COMMITTENTE:

PROGETTAZIONE:

U.O. PROGETTAZIONE INTEGRATA NORD

PROGETTO DEFINITIVO

RADDOPPIO DELLA LINEA GENOVA – VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

OPERE PRINCIPALI – SOTTOVIA E SOTTOPASSI SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

SCALA:	
-	

COMMESSA	LOTTO FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV.

	S L 0 7 0 0 0 0 1	Α
--	-------------------	---

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione esecutiva	K. Petrucci	Gen. 2022	M. Severi	Gen. 2022	Fadda	Gen. 2022	A. Perego Gen. 2022
								DOTT, ING.
								Sez. A Settori:
								MILANO

File: IV0I00D26CLSL0700001A.docx

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare COMMESSA LOTTO
IV0I 00

CODIFICA

D 26 CL

DOCUMENTO SL0700001

REV.

FOGLIO 1 di 64

INDICE

1.	PRI	EMESSA	3
2.	DES	SCRIZIONE	4
3.	NO	RMATIVE DI RIFERIMENTO	5
4.	CA.	RATTERISTICHE DEI MATERIALI	. 6
	4.1	Calcestruzzo per magrone di sottofondazione	.6
	4.2	Calcestruzzo per strutture scatolari	.6
	4.3	Acciaio ordinario per calcestruzzo armato	. 7
5.	STI	RATIGRAFIA E PARAMETRI GEOTECNICI	9
	5.1	Profondità della falda	.9
6.	AN.	ALISI DEI CARICHI	10
	6.1	Pesi propri	10
	6.2	Permanenti non strutturali	10
	6.3	Carichi mobili (traffico ferroviario)	11
	6.4	Azione di avviamento / frenatura	14
	6.5	Azione di serpeggio	14
	6.6	Azione del sisma	14
	6.7	Ritiro del calcestruzzo	16
	6.8	Variazione termica	16
	6.9	Spinta statica del terreno	17
	6.10	Spinta dovuta al sovraccarico accidentale	18
	6.11	Incremento di Spinta in condizione sismiche	18
7.	CO	MBINAZIONE DEI CARICHI	19
8.	VE	RIFICHE STRUTTURALI	21
	8.1	Verifiche per gli stati limite ultimi a flessione-pressoflessione	21
	8.2	Verifica agli stati limite ultimi a taglio.	21
	8.3	Verifica agli stati limite d'esercizio	23

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	2 di 64

9. VERIFICHE GEOTECNICHE	24
10.ANALISI STRUTTURALE	25
10.1 Modellazione strutturale : Scatolare	25
10.2 Analisi dei carichi	27
10.3 Combinazioni	38
10.4 Sollecitazioni	42
10.5 Verifiche strutturali	46
10.5.1 Riepilogo armature	46
10.5.2 Verifica soletta superiore	
10.5.3 Verifica piedritti	
10.5.4 Verifica soletta inferiore	
11.INCIDENZA SCATOLARE	62
12.DICHIARAZIONI SECONDO D.M. 17/01/2018 (P.TO 10.2)	63
12.1 Tipo di analisi svolte	63
12.2 Origine e caratteristiche dei Codici di Calcolo	63
12.3 Giudizio motivato di accettabilità dai ricultati	63

1. PREMESSA

Nel presente documento, emesso nell'ambito della redazione degli elaborati tecnici relativi al progetto definitivo del raddoppio della linea Genova – Ventimiglia nella tratta Finale Ligure – Andora, è riportato il calcolo strutturale del sottovia SL07 al km 82+578, in località Albenga.

L'ubicazione dell'opera lungo la tratta in questione è indicata in Figura 1.

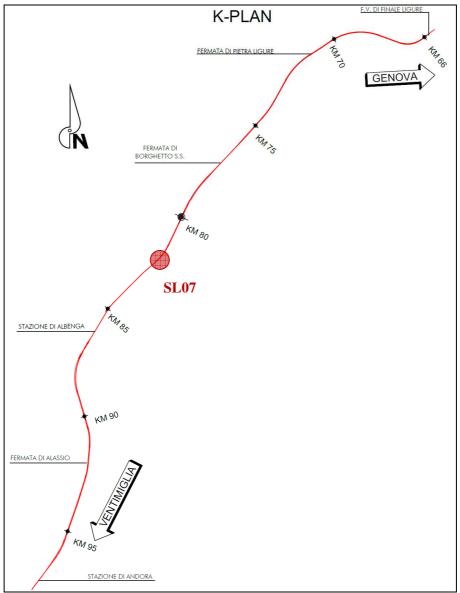


Figura 1: Raddoppio tratta Finale L. - Andora. Inquadramento dell'opera

2. DESCRIZIONE

La presente relazione ha per oggetto la verifica della sezione trasversale dell'opera scatolare utilizzabile per attraversamenti ferroviari, avente le caratteristiche riportate nella seguente tabella:

Ricoprimento		
Spessore ballast+armamento	Hb	0.80 m
Spessore medio traversina+binario	Ht	0.40 m
Spessore ballast sotto la traversina		0.40 m
Spessore del rinterro	Hr	0.36 m
Geometria		
Spessore soletta superiore	Ss	1.00 m
Spessore soletta di fondazione	Sf	1.00 m
Spessore piedritti	Sp	1.00 m
Altezza netta	Hint	6.20 m
Larghezza netta	Lint	9.30 m
Lunghezza risvolti sol. inf.	Lr	0.00 m
Lunghezza dello scatolare	L	16.00

La struttura sarà realizzata in c.a. gettato in opera senza giunti intermedi.

Si trascura a favore di sicurezza la presenza del riempimento interno.

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	5 di 64

3. NORMATIVE DI RIFERIMENTO

Il dimensionamento e la verifica degli elementi strutturali sono stati condotti nel rispetto delle seguenti normative:

- <u>Decreto Ministeriale 17 gennaio 2018</u>: Aggiornamento delle Norme tecniche per le costruzioni;
- <u>Circolare 21 gennaio 2019, n.7 C.S.LL.PP.</u>: Istruzioni per l'applicazione dell'"Aggiornamento delle Norme tecniche per le costruzioni di cui al D.M. 17 gennaio 2018;
- <u>Circolare 15 ottobre 1996, n.252 AA.GG./S.T.C..</u>: Istruzioni per l'applicazione delle "Nuove norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche" di cui al decreto ministeriale 9 gennaio 1996;
- <u>UNI EN 1992-1-1</u> "Progettazione delle strutture di calcestruzzo Parte 1-1. Regole generali e regole per gli edifici".
- <u>UNI EN 1993-1-1</u> "Progettazione delle strutture in acciaio Parte 1-1. Regole generali e regole per gli edifici".
- <u>UNI EN 1997-1</u> "Progettazione geotecnica Parte 1. Regole generali".
- <u>UNI EN 1998-1</u>: "Progettazione delle strutture per la resistenza sismica Parte 1. Regole generali, azioni sismiche e regole per gli edifici".
- <u>UNI EN 1998-5</u>: "Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici".
- <u>UNI EN 206-1:2014</u>: "Calcestruzzo Specificazione, prestazione, produzione e conformità".
- <u>UNI 11104</u>: "Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1".
- "Linee guida sul calcestruzzo strutturale Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei LL.PP.".
- <u>RFI DTC SI PS MA IFS 001 E</u> Manuale di progettazione delle Opere Civili RFI Parte II Sezione 2 – Ponti e Strutture
- <u>RFI DTC SI PS SP IFS 001 E</u> Capitolato generale tecnico delle Opere Civili RFI Parte II Sezione 6 – Opere in conglomerato cementizio e acciaio

Riferimenti STI:

- Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

4. CARATTERISTICHE DEI MATERIALI

4.1 Calcestruzzo per magrone di sottofondazione

MAGRONE - C12/15						
Descrizione	Simbolo	Formula	Unità di misura	Valore		
Resistenza cubica a compressione	R _{ck}		N/mm ²	15		
Contenuto minimo cemento			kg/m ³	150		

4.2 Calcestruzzo per strutture scatolari

CALCESTRUZZO			
I calcestruzzi impiegati devono essere conformi alla UNI E rispondere alle seguenti prestazioni:	EN 206-1 ed	alla UNI 11	l104 e
Campo d'impiego			Scatolari
Classe di esposizione ambientale			XC4
Classe di resistenza calcestruzzo			C32/40
Classe di consistenza			S4
Rapporto acqua cemento massimo	a/c max	[-]	0.50
Tipo di cemento	CEM	[-]	III, IV, V
Contenuto minimo cemento		[kg/m ³]	340
Contenuto minimo di aria		[%]	-
Diametro massimo dell'aggregato	D _{upper}	[mm]	25
Copriferro nominale	C _{nom}	[mm]	50
Resistenza caratteristica cubica a 28gg	R _{ck}	[MPa]	40
Resistenza caratteristica cilindrica a 28gg	f _{ck}	[MPa]	33.2
Resistenza cilindrica media	f _{cm}	[MPa]	41.2
Resistenza media a trazione semplice	f _{ctm}	[MPa]	3.1
Resistenza caratteristica a trazione (fratt. 5%)	f _{ctk}	[MPa]	2.2
Resistenza a trazione per flessione	f _{cfm}	[MPa]	3.7
Modulo elastico istantaneo (secante a 0.4 f _{cm})	E _{cm}	[MPa]	33643
Coefficiente di dilatazione termica	α	[C ⁻¹]	1.0E-05
Coeff. per condizioni di aderenza	η_1	[-]	1.0
Coeff. Ø barre per aderenza	η_2	[-]	1.0
Resistenza tangenziale caratteristica di aderenza	f _{bk}	[MPa]	4.9
Coeff. riduttivo resistenze di lunga durata	$\alpha_{ ext{CC}}$	[-]	0.85
Coeff. parziale di sicurezza	Υ _C	[-]	1.50
Resistenza di progetto a compressione	f _{cd}	[MPa]	18.8
Resistenza di progetto a trazione	f _{ctd}	[MPa]	1.4
Resistenza tangenziale di aderenza di progetto	f _{bd}	[MPa]	3.3

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	7 di 64

4.3 Acciaio ordinario per calcestruzzo armato

È ammesso esclusivamente l'impiego di acciai saldabili in barre ad aderenza miglioratae rispondente alle seguenti prescrizioni:				
Tipo di acciaio			B450C	
Tensione caratteristica di snervamento (min.)	f _{yk}	[MPa]	450	
Tensione caratteristica a carico massimo (min.)	f _{tk}	[MPa]	540	
Rapporto di sovraresistenza	$k=(f_t/f_y)_k$	[-]	1.20	
Massa volumica media	ρ_{s}	[kg/m ³]	7850	
Modulo elastico	E _s	[MPa]	200000	
Deformazione caratteristica a carico massimo	$\epsilon_{uk} = (A_{gt})k$	[%]	7.50	
Coefficiente di dilatazione termica	α	[C ⁻¹]	1.2E-05	
Coeff. parziale di sicurezza	γs	[-]	1.15	
Resistenza di progetto	f _{yd}	[MPa]	391.3	
Deformazione di progetto allo snervamento	$\epsilon_{ m yd}$	[%]	0.2	
Deformazione di progetto a carico massimo	$\epsilon_{\sf ud}$	[%]	6.75	

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 21.01.2019, riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

			barre da c.a. ba		barre da c.a.		cavi da c.a.p		cavi da c.a.p	
			elemen	ti a piastra	altri ele	ementi	elemen	ti a piastra	altri ele	ementi
Cmin	Co	ambiente	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<>	C≥Co	Cmin≤C <co< td=""></co<>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Classe di esposizione: XC4

Copriferro di progetto: 50 mm

Condizioni ambientali: Aggressive

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	8 di 64

L'apertura convenzionale delle fessure, calcolata con la combinazione caratteristica RARA per gli SLE dovrà risultare:

- a) $\delta_f \leq w_1$ per strutture in condizioni ambientali aggressive e molto aggressive, così come identificate nel par. 4.1.2.2.4.2 del DM 17.01.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- b) $\delta_f \le w_2$ per strutture in condizioni ambientali ordinarie secondo il citato paragrafo del DM 17.01.2018.

Con δ_f apertura delle fessure e w_1 valore limite dell'apertura delle fessure.

$$w_1 = 0.2 \text{ mm}$$

$$w_2 = 0.3 \text{ mm}$$

$$w_3 = 0.4 \text{ mm}$$

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	9 di 64

5. STRATIGRAFIA E PARAMETRI GEOTECNICI

Si prende a riferimento la relazione geotecnica generale, alla quale si rimanda per maggiori dettagli...

Sulla base delle indagini svolte, sintetizzate nei profili geotecnici lungo linea, in corrispondenza della progressiva si evince la seguente stratigrafia:

Descrizione	Prof top	γ	φ	c'	cu	E	V
-	m slm	kN/mc	•	kPa	kPa	MPa	-
Terreno vegetale	+23.0	18	24	0	-	5-10	0.3
Limo sabbioso debolmente ghiaioso e sabbia limosa argillosa	+22.5	20	28-30	0-10	-	10-20	0.3
Sabbia con ghiaia debolmente limosa	+18	20	34-36	0	-	40-50	0.3

Nel caso in cui il terreno spingente a tergo dei piedritti fosse il rilevato ferroviario si utilizzano i seguenti parametri geotecnici per determinarne l'azione:

 $\varphi' = 38^{\circ}$ (angolo di attrito)

 $\gamma = 20 \text{ kN/m}^3 \text{ (peso specifico)}$

5.1 Profondità della falda

Ai fini dell'analisi dell'opera non si è considerata la presenza della falda idrica in quanto il livello di falda è posto al di sotto del piano di fondazione dell'opera.

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 10 di 64

6. ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. Tali azioni sono definite secondo le normative e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio e in presenza dell'evento sismico. Tutti i carichi elementari si riferiscono a un concio longitudinale di larghezza unitaria, pertanto sono tutti definiti rispetto all'unità di lunghezza.

6.1 Pesi propri

Il peso dei differenti elementi strutturali viene calcolato automaticamente dal programma di calcolo utilizzato.

- Soletta di copertura;
- Soletta di fondazione;
- Piedritti.

Per i materiali si assumono i seguenti pesi specifici:

Calcestruzzo armato: $\gamma_{c.a.} = 25.00 \text{ kN/m}^3$

Rilevato: $\gamma_{ril} = 20.00 \text{ kN/m}^3$

Ballast + armamento: $\gamma_{\text{ballast}} = 18.00 \text{ kN/m}^3$

6.2 Permanenti non strutturali

Il peso dei carichi permanenti in copertura è stato calcolato considerando i differenti spessori di ballast e supercompattato, ciascuno per il suo peso dell'unità di volume:

$$q_{pp} = h_b \gamma_b + h_{sc} \gamma_{sc}$$

dove:

- h_b = spessore del ballast;
- γ_b = peso specifico del ballast;
- H_{sc} = spessore del super compattato;
- γ_b = peso specifico del super compattato.

6.3 Carichi mobili (traffico ferroviario)

Per quanto attiene il sovraccarico ferroviario si applica il peggiore tra il carico verticale dovuto al treno SW/2 pari a $150 \text{ kN/m} \times 1$ e il carico verticale dovuto al treno LM71 pari a $250 \text{ kN} / 1.6 \text{ m} \times 1.1 = 172.0 \text{ kN/m}$ uniformemente distribuito su una larghezza trasversale di calcolo fino a livello del piano d'asse della soletta di copertura.

Per ponti di categoria A si hanno i seguenti valori del coefficiente di adattamento.

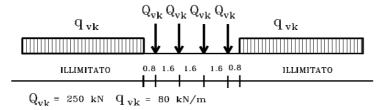
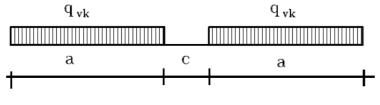



Figura 6.1 – Treno di carico LM71

Tipo di Carico	$q_{vk} [kN/m]$	a [m]	c [m]
SW/0	133	15,0	5,3
SW/2	150	25,0	7,0

Figura 6.2- Treno di carico SW

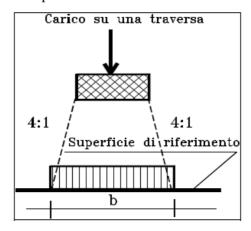
SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62
Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	12 di 64

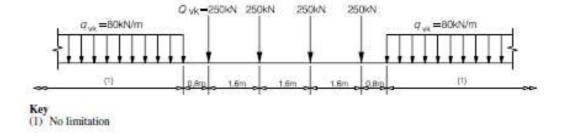
Coefficiente di amplificazione dinamica Φ :

Le sollecitazioni e gli spostamenti determinati sulle strutture dall'applicazione statica dei treni di carico debbono essere incrementati per tener conto della natura dinamica del transito dei convogli.

Per linee a ridotto standard manutentuvo Φ sarà:


$$\Phi_3 = \frac{2,16}{\sqrt{L_{\phi}} - 0,2} + 0,73$$
 con la limitazione $1,00 \le \Phi_3 \le 2,00$

Dove:

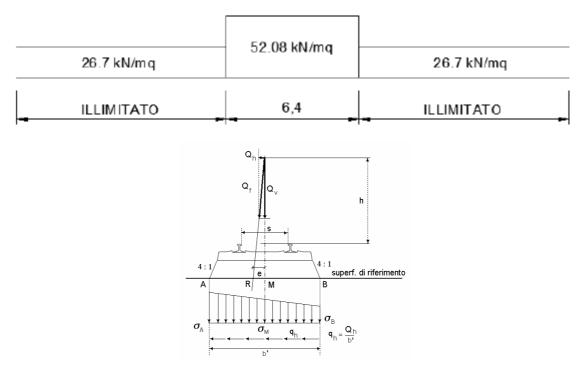

 L_{Φ} rappresenta la lunghezza "caratteristica" in metri.

Determinazione delle larghezze di diffusione dei carichi mobili:

La diffusione dei carichi attraverso ballast avviene con pendenza 4:1, attraverso il ricoprimento con angolo di attrito mentre, nella soletta in cls con pendenza 1:1.

Il modello di carico LM71 citato dalle S.T.I. è definito nella norma EN 1991-2:2003/AC:2010.

Il carico equivalente si ricava dalla ripartizione trasversale e longitudinale dei carichi per effetto delle traverse e del ballast previsti dalla stessa norma EN 1991-2:2003/AC:2010.


SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	13 di 64

Considerando i 4 carichi assiali da 250 kN e la relativa distribuzione longitudinale, il carico verticale equivalente a metro lineare agente alla quota della piattaforma ferroviaria (convenzionalmente a 70 cm dal piano del ferro) risulta pari a:

$$p = \frac{4 \times 250}{4 \times 1.60} = 156.25 \text{ kN/m}$$
80 kN/m
80 kN/m
80 kN/m
1LLIMITATO
6,4
ILLIMITATO

Considerando la distribuzione trasversale dei carichi su una larghezza di 3.0 m secondo quanto previsto da EN 1991 – 2:2003/AC:2010, si ricava il carico equivalente unitario agente alla quota della piattaforma ferroviaria:

La lunghezza di ripartizione trasversale verrà meglio esplicitata al §9.2.

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 14 di 64

6.4 Azione di avviamento / frenatura

Per ogni treni di carico si associano le azioni di avviamento e frenatura agenti sulla sommità del binario, nella direzione longitudinale dello stesso. Dette forze si considerano uniformemente distribuite sulla lunghezza di binario.

I valori caratteristici considerati sono i seguenti:

- Avviamento $Q_{1a,k} = 33 \text{ [kN/m]} * L \text{ [m]}$ per LM71 ed SW2

Frenatura $Q_{lb,k} = 20 [kN/m] * L [m]$ per LM71

 $Q_{lb,k} = 35 [kN/m] * L [m]$ per SW/2

6.5 Azione di serpeggio

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva. Il valore caratteristico di tale forza sarà assunto pari a Qsk=100 kN. Tale valore deve essere moltiplicato per a, (se a>1), ma non per il coefficiente F. Questa forza laterale deve essere sempre combinata con i carichi verticali.

Tale azione viene trascurata in quanto con un modello piano non si possono considerare gli effetti trasversali.

6.6 Azione del sisma

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

Classe d'uso: III

• Coefficiente d'uso $C_U = 1.5$

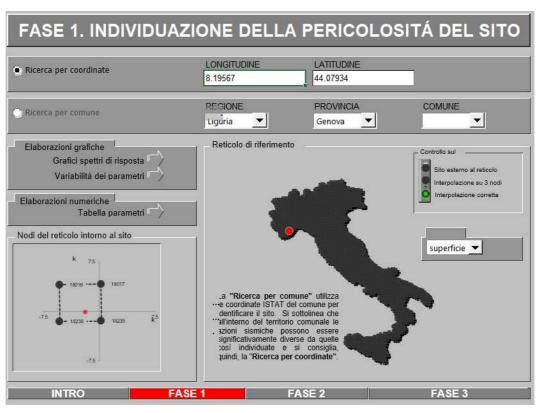
• Vita nominale $V_N = 75$ anni

Categoria di suolo: B

Condizione topografica: T1

Fattore di struttura q = 1

L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.


I parametri per la determinazione dei punti dello spettro di risposta orizzontale e verticale sono riportati:

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 15 di 64

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	16 di 64

Di seguito si riportano i parametri di definizione dell'azione:

Parametri indipendenti

raiamen muip	rarament mulpendend				
STATO LIMITE	SLV				
a_q	0.176 g				
F _o	2.461				
T _C *	0.300 s				
S _S	1.200				
C _C	1.399				
S _T	1.000				
q	1.000				

Parametri dipendenti

S	1.200
η	1.000
T _B	0.140 s
T _C	0.420 s
T_D	2.302 s

6.7 Ritiro del calcestruzzo

Gli effetti del ritiro del calcestruzzo sono valutati in accordo al §2.5.1.6.2 del Manuale di Progettazione, in particolare: "Per tali effetti si riporta il contenuto del §5.2.2.10.2 del DM 17.01.2018. I coefficienti di ritiro e viscosità finali, salvo sperimentazione diretta, sono quelli indicati rispettivamente nei §§ 11.2.10.6 e 11.2.10.7". Per cui ai fini delle verifiche sono stati impiegati i coefficienti indicati al punto 11.2.10.6 delle NTC 2018. La deformazione totale da ritiro è data dalla somma della deformazione per ritiro da essiccamento e della deformazione da ritiro autogeno. Il ritiro è stato applicato mediante una variazione termica equivalente pari a 10°, ed un umidità relativa del 75% a 7 gg.

Il fenomeno del ritiro è stato applicato solo alla soletta di copertura nel caso dello scatolare mentre viene trascurato nel muro.

6.8 Variazione termica

La variazione termica applicata sulla struttura è pari a ΔT = +15°C, con un variazione termica a aggiuntiva a farfalla pari a ΔT = +5°C applicata sulla soletta di copertura. Per ricoprimenti superiori ad 1,5m non si applica alcuna variazione termica.

Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 \times 10^{-6} = 0.00001$$

6.9 Spinta statica del terreno

Le spinte del terreno a monte degli elementi verticali sono calcolate con la teoria di Rankine, con distribuzione triangolare delle tensioni e conseguente risultante della spinta al metro pari a $S=1/2 \cdot k_0 \cdot \gamma \cdot H^2$, applicata ad 1/3 dal basso.

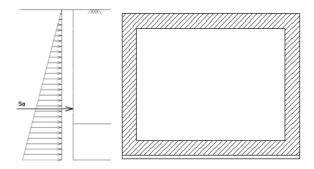


Figura 6.3 – Schema per il calcolo degli effetti della spinta statica del terreno

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta a riposo $k_0=1-\sin\varphi$ ', dove φ ' è l'angolo di attrito assunto. In caso di falda il peso specifico del terreno è stato sostituito da quello efficace.

6.10 Spinta dovuta al sovraccarico accidentale

Per considerare la presenza di un sovraccarico da traffico gravante a tergo, si considera un carico uniformemente distribuito. Il valore della spinta risultante al metro è dunque pari a $S=k_0\cdot q\cdot H$, con punto di applicazione posizionato a metà dell'altezza dell'elemento su cui insiste.

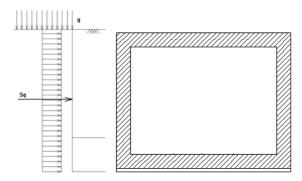


Figura 6.4– Schema per il calcolo degli effetti della spinta dovuta al sovraccarico accidentale

6.11 Incremento di Spinta in condizione sismiche

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di Wood, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza del piedritto, da applicare ad una quota pari ad H/2.

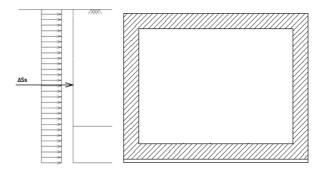


Figura 6.5– Schema per il calcolo degli effetti della sovraspinta sismica

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	19 di 64

7. COMBINAZIONE DEI CARICHI

In linea con quanto riportato nel quadro normativo vigente, le azioni descritte nei paragrafi precedenti, sono combinate nel modo seguente:

combinazione fondamentale (SLU):

$$\gamma_{\text{G1}} \cdot \textbf{G}_{\text{1}} + \gamma_{\text{G2}} \cdot \textbf{G}_{\text{2}} + \gamma_{\text{p}} \cdot \textbf{P} + \gamma_{\text{O1}} \cdot \textbf{Q}_{\text{k1}} + \gamma_{\text{O2}} \cdot \psi_{\text{02}} \cdot \textbf{Q}_{\text{k2}} + \gamma_{\text{O3}} \cdot \psi_{\text{03}} \cdot \textbf{Q}_{\text{k3}} + ...$$

combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione eccezionale:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione Rara (SLE irreversibile):

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + ...$$

combinazione Frequente (SLE reversibile):

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

$$G_{1}+G_{2}+P+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\psi_{23}\cdot Q_{k3}+...$$

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella tabella seguente.

TIPO DI CARICO	Azioni verticali		Azioni orizzontali				
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1 (2)	1,00	ı	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6; 0,4)	+	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione	
Azione dominante	Azione dominante						

Tab. 1 – Valutazione dei carichi da traffico

La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali ed i coefficienti di combinazione ψ delle tabelle seguenti.

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	20 di 64

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γp	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori

Tab. 2 – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, Eccezionali e Sismica

	vv ,			
Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	g ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr3	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	$T_{\mathbf{k}}$	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tab. 3 – Coefficienti di combinazione ψ delle azioni

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna (7) 1,20 per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	21 di 64

8. VERIFICHE STRUTTURALI

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15.

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

8.1 Verifiche per gli stati limite ultimi a flessione-pressoflessione

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

8.2 Verifica agli stati limite ultimi a taglio

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM17/01/2018, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento i seguenti valori della resistenza di calcolo:

- Resistenza di progetto dell'elemento privo di armatura a taglio:

$$V_{Rd} = max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{\frac{1}{2}} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$$

- Resistenza di progetto a "taglio trazione":

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$$

- Resistenza di progetto a "taglio compressione":

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot \nu f_{cd} \cdot (\cot \alpha + \cot \theta) / (1 + \cot^2 \theta)$$

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	22 di 64

Nelle espressioni precedenti i simboli hanno i seguenti significati:

$$k=1+\sqrt{\frac{200}{d}}\leq 2 \ \ \text{con d in mm;}$$

$$\rho_1 = \frac{A_{sl}}{b_w \cdot d} \le 0.02;$$

A si è l'area dell'armatura tesa;

 \mathbf{b}_{w} è la larghezza minima della sezione in zona tesa;

$$\sigma_{\text{cp}} = \frac{N_{\text{Ed}}}{A_{\text{c}}} < 0.2 \cdot f_{\text{cd}}; \label{eq:sigma_cp}$$

 N_{Ed} è la forza assiale nella sezione dovuta ai carichi;

A, è l'area della sezione di calcestruzzo;

$$\nu_{\text{min}} = 0.035 \cdot k^{3/2} \cdot f_{\text{ck}}^{-1/2};$$

 $1 \le \cot \vartheta \le 2.5 \,$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave

A sw è l'area della sezione trasversale dell'armatura a taglio;

S è il passo delle staffe;

 α è l'angolo d'inclinazione dell'armatura trasversale rispetto all'asse della trave;

 νf_{cd} è la resistenza di progetto a compressione ridotta del calcestruzzo d'anima (ν =0.5);

 $\alpha_c=1$ coefficiente maggiorativo per membrature non compresse.

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	23 di 64

8.3 Verifica agli stati limite d'esercizio

Si effettuano le seguenti verifiche agli stati limite di esercizio:

- stato limite delle tensioni in esercizio;
- stato limite di fessurazione.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensionideformazioni di tipo lineare. In particolare si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

```
\sigma_c < 0.55 f<sub>ck</sub> per combinazione di carico caratteristica (rara);
```

 σ_c < 0.40 f_{ck} per combinazione di carico quasi permanente;

 $\sigma_s < 0.75$ f_{vk} per combinazione di carico caratteristica (rara).

Nel secondo caso, si verifica che le aperture delle fessure siano inferiori al valore limite dell'apertura delle fessure nella combinazione caratteristica Rara. I valori nominali di riferimento sono:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	24 di 64

9. VERIFICHE GEOTECNICHE

Le verifiche geotecniche sono state omesse in quanto in corrispondenza dello scatolare il terreno si trova in condizioni meno gravose delle zone limitrofe. Inoltre, lo scavo e la successiva costruzione di una struttura "vuota" sottopongono il terreno a tensioni inferiori a quelli precedentemente presenti.

COMMESSA LOTTO CODIFICA

IV0I 00 D 26 CL

DOCUMENTO REV.
SL0700001 A

FOGLIO **25 di 64**

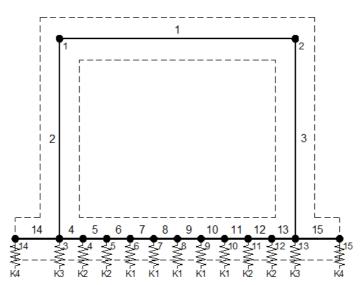
SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

10. ANALISI STRUTTURALE

Le analisi sono state condotte mediante l'ausilio del SAP2000, un Codice di calcolo F.E.M. (Finite Element Method) capace di gestire analisi lineari e non lineari ed analisi sismiche con integrazione al passo delle equazioni nel tempo. Dal modello sono state dedotte, per le combinazioni di calcolo statiche e sismiche descritte in precedenza, le sollecitazioni complessive agenti sugli elementi strutturali al fine di procedere con le verifiche di sicurezza previste dalle Normative di riferimento.

Il calcolo della struttura è stato effettuato considerando una striscia di calcolo pari ad 1m disposta ortogonalmente all'asse longitudinale dello scatolare. In caso di obliquità Ø dello scatolare rispetto alla linea ferroviaria il calcolo è stato eseguito analizzando sempre una striscia di larghezza unitaria ortogonale all'asse longitudinale dello scatolare, ipotizzando una coerente disposizione delle armature di forza trasversali.

Convenzione assi


 \mathbf{x} = asse trasversale dello scatolare

y = asse longitudinale dello scatolare

z = asse verticale dello scatolare

10.1 Modellazione strutturale : Scatolare

Il modello di calcolo attraverso il quale viene discretizzata la struttura è quello di telaio chiuso. Per simulare il comportamento del terreno di fondazione vengono inserite molle alla Winkler.

La soletta inferiore viene divisa in elementi per poter schematizzare, tramite molle applicate, l'interazione terreno- struttura.

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	26 di 64

Per la definizione delle precedenti costanti si è fatto riferimento alla caratterizzazione geotecnica a disposizione.

I valori di resistenza del terreno assunti nei calcoli che seguono sono quelli riferiti al primo strato della tabella riportata al paragrafo 5.

Per la rigidezza delle molle, nell'opera in esame si considera un modulo di reazione verticale Kw pari a 3129 kN/m³. Tale valore viene valutato tramite la teoria di Bowles, note le dimensioni della fondazione dell'opera e il modulo elastico del terreno di fondazione:

$$k_{h} = \frac{E}{(1 - v^{2}) \cdot B \cdot c_{h}}$$

Dove:

E modulo elastico del terreno

v coefficiente di Poisson

B larghezza della fondazione

L lato maggiore della fondazione

Ct fattore di forma (Bowles, 1960)

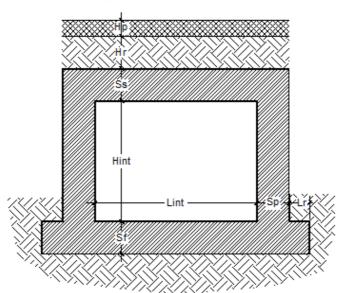
Kw coefficiente di sottofondo alla Winkler

Con questo valore si ricavano i valori delle singole molle:

Rigidezze molle verticali				
Modulo elastico del terreno	E _t		15.00	N/mm²
Coefficiente di Poisson	V		0.30	-
Larghezza della fondazione	В	$B = L_r + S_p + L_{int} + S_p + L_r$	11.30	m
Lato maggiore della fondazione	L		16.00	m
Fattore di forma	Ct		1.04	-
Terreno di fondazione - Costante di sottofondo	K _w	$K_w = E_t/(1-v^2)*B*c_t$	1404	kN/m³
Interasse molle	i	$i = (S_p/2 + L_{int} + S_p/2)/10$	1.03	m
Molle centrali	K1	$K_1 = K_w * i$	1 446	kN/m
Molle intermedie	K2	$K_2 = 1.50 * K_w * i$	2 170	kN/m
Molle laterali	K3	$K_3 = 2.00*K_w*(i/2+S_p/2)$	2 851	kN/m
Molle risvolto	K4	$K_4 = 1.50*K_w*L_r$	0	kN/m

La rigidezza delle molle in corrispondenza dei piedritti è stata aumentata, seguendo le indicazioni riportate nella letteratura tecnica, al fine di tenere in conto l'irrigidimento apportato dai piedritti al solettone di fondo.

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 27 di 64

10.2 Analisi dei carichi

Geometria

Caratteristiche materiali e terreno				
Calcestruzzo armato - Peso specifico	γ		25	kN/m³
Calcestruzzo armato - Tipo			C32/40	
Calcestruzzo armato - Res. caratt. cubica	R_{ck}		40	N/mm ²
Calcestruzzo armato - Res. caratt. cilindrica	f _{ck}	0.83 · 40 =	33.2	N/mm ²
Calcestruzzo armato - Modulo elastico	E		33600	N/mm ²
Ballast - Peso specifico	Yb		18	kN/m³
Terreno del rilevato -Peso specifico	γ		20	kN/m³
Terreno del rilevato - Angolo di attrito	φ		38	0
Terreno di riempimento laterale - Peso specifico	γ		20.0	kN/m³
Terreno di riempimento laterale - Angolo di attrito	φ		38	0
Condizioni ambientali per ver. a fessurazione			aggressive	
Ricoprimento				
Spessore ballast+armamento	Hb		0.80	m
Spessore medio traversina+binario	Ht		0.40	m
Spessore ballast sotto la traversina			0.40	m
Spessore del rinterro	Hr		0.36	m
Geometria				
Spessore soletta superiore	Ss		1.00	m
Spessore soletta di fondazione	Sf		1.00	m
Spessore piedritti	Sp		1.00	m
Altezza netta	Hint		6.20	m
Larghezza netta	Lint		9.30	m
Lunghezza risvolti sol. inf.	Lr		0.00	m
Lunghezza dello scatolare	L		16.00	m

Tab. 4: Geometria del modello

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 28 di 64

Azioni elementari applicate

Carichi permanenti (Condizione PERM)				
Soletta superiore				
Peso ballast	Ps	0.80 · 18 =	14.40	kN/m²
Peso del rinterro	Pr	0.36 · 20 =	7.20	kN/m²
Totale	(Pr+l	Ps)*r	23.70	kN/m²
Risvolti soletta inferiore				
Peso ballast	Ps	-	0.00	kN/m²
Peso del rinterro	Pr	-	0.00	kN/m ²
Totale			0.00	kN/m²
Carichi accidentali sulla copertura LM71 (Condi	zioni <i>ACC-M</i>	71 e <i>ACC-T71</i>)		
Coefficiente dinamico				
Lunghezza caratteristica per coeff. din.	$L_{\!\scriptscriptstyle{\Phi}}$	$= 1.3 \cdot 1/3 \cdot (6.70 + 10.30 + 6.70)$	10.27	m
Coefficiente dinamico	Φ_3	$= 0.9 \cdot (2.16 / (radq(10.27) - 0.2) + 0.73)$	1.30	
Qvk				
Coefficiente di adattamento	α		1.10	
Larghezza traversa	Lt		2.40	m
Impronta di carico y	Ld1	$2.40 + 2 \times (0.40/4 + 0.36 \times TAN(38^{\circ}) + 1.00/2) =$	4.16	m
Impronta di carico x	Ld2	0.8+1.6+1.6+1.6+0.8=	6.40	m
Carico Qvk (totale)			1000	kN
Carico Qvk (ripartito)		1.1 · 1.30 · 1000 / (4.16 · 6.40) =	53.84	kN/m²
qvk				
Carico qvk			80	kN/m
Carico qvk (ripartito)		1.1 · 1.30 · 80 / 4.16 =	27.57	kN/m²
Carichi accidentali sulla copertura SW/2 (Condi	zioni <i>ACC-M</i>	SW e ACC-TSW)		
Coefficiente di adattamento	α		1.00	
Carico qvk			150	kN/m
Carico qvk (ripartito)		1 · 1.30 · 150 / 4.16 =	46.99	kN/m²
Avviamento e frenatura (Condizione <i>AVV</i>)				
Q1ak (= a*33 / Ld1)		a*33 / 4.16 =	8.72	kN/m²

Per il calcolo della lunghezza caratteristica si fa riferimento al Manuale di Progettazione Caso 5.4 della tabella 2.5.1.4.2.5.3-1 Parte II - Sezione II – Ponti.

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 29 di 64

			3701	KIN/III
Spinta del terreno in fase sismica (Condizione SPSDX) Risultante della spinta sismica	ΔS_{F}	= $(amax/q) \cdot y \cdot (Hint+Ss+Sf+Hb+Hr)^2 = 0.211 \cdot 20 \cdot 9.36^2$	370.1	kN/m
Forza vert. sulla sol. di cop.	FVs	0.106 · (1.00·25 + 23.70 + 0.2·503.2/10.30) / 1.00 =	6.17	kN/m
Sisma verticale (Condizione SISMAV)				
Forza orizz. sui piedritti	FHp	0.211 · (1.00 · 25) / 1.00 =	5.28	kN/m
Forza orizz. sulla sol. di cop.	FHs	0.211 · (1.00·25 + 23.70 + 0.2·503.2/10.30) / 1.00 =	12.35	kN/m
Carico accidentale totale gravante sulla cop.		1.1·1000/(4.16·6.40)·6.40 + 1.1·80/4.16·11.30 =	503.2	kN/m
Coeff. sismico verticale	k _v	$= \pm 0.5 \cdot k_h$	0.106	
Coeff. sismico orizzontale	k _h	=a _{max} /g	0.211	
Fattore di struttura	q		1.00	
accellerazione orizzontale max	a _{max} /q	=ag/g · S	0.211	
Coefficiente S	S	=Ss · St	1.200	
Coeff. Amplificazione stratigrafica Coeff. Amplificazione topografica	St		1.200	
Coeff. Amplificazione stratigrafica	Ss	Λ, υ, ω, υ, L	1.200	
Categoria sottosuolo		A, B, C, D, E	В	
Amplificazione spettrale	Fo		2.461	
Accelerazione orizzontale	a _g /g		0.176	
Periodo di riferimento	V_R		150	anni
Coefficiente C _U	C _U		2	
Classe d'uso			IV	
Vita nominale	V_N		75	anni
Stato limite		Salvaguardia della vita - SLU -	SLV	
Sisma orizzontale (Condizione SISMAH)				
Spinta dovuta al q1	p	0.384 · 1 · 150 / (4.16 · 6.40) =	2.16	kN/m
Spinta del carico accidentale SW/2 (Condizioni SPACC	 SX e S	SPACCDX)		
Spinta dovuta al q1	р	0.384 · 1.1 · 1000 / (4.16 · 6.40) =	15.87	kN/m
Spinta del carico accidentale LM71 (Condizioni SPACC				
				,
Spinta semispessore sol. inf.	F2	(68.10+71.95)/2 · 1.00/2	35.01	kN/m
Spinta alia quota di intradosso sol. inr. Spinta semispessore sol. sup.	p4 F1	0.384 · [23.20 + 20 · (1.00+6.20+1.00)] = (8.92+12.76)/2 · 1.00/2	71.95 5.42	kN/m²
Spinta in asse sol. inf. Spinta alla quota di intradosso sol. inf.	p3 p4	0.384 · [23.20 + 20·(1.00+6.20+1.00/2)] = 0.384 · [23.20 + 20·(1.00+6.20+1.00)] =	68.10 71.95	kN/m ²
Spinta in asse sol. sup.	p2	0.384 · (23.20 + 20·1.00/2) = 0.384 · [23.20 + 20·(1.00+6.20+1.00/2)] =	12.76	kN/m
Spinta alla quota di estradosso sol. sup.	p1	0.384 · 23.20 =	8.92	kN/m²
K02		1 - sen (38°) =	0.384	
K01		1 - sen (38°) =	0.384	
Spinta del terreno (Condizioni SPTSX e SPTDX)				
·				
Coefficiente di spinta attiva	Ka		0.22	-
Inclinazione piedritto rispetto alla verticale	а		90	0
Inclinazione del piano campagna rispetto all'orizzontale	β		25.3	0
Coefficiente di spinta a riposo Angolo di attrito terreno-muro	K ₀	$\kappa_0 = [1\text{-Sen}(\phi_t)]^{\text{**OCR}}$	25.3	- 0
Angolo di attrito - terreno ai lati dei piedritti	φ	$K_0 = [1-sen(\phi_t)]*OCR^m$	38.00 0.38	-
Coefficiente dipendente dall'OCR	m		0.5	- 0
Grado di sovraconsolidazione	OCR		1	-
Coefficienti di spinta statici del terreno				
Ritiro applicato alla sol. Superiore	ΔT_R		-10	0
Ritiro (Condizione RITIRO)				
Variazione termica a farfalla di calcolo	ΔIF*	5 / 2 =	2.50	-
Variazione termica uniforme di calcolo		15 / 2 =	7.50	0
Variazione termica a farfalla	ΔT _F	15 / 2	5	0
				0
Variazione termica uniforme	ΔT_U		15	0

Relazione di calcolo scatolare

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62

LOTTO COMMESSA CODIFICA IV0I 00 D 26 CL

DOCUMENTO REV. SL0700001 Α

FOGLIO

30 di 64

Seguono le schermate di applicazione dei principali carichi al modello:

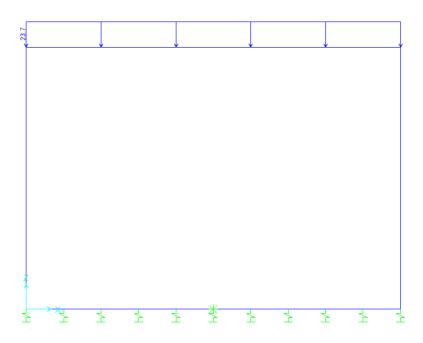


Figura 6: Condizione di carico PERM (kN/m/m)

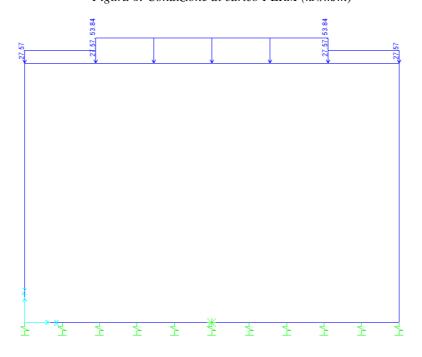


Figura 7: Condizione ACC-LM71- M(kN/m/m)

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 31 di 64

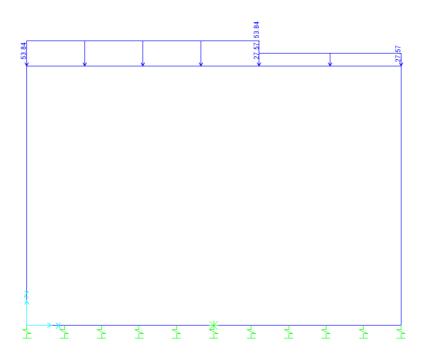


Figura 8: Condizione ACC-LM71- T(kN/m/m)

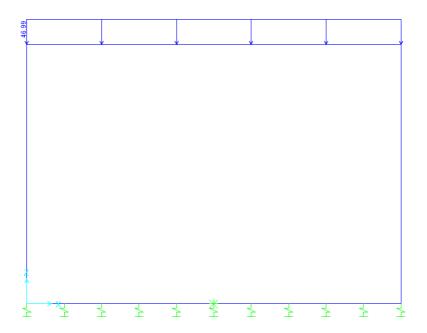


Figura 9: Condizione ACC-SW (kN/m/m)

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

IV0I	00	D 26 CL	SL0700001	Α	32 di 64
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

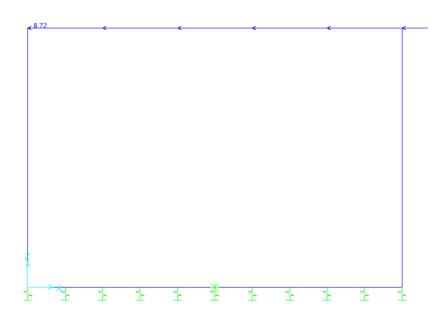


Figura 10: Condizione AVV (kN/m/m)

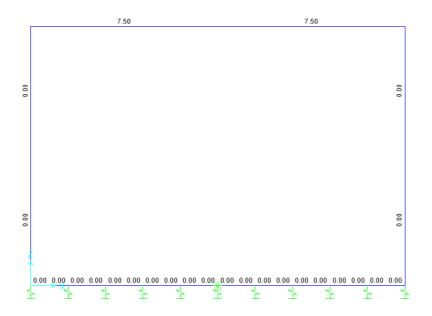


Figura 11: Condizione TERM (°C)

Relazione di calcolo scatolare

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	33 di 64

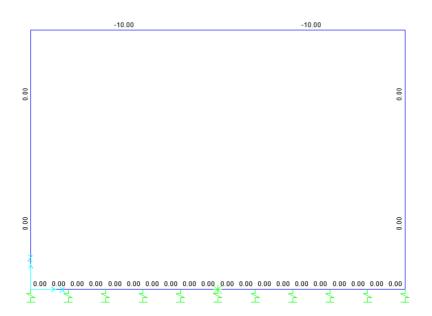


Figura 12: Condizione RITIRO (°C)

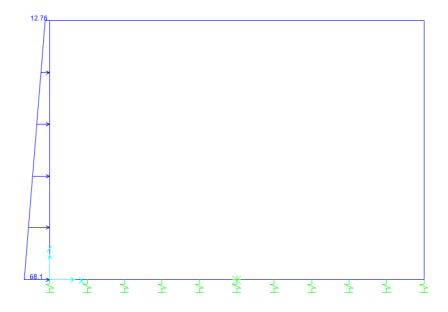


Figura 13: Condizione SPTSX (kN/m/m)

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

IV0I 00 D 2	26 CL SL070000	 34 di 64

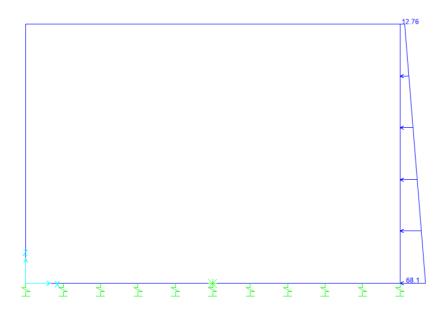


Figura 14: Condizione SPTDX (kN/m/m)

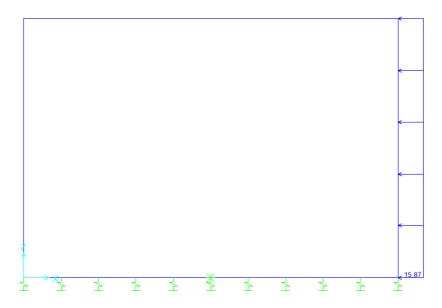


Figura 15: Condizione SPQDX71 (kN/m/m)

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 35 di 64

Figura 16: Condizione SPQDXSW (kN/m/m)

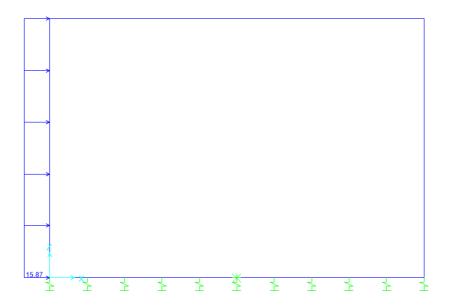


Figura 17: Condizione SPQSX71 (kN/m/m)

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 36 di 64

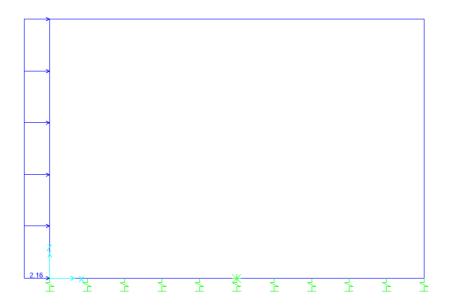


Figura 18: Condizione SPQSXSW (kN/m/m)

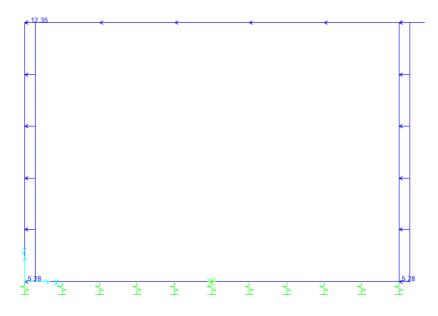


Figura 19: Condizione SISMAH (kN/m/m)

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	37 di 64

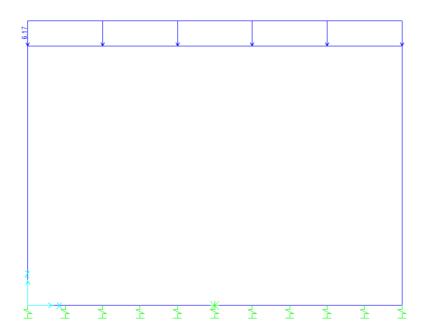


Figura 20: Condizione SISMAV (kN/m/m)

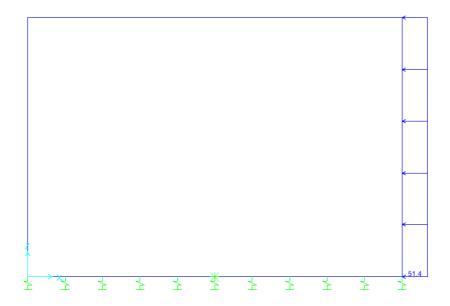


Figura 21: Condizione SPSDX (kN/m²)

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 38 di 64

10.3 Combinazioni

02 0 03 0	01S1-11M	PERM	PERM-G2	ACC-M71	ACC-T71	AVV									SPSDX			SPQDXSW
02 0 03 0		1.35	1.50	1.45	0	0.725	1.00	1.00	SPQSX71	SPQDX71	0.9	1.2	SISMAH 0	SISMAV 0	0	ACC-SW	SPQSXSW 0	0
03 0	02S1-11T	1.35	1.50	0	1.45	0.725	1.00	1.00	0	0	0.9	1.2	0	0	0	0	0	0
	03S1-12M	1.35	1.50	1.45	0	0.725	1.35	1.35	1.45	1.45	0.9	1.2	0	0	0	0	0	0
	04S1-12T	1.35	1.50	0	1.45	0.725	1.35	1.35	1.45	1.45	0.9	1.2	0	0	0	0	0	0
05 0	05S1-13M	1.35	1.50	1.45	0	0.725	1.00	1.35	0	1.45	0.9	1.2	0	0	0	0	0	0
06 0	06S1-13T	1.35	1.50	0	1.45	0.725	1.00	1.35	0	1.45	0.9	1.2	0	0	0	0	0	0
07	07S1-14-	1.35	1.50	0	0	0	1.35	1.35	1.45	1.45	0.9	1.2	0	0	0	0	0	0
08	08S1-15-	1.35	1.50	0	0	0	1.00	1.35	0	1.45	0.9	1.2	0	0	0	0	0	0
09 0	09S1-16S	1.35	1.5	0	0	0.725	1.00	1.00	0.00	0.00	0.90	1.20	0.00	0.00	0.00	1.45	0	0
	10S1-17S	1.35	1.5	0	0	0.725	1.35	1.35	0.00	0.00	0.90	1.20	0.00	0.00	0.00	1.45	1.45	1.45
	11S1-18S	1.35	1.5	0	0	0.725	1.00	1.35	0.00	0.00	0.90	1.20	0.00	0.00	0.00	1.45	0	1.45
	12S1-19S	1.35	1.5 1.5	0	0	0.00	1.35 1.00	1.35	0.00	0.00	0.90	1.20 1.20	0.00	0.00	0.00	0	1.45 0	1.45
	13S1-20S	1.35	1.50	1.45	0	0.725	1.00	1.35	0.00	0.00	-0.9	1.20	0.00	0.00	0.00	0	0	1.45 0
	14S1-21M 15S1-21T	1.35	1.50	0	1.45	0.725	1.00	1.00	0	0	-0.9	1.2	0	0	0	0	0	0
	16S1-22M	1.35	1.50	1.45	0	0.725	1.35	1.35	1.45	1.45	-0.9	1.2	0	0	0	0	0	0
	17S1-22T	1.35	1.50	0	1.45	0.725	1.35	1.35	1.45	1.45	-0.9	1.2	0	0	0	0	0	0
18 1	18S1-23M	1.35	1.50	1.45	0	0.725	1.00	1.35	0	1.45	-0.9	1.2	0	0	0	0	0	0
19 1	19S1-23T	1.35	1.50	0	1.45	0.725	1.00	1.35	0	1.45	-0.9	1.2	0	0	0	0	0	0
20 2	20S1-24-	1.35	1.50	0	0	0	1.35	1.35	1.45	1.45	-0.9	1.2	0	0	0	0	0	0
21 2	21S1-25-	1.35	1.50	0	0	0	1.00	1.35	0	1.45	-0.9	1.2	0	0	0	0	0	0
	22S1-26S	1.35	1.5	0	0	0.725	1.00	1.00	0	0	-0.9	1.2	0	0	0	1.45	0	0
	23S1-27S	1.35	1.5	0	0	0.725	1.35	1.35	0	0	-0.9	1.2	0	0	0	1.45	1.45	1.45
	24S1-28S	1.35	1.5	0	0	0.725	1.00	1.35	0	0	-0.9	1.2	0	0	0	1.45	1.45	1.45
	25S1-29S 26S1-30S	1.35 1.35	1.5 1.5	0	0	0.00	1.35 1.00	1.35	0	0	-0.9 -0.9	1.2 1.2	0	0	0	0	1.45 0	1.45 1.45
	27S1T11M	1.35	1.50	1.16	0	1.16	1.00	1.00	0	0	1.5	1.2	0	0	0	0.00	0.00	0.00
	28S1T11T	1.35	1.50	0	1.16	1.16	1.00	1.00	0	0	1.5	1.2	0	0	0	0.00	0.00	0.00
	29S1T12M	1.35	1.50	1.16	0	1.16	1.35	1.35	1.16	1.16	1.5	1.2	0	0	0	0.00	0.00	0.00
30 3	30S1T12T	1.35	1.50	0	1.16	1.16	1.35	1.35	1.16	1.16	1.5	1.2	0	0	0	0.00	0.00	0.00
31 3	31S1T13M	1.35	1.50	1.16	0	1.16	1.00	1.35	0	1.16	1.5	1.2	0	0	0	0.00	0.00	0.00
	32S1T13T	1.35	1.50	0	1.16	1.16	1.00	1.35	0	1.16	1.5	1.2	0	0	0	0.00	0.00	0.00
	33S1T14-	1.35	1.50	0	0	0	1.35	1.35	1.16	1.16	1.5	1.2	0	0	0	0.00	0.00	0.00
	34S1T15-	1.35	1.50	0	0	0	1.00	1.35	0	1.16	1.5	1.2	0	0	0	0.00	0.00	0.00
	35S1T16S	1.35 1.35		0	0	1.16 1.16	1.00 1.35	1.00	0	0	1.5 1.5	1.2 1.2	0	0	0	1.16 1.16	0 1.16	1.16
	36S1T17S 37S1T18S	1.35		0	0	1.16	1.00	1.35	0	0	1.5	1.2	0	0	0	1.16	0	1.16
	38S1T19S	1.35	1.5	0	0		1.35	1.35	0	0	1.5	1.2	0	0	0	0.00	1.16	1.16
	39S1T20S	1.35	1.5	0	0		1.00	1.35	0	0	1.5	1.2	0	0	0	0.00	0	1.16
40 4	40S1T21M	1.35	1.50	1.16	0	1.16	1.00	1.00	0	0	-1.5	1.2	0	0	0	0.00	0.00	0.00
41 4	41S1T21T	1.35	1.50	0	1.16	1.16	1.00	1.00	0	0	-1.5	1.2	0	0	0	0.00	0.00	0.00
42 4	42S1T22M	1.35	1.50	1.16	0	1.16	1.35	1.35	1.16	1.16	-1.5	1.2	0	0	0	0.00	0.00	0.00
43 4	43S1T22T	1.35	1.50	0	1.16	1.16	1.35	1.35	1.16	1.16	-1.5	1.2	0	0	0	0.00	0.00	0.00
F	44S1T23M	1.35	1.50	1.16	0	1.16	1.00	1.35	0	1.16	-1.5	1.2	0	0	0	0.00	0.00	0.00
F	45S1T23T	1.35	1.50	0	1.16	1.16	1.00	1.35	0	1.16	-1.5	1.2	0	0	0	0.00	0.00	0.00
F	46S1T24-	1.35 1.35	1.50 1.50	0	0	0	1.35 1.00	1.35 1.35	1.16	1.16	-1.5 -1.5	1.2 1.2	0	0	0	0.00	0.00	0.00
•	47S1T25- 48S1T26S	1.35	1.50	0		-	1.00	1.00	0	1.16 0	-1.5	1.2	0	0	0	1.16	0.00	0.00
•	48511265 49S1T27S	1.35	1.5	0	0		1.35	1.35	0	0	-1.5	1.2	0	0	0	1.16	1.16	1.16
	50S1T28S	1.35	1.5	0	0	1.16	1.00	1.35	0	0	-1.5	1.2	0	0	0	1.16	0	1.16
	51S1T29S	1.35	1.5	0	0		1.35	1.35	0	0	-1.5	1.2	0	0	0	0	1.16	1.16
	52S1T30S	1.35	1.5	0	0	0	1.00	1.35	0	0	-1.5	1.2	0	0	0	0	0	1.16
53 5	53S3-11M	1.35	1.50	1.45	0	1.45	1.00	1.00	0	0	0.9	1.2	0	0	0	0	0	0
54 5	54S3-11T	1.35	1.50	0	1.45	1.45	1.00	1.00	0	0	0.9	1.2	0	0	0	0	0	0
P	55S3-12M	1.35	1.50	1.45	0	1.45	1.35	1.35	1.45	1.45	0.9	1.2	0	0	0	0	0	0
56 5	56S3-12T	1.35	1.50	0	1.45	1.45	1.35	1.35	1.45	1.45	0.9	1.2	0	0	0	0	0	
	57S3-13M	1.35	1.50	1.45	0	1.45	1.00	1.35	0	1.45	0.9	1.2	0	0	0	0	0	
•	58S3-13T	1.35	1.50	0	1.45	1.45	1.00	1.35	0	1.45	0.9	1.2	0	0	0	1 45	0	+
F	59S3-14S 60S3-15S	1.35 1.35	1.5 1.5	0	0	1.45 1.45	1.00 1.35	1.00 1.35	0	0	0.9	1.2 1.2	0	0	0	1.45 1.45	0 1.45	0 1.45
61 6	61S3-16S	1.35	1.5	0	0	1.45	1.00	1.35	0	0	0.9	1.2	0	0	0	1.45	0	1.45
62 6	62S3-21M	1.35	1.50	1.45	0	1.45	1.00	1.00	0	0	-0.9	1.2	0	0	0	0	0	0
63 6	63S3-21T	1.35	1.50	0	1.45	1.45	1.00	1.00	0	0	-0.9	1.2	0	0	0	0	0	0
64 6	64S3-22M	1.35	1.50	1.45	0	1.45	1.35	1.35	1.16	1.16	-0.9	1.2	0	0	0	0	0	0
65 6	65S3-22T	1.35	1.50	0	1.45	1.45	1.35	1.35	1.16	1.16	-0.9	1.2	0	0	0	0	0	0
	66S3-23M	1.35	1.50	1.45	0	1.45	1.00	1.35	0	1.16	-0.9	1.2	0	0	0	0	0	0
66 6	67S3-23T	1.35	1.50	0	1.45	1.45	1.00	1.35	0	1.16	-0.9	1.2	0	0	0	0	0	0

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 39 di 64

68	68S3-24S	1.35	1.5	0	0	1.45	1.00	1.00	0	0	-0.9	1.2	0	0	0	1.45	0	0
	69S3-25S	1.35	1.5	0	0	1.45	1.35	1.35	0	0	-0.9	1.2	0	0	0	1.45	1.16	1.16
	70S3-26S	1.35	1.5	0	0	1.45	1.00	1.35	0	0	-0.9	1.2	0	0	0	1.45	0	1.16
	71SSS1	1	1	0.2	0	0	1	1	0	0.2	0.5	1	1	0.3	1	0	0	0
72	72SSS2	1	1	0.2	0	0	1	1	0	0.2	0.5	1	1	-0.3	1	0	0	0
	73SSS3	1	1	0.2 0.2	0	0	1	1	0	0.2 0.2	0.5 0.5	1	0.3 0.3	1 -1	0.3 0.3	0	0	0
75	74SSS4 75SSS5	1	1	0.2	0	0	1	1	0	0.2	-0.5	1	1	0.3	1	0	0	0
	76SSS6	1	1	0.2	0	0	1	1	0	0.2	-0.5	1	1	-0.3	1	0	0	0
	77SSS7	1	1	0.2	0	0	1	1	0	0.2	-0.5	1	0.3	1	0.3	0	0	0
78	78SSS8	1	1	0.2	0	0	1	1	0	0.2	-0.5	1	0.3	-1	0.3	0	0	0
79	79SSS9S	1	1	0	0	0	1	1	0		0.5	1	1	0.3	1	0.2	0	0.2
80	80SSS10S	1	1	0	0	0	1	1	0		0.5	1	1	-0.3	1	0.2	0	0.2
81	81SSS11S	1	1	0	0	0	1	1	0		0.5	1	0.3	1	0.3	0.2	0	0.2
82	82SSS12S	1	1	0	0	0	1	1	0		0.5	1	0.3	-1	0.3	0.2	0	0.2
83	83SSS13S	1	1	0	0	0	1	1	0		0.5	1	1	0.3	1	0.2	0	0.2
	84SSS14S	1	1	0	0	0	1	1	0		0 -0.5	1	1	-0.3	1	0.2	0	0.2
	85SSS15S	1	1	0	0	0	1	1	0		0 -0.5	1	0.3	1	0.3	0.2	0	0.2
	86SSS16S	1	1	0	0	0	1	1	0		0 -0.5	1	0.3	-1	0.3	0.2	0	0.2
	87R4-11M	1	1	0.8	0	0.8	1	1	0	0	0.6	1	0	0	0	0	0 0	0
	88R4-11T 89R4-12M	1	1	0.8	0.8	0.8	1	1	0.8	0.8	0.6	1	0	0	0	0	0	0
	90R4-12T	1	1	0.0	0.8	0.8	1	1	0.8	0.8	0.6	1	0	0	0	0	0	0
	91R4-13M	1	1	0.8	0.0	0.8	1	1	0.0	0.8	0.6	1	0	0	0	0	0	0
	92R4-13T	1	1	0	0.8	0.8	1	1	0	0.8	0.6	1	0	0	0	0	0	0
93	93R4-14S	1	1	0	0	0.8	1	1	0		0.6	1	0	0	0	0.8	0	0
94	94R4-15S	1	1	0	0	0.8	1	1	0		0.6	1	0	0	0	0.8	0.8	0.8
95	95R4-16S	1	1	0	0	0.8	1	1	0		0.6	1	0	0	0	0.8	0	0.8
96	96R4-21M	1	1	0.8	0	8.0	1	1	0	0	-0.6	1	0	0	0	0	0	0
97	97R4-21T	1	1	0	8.0	0.8	1	1	0	0	-0.6	1	0	0	0	0	0	0
	98R4-22M	1	1	0.8	0	8.0	1	1	0.8	8.0	-0.6	1	0	0	0	0	0	0
	99R4-22T	1	1	0	0.8	0.8	1	1	0.8	0.8	-0.6	1	0	0	0	0	0	0
	100R4-23M 101R4-23T	1	1	0.8	0.8	0.8 0.8	1	1	0	0.8 0.8	-0.6 -0.6	1	0	0	0	0	0	0
	101R4-231 102R4-24S	1	1	0	0.8	0.8	1	1	0		0.6	1	0	0	0	0.8	0	0
	102R4-24S 103R4-25S	1	1	0	0	0.8	1	1	0		0.6	1	0	0	0	0.8	0.8	0.8
	104R4-26S	1	1	0	0	0.8	1	1	0		0.6	1	0	0	0	0.8	0	0.8
	105R1T11M	1	1	0.8	0	0.8	1	1	0	0	1	1	0	0	0	0	0	0
	106R1T11T	1	1	0	0.8	0.8	1	1	0	0	1	1	0	0	0	0	0	0
107	107R1T12M	1	1	0.8	0	0.8	1	1	0.8	0.8	1	1	0	0	0	0	0	0
108	108R1T12T	1	1	0	0.8	0.8	1	1	0.8	0.8	1	1	0	0	0	0	0	0
109	109R1T13M	1	1	0.8	0	8.0	1	1	0	8.0	1	1	0	0	0	0	0	0
110	110R1T13T	1	1	0	0.8	0.8	1	1	0	0.8	1	1	0	0	0	0	0	0
	111R1T14S	1	1	0	0	8.0	1	1	0		0 1	1	0	0	0	0.8	0	0
	112R1T15S	1	1	0	0	0.8	1	1	0		0 1	1	0	0	0	0.8	0.8	0.8
	113R1T16S	1	1	0	0	0.8	1	1	0		0 1	1	0	0	0	0.8	0	0.8
	114R1T21M 115R1T21T	1	1	0.8	0.8	0.8 0.8	1	1	0	0	-1 -1	1	0	0	0	0	0 0	0
	116R1T22M	1	1	0.8	0.8	0.8	1	1	0.8	0.8	-1	1	0	0	0	0	0	0
	117R1T22T	1	1	0.8	0.8	0.8	1	1	0.8	0.8	-1 -1	1	0	0	0	0	0	0
	118R1T23M	1	1	0.8	0.0	0.8	1	1	0.0	0.8	-1	1	0	0	0	0	0	0
	119R1T23T	1	1	0	0.8	0.8	1	1	0	0.8	-1	1	0	0	0	0	0	0
120	120R1T24S	1	1	0	0	0.8	1	1	0		0 -1	1	0	0	0	0.8	0	0
121	121R1T25S	1	1	0	0	0.8	1	1	0		0 -1	1	0	0	0	0.8	0.8	0.8
122	122R1T26S	1	1	0	0	0.8	1	1	0		0 -1	1	0	0	0	0.8	0	0.8

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 40 di 64

123 123R1-11M	1	1	1	0	0.5	1	1	0	0	0.6	1	0	0	0	0	0	0
124 124R1-11T	1	1	0	1	0.5	1	1	0	0	0.6	1	0	0	0	0	0	0
125 125R1-12M	1	1	1	0	0.5	1	1	1	1	0.6	1	0	0	0	0	0	0
126 126R1-12T 127 127R1-13M	1	1	0	0	0.5 0.5	1	1	0	1	0.6 0.6	1	0	0	0	0	0	0
128 128R1-13T	1	1	0	1	0.5	1	1	0	1	0.6	1	0	0	0	0	0	0
129 129R1-14S	1	1	0	0	0.5	1	1	0	C		1	0	0	0	1	0	0
130 130R1-15S	1	1	0	0	0.5 0.5	1	1	0	0		1	0	0	0	1	0	1
131 131R1-16S 132 132R1-21M	1	1	1	0	0.5	1	1	0	0	-0.6	1	0	0	0	0	0	0
133 133R1-21T	1	1	0	1	0.5	1	1	0	0	-0.6	1	0	0	0	0	0	0
134 134R1-22M	1	1	1	0	0.5	1	1	1	1	-0.6	1	0	0	0	0	0	0
135 135R1-22T 136 136R1-23M	1	1	1	0	0.5 0.5	1	1	0	1	-0.6 -0.6	1	0	0	0	0	0	0
137 137R1-23T	1	1	0	1	0.5	1	1	0	1	-0.6	1	0	0	0	0	0	0
138 138R1-24S	1	1	0	0	0.5	1	1	0	C		1	0	0	0	1	0	0
139 139R1-25S 140 140R1-26S	1	1	0	0	0.5 0.5	1	1	0	0		1	0	0	0	1	0	1
141 141R1T11M	1	1	0.8	0	0.4	1	1	0	0	1	1	0	0	0	0	0	0
142 142R1T11T	1	1	0	0.8	0.4	1	1	0	0	1	1	0	0	0	0	0	0
143 143R1T12M	1	1	0.8	0	0.4	1	1	0.8	0.8	1	1	0	0	0	0	0	0
144 144R1T12T 145 145R1T13M	1	1	0.8	0.8	0.4 0.4	1	1	0.8	0.8 0.8	1	1	0	0	0	0	0	0
146 146R1T13T	1	1	0	0.8	0.4	1	1	0	0.8	1	1	0	0	0	0	0	0
147 147R1T14S	1	1	0	0	0.4	1	1	0	C		1	0	0	0	0.8	0	0
148 148R1T15S 149 149R1T16S	1	1	0	0	0.4 0.4	1	1	0	(1	0	0	0	0.8 0.8	0.8	0.8
150 150R1T21M	1	1	0.8	0	0.4	1	1	0	0	-1	1	0	0	0	0.0	0	0.0
151 151R1T21T	1	1	0	0.8	0.4	1	1	0	0	-1	1	0	0	0	0	0	0
152 152R1T22M 153 153R1T22T	1	1	0.8	0.8	0.4 0.4	1	1	0.8	0.8	-1 -1	1	0	0	0	0	0	0
154 154R1T23M	1	1	0.8	0.8	0.4	1	1	0.8	0.8	-1 -1	1	0	0	0	0	0	0
155 155R1T23T	1	1	0	0.8	0.4	1	1	0	0.8	-1	1	0	0	0	0	0	0
156 156R1T24S	1	1	0	0	0.4	1	1	0	0		1	0	0	0	0.8	0	0
157 157R1T25S 158 158R1T26S	1	1	0	0	0.4 0.4	1	1	0	0		1	0	0	0	0.8 0.8	0.8	0.8
159 159R3-11M	1	1	1	0	1	1	1	0	0	0.6	1	0	0	0	0	0	0
160 160R3-11T	1	1	0	1	1	1	1	0	0	0.6	1	0	0	0	0	0	0
161 161R3-12M 162 162R3-12T	1	1	0	0	1	1	1	1	1	0.6 0.6	1	0	0	0 0	0	0	0
163 163R3-13M	1	1	1	0	1	1	1	0	1	0.6	1	0	0	0	0	0	0
164 164R3-13T	1	1	0	1	1 .	1	1	0	1	0.6	1	0	0	0	0	0	0
165 165R3-14S 166 166R3-15S	1	1	0	0	1	1	1	0	0		1	0	0	0	1	0	0
167 167R3-16S	1	1	0	0	1	1	1	0	Č		1	0	0	0	1	0	1
168 168R3-21M	1	1	1	0	1	1	1	0	0	-0.6	1	0	0	0	0	0	0
169 169R3-21T 170 170R3-22M	1	1	1	0	1	1	1	0	0	-0.6 -0.6	1	0	0	0	0 0	0	0
171 171R3-22T	1	1	0	1	1	1	1	1	1	-0.6	1	0	0	0	0	0	0
172 172R3-23M	1	1	1	0	1	1	1	0	1	-0.6	1	0	0	0	0	0	0
173 173R3-23T 174 174R3-24S	1	1	0	1	<u>1</u> 1	1	1	0	1	-0.6	11	0	0	0	0	0	0
174 174R3-24S 175 175R3-25S	1	1	0	0	1	1	1	0	C		1	0	0	0	1	1	1
176 176R3-26S	1	1	0	0	1	1	1	0	C	-0.6	1	0	0	0	1	0	1
177 177R1T11M	1	1	0.8	0.8	0.8	1	1	0	0	1	1	0	0	0	0	0	0
178 178R1T11T 179 179R1T12M	1	1	0.8	0.8	0.8	1	1	0.8	0.8	1	1	0	0	0	0	0	0
180 180R1T12T	1	1	0	0.8	0.8	1	1	0.8	0.8	1	1	0	0	0	0	0	0
181 181R1T13M	1	1	0.8	0	0.8	1	1	0	0.8	1	1	0	0	0	0	0	0
182 182R1T13T 183 183R1T14S	1	1	0 0	0.8	0.8	1	1	0 0	0.8	1	1	0	0	0	0.8	0	0
184 184R1T15S	1	1	0	0	0.8	1	1	0	C		1	0	0	0	0.8	0.8	0.8
185 185R1T16S	1	1	0	0	0.8	1	1	0			1	0	0	0	0.8	0	0.8
186 186R1T21M 187 187R1T21T	1	1	0.8	0.8	0.8	1	1	0	0	-1 -1	1	0	0	0 0	0	0	0
187 187R11211 188 188R1T22M	1	1	0.8	0.8	0.8	1	1	0.8	0.8	-1 -1	1	0	0	0	0	0	0
189 189R1T22T	1	1	0	0.8	0.8	1	1	0.8	0.8	-1	1	0	0	0	0	0	0
190 190R1T23M	1	1	0.8	0.8	0.8 0.8	1	1	0	0.8 0.8	-1 -1	1	0	0	0	0	0	0
191 191R1T23T 192 192R1T24S	1	1	0	0.8	0.8	1	1	0	0.8		1	0	0	0	0.8	0	0
193 193R1T25S	1	1	0	0	0.8	1	1	0	C	-1	1	0	0	0	0.8	0.8	0.8
194 194R1T26S	1	1	0	0	0.8	1	1	0	C	-1	1	0	0	0	0.8	0	0.8

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	41 di 64

	_																
195 195F1-11M	1	1	0.8	0	0.8	1	1	0	0	0.5	1	0	0	0	0	0	0
196 196F1-11T	1	1	0	0.8	0.8	1	1	0	0	0.5	1	0	0	0	0	0	0
197 197F1-12M	1	1	0.8	0	0.8	1	1	0.8	0.8	0.5	1	0	0	0	0	0	0
198 198F1-12T	1	1	0	0.8	0.8	1	1	0.8	0.8	0.5	1	0	0	0	0	0	0
199 199F1-13M	1	1	0.8	0	0.8	1	1	0	0.8	0.5	1	0	0	0	0	0	0
200 200F1-13T	1	1	0	0.8	0.8	1	1	0	0.8	0.5	1	0	0	0	0	0	0
201 201F1-14S	1	1	0	0	0.8	1	1	0	-	0.5	1	0	0	0	0.8	0	0
202 202F1-15S	1	1	0	0	0.8	1	1	0		0.5	1	0	0	0	0.8	0.8	0.8
203 203F1-16S	1	1	0	0	0.8	1	1	0		0.5	1	0	0	0	0.8	0	0.8
204 204F1-21M	1	1	0.8	0	0.8	1	1	0	0	-0.5	1	0	0	0	0	0	0
205 205F1-21T	1	1	0	0.8	0.8	1	1	0	0	-0.5	1	0	0	0	0	0	0
206 206F1-22M	1	1	0.8	0	0.8	1	1	0.8	0.8	-0.5	1	0	0	0	0	0	0
207 207F1-22T	1	1	0	0.8	0.8	1	1	0.8	0.8	-0.5	1	0	0	0	0	0	0
208 208F1-23M	1	1	0.8	0	0.8	1	1	0	0.8	-0.5	1	0	0	0	0	0	0
209 209F1-23T	1	1	0	0.8	0.8	1	1	0	0.8	-0.5	1	0	0	0	0	0	0
210 210F1-24S	1	1	0	0	0.8	1	1	0		0 -0.5	1	0	0	0	0.8	0	0
211 211F1-25S	1	1	0	0	0.8	1	1	0		0 -0.5	1	0	0	0	0.8	0.8	0.8
212 212F1-26S	1	1	0	0	0.8	1	1	0	(0 -0.5	1	0	0	0	0.8	0	0.8
213 213F3-11M	1	1	8.0	0	8.0	1	1	0	0	0.5	1	0	0	0	0	0	0
214 214F3-11T	1	1	0	8.0	0.8	1	1	0	0	0.5	1	0	0	0	0	0	0
215 215F3-12M	1	1	0.8	0	0.8	1	1	0.8	0.8	0.5	1	0	0	0	0	0	0
216 216F3-12T	1	1	0	8.0	8.0	1	1	0.8	8.0	0.5	1	0	0	0	0	0	0
217 217F3-13M	1	1	8.0	0	8.0	1	1	0	8.0	0.5	1	0	0	0	0	0	0
218 218F3-13T	1	1	0	0.8	0.8	1	1	0	0.8	0.5	11	0	0	0	0	0	0
219 219F3-14S	1	1	0	0	0.8	1	1	0	(0.5	1	0	0	0	0.8	0	0
220 220F3-15S	1	1	0	0	0.8	1	1	0	(0.5	1	0	0	0	8.0	0.8	0.8
221 221F3-16S	1	1	0	0	0.8	1	1	0		0.5	11	0	0	0	0.8	0	0.8
222 222F3-21M	1	1	0.8	0	0.8	1	1	0	0	-0.5	1	0	0	0	0	0	0
223 223F3-21T	1	1	0	0.8	0.8	1	1	0	0	-0.5	1	0	0	0	0	0	0
224 224F3-22M	1	1	8.0	0	8.0	1	1	8.0	8.0	-0.5	1	0	0	0	0	0	0
225 225F3-22T	1	1	0	8.0	8.0	1	1	0.8	8.0	-0.5	1	0	0	0	0	0	0
226 226F3-23M	1	1	0.8	0	0.8	1	1	0	0.8	-0.5	1	0	0	0	0	0	0
227 227F3-23T	1	1	0	0.8	0.8	1	1	0	0.8	-0.5	1	0	0	0	0	0	0
228 228F3-24S	1	1	0	0	0.8	1	1	0		0 -0.5	1	0	0	0	0.8	0	0
229 229F3-25S	1	1	0	0	0.8	1	1	0		0 -0.5	1	0	0	0	0.8	0.8	0.8
230 230F3-26S	1	1	0	0	0.8	1	1	0	(0 -0.5	1	0	0	0	0.8	0	0.8
231 231QPT1	1	1	0	0	0	1	1	0	(0.5	1	0	0	0	0	0	0
232 232QPT2	1	1	0	0	0	1	1	0		0 -0.5	1	0	0	0	0	0	0

dove:

PERM : carichi permanenti

PERM-G2: carichi permanenti non strutturali

ACC-M71 : carichi da traffico concentrato LM71 (disposizione per massimizzare il momento) ACC-T71 : carichi da traffico concentrato LM71(disposizione per massimizzare il taglio)

ACC-SW: carichi da traffico concentrato SW/2

AVV : avviamento

SPTSx : spinta del terreno sulla parete sx **SPTDx** : spinta del terreno sulla parete dx

SPQSx71 : spinta del carico accidentale LM71 sulla parete sxSPQDx71 : spinta del carico accidentale LM71 sulla parete dx

TERM : termica **RITIRO** : ritiro

SISMAH : azione sismica

SISDX : incremento sismico della spinta del terreno
SPQSxSW : spinta del carico accidentale SW/2 sulla parete sx
SPQDxSW : spinta del carico accidentale SW/2 sulla parete dx

10.4 Sollecitazioni

Nella successiva figura vengono rappresentate le sezioni dimensionate e verificate dello scatolare.

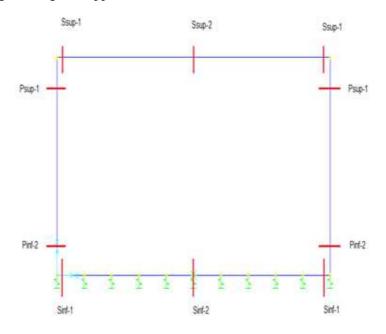


Figura 10.22 - Sezioni di verifica

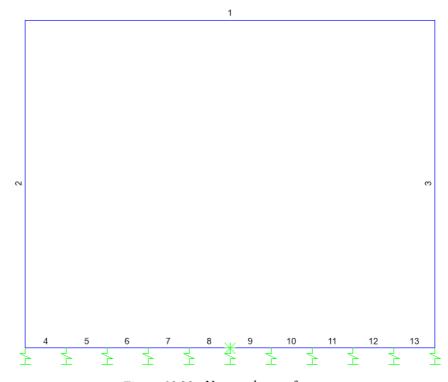


Figura 10.23 - Nomenclatura frame

Nelle successive immagini si riportano gli inviluppi delle sollecitazioni ottenute dal modello di calcolo.

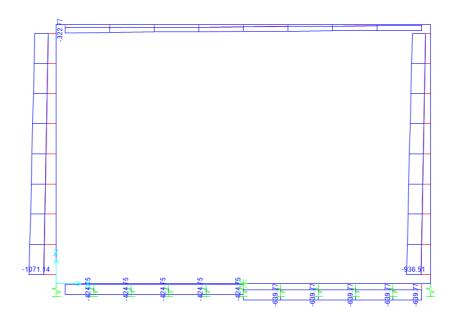


Figura 10.24 - Sforzo Normale - Inviluppo SLU (KN)

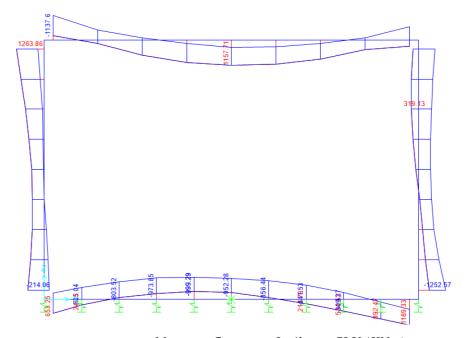


Figura 10.25 - Momento flettente – Inviluppo SLU (KNm)

Relazione di calcolo scatolare

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

D 26 CL

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62	COMMESSA	LOTTO	CODIFICA
Poloziono di colcolo costoloro	11/01	00	D 00 01

FOGLIO DOCUMENTO REV. SL0700001 Α 44 di 64

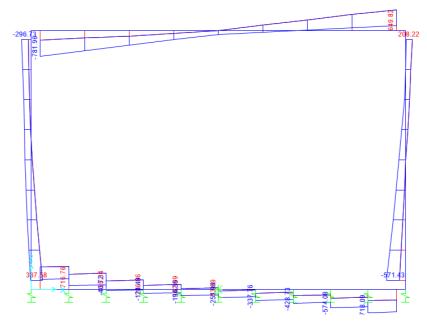


Figura 10.26 - Taglio - Inviluppo SLU (kN)

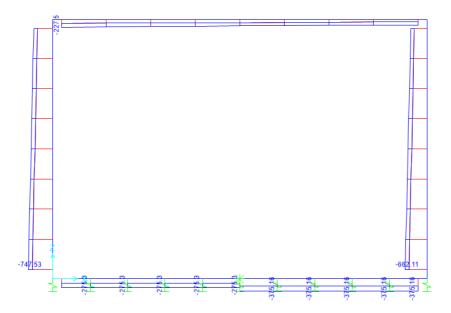


Figura 10.27 - Sforzo Normale - Inviluppo SLE - Rara (kN)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	45 di 64

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

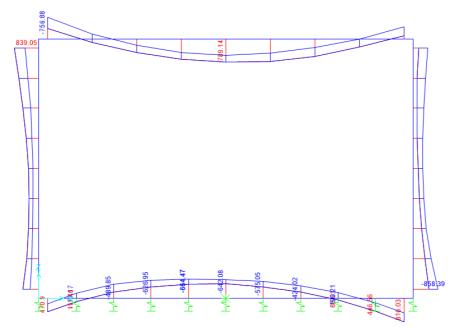


Figura 10.28 - Momento flettente – Inviluppo SLE – Rara (kNm)

10.5 Verifiche strutturali

10.5.1 Riepilogo armature

La tabella seguente mostra le armature di forza adottate nello scatolare con riferimento ad una striscia di 1m.

	Arm	. tesa	Arm. c	comp.
	1° strato	2° strato	1º strato	2° strato
Soletta superiore - Campata	5 Ø26	5 Ø26	5 Ø26	-
Soletta superiore - Appoggio	5 Ø26	5 Ø26	5 Ø26	-
Piedritto - Spiccato	5 Ø26	5 Ø20	5 Ø26	-
Piedritto - Sommità	5 Ø26	5 Ø20	5 Ø26	-
Soletta inferiore - Campata	5 Ø26	5 Ø26	5 Ø26	-
Soletta inferiore - Appoggio	5 Ø26	5 Ø26	5 Ø26	-

L'armatura a taglio, laddove prevista, è indicata nella corrispondente verifica.

10.5.2 Verifica soletta superiore

Verifica a pressoflessione campata (Solsup-Camp)

Acciaio				
Tensione car. di rottura	f _{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm ²
Coeff. parziale di sicurezza	Ϋ́s	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²
Modulo elastico	Ės	=	205000	N/mm ²
	ϵ_{yd}	=	0.00191	

Calcestruz <u>zo</u>									
Tipo	C32/40								
R_{ck}	40	N/mm ²							
f_{ck}	33.2	N/mm ²							
Yc	1.5								
f_{cd}	22.1	N/mm ²							
f_{cc}	18.8	N/mm ²							

copriferro	50	mm
staffe	10	mm
armat. sec.	14	mm

Geometria della sezione				
Altezza geometrica della sezio	1h	=	100	cm
Base della sezione	b	=	100	cm
Copriferro	ď'	=	8.7	cm
Altezza utile della sezione	d	=	91.3	cm

		53.09	cm ²				
		0.00	cm ²				
5	26	26.55	cm ²				
5	26	26.55	cm ²				
Nº ferri	Diametro	Area					
Armatura	Armatura tesa						

Armatura compressa						
Nº ferri	Diametro	Area				
5	26	26.55	cm ²			
0	0	0.00	cm ²			
		0.00	cm ²			
		26.55	cm ²			

Nsd

Comb.

39S1T20S

40S1T21M

41S1T21T

42S1T22M

43S1T22T

0

0

0

0

410

1089

82SSS12S

83SSS13S

86SSS16S

1057 84SSS14S

1031 85sss15s

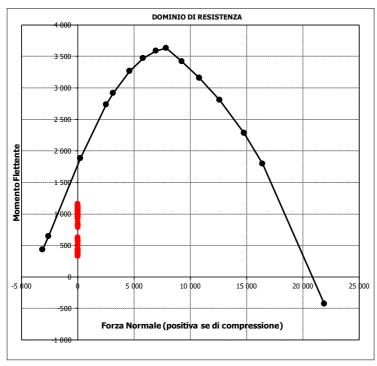
0

0

0

0

334


434

406

500

Caratteristiche di sollecitazione Comb. Nsd [kN] Msd [kNm]

(Mmax) 14S1-21M 0 1158 (Mmin) 82SSS12S 0 334

44S1T23M 01S1-11M 1060 1028 02S1-11T 0 988 45S1T23T 1028 03S1-12M 0 962 46S1T24-0 582 922 0 04S1-12T 0 47S1T25-611 05S1-13M 0 995 48S1T26S 0 1058 06S1-13T 49S1T27S 0 955 0 1029 07S1-14-0 401 50S1T28S 1044 08S1-15-434 51S1T29S 09S1-16S 0 990 52S1T30S 0 626 10S1-17S 0 960 53S3-11M 0 1028 0 54S3-11T 0 988 11S1-18S 12S1-19S 437 55S3-12M 962 13S1-20S 0 56S3-12T 0 922 14S1-21M 1158 57s3-13M 995 955 15S1-21T 0 1118 58S3-13T 0 16S1-22M 0 1091 59S3-14S 0 990 17S1-22T 0 1051 60s3-15s 0 960 18S1-23M 975 1124 61s3-16s 0 0 19S1-23T 1084 62S3-21M 1158 20S1-24-531 63S3-21T 0 1118 21S1-25-0 564 64S3-22M 0 1100 22S1-26S 0 1119 65S3-22T 0 1060 23S1-27S 1089 66S3-23M 0 1129 24S1-28S 1104 67S3-23T 1089 0 0 25S1-29S 68S3-24S 1119 26S1-30S 582 69S3-25S 0 1090 27S1T11M 0 873 70S3-26S 0 1105 28S1T11T 0 841 71SSS1-0 365 72SSS2-337 29S1T12M 0 0 815 30S1T12T 0 73SSS3-0 431 31S1T13M 0 844 74SSS4--0 336 32S1T13T 0 812 75SSS5-0 437 33S1T14-0 366 76SSS6-0 409 77SSS7--34S1T15-503 0 395 0 78SSS8-0 35S1T16S 0 842 408 79SSS9S 36S1T17S 0 813 0 362 828 334 38S1T19S 0 395 81SSS11S 0 428

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

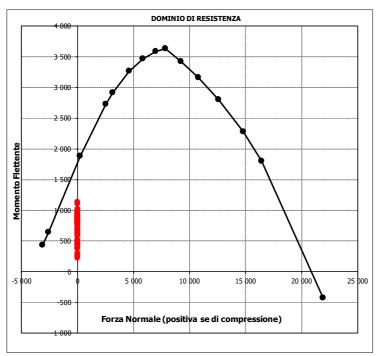
COMMESSA	00 00	CODIFICA D 26 CL	DOCUMENTO SL0700001	REV.	FOGLIO 48 di 64
	•••		020.0000.		

Verifica a pressoflessione appoggio (Solsup-App)

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm ²
Coeff. parziale di sicurezza	γs	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²
Modulo elastico	E_s	=	205000	N/mm ²
	ϵ_{yd}	=	0.00191	

Calcestruzzo						
Tipo	C32/40					
R_{ck}	40	N/mm ²				
f_{ck}	33.2	N/mm ²				
Ϋ́c	1.5					
f_{cd}	22.1	N/mm ²				
f_{cc}	18.8	N/mm ²				

copriferro	50	mm
staffe	10	mm
armat. sec.	14	mm


Geometria della sezione				
Altezza geometrica della sezior	h	=	100	cm
Base della sezione	b	=	100	cm
Copriferro	ď'	=	8.7	cm
Altezza utile della sezione	d	=	91.3	cm

			53.09	cm ²			
			0.00	cm ²			
	5	26	26.55	cm ²			
	5	26	26.55	cm ²			
	Nº ferri	Diametro	Area				
,	Armatura tesa						

Armatura compressa						
Nº ferri	Diametro	Area				
5	26	26.55	cm ²			
0	0	0.00	cm ²			
		0.00	cm ²			
		26.55	cm ²			

Caratteristiche di sollecitazione Comb. Nsd [kN] Msd [kNm]

(Mmax)	57S3-13M	0	1138
(Mmin)	51S1T29S	0	221

Caratteristiche di sollecitazione Comb. Nsd Msd

Comb.	Nsd	Msd			
01S1-11M	0	802	44S1T23M	0	823
02S1-11T	0	772	45S1T23T	0	799
03S1-12M	0	868	46S1T24-	0	250
04S1-12T	0	838	47S1T25-	0	381
05S1-13M	0	1022	48S1T26S	0	613
06S1-13T	0	992	49S1T27S	0	642
07S1-14-	0	431	50S1T28S	0	695
08S1-15-	0	585	51S1T29S	0	221
09S1-16S	0	776	52S1T30S	0	273
10S1-17S	0	806	53S3-11M	0	917
11S1-18S	0	862	54S3-11T	0	887
12S1-19S	0	395	55S3-12M	0	984
13S1-20S	0	451	56S3-12T	0	954
14S1-21M	0	672	57S3-13M	0	1138
15S1-21T	0	642	58S3-13T	0	1108
16S1-22M	0	738	59S3-14S	0	891
17S1-22T	0	709	60S3-15S	0	922
18S1-23M	0	892	61S3-16S	0	978
19S1-23T	0	863	62S3-21M	0	788
20S1-24-	0	301	63S3-21T	0	758
21S1-25-	0	455	64S3-22M	0	846
22S1-26S	0	646	65S3-22T	0	816
23S1-27S	0	676	66S3-23M	0	977
24S1-28S	0	732	67S3-23T	0	947
25S1-29S	0	265	68S3-24S	0	762
26S1-30S	0	321	69S3-25S	0	791
27S1T11M	0	850	70S3-26S	0	844
28S1T11T	0	826	71SSS1	0	915
29S1T12M	0	908	72SSS2	0	899
30S1T12T	0	884	73SSS3	0	528
31S1T13M	0	1039	74SSS4	0	474
32S1T13T	0	1015	75SSS5	0	843
33S1T14-	0	466	76SSS6	0	826
34S1T15-	0	597	77SSS7	0	456
35S1T16S	0	829	78SSS8	0	402
36S1T17S	0	858	79SSS9S	0	893
37S1T18S	0	911	80SSS10S	0	876
38S1T19S	0	437	81SSS11S	0	506
39S1T20S	0	490	82SSS12S	0	452
40S1T21M	0	634	83SSS13S	0	820
41S1T21T	0	610	84SSS14S	0	804
42S1T22M	0	692	85SSS15S	0	434
43S1T22T	0	668	86SSS16S	0	380

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Angolo α

Calcestr	uzzo	
Tipo	C32/40	
Tipo R _{ck}	40	N/mm ²
f _{ck} Yc	33.2	N/mm ²
Yc	1.5	
α_{cc}	0.85	
α_{cc} f_{cd}	18.8	N/mm²

Acciaio		
f_{tk}	540	N/mm ²
f_{yk} Ys	450	N/mm ²
Υs	1.15	
f_{yd}	391	N/mm ²

Sollecitazioni		Soletta sup
V_{Ed}	kN	782
N_{Ed}	kN	0

Armatura a taglio		
Diametro	mm	10
Numero barre		2.5
A_{sw}	cm ²	1.96
Passo s	cm	20

Armatura longitu	ıdinale	
n_1		5
\emptyset_1	mm	26
n_2		5
\emptyset_2	mm	26
Asl	cm ²	53.09

Sezione		
b_w	cm	100
Н	cm	100
c	cm	8.7
d	cm	91.3
k	N/mm ²	1.47
V _{min}	N/mm ²	0.36
ρ		0.0058
σср	N/mm ²	0.00
σcp $α_c$		1.00

\mathbf{V}_{Rd}	kN	NECESSITA ARMATURA A TAGLIO
V_{Rd}	kN	431
Resistenza ser	nza armatura a tag	glio
α_{c}		1.00
σcp	N/mm²	0.00

Resistenza con armatu	ra a tagl	lio
cotα		0.5
V		0.5
ω_{sw}		0.02
cotθ		2.50
Inclinazione puntone θ	0	21.8
V_{RSd}	kN	789
V_{RCd}	kN	2665
V_{Rd}	kN	789
V_{Rd}	kN	VERIFICATO

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	50 di 64

Sollecitazioni				-					
Momento flettente	M	789	kN m						
Sforzo normale	N	0	kN						
Materiali				_					
Resistenza caratteristica cubica calcestruzzo	R_{ck}	40	N/mm ²	2					
Resistenza caratteristica cilindrica calcestruzzo	fck	33.2	N/mm ²	2					
Modulo elastico del calcestruzzo	E_{cm}	33642.78	N/mm ²	2					
Tensione ammissibile cls	σc_{amm}	18.3	N/mm ²	2					
Res. media a trazione cls	f_{ctm}	3.5	N/mm ²	2					
Res. caratteristica a trazione cls	f_{ctk}	2.4	N/mm ²	2					
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm ²	2					
Modulo elastico dell'acciaio	Ė _s	205000.00	N/mm ²	2					
Tensione ammissibile acciaio	σs_{amm}	337.5	N/mm ²	2					
Coefficiente omog. acciaio-cls	n	15							
Caratteristiche geometriche									
Altezza sezione	Н	100	cm						
Larghezza sezione	В	100	cm		_ ,	~ ~			
Armatura compressa (1º strato)	As ₁ '	26.55	cm ²				$c_{s1} =$		
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²				c _{s2} =		
Armatura tesa (2º strato)	As ₂	26.55	cm ²				c _{i2} =		
Armatura tesa (1º strato)	As ₁	26.55	cm ²		5 (0 26	c _{i1} =	8.7	-
Tensioni nei materiali									
Compressione max nel cls.	σς	5.7	N/mm²	2 < σ	Camm		1		
Trazione nell'acciaio (1º strato)	σs	188.3	N/mm ²	² < σ	a _{amm}	ı			
							- 		
Eccentricità	e (M)	∞	cm	> H	1/6 5	ez. p	arzializz	ata	
Daniminum anna marrhua	u (M)	∞ 20.6	cm						
Posizione asse neutro	y (M)	28.6	cm ²						
Area ideale (sez. int. reagente)	A _{id}	11115	cm ²						
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	10288109.64	cm⁴ ₄						
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	3941195.475	cm ⁴						
Verifica a fessurazione									
Momento di fessurazione (f _{ctk})	M _{fess} *	499	kN m	La sez	ione	è fes	surata		l
Momento di foccurazione (f)	М	712	kN m						i .

Verifica a fessurazione				
Momento di fessurazione (f _{ctk})	$M_{fess}*$	499	kN m	La sezione è fessurata
Momento di fessurazione (f _{ctm})	M_{fess}	712	kN m	
Eccentricità per M=M _{fess}	$e(M_{fess})$	∞	cm	
	$u (M_{fess})$	∞	cm	
Compressione max nel cls. per M=M _{fess}	σcr	5.2		
Traz. nell'acciaio (1° str.) per M=M _{fess}	σsr	170.0	N/mm ²	
Posizione asse neutro per M=M _{fess}	$y (M_{fess})$	28.6	cm	
Coefficiente dipendente dalla durata del carico	k_{t}	0.6		
Altezza efficace	$h_{c,eff}$	23.79	cm	
Rapporto tra moduli elastici	α_{e}	6.1	-	
Armatura nell'area efficace	As_{eff}	53.09	cm ²	
Area efficace	Ac_{eff}	2379.37	cm ²	
Rapporto geometrico di armatura	$ ho_{\text{eff}}$	0.0223	-	
Deformazione unitaria media dell'armatura	Esm	0.000331616	-	
Copriferro netto	c'	5.0	cm	
Coefficiente dipendente dall'aderenza dell'acciaio	o K ₁	0.80	-	
Coefficiente dipendente dal diagramma tensioni	K ₂	0.50	-	
Coefficiente adimensionale	K ₃	3.40	-	
Coefficiente adimensionale	K_4	0.425	-	
Diametro equivalente delle barr edi armatura	ϕ_{eq}	26.00	mm	
Distanza massima tra le fessure	Δs_{max}	368.0833442	mm	
Distanza media tra le fessure	Δs_{m}	216.5196142	mm	
Valore medio dell'apertura delle fessure	W _m	0.07	mm	_
Valore di calcolo dell'apertura delle fessure	W_d	0.12	mm	

Valore di calcolo dell'apertura delle fessure

 W_d

0.12 mm

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. IV0I 00 D 26 CL SL0700001 A 51 di 64

Sollecitazioni Momento flettente	M	757	kN m	ī					
Sforzo normale	M N	0	kN III						
Materiali									
Resistenza caratteristica cubica calcestruzzo	R _{ck}	40	N/mm²	Ī					
Resistenza caratteristica cilindrica calcestruzzo	fck	33.2	N/mm²						
Modulo elastico del calcestruzzo	E _{cm}	33642.78	N/mm²						
Tensione ammissibile cls	σc_{amm}	18.3	N/mm²						
Res. media a trazione cls	f_{ctm}	3.5	N/mm²						
Res. caratteristica a trazione cls	f_{ctk}	2.4	N/mm²						
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm²						
Modulo elastico dell'acciaio	E_s	205000.00	N/mm²						
Tensione ammissibile acciaio	σs_{amm}	337.5	N/mm²						
Coefficiente omog. acciaio-cls	n	15		Į					
Caratteristiche geometriche									
Altezza sezione	H	100	cm						
Larghezza sezione	B Ac'	100	cm ²			_	36	1 . 7	
Armatura compressa (1º strato)	As ₁ '	26.55	cm ²		5	Q Q		$c_{s1} = 8.7$ $c_{s2} = 10.0$	cr
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²		0				
Armatura tesa (2º strato) Armatura tesa (1º strato)	As ₂	26.55 26.55	cm ² cm ²		5 5			$c_{i2} = 11.3$ $c_{i1} = 8.7$	cr
Affiliatura tesa (1 Strato)	As ₁	20.55	CIII-		3	V.	20	C _{i1} = 6.7	CI
Tensioni nei materiali Compressione max nel cls.	σς	5.5	N/mm²	<	σc _a			1	
Trazione nell'acciaio (1º strato)	σs	180.6	N/mm²	<	σa _a				
Trazione nen accidio (1º Strato)	03	100.0	14/111111		Oua	ımm		ı	
Eccentricità	e (M)	∞	cm	>	H/6	5 S	ez. pa	arzializzata	
	u (M)	00	cm						
Posizione asse neutro	y (M)	28.6	cm						
Area ideale (sez. int. reagente)	A_{id}	11115	cm ²						
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	10288109.64	cm⁴						
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	3941195.475	cm⁴						
Verifica a fessurazione									7
Momento di fessurazione (f _{ctk})	$M_{fess}*$	499	kN m	La s	ezio	ne	è fess	surata	
Momento di fessurazione (f _{ctm})	M_{fess}	712	kN m						
Eccentricità per M=M _{fess}	e (M _{fess})	∞	cm						
	$u (M_{fess})$	00	cm						
Compressione max nel cls. per M=M _{fess}	σcr	5.2							
Traz. nell'acciaio (1° str.) per M=M _{fess}	σsr	170.0	N/mm ²						
Posizione asse neutro per M=M _{fess}	$y(M_{fess})$	28.6	cm						
Coefficiente dipendente dalla durata del carico	k _t	0.6							
Altezza efficace	$h_{c,eff}$	23.79	cm						
Rapporto tra moduli elastici	α_{e}	6.1	-						
Armatura nell'area efficace	As _{eff}	53.09	cm ²						
Area efficace	Ac _{eff}	2379.37	cm ²						
Rapporto geometrico di armatura	ρ_{eff}	0.0223	-						
Deformazione unitaria media dell'armatura	Esm	0.000331616	-						
Copriferro netto	c'	5.0	cm						
Coefficiente dipendente dall'aderenza dell'acciaio	κ ₁	0.80	-						
Coefficiente dipendente dal diagramma tensioni		0.50	-						
Coefficiente adimensionale	K ₃	3.40	-						
Coefficiente adimensionale	K ₄	0.425	-						
Diametro equivalente delle barr edi armatura	φ _{eq}	26.00	mm						
	req	_0.00							
Distanza massima tra le fessure	Δs_{max}	368,0833442	mm						
Distanza massima tra le fessure Distanza media tra le fessure	Δs_{max} Δs_{m}	368.0833442 216.5196142	mm mm						

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

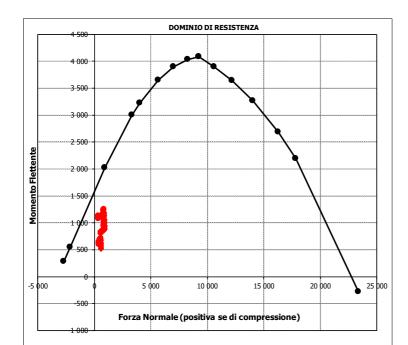
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	52 di 64

10.5.3 Verifica piedritti

• <u>Verifica a pressoflessione spiccato (Pied-Spicc)</u>

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm ²
Coeff. parziale di sicurezza	Ϋ́s	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²
Modulo elastico	Ės	=	205000	N/mm ²
	ϵ_{yd}	=	0.00191	

Calcestruz	ZO	
Tipo	C32/40	
R _{ck}	40	N/mm ²
f_{ck}	33.2	N/mm ²
Yc	1.5	
f_{cd}	22.1	N/mm ²
f_{cc}	18.8	N/mm ²


copriferro	50	mm
staffe	10	mm
armat. sec.	14	mm

Geometria della sezione			
Altezza geometrica della sezion	1h	=	110 cm
Base della sezione	b	=	100 cm
Copriferro	ď'	=	8.7 cm
Altezza utile della sezione	d	=	101.3 cm

Armatura	tesa		
Nº ferri	Diametro	Area	
5	26	26.55	cm ²
5	20	15.71	cm ²
		0.00	cm ²
		42.25	cm ²

Armatura co	mpressa		
Nº ferri	Diametro	Area	
5	26	26.55	cm ²
0	0	0.00	cm ²
		0.00	cm ²
		26.55	cm ²

	Caratteristiche di sollecitazione				
	Comb.	Nsd [kN]	Msd [kNm]		
(Nmax)	09S1-16S	937	883		
(Nmin)	72SSS2	360	1096		
(Mmax)	66S3-23M	857	1253		
(Mmin)	38S1T19S	609	514		

Caratteristich	e di sollecit:	zione			
Comb.	Nsd	Msd	•		
01S1-11M	913	860	44S1T23M	801	1180
02S1-11T	865	851	45S1T23T	762	1172
03S1-12M	913	895	46S1T24-	609	614
04S1-12T	865	886	47S1T25-	576	820
05S1-13M	875	1135	48S1T26S	852	961
06S1-13T	826	1125	49S1T27S	852	976
07S1-14-	609	551	50S1T28S	838	1068
08S1-15-	571	790	51S1T29S	609	598
09S1-16S	937	883	52S1T30S	595	690
10S1-17S	937	899	53S3-11M	890	965
11S1-18S	922	995	54S3-11T	841	955
12S1-19S	609	531	55S3-12M	890	1000
13S1-20S	595	628	56S3-12T	841	990
14S1-21M	913	911	57S3-13M	852	1240
15S1-21T	865	901	58S3-13T	803	1230
16S1-22M	913	946	59S3-14S	913	988
17S1-22T	865	936	60S3-15S	913	1003
18S1-23M	875	1185	61S3-16S	898	1100
19S1-23T	826	1176	62S3-21M	890	1016
20S1-24-	609	602	63S3-21T	841	1006
21S1-25-	571	841	64S3-22M	890	1046
22S1-26S	937	934	65S3-22T	841	1037
23S1-27S	937	949	66S3-23M	857	1253
24S1-28S	922	1046	67S3-23T	808	1243
25S1-29S	609	582	68S3-24S	913	1038
26S1-30S	595	679	69S3-25S	913	1053
27S1T11M	834	858	70S3-26S	899	1145
28S1T11T	795	851	71SSS1	379	1110
29S1T12M	834	889	72SSS2	360	1096
30S1T12T	795	881	73SSS3	477	667
31S1T13M	801	1095	74SSS4	413	620
32S1T13T	762	1087	75SSS5	379	1138
33S1T14-	609	530	76SSS6	360	1124
34S1T15-	576	736	77SSS7	477	696
35S1T16S	852	877	78SSS8	413	648
36S1T17S	852	892	79SSS9S	385	1091
37S1T18S	838	984	80SSS10S	366	1076
38S1T19S	609	514	81SSS11S	483	648
39S1T20S	595	606	82SSS12S	420	601
40S1T21M	834	943	83SSS13S	385	1119
41S1T21T	795	935	84SSS14S	366	1104
42S1T22M	834	973	85SSS15S	483	676
43S1T22T	795	966	86SSS16S	420	629

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

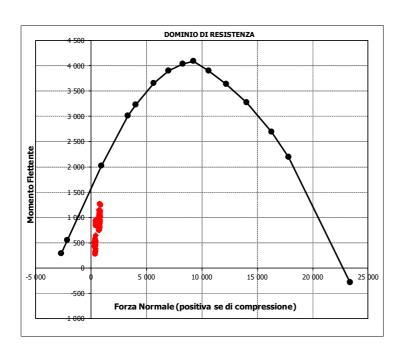
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	53 di 64

Verifica a pressoflessione sommità (Pied-Sommità)

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm ²
Coeff. parziale di sicurezza	Ϋ́s	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²
Modulo elastico	E_s	=	205000	N/mm ²
	٤	=	0.00191	

Calcestruz	ZO ZO	
Tipo	C32/40	
R_{ck}	40	N/mm ²
f_{ck}	33.2	N/mm ²
Ϋ́c	1.5	
f_{cd}	22.1	N/mm ²
f_{cc}	18.8	N/mm²

50	mm
10	mm
14	mm
	10


Geometria della sezione			
Altezza geometrica della sezio	nh	=	110 cm
Base della sezione	b	=	100 cm
Copriferro	ď'	=	8.7 cm
Altezza utile della sezione	d	=	101.3 cm

	42.25	cm ²
	0.00	cm ²
5 20	15.71	cm ²
5 26	26.55	cm ²
Nº ferri Diametro	Area	
Armatura tesa		

Armatura co	ompressa		
Nº ferri	Diametro	Area	
5	26	26.55	cm ²
0	0	0.00	cm ²
		0.00	cm ²
		26.55	cm²

	Caratteristiche di sollecitazione		
	Comb.	Nsd [kN] M	lsd [kNm]
(Nmax)	58S3-13T	845	-1246
(Nmin)	82SSS12S	319	-490
(Mmax)	57S3-13M	796	1264
(Mmin)	51S1T29S	383	281

Caratteristiche di sollecitazione			
Comb.	Nsd [kN] Ms	d [kNm]	
58S3-13T	845	-1246	
82SSS12S	319	-490	
57S3-13M	796	1264	
51S1T29S	383	281	

Comb. Nsd 01S1-11M 44S1T23M 02S1-11T 45S1T23T 03S1-12M 46S1T24-04S1-12T **47S1T25**-05S1-13M 1150 48S1T26S 1133 49S1T27S 06S1-13T 50S1T28S 08S1-15-51S1T29S 09S1-16S 52S1T30S 10S1-17S 53S3-11M 11S1-18S 54S3-11T 55S3-12M 12S1-19S 13S1-20S 56S3-12T 14S1-21M 15S1-21T 58S3-13T 16S1-22M 59S3-14S 17S1-22T 60S3-15S 18S1-23M 1027 61s3-16s 19S1-23T 1010 62S3-21M 20S1-24-63S3-21T 21S1-25-64S3-22M 22S1-26S 65S3-22T 23S1-27S 66S3-23M 24S1-28S 67S3-23T 25S1-29S 68S3-24S 26S1-30S 69S3-25S 27S1T11M 70S3-26S 28S1T11T 71SSS1-29S1T12M 1000 72SSS2-30S1T12T 73SSS3-32S1T13T 1136 75sss5 33S1T14-76SSS6-34S1T15-77SSS7-78SSS8-35S1T16S 36S1T17S 37S1T18S 80SSS10S 38S1T19S 81SSS11S 39S1T20S 82SSS12S 40S1T21M 83SSS13S 41S1T21T 84SSS14S 85SSS15S 42S1T22M 780 86SSS16S 43S1T22T

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	54 di 64

• Verifica a taglio

Relazione di calcolo scatolare

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Calcestr	uzzo	
Tipo	C32/40	
R_{ck}	40	N/mm²
f_{ck}	33.2	N/mm²
Yc	1.5	
α_{cc}	0.85	
$lpha_{cc}$ f_{cd}	18.8	N/mm²

Acciaio		
f_{tk}	540	N/mm²
f_{yk}	450	N/mm²
Υs	1.15	
f_{yd}	391	N/mm²

Sollecitazioni		Piedritto
V_{Ed}	kN	571
N_{Ed}	kN	0

Armatura a taglio Diametro mm Numero barre 2.5

A_{sw}	CI	m²	1.96
Passo s	CI	m	20
Angolo α	•		90

Armatura longi	tudinale	
n_1		5
\emptyset_1	mm	26
n_2		5
\emptyset_2	mm	20
Asl	cm ²	42.25

Sezione			
b _w		cm	100
Н	•	cm	110
С	•	cm	8.7
d		cm	101.3
k		N/mm ²	1.44
V _{min}		N/mm ²	0.35
ρ			0.0042
σср		N/mm ²	0.00
α_c			1.00

u_c		1.00				
Resistenza senza armatura a taglio						
V _{Rd}	kN	422				
		NECESSITA				
V_{Rd}	kN	ARMATURA A				
		TAGLIO				

Resistenza con armatura a taglio							
cotα		0.5					
٧		0.5					
ω_{sw}		0.02					
cotθ		2.50					
Inclinazione puntone θ	0	21.8					
V_{RSd}	kN	876					
V_{RCd}	kN	2957					
V_{Rd}	kN	876					
V_{Rd}	kN	VERIFICATO					

Coefficiente omog. acciaio-cls

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	55 di 64

• Verifica a fessurazione spiccato (Pied-Spicc)

Sollecitazioni			
Momento flettente	М	858	kN m
Sforzo normale	N	716	kN
Materiali			

Materiali			
Resistenza caratteristica cubica calcestruzzo	R _{ck}	40	N/mm²
Resistenza caratteristica cilindrica calcestruzzo	fck	33.2	N/mm ²
Modulo elastico del calcestruzzo	E_{cm}	33642.78	N/mm ²
Tensione ammissibile cls	σc_{amm}	18.3	N/mm ²
Res. media a trazione cls	f_{ctm}	3.5	N/mm²
Res. caratteristica a trazione cls	f_{ctk}	2.4	N/mm²
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm ²
Modulo elastico dell'acciaio	Es	205000.00	N/mm ²
Tensione ammissibile acciaio	σs_{amm}	337.5	N/mm ²

Armatura compressa (1º strato)	As ₁ '	26.55	cm ²			$c_{s1} = 8.7$	
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²			$c_{s2} = 10.0$	
Armatura tesa (2º strato)	As ₂	15.71	cm ²	5	Ø 20	$c_{i2} = 11.0$	cm
Armatura tesa (1º strato)	As_1	26.55	cm ²	5	Ø 26	c _{i1} = 8.7	cm
Tensioni nei materiali						_	
Compressione max nel cls.	σς	6.0	N/mm ²	< σc_a	mm		
1						1	

			,		allili
Trazione nell'acciaio (1º strato)	σs	150.0	N/mm²	<	σa _{amm}
Eccentricità	e (M)	120.0	cm	>	H/6 Sez. parzializzata
	u (M)	65.0	cm		.,
Posizione asse neutro	y (M)	38.2	cm		
Area ideale (sez. int. reagente)	A_{id}	11963	cm ²		
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	13255047.21	cm ⁴		
Mom. di inerzia ideale (sez. parz. N=0)	J_{id*}	4659519.719	cm ⁴		

Verifica a fessurazione				
Momento di fessurazione (f _{ctk})	M _{fess} *	728	kN m	La sezione è fessurata
Momento di fessurazione (f _{ctm})	M_{fess}	979	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	136.8	cm	
	u (M _{fess})	81.8	cm	
Compressione max nel cls. per M=M _{fess}	σcr	6.9		
Traz. nell'acciaio (1° str.) per M=M _{fess}	σsr	180.9	N/mm ²	
Posizione asse neutro per M=M _{fess}	$y(M_{fess})$	36.7	cm	
Coefficiente dipendente dalla durata del carico	k_{t}	0.6		
Altezza efficace	$h_{c,eff}$	24.42	cm	
Rapporto tra moduli elastici	α_{e}	6.1	-	
Armatura nell'area efficace	As_{eff}	42.25	cm ²	
Area efficace	Ac_{eff}	2441.81	cm ²	
Rapporto geometrico di armatura	$ ho_{\text{eff}}$	0.0173	-	
Deformazione unitaria media dell'armatura	Esm	0.000352914	-	
Caracifactura tradition	_1	Γ 0		

Ac_{eff} ρ_{eff}	2441.81	cm ²
$\rho_{\rm eff}$		
	0.0173	-
Esm	0.000352914	-
c'	5.0	cm
K ₁	0.80	-
K_2	0.50	-
K_3	3.40	-
K ₄	0.425	-
ϕ_{eq}	23.39	mm
Δs_{max}	399.7959809	mm
Δs_{m}	235.1741064	mm
W _m	0.08	mm
W _d	0.14	mm
	c' K_1 K_2 K_3 K_4 Φ_{eq} Δs_{max} Δs_m W_m	$\begin{array}{cccc} c' & 5.0 \\ K_1 & \textbf{0.80} \\ K_2 & \textbf{0.50} \\ K_3 & 3.40 \\ K_4 & 0.425 \\ \Phi_{eq} & \textbf{23.39} \\ \Delta S_{max} & 399.7959809 \\ \Delta S_m & 235.1741064 \\ W_m & 0.08 \\ \end{array}$

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	56 di 64

Sollecitazioni Momento flettente	M	839	kN m							
Sforzo normale	N	825	kN							
Materiali										
Resistenza caratteristica cubica calcestruzzo	R _{ck}	40	N/mm²							
Resistenza caratteristica cilindrica calcestruzzo	fck	33.2	N/mm²							
Nodulo elastico del calcestruzzo	E _{cm}	33642.78	N/mm²							
ensione ammissibile cls	σc _{amm}	18.3	N/mm²							
Res. media a trazione cls	f _{ctm}	3.5	N/mm²							
tes. caratteristica a trazione cls	f _{ctk}	2.4	N/mm²							
ensione di snervamento acciaio	f _{yk}	450.00	N/mm²							
1odulo elastico dell'acciaio	E _s	205000.00	N/mm²							
ensione ammissibile acciaio	σs _{amm}	337.5	N/mm²							
Coefficiente omog. acciaio-cls	n	15								
Caratteristiche geometriche										
Itezza sezione	Н	110	cm							
arghezza sezione	В	100	cm							
rmatura compressa (1º strato)	As ₁ '	26.55	cm ²		5	Q	ž 26	c _{s1} =	8.7	CI
rmatura compressa (2º strato)	As ₂ '	0.00	cm ²		0	Q		$c_{s2} = 1$		
rmatura tesa (2º strato)	As ₂	15.71	cm ²		5		ž 20	-		
rmatura tesa (1º strato)	As ₁	26.55	cm ²		5		26	-		cr
ensioni nei materiali										
compressione max nel cls.	σς	5.9	N/mm²	<	σc _a	mm		1		
razione nell'acciaio (1º strato)	σs	134.5	N/mm²	<	σa _a					
ccentricità	e (M)	101.8	cm	_	Н/6			arzializza	ta .	
centricità	u (M)	46.8	cm		11/0	, ,	ez. p	ai ziaiizza	La	
osizione asse neutro	и (M) y (M)	40.4	cm							
rea ideale (sez. int. reagente)	A _{id}	11963	cm ²							
Nom. di inerzia ideale (sez. int. reag.)		13255047.21	cm ⁴							
form. di inerzia ideale (sez. mr. reag.)	J _{id} J _{id*}	4880501.887	cm ⁴							
, , ,										
Verifica a fessurazione Nomento di fessurazione (f _{ctk})	M _{fess} *	750	kN m	las	ezio	ne	è fes	surata		1
Nomento di fessurazione (f _{ctm})		1001	kN m	Lu J	CZIO	···C	C 1C3	Juiutu		
ccentricità per M=M _{fess}	M _{fess} e (M _{fess})	121.3	cm							
ccenarica per minifess										
ompressione max nel cls. per M=M _{fess}	u (M _{fess})	66.3 7.0	cm							
	σcr	7.0 175.7	N/mm?							
raz. nell'acciaio (1° str.) per M=M _{fess}	σsr v (M)		N/mm²							
osizione asse neutro per M=M _{fess} oefficiente dipendente dalla durata del carico	y (M _{fess}) k _t	38.0 0.6	cm							
·										
ltezza efficace	$h_{c,eff}$	23.98	cm							
apporto tra moduli elastici	α_{e}	6.1	-							
rmatura nell'area efficace	As_{eff}	42.25	cm ²							
rea efficace	Ac_{eff}	2398.42	cm ²							
apporto geometrico di armatura	ρ_{eff}	0.0176	-							
eformazione unitaria media dell'armatura	£sm	0.000342876	-							
opriferro netto	c'	5.0	cm							
oefficiente dipendente dall'aderenza dell'acciaio	o K ₁	0.80	-							
oefficiente dipendente dal diagramma tensioni	K ₂	0.50	-							
oefficiente adimensionale	K ₃	3.40	-							
oefficiente adimensionale	K ₄	0.425	-							
iametro equivalente delle barr edi armatura	φ_{eq}	23.39	mm							
		395.7129345	mm							1
istanza massima tra le fessure	Δs_{max}	393./129343	1111111							
		232.7723144	mm							
Distanza massima tra le fessure Distanza media tra le fessure /alore medio dell'apertura delle fessure	ΔS_{max} ΔS_{m} W_{m}									

 \mathbf{w}_{d}

0.14 mm

Valore di calcolo dell'apertura delle fessure

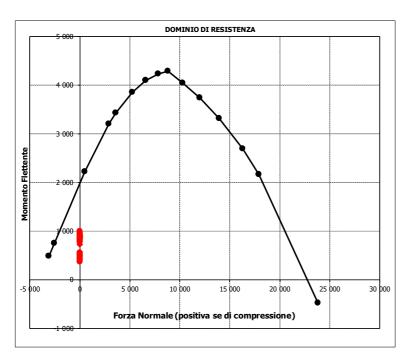
10.5.4 Verifica soletta inferiore

• Verifica a pressoflessione campata (Solinf-Camp)

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm ²
Coeff. parziale di sicurezza	Ϋ́s	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²
Modulo elastico	Ės	=	205000	N/mm ²
	ϵ_{yd}	=	0.00191	

ZO	_
C32/40	
40	N/mm ²
33.2	N/mm ²
1.5	
22.1	N/mm ²
18.8	N/mm ²
	C32/40 40 33.2 1.5 22.1

copriferro	50	mm
staffe	10	mm
armat. sec.	14	mm


Geometria della sezione			
Altezza geometrica della sezion	r h	=	110 cm
Base della sezione	b	=	100 cm
Copriferro	ď'	=	8.7 cm
Altezza utile della sezione	d	=	101.3 cm

Armatura	tesa		
Nº ferri	Diametro	Area	
5	26	26.55	cm ²
5	26	26.55	cm ²
		0.00	cm ²
		53.09	cm ²

Armatura co	ompressa		
Nº ferri	Diametro	Area	
5	26	26.55	cm ²
0	0	0.00	cm ²
		0.00	cm ²
		26.55	cm ²

Caratterist	iche di soll	ecitazione
Comb.	Nsd [kN]	Msd [kNm]

(Mmax)	58S3-13T	0	999
(Mmin)	78SSS8	0	369

Complete	المسالم الساما		1		
Caratteristic					
Comb. 01S1-11M	Nsd 0	Msd 908	44S1T23M	0	825
0151-11M 02S1-11T	0	914	45S1T23M	0	
02SI-III 03S1-12M	0	840	46S1T24-	0	829 372
03SI-12M 04S1-12T	0	846	47S1T25-	0	475
05S1-13M	0	959	4751125- 48S1T26S	0	797
06S1-13M	•	959			765
06S1-13T	0	438	49S1T27S	0	
07S1-14- 08S1-15-	0		50S1T28S	0	814
	0	556 927	51S1T29S	0	400
09S1-16S	0		52S1T30S	0	449
1051-175		894	53S3-11M		944
11S1-18S	0	945	54S3-11T	0	949
12S1-19S	0	473	55S3-12M	0	876
13S1-20S	0	524	56S3-12T	0	881
14S1-21M	0	853	57S3-13M	0	994
15S1-21T	0	858	58S3-13T	0	999
16S1-22M	0	785	59S3-14S	0	962
17S1-22T	0	790	60S3-15S	0	930
18S1-23M	0	903	61S3-16S	0	980
19S1-23T	0	909	62S3-21M	0	888
20S1-24-	0	382	63S3-21T	0	893
21S1-25-	0	501	64S3-22M	0	828
22S1-26S	0	871	65S3-22T	0	834
23S1-27S	0	839	66S3-23M	0	931
24S1-28S	0	890	67S3-23T	0	936
25S1-29S	0	418	68S3-24S	0	906
26S1-30S	0	468	69S3-25S	0	875
27S1T11M	0	875	70S3-26S	0	924
28S1T11T	0	879	71SSS1	0	558
29S1T12M	0	815	72SSS2	0	537
30S1T12T	0	819	73SSS3	0	469
31S1T13M	0	918	74SSS4	0	399
32S1T13T	0	922	75SSS5	0	527
33S1T14-	0	464	76SSS6	0	506
34S1T15-	0	567	77SSS7	0	439
35S1T16S	0	889	78SSS8	0	369
36S1T17S	0	858	79SSS9S	0	556
37S1T18S	0	906	80SSS10S	0	535
38S1T19S	0	493	81SSS11S	0	467
39S1T20S	0	541	82SSS12S	0	398
40S1T21M	0	782	83SSS13S	0	525
41S1T21T	0	786	84SSS14S	0	504
42S1T22M	0	722	85SSS15S	0	437
43S1T22T	0	726	86SSS16S	0	367

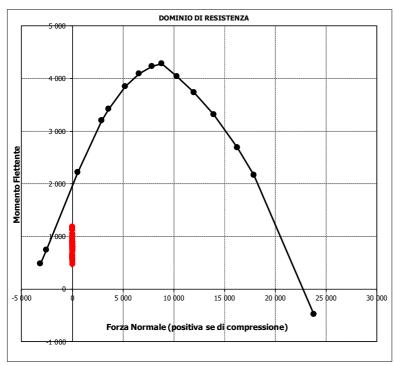
SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	58 di 64

Verifica a pressoflessione appoggio (Solinf-App)

Acciaio				
Tensione car. di rottura	f _{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm ²
Coeff. parziale di sicurezza	Ϋ́s	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²
Modulo elastico	Ės	=	205000	N/mm ²
	Evd	=	0.00191	

Calcestruz	zo	_
Tipo	C32/40	
R_{ck}	40	N/mm ²
f_{ck}	33.2	N/mm ²
Yc	1.5	
f_{cd}	22.1	N/mm ²
f_{cc}	18.8	N/mm ²


mm
mm
mm
1

Geometria della sezione				
Altezza geometrica della sezion	h	=	110 cr	n
Base della sezione	b	=	100 cr	n
Copriferro	ď	=	8.7 cr	n
Altezza utile della sezione	d	=	101.3 cr	n

Armatura tesa				
Nº ferri	Diametro	Area		
5	26	26.55	cm ²	
5	26	26.55	cm ²	
		0.00	cm ²	
		53.09	cm ²	

Armatura compressa				
Nº ferri	Diametro	Area		
5	26	26.55	cm ²	
0	0	0.00	cm ²	
		0.00	cm ²	
		26.55	cm ²	

(Mmax)	75SSS5	0	1189
(Mmin)	38S1T19S	0	465

Comb.	Nsd	Msd			
01S1-11M	0	739	44S1T23M	0	1127
02S1-11T	0	737	45S1T23T	0	1125
03S1-12M	0	809	46S1T24-	0	590
04S1-12T	0	807	47S1T25-	0	808
05S1-13M	0	1062	48S1T26S	0	864
06S1-13T	0	1060	49S1T27S	0	896
07S1-14-	0	522	50S1T28S	0	993
08S1-15-	0	775	51S1T29S	0	560
09S1-16S	0	759	52S1T30S	0	657
10S1-17S	0	792	53S3-11M	0	852
11S1-18S	0	894	54S3-11T	0	849
12S1-19S	0	486	55S3-12M	0	922
13S1-20S	0	587	56S3-12T	0	919
14S1-21M	0	796	57S3-13M	0	1175
15S1-21T	0	794	58S3-13T	0	1172
16S1-22M	0	866	59S3-14S	0	872
17S1-22T	0	864	60S3-15S	0	905
18S1-23M	0	1119	61S3-16S	0	1007
19S1-23T	0	1117	62S3-21M	0	909
20S1-24-	0	579	63S3-21T	0	906
21S1-25-	0	832	64S3-22M	0	970
22S1-26S	0	816	65S3-22T	0	968
23S1-27S	0	849	66S3-23M	0	1188
24S1-28S	0	951	67S3-23T	0	1186
25S1-29S	0	543	68S3-24S	0	929
26S1-30S	0	644	69S3-25S	0	961
27S1T11M	0	753	70S3-26S	0	1058
28S1T11T	0	751	71SSS1	0	1158
29S1T12M	0	814	72SSS2	0	1147
30S1T12T	0	812	738883	0	650
31S1T13M	0	1032	74SSS4	0	615
32S1T13T	0	1030	75SSS5	0	1189
33S1T14-	0	495	76SSS6	0	1179
34S1T15-	0	713	77SSS7	0	682
35S1T16S	0	769	78SSS8	0	647
36S1T17S	0	801	79SSS9S	0	1135
37S1T18S	0	898	80SSS10S	0	1124
38S1T19S	0	465	81SSS11S	0	627
39S1T20S	0	562	82SSS12S	0	592
40S1T21M	0	848	83SSS13S	0	1166
41S1T21T	0	846	84SSS14S	0	1156
42S1T22M	0	909	85SSS15S	0	659
43S1T22T	0	907	86SSS16S	0	623

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	59 di 64

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Calcestr	uzzo	
Tipo	C32/40	
R_{ck}	40	N/mm²
f _{ck} Y _c	33.2	N/mm ²
Yc	1.5	
α_{cc}	0.85	
$lpha_{cc}$ f_{cd}	18.8	N/mm²

Acciaio		
f_{tk}	540	N/mm²
f_{yk}	450	N/mm ²
Υs	1.15	
f_{yd}	391	N/mm²

Sollecitazioni		Soletta inf
V_{Ed}	kN	718
N_{Ed}	kN	0

$\begin{array}{c|cccc} \textbf{Armatura a taglio} \\ \hline \begin{tabular}{ll} \textbf{Diametro} & mm & 10 \\ \textbf{Numero barre} & 2.5 \\ \textbf{A_{sw}} & cm^2 & 1.96 \\ \hline \textbf{Passo s} & cm & 20 \\ \textbf{$Angolo α} & & & & & & & & & & & & & & & & \\ \hline \end{tabular}$

Armatura longit	udinale	
n_1		5
\emptyset_1	mm	26
n_2		5
\emptyset_2	mm	26
Asl	cm ²	53.09

Sezione		
b _w	cm	100
Н	cm	110
С	cm	8.7
d	cm	101.3
k	N/mm²	1.44
V _{min}	N/mm ²	0.35
ρ		0.0052
σср	N/mm²	0.00
α_{c}		1.00

Resistenza senza armatura a taglio						
V_{Rd}	kN	455				
		NECESSITA				
V_{Rd}	kN	ARMATURA A				
		TAGLIO				

Resistenza con armatu	ra a tagl	lio
cota		0.5
ν		0.5
ω_{sw}		0.02
cotθ		2.50
Inclinazione puntone θ	0	21.8
V_{RSd}	kN	876
V_{RCd}	kN	2957
V_{Rd}	kN	876
V_{Rd}	kN	VERIFICATO

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	60 di 64

• Verifica a fessurazione campata (Solinf-Camp)

 Verifica a fessurazion 	e camp	ata (Solint-C	<u>Camp)</u>						
Sollecitazioni									
Momento flettente	М	664	kN m						
Sforzo normale	N	0	kN						
Materiali									
Resistenza caratteristica cubica calcestruzzo	R _{ck}	40	N/mm²	Ī					
Resistenza caratteristica cilindrica calcestruzzo	fck	33.2	N/mm²						
Modulo elastico del calcestruzzo	E_{cm}	33642.78	N/mm²						
Tensione ammissibile cls	σc_{amm}	18.3	N/mm ²						
Res. media a trazione cls	f_{ctm}	3.5	N/mm ²						
Res. caratteristica a trazione cls	f_{ctk}	2.4	N/mm ²						
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm²						
Modulo elastico dell'acciaio	E_s	205000.00	N/mm²						
Tensione ammissibile acciaio	σs_{amm}	337.5	N/mm²						
Coefficiente omog. acciaio-cls	n	15							
Caratteristiche geometriche									
Altezza sezione	Н	110	cm						
Larghezza sezione	В	100	cm						
Armatura compressa (1º strato)	As ₁ '	26.55	cm ²		5	Ø	26	$c_{s1} = 8.7$	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²		0	Ø	0	$c_{s2} = 10.0$	cm
Armatura tesa (2º strato)	As_2	26.55	cm ²		5	Ø	26	$c_{i2} = 11.3$	cm
Armatura tesa (1º strato)	As_1	26.55	cm ²		5	Ø	26	c _{i1} = 8.7	cm
Tensioni nei materiali									
Compressione max nel cls.	σς	4.1	N/mm²	<	σc _a	mm		1	
Trazione nell'acciaio (1º strato)	σs	141.5	N/mm²	<	σa _a				
			•					J	
Eccentricità	e (M)	∞	cm	>	H/6	Se	ez. pa	arzializzata	
	u (M)	00	cm						
Posizione asse neutro	y (M)	30.5	cm						
Area ideale (sez. int. reagente)	A _{id}	12115	cm ²						
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	13559320.54	cm⁴ ₄						
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	4983114.259	cm⁴						
Verifica a fessurazione									
Momento di fessurazione (f _{ctk})	$M_{fess}*$	597	kN m	La se	ezio	ne è	e fess	surata	
Momento di fessurazione (f _{ctm})	M_{fess}	854	kN m						
Eccentricità per M=M _{fess}	e (M _{fess})	∞	cm						
	$u (M_{fess})$	00	cm						
Compressione max nel cls. per M=M _{fess}	σcr	5.2							
Traz. nell'acciaio (1° str.) per M=M _{fess}	σsr	181.8	N/mm²						
Posizione asse neutro per M=M _{fess}	$y (M_{fess})$	30.5	cm						
Coefficiente dipendente dalla durata del carico	k_t	0.6							
Altezza efficace	$h_{c,eff}$	26.49	cm						
Rapporto tra moduli elastici	α _e	6.1	-						
Armatura nell'area efficace	As _{eff}	53.09	cm ²						
Area efficace	Aceff	2648.77	cm ²						
Rapporto geometrico di armatura	ρ _{eff}	0.0200	-						
Deformazione unitaria media dell'armatura	Esm	0.000354766	-						
Copriferro netto	c'	5.0	cm						
Coefficiente dipendente dall'aderenza dell'acciaio	o K ₁	0.80	-						
Coefficiente dipendente dal diagramma tensioni	K ₂	0.50	-						
Coefficiente adimensionale	K ₃	3.40	-						
Coefficiente adimensionale	K ₄	0.425	_						
Diametro equivalente delle barr edi armatura	фед	26.00	mm						
Distanza massima tra le fessure	Δs_{max}	390.5111786	mm						
Distanza media tra le fessure	Δs_{m}	229.712458	mm						
Valore medio dell'apertura delle fessure	W _m	0.08	mm						
Valore di calcolo dell'apertura delle fessure	w _d	0.14	mm	Ī					
				ı					l

Coefficiente adimensionale

Distanza massima tra le fessure

Distanza media tra le fessure

Diametro equivalente delle barr edi armatura

Valore medio dell'apertura delle fessure

Valore di calcolo dell'apertura delle fessure

RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IV0I	00	D 26 CL	SL0700001	Α	61 di 64

Sollecitazioni										
Momento flettente	М	816	kN m							
Sforzo normale	N	0	kN							
Materiali										
Resistenza caratteristica cubica calcestruzzo	R _{ck}	40	N/mm²	1						
Resistenza caratteristica cilindrica calcestruzzo		33.2	N/mm²							
Modulo elastico del calcestruzzo	E _{cm}	33642.78	N/mm²							
Tensione ammissibile cls	σc _{amm}	18.3	N/mm ²							
Res. media a trazione cls	f_{ctm}	3.5	N/mm ²							
Res. caratteristica a trazione cls	f_{ctk}	2.4	N/mm ²							
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm ²							
Modulo elastico dell'acciaio	Ės	205000.00	N/mm ²							
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm ²							
Coefficiente omog. acciaio-cls	n	15								
Caratteristiche geometriche										
Altezza sezione	Н	110	cm							
Larghezza sezione	В	100	cm						_	
Armatura compressa (1º strato)	As ₁ '	26.55	cm ²		5				= 8.7	cn
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²		0	Ø	0	C_{s2}	= 10.0	cn
Armatura tesa (2º strato)	As_2	26.55	cm ²		5	Ø	26	C_{i2}	= 11.3	cn
Armatura tesa (1º strato)	As_1	26.55	cm ²		5	Ø	26	C _{i1}	= 8.7	cn
Tensioni nei materiali										
Compressione max nel cls.	σς	5.0	N/mm²	<	σca	mm		1		
Trazione nell'acciaio (1º strato)	σs	173.8	N/mm²		-					
Eccentricità	e (M)	∞	cm	`	H/6	Se	n na	arzia	lizzata	
Eccentricita	u (M)	∞	cm	•	.,,		pc	Ziai	IZZUCU	
Posizione asse neutro	y (M)	30.5	cm							
Area ideale (sez. int. reagente)	A_{id}	12115	cm ²							
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	13559320.54	cm ⁴							
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	4983114.259	cm ⁴							
Verifica a fessurazione										
Momento di fessurazione (f _{ctk})	M _{fess} *	597	kN m	Las	sezio	ne è	fess	urat	a	1
Momento di fessurazione (f _{ctm})	M _{fess}	854	kN m							1
Eccentricità per M=M _{fess}	e (M _{fess})	∞	cm							1
•	u (M _{fess})	∞	cm							1
Compressione max nel cls. per M=M _{fess}	σcr	5.2								
Traz. nell'acciaio (1º str.) per M=M _{fess}	σsr	181.8	N/mm²							1
Posizione asse neutro per M=M _{fess}	y (M _{fess})	30.5	cm							1
Coefficiente dipendente dalla durata del carico	k _t	0.6	-							
Altezza efficace	$h_{c,eff}$	26.49	cm							
Rapporto tra moduli elastici	α _e	6.1	-							
Armatura nell'area efficace	As _{eff}	53.09	cm ²							1
Area efficace	Ac _{eff}	2648.77	cm ²							
	ρ _{eff}	0.0200	-							
Rannorto geometrico di armatura	⊢ eff		_							
	Esm	() ()()()?54766								
Deformazione unitaria media dell'armatura	Esm c'	0.000354766 5.0	cm							
Deformazione unitaria media dell'armatura Copriferro netto	c'	5.0	cm							
Rapporto geometrico di armatura Deformazione unitaria media dell'armatura Copriferro netto Coefficiente dipendente dall'aderenza dell'acciaio	c' o K ₁	5.0 0.80	cm -							
Deformazione unitaria media dell'armatura Copriferro netto Coefficiente dipendente dall'aderenza dell'acciaio Coefficiente dipendente dal diagramma tensioni	c' o K ₁ K ₂	5.0 0.80 0.50	cm - -							
Deformazione unitaria media dell'armatura Copriferro netto	c' o K ₁	5.0 0.80	cm - -							

 K_4

 φ_{eq}

 Δs_{max}

 Δs_{m}

 w_{m}

 w_d

0.425 -

390.5111786 mm

229.712458 mm

0.08 mm

26.00 mm

0.14 mm

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV0I
 00
 D 26 CL
 SL0700001
 A
 62 di 64

11. INCIDENZA SCATOLARE

I valori delle incidenze di armatura lenta sono indicati nella seguente tabella:

Soletta superiore 100 kg/mc
Soletta inferiore 100 kg/mc
Piedritti 90 kg/mc

Come previsto dall' Eurocodice (UNI EN 1992-1-1) per le piastre a portanza unidirezionale si raccomanda di prevedere un'armatura secondaria in quantità non minore del 20% dell'armatura principale.

Pertanto nel calcolo è stata considerata un' armatura longitudinale diffusa φ20/20 ed un incremento del 15% per tener conto della presenza di legature e spille.

SL07 - Nuovo Sottovia e Viabilità al Km 82+578.62 Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IV01
 00
 D 26 CL
 SL0700001
 A
 63 di 64

12. DICHIARAZIONI SECONDO D.M. 17/01/2018 (P.TO 10.2)

12.1 Tipo di analisi svolte

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. L'analisi strutturale è condotta con l'analisi statica, utilizzando il metodo degli spostamenti per la valutazione dello stato limite indotto dai carichi statici. L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 17/01/2018.

L'analisi strutturale viene effettuata con il metodo degli elementi finiti, schematizzando la struttura in elementi lineari e nodi. Le incognite del problema sono le componenti di spostamento in corrispondenza di ogni nodo (2 spostamenti e 1 rotazioni).

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

12.2 Origine e caratteristiche dei Codici di Calcolo

Titolo: SAP2000 Ultimate

Versione: 21.0.2

Produttore: CSI Computers and Structures, Inc.

12.3 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a valutazione che ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali.

Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, si asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.