COMMITTENTE: ERROVIARIA ITALIANA GRUPPO FERROVIE DELLO STATO ITALIANE PROGETTAZIONE: TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE **U.O. OPERE CIVILI PROGETTO DEFINITIVO** RADDOPPIO LINEA GENOVA – VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA OPERE PRINCIPALI – PONTI E CAVALCAFERROVIA Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle SCALA: COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. 0 9 $V \mid 0 \mid I$ 0 0 0 6 0 4 0 0 1 D

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione esecutiva	K. Petrucci	Gen.2022	D. Guerci	Con 2022	M. Berlingeri	Can 2022	A.Perego
	Linissione esecutiva		Gen.2022		Gen.2022		Gen.2022	Gen. 2022
				_ H _		_ ~~		HOE GEEN DELLA
								PERECO ANDREA
								g e willing mizione
								MARANO
File IV	0100D09CLIV0604001A					n.	Elab.:	

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 0 di 96

INDICE

1	PREMESSA	4
2	NORMATIVE DI RIFERIMENTO	5
	2.1 NORMATIVA E ISTRUZIONI	5
3	CARATTERISTICHE DEI MATERIALI IMPIEGATI	6
	3.1 CALCESTRUZZO	6
	3.1.1 Classe C25/30 (pali, diaframmi di fondazione, cordoli e opere provvisionali)	6
	3.1.2 Classe C32/40 (fondazione pile, spalle e solettoni)	6
	3.2 Acciaio	6
	3.2.1 Acciaio per cemento armato	6
4	STRATIGRAFIA E PARAMETRI GEOTECNICI	7
5	5 CARATTERISTICHE DELLE SPALLE	8
	5.1 GEOMETRIA DELLE SPALLE	8
6	S ANALISI DEI CARICHI DI PROGETTO	9
	6.1 CARICHI PERMANENTI STRUTTURALI (G1) E NON STRUTTURALI (G2)	9
	6.2 AZIONI VARIABILI DA TRAFFICO	10
	6.2.1 Schemi di carico 1	10
	6.2.2 Schema di carico 5	11
	6.2.3 Schemi di carico adottati	11
	6.2.4 Effetti dinamici	13
	6.3 AZIONI LONGITUDINALI DI FRENAMENTO O DI ACCELERAZIONE Q3	13

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 1 di 96

	6.4	AZIONE DEL VENTO	14
	6.5	AZIONE SISMICA	18
	6.5.1	l Vita nominale	
	6.5.2	? Classe d'uso	19
	6.5.3	3 Periodo di riferimento	19
	6.5.4	Valutazione dei parametri di pericolosità sismica	20
	6.5.5	5 Caratterizzazione sismica del terreno	21
	6.6	RIEPILOGO DELLE AZIONI DEL TRAFFICO DELL'IMPALCATO	26
	6.7	SPINTA STATICA DEL TERRENO	27
	6.8	SPINTA DOVUTA AL SOVRACCARICO ACCIDENTALE E PERMANENTE	28
	6.9	SOVRASPINTA SISMICA	29
	6.10	FORZE DI INERZIA DOVUTE AL SISMA	30
7	CO	MBINAZIONI DI CARICO	31
8	CRI	TERI DI VERIFICA SLU E SLV	33
	8.1	VERIFICHE ELEMENTI IN C.A.	33
	8.2	VERIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE - PRESSOFLESSIONE	33
	8.3	VERIFICHE PER GLI STATI LIMITE ULTIMI A TAGLIO	33
9	CRI	TERI DI VERIFICA CONDIZIONI DI ESERCIZIO	34
	9.1	VERIFICHE SLE	34
	9.1.1	Stato limite di formazione delle fessure	34
	9.1.2	2 Verifica delle massime tensioni di esercizio CLS ed acciaio	34
10	DIM	ENSIONAMENTO E VERIFICA DELLA SPALLA	35

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 2 di 96

10	0.1	MURO PARAGHIAIA	35
	10.1.1	! Sollecitazioni	35
	10.1.2	2 Sintesi delle armature disposte	38
	10.1.3	3 Verifiche SLV	39
	10.1.4	4 Verifiche SLU	41
	10.1.5	5 Verifiche SLE	44
10	0.2	Muro di testata	46
	10.2.	l Sollecitazioni	46
	10.2.2	2 Sintesi delle armature disposte	49
	10.2.3	3 Verifiche SLV	50
	10.2.4	4 Verifica SLU	53
	10.2.5	5 Verifiche SLE	55
10	0.3	Muri andatori	57
	10.3.1	! Sollecitazioni	57
	10.3.2	2 Sintesi delle armature disposte	60
	10.3.3	3 Verifiche SLV	61
	10.3.4	4 Verifiche SLU	65
	10.3.5	5 Verifiche SLE	67
11	SOLI	LECITAZIONI IN FONDAZIONE	69
1	1.1	SOLLECITAZIONI AD INTRADOSSO FONDAZIONE	69
1	1.2	SOLLECITAZIONI SUI PALI	71
12	VERI	FICHE STRUTTURALI PLINTO DI FONDAZIONE	75

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
IV0I	00	D09	CLIV0604001	Α	3 di 96

1	12.1	SINTESI DELLE ARMATURE DISPOSTE IN DIREZIONE LONGITUDINALE	. 76
1	12.2	SINTESI DELLE ARMATURE DISPOSTE IN DIREZIONE TRASVERSALE	. 76
	12.2.	1 Verifiche SLV in direzione trasversale	. <i>77</i>
	12.2.	2 Verifiche SLV in direzione longitudinale	. 80
	12.2.	3 Verifiche SLU in direzione trasversale	. 83
	12.2.	1 Verifiche SLU in direzione longitudinale	. 85
	12.2.	2 Verifiche SLE in direzione trasversale	. 87
13	VER	IFICHE STRUTTURALI PALI DI FONDAZIONE	. 88
	13.1.	1 Massime e minime sollecitazioni sul singolo palo	. 88
	13.1.	2 Dimensionamento delle armature	. 89
	13.1.	3 Verifica a pressoflessione	. 90
	13.1	4 Verifiche SI F	94

1 PREMESSA

La presente relazione si riferisce al dimensionamento delle fondazioni di spalle e pile del Cavalcaferrovia IV06 (IV06 - cavalcaferrovia strada provinciale n.3 cat.C1 dal Km 83+400 al 83+530) previsto nell'ambito del raddoppio della linea Genova-Ventimiglia, tratta Finale Ligure - Andora.

Per tutti i dettagli sull'opera si rimanda alla visione degli elaborati grafici e della relazione descrittiva Doc. IV0I00D09ROIV0600001.

2 NORMATIVE DI RIFERIMENTO

2.1 Normativa e istruzioni

La progettazione è conforme alle normative vigenti.

Ferrovie dello Stato hanno emanato nel tempo varie normative e linee guida riguardanti sia i sovraccarichi che le prescrizioni relative ai ponti.

Le normative rilevanti per la redazione del progetto di messa in sicurezza sono ovviamente le normative ora vigenti per le strutture, e per i ponti ferroviari in particolare, elencate nel seguito.

- DM 17 gennaio 2018: Aggiornamento delle "Norme Tecniche per le Costruzioni" (NTC18);
- Circolare Applicativa delle NTC 2018, 21/01/2019 (Circ n.7)
- Eurocodice 8: Progettazione delle strutture per la resistenza sismica parte 5 Fondazioni, strutture di contenimento ed aspetti geotecnici;
- RFICTCSIMAIFS001_E: Manuale di progettazione delle opere civili, 31/12/2020
- Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;
- Regolamento (UE) 2016/919 della Commissione del 27 maggio 2016 relativo alla specifica tecnica di interoperabilità per i sottosistemi "controllo-comando e segnalamento" del sistema ferroviario nell'Unione europea.

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IVOI 00 D09 CLIV0604001 A 6 di 96

3 CARATTERISTICHE DEI MATERIALI IMPIEGATI

3.1 Calcestruzzo

3.1.1 Classe C25/30 (pali, diaframmi di fondazione, cordoli e opere provvisionali)

• Classe d'esposizione : XC2

• Copriferro netto minimo: c = 60mm

• $R_{ck} = 30 \text{ N/mm}^2$

• $f_{ck} = 0.83 \cdot R_{ck} = 24.9 \text{ N/mm}^2$

• Resistenza di calcolo a compressione: $f_{cd} = f_{ck} \cdot \alpha_{cc}/\gamma_c = 24.9 \cdot 0.85/1.5 = 14.11 \text{ N/mm}^2$

• Resistenza di calcolo a trazione: $f_{ctm} = 0.30 \cdot f_{ck}^{(2/3)} = 2.56 \text{ N/mm}^2$

• Modulo elastico: $E = 22000 [f_{cm}/10]^{0.3} = 31447.16 MPa$

3.1.2 Classe C32/40 (fondazione pile, spalle e solettoni)

• Classe d'esposizione : XC2

• Copriferro netto minimo: c = 40mm

 $\bullet \quad R_{ck} = 40 \ N/mm^2$

• $f_{ck} = 0.83 \cdot R_{ck} = 33.20 \text{ N/mm}^2$

• Resistenza di calcolo a compressione: $f_{cd} = f_{ck} \cdot \alpha_{cc}/\gamma_c = 33.20 \cdot 0,85/1,5=18.81 \text{ N/mm}^2$

• Resistenza di calcolo a trazione: $f_{ctm} = 0.30 \cdot f_{ck}^{(2/3)} = 3.10 \text{ N/mm}^2$

• Modulo elastico: $E = 22000 [f_{cm}/10]^{0.3} = 33642.78 MPa$

3.2 Acciaio

3.2.1 Acciaio per cemento armato

Si utilizzano barre ad aderenza migliorata in acciaio con le seguenti caratteristiche meccaniche:

Acciaio B450C

• tensione caratteristica di snervamento fyk = 450 N/mm2;

• tensione caratteristica di rottura ftk = 540 N/mm2;

• resistenza di calcolo a trazione fyd = 391,30 N/mm2;

• modulo elastico Es = 206.000 N/mm2.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA							
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IV0I	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 7 di 96		

4 STRATIGRAFIA E PARAMETRI GEOTECNICI

La stratigrafia del terreno considerata e i relativi parametri geotecnici utilizzati nel calcolo sono riportati nell'elaborato di calcolo IV0I00D09GEIV0603001.

5 CARATTERISTICHE DELLE SPALLE

5.1 Geometria delle spalle

Si riportano di seguito le caratteristiche geometriche della Spalla:

H testata	Altezza del muro di testata	4.00	m
H paraghiaia	Altezza del paraghiaia al di sopra del muro di testata	2.25	m
H testat+paraghiaia	Altezza totale sopra il plinto di fondazione	6.25	m
S testata	Spessore del muro di testata	2.40	m
S paraghiaia	Spessore del paraghiaia	0.50	m
L testata	Larghezza del muro di testata	14.00	m
L paraghiaia	Larghezza del muro paraghiaia	14.00	m
A andatori	Superficie laterale muri andatori	26.56	m2
S medio andatori	Spessore medio dei muri andatori	0.80	m
N° andatori	Numero di muri andatori	2.00	

L monte	Lunghezza della mensola di monte	4.25	m	
L valle	Lunghezza della mensola di valle	2.65	m	
L tot plinto	Lunghezza totale del plinto di fondazione			
L trasv plinto	L trasv plinto Larghezza del plinto di fondazione			
H plinto	Altezza del plinto di fondazione	1.80	m	
H riemp valle	Altezza del riempimento di valle	1.00	m	
α plinto	Angolo d'inclinazione dell'estradosso del plinto	0.00	0	

Caratteristiche del terreno del rilevato a tergo spalla.

φэ	Angolo d'attrito interno del terreno	35.00	0
γφэ М1	Coefficiente parziale per tanj' per la combinazioni M1	1.00	
γ	Peso specifico del terreno	19.00	kN/m3
δ static	Angolo d'attrito interno tra terreno e muro in condizioni statiche	23.33	0
δ sismic	Angolo d'attrito interno tra terreno e muro in condizioni sismiche	23.33	0

6 ANALISI DEI CARICHI DI PROGETTO

Si riporta di seguito la convenzione utilizzata per le sollecitazioni e relativi segni.

Le N sono positive se dirette verso il basso, il taglio e il momento longitudinale sono positivi se diretti verso il ponte.

6.1 Carichi permanenti strutturali (g1) e non strutturali (g2)

I carichi permanenti strutturali comprendono il peso proprio degli elementi strutturali, sia della spalla (calcolato considerando un peso specifico del calcestruzzo di 25kN/mc) che i carichi trasmessi dall'impalcato. I carichi permanenti strutturali comprendono il peso proprio degli elementi non strutturali:

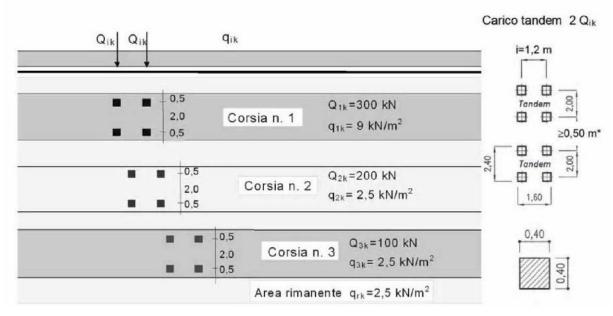
- peso del terreno tra i muri andatori;
- carico dei permanenti non strutturali dell'impalcato (nero, barriere, velette, rete).

I carichi sotto riportati sono calcolati considerando la metà della luce dell'impalcato:

	Α	g	g	L	N
	m2	kN/m	kN/m3	m	kN
G1 Travi			25.00	14.60	0.00
G1Traversi irrigidimenti inizio-fine	2.00		25.00	12.10	605.00
G2 Soletta	4.44		25.00	14.95	1660.57
G2 Pavimentazione	1.26		20.00	14.95	376.74
G2 Sicurvia		1.50		29.90	44.85
G2 Veletta	0.09		25.00	29.90	69.52
G2 Rete di protezione		2.00		29.90	59.80
Tot		•	•	•	2816.48

6.2 Azioni variabili da traffico

Il viadotto è classificato di 1^a categoria, ossia per il transito dei carichi mobili in seguito descritti con il loro intero valore.

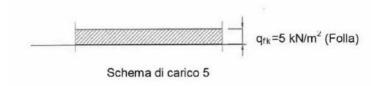

I carichi verticali sono definiti per mezzo di schemi di carico. Sono previsti due schemi di carico distinti:

- Schema di Carico 1 è costituito da carichi concentrati su due assi in tandem, applicati su impronte di pneumatico di forma quadrata e lato 0,40 m, e da carichi uniformemente distribuiti;
- Schema di Carico 5 è costituito dalla folla compatta, agente con intensità nominale, comprensiva degli effetti dinamici, di 5,0 kN/m². Il valore di combinazione è invece di 2,5 kN/m².;

6.2.1 Schemi di carico 1

Lo schema di carico 1 schematizza gli effetti statici prodotti dal traffico stradale e risulta costituito da:

- due assi in tandem Q_{ik} ciascuno da 300 kN disposti ad interasse longitudinale pari a 1,20m ed interasse trasversale pari a 2.0m;
- carico distribuito di 9.0 kN/m² in entrambe le direzioni e per una lunghezza illimitata.


Il numero delle colonne di carichi mobili da considerare nel calcolo dei ponti di 1a Categoria è quello massimo compatibile con la larghezza della carreggiata, comprese le eventuali banchine di rispetto e per sosta di emergenza, nonché gli eventuali marciapiedi non protetti e di altezza inferiore a 20 cm, tenuto conto che la larghezza di ingombro convenzionale è stabilita per ciascuna colonna in 3,00 m.

Nell'impalcato in esame sono state considerate n.3 colonne di carico.

6.2.2 Schema di carico 5

Lo schema di carico 5 schematizza gli effetti della folla compatta:

Nell'impalcato in esame è stato applicato nei marciapiedi con un valore di 2.5kN/mq.

6.2.3 Schemi di carico adottati

Gli schemi di carico 1 e 5 sono stati disposti sull'impalcato al fine di massimizzare le azioni sulla spalla. In particolare:

- con la disposizione di n.3 colonne dello Schema di Carico 1 (vedi la figura al precedente paragrafo 6.3.1) e della disposizione dello Schema di Carico 5 in corrispondenza dei marciapiedi è stata effettuata la massimizzazione dell'azione verticale e del momento longitudinale (in seguito Max N– NML);
- con la disposizione di n.1 colonna dello Schema di Carico 1 adiacente il marciapiede e la disposizione dello Schema di Carico 5 sullo stesso marciapiede è stata effettuata la massimizzazione del momento trasversale (in seguito Max M trasv – MTRA)

Di seguito si riportala distribuzione dei carichi considerati:

	Carichi di superficie						Carichi Tandem		
	qfk	q1k	q2k	q3k	q4k	qfk	Q1k	Q2k	Q3k
	kN/mq	kN/mq	kN/mq	kN/mq	kN/mq	kN/mq	kN	kN	kN
Max N	2.50	9.00	2.50	2.50	0.00	2.50	300.00	200.00	100.00
Max M trasv	2.50	9.00	2.50	0.00	0.00	0.00	300.00	200.00	0.00
Ponte scarico	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Dove:

- q_{fk} = carico folla distribuito sul marciapiede;
- q_{1k} = carico da traffico distribuito sulla prima corsia di carico;
- q_{2k}= carico da traffico distribuito sulla seconda corsia caricata;
- q_{3k}=carico da traffico distribuito sulla terza corsia caricata;
- q_{4k}=carico da traffico distribuito sulla corsia rimanente;
- Q_{1k}= carico tandem concentrato sulla prima corsia di carico;
- Q_{2k}= carico tandem concentrato sulla seconda corsia di carico;
- Q_{3k}= carico tandem concentrato sulla prima corsia di carico;

Le azioni di carico verticale e momento trasversale derivanti dall'intero impalcato sono i seguenti:

N tot	Mx	My tot
kN	kNm	kNm
2055.31	1527.00	0.00
1647.98	2876.06	0.00
0.00	0.00	0.00

6.2.4 Effetti dinamici

I carichi mobili includono gli effetti dinamici per pavimentazioni di media rugosità.

6.3 Azioni longitudinali di frenamento o di accelerazione q3.

La forza di frenamento o di accelerazione q3 è funzione del carico verticale totale agente sulla corsia convenzionale n.1 ed è uguale a:

$$180 \text{ kN} \le q3 = 0.6 \cdot (2Q1\text{k}) + 0.10q1\text{k} \cdot \text{wl} \cdot \text{L} \le 900 \text{ kN}$$

per i ponti di 1a categoria, essendo wl la larghezza della corsia e L la lunghezza della zona caricata.

La forza di frenatura, applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla lunghezza caricata e include gli effetti di interazione.

q3	441.00	kN

Dimensioni di calcolo

w impalcato	14.80	m
H impalcato	2.18	m
Luce asse giunto asse giunto	30.00	m

Sollecitazioni senza w

N	0.00	kN
Vx	441.00	kN
Vy	0.00	kN
My	961.38	kNm
Mx	0.00	kNm

Sollecitazioni con ψ

N	0.00	kN
Vx	302.40	kN
Vy	0.00	kN
My	659.23	kNm
Mx	0.00	kNm

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
IV0I	00	D09	CLIV0604001	Α	14 di 96

6.4 Azione del vento

Per la determinazione dell'azione dovuta al vento si fa riferimento alle NTC18 e relativa circolare. In particolare le istruzioni prevedono che la valutazione delle azioni e degli effetti del vento sulle costruzioni e sui loro elementi proceda secondo lo schema seguente:

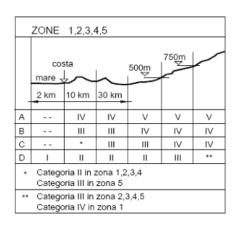
- 1. definite le caratteristiche del sito ove sorge la costruzione, si valuta la velocità di progetto e la pressione cinetica di picco del vento;
- 2. definita la forma, le dimensioni e l'orientamento della costruzione, si valutano le azioni aerodinamiche di picco esercitate dal vento sulla costruzione e sui suoi elementi;
- 3. definite le proprietà meccaniche della costruzione e dei suoi elementi si valutano le azioni statiche equivalenti.

Le analisi sono svolte considerando due condizioni di carico:

- 1) ponte scarico;
- 2) ponte carico.

Il vento, la cui direzione si considera generalmente orizzontale, esercita sulle costruzioni azioni che variano nel tempo e nello spazio provocando, in generale, effetti dinamici.

Usualmente tali azioni sono convenzionalmente ricondotte ad azioni statiche equivalenti dirette secondo due assi principali della struttura, tali azioni esercitano normalmente all'elemento di parete o di copertura, pressioni e depressioni p (indicate rispettivamente con segno positivo e negativo) di intensità calcolate con la seguente espressione:


$$p = q_b c_e c_p c_d$$

- q_b = pressione cinetica di riferimento;
- c_e = coefficiente di esposizione;
- c_p = coefficiente di forma (o coefficiente aerodinamico);
- c_d = coefficiente dinamico.

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 15 di 96

Categoria di esposizione del sito	k _r	z ₀ [m]	z _{min} [m]
I	0,17	0,01	2
п	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
v	0,23	0,70	12

Definizione della categoria di esposizione

Il valore di ce può essere ricavato mediante la relazione:

$$c_e(z) = k_r^2 \cdot c_t \cdot \ln\left(\frac{z}{z_0}\right) \left[7 + c_t \cdot \ln\left(\frac{z}{z_0}\right)\right]$$

per
$$z > zmin$$

$$c_e(z) = c_e(z_{\min})$$

per z < zmin

Velocità base di riferimento 3.3.1			
Zona	7.00	-	
Vb,0	28.00	m/s	
ao	1000.00	m	
ks	0.54	adim	
as	30.00	m.l.m	
ca	1.00	adim	
Vb	28.00	m/s	

Velocità di riferimento 3.3.2				
Tr 50.00 anni				
cr	1.00	adim		
Vr 28.02 m/s				

Pressione cinetica di riferimento 3.3.6			
qr	490.72	N/m2	

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 16 di 96

Coefficiente di esposizione 3.3.7				
Clas. Rugosità	В	-		
Distanza costa	3.00	km		
Cat. Esposizione suolo	IV	-		
Kr	0.22			
Z0	0.30	m		
Zmin	8.00	m		
Z dal terreno	9.50	m		

Ct	1.00	adim
Се	1.75	adim
Cd	1.00	adim
D/h	2.19	-
Sp	1.00	mq
S	1.00	mq
φ	1.00	-
Ср	1.40	-
μ	interpolazione lineare	-
μ segnato	0.20	

 μ 0.25

Pressione del vento 3.3.4				
P (trave isolata)	1201.22	N/m2	P(µ)	
P (trave isolata)	1.20	KN/m2	P(µ)	

394.15
0.39

Le azioni del vento e relativi momenti di trasporto al baricentro dell'impalcato sono riportati di seguito:

Ponte scarico

Nel caso di ponte scarico è stata considerata l'azione del vento agente su tutta l'altezza della rete protettiva per quanto riguarda il lato interno dell'impalcato, mentre sul lato esterno opposto, è stata considerata l'azione del vento su un'altezza pari alla somma dell'altezza dell'impalcato più quella della rete protettiva.

Vy	138.83	kN
Mx	376.10	kNm

Ponte carico

Nel caso di ponte carico è stata considerata l'azione del vento agente su tutta l'altezza della rete protettiva per quanto riguarda il lato interno dell'impalcato, mentre sul lato esterno opposto, è stata considerata l'azione del vento su un'altezza pari alla somma dell'altezza dell'impalcato più quella del carico, pari a 3m come riportato nelle NTC18.

Vy	120.81	kN
Mx	291.78	kNm

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 18 di 96

6.5 Azione sismica

Con riferimento alla normativa vigente (NTC18), le azioni sismiche di progetto si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione. Essa costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A quale definita al § 3.2.2 delle NTC18), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza PVR, come definite nel § 3.2.1 delle NTC18, nel periodo di riferimento VR, come definito nel § 2.4 delle NTC18.

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento PVR, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

ag accelerazione orizzontale massima al sito;

F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T_c* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Gli spettri di risposta di progetto sono stati definiti per tutti gli stati limite considerati, e, note la latitudine e la longitudine del sito, si sono ricavati i valori dei parametri necessari alla definizione dell'azione sismica e quindi del relativo spettro di risposta. Più avanti sono indicati i valori di ag, F_o e T_c* necessari per la determinazione delle azioni sismiche.

6.5.1 Vita nominale

La vita nominale di un'opera strutturale VN è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

Per l'opera in esame viene assunta una vita nominale VN =75 anni.

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV01 00 D09 CLIV0604001 A 19 di 96

6.5.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Nel presente progetto si considera una classe d'uso tipo III con coefficiente d'uso C_U=1.5.

6.5.3 Periodo di riferimento

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U : $V_R = V_N \cdot C_U = 75 \cdot 1.5 = 112.5 \text{ anni (periodo di riferimento)}.$

GRUPPO FERROVIE DELLO STATO ITALIANE		IO LINEA	_	VENTIMIGLIA ORA		
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IV0I	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 20 di 96

6.5.4 Valutazione dei parametri di pericolosità sismica

Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

Tabella 1 Probabilità di superamento PVR al variare dello stato limite considerato

	STATO LIMITE	R: probabilità di superamento nel periodo di riferimento
SLE	SLO - Stato Limite di Operatività	81%
	SLD - Stato Limite di Danno	63%
SLU	SLV - Stato Limite di salvaguardia della Vita	10%
	SLC - Stato Limite di prevenzione del Collasso	5%

$$T_R = -\frac{V_R}{ln(I - P_{V_R})} = -\frac{Cu \cdot V_N}{ln(I - P_{V_R})}$$
 da cui si ottiene la seguente tabella:

Tabella 2 Valori in anni del periodo di ritorno TR al variare del periodo di riferimento VR

Stati	limite	$Valori\ in\ anni\ del\ periodo\ di\ riferimento\ V_{R}\ (anni)$
SLE	SLO	68
	SLD	113
SLU	SLV	1069
	SLC	2194

Per il sito in esame, in base ai parametri precedentemente adottati, il periodo T_R in corrispondenza dello stato limite ultimo SLV è pari a $T_R = 1069$ anni.

6.5.5 Caratterizzazione sismica del terreno

6.5.5.1 Categorie di Sottosuolo

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale.

Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel § 3.2.2 delle NTC18.

I terreni di progetto possono essere caratterizzati come appartenenti a terreni di Categoria B.

6.5.5.2 Condizioni topografiche

In condizioni topografiche superficiali semplici si può adottare la seguente classificazione:

Tabella 3 Classificazione topografica superfici

Categoria	Caratteristiche della superficie topografica	
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤15°	
T2	Pendii con inclinazione media i $> 15^{\circ}$	
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^\circ \le i \le 30^\circ$	
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i $> 30^\circ$	

Le categorie topografiche appena definite si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m.

L'area interessata risulta classificabile come T1.

6.5.5.3 Amplificazione Stratigrafica e Topografica

In riferimento a quanto indicato nel §3.2.3.2.1 delle NTC18 per la definizione dello spettro elastico in accelerazione è necessario valutare il valore del coefficiente S = SS·ST e di CC in base alla categoria di sottosuolo e alle condizioni topografiche; si fa riferimento nella valutazione dei coefficienti alle tabelle che sono riportate di seguito:

Tabella 4 Calcolo parametri Ss e Cc

Categoria sottosuolo	S_{S}	Cc
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_0 \cdot \frac{a_g}{g} \le 1,20$	
С	$1,00 \le 1,70 - 0,60 \cdot F_0 \cdot \frac{a_g}{g} \le 1,50$	
D	$0.90 \le 2.40 - 1.50 \cdot F_0 \cdot \frac{a_g}{g} \le 1.80$	1,25 · $(T_C^*)^{-0,50}$
Е	$1,00 \le 2,00 - 1,10 \cdot F_0 \cdot \frac{a_g}{g} \le 1,60$	1,15 $\cdot (T_C^*)^{-0,40}$

Tabella 5 Valori massimi dei coeff di amplificazione topografica S_T

Categoria Topografica Ubicazione dell'opera dell'intervento		S_{T}
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta del rilievo	1,2
T4	In corrispondenza della cresta del rilievo	1,4

Il valore del coefficiente di amplificazione topografica è posto pari a $S_T=1$ I valori dei coefficienti di amplificazione stratigrafica sono pari a $S_S=1,20$ e $C_C=1.399$

6.5.5.4 Parametri sismici di calcolo

Figura 1 Individuazione della pericolosità del sito

Figura 2 Scelta della strategia di progettazione

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 24 di 96

Figura 3 Determinazione dell'azione di progetto

Spettri di risposta (componenti orizz. e vert.) per lo SLY

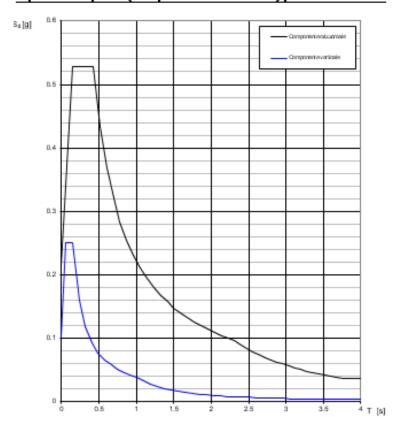


Figura 4 Grafico dello spettro di progetto

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 25 di 96

Parametri indipendenti

STATO LIMITE	SLV
ag	0.179 . g
F _o	2.461
Tc	0.300 s
Ss	1.200
Cc	1.399
S _T	1.000
q	1.000

Parametri dipendenti

S	1.200
η	1.000
T _B	0.140 s
Tc	0.420 s
T _D	2.314 s

Espressioni dei parametri dipendenti

 $S = S_S \cdot S_T$ (NTC-08 Eq. 3.2.5)

 $\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_{\rm B} = T_{\rm C}/3$ (NTC-07 Eq. 3.2.8)

 $T_{c} = C_{c} \cdot T_{c}^{*}$ (NTC-07 Eq. 3.2.7)

 $T_D = 4.0 \cdot a_x / g + 1.6$ (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Co [a]
	_	Se [g]
т -	0.000	0.214
T _B ◀– T _C ◀–	0.140	0.527
0	0.420	0.527
	0.510 0.601	0.434
		0.369
	0.691 0.781	0.321 0.284
	0.101	0.254
	0.961	0.234
	1.052	0.231
	1.142	0.194
	1.232	0.180
	1.322	0.168
	1.412	0.157
	1.503	0.148
	1.593	0.139
	1.683	0.132
	1.773	0.125
	1.863	0.119
	1.954	0.113
	2.044	0.108
	2.134	0.104
	2.224	0.100
To <mark>∢</mark>	2.314	0.096
	2.395	0.089
	2.475	0.084
	2.555	0.079
	2.635	0.074
	2.716	0.070
	2.796	0.066
	2.876	0.062
	2.956	0.059
	3.037	0.056
	3.117	0.053
	3.197	0.050
	3.278	0.048
	3.358	0.045
	3.438	0.043
	3.518	0.041
	3.599	0.040
	3.679	0.038
	3.759	0.036
	3.839	0.036
	3.920	0.036
	4.000	0.036

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IV0I	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 26 di 96

6.6 Riepilogo delle azioni del traffico dell'impalcato

Gli effetti dei carichi verticali dovuti alla presenza del traffico stradale vanno sempre combinati con le altre azioni, adottando i coefficienti indicati nella seguente tabella.

Tabella 5.1.IV – Valori caratteristici delle azioni dovute al traffico

	Carichi sulla carreggiata					Carichi su marciapiedi e piste ciclabili	
	Carichi verticali			Carichi orizz	ontali	Carichi verticali	
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente distribuito	
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²	
2 a	Valore frequente			Valore caratteristico			
2 b	Valore frequente				Valore caratteristico		
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²	
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²	
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale					

Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

(***) Da considerare solo se si considerano veicoli speciali

<u>Disposizione di carico 1a (Nmax):</u> Schema di Carico 1 (n.3 colonne di carico)

Schema di Carico 5 (su n.2 marciapiedi)

<u>Disposizione di carico 1b (Nmin/Mtrasv max):</u> Schema di Carico 1 (n.1 colonne di carico)

Schema di Carico 5 (su n.1 marciapiede)

Ai fini delle analisi da condurre gli effetti di frenatura sono stati considerati agenti in un unico verso.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IVOI	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 27 di 96

6.7 Spinta statica del terreno

Le spinte del terreno a monte degli elementi verticali della spalla sono calcolate con la teoria di Rankine, con distribuzione triangolare delle tensioni e conseguente risultante della spinta al metro pari a $S=1/2 \cdot k_0 \cdot \gamma \cdot H^2$, applicata ad 1/3 dal basso.

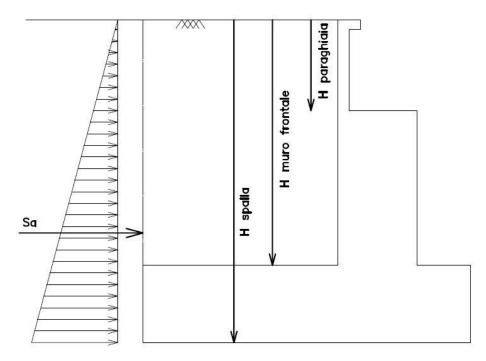


Figura 5 Schema per il calcolo degli effetti della spinta statica del terreno

Si ritiene che la spalla sia impedita di traslare rispetto al terreno. La spinta sia in condizioni di esercizio che in condizioni sismiche viene calcolata con il coefficiente di spinta in quiete k_0 e non con il coefficiente di spinta attiva k_a .

6.8 Spinta dovuta al sovraccarico accidentale e permanente

Per considerare la presenza di un sovraccarico da traffico gravante sulla spalla e a tergo di essa, si considera un carico uniformemente distribuito di lunghezza indefinita con valore pari a q=17.70 kN/m².

Tale valore è stato ottenuto secondo quanto riportato nel paragrafo C5.1.3.3.5.1 della Circ.n.7 , considerando un'altezza di diffusione pari a $H_{\text{muro frontale}}/2$.

Il valore della spinta risultante al metro è dunque pari a $S=k_0\cdot q\cdot Hs_{palla}$, con punto di applicazione posizionato a metà dell'altezza dell'elemento su cui insiste. Tale forza si considera agente in senso longitudinale su tutta la larghezza della spalla, mentre in senso trasversale sull'intera lunghezza dei muri andatori.

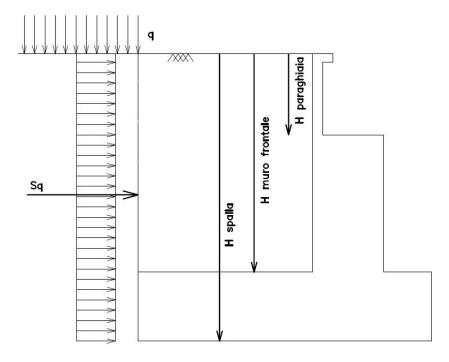


Figura 6 Schema per il calcolo degli effetti della spinta dovuta al sovraccarico accidentale

GRUPPO FERROVIE DELLO STATO ITALIANE		IO LINEA		VENTIMIGLIA ORA		
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IV0I	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 29 di 96

6.9 Sovraspinta sismica

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio.

La sovraspinta sismica può essere calcolata con la teoria di Wood, risultando in un valore di spinta al metro pari a $\Delta S_{ae} = a_{max}/g \cdot \gamma \cdot H^2$, da applicare ad una quota pari ad H/2 nel caso di muro impedito di traslare.

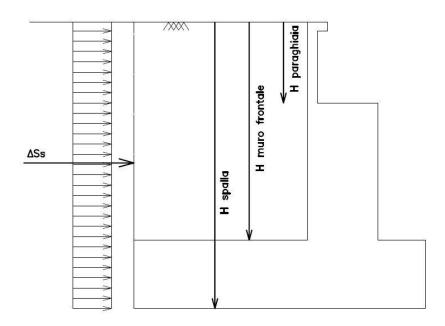


Figura 7 Schema per il calcolo degli effetti della sovraspinta sismica

Categoria suolo	Categoria del sottosuolo	В	
Fo	Fattore per l'amplificazione spettrale massima su sito di rif. rigido	2.46	
ag	Accelerazione orizzontale massima attesa su sito di rif. rigido	1.76	m/s2
Ss	Coefficiente per l'effetto dell'amplificazione stratigrafica	1.20	
ST	Coefficiente per l'effetto dell'amplificazione topografica	1.00	
S	Fattore della categoria del suolo	1.20	
βμ	Coefficiente di riduzione dell'accelerazione max attesa al sito	1.00	
amax	Accelerazione orizzontale massima attesa al sito	2.11	m/s2
kh	Coefficiente sismico orizzontale	0.21	g
kv	Coefficiente sismico verticale	0.11	

6.10 Forze di inerzia dovute al sisma

In fase sismica si devono considerare le azioni orizzontali e verticali agenti sulla spalla dovute all'inerzia delle parti in calcestruzzo e del rinterro compreso tra i muri andatori.

Le risultanti orizzontali e verticali sono rispettivamente pari ad F_h = k_h ·W e F_v = k_v ·W, dove i coefficienti k_h e k_v sono calcolati come esposto al paragrafo 7.11.6 delle NTC18 risultando pari a k_h = β_m · a_{max} /g, k_v = $\pm 0.5 k_h$ con a_{max} = S_s · S_t · a_g .

Il coefficiente β_m è stato considerato unitario, non essendo la spalla libera di traslare rispetto al terreno.

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
IV0I	00	D09	CLIV0604001	Α	31 di 96

7 COMBINAZIONI DI CARICO

Sulla base delle condizioni di carico elementare illustrate al §6 sono state definite le combinazioni di carico.

Le combinazioni di carico prese in considerazione nelle verifiche sono state definite in base a quanto prescritto dalle NTC18 al par.2.5.3:

Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica rara, impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche delle tensioni d'esercizio:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} \dots;$$

Combinazione caratteristica frequente, impiegata per gli stati limite di esercizio (SLE) reversibili, da utilizzarsi nelle verifiche a fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} \dots;$$

Combinazione quasi permanente, generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3}...$$

Combinazione sismica: $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2}$...

Per le verifiche SLU si adottano i valori dei coefficienti parziali e dei coefficienti di combinazione riportati nelle seguenti figure.

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 32 di 96

 ${\bf Tab.\,5.1.V-Coefficienti\ parziali\ di\ sicurezza\ per\ le\ combinazioni\ di\ carico\ agli\ SLU}$

		Coefficiente	EQU ^(t)	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	γω	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2· Υε3· Υε 4	0,00 1,20	0,00 1,20	0,00 1,00

[@] Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tab. 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni	Coefficiente	Coefficiente	Coefficiente
23210111	(Tab. 5.1.IV)	ψ ₀ di combi- nazione	ψ ₁ (valori frequenti)	Coefficiente ψ_2 (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
11070	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5
		L		

⁽a) Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(1,20} per effetti locali

8 CRITERI DI VERIFICA SLU E SLV

8.1 Verifiche elementi in c.a.

Le verifiche sono condotte nel rispetto di quanto dichiarato nel paragrafo 4.1.2 delle NTC18.

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite.

I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15.

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali condotte nel progetto. Ulteriori dettagli specifici, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

8.2 Verifiche per gli stati limite ultimi a flessione - pressoflessione

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

8.3 Verifiche per gli stati limite ultimi a taglio

La verifica di resistenza nei confronti delle sollecitazioni taglianti si esegue nel rispetto delle prescrizioni riportate al paragrafo 4.1.2.3 delle NTC18.

9 CRITERI DI VERIFICA CONDIZIONI DI ESERCIZIO

9.1 Verifiche SLE

9.1.1 Stato limite di formazione delle fessure

Si verifica che il valore caratteristico di apertura delle fessure w_k non superi i limiti di normativa. L'ampiezza caratteristica delle fessure è calcolata come 1.7 volte il prodotto della deformazione media delle barre d'armatura ε_{sm} per la distanza media tra le fessure Δ_{sm} :

$$w_k=1.7\cdot\epsilon_{sm}\cdot\Delta_{sm}$$

Trattandosi di strutture soggette a diverse condizioni ambientali, si adottano i seguenti limiti, per la combinazione frequente e presenza di armature poco sensibili, come previsto dal § 2.6.2.2.2 MdP Parte II:

- $w_1 = 0.2$ mm per strutture in condizioni ambientali aggressive e molto aggressive, strutture a permanente contatto con il terreno e zone non ispezionabili di tutte le strutture
- $w_2 = 0.3$ mm per strutture in condizioni ambientali ordinarie.

Il valore limite di tensione di trazione nel calcestruzzo per lo stato limite di formazione delle fessure vale $f_{\text{ctm}}/1.2$.

9.1.2 Verifica delle massime tensioni di esercizio CLS ed acciaio

La massima tensione di compressione del cls e nell'acciaio deve rispettare le seguenti limitazioni (vedi §4.1.2.2.5 delle NTC18):

- $\sigma_{c,max} < 0.60 f_{ck}$ per combinazione caratteristica (rara);
- $\sigma_{c,max} < 0.45$ f_{ck} per combinazione quasi permanente;

La massima tensione di trazione dell'acciaio deve rispettare la limitazione:

• $\sigma_s < 0.80$ f_{vk} per combinazione caratteristica (rara).

10 DIMENSIONAMENTO E VERIFICA DELLA SPALLA

La determinazione delle azioni agenti sulla spalla è stata eseguita mediante l'utilizzo di un foglio di calcolo che considera gli effetti globali sulla struttura. Gli elementi costituenti sono stati dimensionati e verificati singolarmente, secondo gli schemi statici di seguito descritti.

10.1 Muro paraghiaia

Il muro paraghiaia è stato considerato come una trave a mensola incastrata in testa al muro di testata.

Per il dimensionamento è stata considerata l'azione dei seguenti carichi:

- Peso proprio e il suo effetto dinamico in caso di sisma;
- Sovraccarico accidentale da traffico a tergo della spalla;
- Azione orizzontale della frenatura.

10.1.1 Sollecitazioni

MURO PARAGHIAIA

Sollecitazioni sulla sezione di 1m.

Statica

COMBO	Z	Thickness	N	Т	M
	(m)	(m)	(kN/m)	(kN/m)	(kNm/m)
RARA_1_NML	0.00	0.50	28.13	77.33	130.56
RARA_2_NML	0.00	0.50	28.13	100.53	173.54
FREQ_1_NML	0.00	0.50	28.13	18.83	14.12
FREQ_2_NML	0.00	0.50	28.13	77.33	130.56
Q.PERM_NML	0.00	0.50	28.13	18.83	14.12
SLU1_NML	0.00	0.50	37.97	104.40	176.26
SLU2_NML	0.00	0.50	37.97	135.72	234.27
SLU3_NML	0.00	0.50	28.13	97.81	171.31
SLU4_NML	0.00	0.50	28.13	129.13	229.33

SLV_NML	0.00	0.50	28.13	155.41	457.26

PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 36 di 96

MURO PARAGHIAIA

Sollecitazioni sulla sezione di 1m.

Statica

COMBO	Z	Thickness	N	Т	M
	(m)	(m)	(kN/m)	(kN/m)	(kNm/m)
RARA_1_MTRA	0.00	0.50	28.13	77.33	130.56
RARA_2_MTRA	0.00	0.50	28.13	100.53	173.54
FREQ_1_MTRA	0.00	0.50	28.13	18.83	14.12
FREQ_2_MTRA	0.00	0.50	28.13	77.33	130.56
Q.PERM_MTRA	0.00	0.50	28.13	18.83	14.12
SLU1_MTRA	0.00	0.50	37.97	104.40	176.26
SLU2_MTRA	0.00	0.50	37.97	135.72	234.27
SLU3_MTRA	0.00	0.50	28.13	97.81	171.31
SLU4_MTRA	0.00	0.50	28.13	129.13	229.33

SLV MTRA	0.00	0.50	28.13	155.41	457.26
· · · · =					

MURO PARAGHIAIA

Sollecitazioni sulla sezione di 1m.

Statica

COMBO	Z	Thickness	N	Т	M
	(m)	(m)	(kN/m)	(kN/m)	(kNm/m)
RARA_1_PSCA	0.00	0.50	28.13	18.83	14.12
RARA_2_PSCA	0.00	0.50	28.13	18.83	14.12
FREQ_1_PSCA	0.00	0.50	28.13	18.83	14.12
FREQ_2_PSCA	0.00	0.50	28.13	18.83	14.12
Q.PERM_PSCA	0.00	0.50	28.13	18.83	14.12
SLU1_PSCA	0.00	0.50	37.97	25.42	19.07
SLU2_PSCA	0.00	0.50	37.97	25.42	19.07
SLU3_PSCA	0.00	0.50	28.13	18.83	14.12
SLU4_PSCA	0.00	0.50	28.13	18.83	14.12

SLV PSCA	0.00	0.50	28.13	84.56	278.33
SE V_1 SERI	0.00	0.50	20.13	01.50	270.33

10.1.2 Sintesi delle armature disposte

Le armature minime vengono calcolate in base a quanto previsto nel §7.4.6.2.1 NTC18.

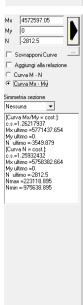
Per l'armatura trasversale si fa riferimento al §7.4.6.2.4 NTC18.

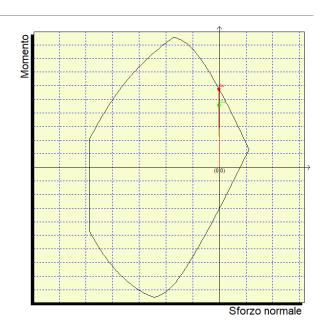
Armatura longitudinale

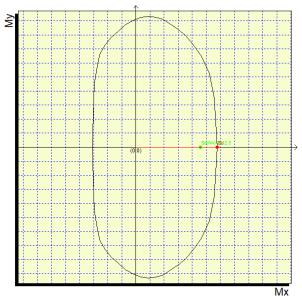
	F	passo	As,ed	As	As,tot	As,min	Verifica	Verifica
	mm	mm	mm2	mm2	mm2	mm2	As,min	As,ed
Monte	22	100	3055.04	3801.33	3801.33	1555.56	Verificato	Verificato
Monte	-	-	3033.04	-	3001.33	1333.30	Vermeato	vermeato
Valle	22	200	_	1900.66	1900.66	950.33	Verificato	
Valle	-	-		-	1700.00	750.55	· cicato	

Armatura trasversale

	F	passo	As	As,tot	As,min	Verifica
	mm	mm	mm2	mm2	mm2	As,min
Monte	14	200	769.69			
Monte	-	-	-	1539.38	1000.00	Verificato
Valle	14	200	769.69			
Valle	-	-	-			




10.1.3 Verifiche SLV


10.1.3.1 Verifica a pressoflessione

	N (kN)	V (kN)	Mtrasv (kNm)	Mlong (kNm)	CS
SLV_NML	28	155	0	457	1.26

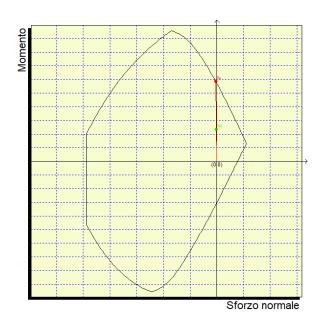
GRUPPO FERROVIE DELLO STATO ITALIANE		IO LINE		VENTIMIGLIA ORA		
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IVOI	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 40 di 96

10.1.3.2 <u>Verifica a taglio</u>

Si riporta di seguito la verifica a taglio secondo NTC18 per elementi privi di armatura a taglio.

VEd = TSLU	155	kN
	155407	N
		•
Rck	40	MPa
fck	33.20	MPa
H sezione	500	mm
c netto	75	mm
Ø staffa	14	mm
Ø arm tesa	22	mm
d	425	mm
		•
k	1.69	
bw	1000	mm
Asl	3801	mm2
ρΙ	0.0089	
	1	•
NEd	28	kN
	28125	N
Ac	500000	mm2
σср	0.05625	MPa
fcd	18.81	MPa
γς	1.50	
CRd,c	0.12	
		•
vmin	0.44	
L		

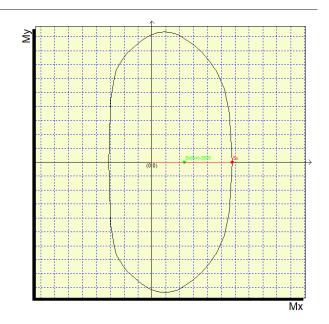
VRd,c	269855	N	
VRd,c min	191219	N	
VRd,c effettivo	269855	N	
	1	l .	
77 ·C.	OV		


Verifica	OK	
tasso di lavoro	0.58	
c.s.	1.74	

10.1.4 Verifiche SLU

10.1.4.1 Verifica a pressoflessione

	N (kN)	V (kN)	Mtrasv (kNm)	Mlong (kNm)	cs
SLU2_NML	38	136	0	234	2.51



PROGETTO DEFINITIVO
RADDOPPIO LINEA GENOVA - VENTIMIGLIA
TRATTA FINALE LIGURE - ANDORA

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 42 di 96

GRUPPO FERROVIE DELLO STATO ITALIANE		O LINEA		VENTIMIGLIA ORA		
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IVOI	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 43 di 96

10.1.4.2 <u>Verifica a taglio</u>

Si riporta di seguito la verifica a taglio secondo NTC18 per elementi privi di armatura a taglio.

VEd = TSLU	136	kN
	135717	N
Rck	40	MPa
fck	33.20	MPa
H sezione	500	mm
c netto	75	mm
Ø staffa	14	mm
Ø arm tesa	22	mm
d	425	mm
k	1.69	
	1	
bw	1000	mm
Asl	3801	mm2
ρΙ	0.0089	
NEd	38	kN
	37969	N
Ac	500000	mm2
σср	0.076	MPa
	,	
fcd	18.81	MPa
γς	1.50	
CRd,c	0.12	
vmin	0.44	
	1	

VRd,c	271110	N
VRd,c min	192474	N

VRd,c effettivo	271110	N
-----------------	--------	---

Verifica	ОК	
tasso di lavoro	0.50	
C.S.	2.00	

10.1.5 Verifiche SLE

10.1.5.1 Sollecitazioni per le verifiche

	N (kN)	Mlong	Mtrasv
Comb rara	28.13	173.54	0.00
Comb frequente	28.13	130.56	0.00
Comb quasi perm	28.13	14.12	0.00

10.1.5.2 Verifica stato limite di fessurazione

fck	33.2	N/mm2
fctm	3.10	N/mm2
fyk	450.00	N/mm2

	σt max	σcls-		Verifica	c.s.
Comb frequente	-2.58	-2.38	N/mm2	Verifica soddisfatta	1.09
Comb quasi perm		-0.22	N/mm2	Verifica soddisfatta	11.74

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IVOI	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 45 di 96

fck	33.2	N/mm2
fctm	3.10	N/mm2
fyk	450.00	N/mm2

		σt max	σcls-		Verifica	c.s.
C	Comb frequente	-2.58	-2.38	N/mm2	Verifica soddisfatta	1.09
C	Comb quasi perm	2.00	-0.22	N/mm2	Verifica soddisfatta	11.74

10.1.5.3 <u>Verifica delle massime tensioni di esercizio CLS ed acciaio</u>

	ос тах	σc Mmax		Verifica	c.s.
Comb rara	19.92	5.01	N/mm2	Verifica soddisfatta	3.98
Comb quasi perm	14.94	3.78	N/mm2	Verifica soddisfatta	3.95

	σs max	σs		Verifica	c.s.
Comb rara	-360	-120.41	N/mm2	Verifica soddisfatta	2.99

GRUPPO FERROVIE DELLO STATO ITALIANE		IO LINEA	_	VENTIMIGLIA ORA		
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IV0I	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 46 di 96

10.2 Muro di testata

Il muro di testata è stato considerato come una trave a mensola incastrata nel plinto di fondazione.

Per il dimensionamento è stata considerata l'azione dei seguenti carichi:

- Peso proprio e il suo effetto dinamico in caso di sisma;
- Scarichi dell'impalcato;

10.2.1 Sollecitazioni

SOLLECITAZIONI MURO DI TESTATA

Sollecitazioni sulla sezione di 1m.

Statica

COMBO	Z	Thickness	N	Т	M
	(m)	(m)	(kN/m)	(kN/m)	(kNm/m)
RARA_1_NML	0.00	2.40	558.29	182.80	419.90
RARA_2_NML	0.00	2.40	616.11	205.58	491.08
FREQ_1_NML	0.00	2.40	469.30	145.30	302.71
FREQ_2_NML	0.00	2.40	558.29	182.80	419.90
Q.PERM_NML	0.00	2.40	469.30	145.30	302.71
SLU1_NML	0.00	2.40	753.69	246.78	566.86
SLU2_NML	0.00	2.40	831.75	277.53	662.95
SLU3_NML	0.00	2.40	589.44	195.93	460.91
SLU4_NML	0.00	2.40	667.49	226.68	557.01

SLV_NML	0.00	2.40	498.66	582.28	1120.65
					i

SOLLECITAZIONI MURO DI TESTATA

Sollecitazioni sulla sezione di 1m.

Statica

COMBO	Z	Thickness	N	Т	M
	(m)	(m)	(kN/m)	(kN/m)	(kNm/m)
RARA_1_MTRA	0.00	2.40	679.19	182.80	419.90
RARA_2_MTRA	0.00	2.40	724.60	205.58	491.08
FREQ_1_MTRA	0.00	2.40	606.88	145.30	302.71
FREQ_2_MTRA	0.00	2.40	679.19	182.80	419.90
Q.PERM_MTRA	0.00	2.40	606.88	145.30	302.71
SLU1_MTRA	0.00	2.40	916.91	246.78	566.86
SLU2_MTRA	0.00	2.40	978.20	277.53	662.95
SLU3_MTRA	0.00	2.40	704.50	195.93	460.91
SLU4_MTRA	0.00	2.40	765.79	226.68	557.01

SLV_MTRA	0.00	2.40	630.42	638.89	1006.08

PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
IV0I 00 D09 CLIV0604001 A 48 di 96

SOLLECITAZIONI MURO DI TESTATA

Sollecitazioni sulla sezione di 1m.

Statica

COMBO	Z	Thickness	N	T	M
	(m)	(m)	(kN/m)	(kN/m)	(kNm/m)
RARA_1_PSCA	0.00	2.40	606.88	145.30	302.71
RARA_2_PSCA	0.00	2.40	606.88	145.30	302.71
FREQ_1_PSCA	0.00	2.40	606.88	145.30	302.71
FREQ_2_PSCA	0.00	2.40	606.88	145.30	302.71
Q.PERM_PSCA	0.00	2.40	606.88	145.30	302.71
SLU1_PSCA	0.00	2.40	819.29	196.16	408.66
SLU2_PSCA	0.00	2.40	819.29	196.16	408.66
SLU3_PSCA	0.00	2.40	606.88	145.30	302.71
SLU4_PSCA	0.00	2.40	606.88	145.30	302.71

SLV_PSCA 0.00 2.40 606.88 610.21 94	8.20
-------------------------------------	------

GRUPPO FERROVIE DELLO STATO ITALIANE		IO LINEA		VENTIMIGLIA ORA		
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IV0I	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 49 di 96

10.2.2 Sintesi delle armature disposte

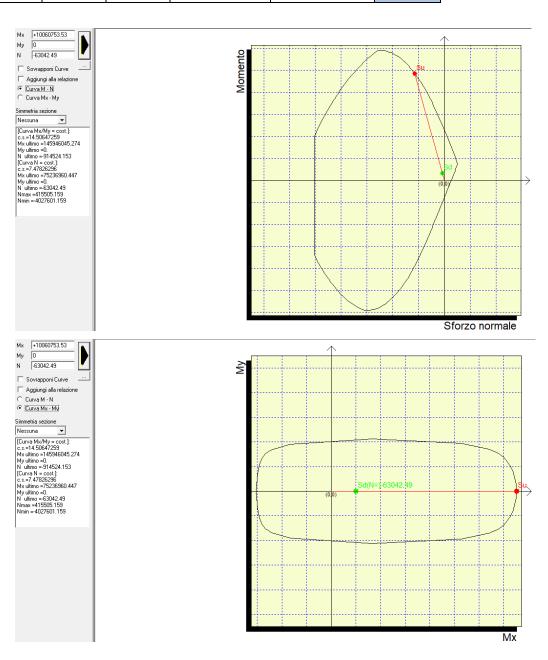
Le armature minime vengono calcolate in base a quanto previsto nel §7.4.6.2.1 NTC18.

Per l'armatura trasversale si fa riferimento al §7.4.6.2.4 NTC18.

Armatura longitudinale

	Φ	passo	As,ed	As	As,tot	As,min	Verifica	Verifica
	mm	mm	mm2	mm2	mm2	mm2	As,min	As,ed
Monte	26	100	1245.7	5309.3	7963.9	7466.7	Verificato	Verificato
Monte	26	200	1243.7	2654.6	1703.7	7400.7	Vermeato	Vermedio
Valle	26	200	_	2654.6	2654.6	1991.0	Verificato	
Valle	-	-		-	2034.0	1771.0	vermento	

Armatura trasversale


	Φ	passo	As	As,tot	As,min	Verifica
	mm	mm	mm2	mm2	mm2	As,min
Monte	22	200	1900.66			
Monte	-	-	-			
Intermedia	22	200	1900.66	5701.99	4800.00	Verificato
Valle	22	200	1900.66			
Valle	-	_	-			

10.2.3 Verifiche SLV

10.2.3.1 Verifica a pressoflessione

	N (kN)	V (kN)	Mtrasv (kNm)	Mlong (kNm)	cs
SLV_MTRA	630	639	0	1006	14.50

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IVOI	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 51 di 96

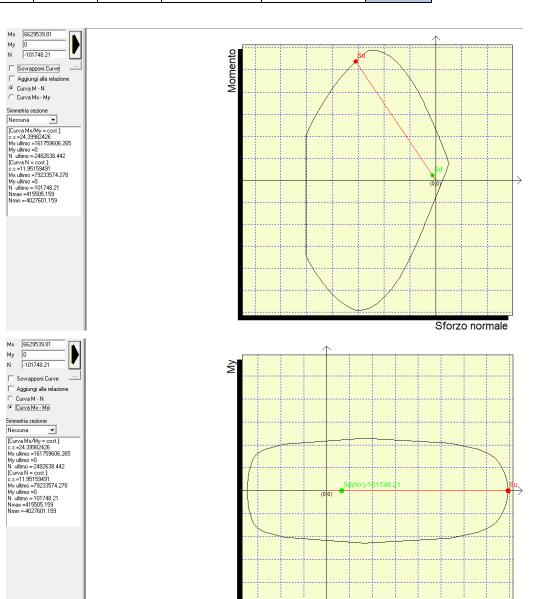
10.2.3.2 <u>Verifica a taglio</u>

Si riporta di seguito la verifica a taglio secondo NTC18 per elementi privi di armatura a taglio.

VEd = TSLU	639	kN
	638889	N
Rck	40	MPa
fck	33.20	MPa
H sezione	2400	mm
c netto	107	mm
Ø staffa	22	mm
Ø arm tesa	26	mm
d	2293	mm
	•	•
k	1.30	
bw	1000	mm
Asl	7964	mm2
ρΙ	0.0035	
NEd	630	kN
	630425	N
Ac	2400000	mm2
σср	0.26	MPa
	I	
fcd	18.81	MPa
үс	1.50	
CRd,c	0.12	
	<u> </u>	
vmin	0.30	

VRd,c	895657	N
VRd,c min	772175	Ν

VRd,c effettivo	895657 N
-----------------	----------


Verifica	ОК	
tasso di lavoro	0.71	
C.S.	1.40	

10.2.4 Verifica SLU

10.2.4.1 Verifica a pressoflessione

	N (kN)	V (kN)	Mtrasv (kNm)	Mlong (kNm)	cs
SLU2_NML	1017	278	0	663	24.40

Мx

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IVOI	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 54 di 96

10.2.4.2 <u>Verifica a taglio</u>

Si riporta di seguito la verifica a taglio secondo NTC18 per elementi privi di armatura a taglio.

VEd = TSLU	278	kN
	277531	N
Rck	40	MPa
fck	33.20	MPa
H sezione	2400	mm
c netto	107	mm
Ø staffa	22	mm
Ø arm tesa	26	mm
d	2293	mm
k	1.30	
bw	1000	mm
Asl	7964	mm2
ρΙ	0.0035	
NEd	1017	kN
	1017482	N
Ac	2400000	mm2
σср	0.42	MPa
fcd	18.81	MPa
γс	1.50	
CRd,c	0.12	
vmin	0.30	

VRd,c	951136	Ν
VRd,c min	827653	N

VRd,c effettivo	951136	N
-----------------	--------	---

Verifica	ОК	
tasso di lavoro	0.29	
C.S.	3.43	

10.2.5 Verifiche SLE

10.2.5.1 Sollecitazioni per le verifiche

	N (kN)	Mlong	Mtrasv
Comb rara	753.69	491.08	0.00
Comb frequente	695.87	419.90	0.00
Comb quasi perm	606.88	302.71	0.00

	N (kN)	Mlong	Mtrasv
Comb rara	753.69	491.08	0.00
Comb frequente	695.87	419.90	0.00
Comb quasi perm	606.88	302.71	0.00

10.2.5.2 <u>Verifica stato limite di fessurazione</u>

fck	33.2	N/mm2
fctm	3.10	N/mm2
fyk	450.00	N/mm2

	σt max	σcls-		Verifica	c.s.
Comb frequente	-2.58	-0.11	N/mm2	Verifica soddisfatta	23.5
Comb quasi perm	2.00	-0.04	N/mm2	Verifica soddisfatta	64.6

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
	IVOI	00	D09	CLIV0604001	A	56 di 96

10.2.5.3 <u>Verifica delle massime tensioni di esercizio CLS ed acciaio</u>

	ос тах	σc Mmax		Verifica	c.s.
Comb rara	19.92	0.80	N/mm²	Verifica soddisfatta	24.9
Comb quasi perm	14.94	0.54	N/mm²	Verifica soddisfatta	27.7
			1		
	σs max	σs		Verifica	c.s.
Comb rara	-360	-2.94	N/mm²	Verifica soddisfatta	122.4

10.3 Muri andatori

I muri andatori sono stati considerati come una trave a mensola incastrata nel plinto di fondazione.

Per il dimensionamento è stata considerata l'azione dei seguenti carichi:

- Peso proprio e il suo effetto dinamico in caso di sisma.

10.3.1 Sollecitazioni

MURI ANDATORI

Sollecitazioni sulla sezione di 1m.

Statica

COMBO	Z	Thickness	N	Т	M
	(m)	(m)	(kN/m)	(kN/m)	(kNm/m)
RARA_1_NML	0.00	0.80	125.00	186.40	447.82
RARA_2_NML	0.00	0.80	125.00	207.74	507.83
FREQ_1_NML	0.00	0.80	125.00	145.30	302.71
FREQ_2_NML	0.00	0.80	125.00	182.80	419.90
Q.PERM_NML	0.00	0.80	125.00	145.30	302.71
SLU1_NML	0.00	0.80	168.75	252.19	608.75
SLU2_NML	0.00	0.80	168.75	280.77	688.09
SLU3_NML	0.00	0.80	125.00	201.33	502.80
SLU4_NML	0.00	0.80	125.00	229.92	582.14

SLV_NML 0.	0.00	0.80	125.00	519.68	1502.38
------------	------	------	--------	--------	---------

PROGETTO DEFINITIVO
RADDOPPIO LINEA GENOVA - VENTIMIGLIA
TRATTA FINALE LIGURE - ANDORA

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE IV0I 00 D09

DOCUMENTO CLIV0604001 REV. FOGLIO A 58 di 96

MURI ANDATORI

Sollecitazioni sulla sezione di 1m.

Statica

COMBO	Z	Thickness	N	Т	M
	(m)	(m)	(kN/m)	(kN/m)	(kNm/m)
RARA_1_MTRA	0.00	0.80	125.00	186.40	447.82
RARA_2_MTRA	0.00	0.80	125.00	207.74	507.83
FREQ_1_MTRA	0.00	0.80	125.00	145.30	302.71
FREQ_2_MTRA	0.00	0.80	125.00	182.80	419.90
Q.PERM_MTRA	0.00	0.80	125.00	145.30	302.71
SLU1_MTRA	0.00	0.80	168.75	252.19	608.75
SLU2_MTRA	0.00	0.80	168.75	280.77	688.09
SLU3_MTRA	0.00	0.80	125.00	201.33	502.80
SLU4_MTRA	0.00	0.80	125.00	229.92	582.14

SLV_MTRA	0.00	0.80	125.00	519.68	1502.38
----------	------	------	--------	--------	---------

MURI ANDATORI

Sollecitazioni sulla sezione di 1m.

Statica

COMBO	Z	Thickness	N	Т	M
	(m)	(m)	(kN/m)	(kN/m)	(kNm/m)
RARA_1_PSCA	0.00	0.80	125.00	147.70	320.13
RARA_2_PSCA	0.00	0.80	125.00	146.74	313.16
FREQ_1_PSCA	0.00	0.80	125.00	145.78	306.19
FREQ_2_PSCA	0.00	0.80	125.00	145.30	302.71
Q.PERM_PSCA	0.00	0.80	125.00	145.30	302.71
SLU1_PSCA	0.00	0.80	168.75	199.76	434.79
SLU2_PSCA	0.00	0.80	168.75	198.32	424.34
SLU3_PSCA	0.00	0.80	125.00	148.91	328.84
SLU4_PSCA	0.00	0.80	125.00	147.46	318.39

SLV_PSCA 0.00	0.80	125.00 488	8.44 1344.83
---------------	------	------------	--------------

10.3.2 Sintesi delle armature disposte

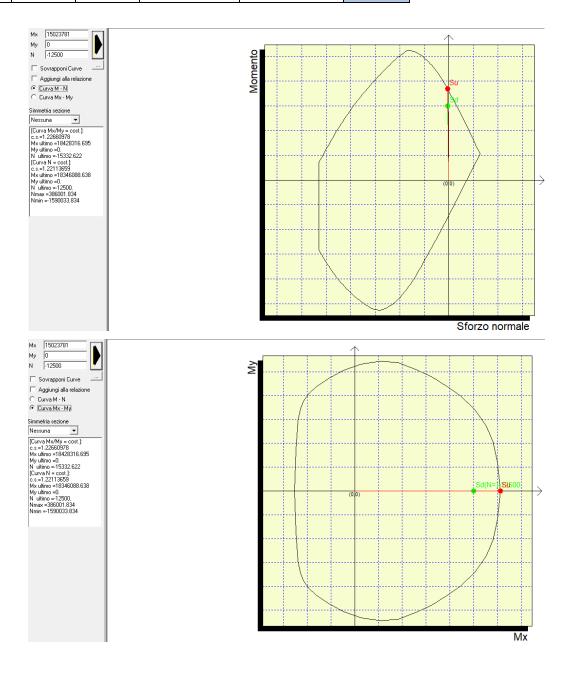
Le armature minime vengono calcolate in base a quanto previsto nel §7.4.6.2.1 NTC18.

Per l'armatura trasversale si fa riferimento al §7.4.6.2.4 NTC18.

Armatura longitudinale

	F	passo	As,ed	As	As,tot	As,min	Verifica	Verifica
	mm	mm	mm2	mm2	mm2	mm2	As,min	As,ed
Monte	26	100	6152.90	5309.29	7209.96	2488.89	Verificato	Verificato
Monte	22	200	1900.66		7207.70	2400.09	Vermeato	Vermeato
Valle	26	200	_	2654.65	2654.65	1802.49	Verificato	
Valle	-	-		-	2054.05	1002.47	Vermedio	

Armatura trasversale


	F	passo	As	As,tot	As,min	Verifica
	mm	mm	mm2	mm2	mm2	As,min
Monte	22	200	1900.66			
Monte	-	-	-	3801.33	1600.00	Verificato
Valle	22	200	1900.66	3001.33	1000.00	vermeato
Valle	-	-	-			

10.3.3 Verifiche SLV

10.3.3.1 Verifiche a pressoflessione

	N (kN)	V (kN)	Mtrasv (kNm)	Mlong (kNm)	cs
SLU2_NMI	125	520	0	1502	1.23

GRUPPO FERROVIE DELLO STATO ITALIANE		O LINEA		VENTIMIGLIA ORA		
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
	IVOI	00	D09	CLIV0604001	A	62 di 96

10.3.3.2 <u>Verifica a taglio</u>

Si riporta di seguito la verifica a taglio secondo NTC18 per elementi privi di armatura a taglio.

VEd = TSLU	520	kN
	519680	N
		•
Rck	40	MPa
fck	33.20	MPa
H sezione	800	mm
c netto	107	mm
Ø staffa	22	mm
Ø arm tesa	26	mm
d	693	mm
	•	•
k	1.54	
	•	•
bw	1000	mm
Asl	7210	mm2
ρΙ	0.0104	
		•
NEd	125	kN
	125000	N
Ac	800000	mm2
σср	0.16	MPa
fcd	18.81	MPa
		1
γс	1.50	
CRd,c	0.12	
<u>, </u>		
vmin	0.38	

VRd,c	432670	N
VRd,c min	282707	N

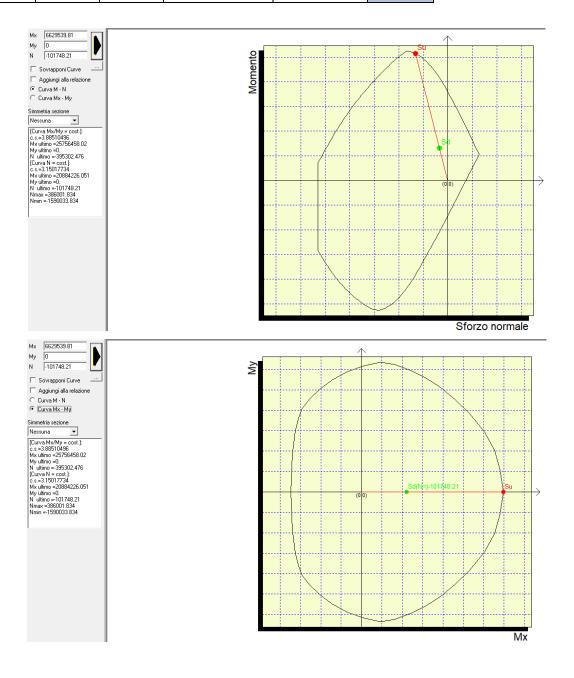
VRd,c effettivo	432670	N
-----------------	--------	---

Verifica	NO	
tasso di lavoro	1.20	
c.s.	0.83	

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IVOI	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 64 di 96

Si dispongono, come armatura a taglio, delle spille φ12 secondo una maglia 40x20 cm a quinconce fino alla quota di 1m rispetto alla base del muro andatore. Al di sopra non si dispone armatura a taglio. Si mostrano di seguito i risultati della verifica effettuata:

VEd = TSLU	520	kN
	519680	N
		1
Asw	283	mm2
S	200	mm
fywd	391.30	MPa
1 y w d	371.30	IVII a
cot θ	2.5	
	I	ı
ſχ	1	
	T	
z = 0.9d	624	mm
	0.50	
ν	0.52	
		T
VRd,s	862982	N
VRd,s max	2106313	N
VRd,c effettivo	862982	N
[-
Verifica	OK	
tasso di lavoro	0.60	
C.S.	1.66	


La verifica risulta soddisfatta.

10.3.4 Verifiche SLU

10.3.4.1 Verifica a pressoflessione

	N (kN)	V (kN)	Mtrasv (kNm)	Mlong (kNm)	cs
SLU2_NML	1017	278	0	663	3.89

GRUPPO FERROVIE DELLO STATO ITALIANE		IO LINEA		VENTIMIGLIA ORA		
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IV0I	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 66 di 96

10.3.4.2 <u>Verifica a taglio</u>

VEd = TSLU	278	kN
	277531	N
Rck	40	MPa
fck	33.20	MPa
H sezione	800	mm
c netto	107	mm
Ø staffa	8	mm
Ø arm tesa	26	mm
d	693	mm
k	1.54	
bw	1000	mm
Asl	7210	mm2
〉λ	0.0104	
NEd	1017	kN
	1017482	N
Ac	800000	mm2
Γ χπ	1.27	MPa
C 1	10.01] MD
fcd	18.81	MPa
©χ	1.50	
CRd,c	0.12	
	100-	
vmin	0.38	

VRd,c	548692	N
VRd,c min	398729	N

VRd,c effettivo	548692	N
-----------------	--------	---

Verifica	ОК	
tasso di lavoro	0.51	
c.s.	1.98	

10.3.5 Verifiche SLE

10.3.5.1 Sollecitazioni per le verifiche

	N (kN)	Mlong	Mtrasv
Comb rara	125.00	507.83	0.00
Comb frequente	125.00	419.90	0.00
Comb quasi perm	125.00	302.71	0.00

10.3.5.2 Verifiche stato limite di fessurazione

fck	33.2	N/mm2	
fctm	3.10	N/mm2	
fyk	450.00	N/mm2	

	σt max	σcls-		Verifica	c.s.
Comb frequente	2.50	-2.71	N/mm2	Verificare ampiezza fessure	0.95
Comb quasi perm	-2.58	-1.92	N/mm2	Verifica soddisfatta	1.35

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
	IVOI	00	D09	CLIV0604001	A	68 di 96

	w lim	w		Verifica	
Comb quasi perm w1	0.2		mm	Verifica soddisfatta	c.s.
Comb frequente w1	0.2	0.07	mm	Verifica soddisfatta	2.86

10.3.5.3 <u>Verifica delle massime tensioni di esercizio CLS ed acciaio</u>

	ос тах	σc Mmax		Verifica	c.s.
Comb rara	19.92	5.11	N/mm2	Verifica soddisfatta	3.90
Comb quasi perm	14.94	3.10	N/mm2	Verifica soddisfatta	4.82
			-	•	
	σs max	σs		Verifica	c.s.
Comb rara	-360	-109.4	N/mm2	Verifica soddisfatta	3.29

11 SOLLECITAZIONI IN FONDAZIONE

11.1 Sollecitazioni ad intradosso fondazione

Di seguito si riportano le sollecitazioni ad intradosso:

LC	N	Tx (trasv)	Ty (long)	Mz	Mx (long)	My (trasv)
	kN	kN	kN	kNm	kNm	kNm
RARA_1_NML_1	25392	336	-3713	0	15755	3684
RARA_1_NML_2	24733	336	-3713	0	14090	3684
RARA_2_NML_1	26691	334	-3918	0	16514	4331
RARA_2_NML_2	25631	334	-3918	0	13837	4331
FREQ_1_NML_1	23341	0	-3375	0	14523	0
FREQ_1_NML_2	23341	0	-3375	0	14523	0
FREQ_2_NML_1	25392	180	-3713	0	15755	2302
FREQ_2_NML_2	24733	180	-3713	0	14090	2302
Q.PERM_NML_1	23341	0	-3375	0	14523	0
Q.PERM_NML_2	23341	0	-3375	0	14523	0
SLU1_NML_1	34280	477	-5012	0	21270	5181
SLU1_NML_2	33389	477	-5012	0	19021	5181
SLU2_NML_1	36033	464	-5289	0	22294	5972
SLU2_NML_2	34601	464	-5289	0	18680	5972
SLU3_NML_1	26110	477	-3831	0	16187	5181
SLU3_NML_2	25220	477	-3831	0	13938	5181
SLU4_NML_1	27864	464	-4108	0	17211	5972
SLU4_NML_2	26432	464	-4108	0	13597	5972
SLV_NML_L1	24372	1559	-13330	0	-34726	8552
SLV_NML_L2	22529	1559	-13330	0	-35794	8552
SLV_NML_T1	24372	5085	-6437	0	-5662	23408
SLV_NML_T2	22529	5085	-6437	0	-6729	23408
SLV_NML_V1	26523	1559	-6437	0	-4416	8552
SLV_NML_V2	20378	1559	-6437	0	-7975	8552
RARA_1_MTRA_4	24829	306	-3713	0	15709	5236

PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 70 di 96

LC	N	Tx (trasv)	Ty (long)	Mz	Mx (long)	My (trasv)
	kN	kN	kN	kNm	kNm	kNm
RARA_2_MTRA_4	25754	294	-3918	0	16433	7207
FREQ_1_MTRA_4	23341	0	-3375	0	14523	0
FREQ_2_MTRA_4	24829	150	-3713	0	15709	3854
Q.PERM_MTRA_4	23341	0	-3375	0	14523	0
SLU1_MTRA_4	33519	436	-5012	0	21207	7276
SLU2_MTRA_4	34767	410	-5289	0	22184	9854
SLU3_MTRA_4	25350	436	-3831	0	16123	7276
SLU4_MTRA_4	26598	410	-4108	0	17101	9854
SLV_MTRA_L1	24285	1546	-13295	0	-34532	8713
SLV_MTRA_L2	22453	1546	-13295	0	-35597	8713
SLV_MTRA_T1	24285	5060	-6427	0	-5616	23468
SLV_MTRA_T2	22453	5060	-6427	0	-6681	23468
SLV_MTRA_V1	26424	1546	-6427	0	-4373	8713
SLV_MTRA_V2	20314	1546	-6427	0	-7924	8713
RARA_1_PSCA_3	23341	11	-3375	0	14523	105
RARA_2_PSCA_3	23341	7	-3375	0	14523	63
FREQ_1_PSCA_3	23341	2	-3375	0	14523	21
FREQ_2_PSCA_3	23341	0	-3375	0	14523	0
Q.PERM_PSCA_3	23341	0	-3375	0	14523	0
SLU1_PSCA_3	31510	17	-4556	0	19606	157
SLU2_PSCA_3	31510	10	-4556	0	19606	94
SLU3_PSCA_3	23341	17	-3375	0	14523	157
SLU4_PSCA_3	23341	10	-3375	0	14523	94
SLV_PSCA_L1	23497	1457	-12954	0	-33898	5929
SLV_PSCA_L2	21734	1457	-12954	0	-34886	5929
SLV_PSCA_T1	23497	4858	-6248	0	-6095	19763
SLV_PSCA_T2	21734	4858	-6248	0	-7083	19763
SLV_PSCA_V1	25554	1457	-6248	0	-4942	5929
SLV_PSCA_V2	19677	1457	-6248	0	-8235	5929

11.2 Sollecitazioni sui pali

Il calcolo delle sollecitazioni, visto l'esiguo numero di pali e l'interasse pari a 3 volte il diametro, è stato effettuato con il solo metodo del plinto rigido e non è stato effettuato il confronto con il metodo "effetto gruppo".

Il calcolo delle sollecitazioni sui singoli pali è stato effettuato assumendo le seguenti ipotesi:

- Plinto rigido;
- Vincolo di incastro tra pali e plinto;
- Pali costituenti la palificata verticali;
- Rotazione del plinto e della testa dei pali impedita.

Per un gruppo di n pali, sottoposto a forze verticali, orizzontali e di momento esterne (agenti alla quota testa pali ed in corrispondenza del baricentro della palificata) i carichi agenti alla testa di ciascun palo sono stimabili con le seguenti espressioni:

$$Q_{ti} = \frac{N}{n} \pm \frac{[M_x + M_{inc,x}] \cdot y_i}{\sum_{1}^{n} y_i^2} \pm \frac{[M_y + M_{inc,y}] \cdot x_i}{\sum_{1}^{n} x_i^2};$$

$$H_{tix} = \frac{H_x}{n}$$
;

$$H_{tiy} = \frac{H_y}{n};$$

essendo:

- N = forza verticale esterna;
- $M_x = M_{long}$ = momento esterno attorno all'asse x, accoppiato con H_y ;
- $H_y = T_{long}$ = forza orizzontale esterna nella direzione y;
- $M_y = M_{trasv} =$ momento esterno attorno all'asse y, accoppiato con H_x ;
- $H_x = T_{trasv}$ = forza orizzontale esterna nella direzione x;
- Q_{ti} = forza verticale agente alla testa del palo i-esimo;
- $H_{tix} = T_{trasv_i}$ = forza orizzontale agente alla testa del palo i-esimo nella direzione x;
- $H_{tiy} = T_{long_i} =$ forza orizzontale agente alla testa del palo i-esimo nella direzione y;

PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IV0I 00 D09 CLIV0604001 A 72 di 96

- $M_{inc,x} = M_{long_inc} = \Sigma$ $M_{tix} =$ momento di incastro risultante che i pali esercitano sul plinto per effetto del vincolo di rotazione impedita nella direzione x;
- M_{tix} = M_{long_inc_i} = momento di incastro alla testa del palo i-esimo per effetto del vincolo di rotazione impedita nella direzione x;
- $M_{inc,y} = M_{trasv_inc} = \Sigma$ $M_{tiy} =$ momento di incastro risultante che i pali esercitano sul plinto per effetto del vincolo di rotazione impedita nella direzione y;
- $M_{tiy} = M_{trasv_inc_i} =$ momento di incastro alla testa del palo i-esimo per effetto del vincolo di rotazione impedita nella direzione y;
- $-y_i$ = distanza del palo i-esimo dall'asse baricentrico della palificata nella direzione y;
- x_i = distanza del palo i-esimo dall'asse baricentrico della palificata nella direzione x.

I momenti di incastro alla testa dei pali $(M_{tix}$, $M_{tiy})$ sono stati stimati sulla base della teoria elastica di Matlock-Reese:

- M_{tix} = $H_{tiy} \times |A_s| \times T / |B_s|$, momento di incastro alla testa del palo i-esimo per effetto del vincolo di rotazione impedita nella direzione x;
- M_{tiy} = $H_{tix} \times |A_s| \times T / |B_s|$, momento di incastro alla testa del palo i-esimo per effetto del vincolo di rotazione impedita nella direzione y;

$$-T = \sqrt[4]{\frac{EJ}{E_{si}}};$$

- $E_{si} = K_h \times (h_{rinterro} + h_{plinti} + 1.5 \text{Ø}_{palo})$
- A_s , B_s = coefficienti di Matlock-Reese calcolati per z / T = 0 (intradosso fondazione).

I valori di N, T ed M esterni considerati sono quelli ottenuti dal modello allo spiccato delle fondazioni e riportati a intradosso fondazioni applicando la ripartizione dei momenti.

In tutte le tabelle di seguito riportate le unità di misura sono i kN per sforzi normali e tagli e i kNm per i momenti.

Gli sforzi normali negativi si intendono di trazione mentre i momenti positivi seguono la regola della mano destra.

Le tensioni positive sono di compressione e quelle negative di trazione.

In base alle convenzioni sui segni su indicate, per ogni palo sono riportati i massimi e i minimi sforzi assiali e la condizione di carico N–M più gravosa in termini di massima tensione nel calcestruzzo e di minima tensione nelle armature. Per le tensioni tangenziali è stato considerato il taglio massimo T agente in sommità del palo (anche non contemporaneo ad N-M).

Si riportano di seguito le azioni ripartite sui pali:

Combo	N palo max	N palo min
RARA_1_NML_1	2423.49	1808.53
RARA_1_NML_2	2310.68	1811.40
RARA_2_NML_1	2554.14	1894.34
RARA_2_NML_2	2372.81	1898.94
FREQ_1_NML_1	2130.80	1759.33
FREQ_1_NML_2	2130.80	1759.33
FREQ_2_NML_1	2379.94	1852.08
FREQ_2_NML_2	2267.13	1854.95
Q.PERM_NML_1	2130.80	1759.33
Q.PERM_NML_2	2130.80	1759.33
SLU1_NML_1	3278.26	2434.99
SLU1_NML_2	3125.96	2438.86
SLU2_NML_1	3452.02	2553.45
SLU2_NML_2	3207.22	2559.66
SLU3_NML_1	2532.47	1819.22
SLU3_NML_2	2380.17	1823.09
SLU4_NML_1	2706.23	1937.68
SLU4_NML_2	2461.43	1943.89
SLV_NML_L1	4803.44	-741.44
SLV_NML_L2	4686.90	-932.11
SLV_NML_T1	3733.06	328.94
SLV_NML_T2	3616.52	138.27
SLV_NML_V1	3279.62	1140.79
SLV_NML_V2	2891.16	505.22
RARA_1_MTRA_4	2410.38	1727.74

Combo	N palo max	N palo min
RARA_2_MTRA_4	2539.91	1752.32
FREQ_1_MTRA_4	2130.80	1759.33
FREQ_2_MTRA_4	2366.83	1771.29
Q.PERM_MTRA_4	2130.80	1759.33
SLU1_MTRA_4	3260.56	2325.93
SLU2_MTRA_4	3432.80	2361.72
SLU3_MTRA_4	2514.77	1710.15
SLU4_MTRA_4	2687.01	1745.95
SLV_MTRA_L1	4789.17	-741.62
SLV_MTRA_L2	4673.43	-931.34
SLV_MTRA_T1	3723.01	324.54
SLV_MTRA_T2	3607.28	134.81
SLV_MTRA_V1	3271.87	1132.04
SLV_MTRA_V2	2886.09	499.64
RARA_1_PSCA_3	2134.08	1756.05
RARA_2_PSCA_3	2132.77	1757.36
FREQ_1_PSCA_3	2131.46	1758.67
FREQ_2_PSCA_3	2130.80	1759.33
Q.PERM_PSCA_3	2130.80	1759.33
SLU1_PSCA_3	2881.51	2370.18
SLU2_PSCA_3	2879.55	2372.15
SLU3_PSCA_3	2135.72	1754.41
SLU4_PSCA_3	2133.76	1756.38
SLV_PSCA_L1	4596.28	-680.17
SLV_PSCA_L2	4483.67	-861.38
SLV_PSCA_T1	3554.50	361.61
SLV_PSCA_T2	3441.89	180.40
SLV_PSCA_V1	3129.36	1129.55
SLV_PSCA_V2	2753.99	525.50

PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA

Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO IVOI 00 D09 CLIV0604001 A 75 di 96

12 VERIFICHE STRUTTURALI PLINTO DI FONDAZIONE

Nei paragrafi seguenti si riportano le sollecitazioni e le verifiche a flessione e taglio del plinto di fondazione.

Per il dimensionamento delle armature trasversali è stata considerata una sezione resistente di larghezza pari a 2.85m in quanto si considera la striscia di plinto relativa all'ultima fila di pali (lato monte), e altezza pari all'altezza del plinto (1.80m). La porzione di plinto è stata schematizzata come un trave appoggiata in corrispondenza dell'asse dei muri andatori. Sulla trave è stato considerato il carico verticale linearmente distribuito dovuto alla terra soprastante e le azioni concentrate dovute ai pali e il momento trasmesso dai muri andatori.

Per il dimensionamento delle armature longitudinali è stato fatto riferimento alle sollecitazioni sui pali in corrispondenza della mensola di valle, schematizzata come una trave a mensola incastrata in corrispondenza del paramento di valle del muro di testata.

Le verifiche sono effettuate con il Metodo Semiprobabilistico agli Stati Limite.

Le sollecitazioni adoperate sono state ottenute con l'ausilio di un apposito foglio di calcolo.

Il momento sollecitante positivo tende le fibre inferiori.

Le tensioni di trazione sono state assunte negative mentre quelle di compressione positive, salvo diversa indicazione.

Le armature dei pali di fondazione sono state dimensionate in riferimento al palo più sollecitato.

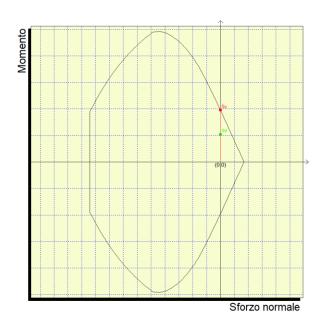
GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IVOI	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 76 di 96

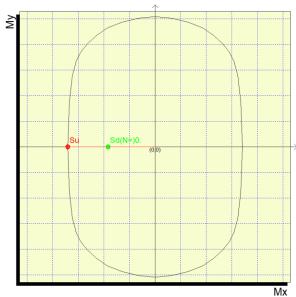
12.1 Sintesi delle armature disposte in direzione longitudinale

In direzione longitudinale si fa riferimento alla mensola lato valle che dalle dimensioni rilevate risulta essere tozza. Si dispone la stessa armatura utilizzata in direzione trasversale.

12.2 Sintesi delle armature disposte in direzione trasversale

	F	passo	As,ed	As	As,tot	As,min	Verifica	Verifica
	mm	mm	mm2	mm2	mm2	mm2	As,min	As,ed
Intradosso	26	100	15469.61	15131.48	22697.22	6472.64	Verificato	Verificato
Intradosso	26	200	10100.01	7565.74	22007.22	0172.01	Vermedee	vermeate
Estradosso	26	100	15469.61	15131.48	22697.22	6472.64	Verificato	Verificato
Estradosso	26	200	10100101	7565.74	22007.22	0172.01		


12.2.1 Verifiche SLV in direzione trasversale


12.2.1.1 Verifica a pressoflessione

	N (kN)	V (kN)	Mtrasv (kNm)	Mlong (kNm)	cs
SLV	0	0	0	7336	1.89

12.2.1.1 Verifica a taglio

VEd = TSLU	2083	kN
	2082551	N
		•
Rck	40	MPa
fck	33.20	MPa
	•	•
H sezione	1800	mm
c netto	53	mm
Ø staffa	0	mm
Ø arm tesa	26	mm
d	1734	mm
		·I
k	1.34	
		·I
bw	2850	mm
Asl	22697	mm2
ρλ	0.0046	
	1	•
NEd	12	kN
	12000	N
Ac	5130000	mm2
σχπ	0.0023	MPa
	1	1
fcd	18.81	MPa
γχ	1.50	
CRd,c	0.12	
	1	1
vmin	0.31	

VRd,c	1971714	N
VRd,c min	1546997	N
VRd,c effettivo	1971714	N
Verifica	NO	
tasso di lavoro	1.06	
C.S.	0.95	

E' necessario predisporre adeguata armatura a taglio

Si considera la staffatura della porzione di plinto relativa all'ultima fila di pali (sezione 2.85x1.80m) con staffe $\phi 16/40$ a 7 bracci:

VEd = TSLU	2083	kN
	2082551	N
Asw	1407	mm2
S	400	mm
fywd	391.30	MPa
cot θ	1	
	•	
σς	1	
	•	
z = 0.9d	1572	mm
ν	0.52	
	•	
VRd,s	2164801	N
VRd,s max	21932420	N
VRd,c effettivo	2164801	N

Verifica	ОК	
tasso di lavoro	0.96	
c.s.	1.04	

La verifica risulta soddisfatta.

12.2.2 Verifiche SLV in direzione longitudinale

In direzione longitudinale si considera la mensola lato valle, che date le dimensioni (L=1.60m e H=1.80m) non può essere considerata come mensola snella. Si studia il caso in esame con la teoria della mensola tozza:

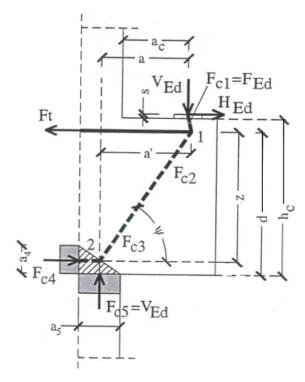


Figura 8 – Schema di calcolo della forza di trazione nell'armatura principale

Lo schema mostrato in Figura 8 (estrapolato dal libro "Progetto Delle Strutture In Calcestruzzo Armato" – Angotti F.) si considera capovolto ove Ved è lo sforzo N massimo proveniente dal palo più caricato (che si rileva in condizioni sismiche in prossimità dello spigolo lato valle).

Tramite considerazioni legate all'equilibrio alla traslazione e alla rotazione intorno al nodo 2 si effettua il dimensionamento delle armature della mensola tozza e con essa del plinto in direzione longitudinale, inoltre si verifica la resistenza del puntone di cls compresso.

Azione		
Ned SLU_ripartizione	-4803.4	
Ved SLU	1118.4	kN
γ plinto	1.35	-
Ned SLU (no p.p. plinto)	-4258.0	kN

Dimensioni mensola		
hc	1.8	m
b	1.2	m
copriferro netto	0.04	m
ac	1.6	m
Φ_orto	26	mm
d	1.70	m

Dimensioni piastra (sez palo)			
d	1.2	m	
A	1.13	m2	

Armatura orizzontale intradosso			
Φ n As (mm2)			
26	32	16989.73	
26	16	8494.87	
0	12	0	
	As tot (mm2)	25484.60	

Calcolo armatura		
Carcolo armatura		
Z	1.363	m
ν'	0.87	Mpa
σ1Rdmax	15.81	MPa
σ2Rdmax	13.44	MPa
a5	0.22	m
d'	0.0963	m
S	0	m
e	0.03	m
a	1.71	m
a'	1.74	m
Ft	6546.69	kN
As estradosso	16730.42	mm2
Verifica ferri estradosso	Si	

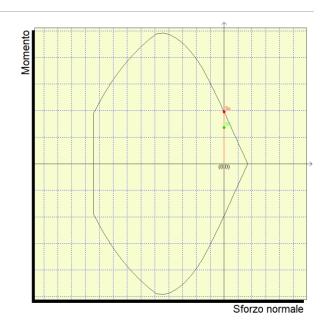
La verifica risulta soddisfatta.

Non si necessita di armatura secondaria resistente a taglio.

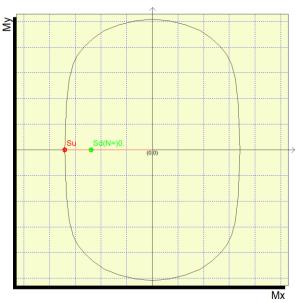
12.2.2.1 Verifica delle massime tensioni di esercizio puntone CLS

Caratteristiche cls			
fck	32	MPa	
fcd	18.13	MPa	

σ1	3.765 MPa	
Verifica nodo 1	Si	0.28



12.2.3 Verifiche SLU in direzione trasversale


12.2.3.1 Verifica a pressoflessione

	N (kN)	V (kN)	Mtrasv (kNm)	Mlong (kNm)	cs
SLU	0	0	0	9518	1.44

12.2.3.2 Verifica a taglio

V _{Ed} = T _{SLU}	2144	kN
	2143979	N
R _{ck}	40	MPa
f _{ck}	33.20	MPa
H sezione	1800	mm
c netto	53	mm
Ø staffa	26	mm
Ø arm tesa	26	mm
d	1747	mm
k	1.34	
b _w	2850	mm
Asl	22697	mm²
ρι	0.0046	
N _{Ed}	0	kN
	0	N
Ac	5130000	mm²
σср	0	MPa
f _{cd}	18.81	MPa
γс	1.50	
C _{Rd,c}	0.12	
V _{min}	0.31	

E' necessario predisporre adeguata armatura a taglio.

Risultano più gravose (e quindi dimensionanti) le sollecitazioni calcolate in condizioni sismiche.

Si rimanda al paragrafo 12.2.1 per l'armatura disposta a taglio.

12.2.1 Verifiche SLU in direzione longitudinale

Azione		
Ned SLU_ripartizione	-3452.0	
Ved SLU	1118.4	kN
γ plinto	1.35	-
Ned SLU (no p.p. plinto)	-2906.6	kN

Dimensioni mensola			
hc	1.8	m	
b	1.2	m	
copriferro netto	0.04	m	
ac	1.6	m	
Φ_orto	26	mm	
d	1.70	m	

Dimensioni piastra (sez palo)			
d 1.2 m			
A	1.13	m2	

Armatura orizzontale intradosso			
Φ n As (mm2)			
26	32	16989.73	
26	16	8494.87	
0	12	0	
	As tot (mm2)	25484.60	

Calcolo armatura		
Z	1.363	m
ν'	0.87	Mpa
σ1Rdmax	15.81	MPa
σ2Rdmax	13.44	MPa
a5	0.15	m
d'	0.0963	m
S	0	m
e	0.04	m
a	1.68	m
a'	1.71	m
Ft	4772.98	kN
As estradosso	12197.61	mm2
Verifica ferri estradosso	Si	

La verifica risulta soddisfatta.

Non si necessita di armatura secondaria resistente a taglio.

12.2.1.1 Verifica delle massime tensioni di esercizio puntone CLS

Caratteristiche cls		
fck	32	MPa
fcd	18.13	MPa

σ1	2.570	MPa	
Verifica nodo 1	Si		0.19

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IVOI	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 87 di 96

12.2.2 Verifiche SLE in direzione trasversale

12.2.2.1 Sollecitazioni per le verifiche

	N (kN)	Mlong	Mtrasv
Comb rara	0.00	7046.47	0.00
Comb frequente	0.00	6358.01	0.00
Comb quasi perm	0.00	5308.84	0.00

12.2.2.1 <u>Verifica stato limite di fessurazione</u>

	σt max	σcls-		Verifica	c.s.
Comb frequente	-2.58	-2.61	N/mm2	Verificare ampiezza fessure	0.99
Comb quasi perm	2.00	-3.13	N/mm2	Verificare ampiezza fessure	0.83

	w lim	w		Verifica	
Comb quasi perm w1	0.2		mm	Verifica soddisfatta	c.s.
Comb frequente w1	0.2	0.17	mm	Verifica soddisfatta	1.18

12.2.2.2 <u>Verifica massime tensioni di esercizio CLS ed acciaio</u>

	ос тах	σc Mmax		Verifica	c.s.
Comb rara	19.92	4.83	N/mm2	Verifica soddisfatta	4.12
Comb quasi perm	14.94	3.64	N/mm2	Verifica soddisfatta	4.10
	σs max	σs		Verifica	c.s.
Comb rara	-360	-199.36	N/mm2	Verifica soddisfatta	1.81

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO LINEA GENOVA - VENTIMIGLIA TRATTA FINALE LIGURE - ANDORA					
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IV0I	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 88 di 96

13 VERIFICHE STRUTTURALI PALI DI FONDAZIONE

Le armature dei pali di fondazione sono state dimensionate in riferimento al palo più sollecitato.

13.1.1 Massime e minime sollecitazioni sul singolo palo

Di seguito si riportano la massima compressione (valori negativi) e trazione (valori positivi) per tutte le combinazioni, sul palo più sollecitato :

			Mx (long)	My (trasv)	N max	N min
			kNm	kNm	kN	kN
	max	SLU2_NML_1	-1198	105	3452	2553
	max	SLU1_NML_1	-1135	108	3278	2435
	min	SLU3_PSCA_3	-764	4	2136	1754
SLU	min	SLU2_PSCA_3	-1032	2	2880	2372
	max	SLV_NML_L1	-3020	353	4803	-741
	max	SLV_NML_T1	-1458	1152	3733	329
	min	SLV_PSCA_T1	-1415	1100	3555	362
SLV	min	SLV_PSCA_L1	-2934	330	4596	-680
<u> </u>	max	FREQ_2_NML_1	-841	41	2380	1852
ente	max	FREQ_2_NML_1	-841	41	2380	1852
requ	min	FREQ_1_NML_1	-764	0	2131	1759
SLE frequente	min	FREQ_1_NML_1	-764	0	2131	1759
	max	Q.PERM_NML_1	-764	0	2131	1759
nanei	max	Q.PERM_NML_1	-764	0	2131	1759
perr	min	Q.PERM_NML_1	-764	0	2131	1759
SLE q. permanente	min	Q.PERM_NML_1	-764	0	2131	1759
	max	RARA_2_NML_1	-888	76	2554	1894
	max	RARA_1_NML_1	-841	76	2423	1809
ara	min	RARA_1_PSCA_3	-764	3	2134	1756
SLE rara	min	RARA_2_PSCA_3	-764	2	2133	1757

			Tx (trasv)	Ty (long)
			kN	kN
	max	SLU1_NML_1	477	-5012
	max	SLU2_NML_1	464	-5289
	min	SLU2_PSCA_3	10	-4556
SLU	min	SLU3_PSCA_3	17	-3375
	max	SLV_NML_T1	5085	-6437
	max	SLV_NML_L1	1559	-13330
	min	SLV_PSCA_L1	1457	-12954
SLV	min	SLV_PSCA_T1	4858	-6248

13.1.2 Dimensionamento delle armature

Caratteristiche del palo			
Diametro	1.2	m	
Area	1.13	m	
Perimetro	3.77	m	
Profondità infissione	2.6	m	
n pali	12		

Ø palo	1200	mm
Area palo	1130973	mm2
As, min	3393	mm2
As, max	45239	mm2

Ø	26	mm
n	32	
strati	2	
As	33979	mm2
	3.0%	ok

GRUPPO FERROVIE DELLO STATO ITALIANE		IO LINEA		VENTIMIGLIA ORA		
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IV0I	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 90 di 96

13.1.3 Verifica a pressoflessione

Si riportano di seguito le verifiche a pressoflessione sia per le combinazioni SLU che per le combinazioni SLV:

X Verifiche multiple

	Mx	Му	N	c.s.	c.s. (N=cost)
SLU2_NML	11982558.1749888	-1051931.84079528	-255344.970123364	4.375794	4.598444
SLU1_NML	11354500.109362	-1080405.50708762	-243499.434391383	4.607911	4.836373
SLU3_PSC4	7644836.84077686	-38777.2064025491	-175440.767130698	6.745107	7.115514
SLU2 PSC4	10320529.7350488	-23266 3238415294	-237214.814171868	4.994791	5.350733
SLV_NML_t	30197653.4073773	-3532050.81497933	74143.6322857658	1.605232	1.635931
SLV_NML_1	14583040.3156397	-11519781.5264026	-32894.1879052748	2.863129	2.799766
SLV_PSCA_	14154882.2906488	-11004628.7419227	-36160.9198737723	2.98103	2.906718
SLV_PSCA_	29344988.3403502	-3301388.62257682	68016.7342828351	1.656932	1.688395

Il minimo coefficiente di sicurezza è pari a 1.64, la verifica risulta soddisfatta.

GRUPPO FERROVIE DELLO STATO ITALIANE		O LINEA		VENTIMIGLIA ORA		
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
	IVOI	00	D09	CLIV0604001	A	91 di 96

13.1.3.1 <u>Verifica a taglio</u>

VEd = TSLU	1118	kN
	1118417	N
Rck	30	MPa
fck	24.90	MPa
fctm	2.56	MPa
	1	
Ø palo	1200	mm
Area palo	1130973	mm2
Lato quadrato equivalente	1063	mm
c netto	60	mm
Ø staffa		
	12	mm
Ø arm tesa	3236 927.86	mm
k	1.46	
		_
bw	1063	mm
Asl	16990	mm2
ρλ	0.017	
NEd	2031	kN
	2031012	N
Ac	1130973	mm2
σχπ	1.80	MPa
σχπ	1.80	MPa
	1.80	
σχπ	1.80	MPa

vmin	0.31	
	1	
VRd,c	872638	N
VRd,c min	571161	N
	•	<u>.</u>
VRd,c effettivo	872638	N
	873	kN
Verifica	NO	
coefficiente	0.78	

E' necessario predisporre adeguata armatura a taglio:

VEd = TSLU	1118.42	kN
	1118417.15	N
		I
Ø staffa	14	mm
n bracci	3.00	-
Asw	462	mm2
S	100.00	mm
fyd	391.30	MPa
cot θ	1.00	
αχ	1.00	
	·	<u> </u>
z = 0.9d	835.07	mm
ν	0.54	

VRd, _{s max} 3384811.76 N	VRd,s	1509043.07	N
	VRd,s max	3384811.76	N

VRd,c effettivo	1509043.07	N	
-----------------	------------	---	--

Verifica	ОК
coefficiente	1.35

Si dispongono due spille centrali a croce e staffe circolari $\phi 14/10$ (si considerano effettivamente resistenti a taglio 3 bracci di armatura).

La verifica risulta soddisfatta.

GRUPPO FERROVIE DELLO STATO ITALIANE		IO LINE		VENTIMIGLIA ORA		
Cavalcaferrovia strada provinciale n. 3 cat C1 dal km 83+400 al 83+530 Relazione di calcolo spalle	COMMESSA IVOI	LOTTO 00	FASE-ENTE D09	DOCUMENTO CLIV0604001	REV. A	FOGLIO 94 di 96

13.1.4 Verifiche SLE

13.1.4.1 Sollecitazioni per le verifiche

Per le sollecitazioni utilizzate per le verifiche si rimanda al paragrafo 13.1.1.

13.1.4.1 Verifica stato limite di fessurazione

fck	24.9	N/mm2
fctm	2.56	N/mm2
fyk	450	N/mm2

	σt max	σt		Verifica
Comb frequente		-1.96	N/mm2	Verifica soddisfatta
		-1.96	N/mm2	Verifica soddisfatta
	-2.13	-1.72	N/mm2	Verifica soddisfatta
		-1.72	N/mm2	Verifica soddisfatta
Comb quasi perm	-2.13	-1.72	N/mm2	Verifica soddisfatta
		-1.72	N/mm2	Verifica soddisfatta
		-1.72	N/mm2	Verifica soddisfatta
		-1.72	N/mm2	Verifica soddisfatta

13.1.4.2 <u>Verifica delle massime tensioni di esercizio CLS ed acciaio</u>

	ос тах	σc Mmax		Verifica
Comb rara	14.94	4.90	N/mm2	Verifica soddisfatta
		4.65	N/mm2	Verifica soddisfatta
		4.24	N/mm2	Verifica soddisfatta
		4.24	N/mm2	Verifica soddisfatta
Comb quasi perm	11.205	4.24	N/mm2	Verifica soddisfatta
		4.24	N/mm2	Verifica soddisfatta
		4.24	N/mm2	Verifica soddisfatta
		4.24	N/mm2	Verifica soddisfatta