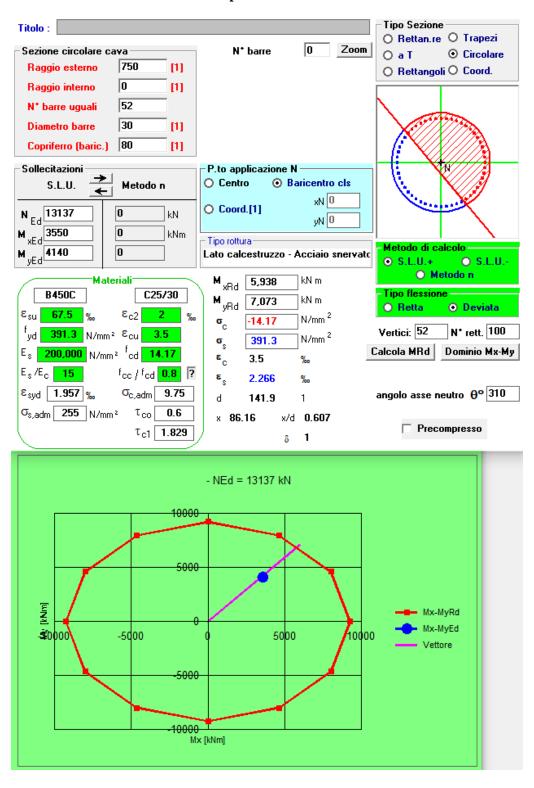
8 VERIFICHE STRUTTURALI

8.1 Verifica a Taglio – Pali Spalle A e B

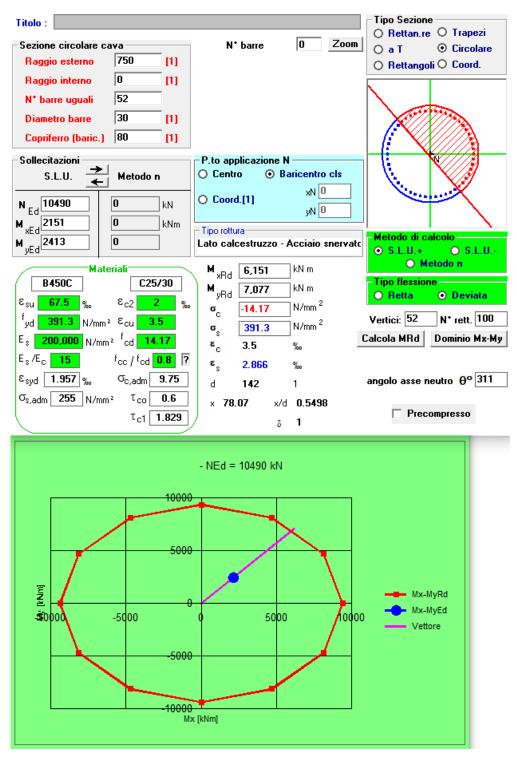
Taglio resistent	te sezione circolar	e armata (metodo di CLARKE-BIRJANDI 1993)
Dati		
D	150 cm	Diametro sezione circolare
d' =	9 cm	Copriferro asse armatura longitudinale
f _{ck} =	25.0 N/mm²	Resistenza cilindrica caratteristica del cls
α_{cc} =	0.85	Coefficiente riduttivo per la resistenza del cls a lungo termine
n=	2	Numero di braccia delle staffe
φ=	20 mm	Diametro delle staffe
p=	7.5 cm	Passo delle staffe
f _{yk} =	450 N/mm ²	Tensione caratteristica di snervamento dell'acciaio
V _{Ed} =	2141 KN	Taglio sollecitante di progetto
Risultati		
r	75 cm	Raggio sezione circolare
r _s	66 cm	Raggio sezione circolare utile
sen(α)=	0.560	
α=	0.59 rad	
A _v =	14791 cm²	Area sezione circolare equivalente
$d_{e=}$	117 cm	Altezza sezione rettangolare equivalente
b _{e=}	126 cm	Base sezione rettangolare equivalente
f _{cd} =	14.17 N/mm²	Resistenza massima di calcolo del cls
f _{yd} =	391.3 N/mm ²	Tensione di calcolo allo snervamento dell'acciaio
A _{sw} =	83.73 cm ² /m	Area delle staffe per metro lineare di trave
d=	117 cm	Altezza sezione
θ=	45.00°	Angolo di inclinazione del puntone di cls
ctgθ=	1.00	Cotangente di teta
V_{Rds} =	3451 KN	Resistenza tiranti verticali (staffe)
V _{Rdc} =	4715 KN	Resistenza puntone di cls
V _{Rd} =	√ 3451 KN	Taglio resistente

		. /
	te sezione circolar	e armata (metodo CEB n°137 ALLEGATO 5)
Dati	,	
D	150 cm	Diametro sezione circolare
d' =	9 cm	Copriferro asse armatura longitudinale
f _{ck} =	25.0 N/mm ²	Resistenza cilindrica caratteristica del cls
α_{cc} =	0.85	Coefficiente riduttivo per la resistenza del cls a lungo termine
n=	2	Numero di braccia delle staffe
φ=	20 mm	Diametro delle staffe
p=	8 cm	Passo delle staffe
f _{yk} =	450 N/mm²	Tensione caratteristica di snervamento dell'acciaio
V _{Ed} =	2141 KN	Taglio di progetto
Risultati		
b _{e=}	135 cm	Base sezione rettangolare equivalente
d _{e=}	110 cm	Altezza sezione rettangolare equivalente
f _{cd} =	14.17 N/mm ²	Resistenza massima di calcolo del cls
f _{yd} =	391.3 N/mm²	Tensione di calcolo allo snervamento dell'acciaio
A _{sw} =	83.73 cm ² /m	Area delle staffe per metro lineare di trave
d=	110 cm	Altezza sezione
θ=	45.00°	Angolo di inclinazione del puntone di cls 21.8° <q=45°< th=""></q=45°<>
ctgθ=	1.00	Cotangente di teta
V _{Rds} =	3236 KN	Resistenza tiranti verticali (staffe)
V _{Rdc} =	4722 KN	Resistenza puntone di cls
V _{Rd} =	√ 3236 KN	Taglio resistente

Taglio resistent	te sezione circolar	e armata (metodo KOWALSKY & PRIESTLEY)
Dati		
D	150 cm	Diametro sezione circolare
d' =	7 cm	Copriferro staffe
f _{ck} =	25.0 N/mm²	Resistenza cilindrica caratteristica del cls
α_{cc} =	0.85	Coefficiente riduttivo per la resistenza del cls a lungo termine
n=	2	Numero di braccia delle staffe
φ=	20 mm	Diametro delle staffe
p=	8 cm	Passo delle staffe
f _{yk} =	450 N/mm²	Tensione caratteristica di snervamento dell'acciaio
V _{Ed} =	2141 KN	Taglio di progetto
Risultati		
A_{V}	14137 cm²	Area sezione circolare equivalente
$d_{e=}$	150 cm	Altezza sezione rettangolare equivalente
b _{e=}	94 cm	Base sezione rettangolare equivalente
f _{cd} =	14.17 N/mm²	Resistenza massima di calcolo del cls
f _{yd} =	391.3 N/mm ²	Tensione di calcolo allo snervamento dell'acciaio
A _{sw} =	83.73 cm ² /m	Area delle staffe per metro lineare di trave
d=	134 cm	Altezza sezione
θ=	45.00°	Angolo di inclinazione del puntone di cls 21.8° <q=45°< th=""></q=45°<>
ctgθ=	1.00	Cotangente di teta
V _{Rds} =	3448 KN	Resistenza tiranti verticali (staffe)
V _{Rdc} =	4506 KN	Resistenza puntone di cls
V _{Rd} =	√ 3448 KN	Taglio resistente

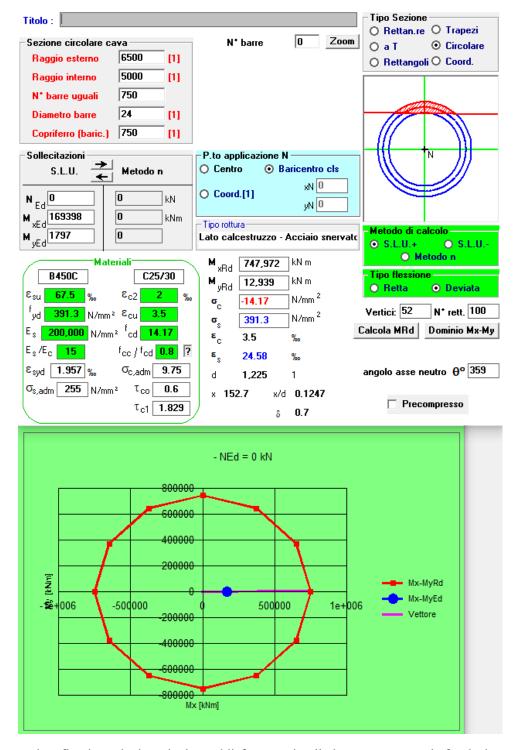

TABELLA RIASSUNTIVA

	CLARKE-BIRJANDI	CEB 137allegato 5	KOWALSKY & PRIESTLEY
V _{Rds} =	3451 KN	3236 KN	3448 KN
V _{Rdc} =	4715 kN	4722 kN	4506 kN
V _{Rd} =	√ 3451 KN	✓ 3236 KN	✓ 3448 KN


La verifica strutturale a taglio risulta soddisfatta sia per i pali della spalla A che per i pali della spalla B fornendo una armatura a taglio costituita da staffe $\emptyset 20$ a 2 braccia con passo 7.5 cm.

TALFERR GRUPPO FERROVIE DELLO STATO	U.O OPERE CIVILI PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA – VENTIMIGLIA – TRATTA FINALI ANDORA					
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO VI0803001	REV.	FOGLIO 27 di 30

8.2 Verifica a Presso-flessione deviata – Pali Spalla A e B



La verifica strutturale a pressoflessione deviata risulta soddisfatta sia per i pali della spalla A che per i pali della spalla B fornendo una armatura longitudinale costituita da n. 52 ferri Ø30.

GRUPPO FERROVIE DELLO STATO	U.O OPERE CIVILI PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA – VENTIMIGLIA – TRATTA FINALE ANDORA					
Relazione di calcolo fondazioni	COMMESSA IV0I	LOTTO 00	CODIFICA D 09 CL	DOCUMENTO VI0803001	REV.	FOGLIO 29 di 30

8.3 Verifica a Flessione deviata – Fondazione a Pozzo Pila 1

La verifica strutturale a flessione deviata risulta soddisfatta per i pali che compongono la fondazione a pozzo della Pila 1 fornendo una armatura longitudinale costituita da n. 30 ferri Ø24.

ITALFERR GRUPPO FERROVIE DELLO STATO	PROGETTO	U.O OPERE CIVILI PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA – VENTIMIGLIA – TRATTA FINALE ANDORA						
Relazione di calcolo fondazioni	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Troideliono di calcolo fortadeloni	IV0I	00	D 09 CL	VI0803001	Α	30 di 30		

9 VALUTAZIONE DI ACCETTABILITA' DEI RISULTATI OTTENUTI (RIF.PAR.10.2 DM 17/01/2018)

Le analisi della struttura sono state condotte con un programma agli elementi finiti (Midas Gen) e da fogli Excel di comprovata validità.

L'affidabilità del codice di calcolo è confermata dai test di validazione allegati alla release del programma e dalla sua ampia diffusione che lo pone tra i software specialistici standard previsti dalla specifica tecnica Italferr PPA.0002851.

I risultati ottenuti sono stati considerati attendibili dallo scrivente a fronte di verifiche condotte con metodi semplificati o con altri codici di calcolo nonché dal confronto critico con i risultati presentati dai documenti di progettazione definitiva.