

ANAS S.p.A.

Direzione Centrale Programmazione Progettazione

LAVORI DI COSTRUZIONE DELLA S.S.106 JONICA (E90) - CAT. B -MEGALOTTO 9

DALLO SVINCOLO AEROPORTO S.ANNA (KM 235+800) A MANDATORICCIO (KM 306+000)

PROGETTO PRELIMINARE - STUDIO DI IMPATTO AMBIENTALE

GRUPPO DI PROGETTAZIONE ANAS

RESPONSABILE DI SETTORE Dott. Arch. Giuseppe Barilà

RESPONSABILE DI ITINERARIO Dott. Ing. Giulio Petrizzelli

RESPONSABILI TECNICI

Dott. Ing. Domenico Cimino Tracciati Dott. Ing. Marco Mancina Geotecnica Dott. Ing. Fulvio M. Soccodato Idraulica Dott. Ing. Davide Di Pietro Strutture Dott. Geol. Stefano Serangeli Geologia

Dott. Arch. Barbara Banchini Ambiente Dott. Ing. Francesco Bezzi Impianti

Geom. Andrea F. Furlan Computi

PROGETTISTA:

Dott.Ing. ANTOMO VALENTE Ordine degli lîngegneri gi Roma n° 20739

ASSISTENZA ALLA PROGETTAZION

RTI:

PROGER SpA VIA Ingegneria SrI D'APPOLONIA SpA DE.MA.CO SrI

2 2 LUG. 2005 n n 4 0 4 3

Per le tavole riguardanti la geologia: Dott. Geol. Stefano Serangeli

Per le tavole riguardanti il S.I.A.: Il Responsabile dello Studio di Impatto Ambientale Dott. Arch. Barbara Banchini VISTO: IL RESP DEL PROCEDIMENTO

Dott. Arch. CHASEPPE BARILA'

PROTOCOLLO

DATA

PROGETTO PRELIMINARE

CAMPAGNA INDAGINE GEOGNOSTICA - STRATIGRAFIE SONDAGGI E PROVE IN SITO PROVE GEOTECNICHE DI LABORATORIO (DAL SOND. N.1 AL SOND. N.30)

CODICE PROGETTO		CODICE T00_GE00_GEO_RE11_	_A.pdf	REVISIONE	FOGLIO	SCALA:
LO71	6 I P 0 4 0 1	CODICE T 0 0 G E 0 0 G E O F	<u> </u>	A	01002	-
D						
С		_	-	MAL-	_	· —
В			-	WHEN	-Verlate	
Α	Ė	missione	Mag-2004	Ing.Nicchiarelli	Geol.Serangeli	Ing.Petrizzelli
REV.	DESCRIZI	ONE	DATA	VERIFICATO	CONTROLLATO	APPROVATO

Committente:

ANAS S.p.A

DIREZIONE GENERALE PROGRAMMAZIONE PROGETTAZIONE

Assistenza alla progettazione:

RTI: PROGER SpA - VIA Ingegneria Srl DE.MA.CO Srl - D'Appolonia SpA

Prot. N°

Elaborato N°

Oggetto: LAVORI DI COSTRUZIONE DELLA S.S. 106 JONICA (E90) CAT. B MEGALOTTO 9 - DALL' AEROPORTO DI S.ANNA (Km 235+500) A MANDATORICCIO (Km 306+000)

PROVE DI LABORATORIO

Fascicoli 1 - 2 - 3 di 6 (dal sond. n. 1 al sond. n. 30)

Impresa Curti Rosalbino
Via Umberto I°, 48 Torano Castello (CS)
tel. - fax.: 0984.393109
e-mail:curtirosalbino@tiscali.it

Committente: ANAS S.p.A

DIREZIONE GENERALE PROGRAMMAZIONE

PROGETTAZIONE

Assistenza alla progettazione:

RTI: PROGER SpA - VIA Ingegneria Srl-

DE.MA.CO. Srl - D'Appolonia SpA

Oggetto: LAVORI DI COSTRUZIONE DELLA S.S. 106 JONICA (E90)-CAT. B MEGALOTTO 9 DALL'AEREOPORTO DI S.ANNA (Km 235+500) A MANDATORICCIO (Km 306+000)

PROVE DI LABORATORIO

LAGIC s.a.s. L'AMMINISTRATORE (Ing. L. TRIPODI)

LAGIC

SERVIZI PER L'INGEGNERIA E LA GEOLOGIA

Laboratorio di Geotecnica

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90)

cat. B - Megalotto 9 - dall'aeroporto di S. Anna

(km 235+800) a Mandatoriccio (km 306+00).-

COMMITTENTE: ANAS s.p.a.

Direzione Generale Programmazione e Progettazione

Assistenti alla Progettazione: R.T.I.

- PROGER s.p.a.
- Via Ingegneria s.r.l.
- De MaCo s.r.l.
- D'Appolonia

FASCICOLO 1 di 6

Prove contenute:

DAL SONDAGGIO 1 AL SONDAGGIO 10

Dal Certificato N. 1 al Certificato N. 99

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001, e-mail: lagic@libero.it

P.IVA 01700210782 - C.C.I.A.A. 112216 Iscr. Trib. (CS) N.7266, Vol.520

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00)...

COMMITTENTE: ANAS s.p.a.

Direzione Generale Programmazione e Progettazione

Assistenti alla Progettazione: R.T.I.

- PROGER s.p.a.
- Via Ingegneria s.r.l.
- De MaCo s.r.l.
- D'Appolonia s.p.a.

cJ

FASCICOLO 1 di 6

PROVE GEOTECNICHE DI LABORATORIO

DAL SONDAGGIO 1 AL SONDAGGIO 10

Dal Certificato N. 1 al Certificato N. 99

Totale Certificati N. 99 di 535

IL DIRETTORE TECNIO

(Ang. Paolo MERCURI)

L'AMMINISTRATORE L'Ingegnere Geotecnico

(Luigi TRIPODI)

LAGIC s.a.s.

dell'Ing. Tripodi & C

Via & Apprello, 13

87040 Montavi Uffugo CS

Paritra IVA: 01700210732

Care sociato

Giugno 2004

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

COMMITTENTE: ANAS s.p.a.

Direzione Generale Programmazione e Progettazione

Assistenti alla Progettazione: R.T.I.

- PROGER s.p.a.
- Via Ingegneria s.r.l.
- De MaCo s.r.l.
- D'Appolonia s.p.a.

Tabella riassuntiva delle prove geotecniche di laboratorio eseguite (segue)

p.	DC			FASCICOLO 1 DI 6 - CERTIFICATI DAL 1 AL 99												
	Prore	ondità	GR		Pı	opri	età	Ind	ici			P	rove l	Meccan	iche	
Camp.	da m	a m		Ϋ́S	γ	γ _d	e	w	Wi	Wp	ED	TD	TD rsd	TX (UU)	TX (CD)	ELL
1	8.80	9.30	1	1	1	1	1	l	1	1		1	1			
2	23.30	23.80	1	l	1	1	1	1	1	1		1				
1	7.00	7.50	1	1	ı	1	1	1	1	1		1	1			
2	13.50	14.00	1	1	1	1	1	1	1	1				1		
1	6.00	6.50	1	1	1	1	1	1	1	1	recent description of the section of	1		And the state of t		
2	17.50	18.00	1	1	1	1	1	1	1	1	4	1	***************************************		***************************************	***************************************
1	8.50	9.00	1	1	1	1	1	1	1	1		1				2
2	17.00	17.50	1	2	2	2	2	2	1	1		2	2			·
1	25.00	25.50	1	1	1	1	1	1	1	1		1	·			
2	34.50	35.00		1	1	1	1	1				1				
	1 2 1 2 1 1 2 1	1 8.80 2 23.30 1 7.00 2 13.50 1 6.00 2 17.50 1 8.50 2 17.00 1 25.00	1 8.80 9.30 2 23.30 23.80 1 7.00 7.50 2 13.50 14.00 1 6.00 6.50 2 17.50 18.00 1 8.50 9.00 2 17.00 17.50 1 25.00 25.50	1 8.80 9.30 1 2 23.30 23.80 1 1 7.00 7.50 1 2 13.50 14.00 1 1 6.00 6.50 1 2 17.50 18.00 1 1 8.50 9.00 1 2 17.00 17.50 1 1 25.00 25.50 1	1 8.80 9.30 1 1 2 23.30 23.80 1 1 1 7.00 7.50 1 1 2 13.50 14.00 1 1 1 6.00 6.50 1 1 2 17.50 18.00 1 1 1 8.50 9.00 1 1 2 17.00 17.50 1 2 1 25.00 25.50 1 1	1 8.80 9.30 1 1 1 2 23.30 23.80 1 1 1 1 7.00 7.50 1 1 1 2 13.50 14.00 1 1 1 1 6.00 6.50 1 1 1 2 17.50 18.00 1 1 1 1 8.50 9.00 1 1 1 2 17.00 17.50 1 2 2 1 25.00 25.50 1 1 1	1 8.80 9.30 1 1 1 1 2 23.30 23.80 1 1 1 1 1 7.00 7.50 1 1 1 1 2 13.50 14.00 1 1 1 1 1 6.00 6.50 1 1 1 1 2 17.50 18.00 1 1 1 1 1 8.50 9.00 1 1 1 1 2 17.00 17.50 1 2 2 2 1 25.00 25.50 1 1 1 1 1	1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td> </td></td></td></td></td></td></td></t<></td></t<>	1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td> </td></td></td></td></td></td></td></t<>	1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td> </td></td></td></td></td></td>	1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td> </td></td></td></td></td>	1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td> </td></td></td></td>	1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td> </td></td></td>	1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td> </td></td>	1 8.80 9.30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td> </td>	

N.B. sul Campione N° 2 del Sond. N°5 sono state eseguite delle prove di Carico puntuale (PLT)

LEGENDA:

GR	Analisi granulometrica	w_p	Limite di plasticità
$\gamma_{\rm S}$	Peso specifico	ED	Prova di compressione edometrica
γ	Peso dell'unità di volume	TD	Prova di taglio diretto, consolidato drenato
γd	Peso secco dell'unità di volume	TD rsd	Prova di taglio diretto residuo, consolidato drenato
e	Indice di porosità	TX(UU)	Prova di compressione triassiale, non consolidata non drenata
W	Contenuto naturale d'acqua	TX(CD)	Prova di compressione triassiale, consolidata drenata
Wį	Limite di liquidità	ELL	Prova di compressione uniassiale

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

COMMITTENTE: ANAS s.p.a.

Direzione Generale Programmazione e Progettazione

Assistenti alla Progettazione: R.T.I.

- PROGER s.p.a.
- Via Ingegneria s.r.l.
- De MaCo s.r.l.
- D'Appolonia s.p.a.

Tabella riassuntiva delle prove geotecniche di laboratorio eseguite

		A	F	ASC	ICO	LO	1 DI	6 -	CEF	TIF	ICA:	TI DA	L I	AL 99)	10.	
d.	Ö.	Profe	ondità	GR		Pı	opri	età	Ind	ici			P	rove l	Meccan	iche	
Sond.	Сатр.	da m	a m		Ϋ́S	γ	γd	e	w	Wı	Wp	ED	TD	TD rsd	TX (UU)	TX (CD)	ELL
6	1	8.50	9.00]]	1	1	1	1	1	1	1		1	1			
6	2	17.00	17.50	1		1	1		1								
7	1	12.00	12.50	1	1	1	1	-: 1	1	1	1		1	1			1
7	2	18.00	18.50	1	1	1	1	1	1	1	1		1		1		
8	1	15.00	15.50	2	1	1	1	1	1	1	1		1	1			1
8	2	24.10	24.60	1	1	1	1	1	1	1	1		1				
10	1	14.80	15.30	1	1	1	1	1	1	1	1		1			1	
10	2	24.60	25.10	1	1	1	1	1	1	I	1		1			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1

LEGENDA:

GR	Analisi granulometrica	Wp	Limite di plasticità
$\gamma_{\rm S}$	Peso specifico	ED	Prova di compressione edometrica
γ	Peso dell'unità di volume	TD	Prova di taglio diretto, consolidato drenato
γ _d	Peso secco dell'unità di volume	TD rsd	Prova di taglio diretto residuo, consolidato drenato
е	Indice di porosità	TX(UU)	Prova di compressione triassiale, non consolidata non drenata
w	Contenuto naturale d'acqua	TX(CD)	Prova di compressione triassiale, consolidata drenata
Wi	Limite di liquidità	ELL	Prova di compressione uniassiale

Laboratorio di Geotecnica

RAGIIC

Limiti di Atterberg 0.284 0.176 0.204 0.381 0.231 0.206 0.235 0.252 0.246 0.320 0.212 ď 0.246 0.276 0.242 0.213 0.165 0.150 0.244 0.216 0.211 0.224 0.174 0.273 0.223 0.187 0.233 0.233 0.179 0.174 d∧∧ 0.182 0.231 0.189 Certificati dal 1 al 99 di 0.528 0.597 0.387 0.428 0.405 0.479 0.458 0.439 0.479 0.479 0.391 M 0.551 0.450 0.378 0.339 0.424 46 Argilla 48 23 40 Granulometrica 2 42 44 43 33 ೫ ထ္တ 26 34 33 Ç g 3 53 omi 52 88 59 44 92 57 27 6 67 61 61 8 83 3 41 54 Sabbia 23 တ က $\overline{\mathbb{C}}$ Ø 2 \approx ~ 9 sisid5 9 $\tilde{\omega}$ kg/cmg] Uniassiale (ELL) ຍິ 1.06 88 2.34 2.96 Compressione kg/cmg] Compressione triassiate 9 تی 0.47 0.864 0 - S 8 Sondaggio dal Nº 1 al Nº 7 9 [ka/cma] ັບ 0.143 [kg/cmd] Consolidazione Eed edometrica ප resistenza residua 14.10 18.12 15 34 18.84 Prova di taglio 9-2 21.41 22.29 10.09 diretto (CD) [kg/cmd] 0.017 0.012 0.044 0.027 0.026 ູ 0.037 0.009 19,55 25.66 23.29 28.67 20.13 24.38 22.34 Prova di taglio 26.71 28.08 27.13 25.88 28 39 9-2 24.29 22.37 15.07 esistenza di 22.24 21.47 laboratorio ika/cmaj 0.152 0.1950.103 0.188 0.163 0.156 0.065 0.128 0.213 0.131 0.1550.114 0.126 0.076 ڻ-0.188 0.055 0.024 Saturazione 0.817 0.828 0.943 0.959 0.855 0.906 0.775 0.962 0.836 0.917 0.889 0.735 0.840 2.011 | 0.276 | 0.381 | 0.912 | 0.719 0.831 0.861 0.546 Grado di Ö 0.702 0.438 Tabella riepilogativa dei risultati delle prove geotecniche 0.455 0.561 0.620 0.392 0.447 0.457 0.389 0.497 0.446 Indice di Porosità 0.390 0.434 0,396 0.416 0.427 0.393 0.305 0.412 0.383 0.312 0.359 0.282 0.309 0.314 0.332 0.280 0.303 0.308 Porosita 0.281 0.284 0.294 0.299 0.282 1,619 [t/mc] 1.926 emulov ib siinu'lleb 1.764 1.692 1.855 1.994 1.916 1.898 1.983 1.845 1.996 1.935 2.089 1.914 1.987 1.923 1.931 1.988 Peso secco 0.208 q,scdns 0.131 0.192 0.217 0.144 0.128 0.125 0.159 0.118 0.165 0.125 0.115 0.125 0.075 0.120 0.134 0.085 0.102 0.131 Contenuto naturale [t/mc] 1.956 2.178 2.103 2.059 volume 2.122 2.249 2.155 2.200 2.217 2.150 2.245 2.246 2.262 2.157 2.225 2.170 2.086 2.184 2.191 Peso dell'unità di [t/mc] 2.756 2.769 2.754 2.698 2.741 2.776 2.772 2.766 2.754 2.774 2.763 2.775 2.774 2.767 2.776 Peso Specifico 2.735 2.744 2.769 23.80 9.30 14.00 25.00 e E 7.50 17.50 25.60 6.50 35.00 9.00 17.50 12.50 18.50 24.60 15.30 25.10 15.50 9.00 Profondità da m 23.30 13.50 8.80 24.50 17.00 7.00 6.00 25.00 8.50 17.00 12.00 24.10 5 18.00 15.00 14 80 24.60 8.50 34 2 PA 2 PB Campione Ċ. S ~ Š N N ~ oiggabno2 N \sim ᡣ ŝ 4 ~ S S Ø တ ^ 9 5 ∞ ထ

NOTA: I valori riportati nella colonna relativa al modulo Eed, separati dalla barra rovescia, sono ripettivamente quelli ottenuti negli incrementi da 1.5 a 3 kg/cmq, da 3 a 6 kg/cmq e da 6 a 12 kg/cmq.

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 1; Campione N. 1; Profondità da 8.80 a m 9.30

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 17/12/2003

Data di apertura: 25/01/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Argilla con strutture a scaglie e minuti noduli marnosi, di colore grigio scuro, da moderatamente consistente a consistente.-

PROPRIETA' INDICI:		***************************************
Peso specifico	$\gamma_s = 2.756$	[t/m³]
Peso dell'unità di volume	$\gamma = 1.956$	[t/m ³]
Peso secco unità di volume	$\gamma_{a} = 1.619$	$[t/m^3]$
Contenuto naturale d'acqu	w = 0.208	[]
Porosità	n = 0.412	
Indice di porosità	e = 0.702	
Grado di saturazione	9 - 0.817	

Limite di Plasticità	$W_P = 0.244$
Indice di plasticità	$I_P = 0.284$
·	
Indice di Consistenz	$l_{\rm C} = 1.127$
Indice di Attività	A = 0.617
DIAGRAMMA	OI PLASTICITA'
100	
BASSA MED	IA ALTA
2 80 2 80 2 80 2 80 2 80 2 80	
¹ Ip [%]	
60	
40	
20	
"	1
0 +	L
0 20 40	60 80 100
	W _L [%]

LIMITI DI ATTERBERG E INDICI:

 $W_L = 0.528$

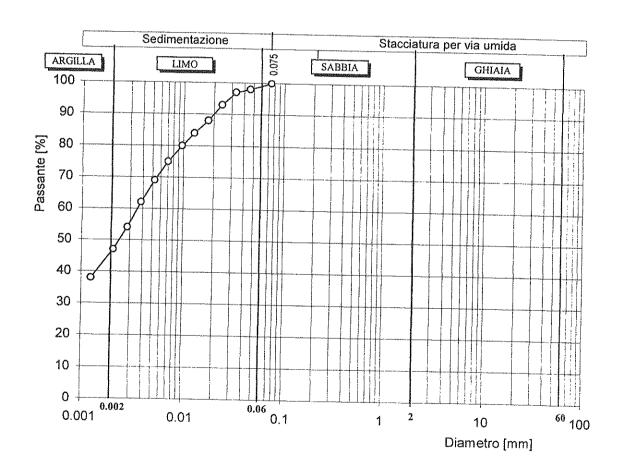
Limite di Liquidità

Prove meccaniche eseguite:

Taglio diretto (CD) con determinazione della Resistenza di Picco e Residua

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 1; Campione N. 1; Profondità da 8.80 a m 9.30

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

GRANULOMETRIA [%]	Ghiaia 00 Sabbia 01 Limo 53 Arailla 46	7
	The state of the s	1

L'Ingegner Scotecnico
(Luigi Tripodi)

Cert. N. 2 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 1; Campione N. 1; Profondità da 8.80 a m 9.30

PROVA DI TAGLIO DIRETTO(CD) RESISTENZA DI PICCO

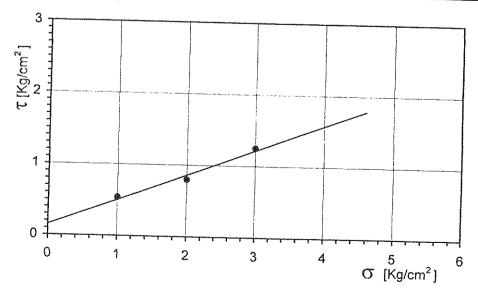
TIPO DI PROVA

VELOCITÀ DI DEFORMAZIONE

Consolidata drenata (CD)

O.004 mm/min

APPLICAZIONE DEL CARICO


a deformazione controllata

DIMENSIONI DEI PROVINI

Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cmVolume 72.0 cm^3

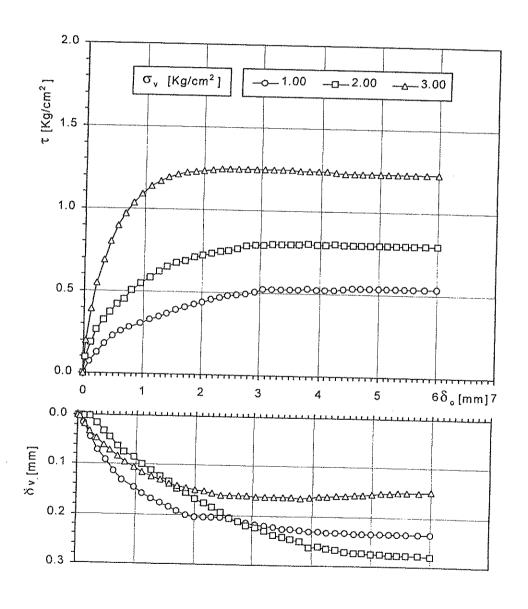
	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PR	OVA:			
Peso dell'unità di volume	γ [t/m³]	1.972	1.931	1,967
Contenuto naturale d'acqua	W	0.207	0.270	0.148
Porosità	n	0.407	0.448	0.378
Grado di saturazione	5	0.830	0.915	0.669
CONDIZIONI INIZIALI DI PROVA:	:			0.003
Pressione verticale	σ _v [Kg/cm²]	1.00	2.00	3.00
CONDIZIONI A ROTTURA:				
Tensione tangenziale	τ [Kg/cm²]	0.539	0.798	1,249
Spostamento orizzontale	δ_o [mm]	4.85	3.80	2.90
Contenuto d'acqua	W _r	0.213	0.238	0.169

Coesione [Kg/cm²] c' = 0.152 Angolo d'attrito [°] $\phi' = 19.55$

L'Ingegnere deotecnico
(Lutgi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 1; Campione N. 1; Profondità da 8.80 a m 9.30

PROVA DI TAGLIO DIRETTO (CD) RESISTENZA DI PICCO

Tensione tangenziale (t) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegrete Geotecnico
(Luigi vipodi)

Cert. N. 4 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 1; Campione N. 1; Profondità da 8.80 a m 9.30

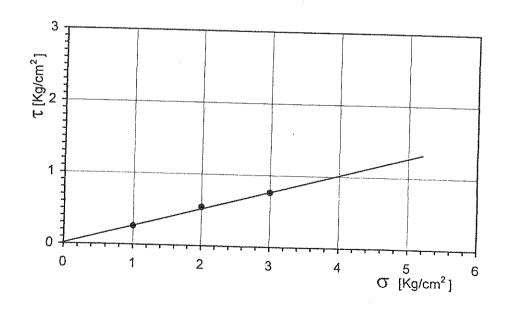
PROVA DI TAGLIO DIRETTO(CD) RESISTENZA RESIDUA

TIPO DI PROVA

VELOCITÀ DI DEFORMAZIONE

Consolidata drenata (CD)

O.004 mm/min


APPLICAZIONE DEL CARICO

a deformazione controllata

DIMENSIONI DEI PROVINI

Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cmVolume 72.0 cm^3

CONDIZIONI INIZIALI DI PROVA: Pressione verticale σ_v [Kg/cm²] 1.00 2.00 3.00 CONDIZIONI A RESIDUO: Tensione tangenziale residua τ [Kg/cm²] 0.258 0.539 0.760 Spostamento orizzontale δ_0 [mm] 36.00 36.00 Contenuto d'acqua		PROVINO N.	3	5	6
CONDIZIONI A RESIDUO: 1.00 2.00 3.00 Tensione tangenziale residua τ [Kg/cm ²] 0.258 0.539 0.760 Spostamento orizzontale δ_0 [mm] 36.00 36.00 Contenuto d'acqua W	CONDIZIONI INIZIALI DI PROVA:				
Spostamento orizzontale δ_0 [mm] 36.00 36.00 36.00		σ _v [Kg/cm²]	1.00	2.00	3.00
		1			

L'Ingegnere Geotecnico (Luigi Tripodi)

Cert. N. 5 cJ


INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 1; Campione N. 1; Profondità da 8.80 a m 9.30

PROVA DI TAGLIO DIRETTO (CD) RESISTENZA RESIDUA

Tensione tangenziale (t) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnere Geotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B-Megalotto 9-dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

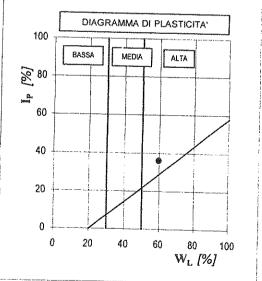
Sondaggio N. 1; Campione N. 2; Profondità da 23.30 a m 23.80

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 17/12/2003

Data di apertura: 23/01/2004


CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla marnoso, di colore grigio scuro, da moderatamente consistente a consistente.-

DO ODDIET AT LANG.		
PROPRIETA' INDICI:	•	
Peso specifico	$\gamma_{\rm s} = 2.769$	[t/m ³]
Peso dell'unità di volume	$\gamma = 2.178$	[t/m ³]
Peso secco unità di volume	$\gamma_{d} = 1.926$	[t/m³]
Contenuto naturale d'acque	w = 0.131	[-····]
Porosità	n = 0.305	
Indice di porosità	e = 0.438	
Grado di saturazione	5 = 0.828	

LIMITI DI ATTERBER	G E INDICI:
Limite di Liquidità	$W_L = 0.597$
Limite di Plasticità	$W_P = 0.236$
Indice di plasticità	$I_P = 0.361$
Indice di Consistenza	$I_{c} = 1.291$
Indice di Attività	A = 0.752

Prove meccaniche eseguite:

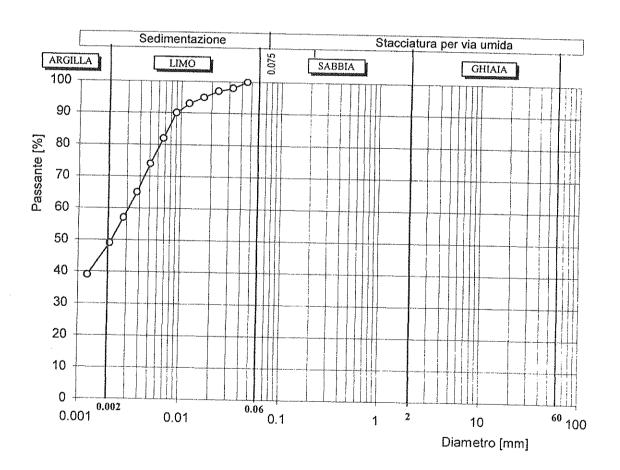
Taglio diretto (CD)

L'Ingegnere Geotecnico (Euigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:


Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 1; Campione N. 2; Profondità da 23.30 a m 23.80

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

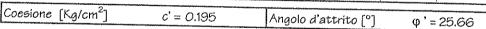
GRANULOMETRIA [%] Ghiaia 00 Sabbia 00 Limo 52 Argilla 48

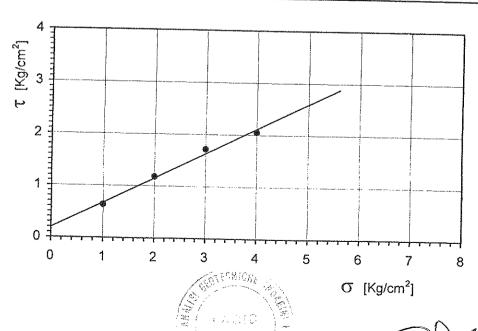
L'Ingegner Geotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

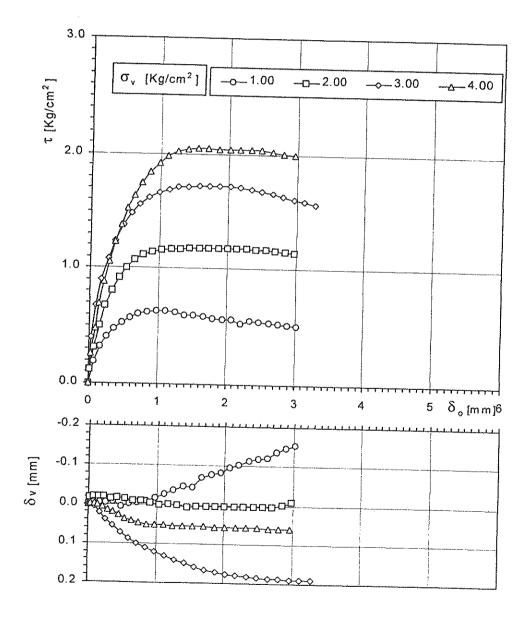

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-


Sondaggio N. 1; Campione N. 2; Profondità da 23.30 a m 23.80

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICAZIONE DEL CARICO
Consolidata drenata (CD)	0.004 mm/min	a deformazione controllata
DIMENSIONI DEI PROVINI		
Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza 2.0 cm	Volume 72.0 cm ³

	PROVINO N.	1	2	3	4
CONDIZIONI PRIMA DELLA PROVA:					
Peso dell'unità di volume	γ [t/m³]	2.204	2.156	2.146	2,207
Contenuto naturale d'acqua	W	0.135	0.136	0.132	0.122
Porosità	n	0.299	0.314	0.316	0.290
Grado di saturazione	5	0.878	0.819	0.794	0.828
CONDIZIONI INIZIALI DI PROVA:	- Aller A				0.020
Pressione verticale CONDIZIONI A ROTTURA:	σ _v [Kg/cm²]	1.00	2.00	3.00	4.00
Tensione tangenziale	τ [Kg/cm²]	0.632	1.179	1.720	2.053
Spostamento orizzontale	δ _o [mm]	0.98	1.73	1.72	1.70
Contenuto d'acqua	W _r	0.159	0.154	<i>0</i> .151	0.138


37 1

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 1; Campione N. 2; Profondità da 23.30 a m 23.80

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnere Ceotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 2; Campione N. 1; Profondità da 7.00 a m 7.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 09/12/2003

Data di apertura: 27/03/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla alterata, moderatamente consistente, di colore bruno giallastro con puntinature marroni e venature grigiastre.-

PROPRIETA' INDICI:	······································	
Peso specifico Peso dell'unità di volume Peso secco unità di volume	$\gamma_s = 2.754$ $\gamma = 2.103$	[t/m ³]
Contenuto naturale d'acque Porosità	$\gamma_d = 1.764$ w = 0.192 n = 0.359	[t/m³]
Indice di porosità Grado di saturazione	e = 0.561 S = 0.943	

1	Limite di Liquidità $W_L = 0.387$
1	Limite di Plasticità $W_P = 0.211$
	Indice di plasticità $I_P = 0.176$
	Indice di Consistenza $I_c = 1.108$ Indice di Attività $A = 0.765$
	DIAGRAMMA DI PLASTICITA'
	100
	BASSA MEDIA ALTA
	60
	40
	20
	0 20 40 60 80 100 W _L [%]

LIMITI DI ATTERBERG E INDICI:

Prove meccaniche eseguite:

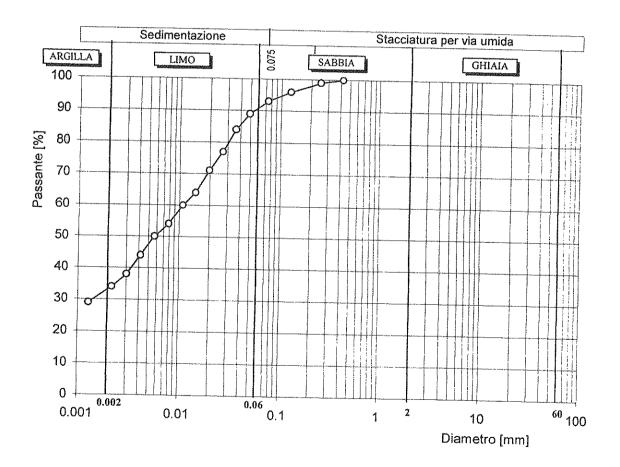
сJ

Taglio diretto (CD) con determinazione della Resistenza di Picco e Residua

L'Ingegnery Geotecnico (Luigi Vipodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 2; Campione N. 1; Profondità da 7.00 a m 7.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA DEBOLMENTE SABBIOSO.-

GRANULOMETRIA [%] Ghiaia 00 Sabbia 09 Limo 58 Argilla 33

L'Ingegnete Geotecnico (Luigi Kripodi)

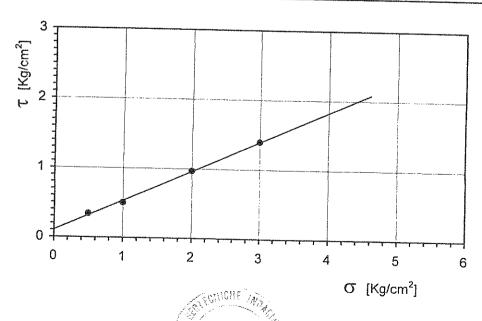
Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dai 1984

Volume

72.0 cm3

Lavori di costruzione della SS 106 Jonica (E 90) cat. B -INDAGINE: Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

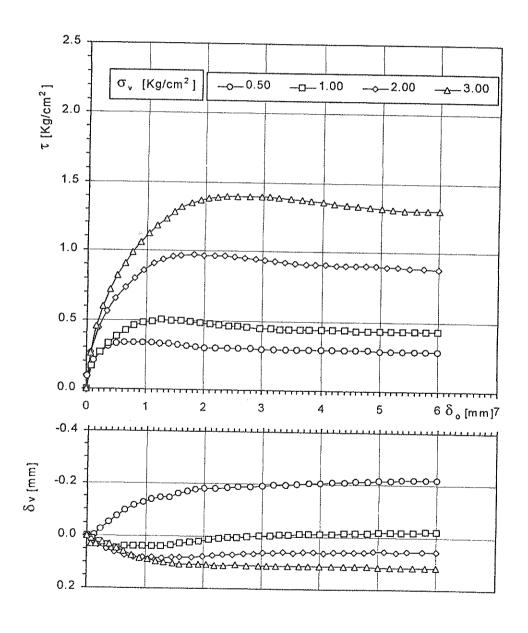

Sondaggio N. 2; Campione N. 1; Profondità da 7.00 a m 7.50

PROVA DI TAGLIO DIRETTO(CD) RESISTENZA DI PICCO

TIPO DI PROVA VELOCITÀ DI DEFORMAZIONE APPLICAZIONE DEL CARICO Consolidata drenata (CD) 0.004 mm/min a deformazione controllata DIMENSIONI DEI PROVINI Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cm

	PROVINO N.	1	2	3	4
CONDIZIONI PRIMA DELLA PRI	OVA:				
Peso dell'unità di volume	γ [t/m³]	2.099	2.118	2.097	2.097
Contenuto naturale d'acqua	W	0.193	0.188	0.184	0.201
Porosità	n	0.361	0.352	0.357	0.366
Grado di saturazione	5	0.939	0.950	0.914	0.960
CONDIZIONI INIZIALI DI PROVA:					0.000
Pressione verticale	$\sigma_{v} [Kg/cm^{2}]$	0.50	1.00	2.00	3.00
CONDIZIONI A ROTTURA:	#			2.00	3.00
Tensione tangenziale	τ [Kg/cm²]	0.341	0.502	0.969	1.397
Spostamento orizzontale	δ _o [mm]	1.09	1.26	1.81	2.55
Contenuto d'acqua	W _r	0.205	0.202	0.191	0.188

0.188 Coesione [Kg/cm²] c' = 0.103Angolo d'attrito [°] $\varphi' = 23.29$


INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 2; Campione N. 1; Profondità da 7.00 a m 7.50

PROVA DI TAGLIO DIRETTO (CD) RESISTENZA DI PICCO

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_0)

L'Ingegner Geotecnico
(Luigi Pripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 2; Campione N. 1; Profondità da 7.00 a m 7.50

PROVA DI TAGLIO DIRETTO(CD) RESISTENZA RESIDUA

TIPO DI PROVA

VELOCITÀ DI DEFORMAZIONE

Consolidata drenata (CD)

O.004 mm/min

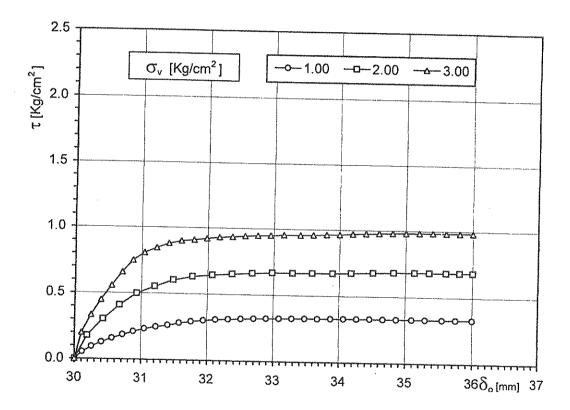
APPLICAZIONE DEL CARICO
a deformazione controllata

DIMENSIONI DEI PROVINI

Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cmVolume 72.0 cm^3

CONDIZIONI INIZIALI DI PROVA: Pressione verticale σ_{ν} [Kg/cm²] 1.00 2.00 3.00 CONDIZIONI A RESIDUO: Tensione tangenziale residua τ [Kg/cm²] 0.330 0.684 0.985 Spostamento orizzontale δ_{0} [mm] 36.00 36.00 Contenuto d'esqua		PROVINO N.	5	6	7
CONDIZIONI A RESIDUO: Tensione tangenziale residua τ [Kg/cm ²] 0.330 0.684 0.985 Spostamento orizzontale δ_0 [mm] 36.00 36.00	CONDIZIONI INIZIALI DI PROVA:				
Spostamento orizzontale δ_0 [mm] 36.00 36.00 36.00		σ _v [Kg/cm²]	1.00	2.00	3.00
	Coesione [Kg/cm²] c'=	0.012	Angolo d'atti	rito [°] φ'=	18.12

L'Ingegière Geotecnico (L'aigi Tripodi) Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 2; Campione N. 1; Profondità da 7.00 a m 7.50

PROVA DI TAGLIO DIRETTO (CD) RESISTENZA RESIDUA

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'ingenere Geotecnico (Luigu Txipodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 2; Campione N. 2; Profondità da 13.50 a m 14.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 09/12/2003

Data di apertura: 21/04/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla moderatamente consistente di colore grigio.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_s = 2.741$	[t/m³]
Peso dell'unità di volume	$\gamma = 2.059$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.692$	[t/m ³]
Contenuto naturale d'acque	w = 0.217	£
Porosità	n = 0.383	
Indice di porosità	e = 0.620	
Grado di saturazione	5 = 0.959	

	di Plasticità di plasticità	$W_P = 0.224$
	di Consistenza	$l_P = 0.204$ $l_C = 1.034$
	di Attività	A = 0.510
	DIAGRAMMA DI	PLASTICITA'
100 -		
l _P [%]	BASSA MEDIA	ALTA
60 - 40 -		
20	•	
0		
0	20 40	60 80 100 W _L [%]

LIMITI DI ATTERBERG E INDICI:

 $W_1 = 0.428$

Limite di Liquidità

Prove meccaniche eseguite:

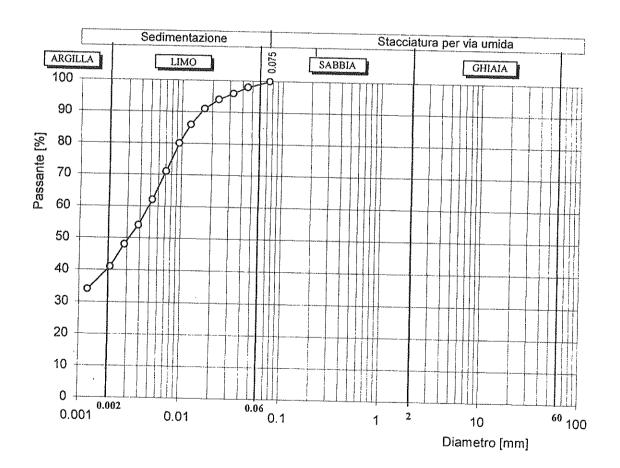
Compressione triassiale (UU)

L'Ingegne Geotecnico (Luig Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:


Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 2; Campione N. 2; Profondità da 13.50 a m 14.00

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

GPANIII ONETRIA TOTAL		
IUNANULUMEIKIA IZI I	Chicia col c 111	
	Ghiaia 00 Sabbia 01 Limo 59 Argilla 40	\sim 1
	Argilla 40	ノー
	J	-

L'Ingégnere Geotecnico (Luigi Fripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 2; Campione N. 2; Profondità da 13.50 a m 14.00

PROVA DI COMPRESSIONE TRIASSIALE (UU)

TIPO DI PROVA

Non consolidata non drenata (UU) (*)

DIMENSIONI DEI PROVINI

● Diametro 3.80 cm

Altezza

7.60 cm

Volume

86.20 cm³

APPLICAZIONE DEL CARICO

a deformazione controllata

VELOCITÀ DI DEFORMAZIONE

1.00 mm/min

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRO	DVA:			
Peso dell'unità di volume	γ (t/m ³)	2.053	2.065	2.059
Contenuto naturale d'acqua	W	0.221	0.211	0.219
Porosità	n	0.386	0.378	0.384
Grado di saturazione	5	0.961	0.952	0.964
CONDIZIONI INIZIALI DI PROVA:			-	0.001
Pressione laterale totaleverticale	$\sigma_3 (Kg/cm^2)$	1.00	2.00	3.00
CONDIZIONI A ROTTURA:		¨	2.00	0.00
Tensione deviatorica σ	$1-\sigma_3 (Kg/cm^2)$	0.91	0.80	1.11
Deformazione assiale	ε _a (%)	20.49	16.38	16.38

Nota: (*) Richiesta la saturazione dei provini.

сJ

(E) (1,AC)

L'Ingegnere Geotecnico
(Luiga Txipodi)

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 2; Campione N. 2; Profondità da 13.50 a m 14.00

PROVA DI COMPRESSIONE TRIASSIALE (UU)

Inviluppo di rottura nel piano τ - σ

PROVINO	σ_3	σ_1	σ_c	$ au_c$
N.	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)
1	1.00	1.91	1.45	0.45
2	2.00	2.80	2.40	0.40
3	3.00	4.11	3.55	0.55
C _u =	$\Sigma \tau_c$ / 3 =	0.470	(Kg/cm ²)	

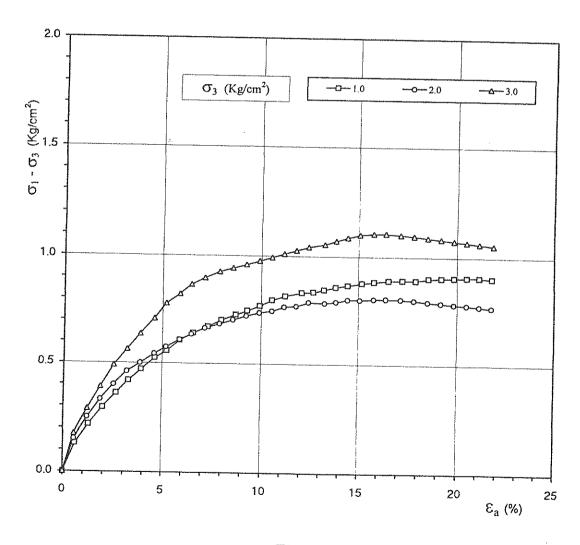
L'Ingegner Geotecnico (Euigi Tripodi)

c J

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B - Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a


Mandatoriccio (km 306+00).-

Sondaggio N. 2; Campione N. 2; Profondità da 13.50 a m 14.00

PROVA DI COMPRESSIONE TRIASSIALE (UU)

Diagramma:

Curve tensioni deviatoriche - deformazioni assiali $(\sigma_1$ - σ_3 - $\epsilon_a)$

L'Ingegnote Geotecnico (Lingi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

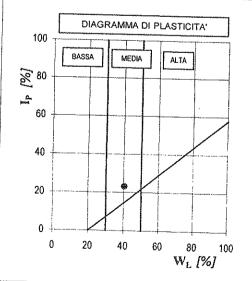
Sondaggio N. 3; Campione N. 1; Profondità da 6.00 a m 6.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 12/12/2003

Data di apertura: 23/01/2004


CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo argilloso sabbioso, di colore bruno marrone giallastro, moderatamente consistente.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_{\rm e} = 2.698$	[t/m³]
Peso dell'unità di volume	$\gamma_6 = 2.000$ $\gamma = 2.122$	[t/m]
Peso secco unità di volume	$\gamma_d = 1.855$	[t/m ³]
Contenuto naturale d'acqua	w = 0.144	[MIII]
Porosità	n = 0.312	
Indice di porosità	e = 0.455	
Grado di saturazione	S = 0.855	

LIMITI DI ATTERBER Limite di Liquidità	$W_L = 0.405$
Limite di Plasticità	$W_P = 0.174$
Indice di plasticità	$I_P = 0.231$
Indice di Consistenza	$I_c = 1.130$
Indice di Attività	A = 0.745

Prove meccaniche eseguite:

Taglio diretto (CD)

L'Ingegnere Geotecnico (Laigi Trigodi)

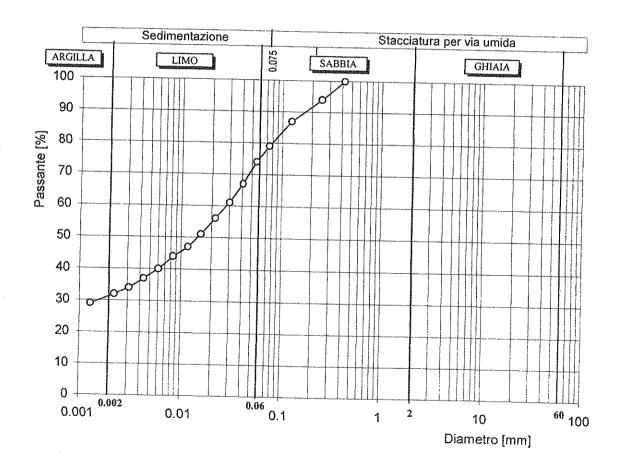
Cert. N. 22

сJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:


Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 3; Campione N. 1; Profondità da 6.00 a m 6.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA SABBIOSO.-

GRANULOMETRIA [%]	Ghiaia 00 Sabbia 25 Limo 44 Argilla 3	31

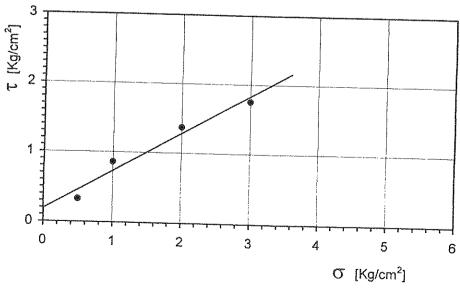
L'Ingegnere Geotecnico (Luig Frigodi)

Cert. N. 23 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

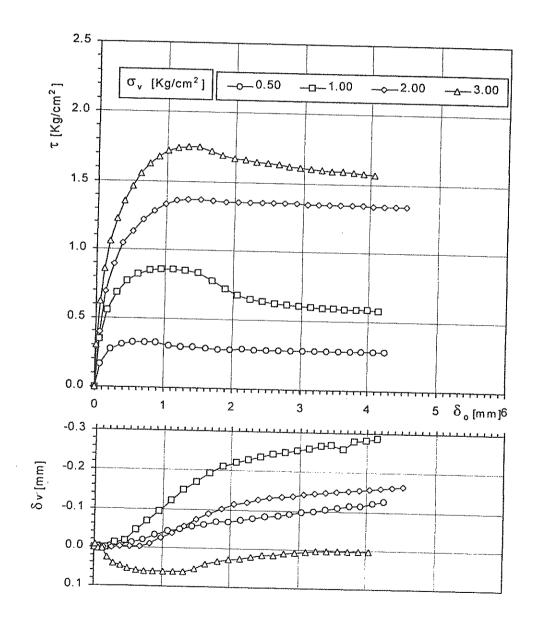

Sondaggio N. 3; Campione N. 1; Profondità da 6.00 a m 6.50

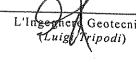
PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICAZIONE DEL CARICO
Consolidata drenata (CD)	0.004 mm/min	a deformazione controllata
DIMENSIONI DEI PROVINI		The state of the s
Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza 2.0 cm	Volume 72.0 cm ³

	PROVINO N.	1	2	3	4
CONDIZIONI PRIMA DELLA PRO	VA:				
Peso dell'unità di volume	γ [t/m³]	2.035	2.139	2.168	2.145
Contenuto naturale d'acqua	W	0.171	0.147	0.133	0.126
Porosità	n	0.356	0.309	0.291	0.294
Grado di saturazione	5	0.836	0.887	0.875	0.817
CONDIZIONI INIZIALI DI PROVA:				0.070	0.017
Pressione verticale CONDIZIONI A ROTTURA:	σ _ν [Kg/cm²]	0.50	1.00	2.00	3.00
Tensione tangenziale	τ [Kg/cm²]	0.327	0.859	1,370	1.752
Spostamento orizzontale	δ ₀ [mm]	0.72	1.12	1.32	1.32
Contenuto d'acqua	W _r	0.191	0.168	0.154	0.147

Coesione [Kg/cm²] c' = 0.188 Angolo d'attrito [°] $\phi' = 28.67$




L'Ingegress Geotecnico (Luigy Txipodi) Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 3; Campione N. 1; Profondità da 6.00 a m 6.50

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 3; Campione N. 2; Profondità da 17.50a m 18.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 18/12/2003

Data di apertura: 24/01/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla moderatamente consistente di colore grigio, con presenza di noduli marnosi.-

PROPRIETA' INDICI:		· · · · · · · · · · · · · · · · · · ·
Peso specifico	$\gamma_{\rm s} = 2.776$	[t/m³]
Peso dell'unità di volume	$\gamma = 2.249$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.994$	[t/m ³]
Contenuto naturale d'acqua	w = 0.128	[14111]
Porosità	n = 0.282	
Indice di porosità	e = 0.392	
Grado di saturazione	5 = 0.906	

Limite	di Liquidità	$W_L = 0.479$
Limite	di Plasticità	$W_P = 0.253$
Indice	di plasticità	$I_P = 0.226$
	di Consistenza	
1		$l_c = 1.553$
maice	di Attività	A = 0.514
100 ·	DIAGRAMMA DI BASSA MEDIA	PLASTICITA'
e 60 -		
40 -		
20		
0	20 40	60 80 100 W _L [%]

LIMITI DI ATTERBERG E INDICI:

Prove meccaniche eseguite:

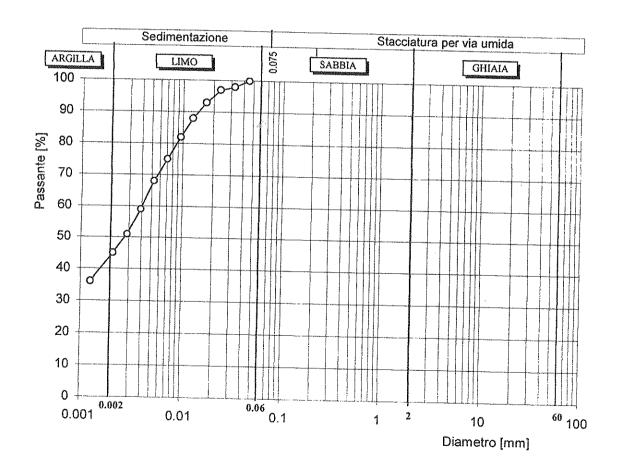
Taglio diretto (CD)

L'Ingegress Geotecnico

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:


Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 3; Campione N. 2; Profondità da 17.50a m 18.00

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

GRANULOMETRIA [%] Ghiaia 00 Sabbia 00 Limo 56 Argilla 44
--

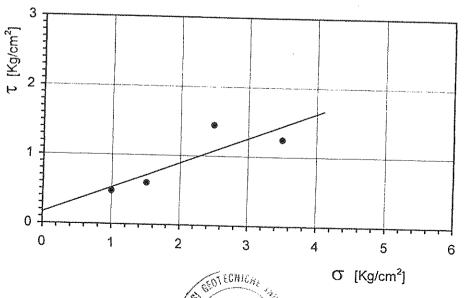
L'Ingegnet Geotecnico (Luigi Vripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-


Sondaggio N. 3; Campione N. 2; Profondità da 17.50a m 18.00

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICAZIONE DEL CARICO
Consolidata drenata (CD)	0.004 mm/min	a deformazione controllata
DIMENSIONI DEI PROVINI		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza 2.0 cm	Volume 72.0 cm ³

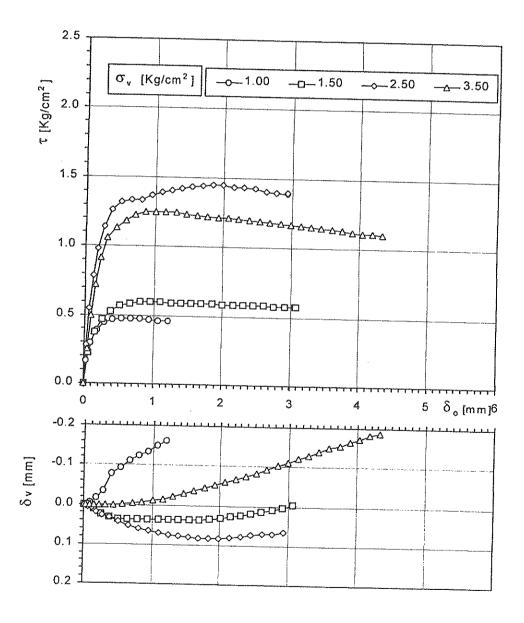
	PROVINO N.	1	2	3	4
CONDIZIONI PRIMA DELLA PRI	OVA:				
Peso dell'unità di volume	γ [t/m ³]	2.256	2.222	2.253	2.264
Contenuto naturale d'acqua	W	0.136	0.123	0.132	0.120
Porosità	n	0.285	0.287	0.283	0.272
Grado di saturazione	5	0.950	0.847	0.928	0.890
CONDIZIONI INIZIALI DI PROVA:	:			0.020	0.000
Pressione verticale CONDIZIONI A ROTTURA:	σ _ν [Kg/cm²]	1.00	1.50	2.50	3.50
Tensione tangenziale	τ [Kg/cm²]	0.475	0.597	1.448	1.248
Spostamento orizzontale	δ _o [mm]	0.80	0.94	1.84	0.85
Contenuto d'acqua	W _r	-0.888	0.160	0.149	0.143

Coesione [Kg/cm²] c' = 0.163 Angolo d'attrito [°] $\phi' = 20.13$

LAGIC S.S.S. S.

L'Ingegnere (jeotecnico (Luigi Trigodi) Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 3; Campione N. 2; Profondità da 17.50a m 18.00

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingernare Geotecnico
(Luig) (Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B -Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 1; Profondità da 8.50 a m 9.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 13/01/2004

Data di apertura: 04/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

struttura a scaglie e noduli marnosi, moderatamente consistente di colore grigio.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_{\rm s} = 2.772$	[t/m³]
Peso dell'unità di volume	$\gamma = 2.155$	[t/m ³]
Peso secco unità di volume	$\gamma_{a} = 1.916$	$[t/m^3]$
Contenuto naturale d'acque	w = 0.125	[[]
Porosità	n = 0.309	
Indice di porosità	e = 0.447	
Grado di saturazione	9 = 0.775	

LIMITI DI ATTERBER	G E INDICI:
	$W_L = 0.458$
Limite di Plasticità	
Indice di plasticità	$I_P = 0.235$
Indice di Consistenza Indice di Attività	$I_c = 1.417$ $A = 0.560$
	71 - 0.500
100 DIAGRAMMA DI	
80	ALTA
60	
40	
20	
0	
0 20 40	60 80 100 W _L [%]

Prove meccaniche eseguite:

- Taglio diretto (CD)
- Compressione uniassiale (ELL)

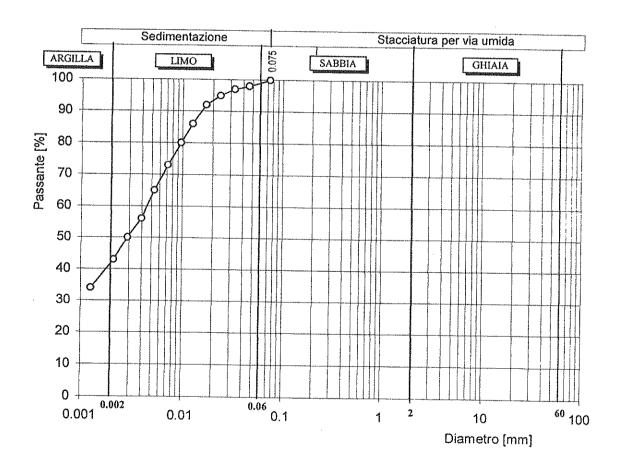
GEOTE CHICKLE

Geotecnico (Laigi Tripodi)

Cert. N. 30 сJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 1; Profondità da 8.50 a m 9.00

ANALISI GRANULOMETRICA

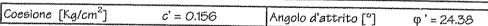
CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

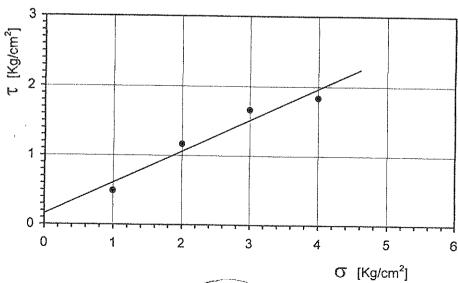
GRANULOMETRIA [%]	Ghiaia 00 S	abbia 01	Limo 57	Argilla 4:	2

L'ingognere Geotecnico

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-


Sondaggio N. 4; Campione N. 1; Profondità da 8.50 a m 9.00

PROVA DI TAGLIO DIRETTO(CD)

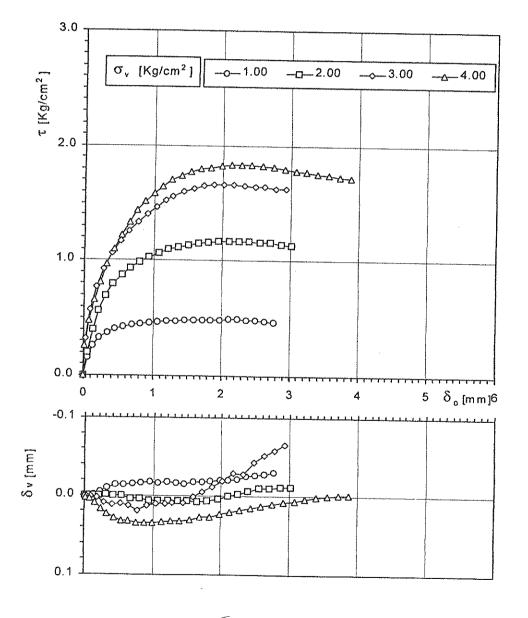
TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICAZIONE DEL CARICO
Consolidata drenata (CD)	0.004 mm/min	a deformazione controllata
DIMENSIONI DEI PROVINI		
Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza 2.0 cm	Volume 72.0 cm ³

	PROVINO N.	1	2	3	4
CONDIZIONI PRIMA DELLA PRI	OVA:				
Peso dell'unità di volume	γ [t/m³]	2.108	2.208	2.264	2.206
Contenuto naturale d'acqua	W	0.135	0.121	0.133	0.147
Porosità	n	0.330	0.289	0.279	0.306
Grado di saturazione	5	0.762	0.822	0.952	0.921
CONDIZIONI INIZIALI DI PROYA	:				
Pressione verticale CONDIZIONI A ROTTURA:	σ _v [Kg/cm²]	1.00	2.00	3.00	4.00
Tensione tangenziale	τ [Kg/cm²]	0.491	1.167	1.663	1.836
Spostamento orizzontale	δ _o [mm]	2.11	2.26	2.02	2.29
Contenuto d'acqua	W _r	0.180	0.152	0.149	0.153

BENECHICHE ADDRESS OF STREET

L'Ingenne (Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).

Sondaggio N. 4; Campione N. 1; Profondità da 8.50 a m 9.00

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnere Geotecnico (Luigi Tripodi)

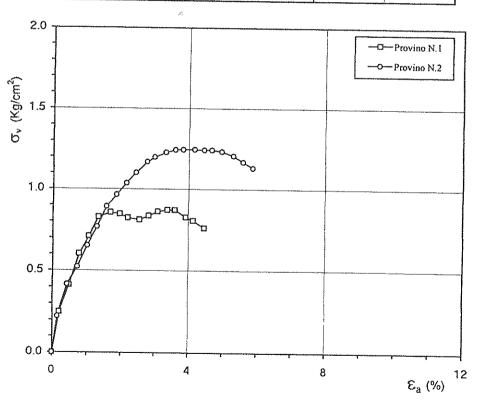
Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 1; Profondità da 8.50 a m 9.00


PROVA DI COMPRESSIONE UNIASSIALE (ELL)

	TI I KOAHAI		
 Diametro 	5.00 cm	 Altezza 	10.00 cm

VELOCITA	DI DEFORMAZIONE
3.00	mm/min

Diagramma: Curve tensioni deviatoriche - deformazione assiale (σ_{v^-} ϵ_a)

	PROVINO N.	1	2
CONDIZIONI PRIMA DELLA PR	OVA:		
Peso dell'unità di volume	γ (t/m³)	2.120	2.106
Contenuto naturale d'acqua	w	0.120	0.113
Porosità	n	0.317	0.317
Grado di saturazione	5	0.717	0.672
CONDIZIONI A ROTTURA:			Attionmone
Tensione deviatorica	σ _v (Kg/cm²)	0.87	1.25
Deformazione assiale	ε _a (%)	3.37	4.16

L'Ingegné Geotecnico (Luigi Thipodi)

сJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 2; Profondità da 17.00 a m 17.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 14/01/2004

Data di apertura: 06/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Argilla marnosa grigiatra da moderatamente consistente a consistenete. Nella parte iniziale si nota una maggior percentuale di frazione fine e minimi noduli marnosi.-

PROPRIETA' INDICI: Parte A	lta	
Peso specifico Peso dell'unità di volume Peso secco unità di volume	$\gamma_s = 2.766$ $\gamma = 2.200$ $\gamma_d = 1.898$	[t/m ³] [t/m ³] [t/m ³]
Contenuto naturale d'acqu. Porosità Indice di porosità Grado di saturazione	w = 0.159 n = 0.314 e = 0.457 5 = 0.962	

Prove meccaniche eseguite:

Taglio diretto (CD)con determinazione della Resistenza di Picco e Residua

L'Ingegnere Geotecnico (Luigi (ripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

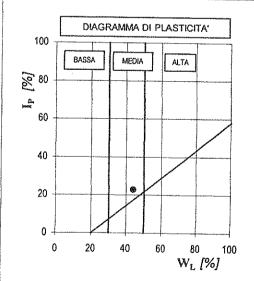
Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 2; Profondità da 17.00 a m 17.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 14/01/2004 Data di apertura: 06/02/2004


CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Vedi certificato N. 35,-

PROPRIETA' INDICI: Parte E	3assa	
Peso specifico	$\gamma_{\rm s} = 2.754$	[t/m ³
Peso dell'unità di volume	$\gamma = 2.217$	[t/m³
Peso secco unità di volume	$\gamma_d = 1.983$	[t/m³
Contenuto naturale d'acqua	w = 0.118	•
Porosità	n = 0.280	
Indice di porosità	e = 0.389	
Grado di saturazione	5 = <i>0.</i> 836	

Limite di Liquidità	W - 0430
Limite di Plasticità	$W_L = 0.439$
	$W_P = 0.211$
Indice di plasticità	$I_P = 0.228$
Indice di Consistenza	I _c = 1.408
Indice di Attività	A = 0.530

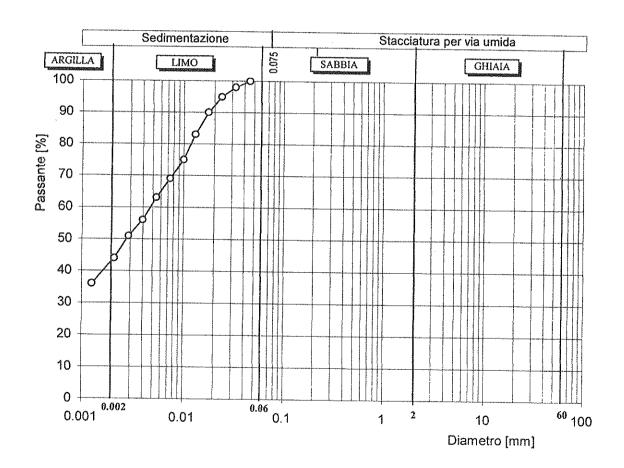
Prove meccaniche eseguite:

Taglio diretto (CD)con determinazione della Resistenza di Picco e Residua

L'Ingegnere d'otecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 2; Profondità da 17.00 a m 17.50

ANALISI GRANULOMETRICA PARTE ALTA DEL CAMPIONE

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

GRANULOMETRIA [%]	Ghiaia 00 Sabbia 00 Limo 57 Argilla	43
	J	

L'Ingegnere Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

72.0 cm³

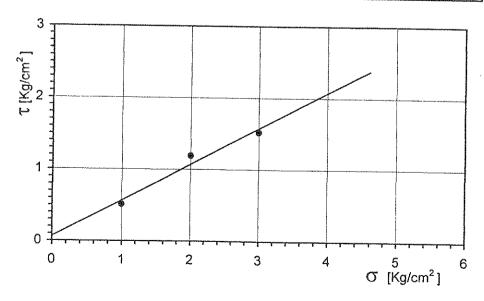
INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B -Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 2; Profondità da 17.00 a m 17.50

Altezza

PROVA DI TAGLIO DIRETTO(CD) PARTE ALTA DEL CAMPIONE - RESISTENZA DI PICCO


TIPO DI PROVA VELOCITÀ DI DEFORMAZIONE APPLICAZIONE DEL CARICO Consolidata drenata (CD) 0.004 mm/min a deformazione controllata DIMENSIONI DEI PROVINI $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Base

2.0 cm

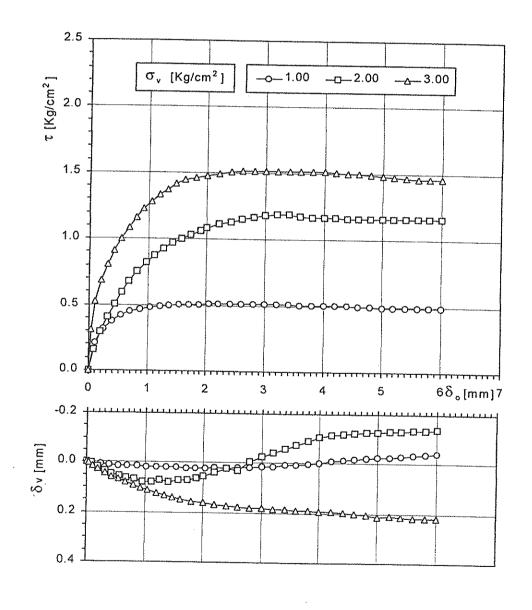
Volume

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRI	CONDIZIONI PRIMA DELLA PROVA:			
Peso dell'unità di volume	γ [t/m ³]	2.167	2.265	2.167
Contenuto naturale d'acqua	W	0.173	0.138	0.167
Porosità	n	0.332	0.281	0.329
Grado di saturazione	5	0.962	0.979	0.944
CONDIZIONI INIZIALI DI PROVA:	:			
Pressione verticale CONDIZIONI A ROTTURA:	σ, [Kg/cm²]	1.00	2.00	3.00
Tensione tangenziale	τ [Kg/cm²]	0.510	1.189	1.517
Spostamento orizzontale	δ_o [mm]	2.20	3.20	3.40
Contenuto d'acqua	W _r	0.184	0.152	0.162

Coesione [Ka/cm²] c' =0.065 Angolo d'attrito [°] φ ' = 26.71

Geotecnico ripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 2; Profondità da 17.00 a m 17.50

PROVA DI TAGLIO DIRETTO (CD) PARTE ALTA DEL CAMPIONE - RESISTENZA DI PICCO

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegrere Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 2; Profondità da 17.00 a m 17.50

PROVA DI TAGLIO DIRETTO(CD)
PARTE BASSA DEL CAMPIONE - RESISTENZA DI PICCO

TIPO DI PROVA

VELOCITÀ DI DEFORMAZIONE

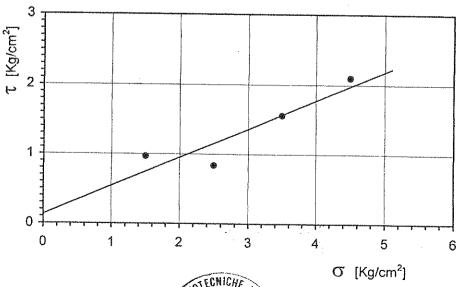
APPLICAZIONE DEL CARICO

Consolidata drenata (CD)

0.004 mm/min

a deformazione controllata

DIMENSIONI DEI PROVINI


Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$

Altezza 2.0 cm

Volume 72.0 cm³

	PROVINO N.	1	2	3	4
CONDIZIONI PRIMA DELLA PRO	OYA:		·		
Peso dell'unità di volume	γ [t/m³]	2.201	2.278	2.215	2.172
Contenuto naturale d'acqua	W	0.099	0.131	0.104	0.139
Porosità	n	0.272	0.269	0.271	0.308
Grado di saturazione	9	0.726	0.982	0.767	0.862
CONDIZIONI INIZIALI DI PROVA:					
Pressione verticale CONDIZIONI A ROTTURA:	σ _ν [Kg/cm²]	1.50	2.50	3.50	4.50
Tensione tangenziale	τ [Kg/cm²]	0.966	0.836	1.558	2.096
Spostamento orizzontale	δ _o [mm]	2.06	2.05	2.14	6.00
Contenuto d'acqua	W _r	0.061	0.108	0.126	0.149

Coesione [Kg/cm²] c' = 0.131 Angolo d'attrito [°] $\phi' = 22.34$

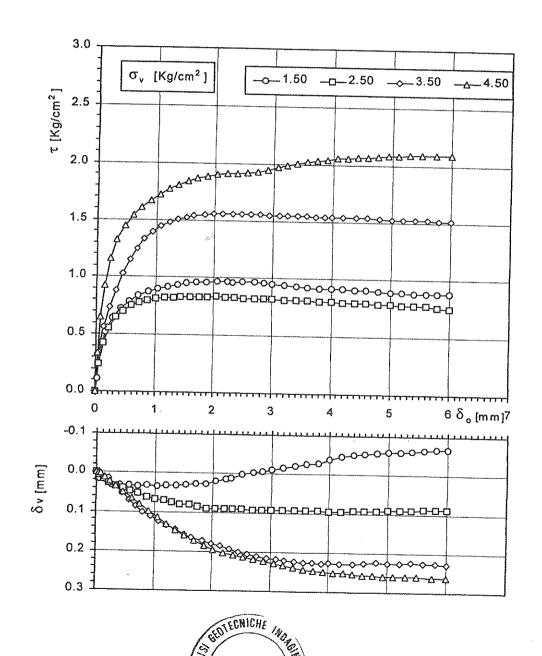
TAGIC S. S. S. S.

L'Ingemera Geotecnico

Cert. N. 40

сJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 2; Profondità da 17.00 a m 17.50

PROVA DI TAGLIO DIRETTO (CD) PARTE BASSA DEL CAMPIONE - RESISTENZA DI PICCO

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

LAGIC

1808V1 - 37

Base

 $6.0 \times 6.0 = 36.0 \text{ cm}^2$

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

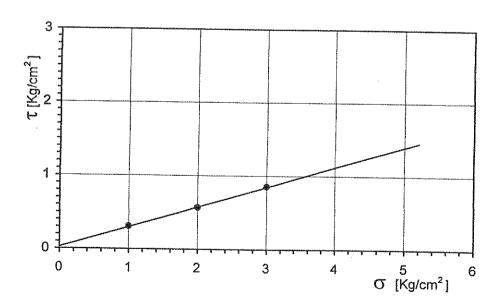
Laboratorio di Geotecnica Associato ALGI N.25 dai 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 2; Profondità da 17.00 a m 17.50

Altezza

PROVA DI TAGLIO DIRETTO(CD) PARTE ALTA DEL CAMPIONE - RESISTENZA RESIDUA


TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICAZIONE DEL CARICO
Consolidata drenata (CD)	0.004 mm/min	a deformazione controliata
DIMENSIONI DEI PROVINI		

2.0 cm

Volume

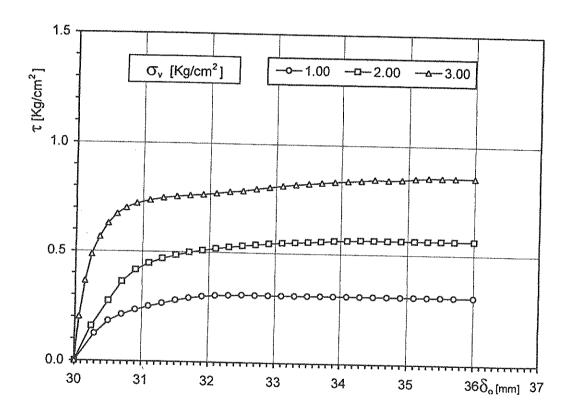
72.0 cm3

	PROVINO N.	3	5	6
CONDIZIONI INIZIALI DI PROVA:				
Pressione verticale CONDIZIONI A RESIDUO:	σ_v [Kg/cm ²]	1.00	2.00	3.00
Tensione tangenziale residua	τ [Kg/cm²]	0.307	0.565	0.855
Spostamento orizzontale	δ_o [mm]	36.00	36.00	36.00
Contenuto d'acqua	W _r	0.184	0.152	0.162
Coesione [Kg/cm²] c'=	0.027	Angolo d'att	rito [°] φ' =	15,34

L'Ingegnere Jeotecnico

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 2; Profondità da 17.00 a m 17.50

PROVA DI TAGLIO DIRETTO (CD) PARTE ALTA DEL CAMPIONE - RESISTENZA RESIDUA

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegrese Geotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B-Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 4; Campione N. 2; Profondità da 17.00 a m 17.50

PROVA DI TAGLIO DIRETTO(CD) PARTE BASSA DEL CAMPIONE - RESISTENZA RESIDUA

TIPO DI PROVA

VELOCITÀ DI DEFORMAZIONE

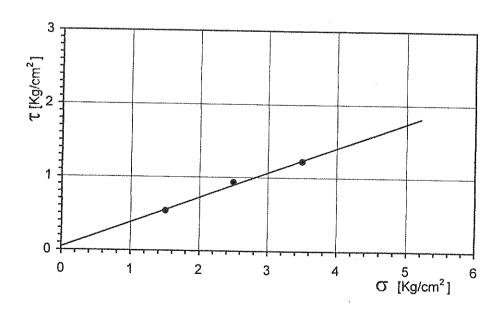
APPLICAZIONE DEL CARICO

a deformazione controllata

Consolidata drenata (CD)

0.004 mm/min

DIMENSIONI DEI PROVINI


Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$

Altezza 2.0 cm

Volume 72.0 cm³

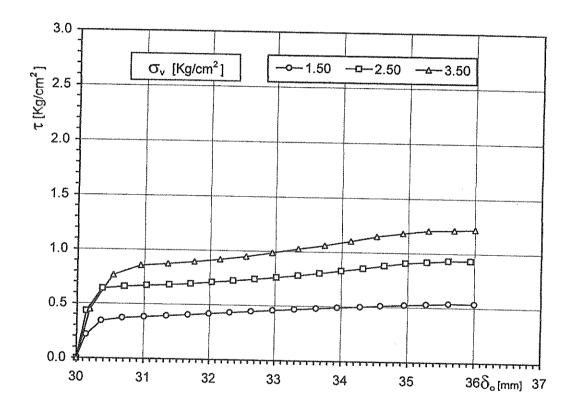
	PROVINO N.	3	5	6
CONDIZIONI INIZIALI DI PROVA:				
Pressione verticale CONDIZIONI A RESIDUO:	σ _v [Kg/cm²]	1.50	2.50	3.50
Tensione tangenziale residua	τ [Kg/cm²]	0.538	0.933	1.220
Spostamento orizzontale	δ_o [mm]	36.00	36.00	36.00
Contenuto d'acqua	W _r	0.249	0.152	0.126
Coasiana IV -/27				

Coesione [Kg/cm²] c' = 0.044 Angolo d'attrito [°] $\phi' = 18.84$

L'Ingegneré Geotecnico

Cert. N. 44 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).

Sondaggio N. 4; Campione N. 2; Profondità da 17.00 a m 17.50

PROVA DI TAGLIO DIRETTO (CD) PARTE BASSA DEL CAMPIONE - RESISTENZA RESIDUA

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegrene Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B-Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 5; Campione N. 1; Profondità da 25.00 a m 25.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 09/01/2004

Data di apertura: 19/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Argilla marnosa grigia consistente.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_{\rm e} = 2.763$	[t/m ³]
Peso dell'unità di volume	$\gamma = 2.150$	[t/m ³]
Peso secco unità di volume	$\gamma_a = 1.845$	[t/m ³]
Contenuto naturale d'acqua	w = 0.165	
Porosità	n = 0.332	
Indice di porosità	e = 0.497	
Grado di saturazione	S = 0.917	

LIMIT	I DI ATTERBERG E INDICI:
Limite	di Liquidità $W_L = 0.479$
Limite	di Plasticità $W_P = 0.233$
Indice	di plasticità $I_P = 0.246$
Indice	di Consistenza 1c = 1.276
}	U
HILIUC	di Attività $A = 0.631$
100 · Jan 100 ·	DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA
40 -	
20 -	
0 -	
Ċ	20 40 60 80 100 W _L [%]

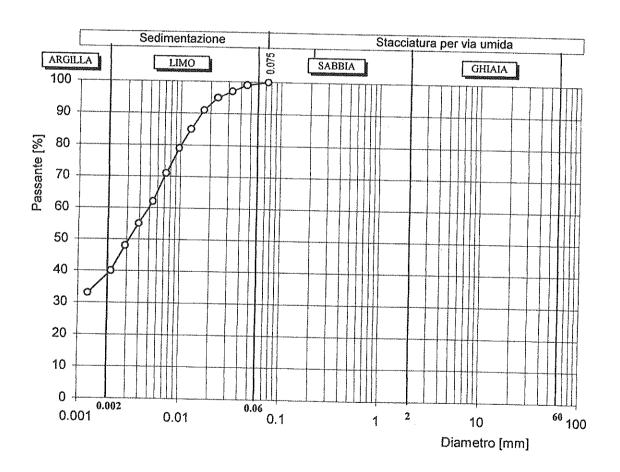
Prove meccaniche eseguite:

Taglio diretto (CD)

L'Ingegner Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 5; Campione N. 1; Profondità da 25.00 a m 25.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

GRANULOMETRIA [%]	Ghiaia 00 Sabbia 00 Limo 61 Arailla 3	9
	The of Argina S	ן פי

Ungernele Geotecnico
(Luigi Pripodi)

Cert. N. 47

сЈ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Lavori di costruzione della SS 106 Jonica (E 90) cat. B -INDAGINE: Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 5; Campione N. 1; Profondità da 25.00 a m 25.50

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA VELOCITÀ DI DEFORMAZIONE APPLICAZIONE DEL CARICO Consolidata drenata (CD) 0.004 mm/min a deformazione controliata DIMENSIONI DEI PROVINI Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$

2.0 cm

Volume

Angolo d'attrito [°] φ' = 28.08

72.0 cm³

Altezza

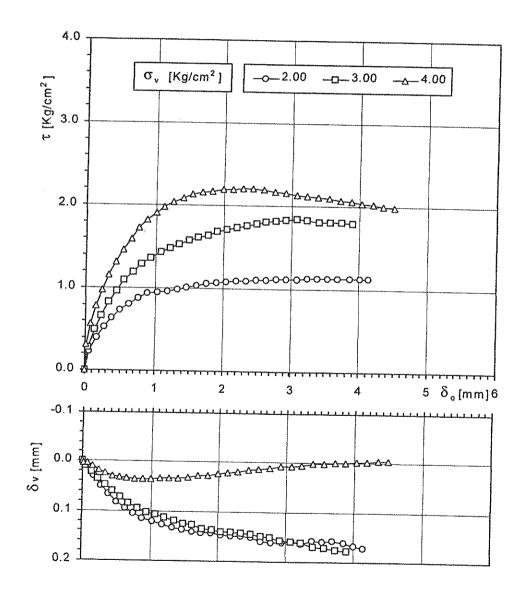
c' = 0.128

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRI	CONDIZIONI PRIMA DELLA PROVA:			
Peso dell'unità di volume	γ [t/m³]	2.085	2.232	2.135
Contenuto naturale d'acqua	W	0.194	0,132	0.171
Porosità	n	0.368	0.286	0.340
Grado di saturazione	5	0.920	0.907	0.916
CONDIZIONI INIZIALI DI PROVA:	a production of the contract o			
Pressione verticale CONDIZIONI A ROTTURA:	σ, [Kg/cm²]	2.00	3.00	4.00
Tensione tangenziale	- CV (27			
-	τ [Kg/cm²]	1.137	1.843	2.204
Spostamento orizzontale	δ_o [mm]	3.86	3.08	2.29
Contenuto d'acqua	W _r	0.200	0.144	0.175

3 1 0 0 2 3 5 Of [Kg/cm²]

Geotecnico

Coesione [Kg/cm²]


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 5; Campione N. 1; Profondità da 25.00 a m 25.50

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnere Geotecnico
(Luigi Ilrigodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 5; Campione N. 2; Profondità da 34.50 a m 35.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 09/01/2004

Data di apertura: 04/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Argilla marnosa di colore grigio consistente, con tratti a comportamento lapideo.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_{\rm s} = 2.774$	$\lceil t/m^3 \rceil$
Peso dell'unità di volume	y = 2.245	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.996$	[t/m³]
Contenuto naturale d'acque	w = 0.125	L
Porosità	n = 0.281	
Indice di porosità	e = 0.390	
Grado di saturazione	5 = 0.889	

Prove meccaniche eseguite:

c J

- Taglio diretto (CD)
- Point Load Test (PLT)

L'Ingegnene Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 5; Campione N. 2; Profondità da 34.50 a m 35.00

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA

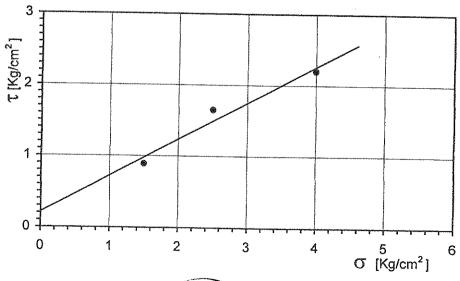
VELOCITÀ DI DEFORMAZIONE

Consolidata drenata (CD)

O.004 mm/min

DIMENSIONI DEI PROVINI

Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ VELOCITÀ DI DEFORMAZIONE


APPLICAZIONE DEL CARICO

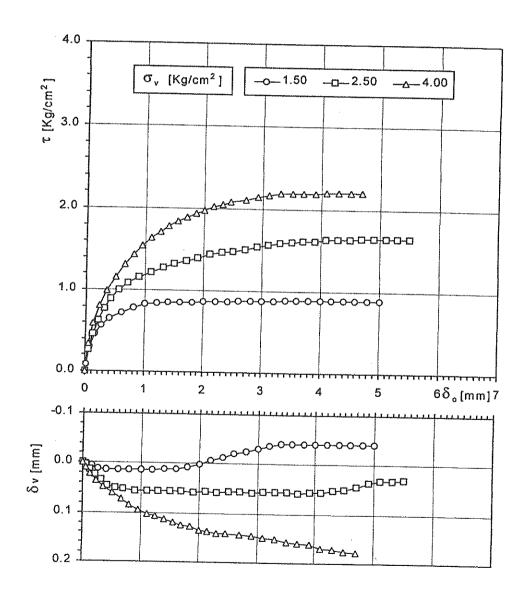
a deformazione controllata

Volume 72.0 cm^3

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PROVA:				
Peso dell'unità di volume	$\gamma [t/m^3]$	2.252	2.250	2.232
Contenuto naturale d'acqua	W	0.119	0.123	0.132
Porosità	n	0.275	0.278	0.289
Grado di saturazione	5	0.873	0.888	0,899
CONDIZIONI INIZIALI DI PROVA:				
Pressione verticale CONDIZIONI A ROTTURA:	σ _v [Kg/cm²]	1.50	2.50	4.00
Tensione tangenziale	τ [Kg/cm²]	0.889	1.649	2,201
Spostamento orizzontale	δ_o [mm]	4.00	5.10	4.30
Contenuto d'acqua	W _r	0.146	0.156	0.144

Coesione [Kg/cm²] c' = 0.213 Angolo d'attrito [°] $\phi' = 27.13$

L'ingegnero Geotecnico (Luig Tripodi)


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 5; Campione N. 2; Profondità da 34.50 a m 35.00

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_0)

L'Ingegrere Geotecnico (Laigi Pripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 5; Campione N. 2; Profondità da 34.50 a m 35.00

Point Load Test Prova di carico puntuale

Determ.	Direzio	ne Appl.	D	L	Р	l _s	_{s(50)}	σ_c	Note sulla rottura
N.	Ca	ırico	[cm]	[cm]	[Kg]	[Kg/cm²]	k ' '	[Kg/cm²]	
1		Long.	5.5	8.3	132.6	4.4	4.6	102.9	Scheggia
2		Long.	5.0	8.3	181.5	7.3	7.3	163,4	Superficie irregolare
3	Diam.		4.0	6.4	48.95	3.1	2.8	62.3	Superficie irregolare
4	Diam.		3.6	5.3	42.83	3.4	2.9	65.5	Superficie irregolare
		, , , , , , , , , , , , , , , , , , ,		Valore n	nedio		4.4	98.5	

Determ.	Direzio	ne Appl.	D	L	Р] I,	l _{e(50)}	σ_c	Note sulla rottura
N.	Ca	irico	[cm]	[cm]	[Kg]	[Kg/cm²]	[Kg/cm²]	ľ	1
1		Long.	5.0	8.0	140.7	5.7	5.7	128.6	Scheggia
2		Long.	4.4	8.0	479.3	25.3	23.8	535.3	Superficie irregolare
3	Diam.		5.4	5.8	492.5	16.9	17.5	393.4	Scheggia
4	Diam.		5.4	5.8	487.4	16.7	17.3	389.3	Scheggia
5		Long.	4.1	6.9	422.2	25.7	23.4	526.7	Superficie irregolare
Valore medio					17.5	394.7			

LEGENDA:

D	Distanza fra le punte	L	Altra dimensione	Р.	Carico di rottura
_ l _s	Indice di resistenza	l _{s(50)}	Indice di resistenza corretto	$\sigma_c^{(1)}$	Resistenza a compressione uniassiale

NOTA: (°) - La resistenza a compressione uniassiale è stata calcolata adottando un coefficiente moltiplicativo di $I_{s(50)}$ pari a 22.5 (valori consigliati in letteratura: $\sigma_c = (20 \div 25) I_{s(50)}$).

ANNI SECULLA OF CONTRACT OF SECULLAR SECUL

'Ingegner Geotecnico (Luigi Iripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00)...

Sondaggio N. 6; Campione N. 1; Profondità da 8.50 a m 9.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 15/01/2004

Data di apertura: 05/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Argilla consistente di colore grigio chiaro.-


PROPRIETA' INDICI:	White the same of	
Peso specifico	$\gamma_s = 2.775$	ſt/m³-
Peso dell'unità di volume	$\gamma = 2.157$	[t/m ³
Peso secco unità di volume	$\gamma_d = 1.935$	[t/m³-
Contenuto naturale d'acqua	w = 0.115	£
Porosità	n = 0.303	
Indice di porosità	e = 0.434	
Grado di saturazione	S = 0.735	

		***************************************				• • • • •			
	Limite di Liquidità $W_L = 0.551$								
İ	Limite	di Plast			0.23				
	Indice	di plasti			0.32				
		•		•					
	Indice di Consistenza $I_c = 1.363$								
		di Attivi			A = 1.067				
ľ						1.007			
		DIAC	RAMMA	The Page	OTIO:				
	100 -	L	· ANNINA	UI PLA	STICII.	4.			
		BASSA	MEDIA	5	ALTA				
	S 80 -			┰╟	AL.14				
	[% 80 ·						1		
	<u>, _</u> 60 -								
	00 -								
	40 -						-		
				•					
	20 -			\vdash					
	0 🖡	$-\!$							
	Ó	20	40	60	80	100			
W _L [%]			
			····		-				

LIMITI DI ATTERBERG E INDICI:

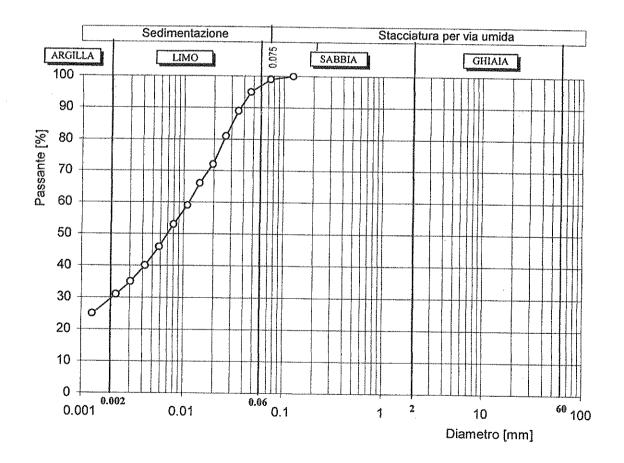
Prove meccaniche eseguite:

• Taglio diretto (CD) con determinazione della Resistenza di Picco e Residua

L'Ingegnere (cotecnico (Luigi Trapedi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 6; Campione N. 1; Profondità da 8.50 a m 9.00

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

GRANULOMETRIA [%]	Ghiaia 00 Sabbia 03	Limo 67 Argilla 30

L'ingegner Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a

Mandatoriccio (km 306+00).-

Sondaggio N. 6; Campione N. 1; Profondità da 8.50 a m 9.00

PROVA DI TAGLIO DIRETTO(CD) RESISTENZA DI PICCO

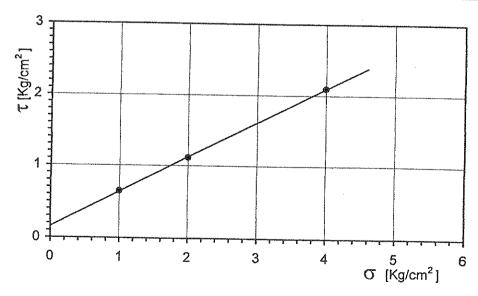
TIPO DI PROVA

Consolidata drenata (CD)

VELOCITÀ DI DEFORMAZIONE

APPLICAZIONE DEL CARICO

0.004 mm/min


a deformazione controllata

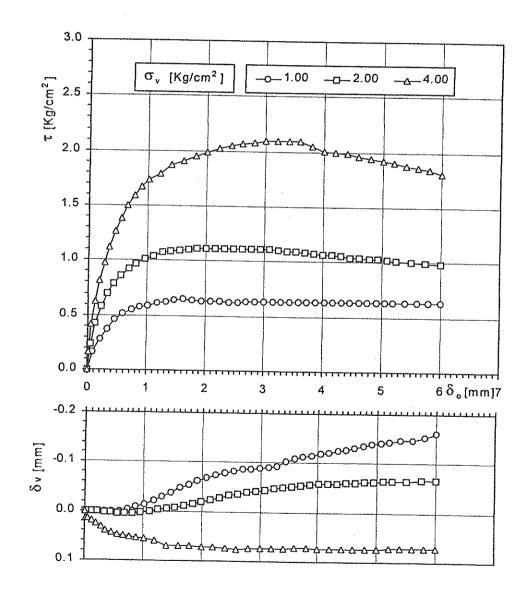
DIMENSIONI DEI PROVINI

Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cm Volume 72.0 cm^3

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRI				
Peso dell'unità di volume	γ [t/m³]	2.169	2.154	2.147
Contenuto naturale d'acqua	W	0.108	0.115	0.123
Porosità	п	0.295	0.304	0.311
Grado di saturazione	9	0.717	0.730	0.754
CONDIZIONI INIZIALI DI PROVA:	: -:			
Pressione verticale CONDIZIONI A ROTTURA:	σ _ν [Kg/cm²]	1.00	2.00	4.00
Tensione tangenziale	τ [Kg/cm²]	0.647	1.113	2.099
Spostamento orizzontale	δ_o [mm]	1.62	2.30	3.20
Contenuto d'acqua	W_r	0.140	0.135	0.122

Coesione [Kg/cm²] c' = 0.155 Angolo d'attrito [°] $\varphi' = 25.88$

L'Ingogner Geotecnico (Luigi Tripodi) Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 6; Campione N. 1; Profondità da 8.50 a m 9.00

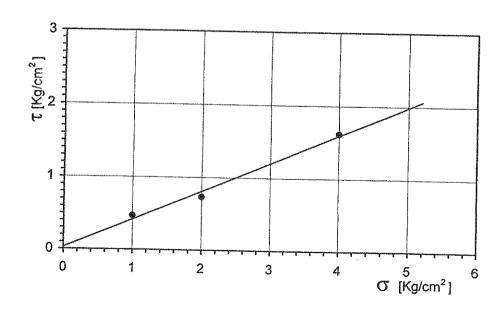
PROVA DI TAGLIO DIRETTO (CD) RESISTENZA DI PICCO

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnele Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE:

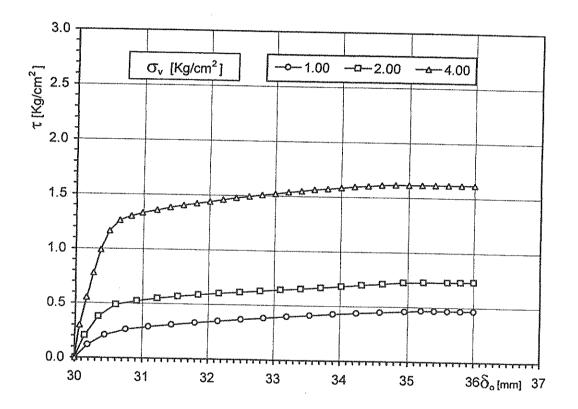
Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 6; Campione N. 1; Profondità da 8.50 a m 9.00

PROVA DI TAGLIO DIRETTO(CD) RESISTENZA RESIDUA

	PROVINO N.	1	2	3
CONDIZIONI INIZIALI DI PROVA:				
Pressione verticale CONDIZIONI A RESIDUO:	σ _ν [Kg/cm²]	1.00	2.00	4.00
Tensione tangenziale residua Spostamento orizzontale	τ [Kg/cm²] δ ₀ [mm]	0,469 36,00	0.735 36.00	1.620
Contenuto d'acqua	W _r	0.140	0.135	36.00 0.122
Coesione [Kg/cm²] c'=	0.026	Angolo d'att	rito [°] φ'=	21 41

L'Ingegnere Geotecnico
(Luigi Tripodi)


INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 6; Campione N. 1; Profondità da 8.50 a m 9.00

PROVA DI TAGLIO DIRETTO (CD) RESISTENZA RESIDUA

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 6; Campione N. 2; Profondità da 17.00 a m 17.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 15/01/2004

Data di apertura: 18/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Marna con noduli a comportamento litico in matrice argillosa, colore grigio scuro.-

PROPRIETA' INDICI:

Peso dell'unità di volume $\gamma = 2.246$ [t/m³] Peso secco unità di volume $\gamma_d = 2.089$ [t/m³] Contenuto naturale d'acqua $\gamma_d = 0.075$

Prove meccaniche eseguite:

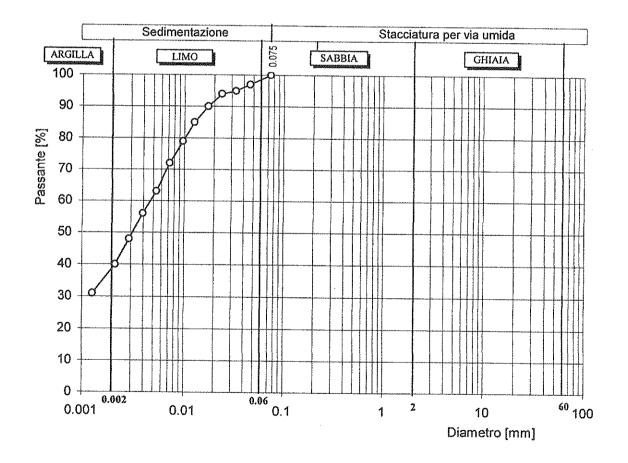
L'Ingegrera Geotecnico (Luigi Vipodi)

Cert. N. 60

сJ

Via S. Antonello, 13 - 87040 Montaito Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dai 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 6; Campione N. 2; Profondità da 17.00 a m 17.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

GRANULOMETRIA [%] Ghiaia OO Sabbia O1 Limo 61 Argilla 38

L'Ingegnere Seotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

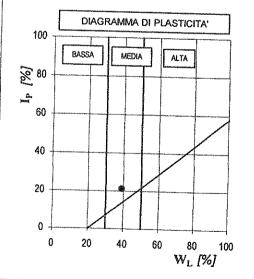
Sondaggio N. 7; Campione N. 1; Profondità da 12.00 a m 12.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 22/01/2003

Data di apertura: 24/03/2004


CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Argilla marnosa moderatamente consistente, di colore grgio con venature biancastre.-

PROPRIETA' INDICI:		**************************************
Peso specifico	$\gamma_s = 2.774$	[t/m ³]
Peso dell'unità di volume	$\gamma = 2.225$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.987$	[t/m ³]
Contenuto naturale d'acque	w = 0.120	[2,111]
Porosità	n = 0.284	
Indice di porosità	e = 0.396	
Grado di saturazione	5 = 0.840	

LIMITI DI ATTERBER	G E INDICI:
Limite di Liquidità	$W_L = 0.391$
Limite di Plasticità	$W_P = 0.179$
Indice di plasticità	$I_P = 0.212$
Indice di Consistenza	$I_{c} = 1.278$
Indice di Attività	A = 0.517
100 DIAGRAMMA DI	PLASTICITA'

Prove meccaniche eseguite:

- Taglio diretto (CD) con determinazione della Resistenza di Picco e Residua
- Compressione uniassiale (ELL)

LAGIG 8. 8. 8. 5.

L'Ingegnere Geotecnico (Luigi Tripodi)

Cert. N. 62

сЈ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 7; Campione N. 1; Profondità da 12.00 a m 12.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA SABBIOSO.-

GRANULOMETRIA [%] Ghiaia 00 Sabbia 13 Limo 61 Argilla 26

L'Ingegnere Geotecnico (Luigi Vipodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 7; Campione N. 1; Profondità da 12.00 a m 12.50

PROVA DI TAGLIO DIRETTO(CD) RESISTENZA DI PICCO

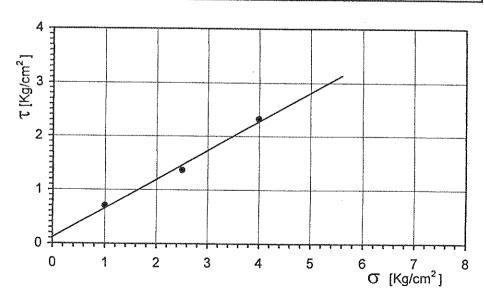
TIPO DI PROVA

Consolidata drenata (CD)

VELOCITÀ DI DEFORMAZIONE

0.004 mm/min

APPLICAZIONE DEL CARICO

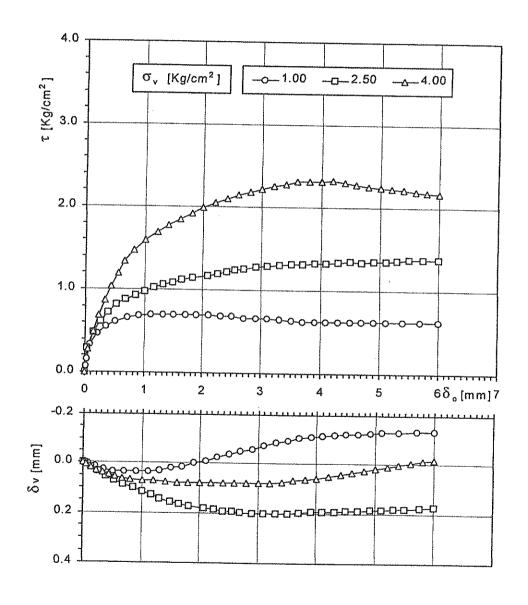

a deformazione controllata

DIMENSIONI DEI PROVINI

Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cm Volume 72.0 cm^3

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRO	OVA:			
Peso dell'unità di volume	γ [t/m³]	2.237	2.169	2.221
Contenuto naturale d'acqua	W	0.134	0.105	0.128
Porosità	n	0.289	0.292	0.291
Grado di saturazione	5	0.914	0.705	0.870
CONDIZIONI INIZIALI DI PROVA	:			
Pressione verticale	σ _v [Kg/cm²]	1.00	2.50	4.00
CONDIZIONI A ROTTURA:	2			
Tensione tangenziale	τ [Kg/cm²]	0.702	1.370	2.323
Spostamento orizzontale	δ ₀ [mm]	1.70	5.50	4.20
Contenuto d'acqua	W _r	0.155	0.129	0.130

Coesione [Kg/cm²] c' = 0.114 Angolo d'attrito [°] $\phi' = 28.39$



L'Ingegne de Geotecnico (Luigh Trigodi) INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 7; Campione N. 1; Profondità da 12.00 a m 12.50

PROVA DI TAGLIO DIRETTO (CD) RESISTENZA DI PICCO

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnere (Jeotecnico (Luigi Tripadi)

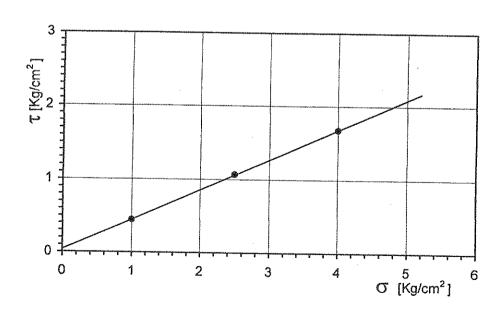
Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

72.0 cm³

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B -Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-


Volume

Sondaggio N. 7; Campione N. 1; Profondità da 12.00 a m 12.50

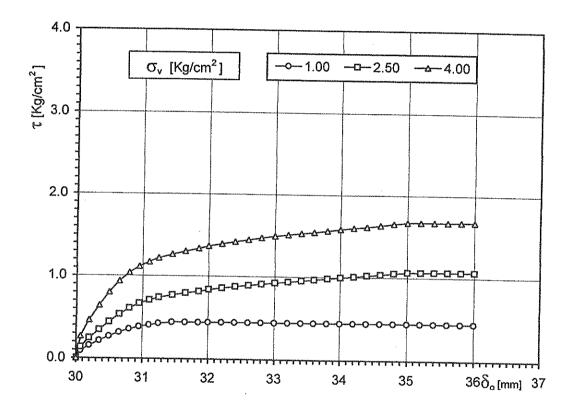
PROVA DI TAGLIO DIRETTO(CD) RESISTENZA RESIDUA

TIPO DI PROVA VELOCITÀ DI DEFORMAZIONE APPLICAZIONE DEL CARICO Consolidata drenata (CD) 0.004 mm/min a deformazione controllata DIMENSIONI DEI PROVINI Ваве $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cm

	PROVINO N.	1	2	3
CONDIZIONI INIZIALI DI PROVA:				
Pressione verticale	σ_v [Kg/cm 2]	1.00	2.50	4.00
CONDIZIONI A RESIDUO:	•	Approximate and a second		
Tensione tangenziale residua	τ [Kg/cm²]	0.444	1.068	1.674
Spostamento orizzontale	δ_o [mm]	36.00	36.00	36.00
Contenuto d'acqua	W_r	0.155	0.129	0.130
Coesione [Kg/cm ²] $c' =$	0.037	Angolo d'att	rito [°] φ'=	22.29

L'Ingegnere otecnico

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 7; Campione N. 1; Profondità da 12.00 a m 12.50

PROVA DI TAGLIO DIRETTO (CD) RESISTENZA RESIDUA

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnere Peotecnico (Luigi Tipodi)

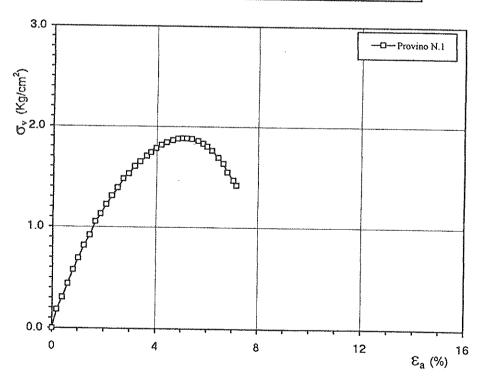
Via S. Antonello, 13 - 87040 Montaito Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

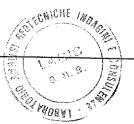
Laboratorio di Geotecnica Associato ALGI N.25 dai 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).

Sondaggio N. 7; Campione N. 1; Profondità da 12.00 a m 12.50


PROVA DI COMPRESSIONE UNIASSIALE (ELL)


DIMENSIONI DEI PROVINI	,
• Diametro 5.00 cm	• Altezza 10.00 cm

VELOC	TÀ DI DEFORMAZIONE
3.00	mm/min

Diagramma: Curve tensioni deviatoriche - deformazione assiale (σ_{v} - ϵ_{a})

	PROVINO N.	1
CONDIZIONI PRIMA DELLA PR		
Peso dell'unità di volume	γ (t/m³)	2.240
Contenuto naturale d'acqua	W	0.117
Porosità	n	0.277
Grado di saturazione	5	0.847
CONDIZIONI A ROTTURA:		
Tensione deviatorica	σ _v (Kg/cm²)	1.88
Deformazione assiale	ε _a (%)	5.02

L'Ingegnere Georgenico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 7; Campione N. 2; Profondità da 18.00 a m 18.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 22/01/2004

Data di apertura: 23/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Argilla marnosa moderatamente cosistente di colore grigio con noduli carbonatici biancastri.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_{\rm e} = 2.767$	[t/m ³]
Peso dell'unità di volume	$\gamma = 2.170$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.914$	[t/m ³]
Contenuto naturale d'acque	w = 0.134	ر ۲۰٬۰۰۰
Porosità	n = 0.308	
Indice di porosità	e = 0.446	
Grado di saturazione	S = 0.831	

Limite di Plasticità	$W_P = 0.233$
Indice di plasticità	$I_P = 0.246$
Indice di Consistenza Indice di Attività	I _c = 1.402 A = 0.724
DIAODAMAAA	
DIAGRAMMA DI I	PLASTICITA'
BASSA MEDIA	ALTA
80 80	TALIA .
Eq.	
60	
40	
20	
0	
0 20 40 6	60 80 100 W _L [%]

LIMITI DI ATTERBERG E INDICI:

 $W_L = 0.479$

Limite di Liquidità

Prove meccaniche eseguite:

- Taglio diretto (CD)
- Compressione triassiale (UU)

L'Ingegnere (Lotecnico (Luigi Tripodi)

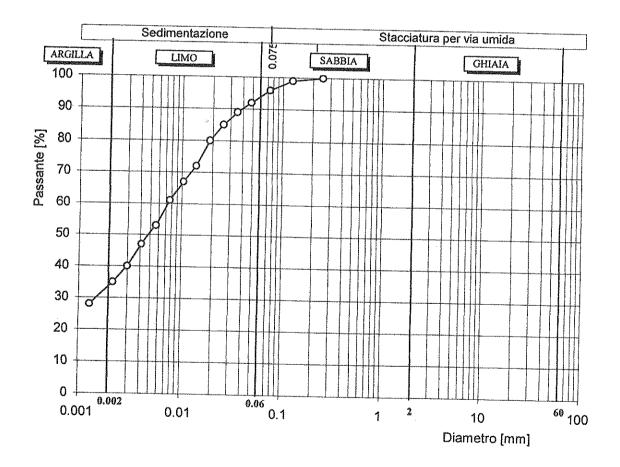
Cert. N. 69

сJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:


Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-


Sondaggio N. 7; Campione N. 2; Profondità da 18.00 a m 18.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA DEBOLMENTE SABBIOSO.-

GRANULOMETRIA [%] Ghiaia 00 Sabbia 06 Limo 60 Argilla 34

L'Ingegne e Geotecnico
(Luig Tripodi)

Cert. N. 70 c J

 $6.0 \times 6.0 = 36.0 \text{ cm}^2$

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

72.0 cm3

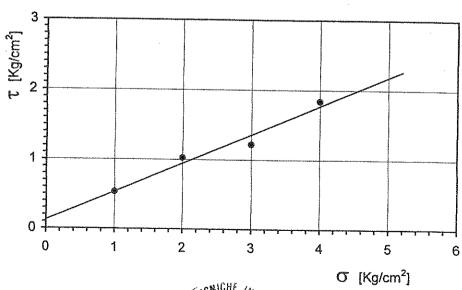
INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B -Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 7; Campione N. 2; Profondità da 18.00 a m 18.50

Altezza

PROVA DI TAGLIO DIRETTO(CD)


TIPO DI PROVA VELOCITÀ DI DEFORMAZIONE APPLICAZIONE DEL CARICO Consolidata drenata (CD) 0.004 mm/min a deformazione controllata DIMENSIONI DEI PROVINI Base

2.0 cm

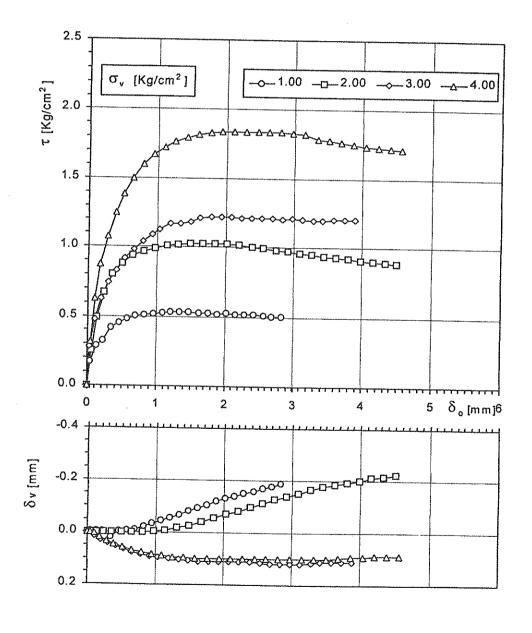
Volume

	PROVINO N.	1	2	3	4
CONDIZIONI PRIMA DELLA PRO	OVA:				
Peso dell'unità di volume	γ [t/m³]	2.159	2.242	2.128	2.199
Contenuto naturale d'acqua	W	0.099	O.111	0.109	0.143
Porosità	n	0.290	0.271	0.306	0.305
Grado di saturazione	5	0.672	0.828	0.680	0.902
CONDIZIONI INIZIALIIDI PROVA					
Pressione verticale CONDIZIONI A ROTTURA:	σ _ν [Kg/cm²]	1.00	2.00	3.00	4.00
Tensione tangenziale	τ [Kg/cm²]	0.532	1.025	1.220	1.839
Spostamento orizzontale	δ_o [mm]	1.35	1.67	1.78	2.28
Contenuto d'acqua	W _r	0.152	0.146	0.147	0.145

Coesione [Kg/cm²] c' = 0.125Angolo d'attrito [°] $\phi' = 22.37$

ECHICHE INDA

PADBA1


Geotecnico

Cert. N. 71 c J Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 7; Campione N. 2; Profondità da 18.00 a m 18.50

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

G.O.S.

L'Ingegnere Deotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dai 1984

Indagine:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 7; Campione N. 2; Profondità da 18.00 a m 18.50

PROVA DI COMPRESSIONE TRIASSIALE (UU)

TIPO DI PROVA

Non consolidata non drenata (UU)

DIMENSIONI DEI PROVINI

Diametro 3.80 cm

AltezzaVolume

7.60 cm

86.20 cm³

APPLICAZIONE DEL CARICO

a deformazione controllata

VELOCITÀ DI DEFORMAZIONE

1.00 mm/min

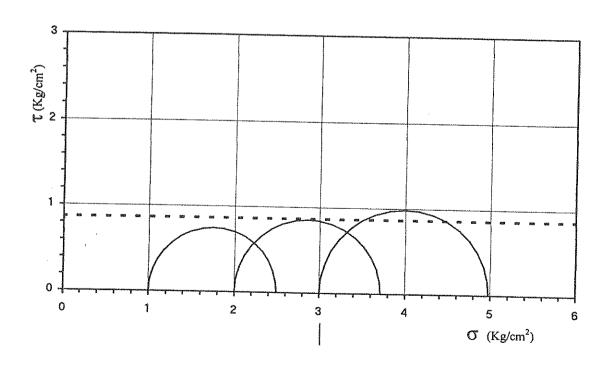
	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRO	VA:			
Peso dell'unità di volume	γ (t/m³)	2.182	2.122	2.168
Contenuto naturale d'acqua	W	0.146	0.169	0.146
Porosità	n	0.312	0.344	0.316
Grado di saturazione	5	0.891	0.890	0.873
CONDIZIONI INIZIALI DI PROVA:				0.070
Pressione laterale totaleverticale	$\sigma_3 (Kg/cm^2)$	1.00	2.00	3.00
CONDIZIONI A ROTTURA:	Property	_	1.00	5.00
Tensione deviatorica σ_1	$-\sigma_3$ (Kg/cm ²)	1.49	1.71	1.98
Deformazione assiale	ε _a (%)	25.07	19.11	20.65

L'Ingegnere Gotecnico Luigi Tripodi)

сJ

Via S. Antonello, 13 - 87040 Montatto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00)...

Sondaggio N. 7; Campione N. 2; Profondità da 18.00 a m 18.50

PROVA DI COMPRESSIONE TRIASSIALE (UU)

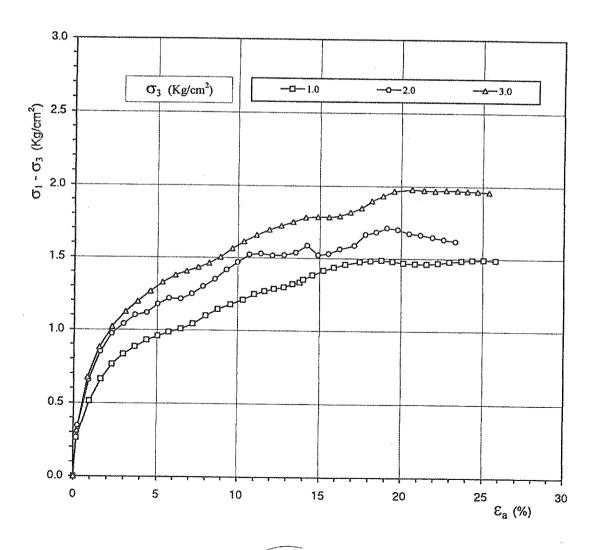
Inviluppo di rottura nel piano τ - σ

PROVINO	PROVINO σ_3		σ_c	τς	
N.	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm ²)	
1	1.00	2.49	1.75	0.75	
2	2.00	3.71	2.86	0.86	
3	3.00	4.98	3.99	0.99	
C _ =	$\Sigma \tau_c / 3 =$	0.864	(Kg/cm ²)		

STANICHE INDA

L'Ingegrere Geotecnico (Luigi Iripodi)

Cert. N. 74 cJ


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 7; Campione N. 2; Profondità da 18.00 a m 18.50

PROVA DI COMPRESSIONE TRIASSIALE (UU)

Diagramma:

Curve tensioni deviatoriche - deformazioni assiali $(\sigma_1$ - σ_3 - $\epsilon_a)$

CONTROL STATE OF THE STATE OF T

L'Ingegnes Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B -Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 8; Campione N. 1; Profondità da 15.00 a m 15.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 29/01/2004

Data di apertura: 23/03/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla moderatamente consistente con inclusi minuti elementi Ighialosi a spigoli vivi. Colore grigio scuro con venature nerastre.-

PROPRIETA' INDICI:	Charles and the Control of the Contr	
Peso specifico	$\gamma_{\rm s} = 2.735$	[t/m³
Peso dell'unità di volume	$\gamma = 2.184$	[t/m ³]
Peso secco unità di volume	$\gamma_{d} = 1.931$	[t/m ³]
Contenuto naturale d'acqua	w = 0.131	£
Porosità	n = 0.294	
Indice di porosità	e = 0.416	
Grado di saturazione	S = 0.861	

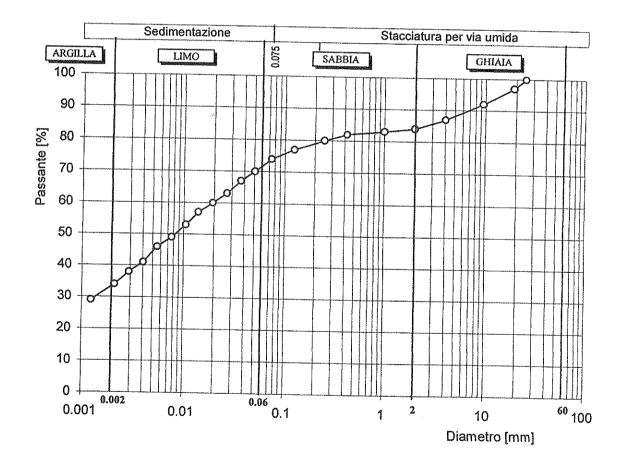
Limite di Liquidità $W_L = 0.450$ Limite di Plasticità $W_P = 0.198$ Indice di plasticità $I_P = 0.252$ Indice di Consistenza $I_C = 1.266$ Indice di Attività $A = 0.764$ DIAGRAMMA DI PLASTICITA: 100 BASSA MEDIA ALTA 100 0 20 40 60 80 100 WL [%]		LIMITI DI ATTERRERO E UIDIO						
Limite di Plasticità $W_P = 0.198$ Indice di plasticità $I_P = 0.252$ Indice di Consistenza $I_C = 1.266$ Indice di Attività $A = 0.764$ DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 100 0 20 40 60 80 100	į	LIMITI DI ATTERBERG E INDICI:						
Indice di plasticità $I_P = 0.252$ Indice di Consistenza $I_C = 1.266$ Indice di Attività $A = 0.764$ DIAGRAMMA DI PLASTICITA: BASSA MEDIA ALTA 40 20 0 20 40 60 80 100		Limite di Liquidità $W_L = 0.450$						
Indice di plasticità $I_P = 0.252$ Indice di Consistenza $I_C = 1.266$ Indice di Attività $A = 0.764$ DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 40 20 0 20 40 60 80 100		Limite di Plasticità $W_P = 0.198$						
Indice di Consistenza $I_C = 1.266$ Indice di Attività $A = 0.764$ DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 40 20 0 20 40 60 80 100		1 1 1 1 1 1						
Indice di Attività								
Indice di Attività	The state of the s	•						
Indice di Attività		Indice di Consistenza L = 1266						
DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 40 20 0 20 40 60 80 100								
100 BASSA MEDIA ALTA 40 20 0 20 40 60 80 100	1	71 - 0.704						
100 BASSA MEDIA ALTA 40 20 0 20 40 60 80 100		DIACRAMMA DI DI ACTIONI						
80 40 20 0 20 40 60 80 100								
80 40 20 0 20 40 60 80 100	***************************************	BASSA MEDIA CALTA						
20 20 40 60 80 100								
20 20 40 60 80 100		6) 6						
20 20 40 60 80 100								
20 0 20 40 60 80 100		00						
20 0 20 40 60 80 100								
20 0 20 40 60 80 100		40						
20 0 20 40 60 80 100								
0 20 40 60 80 100		20						
0 20 40 60 80 100								
12 02 00 100		0						
W _L [%]		0 20 40 60 80 100						
		W _L [%]						

Prove meccaniche eseguite:

- Taglio diretto (CD) con determinazione della Resistenza di Picco e Residua
- Compressione uniassiale (ELL)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 8; Campione N. 1; Profondità da 15.00 a m 15.50

ANALISI GRANULOMETRICA CAMPIONE GLOBALE

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA GHIAIOSO SABBIOSO.-

GRANULOMETRIA [%] Ghiaia 16 | Sabbia 12 | Limo 39 | Argilla 33

SENTECNICHE MORES

L'Ingegnere Geotecnico (Luigi Trigodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dai 1984

INDAGINE: L

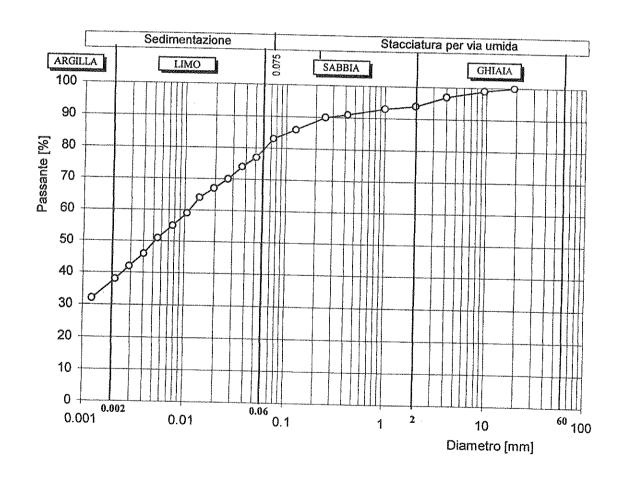
Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 8; Campione N. 1; Profondità da 15.00 a m 15.50

ANALISI GRANULOMETRICA PROVINO DI COMPRESSIONE UNIASSIALE

CLASSIFICA Norme A.G.I.

LIMO CON ARGILLA SABBIOSO DEB. GHIAIOSO.-


GRANULOMETRIA [%]

Ghiala 06

Sabbia 14

Limo 43

Argilla 37

'Ingegnere Geotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Lavori di costruzione della SS 106 Jonica (E 90) cat. B -INDAGINE: Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 8; Campione N. 1; Profondità da 15.00 a m 15.50

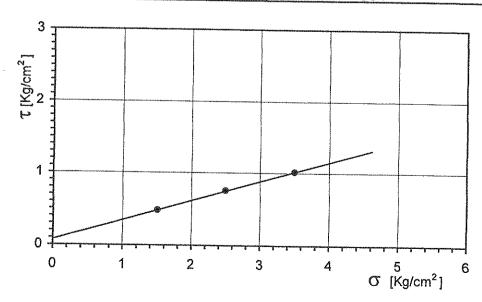
PROVA DI TAGLIO DIRETTO(CD) RESISTENZA DI PICCO

TIPO DI PROVA

VELOCITÀ DI DEFORMAZIONE

0.004 mm/min APPLICAZIONE DEL CARICO

a deformazione controllata


DIMENSIONI DEI PROVINI

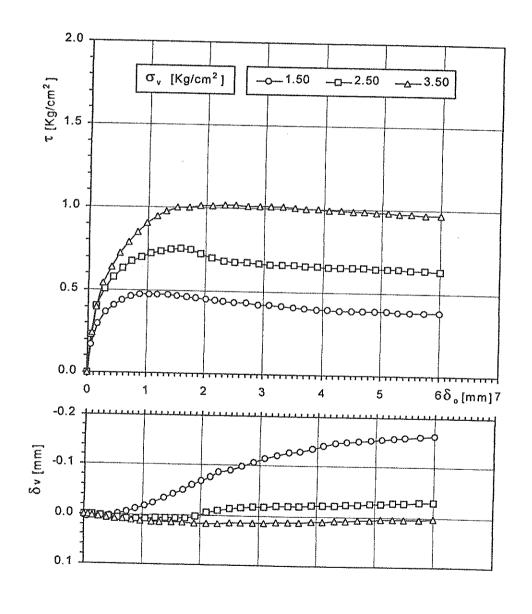
Consolidata drenata (CD)

162	$6.0x6.0 = 36.0 \text{ cm}^2$	1 .	***************************************		
Dase	6 0x6 0 - 36 0 cm2				
1000	$6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza	200	11/-1	700
			2.0 cm	i Volum <i>e</i>	7/() cm)
				I TOTALINO	/ Z · O O III]

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRO	DVA:			
Peso dell'unità di volume	γ [t/m³]	2.166	2.160	2.139
Contenuto naturale d'acqua	W	0.156	0.155	0.136
Porosità	n	0.315	0.317	0.311
Grado di saturazione	5	0.930	0.918	0.820
CONDIZIONI INIZIALI DI PROVA:				-
Pressione verticale CONDIZIONI A ROTTURA:	σ _ν [Kg/cm²]	1.50	2.50	3.50
Tensione tangenziale	τ [Kg/cm²]	0.478	0.753	1.017
Spostamento orizzontale	δ_o [mm]	1.18	1.57	2.30
Contenuto d'acqua	W_r	0.193	0.164	0.154

- 1	The same of the sa			
- 1	A . A ?-			
1	Coesione [Ka/cm ²]		0.070	
	COCORDIO INDICINI	<i>C</i> ==	U.U.M	Angolo d'attrito $[\circ] \circ \circ = 15.07$
				μ μου σανατικό φ = 15,07

Geotecnico (Luigi Trigodi)


сJ

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 8; Campione N. 1; Profondità da 15.00 a m 15.50

PROVA DI TAGLIO DIRETTO (CD) RESISTENZA DI PICCO

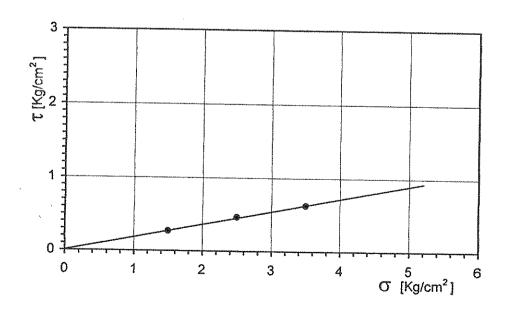
Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnete Geotecnico (Luigi Hipodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.lt

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:


E: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 8; Campione N. 1; Profondità da 15.00 a m 15.50

PROVA DI TAGLIO DIRETTO(CD) RESISTENZA RESIDUA

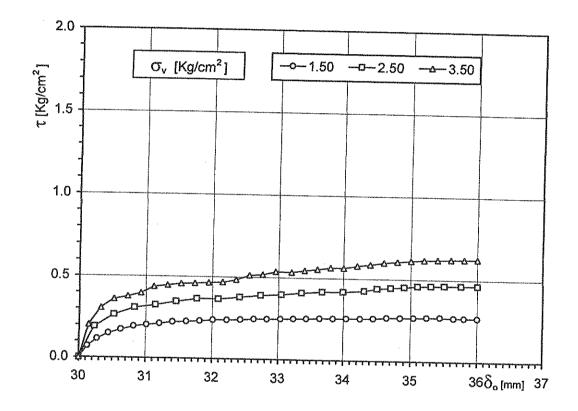
TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICAZIONE DEL CARICO
Consolidata drenata (CD)	0.004 mm/min	a deformazione controllata
DIMENSIONI DEI PROVINI		
Base $6.0 \times 6.0 = 36.0 \text{ cm}$	² Altezza 2.0 cm	Volume 72.0 cm ³

	PROVINO N	4	5	6
CONDIZIONI INIZIALI DI PROVA;				
Pressione verticale CONDIZIONI A RESIDUO:	σ _v [Kg/cm²]	1.50	2.50	3.50
Tensione tangenziale residua	τ [Kg/cm²]	0.270	0.465	0.626
Spostamento orizzontale	δ_o [mm]	36.00	36.00	36.00
Contenuto d'acqua	W_r	0.193	0.164	0.154
Coesione [Kg/cm 2] $c' =$	0.009	Angolo d'att	rito [°] φ'=	10.09

L'Ingegnera Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Lavori di costruzione della SS 106 Jonica (E 90) cat. B -INDAGINE: Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a

Mandatoriccio (km 306+00).-

Sondaggio N. 8; Campione N. 1; Profondità da 15.00 a m 15.50

PROVA DI TAGLIO DIRETTO (CD) RESISTENZA RESIDUA

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

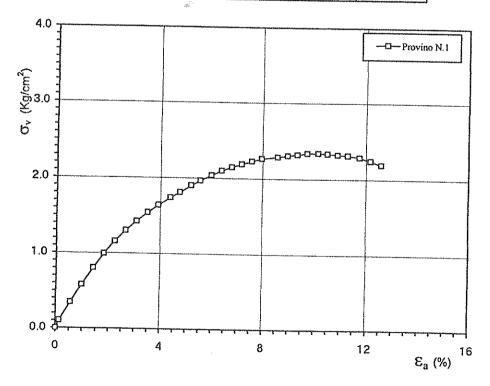
otecnico (Luigi

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 8; Campione N. 1; Profondità da 15.00 a m 15.50


PROVA DI COMPRESSIONE UNIASSIALE (ELL)

DIMENSIONI DEI PROVINI	
• Diametro 5.00 cm	Altezza 10.00 cm

VELOCI	TÀ DI DEFORM	AZIONE
3.00	mm/min	

Diagramma: Curve tensioni deviatoriche - deformazione assiale $(\sigma_v$ - $\epsilon_a)$

	PROVINO N.	1
CONDIZIONI PRIMA DELLA PR		
Peso dell'unità di volume	γ (t/m ³)	2.212
Contenuto naturale d'acqua	w	0.113
Porosità	n	0.273
Grado di saturazione	5	0.820
CONDIZIONI A ROTTURA:		
Tensione deviatorica	σ _ν (Kg/cm²)	2.34
Deformazione assiale	ε _a (%)	10.16

L'ingernere Geotecnico
(L'uigi Iripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 8; Campione N. 2; Profondità da 24.10 a m 24.60

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 30/01/2004 Data di apertura: 25/03/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Argilla marnosa con elementi lapidei a spigoli vivi, di colore grigio con venature carbonatiche biancastre.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_{\rm s} = 2.744$	[t/m ³]
Peso dell'unità di volume	$\gamma = 2.086$	$[t/m^3]$
Peso secco unità di volume	$\gamma_d = 1.923$	$\lceil t/m^3 \rceil$
Contenuto naturale d'acque	w = 0.085	L-,]
Porosità	n = 0.299	
Indice di porosità	e = 0.427	
Grado di saturazione	S = 0.546	

Limite di Liquidità $W_L = 0.424$ Limite di Plasticità $W_P = 0.182$ Indice di plasticità $I_P = 0.242$ Indice di Consistenza $I_C = 1.401$ Indice di Attività $A = 1.274$ DIAGRAMMA DI PLASTICITA' 100 BASSA MEDIA ALTA 100 0 20 40 60 80 100 WL [%]								-
Limite di Plasticità $W_P = 0.182$ Indice di plasticità $I_P = 0.242$ Indice di Consistenza $I_C = 1.401$ Indice di Attività $A = 1.274$ DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 100 0 20 40 60 80 100		t		$W_L =$	0.42	4		
Indice di plasticità $I_P = 0.242$ Indice di Consistenza $I_C = 1.401$ Indice di Attività $A = 1.274$ DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 40 20 0 20 40 60 80 100		Limite di Plasticità						
Indice di Consistenza $I_C = 1.401$ Indice di Attività $A = 1.274$ DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 60 40 20 0 20 40 60 80 100		Indice a	li plasti	cità				
Indice di Attività A = 1.274 DIAGRAMMA DI PLASTICITA BASSA MEDIA ALTA 40 20 0 20 40 60 80 100			1			·r -	0,2-1	<u>د.</u>
Indice di Attività A = 1.274 DIAGRAMMA DI PLASTICITA BASSA MEDIA ALTA 40 20 0 20 40 60 80 100								
Indice di Attività A = 1.274 DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 40 20 0 20 40 60 80 100		المسالس مرا						
DIAGRAMMA DI PLASTICITA' 100 BASSA MEDIA ALTA 40 20 0 20 40 60 80 100					3	lc =	1.401	
100 BASSA MEDIA ALTA 40 20 0 20 40 60 80 100		Indice d	i Attivii	tà		_ A =	1.274	
100 BASSA MEDIA ALTA 40 20 0 20 40 60 80 100		_						
100 BASSA MEDIA ALTA 40 20 0 20 40 60 80 100			DIAG	RAMMA	DIP	LASTICI	TA'	
60 40 20 0 20 40 60 80 100		100 🕆	Г	T T	1	Γ		
60 40 20 0 20 40 60 80 100		Ì	BASSA	MEDV		ALTA		
60 40 20 0 20 40 60 80 100		₹ 80 ±			T'	L		
0 20 40 60 80 100								
40 20 0 20 40 60 80 100								
20 0 20 40 60 80 100		00						
20 0 20 40 60 80 100								
0 20 40 60 80 100		40				-/		
0 20 40 60 80 100					؍ ا			
0 20 40 60 80 100		20 🕂						
0 20 40 60 80 100							Ì	
0 20 40 60 80 100		0						1
10 00 00 100		• ,	20	40	er	0.0		Ī
t [70]		v	20	70	U	•		ļ
						"L	1,01	
	ŧ	·						

LIMITI DI ATTERBERG E INDICI:

Prove meccaniche eseguite:

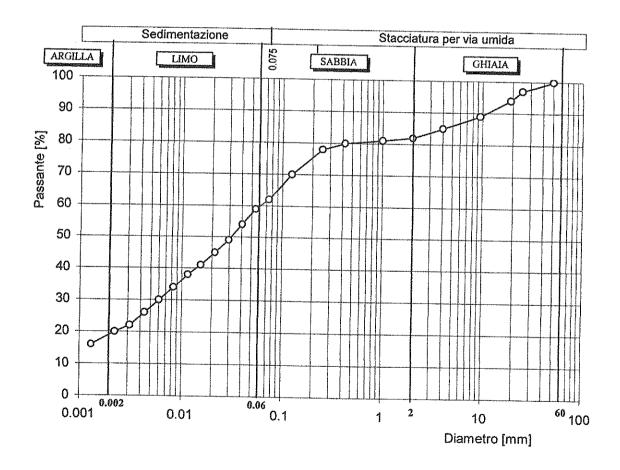
Taglio diretto (CD)

SOUTH INDER THE SOUTH OF THE SO

Eingegne Geotecnico (Langi Fripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dai 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 8; Campione N. 2; Profondità da 24.10 a m 24.60

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO SABBIOSO ARGILLOSO GHIAIOSO.-

GRANULOMETRIA [%]	Ghiaia 18 Sabbia 22 Limo 41 Argilla 1	9
	J	~ 1

E Program - The Park

L'Ingegnere Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 8; Campione N. 2; Profondità da 24.10 a m 24.60

PROVA DI TAGLIO DIRETTO(CD)

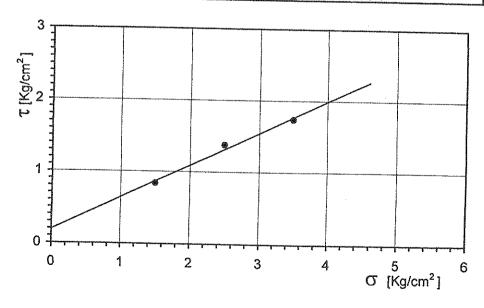
TIPO DI PROVA

VELOCITÀ DI DEFORMAZIONE

Consolidata drenata (CD)

O.004 mm/min

APPLICAZIONE DEL CARICO


a deformazione controllata

DIMENSIONI DEI PROVINI

Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cmVolume 72.0 cm^3

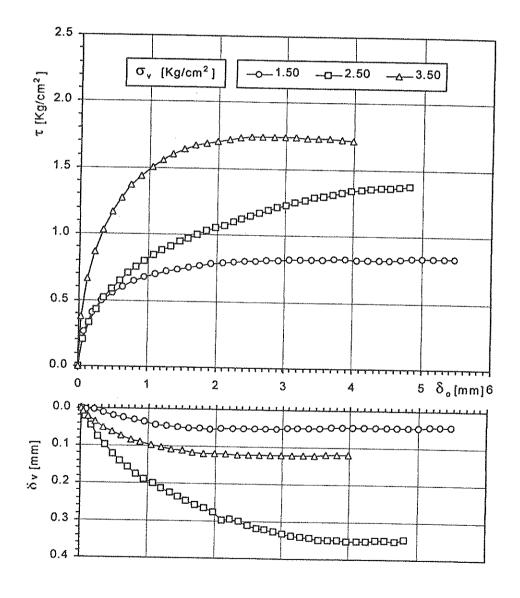
	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRI	OVA:			
Peso dell'unità di volume	γ [t/m 3]	2.138	2.043	2.079
Contenuto naturale d'acqua	W	0.089	0.079	0.086
Porosità	n	0.285	0.310	0,303
Grado di saturazione	5	0.614	0.484	0.545
CONDIZIONI INIZIALI DI PROVA:				0.0.0
Pressione verticale CONDIZIONI A ROTTURA:	σ _ν [Kg/cm²]	1.50	2.50	3.50
Tensione tangenziale	τ [Kg/cm²]	0.835	1.377	1.738
Spostamento orizzontale	δ_o [mm]	5.00	4.81	2.99
Contenuto d'acqua	W_r	0.149	0.134	0.137

Coesione [Kg/cm²] c' = 0.188 Angolo d'attrito [°] $\phi' = 24.29$

L'Ingegnere (cotecnico (Luigi Tipodi)

Cert. N. 86

сJ


INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 8; Campione N. 2; Profondità da 24.10 a m 24.60

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (t) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

Ungegrare Geotecnico (Luigi Fripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 10; Campione N. 1; Profondità da 14.80 a m 15.30

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 06/02/2004

Data di apertura: 13/04/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Argilla consistente grigio scura con noduli marnosi grigio chiari e concrezioni carbonatiche biancatre.-

PROPRIETA' INDICI:	790	
Peso specifico	$\gamma_{\rm s} = 2.769$	[t/m³-
Peso dell'unità di volume	$\gamma = 2.191$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.988$	$[t/m^3]$
Contenuto naturale d'acque	w = 0.102	., -
Porosità	n = 0.282	
Indice di porosità	e = 0.393	
Grado di saturazione	5 = 0.719	

Limite di Liquidità $W_L = 0.378$ Limite di Plasticità $W_P = 0.213$ Indice di Plasticità $I_P = 0.165$ Indice di Consistenza $I_C = 1.673$ Indice di Attività $A = 0.500$ DIAGRAMMA DI PLASTICITA' 100 BASSA MEDIA ALTA 40 20 0 20 40 60 80 100 WL [%]	LIMITI DI ATTERBERG E INDICI:				
Limite di Plasticità $W_P = 0.213$ Indice di plasticità $I_P = 0.165$ Indice di Consistenza $I_C = 1.673$ Indice di Attività $A = 0.500$ DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 40 20 0 20 40 60 80 100					
Indice di Consistenza $I_{c}=1.673$ Indice di Attività $A=0.500$ DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 100 BASSA MEDIA ALTA 20 0 20 40 60 80 100	· ·				
Indice di Attività A = 0.500 DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 60 40 20 0 20 40 60 80 100					
100 BASSA MEDIA ALTA 60 40 20 0 20 40 60 80 100					
10 00 00 100	100 BASSA MEDIA ALTA 60 40 20 0				
	10 00 80 100				

Prove meccaniche eseguite:

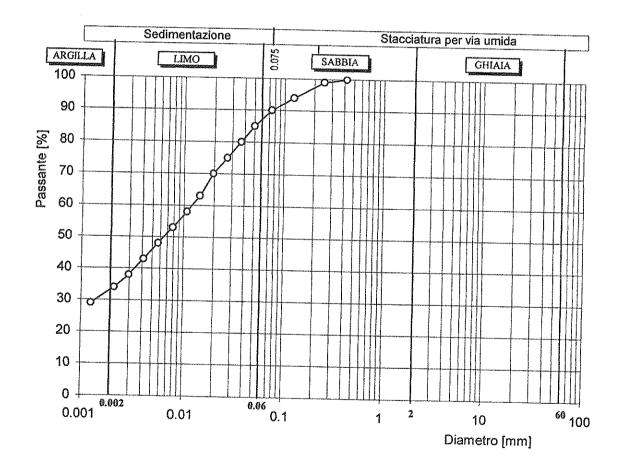
- Taglio diretto (CD)
- Compressione triassiale (CD)

CONTRACTOR OF THE CONTRACTOR O

L'Ingeguere (leotecnico (Luigi Irigodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00)...

Sondaggio N. 10; Campione N. 1; Profondità da 14.80 a m 15.30

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA SABBIOSO.-

GRANULOMETRIA [%] Ghiaia 00 Sabbia 13 Limo 54 Argilla 33

L'Ingegnere Geotecnico (Luigi Thipodi)

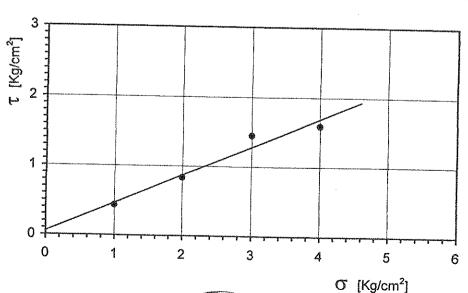
Cert. N. 89 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 10; Campione N. 1; Profondità da 14.80 a m 15.30


PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICAZIONE DEL CARICO
Consolidata drenata (CD)	0.004 mm/min	a deformazione controllata
DIMENSIONI DEI PROVINI		
Base $6.0 \times 6.0 = 36.0 \text{ cm}^3$	Altezza 2.0 cm	Volume 72.0 cm ³

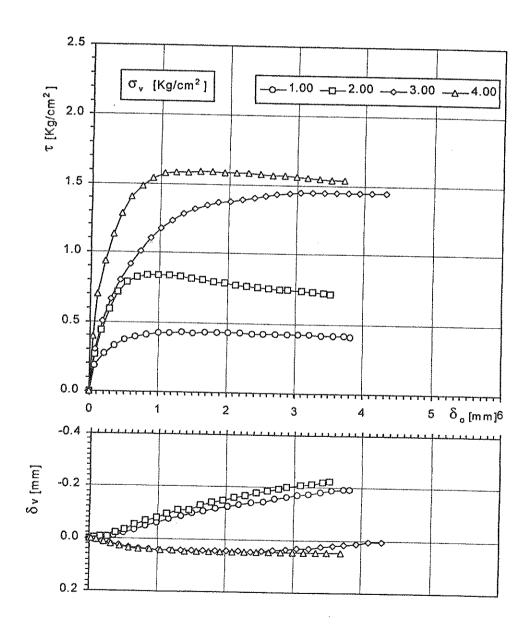
	PROVINO N.	1	2	3	4
CONDIZIONI PRIMA DELLA PRI	OVA:				
Peso dell'unità di volume	γ [t/m³]	2.220	2.211	2.110	2.166
Contenuto naturale d'acqua	W	0.100	0.132	0.105	0.099
Porosità	n	0.271	0.295	0.310	0.288
Grado di saturazione	5	0.745	0.876	0.645	0.676
CONDIZIONI INIZIALI DI PROVA:	.				0.0,0
Pressione verticale	σ _v [Kg/cm²]	1.00	2.00	3.00	4.00
CONDIZIONI A ROTTURA:	æ [†]				
Tensione tangenziale	τ [Kg/cm²]	0.432	0.835	1.450	1.590
Spostamento orizzontale	δ_0 [mm]	2.02	0.99	3.58	1.58
Contenuto d'acqua	Wr	0.164	0.163	0.151	0.148

Angolo d'attrito [º]

c' = 0.055

L'Ingegnere Geotecnico
(Luigi Tripadi)

 $\phi' = 22.24$


Coesione [Kg/cm²]

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 10; Campione N. 1; Profondità da 14.80 a m 15.30

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnere Ocotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 10; Campione N. 1; Profondità da 14.80 a m 15.30

PROVA DI COMPRESSIONE TRIASSIALE (CD)

TIPO DI PROVA

Consolidata drenata (CD)

MODALITÀ DI PROVA

Applicazione di "back pressure" (u_o)

DIMENSIONI DEI PROVINI

Diametro 3.80 cm

Altezza 7.60 cm

Volume 86.20 cm³

APPLICAZIONE DEL CARICO

a deformazione controllata

VELOCITÀ DI DEFORMAZIONE

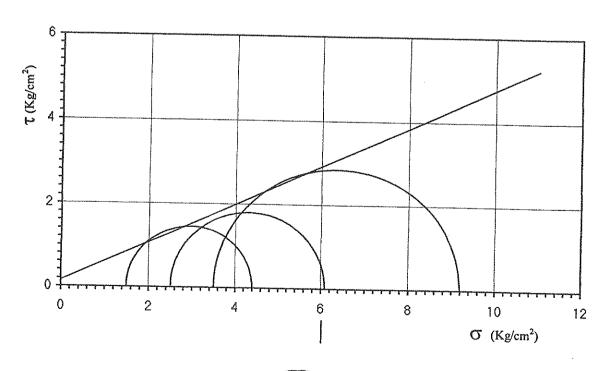
0.004 mm/min

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PROVA:				
Peso dell'unità di volume	γ [t/m³]	2.210	2.215	2.187
Contenuto naturale d'acqua	w	0.096	0.096	
Porosità	n	0.272		0.091
Grado di saturazione	5	0.272	0.271 0.720	0.276 0.660
CONDIZIONI INIZIALI DI PROVA:			0.720	0.000
Pressione laterale totale	σ ₃ [Kg/cm ²]	3.50	4.50	5.50
Back pressure	u _o [Kg/cm²]	2.00	2.00	2.00
Pressione laterale effettiva	σ ₃ ' [Kg/cm ²]	1.50	2.50	3.50
CONSOLIDAZIONE:			2.00	5.50
Variazione di volume	ΔΥ/Υ [%]	0.116	0.232	0740
CONDIZIONI A ROTTURA:		0.110	0.202	0.348
Tensione deviatorica σ_1 - σ_2	₃ [Kg/cm ²]	2.900	3.594	5.697
Deformazione assiale	ε _a [%]	6.58	11.39	9.60
Contenuto d'acqua a rottura	W _r	0.146	0.146	0.130

Il Ingegnere Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 10; Campione N. 1; Profondità da 14.80 a m 15.30

PROVA DI COMPRESSIONE TRIASSIALE (CD)

Inviluppo di rottura nel piano τ - σ

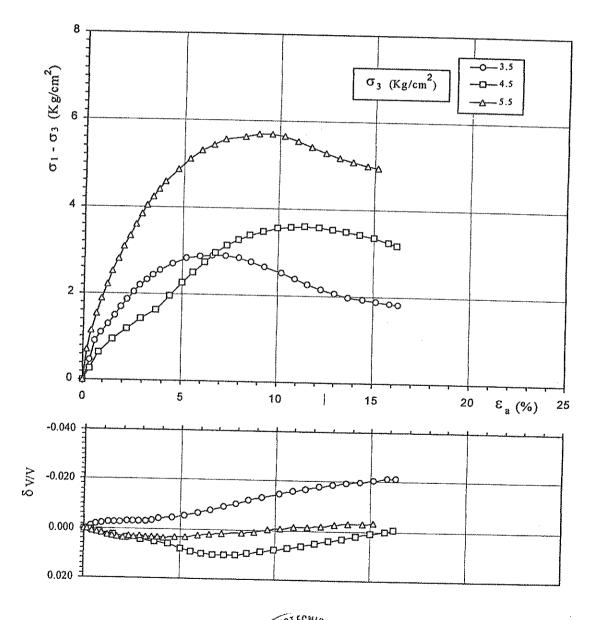
PROVINO	σ_3	σ_1	σ_c	$ au_c$
N.	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)
1	1.50	4.400	2.950	1.450
2	2.50	6.094	4.297	1.797
3	3 .50	9.197	6.349	2.849
$c' = 0.143$ (Kg/cm ²) $\phi' = 24.82$ (°)				

LAGIC S. B. S. THE STREET

L'Ingegnere (cotecnico (Luigi Tripodi)

сJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 10; Campione N. 1; Profondità da 14.80 a m 15.30

PROVA DI COMPRESSIONE TRIASSIALE (CD)

Tensione deviatorica - deformazione assiale $(\sigma_1 \text{-} \sigma_3 \div \epsilon_a)$

L'Ingegnere Geotecnico
(Luigi Vipodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).

Sondaggio N. 10; Campione N. 2; Profondità da 24.60 a m 25.10

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 06/02/2004

Data di apertura: 21/04/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla sabbioso di colore grigio scuro con vene sabbiose biancastre.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_{\rm s} = 2.776$	[t/m³]
Peso dell'unità di volume	$\gamma = 2.262$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 2.029$	[t/m ³]
Contenuto naturale d'acque	w = 0.115	<u>.</u> <u>.</u>
Porosità	n = 0.269	
Indice di porosità	e = 0.368	
Grado di saturazione	5 = 0.867	

LIMITI DI ATTERBERG E INDICI:					
Limite di Liquidità $W_L = 0.339$					
Limite di Plasticità $W_P = 0.189$					
Indice di plasticità $I_P = 0.150$					
Indice di Consistenza $I_c = 1.493$					
Indice di Attività $A = 0.500$					
DIAGRAMMA DI PLASTICITA'					
100 BASSA ASEDIA CALE					
ALIA					
2 80					
E- loved 60					
30					
40					
™					
20					
0 20 40 60 80 100					
W _L [%]					

Prove meccaniche eseguite:

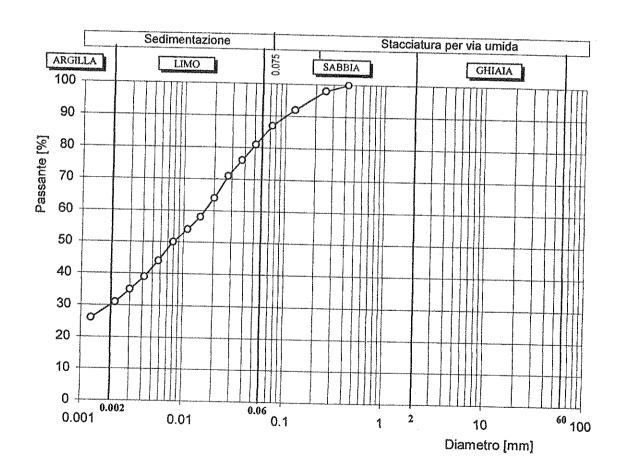
- Taglio diretto (CD)
- Compressione uniassiale (ELL)

CONICHIC TO SERVICE TO

L'Ingegnere Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 10; Campione N. 2; Profondità da 24.60 a m 25.10

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA SABBIOSO.-

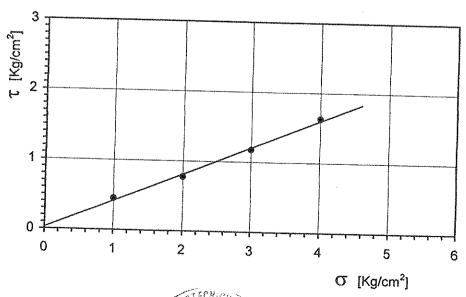
GRANULOMETRIA [%]	Ghiaia 00 Sabbia 16 Limo 54 Argill	a 30
	Argin.	a ou i

L'Ingegnere/Geotecnico
(Luigi Tripodi)

Cert. N. 96 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 10; Campione N. 2; Profondità da 24.60 a m 25.10

PROVA DI TAGLIO DIRETTO(CD)

	PROVINO N.	1	2	3	4
CONDIZIONI PRIMA DELLA PRO	VA:				
Peso dell'unità di volume	γ [t/m³]	2.158	2.123	2.174	2.114
Contenuto naturale d'acqua	w	0.133	0.141	0.120	0.044
Porosità	n	0.309	0.324	0.295	0.265
Grado di saturazione	5	0.822	0.809	0.787	0.334
CONDIZIONI INIZIALI DI PROVA:	ĺ			0.707	0.004
Pressione verticale CONDIZIONI A ROTTURA:	σ _v [Kg/cm ²]	1.00	2.00	3.00	4.00
Tensione tangenziale	τ [Kg/cm²]	0.451	0.775	1.177	1,628
Spostamento orizzontale	δ_o [mm]	0.99	2.11	0.88	2.65
Contenuto d'acqua	W _r	0.161	0.156	0.144	0.133

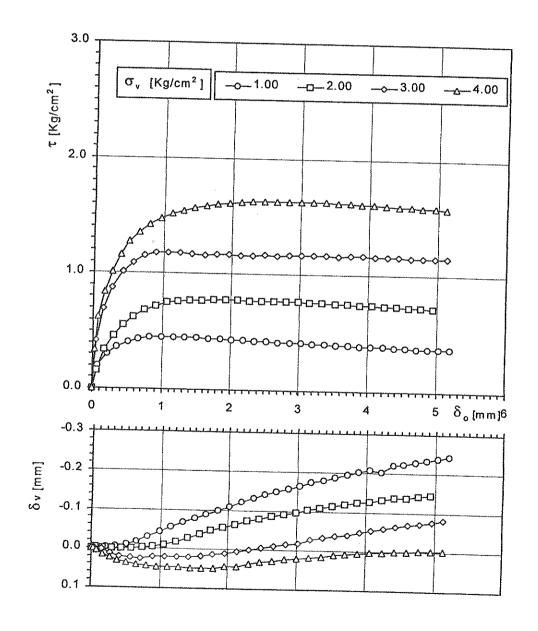
Coesione [Kg/cm²] c' = 0.024 Angolo d'attrito [°] $\phi' = 21.47$

OF ST SOMICA

Cert. N. 97 cJ

L'ingegnere Geotecnico (Luigi Trigodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 10; Campione N. 2; Profondità da 24.60 a m 25.10

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

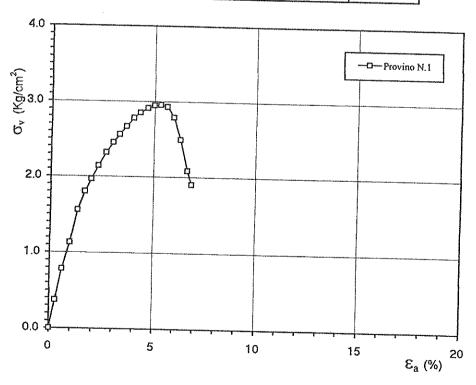
L'Ingegnere/Geotecnico
(Luigi [ripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 10; Campione N. 2; Profondità da 24.60 a m 25.10


PROVA DI COMPRESSIONE UNIASSIALE (ELL)

DIMENSIONI DEI PROVINI
Diametro 5.00 cm
Altezza 10.00 cm

VELOCITÀ DI DEFORMAZIONE 3.00 mm/min

Diagramma: Curve tensioni deviatoriche - deformazione assiale (σ_{v^-} ϵ_a)

The state of the s	ucionnazione	assiale (
	PROVINO N.	1
CONDIZIONI PRIMA DELLA P	ROVA:	
Peso dell'unità di volume	γ (t/m³)	2.262
Contenuto naturale d'acqua	W	0.115
Porosità	n	0.269
Grado di saturazione	5	0.869
CONDIZIONI A ROTTURA:		
Tensione deviatorica	σ _v (Kg/cm²)	2.96
Deformazione assiale	ε _a (%)	5.29

L'Ingegnered cotecnico (Luigi l'nipodi)

LAGIC

SERVIZI PER L'INGEGNERIA E LA GEOLOGIA

Laboratorio di Geotecnica

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90)

cat. B - Megalotto 9 - dall'aeroporto di S. Anna

(km 235+800) a Mandatoriccio (km 306+00).-

COMMITTENTE: ANAS s.p.a.

Direzione Generale Programmazione e Progettazione

Assistenti alla Progettazione: R.T.I.

- PROGER s.p.a.
- Via Ingegneria s.r.l.
- De MaCo s.r.l.
- D'Appolonia

FASCICOLO 2 di 6

Prove contenute:

DAL SONDAGGIO 11 AL SONDAGGIO 20

Dal Certificato N. 100 al Certificato N. 168

LAGIC s.a.s.
dell'Ing. Tripodi & C
Via S. Antonello, 13
87040 Montalto Uffugo CS
Pareta IVA: 01700210782

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001, e-mail: lagic@iibero.it

P.IVA 01700210782 - C.C.I.A.A. 112216 Iscr. Trib. (CS) N.7266, Vol.520

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

COMMITTENTE: ANAS s.p.a.

Direzione Generale Programmazione e Progettazione

Assistenti alla Progettazione: R.T.I.

- PROGER s.p.a.
- Via Ingegneria s.r.l.
- De MaCo s.r.l.
- D'Appolonia s.p.a.

cJ

FASCICOLO 2 di 6

PROVE GEOTECNICHE DI LABORATORIO

DAL SONDAGGIO 11 AL SONDAGGIO 20

Dal Certificato N. 100 al Certificato N. 168

Totale Certificati N. 69 di 535

PIRETTORE TECNICO (Ing. Pholo MERCURI)

L'AMMINISTRATORE L'Ingegnere Geotecnico

(Luigi TRIPODI)

dell'Ing. Tripodi & C Via S. Aptohello, 13 Via S. Aptohello, 13 87040 Montain Timugo CS Partita IVA: 01700210732

Care ocialo

Giugno 2004

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

COMMITTENTE: ANAS s.p.a.

Direzione Generale Programmazione e Progettazione

Assistenti alla Progettazione: R.T.I.

- PROGER s.p.a.
- Via Ingegneria s.r.l.
- De MaCo s.r.l.
- D'Appolonia s.p.a.

Tabella riassuntiva delle prove geotecniche di laboratorio eseguite (segue)

	FASCICOLO 2 DI 6 - CERTIFICATI DAL 100 AL 168																
	Ċ.	Profe	ondità	GR		Proprietà Indici						P	rove l	Meccan	iche		
Sond	Camp.	da m	a m	, market 1, market 1	$\gamma_{\rm S}$	γ	γ _d	e	w	W ₁	Wp	ED	TD	TD rsd	TX (UU)	TX (CD)	ELL
11	1	25.20	25.70	1	1	1	1	1	1	1	1		1	180	(00)	l (CD)	
12	I I	19.00	19.50	1	1	1	1	1	<u> </u>	1	1		1	1	1		
13	1	12.50	13.00	1	1	1	1	1	1	1	1	1	1	1	1		
13	2	18.00	18.50	1	1	1	1	1	1	1	1		1		1		
15	1	36.50	37.00	1	1	1	1	1	1	i	1		1		*	1	
15	2	51.50	52.00	1	1	1	1	1	1	1	1				1	-	
17	1	8.00	8.50	1	1	1	1	1	1	1	1		1				
17	2	13.00	13.50	1	1	1	1	1	1	1	1	***************************************				1	
18	1	15.10	15.60	1		1	1		1	***************************************							
19	1	34.50	35.00		1	1	1	1	1			***************************************	ī				
20	1	11.60	12.10	1	1	1	1		1	1	1	1	1		1		
20	2	19.10	19.60	1	1	1	1	1	1	1	1						1

LEGENDA:

GR	Analisi granulometrica	Wp	Limite di plasticità
$\gamma_{\rm S}$	Peso specifico ED		Prova di compressione edometrica
γ Peso dell'unità di volume TD		TD	Prova di taglio diretto, consolidato drenato
$\gamma_{\rm d}$	Peso secco dell'unità di volume	TD rsd	Prova di taglio diretto residuo, consolidato drenato
e	Indice di porosità	TX(UU)	Prova di compressione triassiale, non consolidata non drenata
w	Contenuto naturale d'acqua	TX(CD)	Prova di compressione triassiale, consolidata drenata
Wį	Limite di liquidità	ELL	Prova di compressione uniassiale

INDAGNE

Lavori di costruzione della SS 106 Jonica (E 90) cat. B - Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).

BAGIC Laboratorio di Geotecnica

S	Limiti di Atterberg	d	0	0.186	i de la constantina della cons	0.148	0.635	0.181	0.228	0.226	0.187			0.096	0.207	0.339
₹ 80 80	di Atte	Μb		0.251	war and the second	0.368 0.220	0.252	0.236	0.264	0.202	0.227	***************************************		0,181	0.241	0.233
Certificati dal 100 al 168 di 535	Limit	۸۸ ^۲	0.305	0.437		0.368	0.887	0.417	0.492	0.428 0.202	0.414 0.227		The state of the s	0.277	0,448 0.241	0.572 0.233
100	g	slligtA	32	\$		38	88	44	45	33	37		22224	20	37	43
3	Analisi Granulometrica [%]	omiJ	39	28		53	26	22	53	83	69	38		82	5	'n
tiffice	Ang	sidds2	25	2		G	9	2	7	က	ო	63	<u>.</u>	52	ပ	ဖ
Š	Ø	Ghiaia	4	ļ			<u></u>			ļ	ļ	-	-	2	·	
	Compressione ULLS) elsissisinU	Rg/cmg						<u>.</u>		4	***************************************				***************************************	5.23
	Compressione triassiale (CD)	୍ଦ୍ର [kg/cmq]		3.391			0.854		3.245	77 d 7 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		***************************************			1.483	
¥° 20	ssione	- ∍⊑						26.37			28.1					
Vo 11 al	Compre.	c' [kg/cmq]		***************************************	***************************************	***************************************	**************************************	0.121		**************************************	1.1	***************************************				
Sondaggio dal Nº 11 al Nº 20	Consolidazione edometrica	Eed [kg/cmq]		7		107-139-201				***************************************			7		116-155-239	
Sona	Con .	රි	6			0.17	ļ					·		ļ	0.16	••••••••
	glio O Sidua	`o-E	22.84		 				ļ ļ	# ************************************	**************************************					*********
	Prova di taglio diretto (CD) resistenza residua	c' [kg/cmq]	0.018			· · · · · · · · · · · · · · · · · · ·		***************************************		\$ 1	***************************************	***************************************	***************************************		ý da de de appe	********
		[\$ 6]	26.57	20.94		25.30	15.60	26.31		23.04			\$ 3-c	30.26	22.32	***********
ratorio	Prova di taglio diretto (CD) resistenza di picco	c' [kg/cmq]	0.143	0.216		0.016	0.107	0.121		0.138			***************************************	0.100	0.107	**********
fi labo	Grado di Saturazione	တ	0.845	0.916	*	0.994	0.966	0.975	0.975	0.948	0.968		***************************************	0.823	0.940	0.955
che c	Indice di Porosità	Ð	0.349	0.520	***************************************	0.477	0.714	0.544	0.643	0.540	0.535		•	0.438	0.560	0.517
eotecn	Porosità	=	0.259	0.342	***************************************	0.323	0.417	0.352	0.391	0.351	0.349		•	0.305	0.359	0.341
Tabella riepilogativa dei risultati delle prove geotecniche di laboratorio	Peso secco dell'unità di volume	7d [Vmc]	2.061	1.802	77	1.824	1.585	1.789	1.680	1.797	1.804	1.839		1.856	1.777	1.829
delle p	Contenuto naturale d'acqua	>	0.106	0.174	\$	0.176	0.254	0.192	0.227	0.185	0.187	0.170		0.135	0.190	0.178
sultati	Peso dell'unità di volume	γ [Vmc]	2.279	2.115		2.145	1.987	2.133	2.061	2.130	2.141	2.152		2.106	2.115	2.154
del ris	Peso Specifico	Ys [V/mc]	2.779	2.739	,	2.694	2.716	2.763	2.759	2.768	2.769			2.668	2.773	2.774
afiva	**************************************	E B	60.70	19.50	27.50	13.00	18.50	37.00	52.00	8.50	13.50	15.60	20.80	24.60	12.10	19.60
iepilog	śjibnoło19	dam	60.20	19.00	27.00 27.50	12.50	18.00	36.50	51.50 52.00	8.00	13.00	15.10	20.30	24.10	11.60 12.10	19.10
ella	enoiqmsO		*	τ-	2		~	₹	7	4	7	-	2	-	4-	~
Tab	oiggebno2		A	12	12	ದ	€ 2	15	ਨ	4	<u>~</u>	థా	&	13	ຂ	28

LAGIC

s.a.s.

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

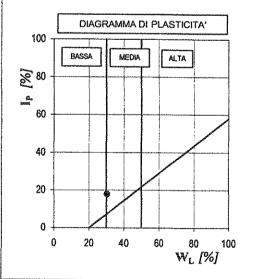
Sondaggio N. 11; Campione N. 1; Profondità da 60.20 a m 60.70

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 23/03/2004

Data di apertura: 19/04/2004


CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Argilla consistente con minuti elementi lapidei, di colore grigio scuro con vene biancastre carbonatiche.-

-	PROPRIETA' INDICI:		
	Peso specifico	$\gamma_{\rm e} = 2.779$	[t/m ³]
	Peso dell'unità di volume	$\gamma = 2.279$	[t/m ³]
	Peso secco unità di volume	$\gamma_{a} = 2.061$	$[t/m^3]$
	Contenuto naturale d'acqua	w = 0.106	
	Porosità	n = 0.259	
	Indice di porosità	e = 0.349	
-	Grado di saturazione	9 = 0.845	

LIMITI DI ATTERBERG E INDICI:						
Limite di Liquidità	$W_L = 0.305$					
Limite di Plasticità	$W_P = 0.126$					
Indice di plasticità	$I_P = 0.179$					
lie die en di Connet de la	1 440					
Indice di Consistenza	$I_c = 1.112$					
Indice di Attività	A = 0.559					

Prove meccaniche esequite:

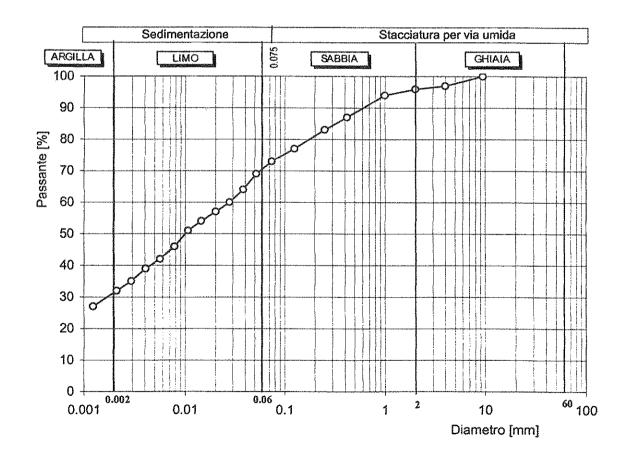
Taglio diretto (CD) con determinazione della Resistenza di Picco e Residua

L'Ingegne à Geotecnico (Luigi Tripodi)

Cert. N. 100 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dai 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 11; Campione N. 1; Profondità da 60.20 a m 60.70

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA SABBIOSO.-

GRANULOMETRIA [%] Ghiaia 04 Sabbia 25 Limo 39 Argilla 32

L'Ingegue Geotecnico (Luig Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 11; Campione N. 1; Profondità da 60.20 a m 60.70

PROVA DI TAGLIO DIRETTO(CD) RESISTENZA DI PICCO

TIPO DI PROVA

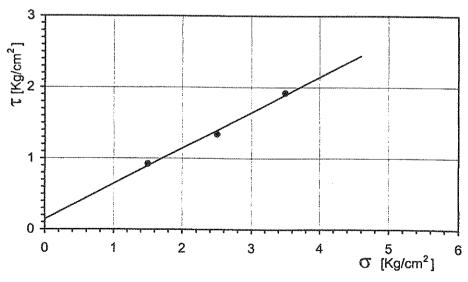
Consolidata drenata (CD)

VELOCITÀ DI DEFORMAZIONE

mm/min

APPLICAZIONE DEL CARICO

a deformazione controllata


DIMENSIONI DEI PROVINI

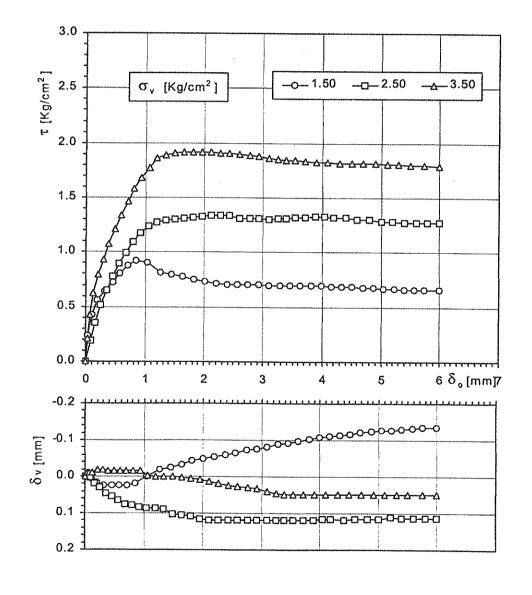
Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cm Volume 72.0 cm^3

0.004

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRO	DVA:			
Peso dell'unità di volume	γ [t/m³]	2.301	2.216	2.320
Contenuto naturale d'acqua	w	0.098	0.105	0.115
Porosità	n	0.246	0.278	0.251
Grado di saturazione	5	0.836	0.756	0.954
CONDIZIONI INIZIALI DI PROVA:				
Pressione verticale	σ, [Kg/cm²]	1.50	2.50	3.50
CONDIZIONI A ROTTURA:				
Tensione tangenziale	τ [Kg/cm²]	0.920	1.340	1.920
Spostamento orizzontale	δ_o [mm]	0.85	2.27	1.95
Contenuto d'acqua	W _r	0.117	0.123	0.124

Coesione [Kg/cm²] c' = 0.143 Angolo d'attrito [°] φ' = 26.57

L'Ingegnere Geotecnico (Luigi Tripodi)


Cert. N. 102 cJ

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 11; Campione N. 1; Profondità da 60.20 a m 60.70

PROVA DI TAGLIO DIRETTO (CD) RESISTENZA DI PICCO

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_V) - Spostamento orizzontale (δ_0)

L'Ingegneré Geotecnico
(Luigi (Pripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 11; Campione N. 1; Profondità da 60.20 a m 60.70

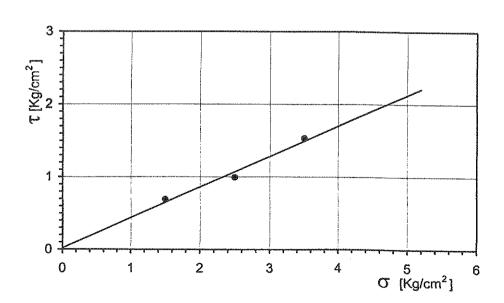
PROVA DI TAGLIO DIRETTO(CD) RESISTENZA RESIDUA

TIPO DI PROVA

VELOCITÀ DI DEFORMAZIONE

Consolidata drenata (CD)

O.004 mm/min


DIMENSIONI DEI PROVINI

Base 6.0x6.0 = 36.0 cm²

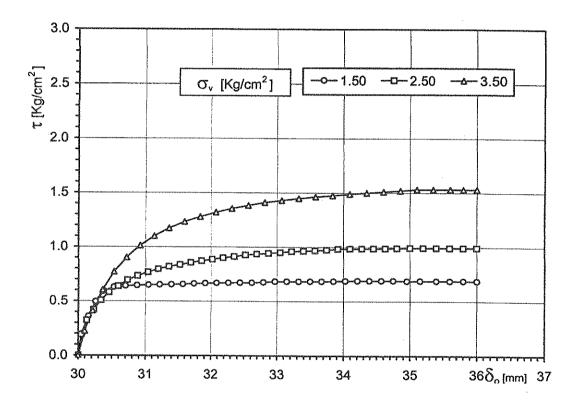
APPLICAZIONE DEL CARICO
a deformazione controllata

Volume 72.0 cm³

	PROVINO N.	4	5	6
CONDIZIONI INIZIALI DI PROVA:				
Pressione verticale CONDIZIONI A RESIDUO:	σ_{v} [Kg/cm ²]	1.50	2.50	3.50
Tensione tangenziale residua	τ [Kg/cm²]	0.689	0.993	1.532
Spostamento orizzontale	δ_o [mm]	36.00	36.00	36.00
Contenuto d'acqua	W_r	0.117	0.123	0.124
Coesione [Kg/cm²] c'=	0.018	Angolo d'att	rito [°] φ'=	22.84

L'Ingegnere Geotecnico (Luigi Fripodi) Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 11; Campione N. 1; Profondità da 60.20 a m 60.70

PROVA DI TAGLIO DIRETTO (CD) RESISTENZA RESIDUA

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_V) - Spostamento orizzontale (δ_0)

L'Ingegner Geotecnico (Luigi Kripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 12; Campione N. 1; Profondità da 19.00 a m 19.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 29/01/2004

Data di apertura: 26/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo argilloso consistente, di colore grigiastro con noduli carboniosi e puntinature nerastre.-

PROPRIETA' INDICI:		
Peso specifico Peso dell'unità di volume Peso secco unità di volume	$\gamma_{a} = 2.739$ $\gamma = 2.115$ $\gamma_{d} = 1.802$	[t/m³] [t/m³] [t/m³]
Contenuto naturale d'acque Porosità Indice di porosità Grado di saturazione	w = 0.174 n = 0.342 e = 0.520 S = 0.916	1

į	LIMITI DI ATTERBE	RG E INDICI:
	Limite di Liquidità	$W_{\rm L} = 0.437$
	Limite di Plasticità	$W_P = 0.251$
	Indice di plasticità	$I_P = 0.186$
	Indice di Consistenza	l _c = 1.414
-	Indice di Attività	A = 0.465
f		77 - 0.400
The state of the s	BASSA MEDIA 60 40 20 0 20 40	ALTA 60 80 100 WL [%]

Prove meccaniche eseguite:

- Taglio diretto (CD)
- Compressione triassiale (UU)

SECULORIE TO SECULORIES AND SECURITIES AND SECULORIES AND SECULORIES AND SECULORIES AND SECULORIES AND SECURITIES AND SECURITI

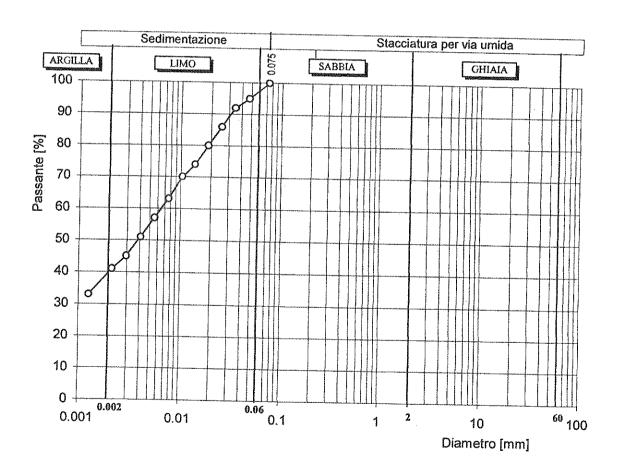
L'Ingegnere d'otecnico (Luigi Tripodi)

Cert. N. 106

сJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 12; Campione N. 1; Profondità da 19.00 a m 19.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

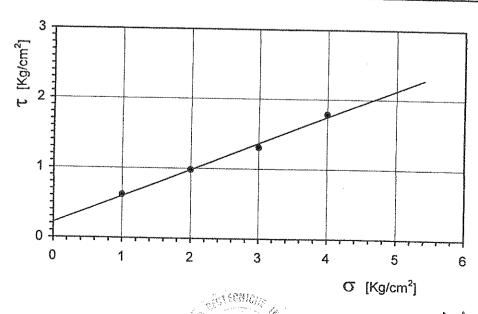
GRANULOMETRIA [%] Ghiaia 00 Sabbia 02 Limo 58 Argilla 40

L'Ingenery Geotecnico (Luigi l'ipodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-


Sondaggio N. 12; Campione N. 1; Profondità da 19.00 a m 19.50

PROVA DI TAGLIO DIRETTO(CD)

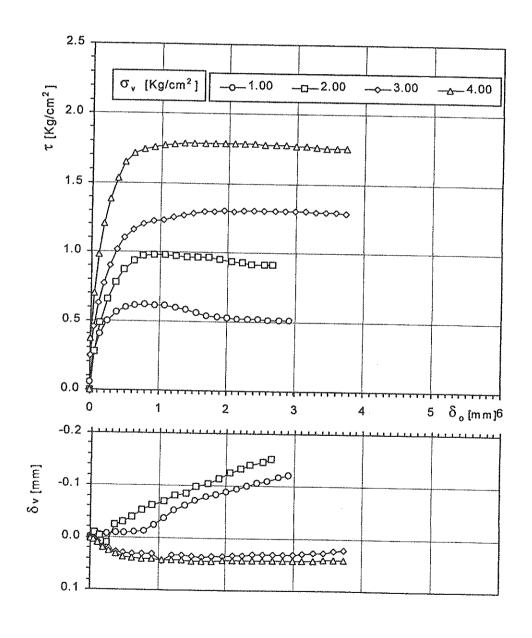
TIPO DI PROVAVELOCITÀ DI DEFORMAZIONEAPPLICAZIONE DEL CARICOConsolidata drenata (CD)0.004 mm/mina deformazione controllataDIMENSIONI DEI PROVINIBase $6.0 \times 6.0 = 36.0$ cm²Altezza 2.0 cmVolume 72.0 cm³

	PROVINO N.	1	2	3	4
CONDIZIONI PRIMA DELLA PRO	DVA:				
Peso dell'unità di volume	γ [t/m³]	2.105	2.096	2.081	2.077
Contenuto naturale d'acqua	W	0.175	0.172	0.172	0.179
Porosità	n	0.346	0.347	0.352	0.357
Grado di saturazione	5	0.905	0.887	0.869	0.885
CONDIZIONI INIZIALI DI PROYA:	***************************************				
Pressione verticale CONDIZIONI A ROTTURA:	σ _ν [Kg/cm²]	1.00	2.00	3.00	4.00
Tensione tangenziale	τ [Kg/cm²]	0.617	0.982	1.306	1.785
Spostamento orizzontale	δ _o [mm]	0.79	0.91	1.95	1.65
Contenuto d'acqua	W _r	0.203	0.187	0.185	0.188

Coesione [Kg/cm²] c' = 0.216 Angolo d'attrito [°] φ' = 20.94

L'Ingegnere Ceotecnico
(Luigi Tripodi)

Cert. N. 108 cJ


INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 12; Campione N. 1; Profondità da 19.00 a m 19.50

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnere Geotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 12; Campione N. 1; Profondità da 19.00 a m 19.50

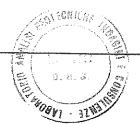
PROVA DI COMPRESSIONE TRIASSIALE (UU)

TIPO DI PROVA

Non consolidata non drenata (UU)

DIMENSIONI DEI PROVINI

Diametro 3.80 cm
Altezza 7.60 cm


• Volume 86.20 cm³

APPLICAZIONE DEL CARICO

a deformazione controllata

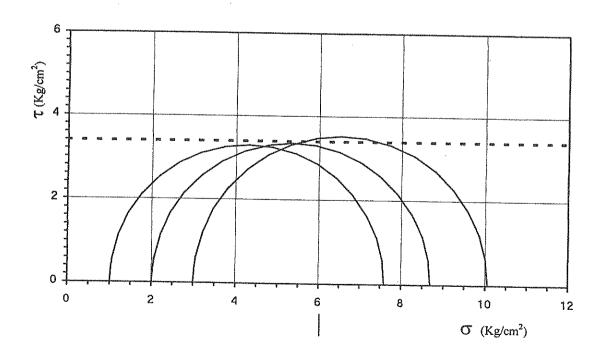
VELOCITÀ DI DEFORMAZIONE
1.00 mm/min

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PR	ROVA:			
Peso dell'unità di volume	γ (t/m³)	2.158	2.135	2.129
Contenuto naturale d'acqua	w	0.173	0.170	0.172
Porosità	n	0.328	0.334	0.337
Grado di saturazione	5	0.968	0.930	0.928
CONDIZIONI INIZIALI DI PROVI	∖ : ∫			
Pressione laterale totalevertica	le σ_3 (Kg/cm ²)	1.00	2.00	3.00
CONDIZIONI A ROTTURA:	. In the state of			SEPPENDING CO.
Tensione deviatorica	$\sigma_1 - \sigma_3 (Kg/cm^2)$	6.59	6.69	7.06
Deformazione assiale	ε _a (%)	12.38	15.11	15.99

L'Ingegnere reotecnico
(Luigi Hipodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Lavori di costruzione della SS 106 Jonica (E 90) cat. B -INDAGINE: Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

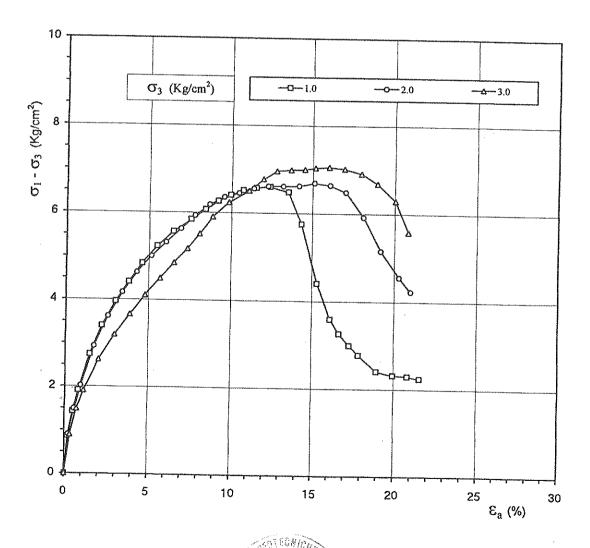
Sondaggio N. 12; Campione N. 1; Profondità da 19.00 a m 19.50

PROVA DI COMPRESSIONE TRIASSIALE (UU)

Inviluppo di rottura nel piano τ - σ

жение	PROVINO	$\sigma_{\scriptscriptstyle \mathcal{S}}$	σ_{l}	σ_c	$ au_c$
	N.	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm ²)
	1	1.00	7.59	4.30	3.30
_	2	2.00	8.69	5.35	3.35
L	3	3.00	10.06	6.53	3.53
	C _u =	$\Sigma \tau_c / 3 =$	3.391	(Kg/cm ²)	

Geotecnico (ipodi)


Cert. N. 111 сJ Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 12; Campione N. 1; Profondità da 19.00 a m 19.50

PROVA DI COMPRESSIONE TRIASSIALE (UU)

Diagramma:

Curve tensioni deviatoriche - deformazioni assiali $(\sigma_1$ - σ_3 - $\epsilon_a)$

L'Ingegnere Geotecnico (Luigi Vripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.lt

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 1; Profondità da 12.50 a m 13.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 26/01/2004 Data di apertura: 11/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo argilloso con sporadici e minuti elementi fossiliferi, di colore grigio con venature brunastre, moderatamente consistente.-

PROPRIETA' INDICI:		·
Peso specifico	$\gamma_6 = 2.694$	[t/m ³]
Peso dell'unità di volume	y = 2.145	[t/m ³]
Peso secco unità di volume	$\gamma_{d} = 1.824$	[t/m ³]
Contenuto naturale d'acque	w = 0.176	L j
Porosità	n = 0.323	
Indice di porosità	e = 0.477	
Grado di saturazione	S = 0.994	

I tourth to the	
Limite di Plasticità	$W_P = 0.220$
Indice di plasticità	$I_P = 0.148$
Indice di Consistenza	l _c = 1.297
Indice di Attività	-
THORE OF ALLANDA	A = 0.389
Parameter	
DIAGRAMINA E	OI PLASTICITA'
100	
BASSA MEDIA	ALTA
Ip [%]	
P-1	
60	
44	
40	
20	
•	
0 + - -	
0 20 40	60 80 100
	W _L [%]

LIMITI DI ATTERBERG E INDICI:

 $W_L = 0.368$

Limite di Liquidità

Prove meccaniche eseguite:

- Consolidazione edometrica
- * Taglio diretto (CD)

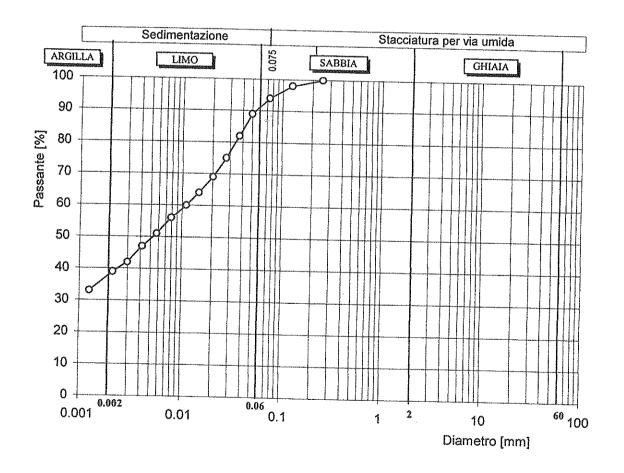
L'Ingegner (Geotecnico (Luigi Tripodi)

Cert. N. 113 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a


Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 1; Profondità da 12.50 a m 13.00

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA DEBOLMENTE SABBIOSO.-

GRANULOMETRIA [%] Ghiaia 00 | Sabbia 09 | Limo 53 | Argilla 38

L'Ingegnete Geotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B -

Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 1; Profondità da 12.50 a m 13.00

PROVA DI COMPRESSIONE EDOMETRICA

Dati sperimentali diagramma (e - $\log \sigma_v$)

DATI INIZIALI DEL PROVINO:

Altezza

= 2.00 (cm)

Peso dell'unità di volume

 $\gamma = 2.143$

(t/mc)

Diametro Volume

= 5.047 (cm)

= 40.00 (cmc)

Contenuto naturale d'acqua

w = 0.186

Indice di porosità

e = 0.4913

Grado di saturazione

S = 1.021

Contenuto d'acqua a fine prova w = 0.187

Carico	Cedimenti	Altezza Provino	Indice di porosità	Modulo Edometrico
σv	Σδν	Н	e	Eed
(Kg/cmq)	(mm)	(mm)		(Kg/cmq)
(*) 0.1	0.019	19.981	0.4899	
(*) 0.2	0.037	19.963	0.4885	
(*) 0.4	0.073	19.927	0.4858	
(*) 0.8	0.148	19.852	0.4802	
1.5	0.266	19.734	0.4714	118
3	0.543	19.457	0.4508	.107
6	0.963	19.037	0.4195	139
12	1.532	18.468	0.3770	201
24	2.216	17.784	0.3260	324
12	2.084	17.916	0.3359	
6	1.886	18.114	0.3507	
1.5	1.360	18.640	0.3899	
0.4	0.731	19.269	0.4368	

Nota: (*) il provino tende a rigonfiare

Tradition Compressibilità

Cc = 0.169

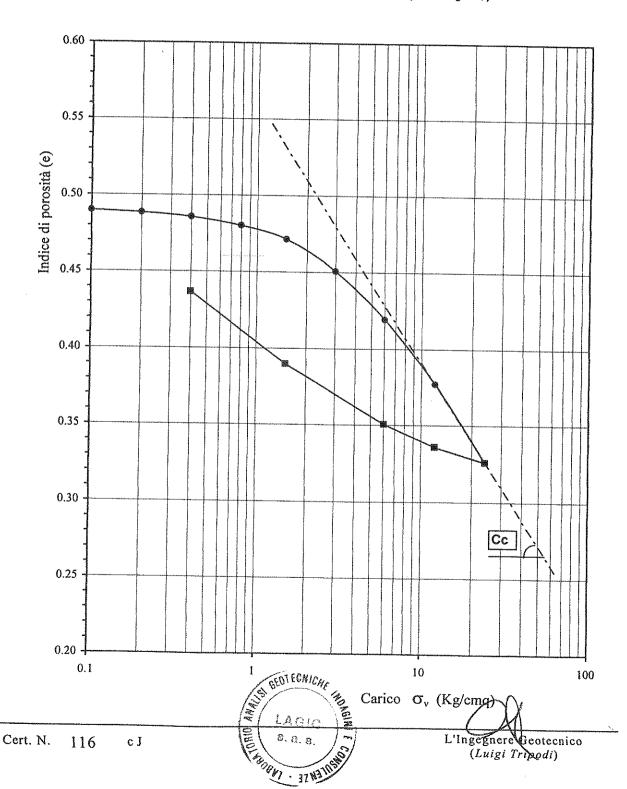
сЈ

115

Cert. N.

LAGIC S. a. s.

(Ingegate Geotecnic


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 1; Profondità da 12.50 a m 13.00

PROVA DI COMPRESSIONE EDOMETRICA

Diagramma Indice di porosità - Logaritmo del carico (e - log σ_v)

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 1; Profondità da 12.50 a m 13.00

PROVA DI COMPRESSIONE EDOMETRICA

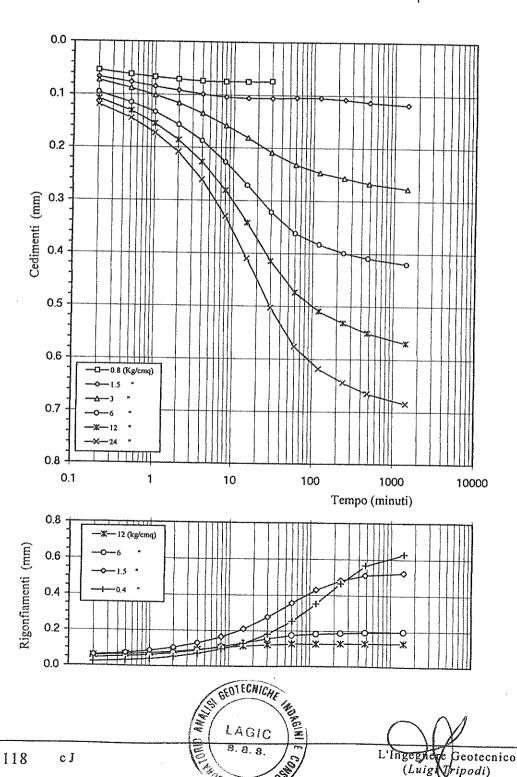
Dati sperimentali diagramma (cedimenti - tempo)

Tempo (minuti)		Cedimenti relativi ai carichi applicati (mm)				
0.2	0.054	0.067	0.073	0.096	0.108	0.119
0.5	0.062	0.077	0.088	0.115	0.131	0.145
1	0.067	0.085	0.101	0.133	0.155	0.173
2	0.071	0.092	0.116	0.157	0.186	0.209
4	0.074	0.099	0.135	0.187	0.227	0.261
8	0.075	0.104	0.158	0.227	0.281	0.330
15	0.075	0.106	0.181	0.271	0.342	0.410
30	0.074	0.106	0.209	0.322	0.415	0.503
60	(*)	0.105	0.232	0.362	0.474	0.576
120		0.105	0.247	0.383	0.509	0.618
240		0.108	0.257	0.399	0.531	0.644
480	T T T T T T T T T T T T T T T T T T T	0.113	0.267	0.409	0.550	0.665
1440		Ö.118	0.277	0.420	0.569	0.684
Carico (Kg/cmq)	0.8	1.5	3	6	12	24

Nota: (*) il provino tende a rigonfiare

TOWN TOWN

L'Ingegnere Geotecnico (Luigi Tipodi)


Cert. N.

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 1; Profondità da 12.50 a m 13.00

PROVA DI COMPRESSIONE EDOMETRICA

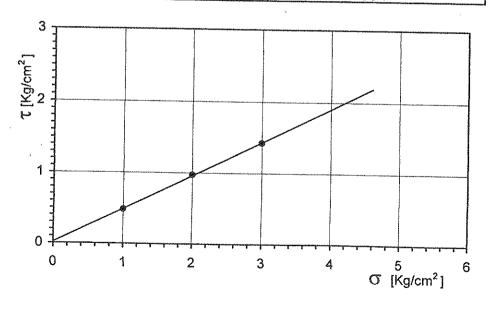
Diagramma Cedimenti/Rigonfiamenti - Logaritmo del tempo

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B-Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

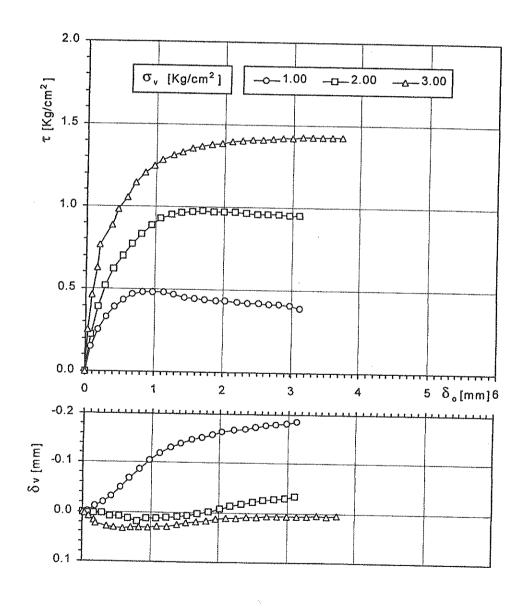

Sondaggio N. 13; Campione N. 1; Profondità da 12.50 a m 13.00

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI	PROVA	VELOCITÀ DI	DEFORMAZIONE	APPLICA	ZIONE DEL CARICO
Consoli	idata drenata (CD)	0.004 m	m/min	7	azione controllata
DIMENS	SIONI DEI PROVINI				
Ваѕе	$6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza	2.0 cm	Volume	72.0 cm ³

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRI	OVA:			
Peso dell'unità di volume	γ [t/m ³]	2.080	2.196	2,161
Contenuto naturale d'acqua	W	0.175	0.154	0.170
Porosità	n	0.343	0.294	0.314
Grado di saturazione	5	0.903	1.000	0.999
CONDIZIONI INIZIALI DI PROVA	:			
Pressione verticale CONDIZIONI A ROTTURA:	σ _v [Kg/cm²]	1.00	2.00	3.00
Tensione tangenziale	τ [Kg/cm²]	0.482	0.974	1.428
Spostamento orizzontale	δ ₀ [mm]	0.98	1.70	3.43
Contenuto d'acqua	W _r	0.193	0.166	0.182

Coesione [Kg/cm²] c' = 0.016 Angolo d'attrito [°] $\phi' = 25.30$



L'Ingegnere Geotecnico (Luigi Throdi) INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 1; Profondità da 12.50 a m 13.00

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

- 35 H3

L'Ingegnere Geotecnico (Luigi Tripadi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 2; Profondità da 18.00 a m 18.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 26/01/2004

Data di apertura: 20/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Argilla con noduli marnosi moderatamente consistente di colore grgio scuro con noduli e/o livelli carboniosi biancastri.-

PROPRIETA' INDICI:		***************************************
Peso specifico	$\gamma_s = 2.716$	[t/m³]
Peso dell'unità di volume	$\gamma = 1.987$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.585$	[t/m ³]
Contenuto naturale d'acque	w = 0.254	نہ ت
Porosità	n = 0.417	
Indice di porosità	e = 0.714	
Grado di saturazione	5 = 0.966	

Limite di Plasticità	$W_P = 0.252$
Indice di plasticità	$I_P = 0.635$
Indice di Consistenza Indice di Attività	I _c = 0.997 A = 0.934
DIAGRAMMA DI F	PLASTICITA:
100	
BASSA MEDIA	ALTA
60	
40	
20	
0	
0 20 40 ε	50 80 100 W _L [%]

LIMITI DI ATTERBERG E INDICI:

 $W_1 = 0.887$

Limite di Liquidità

Prove meccaniche eseguite:

- Taglio diretto (CD)
- Compressione triassiale (UU)

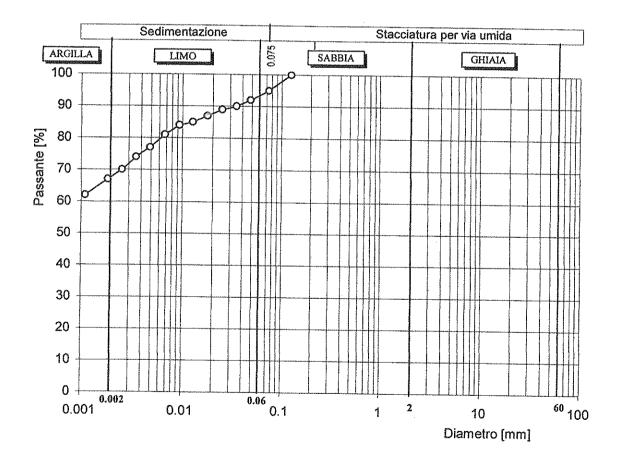
TOT LONION

L'Ingegnera Geotecnico (Luigi ripodi)

Cert. N. 121 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 2; Profondità da 18.00 a m 18.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. ARGILLA CON LIMO DEBOLMENTE SABBIOSA.-

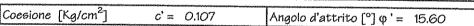
GRANULOMETRIA [%] Ghiaia 00 Sabbia 06 Limo 26 Argilla 68

L'Ingognere Ceotecnico (Luigi Trapodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:


Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-


Sondaggio N. 13; Campione N. 2; Profondità da 18.00 a m 18.50

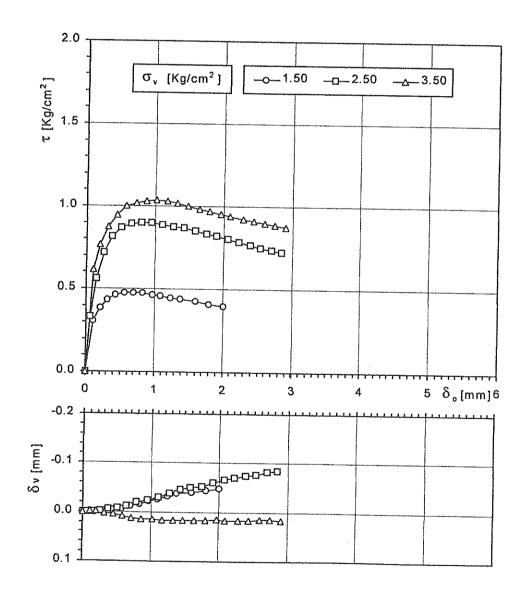
PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICAZIONE DEL CARICO
Consolidata drenata (CD)	0.004 mm/min	a deformazione controllata
DIMENSIONI DEI PROVINI		
Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza 2.0 cm	Volume 72.0 cm ³

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRO	DVA:	1 101 101 101		
Peso dell'unità di volume	γ [t/m³]	1.980	1.989	1.915
Contenuto naturale d'acqua	W	0.274	0.270	0.296
Porosità	n	0.428	0.423	0.456
Grado di saturazione	5	0.995	0.998	0.960
CONDIZIONI INIZIALI DI PROVA:				
Pressione verticale	σ, [Kg/cm²]	1.50	2.50	3.50
CONDIZIONI A ROTTURA:				
Tensione tangenziale	τ [Kg/cm²]	0.479	0.898	1.037
Spostamento orizzontale	δ ₀ [mm]	0.69	0.79	1.02
Contenuto d'acqua	W _r	0.292	0.284	0.308

L'Ingegnere Geotecnico (Luigi Tripodi)

Cert. N. 123 cJ


INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 2; Profondità da 18.00 a m 18.50

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

eotecnico

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 2; Profondità da 18.00 a m 18.50

PROVA DI COMPRESSIONE TRIASSIALE (UU)

TIPO DI PROVA

Non consolidata non drenata (UU)

DIMENSIONI DEI PROVINI

Diametro 3.80 cm

Altezza 7

7.60 cm

Volume 86.20 cm³

APPLICAZIONE DEL CARICO

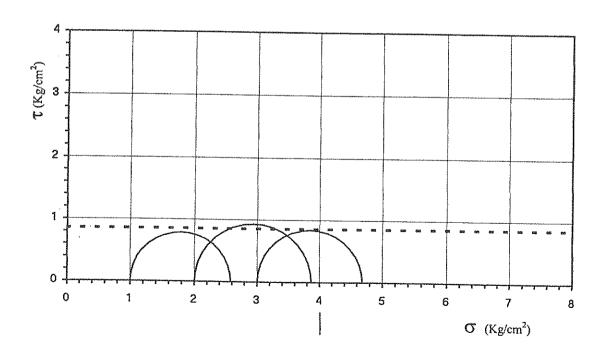
a deformazione controllata

VELOCITÀ DI DEFORMAZIONE 1.00 mm/min

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA F	PROVA:			
Peso dell'unità di volume	γ (t/m ³)	1.977	2.040	2.019
Contenuto naturale d'acqua	W	0.232	0.217	0.234
Porosità	n	0.409	0.383	0.398
Grado di saturazione	5	0.910	0.950	0.963
CONDIZIONI INIZIALI DI PROV	′A:			
Pressione laterale totalevertic	ale σ_3 (Kg/cm ²)	1.00	2.00	3.00
CONDIZIONI A ROTTURA:				0.00
Tensione deviatorica	$\sigma_1 - \sigma_3 (Kg/cm^2)$	1.58	1.86	1.68
Deformazione assiale	ε _a (%)	6.16	6.30	6.15

L'Ingegnère Geotecnico (Luigi Txigodi)

Cert. N. 125 cJ


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 2; Profondità da 18.00 a m 18.50

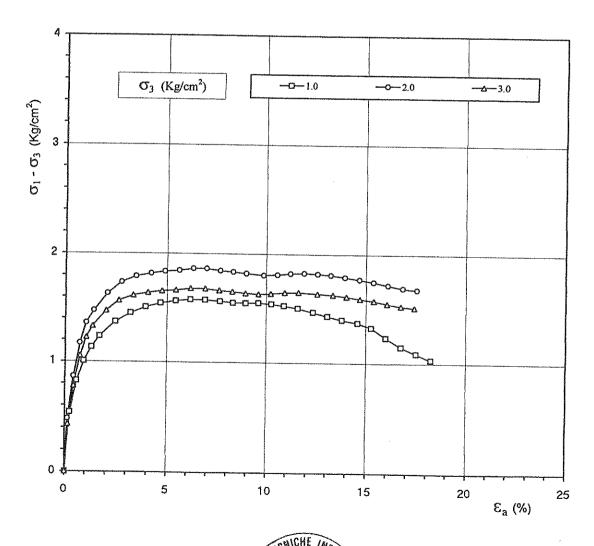
PROVA DI COMPRESSIONE TRIASSIALE (UU)

Inviluppo di rottura nel piano τ - σ

PROVINO	σ_3	σ_1	σ_c	$ au_c$
N.	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm ²)
1	1.00	2.58	1.79	0.79
2	2.00	3.86	2.93	0.93
3	3.00	4.68	3.84	0.84
C _ =	$\Sigma \tau_c / 3 =$	0.854	(Kg/cm ²)	·

Ingegner Veotecnico (Luigi Trapodi) Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 13; Campione N. 2; Profondità da 18.00 a m 18.50

PROVA DI COMPRESSIONE TRIASSIALE (UU)

Diagramma:

Curve tensioni deviatoriche - deformazioni assiali $(\sigma_1 - \sigma_3 - \epsilon_a)$

L'ingegnere Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 15; Campione N. 1; Profondità da 36.50 a m 37.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 08/03/2004

Data di apertura: 05/04/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo argilloso con minuti elmenti fossiliferi, consistente di colore grigio con puntinature nerastre.-

PROPRIETA' INDICI:		
Peso specifico	** 07C7	3_
	$\gamma_s = 2.763$	$[t/m^3]$
Peso dell'unità di volume	$\gamma = 2.133$	[t/m³]
Peso secco unità di volume	$\gamma_d = 1.789$	[t/m³]
Contenuto naturale d'acque	w = 0.192	- ,
Porosità	n = <i>0</i> .352	
Indice di porosità	e = 0.544	
Grado di saturazione	5 = 0.975	

Limite di Liquidità	$W_L = 0.417$
Limite di Plasticità	$W_P = 0.236$
Indice di plasticità	$I_P = 0.181$
! 	,
Indice di Consistenz	$I_c = 1.243$
Indice di Attività	A = 0.411
	71 - 0.111
DIAGRAMA	& P. P. C.
100 TIAGRAMM	A DI PLASTICITA'
r	
_	DIALTA
80	
Ar house	
60	
40	
20	1
0 +	
0 20 40	60 80 100
	W _L [%]

LIMITI DI ATTERBERG E INDICI:

Prove meccaniche eseguite:

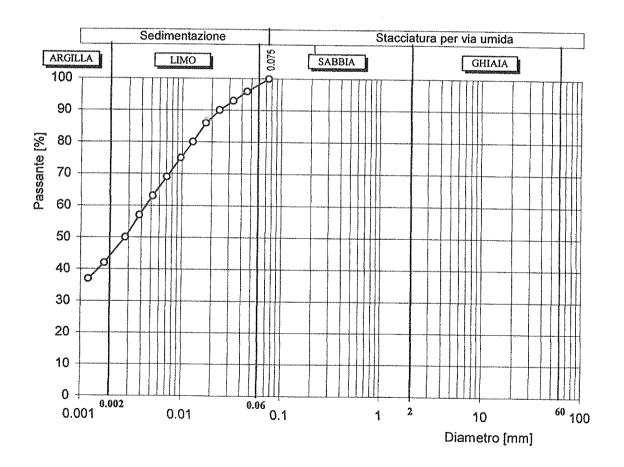
- Taglio diretto (CD)
- Compressione triassiale (CD)

LAGIG C.S. S.

L'Ingegnere (cotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 15; Campione N. 1; Profondità da 36.50 a m 37.00

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

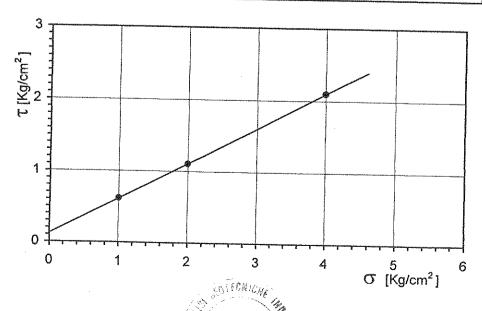
GRANULOMETRIA [%]	Ghiaia 00 Sabbia 02 Limo 54 Argilla 44	7
*		

L'Ingegnere Geotecnico (Luigi Theodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

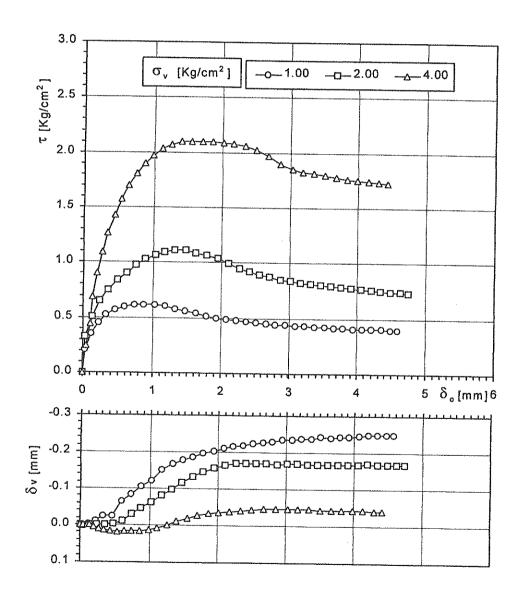

Sondaggio N. 15; Campione N. 1; Profondità da 36.50 a m 37.00

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICAZIONE DEL CARICO
Consolidata drenata (CD)	0.004 mm/min	a deformazione controllata
DIMENSIONI DEI PROVINI		
Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza 2.0 cm	Volume 72.0 cm ³

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRI	OVA:			
Peso dell'unità di volume	γ [t/m³]	2.093	2.150	2.134
Contenuto naturale d'acqua	W	0.208	0.193	0.193
Porosità	ŧ1	0.373	0.348	0.352
Grado di saturazione	5	0.965	1.000	0.979
CONDIZIONI INIZIALI DI PROVA				0.070
Pressione verticale CONDIZIONI A ROTTURA:	σ, [Kg/cm²]	1.00	2.00	4.00
Tensione tangenziale	τ [Kg/cm²]	0.617	1.107	2.100
Spostamento orizzontale	δ_o [mm]	0.88	1.32	1.55
Contenuto d'acqua	W_r	0.231	0.208	0.202

Coesione [Kg/cm²] c'= 0.121 Angolo d'attrito [°] φ'= 26.31


L'Ingegnere

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 15; Campione N. 1; Profondità da 36.50 a m 37.00

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnere Gotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 15; Campione N. 1; Profondità da 36.50 a m 37.00

PROVA DI COMPRESSIONE TRIASSIALE (CD)

TIPO DI PROVA

Consolidata drenata (CD)

MODALITÀ DI PROVA

Applicazione di "back pressure" (u_o)

DIMENSIONI DEI PROVINI

Diametro 3.80 cm

Altezza 7.60 cm

Volume 86.20 cm³


APPLICAZIONE DEL CARICO

a deformazione controllata

VELOCITÀ DI DEFORMAZIONE

0.004 mm/min

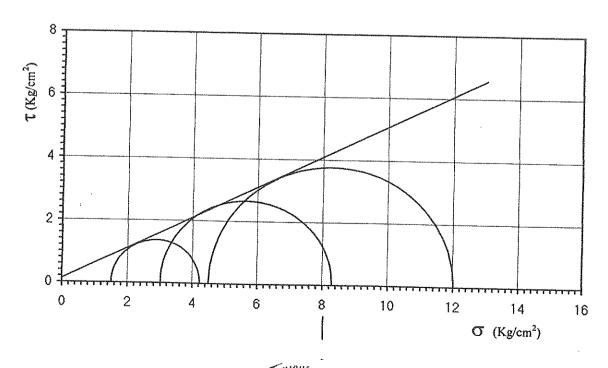
	PROVINO N	. 1	2	3
CONDIZIONI PRIMA DELLA PROVA:				
Peso dell'unità di volume	γ [t/m³]	2.167	2.143	2.138
Contenuto naturale d'acqua	W	0.179	0.187	0.189
Porosità	n	0.335	0.347	0.349
Grado di saturazione	9	0.981	0.974	0.973
CONDIZIONI INIZIALI DI PROVA:				
Pressione laterale totale	σ_3 [Kg/cm 2]	3.50	5.00	6.50
Back pressure	u _o [Kg/cm²]	2.00	2.00	2.00
Pressione laterale effettiva	σ_3 ' [Kg/cm 2]	1.50	3.00	4.50
CONSOLIDAZIONE:				
Variazione di volume	ΔΥ/Υ [%]	0.116	2.320	3.480
CONDIZIONI A ROTTURA:	* -		2.020	0.100
Tensione deviatorica σ_1 - (σ ₃ [Kg/cm ²]	2.732	5.300	7.522
Deformazione assiale	ε _a [%]	4.72	6.97	8.52
Contenuto d'acqua a rottura	w_r	0.197	0.195	0.189

L'Ingegnere Geotecnico (Luigi Tripodi)

Cert. N. 132 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00)...

Sondaggio N. 15; Campione N. 1; Profondità da 36.50 a m 37.00

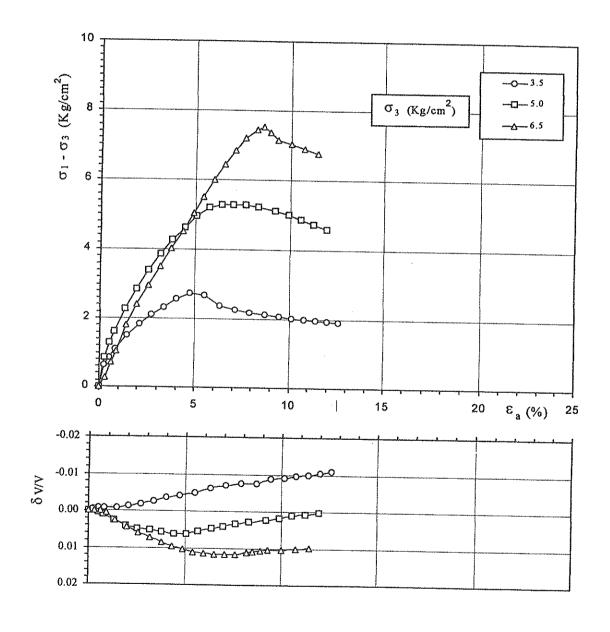
PROVA DI COMPRESSIONE TRIASSIALE (CD)

Inviluppo di rottura nel piano τ - σ

PROVINO	σ_3	σ_1	σ_c	$ au_c$
N.	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)
1	1.50	4.232	2.866	1.366
2	3.00	8.300	5.650	2.650
3	4.50	12.022	8.261	3.761
$c' = 0.121$ (Kg/cm ²) $\phi' = 26.37.(°)$				

SECULONICHE AND SECULONICHE SECULONICHI SE

ingegnere Geotecnico (Luigi Tripodi) Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 15; Campione N. 1; Profondità da 36.50 a m 37.00

PROVA DI COMPRESSIONE TRIASSIALE (CD)

Tensione deviatorica - deformazione assiale $(\sigma_1 \text{-} \sigma_3 \div \epsilon_a)$

L'Ingephere Geotecnico
(Luigh Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 15; Campione N. 2; Profondità da 51.50 a m 52.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 09/03/2004

Data di apertura: 19/04/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla consistente di colore grigio.-

PROPRIETA' INDICI:		W. W. C
Peso specifico	$\gamma_s = 2.759$	[t/m³]
Peso dell'unità di volume	$\gamma = 2.061$	[t/m³]
Peso secco unità di volume	$\gamma_{d} = 1.680$	[t/m ³]
Contenuto naturale d'acqua	w = 0.227	
Porosità	n = 0.391	
Indice di porosità	e = 0.643	
Grado di saturazione	5 = 0.975	

Limite	di Liquidità $W_L = 0.492$
Limite	di Plasticità $W_P = 0.264$
Indice	di plasticità l _P = 0.228
	di Consistenza I _C = 1.162 di Attività A = 0.507
100 -	DIAGRAMMA DI PLASTICITA'
100	BASSA MEDIA ALTA
- 00	BASSA MEDIA ALTA
% 80 -	
Paris Jennesi	
60 -	
40 -	
20 -	
0 -	
(0 20 40 60 80 100 W _L [%]
- '	10 00 00 100

LIMITI DI ATTERBERG E INDICI:

Prove meccaniche eseguite:

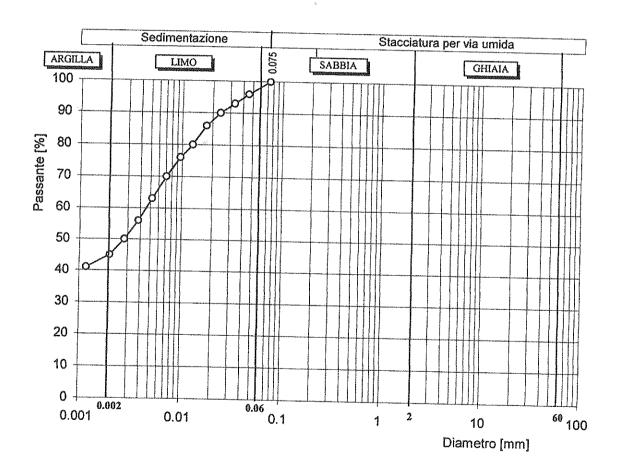
• Compressione triassiale (UU)

AGIOTECHICHE INDICATE OF AGIOTAL AGIOT

L'Ingegnere Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 15; Campione N. 2; Profondità da 51.50 a m 52.00

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

GRANULOMETRIA [%]	Ghiaia 00 Sabbia 02 Limo 53 Argill	a 45
	9	

L'Ingegnera Geotecnico

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 15; Campione N. 2; Profondità da 51.50 a m 52.00

PROVA DI COMPRESSIONE TRIASSIALE (UU)

TIPO DI PROVA

Non consolidata non drenata (UU)

DIMENSIONI DEI PROVINI

Diametro 3.80 cm

Altezza

7.60 cm

Volume

86.20 cm3

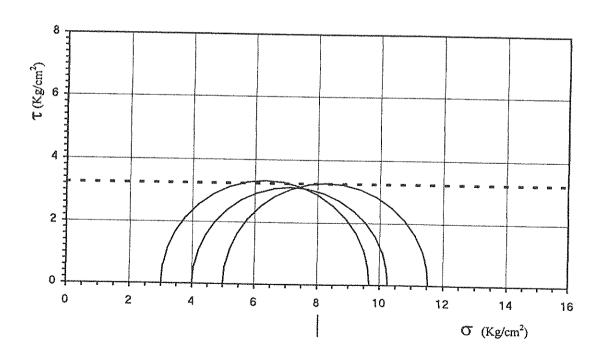
APPLICAZIONE DEL CARICO

a deformazione controllata

VELOCITÀ DI DEFORMAZIONE

1.00 mm/min

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRO	OVA:			
Peso dell'unità di volume	γ (t/m ³)	2.152	2.146	1.885
Contenuto naturale d'acqua	W	0.190	0.182	0.308
Porosità	n	0.344	0.342	0.478
Grado di saturazione	5	0.997	0.966	0.930
CONDIZIONI INIZIALI DI PROVA:				
Pressione laterale totaleverticale	σ ₃ (Kg/cm²)	4.00	5.00	3.00
CONDIZIONI A ROTTURA:	· R			
Tensione deviatorica o	$(1-\sigma_3 (\text{Kg/cm}^2))$	6.26	6.54	6.67
Deformazione assiale	ε _a (%)	16.45	18.03	15.66


'Ingegnot Geotecnico (Luigi Tripodi) INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 15; Campione N. 2; Profondità da 51.50 a m 52.00

PROVA DI COMPRESSIONE TRIASSIALE (UU)

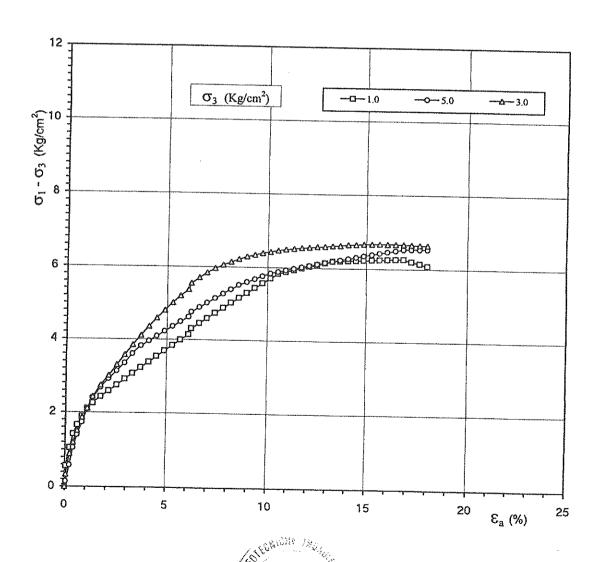
Inviluppo di rottura nel piano τ - σ

PROVINO	σ_3	σ_1	σ_c	$ au_c$
N.	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm ²)
1	4.00	10.26	7.13	3.13
2	5.00	11.54	8.27	3.27
3	3.00	9.67	6.34	3.34
C=	$\Sigma \tau_c$ / 3 =	3.245	(Kg/cm ²)	

L'Ingognere Geotecnico (Luigi Vripodi)

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:


Lavori di costruzione della SS 106 Jonica (E 90) cat. B-Megalotto 9-dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 15; Campione N. 2; Profondità da 51.50 a m 52.00

PROVA DI COMPRESSIONE TRIASSIALE (UU)

Diagramma:

Curve tensioni deviatoriche - deformazioni assiali $(\sigma_1 - \sigma_3 - \epsilon_a)$

CROTAROBA)

L'Ingegnere

(Luigi Ti

eotecnico

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 17; Campione N. 1; Profondità da 8.00 a m 8.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 19/01/2004

Data di apertura: 19/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla da moderatamente consistente a consistente, di colore grigio con sporadici e minuti elementi fossiliferi biancastri.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_s = 2.768$	[t/m ³]
Peso dell'unità di volume	$\gamma = 2.130$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.797$	[t/m ³]
Contenuto naturale d'acque	w = 0.185	<u> </u>
Porosità	n = 0.351	
Indice di porosità	e = 0.540	
Grado di saturazione	5 = 0.948	

Limite di Liquidità	$W_L = 0.428$
Limite di Plasticità	$W_P = 0.226$
Indice di plasticità	$I_P = 0.202$
	1
Indice di Consistenza	$I_c = 1.203$
Indice di Attività	A = 0.518
DIAGRAMMA DI	PLASTICITA'
100	
BASSA MEDIA	ALTA
80	
jumed .	
60	
40	
20	
0 20 40	
0 20 40	60 80 100 W _L [%]
	44 F [50]

LIMITI DI ATTERBERG E INDICI:

Prove meccaniche eseguite:

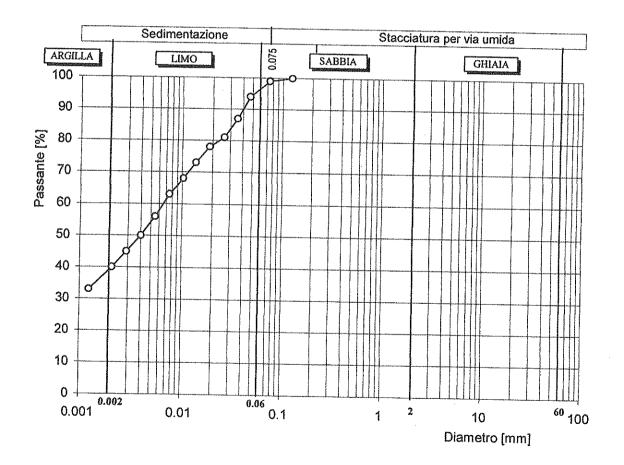
· Taglio diretto (CD)

BUTTONICHE MORES

L'Ingégnere Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 17; Campione N. 1; Profondità da 8.00 a m 8.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

GRANULOMETRIA [%] Ghiaia 00 Sabbia 03 Limo 58 Argilla 39
--

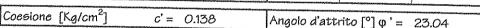
L'Ingeprere Geotecnico (Luigi Tripodi)

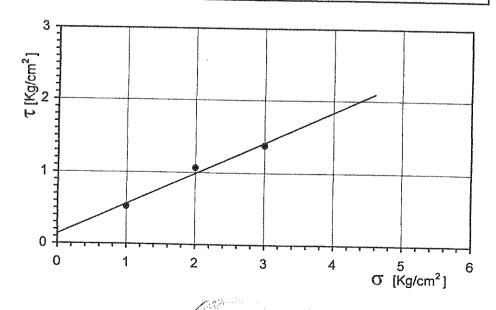
Cert. N. 141 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

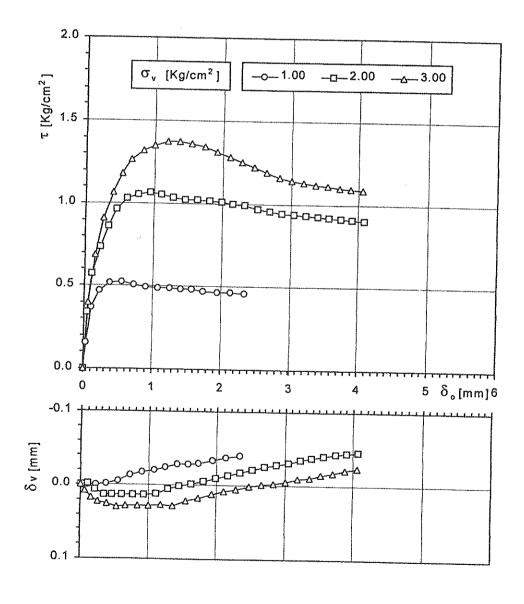

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-


Sondaggio N. 17; Campione N. 1; Profondità da 8.00 a m 8.50

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICAZIONE DEL CARICO
Consolidata drenata (CD)	0.004 mm/min	a deformazione controllata
DIMENSIONI DEI PROVINI		· · · · · · · · · · · · · · · · · · ·
Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza 2.0 cm	Volume 72 0 cm ³

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRI	OVA:			
Peso dell'unità di volume	γ [t/m³]	2.144	2.104	2.141
Contenuto naturale d'acqua	W	0.182	0.181	0.193
Porosità	n	0.345	0.357	0.352
Grado di saturazione	5	0.959	0.905	0.984
CONDIZIONI INIZIALI DI PROVA:	,			
Pressione verticale CONDIZIONI A ROTTURA:	σ, [Kg/cm²] «	1.00	2.00	3.00
Tensione tangenziale	τ [Kg/cm²]	0.525	1.065	1.375
Spostamento orizzontale	δ_o [mm]	0.54	0.94	1.37
Contenuto d'acqua	Wr	0.212	0.190	0.190



L'Ingegner Geotecnico (Luigi Tripodi) INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 17; Campione N. 1; Profondità da 8.00 a m 8.50

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (t) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegner Geotecnico (Luigi Kripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 17; Campione N. 2; Profondità da 13.00 a m 13.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 19/01/2004

Data di apertura: 16/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla consistente, di colore grigiastro con venature e puntinature nerastre.-

PROPRIETA' INDICI:	A STATE OF THE PARTY OF THE PAR	
Peso specifico	$\gamma_{s} = 2.769$	[t/m³]
Peso dell'unità di volume	$\gamma = 2.141$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.804$	[t/m ³]
Contenuto naturale d'acqua	w = 0.187	[]
Porosità	n = 0.349	
Indice di porosità	e = 0.535	
Grado di saturazione	5 = 0.968	

	Limite di Liquidità $W_L = 0.414$
	Limite di Plasticità $W_P = 0.232$
	Indice di plasticità $I_P = 0.182$
	Indice di Consistenza $I_C = 1.247$
	Indice di Attività $A = 0.492$
	71-07102
	DIAGRAMMA DI PLASTICITA'
	100
	BASSA MEDIA ALTA
	[%]
	60
	40
	20
	0
	0 20 40 60 80 100
	W _L [%]
L	

LIMITI DI ATTERBERG E INDICI:

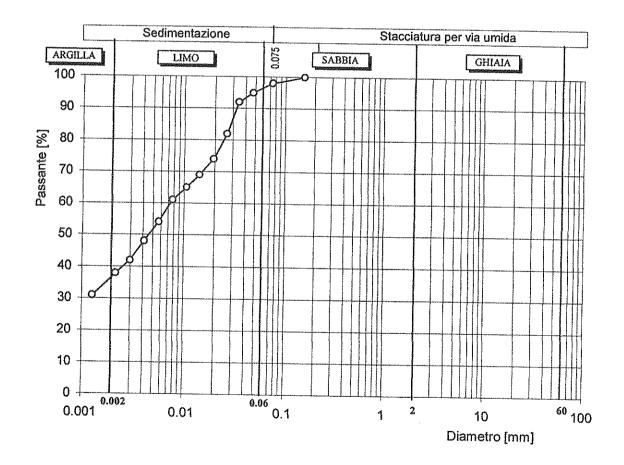
Prove meccaniche eseguite:

Compressione triassiale (CD)

L'Ingognere Geotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 17; Campione N. 2; Profondità da 13.00 a m 13.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

GRANULOMETRIA [%]	Ghiaia 00	Sabbia	03	Limo 60	Argilla	37
			·	<u> </u>		<i>\(\tau_i \)</i>

L'Ingegnate Geotecnico (Luigi Fripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 17; Campione N. 2; Profondità da 13.00 a m 13.50

PROVA DI COMPRESSIONE TRIASSIALE (CD)

TIPO DI PROVA

Consolidata drenata (CD)

MODALITÀ DI PROVA

Applicazione di "back pressure" (u_o)

DIMENSIONI DEI PROVINI

Diametro 3.80 cm

Altezza 7.60 cm

Volume 86.20 cm³

APPLICAZIONE DEL CARICO

a deformazione controllata

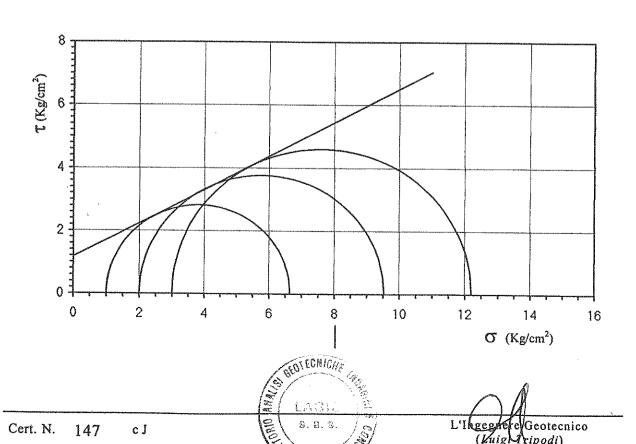
VELOCITÀ DI DEFORMAZIONE

0.004 mm/min

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PROVA:				v ·
Peso dell'unità di volume	γ [t/m ³]	2.135	2.135	2.153
Contenuto naturale d'acqua	w	0.189	0.184	0.187
Porosità	n	0.352	0.349	0.345
Grado di saturazione	5	0.966	0.951	0.983
CONDIZIONI INIZIALI DI PROVA:				0.555
Pressione laterale totale	σ ₃ [Kg/cm ²]	3.00	4.00	5.00
Back pressure	u _o [Kg/cm²]	2.00	2.00	2.00
Pressione laterale effettiva	σ ₃ ' [Kg/cm ²]	1.00	2.00	3.00
CONSOLIDAZIONE:				
Variazione di volume	ΔΥ/Υ [%]	0.232	1.392	1.160
CONDIZIONI A ROTTURA:				00
Tensione deviatorica $\sigma_1 - \sigma_2$	Kg/cm ²]	5.648	7.532	9.207
Deformazione assiale	ε_a [%]	4.81	5.30	4.94
Contenuto d'acqua a rottura	$W_{\rm r}$	0.196	0.190	0.185

L'Ingegnery Geotecnico

Cert. N. 146 cJ

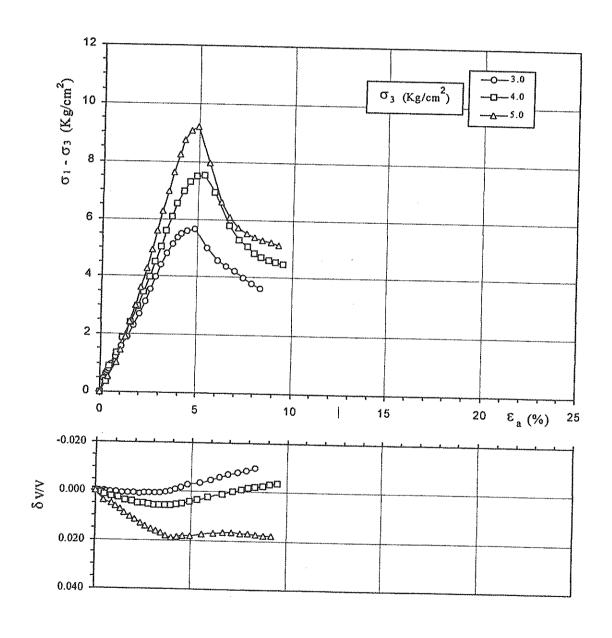

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 17; Campione N. 2; Profondità da 13.00 a m 13.50

PROVA DI COMPRESSIONE TRIASSIALE (CD)

Inviluppo di rottura nel piano τ - σ

PROVINO	σ_3	$\sigma_{\scriptscriptstyle 1}$	σ_c	$ au_c$
N.	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)
1	1.00	6.648	3.824	2.824
2	2.00	9 .532	5.766	3.766
3	3.00	12.207	7.604	4.604
$c' = 1.170$ (Kg/cm ²) $\phi' = 28.10$ (°)				


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 17; Campione N. 2; Profondità da 13.00 a m 13.50

PROVA DI COMPRESSIONE TRIASSIALE (CD)

Tensione deviatorica - deformazione assiale $(\sigma_1 - \sigma_3 \div \epsilon_a)$

601ECR (1)

L'Ingegre e Geotecnico (Luigi Kripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 18; Campione N. 1; Profondità da 15.10 a m 15.60

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 10/02/2004

Data di apertura: 01/04/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Sabbia con limo con abbondanti elementi fossiliferi, da poco a moderatamente addensata, di colore grigio con elementi carboniosi nerastri.-

PROPRIETA' INDICI:

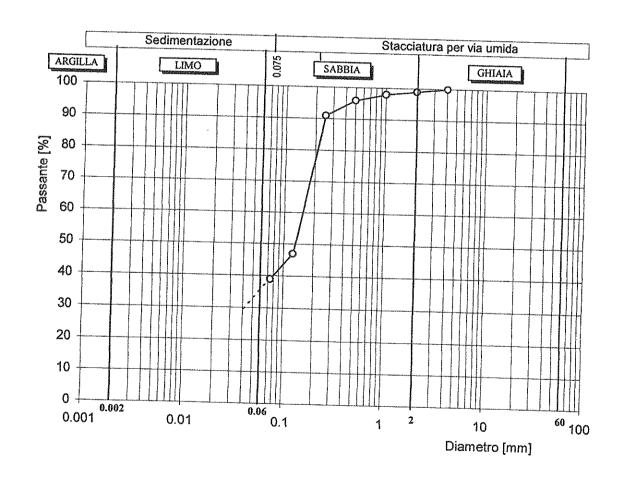
Peso dell'unità di volume $\gamma = 2.152$ [t/m³. Peso secco unità di volume $\gamma_d = 1.838$ [t/m³. Contenuto naturale d'acqua $\gamma_d = 0.170$

Prove meccaniche eseguite:

L'Ingegnere Geotecnico
(Luigi Toipodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dai 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 18; Campione N. 1; Profondità da 15.10 a m 15.60

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. SABBIA CON LIMO.-

GRANULOMETRIA [%] Ghiaia O1 Sabbia 63 Limo 36

L'Ingegnere Geotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 19; Campione N. 1; Profondità da 23.60 a m 24.10

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 16/02/2004

Data di apertura: 08/04/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Sabbia con limo argillosa con sporadici e minuti elementi ghiaiosi, moderatamente addensata di colore bruno rossastro.-

ĺ	PROPRIETA' INDICI:		***************************************
	Peso specifico	N 0668	- 3
	Peso dell'unità di volume	$\gamma_s = 2.668$	[t/m ³]
	Peso secco unità di volume	$\gamma = 2.106$	$[t/m^3]$
-	Contenuto naturale d'acqua	$\gamma_d = 1.856$	[t/m ³]
	Porosità	w = 0.135	
	Indice di porosità	n = 0.305	
	Grado di saturazione	e = 0.438	
L	Or and ar Salurazione	5 = 0.823	

LIMITI DI ATTERBER	G E INDICI:
Limite di Liquidità	$W_L = 0.277$
Limite di Plasticità	$W_P = 0.181$
Indice di plasticità	$l_P = 0.096$
Indice di Consistenza	I _c = 1.479
Indice di Attività	A = 0.533
DIAGRAMMA DI 100 BASSA MEDIA 40 20 0 20 40	ALTA
0 20 40 6	80 100 W _L [%]

Prove meccaniche eseguite:

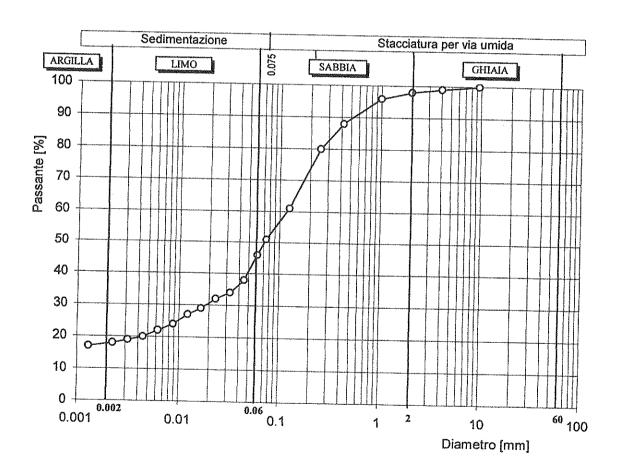
Taglio diretto (CD)

L'Ingegnere Geotecnico (Luigi Tripodi)

Cert. N. 151 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 19; Campione N. 1; Profondità da 23.60 a m 24.10

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. SABBIA CON LIMO ARGILLOSA.-

GRANULOMETRIA [%]	 ٦

L'Ingegnere Geotecnico

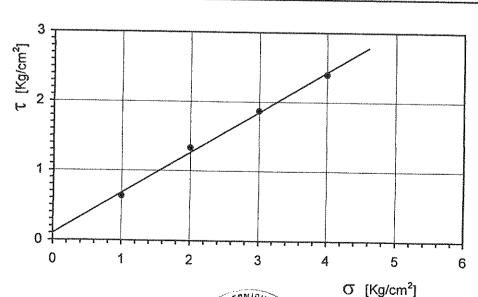
Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B-Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 19; Campione N. 1; Profondità da 23.60 a m 24.10


PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICAZIONE DEL CARICO
Consolidata drenata (CD)	0.00 % mm/min	a deformazione controllata
DIMENSIONI DEI PROVINI		
Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza 2.0 cm	Volume 72.0 au 3

	PROVINO N.	1	2	3	4
CONDIZIONI PRIMA DELLA PRI	OVA:				
Peso dell'unità di volume	γ [t/m ³]	2.075	2.118	2.120	2.111
Contenuto naturale d'acqua	W	0.144	0.129	0.133	0.134
Porosità	n	0.320	0.297	0.299	0.302
Grado di saturazione	5	0.817	0.816	0.834	0.827
CONDIZIONI INIZIALI DI PROVA					
Pressione verticale CONDIZIONI A ROTTURA:	σ _v [Kg/cm²]	1.00	2.00	3.00	4.00
Tensione tangenziale	τ [Kg/cm²]	0.633	1.332	1.870	2.398
Spostamento orizzontale	δ_o [mm]	2.05	1.58	1.65	2.34
Contenuto d'acqua	W _r .	0.154	0.144	0.140	0.137

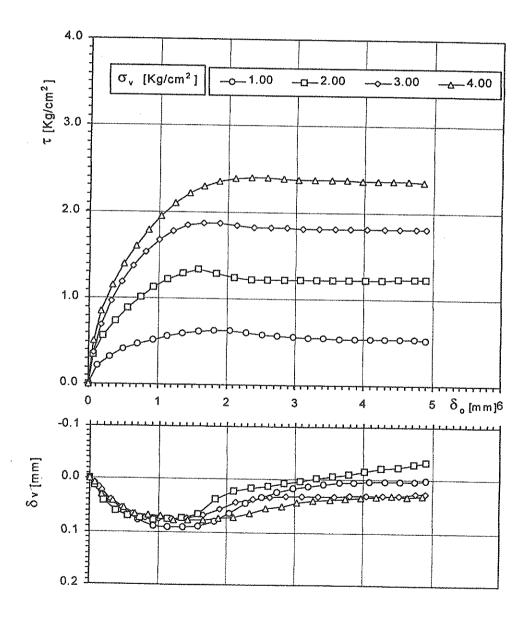
Angolo d'attrito [°]

c' = 0.100

LAGIC 8. a. s.

L'Ingegner Geotecnico (Luigi Tigodi)

 $\phi' = 30.26$


Coesione [Kg/cm²]

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 19; Campione N. 1; Profondità da 23.60 a m 24.10

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnate Geotecnico (Luigi Pripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 20; Campione N. 1; Profondità da 11.60 a m 12.10

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 10/02/2004

Data di apertura: 31/03/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla con abbondanti e minuti elementi fossiliferi, moderatamente consistente, di colore grigio con puntinature nerastre.-

PROPRIETA' INDICI:		·····
Peso specifico	$\gamma_{\rm s} = 2.773$	[t/m³
Peso dell'unità di volume	$\gamma = 2.115$	[t/m ³
Peso secco unità di volume	$\gamma_a = 1.777$	[t/m ³
Contenuto naturale d'acque	w = 0.190	<u>.</u>
Porosità	n = 0.359	
Indice di porosità	e = 0.560	
Grado di saturazione	S = 0.940	

Limite di Liquidità $W_L = 0.448$ Limite di Plasticità $W_P = 0.241$ Indice di Plasticità $I_P = 0.207$ Indice di Consistenza $I_C = 1.246$ Indice di Attività $A = 0.559$ DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 40 20 40 40 W_L [%]		
Indice di plasticità $I_P = 0.207$ Indice di Consistenza $I_C = 1.246$ Indice di Attività $A = 0.559$ DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 40 20 0 20 40 60 80 100		$V_L = 0.448$
Indice di plasticità $I_P = 0.207$ Indice di Consistenza $I_C = 1.246$ Indice di Attività $A = 0.559$ DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 40 20 0 20 40 60 80 100	Limite di Plasticità V	$V_P = 0.241$
Indice di Consistenza $I_C = 1.246$ Indice di Attività $A = 0.559$ DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 60 40 20 20 40 60 80 100	Indice di plasticità	$I_P = 0.207$
Indice di Attività		•
Indice di Attività		
Indice di Attività	Indice di Consistenza	lc = 1246
DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 40 20 0 20 40 60 80 100		_
100 BASSA MEDIA ALTA 40 20 0 20 40 60 80 100		A = 0.008
100 BASSA MEDIA ALTA 40 20 0 20 40 60 80 100		
BASSA MEDIA ALTA 60 40 20 0 20 40 60 80 100		STICITA'
80 60 40 20 0 0 20 40 60 80 100		
20 20 40 60 80 100		ALTA
20 20 40 60 80 100	80 + + + +	
20 20 40 60 80 100		
20		
20		
20	40	
0 20 40 60 80 100	10	
0 20 40 60 80 100		
0 20 40 60 80 100	20	
0 20 40 60 80 100		
100	0	
W _L [%]	0 20 40 60	80 100
		W _L [%]

LIMITI DI ATTERBERG E INDICI:

Prove meccaniche eseguite:

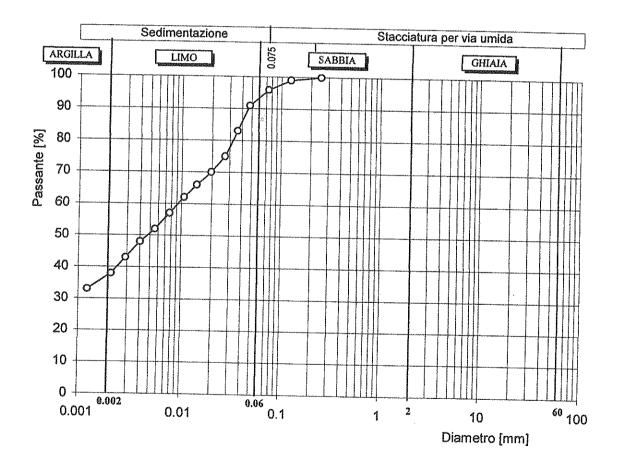
- Consolidazione edometrica
- Taglio diretto (CD)
- Compressione triassiale (UU)

LAGIC BARRETT
L'Ingegnere Deotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B - Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a


Mandatoriccio (km 306+00).-

Sondaggio N. 20; Campione N. 1; Profondità da 11.60 a m 12.10

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA DEBOLMENTE SABBIOSO.-

GRANULOMETRIA [%] Ghiaia 00 | Sabbia 06 | Limo 57 | Argilla 37

L'Ingegnere Geotecnico (Luigi Tripodi) Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 20; Campione N. 1; Profondità da 11.60 a m 12.10

PROVA DI COMPRESSIONE EDOMETRICA

Dati sperimentali diagramma (e - $\log \sigma_v$)

DATI INIZIALI DEL PROVINO:

Altezza

= 2.00 (cm)

Peso dell'unità di volume

y = 2.096

(t/mc)

Diametro Volume

= 5.047 (cm)

Contenuto naturale d'acqua Indice di porosità

w = 0.192

= 40.00 (cmc)

e = 0.5778

Grado di saturazione

6 = 0.923

Contenuto d'acqua a fine prova w = 0.192

Carico	Cedimenti	Altezza Provino	Indice di porosità	Modulo Edometrico
σv	Σδν	Н	e	Eed
(Kg/cmq)	(mm)	(mm)		(Kg/cmq)
(*) 0.1	0.020	19.980	0.5762	
(*) 0.2	0.039	19.961	0.5747	
(*) 0.4	0.081	19.919	0.5714	
(*) 0.8	0.165	19.835	0.5648	95
1.5	0.290	19.710	0.5549	111
3	0.544	19.456	0.5349	116
6	0.920	19.080	0.5052	155
12	1.399	18.601	0.4674	239
24	2.013	17.987	0.4190	364
12	1.904	18.096	0.4276	
6	1.743	18.257	0.4403	
1.5	1.266	18.734	0.4779	
0.4	0.726	19.274	0.5205	

Nota: (*) il provino tende a rigonfiare

Indice di Compressibilità

Cc = 0.161

Cert. N. 157 c J

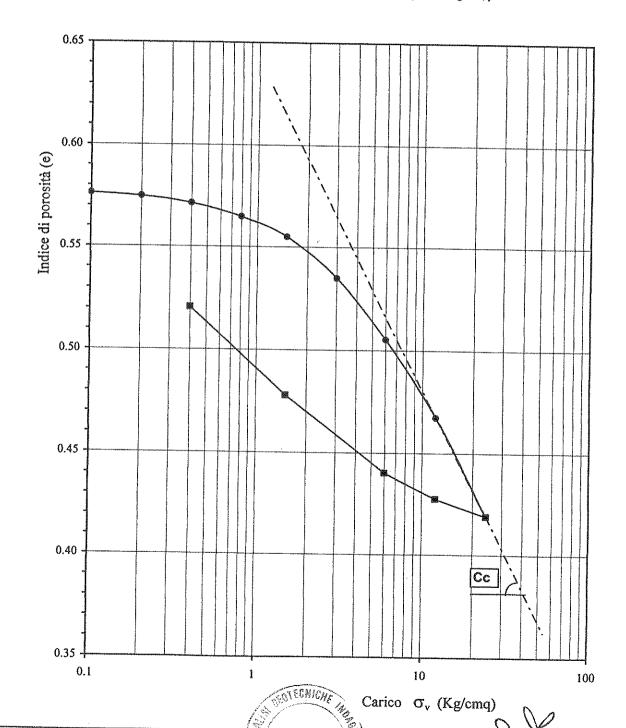
LAGIC s.a.s. L'Ingegnere dicotecnico (Luigi Tripodi)

Cert. N.

158

c J

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


(Luigi Tripodi)

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 20; Campione N. 1; Profondità da 11.60 a m 12.10

PROVA DI COMPRESSIONE EDOMETRICA

Diagramma Indice di porosità - Logaritmo del carico (e - log σ_v)

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 20; Campione N. 1; Profondità da 11.60 a m 12.10

PROVA DI COMPRESSIONE EDOMETRICA

Dati sperimentali diagramma (cedimenti - tempo)

Tempo (minuti)	A STATE OF THE STA	Cedimenti relativi ai carichi applicati (mm)				
0.2	0.059	0.069	0.066	0.071	0.082	0.106
0.5	0.066	0.081	0.079	0.096	0.111	0.136
1	0.072	0.089	0.091	0.114	0.135	0.165
2	0.077	0.097	0.105	0.137	0.165	0.205
4	0.081	0.105	0.123	0.165	0.204	0.258
8	0.084	0.111	0.143	0.201	0.254	0.325
15	0.084	0.115	0.166	0.240	0.307	0.396
30	0.083	0.117	0.193	0.286	0.366	0.472
60	(*)	0.120	0.217	0.323	0.409	0.526
120		0.120	0.232	0.344	0.434	0.558
240		0.122	0.241	0.357	0.456	0.580
480		0.124	0.248	0.367	0.468	0.599
1440		0.125	0.254	0.376	0.479	0.614
Carico (Kg/cmq)	0.8	1.5	3	6	12	24

Nota: (*) il provino tende a rigonfiare

LASIG S. a. s.

L'Ingegner Geotecnico (Luigi Dipodi) Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

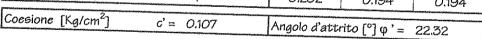
Sondaggio N. 20; Campione N. 1; Profondità da 11.60 a m 12.10

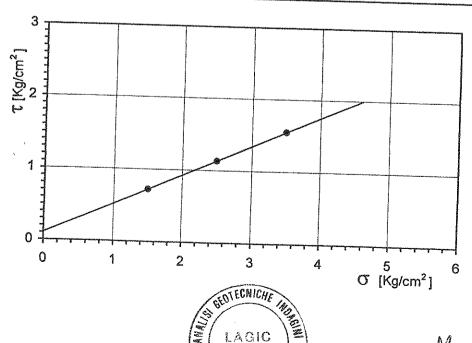
PROVA DI COMPRESSIONE EDOMETRICA

Diagramma Cedimenti/Rigonfiamenti - Logaritmo del tempo

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

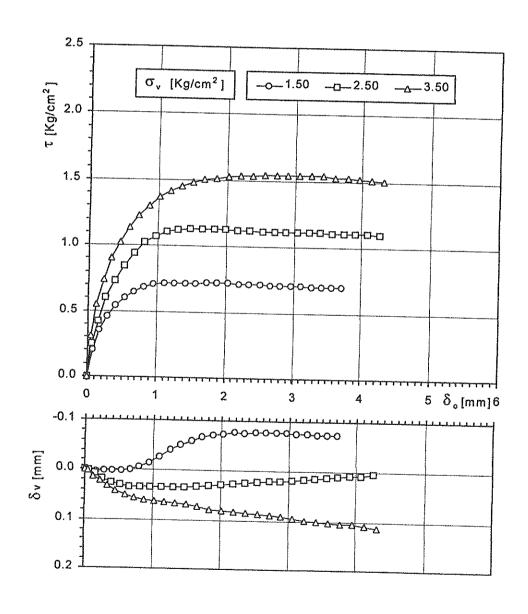

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-


Sondaggio N. 20; Campione N. 1; Profondità da 11.60 a m 12.10

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICAZIONE DEL CARICO
Consolidata drenata (CD)	0.004 mm/min	a deformazione controllata
DIMENSIONI DEI PROVINI		
Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza 2.0 cm	Volume 72.0 cm ³

	PROVINO N	. 1	2	3
CONDIZIONI PRIMA DELLA PR	OVA:			
Peso dell'unità di volume	γ [t/m ³]	2.124	2.144	2.135
Contenuto naturale d'acqua	W	0.183	0.187	0.195
Porosità	ħ	0.353	0.348	0.356
Grado di saturazione	5	0.932	0.968	0.980
CONDIZIONI INIZIALI DI PROVA:	:		0.000	0.500
Pressione verticale CONDIZIONI A ROTTURA:	σ, [Kg/cm²]	1.50	2.50	3.50
Tensione tangenziale	τ [Kg/cm²]	0.723	1.132	1.544
Spostamento orizzontale	δ_o [mm]	1.88	1.47	2.90
Contenuto d'acqua	W _r	0.202	0.194	0.194


306N1 - 11N

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 20; Campione N. 1; Profondità da 11.60 a m 12.10

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnere (Leotecnico

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 20; Campione N. 1; Profondità da 11.60 a m 12.10

PROVA DI COMPRESSIONE TRIASSIALE (UU)

TIPO DI PROVA

Non consolidata non drenata (UU)

DIMENSIONI DEI PROVINI

Diametro 3.80 cm

Altezza

7.60 cm

Volume

86.20 cm³

APPLICAZIONE DEL CARICO

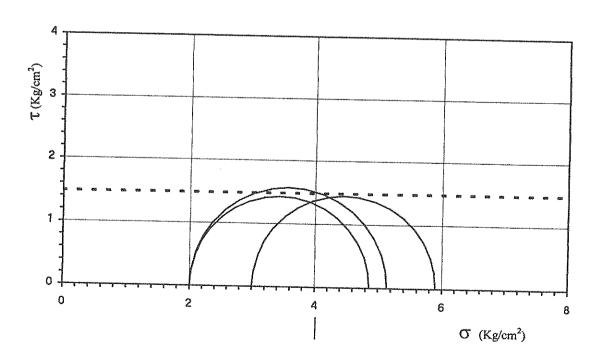
a deformazione controllata

VELOCITÀ DI DEFORMAZIONE
1.00 mm/min

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PR	OVA:			
Peso dell'unità di volume	γ (t/m³)	2.119	2.143	2.134
Contenuto naturale d'acqua	W	0.189	0.179	0.191
Porosità	n	0.354	0.341	0.351
Grado di saturazione	9	0.952	0.955	0.977
CONDIZIONI INIZIALI DI PROVA	•			
Pressione laterale totaleverticale	σ ₃ (Kg/cm²)	2.00	2.00	3.00
CONDIZIONI A ROTTURA:	a Company			
Tensione deviatorica C	$\sigma_1 - \sigma_3 (\text{Kg/cm}^2)$	3.14	2.86	2.90
Deformazione assiale	ε _a (%)	15.58	14.74	17.90

L'Ingegnere Geotecnico (Luigi Tripodi)

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 20; Campione N. 1; Profondità da 11.60 a m 12.10

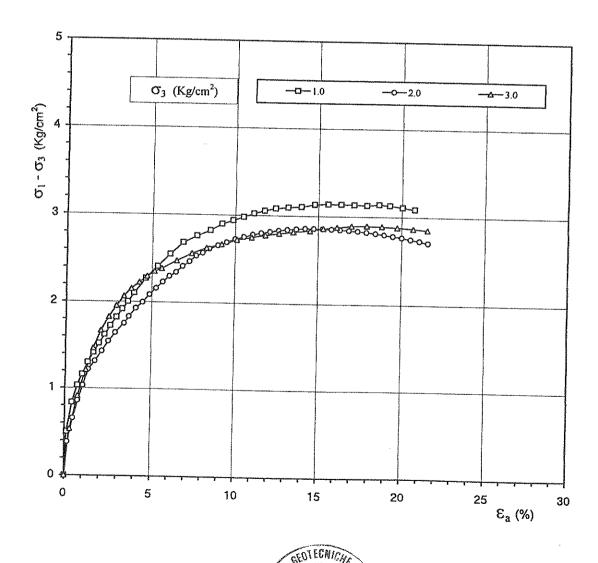
PROVA DI COMPRESSIONE TRIASSIALE (UU)

Inviluppo di rottura nel piano τ - σ

PROVINO	σ_3	σ_{i}	σ _c	τ_c
N.	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm ²)
1	2.00	5.14	3.57	1,57
2	2.00	4.86	3.43	1.43
3	3.00	5.90	4,45	1.45
C _u =	$\Sigma \tau_c$ / 3 =	1.483	(Kg/cm ²)	

C. J. S. W.
L'Ingegnete Geotecnico
(Luigi (ripodi)

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 20; Campione N. 1; Profondità da 11.60 a m 12.10

PROVA DI COMPRESSIONE TRIASSIALE (UU)

Diagramma:

Curve tensioni deviatoriche - deformazioni assiali $(\sigma_1$ - σ_3 - $\epsilon_a)$

IAGIC S. S. S. S.

L'Ingegnera Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

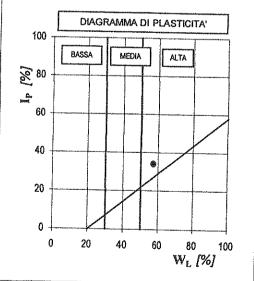
Sondaggio N. 20; Campione N. 2; Profondità da 19.10 a m 19.60

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 10/02/2004

Data di apertura: 20/02/2004


CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla debolmente sabbioso con abbondantie minuti elementi fossiliferi,consistente, di colore grigio.-

PROPRIETA' INDICI:		Maria
Peso specifico	$\gamma_a = 2.774$	[t/m³]
Peso dell'unità di volume	$\gamma = 2.154$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.829$	[t/m ³]
Contenuto naturale d'acque	w = 0.178	ر ۰۰۰۰
Porosità	n = 0.341	
Indice di porosità	e = 0.517	
Grado di saturazione	5 = 0.955	

LIMITI DI ATTERBER	G E INDICI:
Limite di Liquidità	$W_L = 0.572$
Limite di Plasticità	$W_P = 0.233$
Indice di plasticità	$I_P = 0.339$
Indice di Consistenza	$I_{c} = 1.162$
Indice di Attività	A = 0.788

Prove meccaniche eseguite:

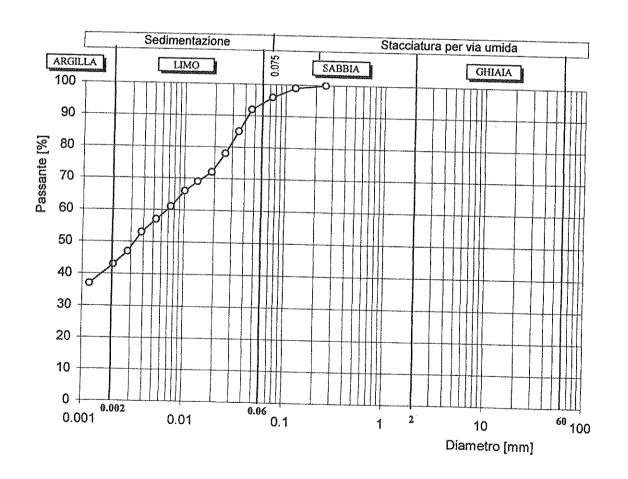
Compressione unlassiale (ELL)

LAGIC S. A. S. CO.

L'(ngegrée Geotecnico L'algi Vripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 20; Campione N. 2; Profondità da 19.10 a m 19.60

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA DEBOLMENTE SABBIOSO.-

GRANULOMETRIA [%] Ghiaia 00 Sabbia 06 Limo 51 Argilla 43

L'Ingent de Geotecnico (Luigh Tripodi)

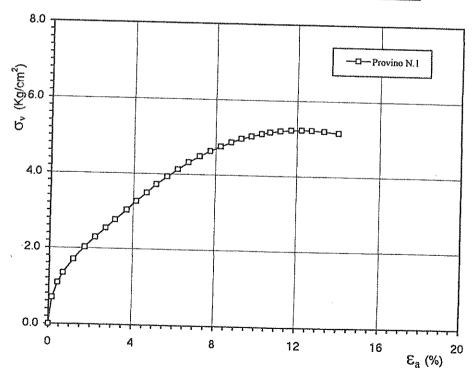
Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 20; Campione N. 2; Profondità da 19.10 a m 19.60


PROVA DI COMPRESSIONE UNIASSIALE (ELL)

DIMENSIONI DEI PROVINI	
Diametro 5.00 cm	Altezza 10.00 cm

VELOCIT	À DI DEFORMAZIONE	
3.00	mm/min	

Diagramma: Curve tensioni deviatorichė - deformazione assiale (σ_{v} - ϵ_{a})

	PROVINO N.	1
CONDIZIONI PRIMA DELLA PR	OVA:	
Peso dell'unità di volume	γ (t/m³)	2.154
Contenuto naturale d'acqua	w	0.178
Porosità	n	0.341
Grado di saturazione	5	0.956
CONDIZIONI A ROTTURA:		3.333
Tensione deviatorica	$\sigma_{\rm v} ({\rm Kg/cm^2})$	5.23
Deformazione assiale	ε _a (%)	12.21

L'Ingegnée Geotecnico (Luigi Tripodi)

Cert. N. 168 cJ

LAGIC

SERVIZI PER L'INGEGNERIA E LA GEOLOGIA

Laboratorio di Geotecnica

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

COMMITTENTE: ANAS s.p.a.

Direzione Generale Programmazione e Progettazione

Assistenti alla Progettazione: R.T.I.

- PROGER s.p.a.
- Via Ingegneria s.r.l.
- De MaCo s.r.l.
- D'Appolonia s.p.a.

FASCICOLO 3 di 6

Prove contenute:

DAL SONDAGGIO 21 AL SONDAGGIO 30

Dal Certificato N. 169 al Certificato N. 245

LAGIC s.a.s. dell'ing. Tripodi & C Via S. Antonello, 13 87040 Montalto Uffugo CS Farica IVA: 01700210782

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001, e-mail: lagic@libero.it

P.IVA 01700210782 - C.C.I.A.A. 112216 Iscr. Trib. (CS) N.7266, Vol.520

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

COMMITTENTE: ANAS s.p.a.

Direzione Generale Programmazione e Progettazione

Assistenti alla Progettazione: R.T.I.

- PROGER s.p.a.
- Via Ingegneria s.r.l.
- De MaCo s.r.l.
- D'Appolonia s.p.a.

сJ

FASCICOLO 3 di 6

PROVE GEOTECNICHE DI LABORATORIO

DAL SONDAGGIO 21 AL SONDAGGIO 30

Dal Certificato N. 169 al Certificato N. 245

Totale Certificati N. 77 di 535

IL DIRETTORE TECNICO (Ing. Paglo MERCURI)

L'AMMINISTRATORE L'Ingegnere Geotecnico (Luigi TRIPODI)

dell'Ing. Tripodi & C Via S. Antonello, 13 87040 Montant Uriugo CS Partita IVA: 01700210732

C. Seociato

Giugno 2004

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

COMMITTENTE: ANAS s.p.a.

Direzione Generale Programmazione e Progettazione

Assistenti alla Progettazione: R.T.I.

- PROGER s.p.a.
- Via Ingegneria s.r.l.
- De MaCo s.r.l.
- D'Appolonia

Tabella riassuntiva delle prove geotecniche di laboratorio eseguite

			FA	SCIC	COL	о 3	DI 6	- C	ERT	`IFI(CATI	DAI	169	AL 2	45		
Ġ.	þ.	Prof	ondità	GR		P	ropr	ietà	Ind	ici			P	rove	Meccan	iche	
Sond.	Camp.	da m	a m		$\gamma_{\rm S}$	γ	Ϋ́d	e	W	WI	Wp	ED	TD	TD rsd	TX (UU)	TX (CD)	ELL
21	1	16.50	17.00	1	1	1	1	1	1	1	1		I				
22	1	17.30	17.80	1	1	1	1	1	1	1	1		1		1		
23	1	6.00	6.50	1	1	1	1	1	1	1	I	1	1				1
23	2	20.00	20.50	1	1	1	1	1	1	1	1	1	1				1
24	1	9.00	9.50	1	1	1	I	1	1	1	1		i				*
24	2	18.00	18.50	1	1	1	1	1	1	1	1	***************************************				1	
25	1	8.00	8.50	1	1	1	1	1	1	1	1	1	1		! !/		
25	2	15.50	16.00	1	1	1	1	1	1	1	1	***************************************	1		***************************************		1
26	1	4.50	5.00	1	1	1	1	1	1	1	1		I		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
27	1	14.50	15.00	1	1	1	I	1	1	1	1	·/	1				
28	1	8.00	8.50	I	1	I	1	1	1	1	1	- (1				
29	1	5.00	5.50	1	1	1	1	1	1	1	1		1				
29	2	21.00	21.50	ı	1	I	1	1	1	1	1	1			1		
30	1	13.70	14.00	1													

LEGENDA:

GR	Analisi granulometrica	W_p	Limite di plasticità
γ_{S}	Peso specifico	ED	Prova di compressione edometrica
γ	Peso dell'unità di volume	TD	Prova di taglio diretto, consolidato drenato
γ _d	Peso secco dell'unità di volume	TD rsd	Prova di taglio diretto residuo, consolidato drenato
е	Indice di porosità	TX(UU)	Prova di compressione triassiale, non consolidata non drenata
w	Contenuto naturale d'acqua	TX(CD)	Prova di compressione triassiale, consolidata drenata
W_1	Limite di liquidità	ELL	Prova di compressione uniassiale

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00). INDAGINE

BAGIC Laboratorio di Geotecnica

Figure Prova di Taglio P	Company Comp	E	bella i	riepiloga	ıtiva dei	risultat	'i delle	prove	geofec	iniche	g; lab	ratorio		,	t	2000	less cippe	Alo 24 al	Are 20									
Cartiology Car	1 1 1 1 1 1 1 1 1 1						5		<u> </u>								aggio dar	וא בומו	30 M			Cerm	Can	g	350	al 24.	T	in.
1 15.00 17.00	1 15.00 17.00	oiggebno2		Silbrolor9	Peso Specifico	Peso dell'unità di	Contenuto naturale	peso secco		Indice di Porosità		Pro dir.		Prova di I diretto (I resistenza r	cD) residua		solidazione ometrica	Сотрге (ССС)	ssione	riassiale (UU)	Compressione (ELL)	Gran	Anali rulom	si netric		limi.	Atter	perg
1 16.50 17.00 2689 2.784 1.785 0.284 0.285 0.284 0.285 0.284 0	1 16.50 1700 2889 2.784 1.785 0.289 0.181 1.785 0.289 0.289 0.289 0.089 0.							74 X		υ	တ	c' Ika/cmal	_9 &_	c' Ika/cma]	3-e ⁻	පි	Eed	ر د-		ج ک) ອີ				ellig			
1 1.30 1.50 1.50 2.50 2.50 2.50 1.50 2.50 1.50 2.5	1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	77	·			ļ	·····		 			0,00	7 00				[Mycrift]	[Mg/cmq]		[kg/cmd]	kg/cmg]				ŅΨ.	¹M	JW.	ď
1 1.0.0	1 1.0.0	3	*	********			····•		٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠		******	0,040	1 5.02	3	***************************************		115.) A ***********************************					•••••			******			0.064
1 5.00 5.00 2.056 2.176 2.186 2.112 0.189 1.761 0.286 0.197 1.584 0.189 1.849 0.149 1.654-165-228 0.149 1.654-165-228 0.149 1.654-165-228 0.149 1.654-165-228 0.149 1.654-165-228 0.149 1.654-165-228 0.149 1.654-165-228 0.149 1.654-165-228 0.149 1.654-165-228 0.149 1.654-165-228 0.149 1.654-165-228 0.149 1.649 0.149 1.749 0.154 0.	1 6.00 6.50 2.705 2.175 2.105 2.175 0.385 0.575 0.985 0.197 1.584 0.185 0.197 1.584 0.185 0.	7	-	********			•••••••			**********		0,109	20.01			**********	***************************************	************		0.973			<u> </u>	į	ż	470 0		1243
1 2000 20.50 20.74 2.156 0.184 1.821 0.344 0.523 0.975 0.136 0	2 20.00 20.50 2.774 2.186 0.184 1.821 0.344 0.623 0.975 0.936 2.739 0.184 0.184 1.65-165-228 0.194 165-165-228 0.194 1.65-165-228 0.194 1.65-165-228 0.195	23	-	······································		······	••••••••			*******		0.197	15.84				19-154-240				2.65		-		j	540 0	300	22
1 9.00 9.50 2.758 1.758 0.385 0.574 0.820 0.036 27.39 0.185 0.274 0.275 0.	1 9.00 5.0 2.05 1.05 1.05 1.05 1.05 1.05 0.03 1.05 0.03	33	2	*********	;				********	· 4	********	0.199	18.49			********	65-165-228				4.67		<u>}</u>		····• • ······	000		4
1 1 1 1 1 1 1 1 1 1	2 18.50 18.50 27.58 2.117 0.0491 0.0591 25.9 0.0997 25.9 0.0097 0.0097	24	~			•			ļ	1\$*******	0.620	0.036	27.39								2		···	••••••	···	77	3	S
1 1 1 1 1 1 1 1 1 1	1 8.50 9.00 2.758 2.10 0.041 1.850 0.094 2.55 1.05 <	24	7			· .	·••••••••		··•	0 540	0 00 0			The second secon		***************************************	***************************************	1000							···	355 0	210 0	145
2 1.5.50 6.0.50 2.7.58 2.1.19 0.161 1.875 0.02 2.2.19 0.151 1.875 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 2.7.50 0.02 0.	1 1.5.0 1.00 2.70 2.	ď	•			- ;	غ		····••••••••	******	0000			***************************************	************		***************************************	0.097	25.9					·····	*********		224 0	.244
2 1.5.50 1.6.50 2.762 2.058 0.146 2.248 0.146 2.248 0.146 2.248 0.146 2.248 0.146 2.248 0.146 2.248 0.146 0.258 0.540 0.146 0	2 15.50 16.00 2.762 2.058 0.186 1.735 0.832 0.886 0.185 0.18	3	-	*******	•	·	·		······		0.946	0.220	22.71	***********	**********	4	03-134-213	*********	-10776111	***************************************	V	2		ļ	į		150 0	224
1 4.50 5.00 2.751 1.953 0.106 1.766 0.358 0.558 0.552 0.105 2.683 0.105 2.165 0.105 0.	1 4.50 5.00 2.754 1.953 0.106 1.766 0.358 0.558 0.522 21.65 0.105 26.83 0.105 26.83 0.105 26.83 0.105 26.83 0.105 2.758 0.105	52	·	********			*******	*******		******	0.868	0.165	22.48		ļ						3.03		<u>-</u>	···•	·····j······	730	0,40	250
1 14.50 27.58 2.044 0.148 1.780 0.354 0.543 0.222 21.65 32.25 21.65 32.25 21.65 32.25 21.65 32.25 32.	1 14.00 14.50 2.758 2.044 0.148 1.780 0.354 0.549 0.775 0.192 21.65	56	····		*********	*********	**********		è	÷*******	0.523	0.105	26.83)	- [(····•		····•		7	0 7
1 8.00 8.50 2.761 2.117 0.135 1.865 0.324 0.480 0.776 0.191 27.58 40 33 27 0.327 0.185 1 5.00 5.50 2.733 1.995 0.247 1.600 0.415 0.708 0.953 0.061 27.22 8 1.837 1.837 1.837 1.837 1.837 1.837 1.837 1.837 1.837 1.837 1.838	1 8.00 8.50 2.761 2.117 0.135 1.865 0.324 0.480 0.776 0.191 27.28	27	_	*******		ļ	4			0.549	0.743		21.65				**************************************		***************************************			0 3	<u>ļ</u>	·····•	<u>-</u>		197 0	12
1 5.00 5.50 2.733 1.995 0.247 1.600 0.415 0.708 0.953 0.061 27.22 22 21.00 21.50 2.764 2.029 0.252 1.621 0.414 0.706 0.987 0.21 90-131-203 1.837 10 53 37 0.474 0.256 1 13.70 14.00 2 84 14 2 84 14 3 37 0.474 0.256 NOTA: I valori ribordati mella colonna relativa al modulu Ead sonorma relativa a	1 5.00 5.50 2.733 1.995 0.247 1.600 0.415 0.708 0.953 0.061 27.22 2 21.00 21.50 2.764 2.029 0.252 1.621 0.414 0.706 0.987 0.087 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	78	_	00	· •	·	0.135	<u>. į</u>	•••	0.480	0.776	***********	27.58	***************************************			7				No. 10 10 10 10 10 10 10 10 10 10 10 10 10		.	<u>.</u>	·····		185 0	88
2 21.00 21.50 2764 2.029 0.252 1.621 0.414 0.706 0.987 0.21 90-131-203 1.837 2.0 0.309 1 13.70 14.00 2.150 2	2 21.00 21.50 2764 2.029 0.252 1.621 0.414 0.706 0.987 0.21 90-131-203 1.837 1.837 20 0.309 2 17.80 18.00	29	-	-i			777		···•	100	0.00				The state of the s	***************************************	***************************************		177	***************************************		₹		······	······································	**********	199 0	138
2 21.00 21.50 2.764 2.029 0.252 1.621 0.414 0.706 0.987 0.21 90-131-203 1.837 1.837 10 53 37 0.474 13.70 14.00 2 17.80 18.00 18.00 2 17.80 18.	2 21.00 21.50 2.764 2.029 0.252 1.621 0.414 0.706 0.987 0.21 90-131-203 1.837 1.837 10 53 37 0.474 1 13.70 14.00 2 18.00 2 17.80 18.00 2 17.80 18.00 NOTA: I valori riportati nella colonna relativa al modulo Eed, separati dalla barra rovescia, sono ripettivamente quelli ottenuti negli incrementi da 1.5 a 3 kg/cmq e da 6 a 12 kg/cmg e d	1 7		3	į	·····	747.0	[_		0.708	0.953	······································	27.22	***************************************				*******	*********	*************	*********	۲۲ سست			*********		178 0	3
1 13.70 14.00 2 84 14 2 2 17.80 18.00 2 17.80 18.00 8 14 8 14 8 14 8 14 8 14 8 14 8 14 8	1 13.70 14.00 2 84 14 2 2 17.80 18.00 2 12.40 2 84 14 NOTA: I valori riportati nella colonna relativa al modulo Eed, separati dalla barra rovescia, sono ripettivamente quelli ottenuti negli incrementi da 1.5 a 3 kg/cmq e da 6 a 12 kg/cmg e d	67	·····	21.00 21.5		···········	0.252	******	0.414		0.987	***************************************	*********	**********		•	0-131-203		\$, r*********	1.837	***************************************	-	•	•••••	··•		258 D	248
NOTA: I valori riboritati nella colonna relativa al modulo End sonanti della ba	2 17.80 18.00 Solution in the separation of the	8		********	2	***********		**********			***	***************************************			***************************************		11-partition (11-11-11-11-11-11-11-11-11-11-11-11-11-	***************************************	-		The personal state of the state		···•				2	3
NOTA: I valori riportati nella colonna relativa al modulo Eod consenti della becca.	NOTA: I valori riportati nella colonna relativa al modulo Eed, separati dalla barra rovescia, sono ripettivamente quelli ottenuti negli incrementi da 1.5 a 3 kg/cmg, da 3 a 6 kg/cmg e da 6 a 12 kg/cmg.	99	*********	17.80 18.0	2	************		**************************************						***************************************			***************************************				***************************************				<u> </u>			
	Separation of the state of the		OTA: I	valori ribor	rtati nella c	solonna re	lativa a	modulo	For con	arofi do	La North	-			[=									*****		******	******	

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 21; Campione N. 1; Profondità da 16.50 a m 17.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 17/02/2004 Data di apertura: 01/04/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Sabbia con limo argillosa con minuti e sporadici elementi ghiaiosi, moderatamente addensata, di colore nocciola brunastro con venature giallastre.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_{\rm s} = 2.698$	[t/m³]
Peso dell'unità di volume	$\gamma = 2.090$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.765$	$[t/m^3]$
Contenuto naturale d'acque	w = 0.184	,
Porosità	n = 0.346	
Indice di porosità	e = 0.528	
Grado di saturazione	<i>5 = 0.9</i> 39	

	*****	CONT.
	di Liquidità	$W_L = 0.249$
Limite	di Plasticità	$W_P = 0.185$
Indice	di plasticità	$I_P = 0.064$
		•
	di Consistenza	$I_c = 1.016$
Indice	di Attività	A = 0.457
	desawa	
	DIAGRAMMA DI	PLASTICITA'
100 -		
	BASSA MEDIA	ALTA
% 80 -		
D.		
60 -		
40		
· ·		
20		
2.0		
0		
0 +	20 40	60 80 100
•	20 40	60 80 100 W _{r.} [%]
		1. F 1.03

LIMITI DI ATTERBERG E INDICI:

Prove meccaniche eseguite:

· Taglio diretto (CD)

STEMICHE INDAGIN

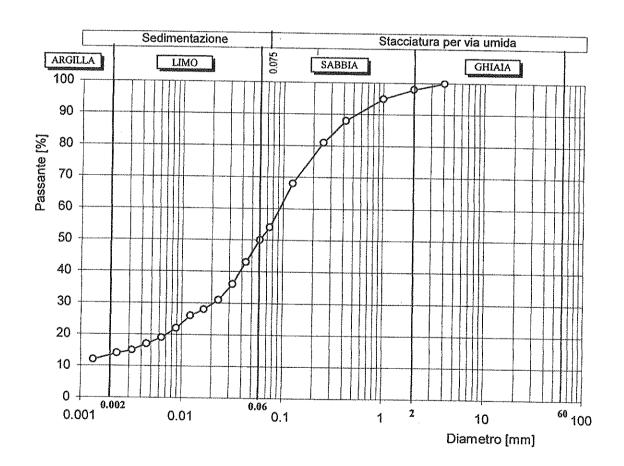
L'Ingegnere feotecnico (Luigi Tripodi)

Cert. N. 169 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:


Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 21; Campione N. 1; Profondità da 16.50 a m 17.00

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. | SABBIA CON LIMO ARGILLOSA.-

GRANULOMETRIA [%]	Ghiaia O2 Sabbia 48 Limo 36 Argilla 14	7

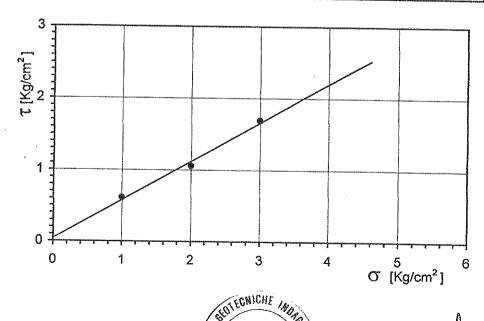
L'Ingeguero (Fotecnico (Tuigi [ripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

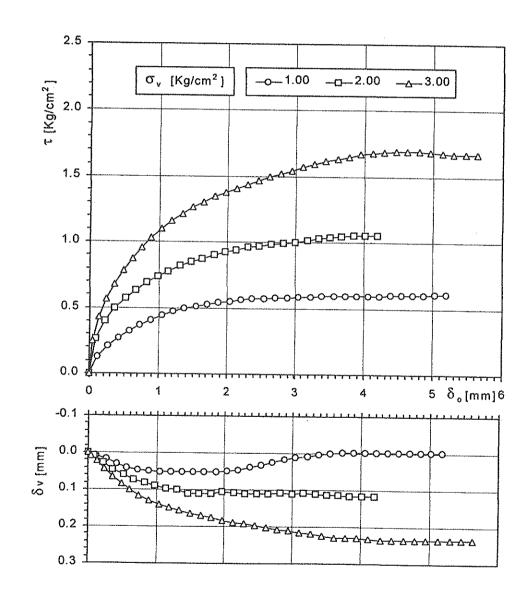

Sondaggio N. 21; Campione N. 1; Profondità da 16.50 a m 17.00

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI	PROVA	VELOCITÀ DI I	DEFORMAZIONE	APPLIC/	AZIONE DEL CARICO
Consol	idata drenata (CD)	0.00 % m	m/min	<u></u>	nazione controllata
DIMEN	SIONI DEI PROVINI				
Base	$6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza	2.0 cm	Volume	72 O cm3

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRI	OVA:			
Peso dell'unità di volume	γ [t/m³]	2.099	2.089	2.081
Contenuto naturale d'acqua	W	0.183	0.183	0.184
Porosità	n	0.342	0.346	0.349
Grado di saturazione	5	0.949	0.937	0.928
CONDIZIONI INIZIALI DI PROVA:				
Pressione verticale CONDIZIONI A ROTTURA:	σ _v [Kg/cm²]	1.00	2.00	3.00
Tensione tangenziale	τ [Kg/cm²]	0.612	1.058	1.694
Spostamento orizzontale	δ _o [mm]	5.19	4.01	4.79
Contenuto d'acqua	W_r	0.176	0.168	0.162

Coesione [Kg/cm²] c' = 0.040 Angolo d'attrito [°] φ' = 28.41



L'Ingegnere Geotecnico (Luigi Tripodi) Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 21; Campione N. 1; Profondità da 16.50 a m 17.00

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

Luigi Fripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 22; Campione N. 1; Profondità da 17.30 a m 17.80

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica: D = 85 mm; L = 600 mm

Data di prelievo: 12/03/2004 Data di apertura: 05/04/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla sabbioso di colore bruno nocciola con venature grigiastre, moderatamente consistente.-

PROPRIETA' INDICI:		700
Peso specifico	$\gamma_{\rm s} = 2.754$	[t/m³]
Peso dell'unità di volume	$\gamma = 2.023$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.631$	[t/m ³]
Contenuto naturale d'acqua	w = 0.240	- ,
Porosità	n = 0.408	
Indice di porosità	e = 0.688	
Grado di saturazione	5 = 0.961	

LIMITI DI ATTERBERG E INDICI:								
Limite di Liq	uidità	$W_L = 0.470$						
Limite di Pla	sticità	$W_P = 0.227$						
Indice di plas	əticità	$I_P = 0.243$						
Indice di Con Indice di Att		I _c = 0.947 A = 0.657						
	IAGRAMMA DI	PLASTICITA'						
100 BASS								
_	MEDIA MEDIA	ALTA						
80								
60								
40								
20								
0								
0 2	0 40	60 80 100 W _L [%]						
	······································							

Prove meccaniche eseguite:

- Taglio diretto (CD)
- Compressione triassiale (UU)

ONO WHORN THE

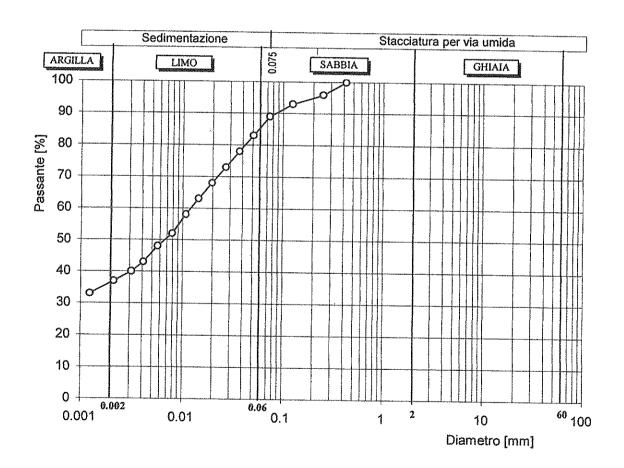
L'Ingegnere Geotecnico (Luigi Tripodi)

Cert. N. 173 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:


Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 22; Campione N. 1; Profondità da 17.30 a m 17.80

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA SABBIOSO.-

GRANULOMETRIA [%]	Ghiaia 00 Sabbia 14 Limo 49 Argilla 3	7

L'Ingegnera Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 22; Campione N. 1; Profondità da 17.30 a m 17.80

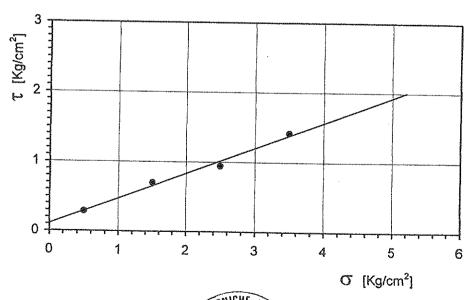
PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA

VELOCITÀ DI DEFORMAZIONE

Consolidata drenata (CD)

O.004 mm/min


APPLICAZIONE DEL CARICO
a deformazione controllata

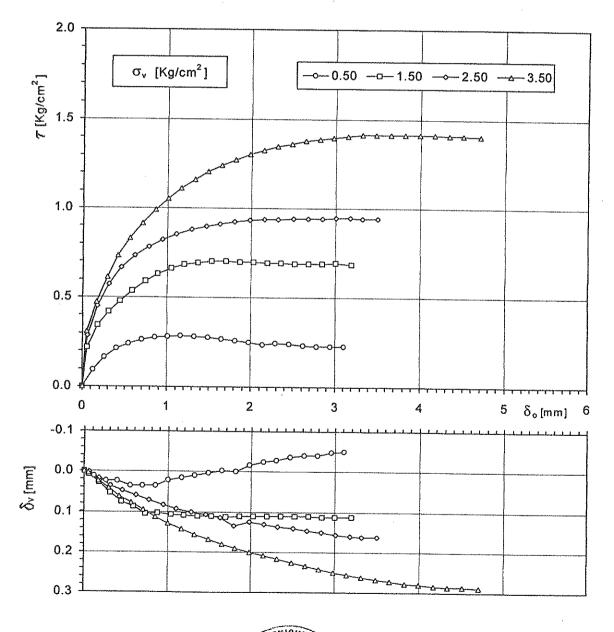
DIMENSIONI DEI PROVINI

Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cm Volume 72.0 cm^3

	PROVINO N	. 1	2	3	4
CONDIZIONI PRIMA DELLA PRI	OYA:				
Peso dell'unità di volume	γ [t/m³]	2.034	2.024	2.027	2.009
Contenuto naturale d'acqua	W	0.230	0.237	0.244	0.251
Porosità	n	0.399	0.406	0.408	0.417
Grado di saturazione	5	0.951	0.956	0.972	0.966
CONDIZIONI INIZIALI DI PROVA:					
Pressione verticale CONDIZIONI A ROTTURA:	σ, [Kg/cm²]	0.50	1.50	2.50	3.50
Tensione tangenziale	τ [Kg/cm²]	0.285	0.700	0.946	1.417
Spostamento orizzontale	δ_o [mm]	1.17	1.70	3.01	3.83
Contenuto d'acqua	W _r	0.241	0.234	0.233	0.226

Coesione [Kg/cm²] c' = 0.109 Angolo d'attrito [°] $\phi' = 20.01$

'Ingognore Ocotecnico
(Lugi Tripodi)


Laboratorio di Geotecnica Associato ALGI N.25 dai 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 22; Campione N. 1; Profondità da 17.30 a m 17.80

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnere focotecnico

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dai 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 22; Campione N. 1; Profondità da 17.30 a m 17.80

PROVA DI COMPRESSIONE TRIASSIALE (UU)

TIPO DI PROVA

Non consolidata non drenata (UU)

DIMENSIONI DEI PROVINI

Diametro 3.80 cm

Altezza

7.60 cm

Volume

86.20 cm3

APPLICAZIONE	~~.	
ヒヘモモモにベノロハト	171-1	(ARR(I))
	~	071100

a deformazione controllata

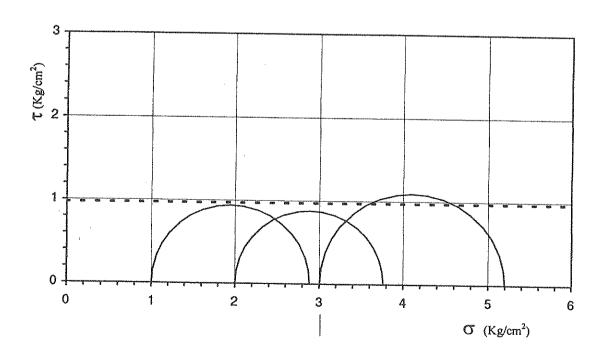
VELOCITÀ DI DEFORMAZIONE

1.00 mm/min

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRO	OVA:			
Peso dell'unità di volume	γ (t/m³)	2.077	2.088	2.100
Contenuto naturale d'acqua	w	0.195	0.200	0.196
Porosità	n	0.369	0.368	0.362
Grado di saturazione	5	0.918	0.945	0.948
CONDIZIONI INIZIALI DI PROVA:	The state of the s			
Pressione laterale totaleverticale	$\sigma_3 (Kg/cm^2)$	1.00	2.00	3.00
CONDIZIONI A ROTTURA:	-			
Tensione deviatorica 0	$(1-\sigma_3 (Kg/cm^2))$	1.88	1.76	2.19
Deformazione assiale	ε _a (%)	15.78	16.39	16.39

Lingeanere Geotecnico
(Luigi Tripodi)

INDAGINE:


Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 22; Campione N. 1; Profondità da 17.30 a m 17.80

PROVA DI COMPRESSIONE TRIASSIALE (UU)

Inviluppo di rottura nel piano τ - σ

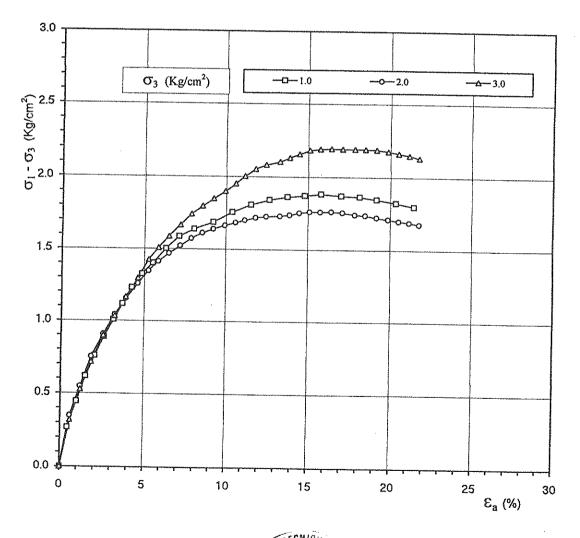
PROVINO	σ_3	σ ₁	σ_c	$ au_c$
N.	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm ²)
1	1.00	2.88	1.94	0.94
2	2.00	3.76	2.88	0.88
3	3.00	5.19	4.10	1.10
C _u =	$\Sigma \tau_c / 3 =$	0.973	(Kg/cm ²)	

SENTECNICHE MORE IN OR GILL

L'Ingephere deotecnico

Cert. N. 178 cJ

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 22; Campione N. 1; Profondità da 17.30 a m 17.80

PROVA DI COMPRESSIONE TRIASSIALE (UU)

Diagramma:

Curve tensioni deviatoriche - deformazioni assiali $(\sigma_1\text{-}\sigma_3$ - $\epsilon_a)$

LAGIC S. a. S. CO

L'Ingegneue Geotecnico (Luigi/Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 1; Profondità da 6.00 a m 6.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 14/01/2004

Data di apertura: 26/01/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla, di colore bruno marrone grigiastro con venature grigio chiare, moderatamente consistente.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_s = 2.766$	(t/m³
Peso dell'unità di volume	y = 2.112	[t/m ³
Peso secco unità di volume	$\gamma_d = 1.761$	[t/m³
Contenuto naturale d'acqua	w = 0.199	•
Porosità	n = 0.363	
Indice di porosità	e = 0.570	
Grado di saturazione	S = 0.965	

I beate - 3:11: + Ire >	147 0 5 1 5
Limite di Liquidità	$W_L = 0.540$
Limite di Plasticità	$W_P = 0.284$
Indice di plasticità	$I_P = 0.256$
	•
Indice di Consistenza	$I_c = 1.332$
Indice di Attività	A = 0.522
DIAGRAMMA DI	PLASTICITA'
100	
BASSA MEDIA	ALTA
∑ 80	
[%] 4y	
1500et 60	
40	
20	
0	
0 20 40	60 80 100
	W _L [%]
	W _L [%]

LIMITI DI ATTERBERG E INDICI:

Prove meccaniche eseguite:

- Consolidazione edometrica
- Taglio diretto (CD)
- Compressione uniassiale (ELL)

CONSULTANCHE INDIGNAL CONSULTANCHE INDIGNAL

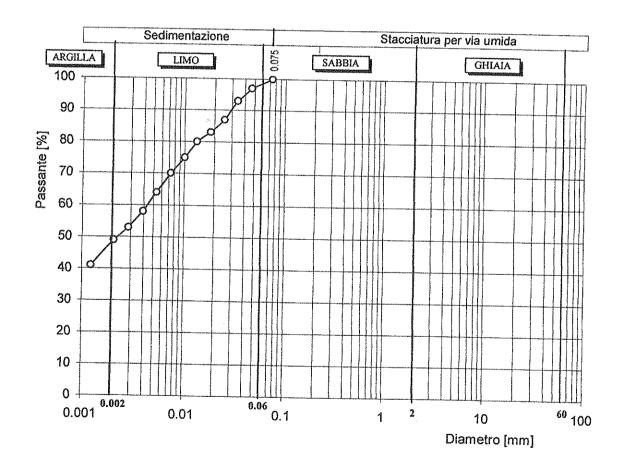
L'Ingegnere Geotecnico (Luigi Fripodi)

Cert. N. 180

сJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 1; Profondità da 6.00 a m 6.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

GRANULOMETRIA [%]	Ghiaia 00 Sabbia 01 Limo	50 Argilla 49	

SISTANCHE INDAGIN

L'Ingenera Geotecnico
(Luigi/Iripodi)

Cert. N. 181 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 1; Profondità da 6.00 a m 6.50

PROVA DI COMPRESSIONE EDOMETRICA

Dati sperimentali diagramma (e - $\log \sigma_v$)

DATI INIZIALI DEL PROVINO:

Altezza

= 2.00 (cm)

Peso dell'unità di volume

y = 2.160

(t/mc)

Diametro

= 5.047 (cm)

Contenuto naturale d'acqua

w = 0.184

Volume

= 40.00 (cmc)

Indice di porosità

e = 0.5156

Grado di saturazione

S = 0.985

Contenuto d'acqua a fine prova w = 0.187

	T	a a tine prova w =		
Carico	Cedimenti	Altezza Provino	Indice di porosità	Modulo Edometrico
σv	Σδν	H	e	Eed
(Kg/cmq)	(mm)	(mm)		(Kg/cmq)
(*) 0.1	0.023	19.977	0.5139	
(*) 0.2	0.043	19.957	0.5124	
(*) 0.4	0.083	19.917	0.5093	
(*) 0.8	0.145	19.855	0.5046	
(*) 1.5	0.243	19.757	0.4972	
3	0.493	19.507	0.4783	119
6 -	0.873	19.127	0.4495	154
12	1.352	18.648	0.4132	240
24	1.932	19.068		386
2 '	1.002	18.068	0.3692	
12	1.772	18.228	0.3813	
6	1.548	18.452	0.3983	
1.5	0.968	19.032	0.4423	
0.4	0.388	19.612	0.4862	,

Nota: (*) il provino tende a rigonfiare

Indice di Compressibilità

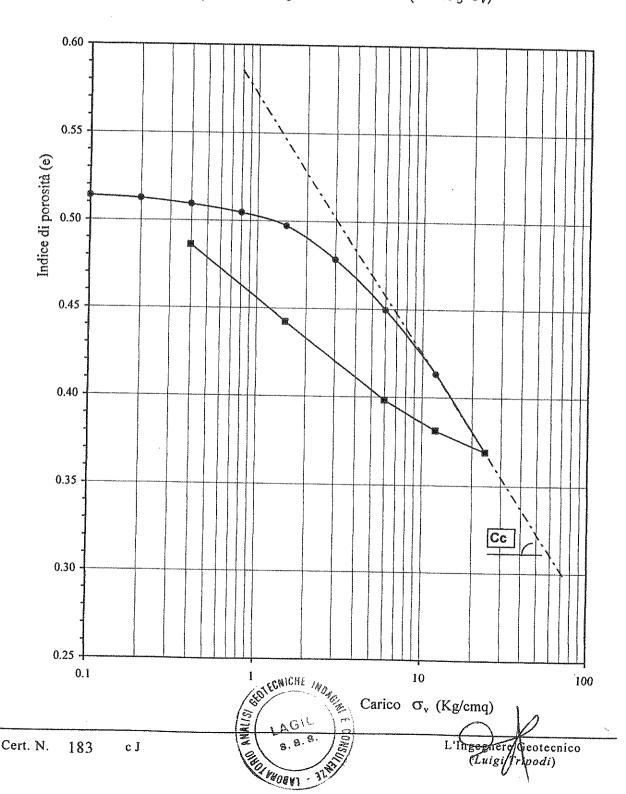
 $C_{c} = 0.146$

Cert. N. 182 cJ

8. 8. 8. L

L'Ingegnere Geotecnico

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it


Laboratorio di Geotecnica Associato ALGI N.25 dai 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 1; Profondità da 6.00 a m 6.50

PROVA DI COMPRESSIONE EDOMETRICA

Diagramma Indice di porosità - Logaritmo del carico (e - log σ_{v})

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

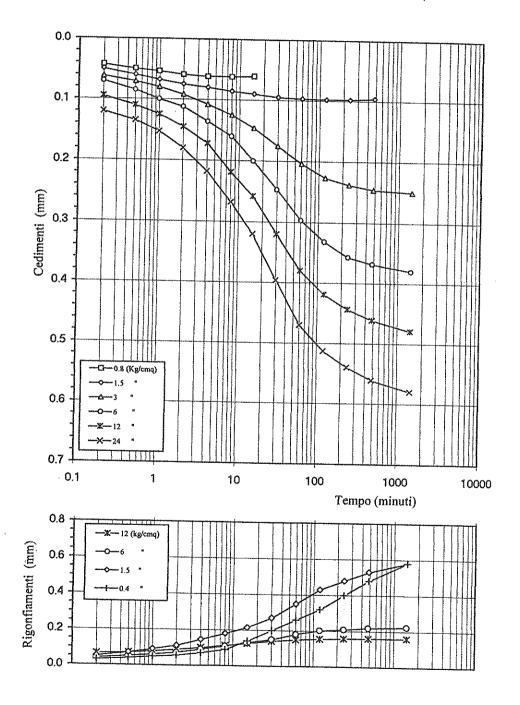
Sondaggio N. 23; Campione N. 1; Profondità da 6.00 a m 6.50

PROVA DI COMPRESSIONE EDOMETRICA

Dati sperimentali diagramma (cedimenti - tempo)

Tempo (minuti)		Cedimenti relativi ai carichi applicati (mm)				
0.2	0.043	0.050	0.062	0.070	0.095	0.120
0.5	0.050	0.060	0.071	0.085	0.110	0.135
1	0.054	0.068	0.080	0.100	0.125	0.153
2	0.059	0.075	0.092	0.112	0.145	0.180
4	0.062	0.080	0.108	0.136	0.172	0.218
8	0.062	0.086	0.125	0.160	0.219	0.268
15	0.061	0.090	0.146	0.200	0.258	0.320
30	(*)	0.095	0.175	0.247	0.320	0.396
60		0.097	0.204	0.297	0.380	0.470
120		0.098	0.227	0.332	0.419	0.513
240		0.098	0.238	0.357	0.443	0.540
480		0.096	0.246	0.368	0.461	0.561
1440		(*)	0.250	0.380	0.479	0.580
Carico (Kg/cmq)	0.8	1.5	3	6	12	24

Nota: (*) il provino tende a rigonfiare


L'Ingegnere Geotecnico
(Luigi Tripodi)

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 1; Profondità da 6.00 a m 6.50

PROVA DI COMPRESSIONE EDOMETRICA

Diagramma Cedimenti/Rigonfiamenti - Logaritmo del tempo

L'Ingegnere Geotecnico (Luigi Ivipodi)

Cert. N.

186

сJ

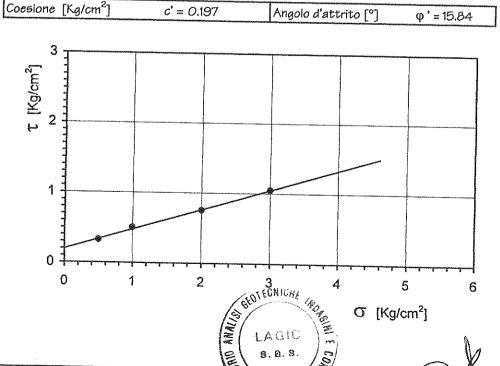
Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Volume

72.0 cm3

(Luigi Tipodi)

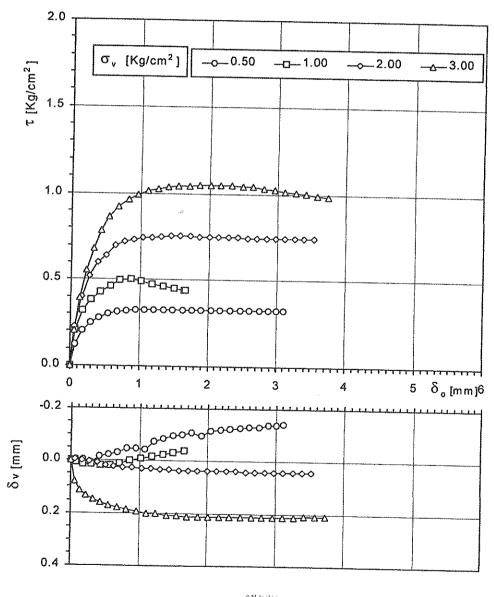

Lavori di costruzione della SS 106 Jonica (E 90) cat. B -INDAGINE: Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 1; Profondità da 6.00 a m 6.50

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA VELOCITÀ DI DEFORMAZIONE APPLICAZIONE DEL CARICO Consolidata drenata (CD) 0.004 mm/min a deformazione controllata DIMENSIONI DEI PROVINI Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cm

	PROVINO N	1	2	3	4
CONDIZIONI PRIMA DELLA PR	OVA:				
Peso dell'unità di volume	γ [t/m³]	2.101	2.069	2.048	2.067
Contenuto naturale d'acqua	W	0.196	0.217	0.241	0.214
Porosità	n	0.365	0.385	0.403	0.384
Grado di saturazione	5	0.943	0.956	0.986	0.947
CONDIZIONI INIZIALI DI PROVA	: .				
Pressione verticale CONDIZIONI A ROTTURA:	σ_{v} [Kg/cm ²]	0.50	1.00	2.00	3.00
Tensione tangenziale	τ [Kg/cm²]	0.325	0.502	0.755	1.049
Spostamento orizzontale	δ_o [mm]	2.33	0.86	1.44	2.17
Contenuto d'acqua	W,	0.217	0.227	0.246	0.211



INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 1; Profondità da 6.00 a m 6.50

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegrere Geotecnico
(Luigi Tripodi)

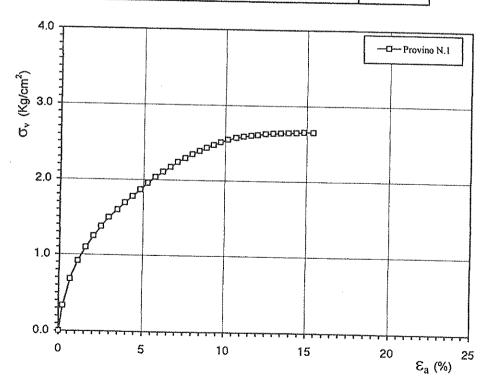
Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 1; Profondità da 6.00 a m 6.50


PROVA DI COMPRESSIONE UNIASSIALE (ELL)

DIMENSIONI DEI PROVINI	
• Diametro 3.80 cm	• Altezza 7.60 cm

VELOC	ITÀ DI DEFORMAZIONE
3.00	mm/min

Diagramma: Curve tensioni deviatoriche - deformazione assiale $(\sigma_v$ - $\epsilon_a)$

	PROVINO N.	1
CONDIZIONI PRIMA DELLA PR	OVA:	
Peso dell'unità di volume	γ (t/m ³)	2.104
Contenuto naturale d'acqua	w	0.195
Porosità	n	0.364
Grado di saturazione	5	0.945
CONDIZIONI A ROTTURA:		
Tensione deviatorica	σ _v (Kg/cm²)	2.65
Deformazione assiale	ε _a (%)	14.82

L'Ingegnere Geotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 2; Profondità da 20.00 a m 20.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 15/01/2004

Data di apertura: 26/01/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla debolmente sabbioso cosistente, di olore grigiastro con puntinature nerastre e biancastre.-

PROPRIETA' INDICI:		
Peso specifico Peso dell'unità di volume Peso secco unità di volume	$\gamma_s = 2.774$ $\gamma = 2.156$ $\gamma_d = 1.821$	[t/m ³] [t/m ³] [t/m ³]
Contenuto naturale d'acque Porosità Indice di porosità Grado di saturazione	w = 0.184 n = 0.344 e = 0.523 S = 0.975	J

LIMITI DI ATTERBERG E INDICI:				
Limite di Liquidità $W_L = 0.432$				
Limite di Plasticità $W_P = 0.237$				
Indice di plasticità I _P = 0.195				
Indice di Consistenza $I_C = 1.272$ Indice di Attività $A = 0.476$				
DIAGRAMMA DI PLASTICITA' BASSA MEDIA ALTA 40 20				
0				
0 20 40 60 80 100 W _L [%]				

Prove meccaniche eseguite:

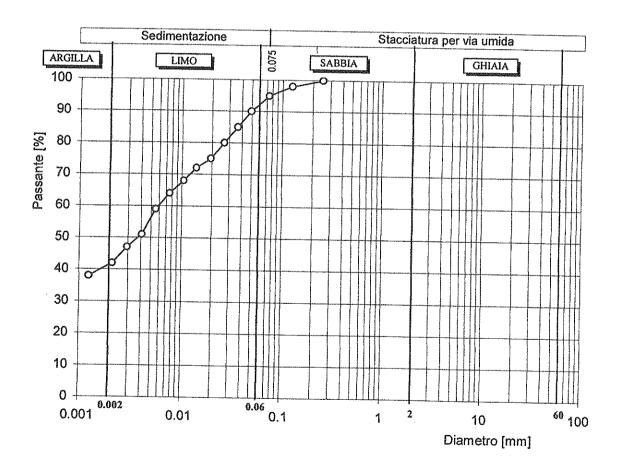
- Consolidazione edometrica
- Taglio diretto (CD)
- Compressione uniassiale (ELL)

L'Ingegnere Geotecnico (Luigi Trippodi)

Cert. N. 189

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 2; Profondità da 20.00 a m 20.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA DEBOLMENTE SABBIOSO.-

GRANULOMETRIA [%] Ghiaia 00 Sabbia 08 Limo 51 Argilla 41

L'Ingegnere (Geotecnico (Luigi Tripodi) Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 2; Profondità da 20.00 a m 20.50

PROVA DI COMPRESSIONE EDOMETRICA

Dati sperimentali diagramma (e - log σ_v)

DATI INIZIALI DEL PROVINO:

Altezza

= 2.00 (cm)

Peso dell'unità di volume

 $\gamma = 2.181$

(t/mc)

Diametro

= 5.047 (cm)

Contenuto naturale d'acqua

w = 0.177

77

Volume

= 40.00 (cmc)

Indice di porosità

e = 0.4970

Grado di saturazione

5 = 0.986

Contenuto d'acqua a fine prova w = 0.184

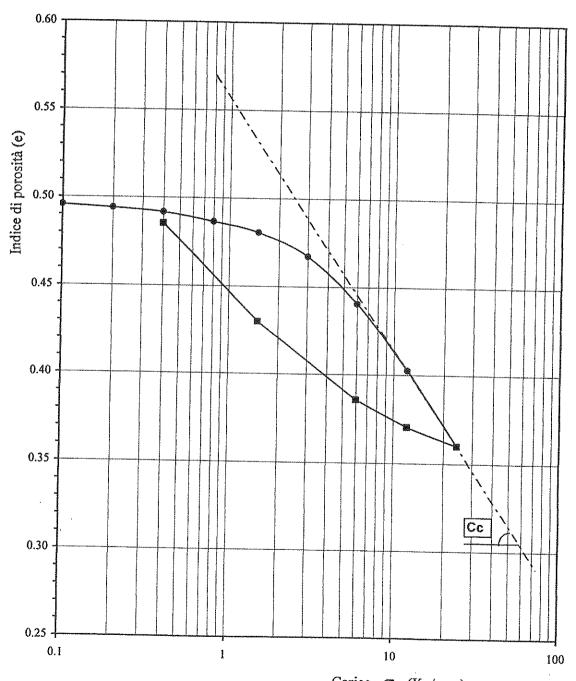
Carico O v (Kg/cmq)	Cedimenti $\Sigma \delta v$ (mm)	Altezza Provino H (mm)	Indice di porosità e	Modulo Edometrico Eed (Kg/cma)
(*) 0.1 (*) 0.2 (*) 0.4 (*) 0.8 (*) 1.5 3 6 12 24 12 6 1.5 0.4	0.018 0.040 0.070 0.140 0.220 0.400 0.756 1.262 1.832 1.692 1.487 0.897 0.157	19.982 19.960 19.930 19.860 19.780 19.600 19.244 18.738 18.168 18.308 18.513 19.103	0.4957 0.4940 0.4918 0.4866 0.4806 0.4671 0.4404 0.4026 0.3599 0.3704 0.3857 0.4299 0.4853	(Kg/cmq) 165 165 228 394

Nota: (*) il provino tende a rigonfiare

Inchos Heli Compressibilità

Cc = 0.142

F


1 AG16

L'Ingegnere Geotecnic (Luigi fripodi) Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 2; Profondità da 20.00 a m 20.50

PROVA DI COMPRESSIONE EDOMETRICA

Diagramma Indice di porosità - Logaritmo del carico (e - log σ_{v})

Carico σ_v (Kg/cmq)

SECTIONICHE INDAGE

L'Ingegnere feotecnico (Luigi Tripodi)

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 2; Profondità da 20.00 a m 20.50

PROVA DI COMPRESSIONE EDOMETRICA

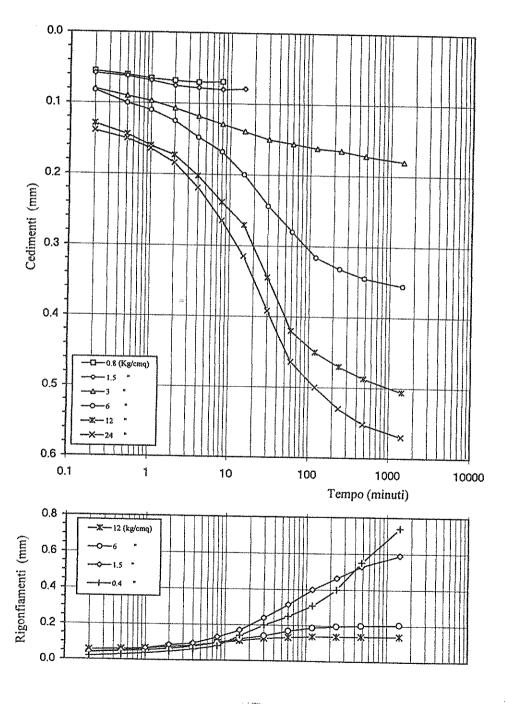
Dati sperimentali diagramma (cedimenti - tempo)

Tempo (minuti)		Cedimenti relativi ai carichi applicati (mm)				
0.2	0.055	0.058	0.080	0.082	0.129	0.139
0.5	0.060	0.062	0.090	0.100	0.144	0.150
1	0.065	0.068	0.097	0.110	0.160	0.164
2	0.068	0.075	0.107	0.125	0.173	0.184
4	0.070	0.078	0.118	0.148	0.202	0.219
8	0.069	0.080	0.129	0.168	0.239	0.265
15	(*)	0.079	0.139	0.200	0.271	0.315
30		(*)	0.150	0.244	0.345	0.392
60			0.156	0.280	0.420	0.464
120	THE PROPERTY OF THE PROPERTY O		0.162	0.316	0.450	0.500
240		***************************************	0.165	0.332	0.470	0.530
480			0.172	0.345	0.487	0.552
1440			0.180	0.356	0.506	0.570
Carico (Kg/cmq)	0.8	1.5	3	6	12	24

Nota: (*) il provino tende a rigonfiare

SONICHE MANAGEMENT

L'Ingegnore Geotecnico (Luigi Tripodi)


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 2; Profondità da 20.00 a m 20.50

PROVA DI COMPRESSIONE EDOMETRICA

Diagramma Cedimenti/Rigonfiamenti - Logaritmo del tempo

L'ingegnere Seotecnico
(Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

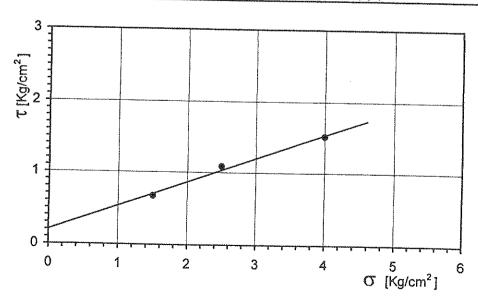
Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B -Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 2; Profondità da 20.00 a m 20.50

PROVA DI TAGLIO DIRETTO(CD)


TIPO DI PROVA VELOCITÀ DI DEFORMAZIONE APPLICAZIONE DEL CARICO Consolidata drenata (CD) 0.004 mm/min a deformazione controllata

DIMENSIONI DEI PROVINI

Base 60,60 360 2				
Dase $6.0x6.0 = 36.0 \text{ cm}^2$				
1 Dase 0.0x0.0 = 36.0 cm2				
	Altezza	21) cm		7700 2
			l Volume	
				/2.0 cm ²

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRI	OVA:			
Peso dell'unità di volume	γ [t/m³]	2.138	2.165	2.033
Contenuto naturale d'acqua	W	0.186	0.185	0.219
Porosità	n	0.350	0.342	0.399
Grado di saturazione	5	0.958	0.990	0.915
CONDIZIONI INIZIALI DI PROVA:	:			0.0.0
Pressione verticale CONDIZIONI A ROTTURA:	σ _v [Kg/cm²]	1.50	2.50	4.00
Tensione tangenziale	τ [Kg/cm²]	0.669	1.088	1.516
Spostamento orizzontale	δ_o [mm]	1.27	2.07	4.13
Contenuto d'acqua	W _r	0.203	0.186	0.185

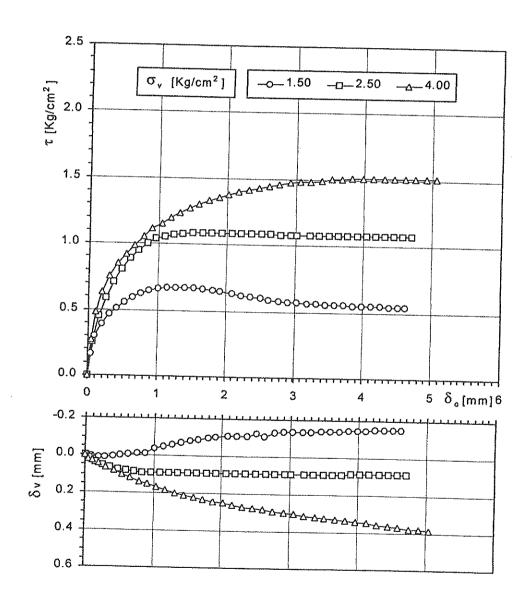
Coesione [Kg/cm²] c' = 0.199Angolo d'attrito [°] φ' = 18.49

GENTECNICHE INDA 408A1 - 314

gegnefe Geotec (Luig Tripodi) Geotecnico

Cert. N. 195 сJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 2; Profondità da 20.00 a m 20.50

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

L'Ingegnere (Ceotecnico (Lyigi Tripodi)

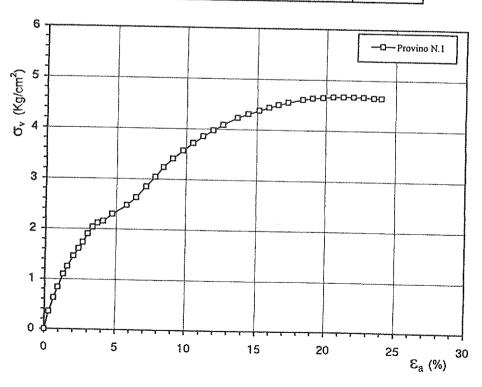
Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 23; Campione N. 2; Profondità da 20.00 a m 20.50


PROVA DI COMPRESSIONE UNIASSIALE (ELL)

DIMENSIONI DEI PROVINI	
• Diametro 3.80 cm	Altezza 7.60 cm

VELOCITÀ	DI DEFORMAZIONE
3.00	mm/min

Diagramma: Curve tensioni deviatoriche - deformazione assiale $(\sigma_v$ - $\epsilon_a)$

	PROVINO N.	1
CONDIZIONI PRIMA DELLA PR	OVA:	
Peso dell'unità di volume	γ (t/m³)	2.174
Contenuto naturale d'acqua	w	0.177
Porosità	n	0.334
Grado di saturazione	5	0.980
CONDIZIONI A ROTTURA:	The state of the s	
Tensione deviatorica	σ _v (Kg/cm²)	4.67
Deformazione assiale	ε _a (%)	21.23

L'ingerner Geotecnico (Luigi (ripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 24; Campione N. 1; Profondità da 9.00 a m 9.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 15/01/2004

Data di apertura: 04/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Sabbia limosa argillosa di colore bruno giallastro con venature rossastre, moderatamente addensata.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_{\rm e} = 2.758$	$\lceil t/m^3 \rceil$
Peso dell'unità di volume	y = 1.978	[t/m ³]
Peso secco unità di volume	$\gamma_{a} = 1.752$	[t/m ³]
Contenuto naturale d'acqui	w = 0.129	Will
Porosità	n = 0.365	Ì
Indice di porosità	e = 0.574	į
Grado di saturazione	5 = 0.620	-

Limite	Limite di Plasticità		W_P :	= 0.355 = 0.210
Indice	di plast	icità	_P	= 0.145
Indice	di Attivi	tà	A =	0.763
	DIAG	RAMMA D	I PLASTIC	CITA'
100	BASSA	MEDIA	ALTA	
[%]		1	ALIA	J
60 -				
40 -				
20 -				
0		•		
0	20	40	60 8	30 100
			W_{i}	. [%]

LIMITI DI ATTERBERG E INDICI:

Limite di Liquidità

Prove meccaniche eseguite:

Taglio diretto (CD)

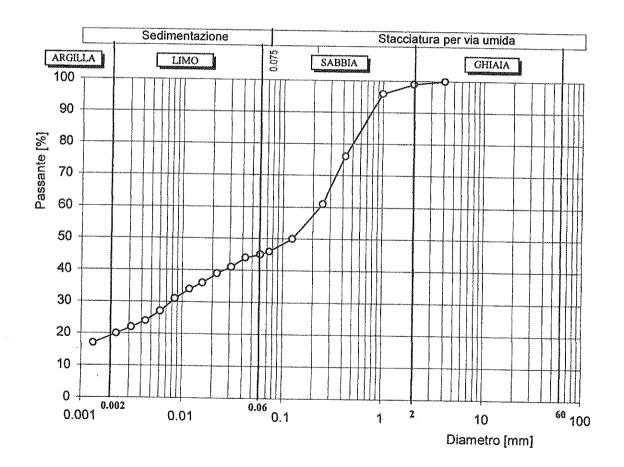
LAGIC STREET TO SERVICE TO SERVIC

L'Ingegnere Deotecnico (Luigi Tripodi)

Cert. N. 198 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00)...

Sondaggio N. 24; Campione N. 1; Profondità da 9.00 a m 9.50

ANALISI GRANULOMETRICA

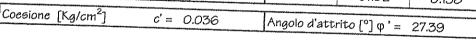
CLASSIFICA Norme A.G.I. SABBIA LIMOSA ARGILLOSA.-

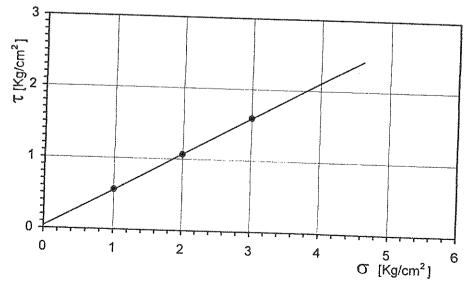
GRANULOMETRIA [%] Ghiaia 01 Sabbia 55 Limo 25 Argilla 19

L'Ingegnere/Geotecnico (Luigi Tripodi)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dai 1984

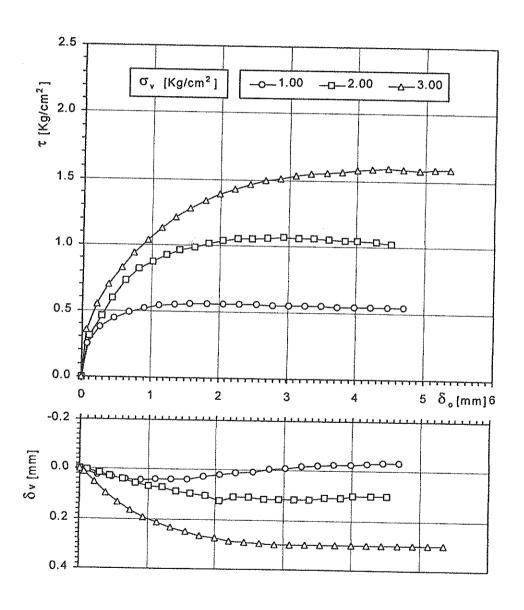

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-


Sondaggio N. 24; Campione N. 1; Profondità da 9.00 a m 9.50

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA	VELOCITÀ DI DEFORMAZIONE	APPLICATIONS DEL
Consolidata drenata (CD)	0.008 mm/min	APPLICAZIONE DEL CARICO a deformazione controllata
DIMENSIONI DEI PROVINI		
Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$	Altezza 2.0 cm	Volume 72.0 cm ³

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PR	OVA:			J
Peso dell'unità di volume	γ [t/m³]	1,961	1,954	2.047
Contenuto naturale d'acqua	w	0.142	0.143	2.017
Porosità	n	0.377	0.380	0.102
Grado di saturazione	5	0.645	0.644	0.336
CONDIZIONI INIZIALI DI PROVA	:	0.0.0	0.0-14	0.553
Pressione verticale CONDIZIONI A ROTTURA:	σ, [Kg/cm²]	1.00	2.00	3.00
Tensione tangenziale	τ [Kg/cm²]	0.557	1.067	1.593
Spostamento orizzontale	δ_o [mm]	1.83	2.93	4.45
Contenuto d'acqua	W _r	0.189	0.182	0.138



L'Ingegnene Geotecnico (Luigi Tripodi) INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 24; Campione N. 1; Profondità da 9.00 a m 9.50

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 24 Campione N. 2; Profondità da 18.00 a m 18.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 15/01/2004

Data di apertura: 17/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla moderatamente consistente di colore grigiastro.-

PROPRIETA' INDICI:		
Peso specifico Peso dell'unità di volume Peso secco unità di volume	$\gamma_s = 2.758$ $\gamma = 2.117$ $\gamma_d = 1.791$	[t/m ³] [t/m ³] [t/m ³]
Contenuto naturale d'acqua Porosità	w = 0.182 n = 0.351	[Wm]
Indice di porosità Grado di saturazione	e = 0.540 5 = 0.930	

Limite di Liquidità $W_L = 0.468$
Limite di Plasticità $W_P = 0.224$
Indice di plasticità $I_P = 0.244$
,, 50,2,14
Indice di Consistenza $I_c = 1.172$
Indice di Attività $A = 0.519$
DIAGRAMMA DI PLASTICITA'
100
BASSA MEDIA ALTA
₹ 80 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
% 80
60
00
40
20
0
0 20 40 60 80 100
W _L [%]

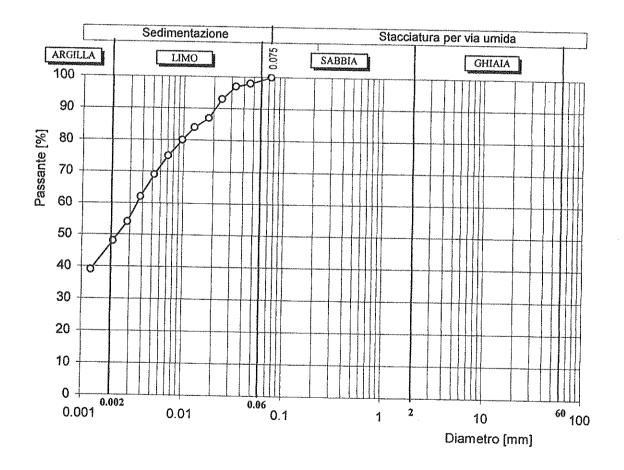
LIMITI DI ATTERBERG E INDICI:

Prove meccaniche eseguite:

* Compressione triassiale (CD)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 24 Campione N. 2; Profondità da 18.00 a m 18.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA.-

GRANULOMETRIA [%] Ghiaia 00 Sabbia 01 Limo 52 Argilla 47

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax : 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B -

Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 24 Campione N. 2; Profondità da 18.00 a m 18.50

PROVA DI COMPRESSIONE TRIASSIALE (CD)

TIPO DI PROVA

Consolidata drenata (CD)

MODALITÀ DI PROVA

Applicazione di "back pressure" (u_o)

DIMENSIONI DEI PROVINI

Diametro 3.80 cm

Altezza 7.60 cm

Volume 86.20 cm³

APPLICAZIONE DEL CARICO

a deformazione controllata

VELOCITÀ DI DEFORMAZIONE

0.004 mm/min

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PROVA:				
Peso dell'unità di volume	γ [t/m ³]	2.169	2.135	2.048
Contenuto naturale d'acqua	W	0.167	0.152	0.228
Porosità	n	0.326	0.328	0.396
Grado di saturazione	5	0.951	0.860	0.962
CONDIZIONI INIZIALI DI PROVA:			0.000	0.002
Pressione laterale totale	σ ₃ [Kg/cm ²]	3.50	4.50	5.50
Back pressure	u _o [Kg/cm²]	2.00	2.00	2.00
Pressione laterale effettiva	σ ₃ ' [Kg/cm ²]	1.50	2.50	3.50
CONSOLIDAZIONE:	_			0.00
Variazione di volume	Δ٧/٧ [%]	0.232	0.928	1.160
CONDIZIONI A ROTTURA:			0.020	1.100
Tensione deviatorica σ_1 - σ_2	₃ [Kg/cm ²]	2.506	4.484	5.572
Deformazione assiale	ε, [%]	15.67	11.69	14.48
Contenuto d'acqua a rottura	W _r	0.187	0.170	0.228

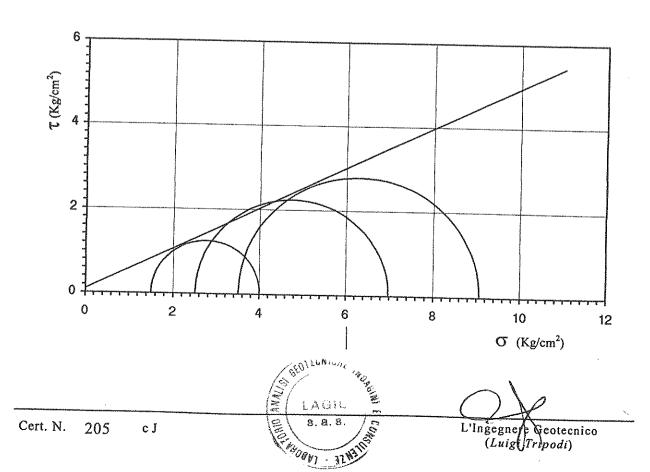
L'Ingegne e Geotecnico (Luigi Tripodi)

Cert. N. 204 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

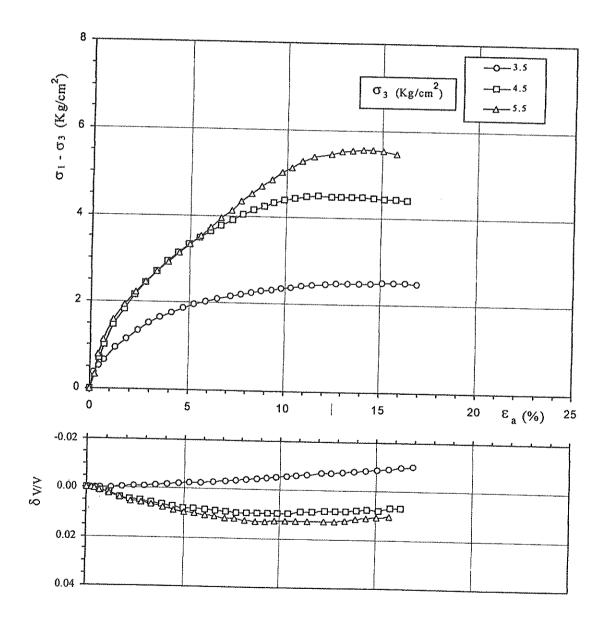

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 24 Campione N. 2; Profondità da 18.00 a m 18.50

PROVA DI COMPRESSIONE TRIASSIALE (CD)

Inviluppo di rottura nel piano τ - σ

PROVINO	σ_3	σ_1	σ_c	$ au_c$
N.	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)
1	1.50	4.006	2.753	1.253
2	2.50	6.984	4.742	2.242
- 3	3.50	9.072	6.286	2.786
$c' = 0.097 \text{ (Kg/cm}^2\text{)} \qquad \varphi' = 25.9c(\circ)$				



INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 24 Campione N. 2; Profondità da 18.00 a m 18.50

PROVA DI COMPRESSIONE TRIASSIALE (CD)

Tensione deviatorica - deformazione assiale $(\sigma_1$ - σ_3 ÷ $\epsilon_a)$

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 25; Campione N. 1; Profondità da 8.50 a m 9.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 13/01/2004

Data di apertura: 02/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla sabbioso di colore bruno marrone giallastro con venature grigiastre, da moderatamente consistente a consistente.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_{\rm e} = 2.758$	[t/m ³]
Peso dell'unità di volume	$\gamma = 2.179$	$[t/m^3]$
Peso secco unità di volume	$\gamma_d = 1.877$	[t/m ³]
Contenuto naturale d'acque	w = 0.161	[1/////]
Porosità	n = 0.319	
Indice di porosità	e = 0.469	
Grado di saturazione	5 = 0.946	THE STATE OF THE S

Limite di Plasticità	$W_P = 0.150$
Indice di plasticità	$l_P = 0.224$
Indice di Consistenza Indice di Attività	l _c = 0.951 A = 0.640
100 DIAGRAMMA DI	PLASTICITA'
80 BASSA MEDIA	ALTA
60	
40	
20	
0	
0 20 40 6	0 80 100 W _L [%]

LIMITI DI ATTERBERG E INDICI:

Limite di Liquidità

Prove meccaniche eseguite:

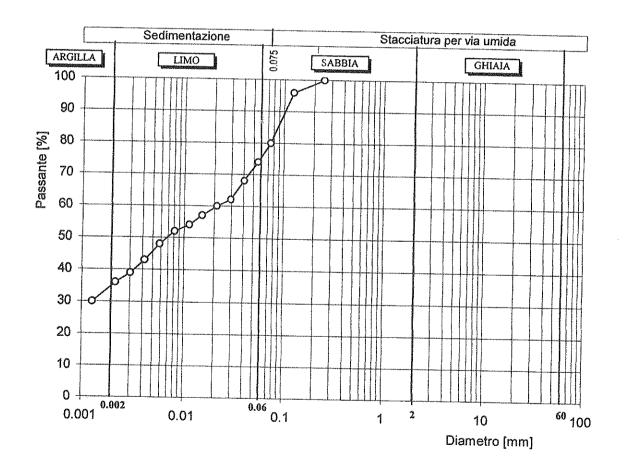
- Consolidazione edometrica
- Taglio diretto (CD)

L'Ingegnere Gootecnico (Luigi Tripodi)

Cert. N. 207 c J

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dai 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 25; Campione N. 1; Profondità da 8.50 a m 9.00

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA SABBIOSO.-

GPANIII ONETRIA CAR						
GRANULOMETRIA [%]	Ghiaia 00	Galder Da				
L'J		Sabbia 24	Limo	41	Arailla	スペー
	**************************************			., 1	/ II gilla	- UU

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 25; Campione N. 1; Profondità da 8.50 a m 9.00

PROVA DI COMPRESSIONE EDOMETRICA

Dati sperimentali diagramma (e - $\log \sigma_v$)

DATI INIZIALI DEL PROVINO:

Altezza

= 2.00 (cm)

Peso dell'unità di volume

y = 2.175

(t/mc)

Diametro

= 5.047 (cm)

Contenuto naturale d'acqua

w = 0.167

Volume

= 40.00 (cmc)

Indice di porosità

e = 0.4792

Grado di saturazione

S = 0.958

Contenuto d'acqua a fine prova w = 0.156

Carico	Cedimenti	Altezza Provino	Indice di porosità	Modulo Edometrico
σv	Σδν	Н	e	Eed
(Kg/cmq)	(mm)	(mm)		(Kg/cmq)
(*) 0.1	0.020	19.980	0.4777	
(*) 0.2	0.040	19.960	0.4763	
(*) 0.4	0.080	19.920	0.4733	
(*) 0.8	0.149	19.851	0.4682	
1.5	0.291	19.709	0.4577	98
3	0.577	19.423	0.4365	103
6	1.012	18.988	0.4044	134
12	1.547	18.453	0.3648	213
24	2.146	17.854	0.3205	370
12	2.048	17.952	0.3277	
6	1.886	18.114	0.3397	
1.5	1.461	18.539	0.3712	
0.4	1.035	18.965	0.4027	-

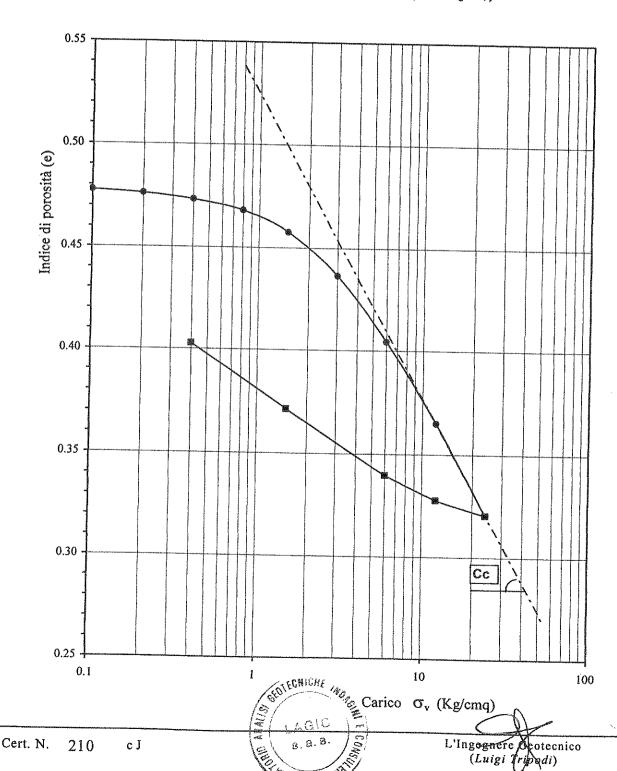
Nota: (*) il provino tende a rigonfiare

Indice, di Compressibilità

Cc = 0.147

2 ())(2 ())(

W0881 - 31


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 25; Campione N. 1; Profondità da 8.50 a m 9.00

PROVA DI COMPRESSIONE EDOMETRICA

Diagramma Indice di porosità - Logaritmo del carico (e - log σ_{ν})

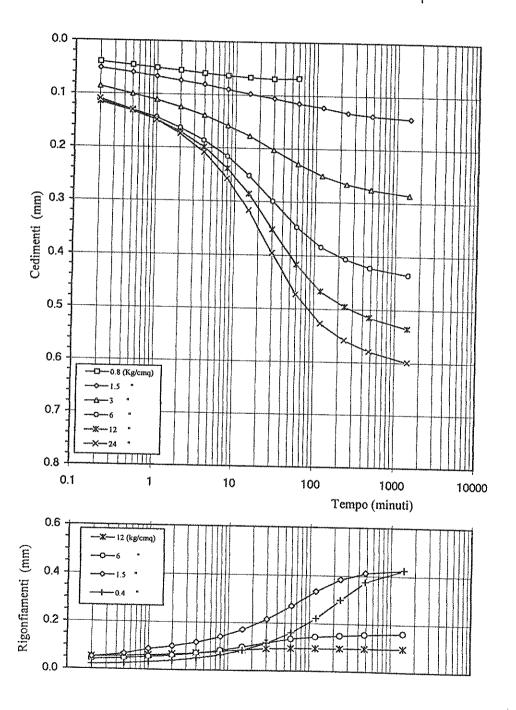
Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 25; Campione N. 1; Profondità da 8.50 a m 9.00

PROVA DI COMPRESSIONE EDOMETRICA

Dati sperimentali diagramma (cedimenti - tempo)

Tagara					W	**************************************	
Tempo (minuti)		Cedimenti relativi ai carichi applicati					
(minuvi)	-		(n	1m)			
0.2	0.040	0.052	0.086	0.113	0.115	0.110	
0.5	0.046	0.060	0.100	0.130	0.132	0.130	
1	0.051	0.067	0.111	0.144	0.149	0.149	
2	0.055	0.074	0.124	0.163	0.170	0.174	
4	0.060	0.081	0.139	0.186	0.199	0.209	
8	0.064	0.090	0.158	0.216	0.239	0.258	
15	0.067	0.098	0.177	0.252	0.286	0.317	
30	0.069	0.106	0.203	0.299	0.352	0.396	
60	0.068	0.115	0.229	0.347	0.417	0.473	
120	(*)	0.122	0.251	0.384	0.467	0.527	
240		0.132	0.266	0.406	0.495	0.558	
480		0.137	0.276	0.422	0.515	0.579	
1440		0.142	0.286	0.435	0.535	0.599	
Carico (Kg/cmq)	0.8	1.5	3	6	12	24	


Nota: (*) il provino tende a rigonfiare

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 25; Campione N. 1; Profondità da 8.50 a m 9.00

PROVA DI COMPRESSIONE EDOMETRICA

Diagramma Cedimenti/Rigonfiamenti - Logaritmo del tempo

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 25; Campione N. 1; Profondità da 8.50 a m 9.00

PROVA DI TAGLIO DIRETTO(CD)

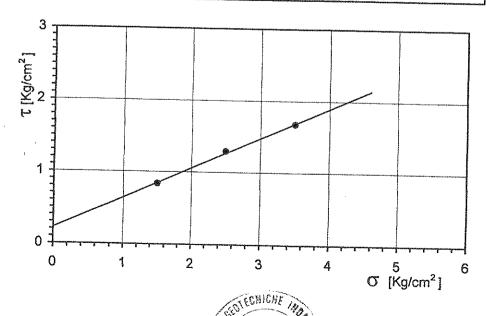
TIPO DI PROVA

VELOCITÀ DI DEFORMAZIONE

APPLICAZIONE DEL CARICO

Consolidata drenata (CD)

O.004 mm/min

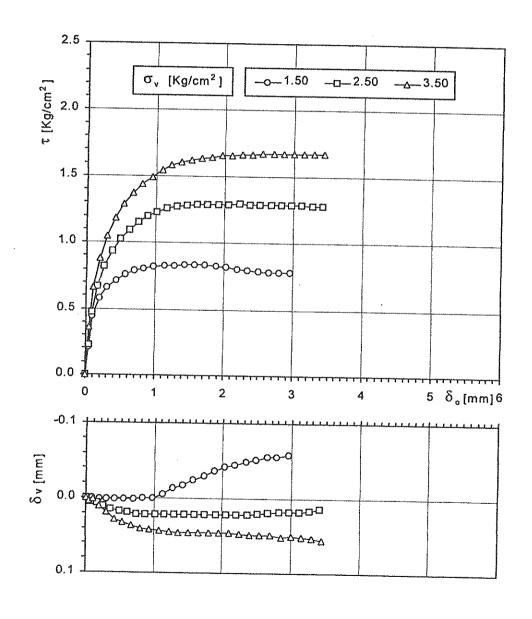

a deformazione controllata

DIMENSIONI DEI PROVINI

Base 60x60 - 360 cm2				
	! & I + ~ ~ ~ ~			
	Altezza	2.0 cm	Volume	72 0 0 0 0 1
				72.0 cm

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRI	OVA:			
Peso dell'unità di volume	$\gamma [t/m^3]$	2.201	2.189	2,161
Contenuto naturale d'acqua	W	0.156	0.152	0.156
Porosità	n	0.310	0.311	0.322
Grado di saturazione	5	0.960	0.929	0.904
CONDIZIONI INIZIALI DI PROVA:	:			
Pressione verticale CONDIZIONI A ROTTURA:	σ _ν [Kg/cm²]	1.50	2.50	3.50
Tensione tangenziale	τ [Kg/cm²]	0.835	1.292	1.672
Spostamento orizzontale	δ ₀ [mm]	1.42	2.21	3.14
Contenuto d'acqua	W _r	0.163	0.154	0.154

Coesione [Kg/cm²] c' = 0.220 Angolo d'attrito [°] $\phi' = 22.71$



INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00)...

Sondaggio N. 25; Campione N. 1; Profondità da 8.50 a m 9.00

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 25; Campione N. 2; Profondità da 15.50 a m 16.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 13/01/2004

Data di apertura: 05/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla sabbioso con sporadici elementi fossilifri di colore grigio, moderatamente consistente.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_s = 2.762$	[t/m ³]
Peso dell'unità di volume	$\gamma = 2.058$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.735$	[t/m³]
Contenuto naturale d'acqua	w = 0.186	
Porosità	n = 0.372	
Indice di porosità	e = 0.592	
Grado di saturazione	5 = 0.868	

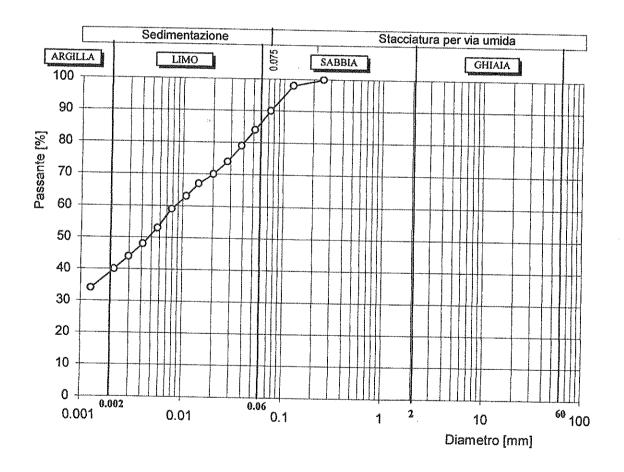
LIMITI DI ATTERBERG E INDICI:
Limite di Liquidità $W_L = 0.430$
Limite di Plasticità $W_P = 0.212$
Indice di plasticità $I_P = 0.218$
Indice di Consistenza $I_c = 1.119$
Indice di Attività $A = 0.559$
DIAGRAMMA DI PLASTICITA' 100 BASSA MEDIA ALTA 40 20 0
0 20 40 60 80 100 W _L [%]

Prove meccaniche eseguite:

- Taglio diretto (CD)
- Compressione uniassiale (ELL)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 25; Campione N. 2; Profondità da 15.50 a m 16.00

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA SABBIOSO.-

GPANIII OMETOM		
GRANULOMETRIA [%]	Ghiaia 00 Sabbia 13 Limo 48 Azzilla	
[Loj	Ghiaia 00 Sabbia 13 Limo 48 Arailla	. 70
	Olliata 00 Sabbia 15 Limo 48 Argilla	391

Cert. N. 216 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

L'Ingegnere Géotecnico

(Luigi Kripodi)

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 25; Campione N. 2; Profondità da 15.50 a m 16.00

PROVA DI TAGLIO DIRETTO(CD)

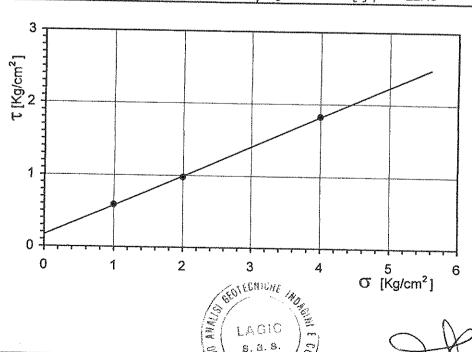
TIPO DI PROVA

VELOCITÀ DI DEFORMAZIONE

APPLICAZIONE DEL CARICO

Consolidata drenata (CD)

O.004 mm/min

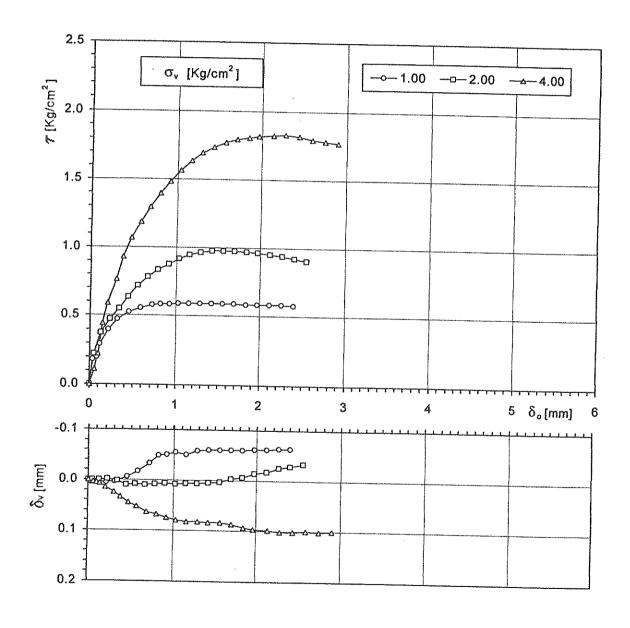

a deformazione controllata

DIMENSIONI DEI PROVINI

Base	60.60 700 2				
10298	$O(1) \times O(1) \rightarrow O(1) \times O(1)$	A +	0 0	1	
		I O LUCZZA	2.0 cm	Volume	72 O cm3
	· · · · · · · · · · · · · · · · · · ·			FORUMO	74.0 cm

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRI	OVA:			
Peso dell'unità di volume	γ [t/m³]	2.032	2.043	1.997
Contenuto naturale d'acqua	w	0.186	0.187	0.191
Porosità	n	0.380	0.377	0.393
Grado di saturazione	5	0.839	0.854	0.815
CONDIZIONI INIZIALI DI PROVA:	:			
Pressione verticale CONDIZIONI A ROTTURA:	σ _v [Kg/cm²]	1.00	2.00	4.00
Tensione tangenziale	τ [Kg/cm²]	0.589	0.978	1.825
Spostamento orizzontale	δ_o [mm]	1.55	1.55	2.28
Contenuto d'acqua	W _r	0.210	0.202	0.195

Coesione [Kg/cm²] c' = 0.165 Angolo d'attrito [°] $\varphi' = 22.48$


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 25; Campione N. 2; Profondità da 15.50 a m 16.00

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

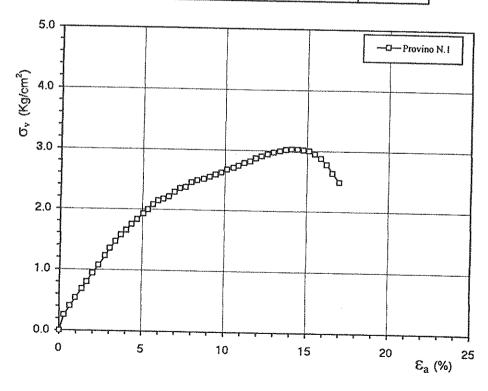
LAGIO S. S. S.

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 25; Campione N. 2; Profondità da 15.50 a m 16.00


PROVA DI COMPRESSIONE UNIASSIALE (ELL)

DIMENSIONI D			7
 Diametro 	3.80 cm	Altezza 7.60 cm	1

VELOCI	TÀ DI	DEFO	RMAZIONE	
3.00		1/min		_

Diagramma: Curve tensioni deviatoriche - deformazione assiale $(\sigma_v$ - $\epsilon_a)$

	PROVINO N.	1
CONDIZIONI PRIMA DELLA PR	OVA:	
Peso dell'unità di volume	γ (t/m³)	2.092
Contenuto naturale d'acqua	w	0.183
Porosità	n	0.360
Grado di saturazione	5	0.900
CONDIZIONI A ROTTURA:		
Tensione deviatorica	σ _ν (Kg/cm²)	3.03
Deformazione assiale	ε _a (%)	14.05

CONTENT INDICATE OF STREET OF STREET

Cert. N. 219 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 26; Campione N. 1; Profondità da 4.50a m 5.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fuetella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 14/01/2004 Data di apertura: 02/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Sabbia con limo argillosa bruno giallastra moderatamente addensata.

77	PROPRIETA' INDICI:		······································
	Peso specifico	$\gamma_s = 2.751$	[t/m ³]
	Peso dell'unità di volume	$\gamma = 1.953$	[t/m ³]
	eso secco unità di volume	$\gamma_d = 1.766$	[t/m ³]
(Contenuto naturale d'acqu.	w = 0.106	, 1
	² orosità	n = 0.358	
	ndice di porosità	e = 0.558	
	Grado di saturazione	9 = 0.523	

	LIMITI DI ATTERBERG E INDICI:
-	Limite di Liquidità $W_L = 0.309$
	Limite di Plasticità $W_P = 0.197$
	Indice di plasticità $I_P = 0.112$
The state of the s	
ŀ	Indice di Attività $A = 0.533$
100 Mary 100	DIAGRAMMA DI PLASTICITA' 100 BASSA MEDIA ALTA 20 0
	0 20 40 60 80 100 W _L [%]
	W _L [%]

Prove meccaniche eseguite:

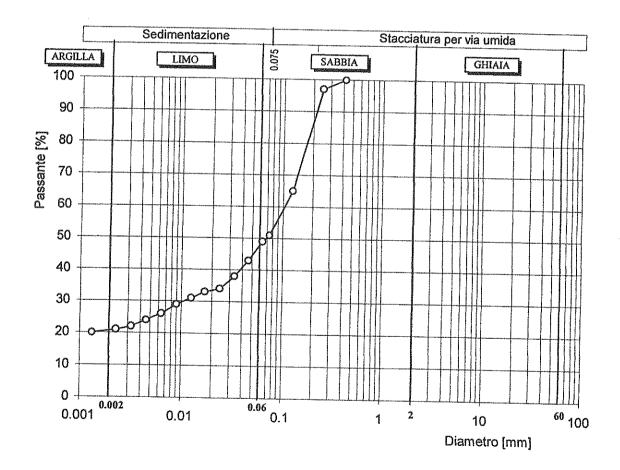
Taglio diretto (CD)

L'Ingegnere Geotecnico (Luigi Tripodi)

Cert. N. 220 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 26; Campione N. 1; Profondità da 4.50a m 5.00

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. | SABBIA CON LIMO ARGILLOSA.-

GRANULOMETRIA [%]		
GRANULOMETRIA [%]	Ghiaia 00 Sabbia 52 Limo 27 Arail	la 21
	3.03	

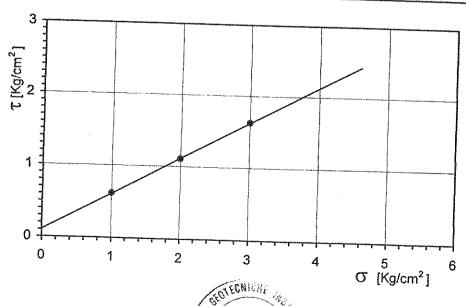
Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B -Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 26; Campione N. 1; Profondità da 4.50a m 5.00

PROVA DI TAGLIO DIRETTO(CD)


TIPO DI PROVA VELOCITÀ DI DEFORMAZIONE APPLICAZIONE DEL CARICO Consolidata drenata (CD) 0.008 mm/min a deformazione controllata

DIMENSIONI DEI PROVINI

Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cm Volume 72.0 cm^3

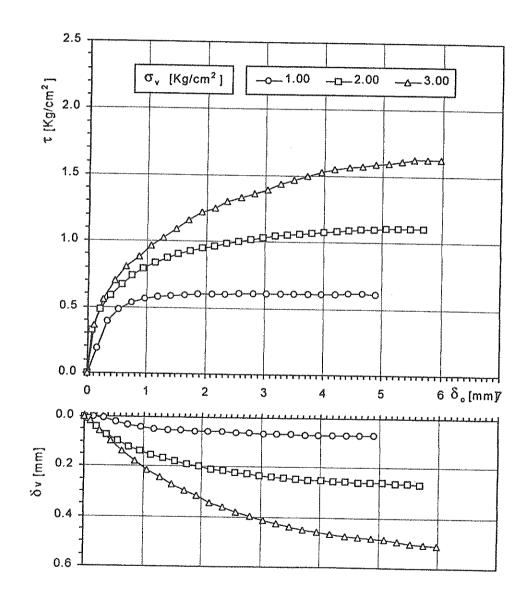
	PROVINO N.	1	2	.3
CONDIZIONI PRIMA DELLA PRI	OVA:			
Peso dell'unità di volume	γ [t/m³]	1.978	1.939	1.940
Contenuto naturale d'acqua	W	0.102	0.108	0.107
Porosità	n	0.348	0.364	0.363
Grado di saturazione	5	0.529	0.521	0.518
CONDIZIONI INIZIALI DI PROVA:	Section 1			0.010
Pressione verticale CONDIZIONI A ROTTURA:	σ _v [Kg/cm²]	1.00	2.00	3.00
Tensione tangenziale	τ [Kg/cm²]	0.615	1.108	1.626
Spostamento orizzontale	δ ₀ [mm]	4.43	5.27	5.75
Contenuto d'acqua	W _r	0.163	0.161	0.152

Coesione [Kg/cm²] c' = 0.105 Angolo d'attrito [°] φ'=

LAGIS

222 сJ

Cert. N.


Geotecnico

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00)...

Sondaggio N. 26; Campione N. 1; Profondità da 4.50a m 5.00

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (t) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 27; Campione N. 1; Profondità da 14.50 a m 15.00

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 12/01/2004

Data di apertura: 07/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla con veli e/o sacche sabbiose, di colore grigio, moderatamente consistente.-

PROPRIETA' INDICI:	Mit Hereiche massen meiste der Hereiche der der der der der der der der der de	
Peso specifico	$\gamma_s = 2.758$	[t/m ³]
Peso dell'unità di volume	$\gamma = 2.044$	$\lceil t/m^3 \rceil$
Peso secco unità di volume	$\gamma_d = 1.780$	[t/m ³]
Contenuto naturale d'acque	w = 0.148	- J
Porosità	n = 0.354	
Indice di porosità	e = 0.549	
Grado di saturazione	S = 0.743	

Limite di Liquidità	$W_{L} = 0.365$
Limite di Plasticità	$W_p = 0.185$
Indice di plasticità	$l_p = 0.180$
Indice di Consistenza Indice di Attività	l _c = 1.206 A = 0.667
DIAGRAMMA D	I PLASTICITA'
BASSA MEDIA	7 ALTA
[%]	
d	
60	+
40	
20	
0 +	20 00 10
0 20 40	60 80 100 W _L [%]

LIMITI DI ATTERBERG E INDICI:

Prove meccaniche eseguite:

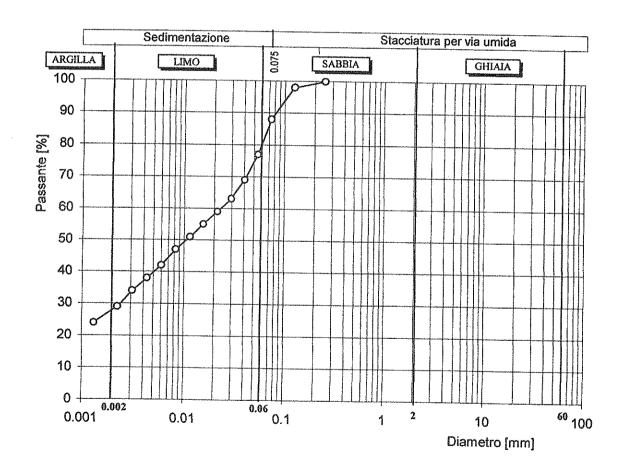
• Taglio diretto (CD)

L'Ingegnere Geotecnico

Cert. N. 224 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 27; Campione N. 1; Profondità da 14.50 a m 15.00

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA SABBIOSO.-

GRANIII OMETRIA 1917		****************					
GRANULOMETRIA [%]	Ghiaia 00	Sabbia	19 l	1 1	E 4	1 2 111	
	011111111111111111111111111111111111111	Javvia	101	Limo	54	Árailla	27

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 27; Campione N. 1; Profondità da 14.50 a m 15.00

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA

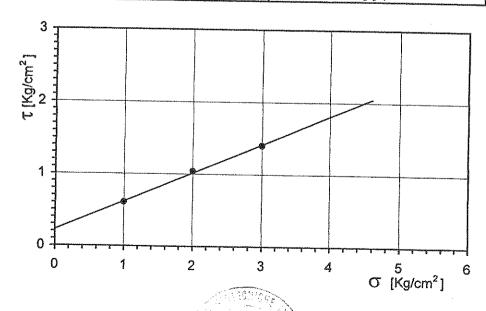
VELOCITÀ DI DEFORMAZIONE

Consolidata drenata (CD)

O.004 mm/min

DIMENSIONI DEI PROVINI

Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ VELOCITÀ DI DEFORMAZIONE

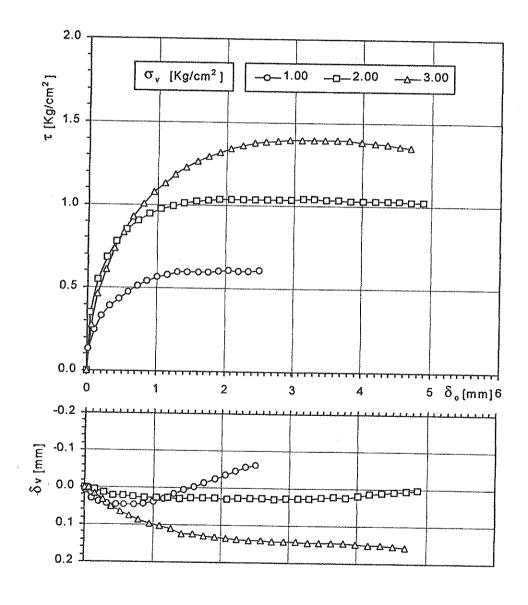

APPLICAZIONE DEL CARICO

a deformazione controllata

Volume 72.0 cm^3

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PRO	OVA:			
Peso dell'unità di volume	γ [t/m³]	2.097	1.981	2.056
Contenuto naturale d'acqua	W	0.135	0.150	0.159
Porosità	n	0.330	0.376	0.357
Grado di saturazione	5	0.757	0.688	0.790
CONDIZIONI INIZIALI DI PROVA:				
Pressione verticale CONDIZIONI A ROTTURA:	σ _v [Kg/cm²]	1.00	2.00	3.00
Tensione tangenziale	τ [Kg/cm²]	0.607	1.041	1,400
Spostamento orizzontale	δ_o [mm]	2.05	3.13	3.28
Contenuto d'acqua	W _r	0.184	0.195	0.183

Coesione [Kg/cm²] c' = 0.222 Angolo d'attrito [°] $\phi' = 21.65$


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 27; Campione N. 1; Profondità da 14.50 a m 15.00

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 — dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 28; Campione N. 1; Profondità da 8.00 a m 8.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 09/01/2004

Data di apertura: 29/01/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Sabbia con limo argillosa moderatamente addensata, di colore marrone giallastra.-

PROPRIETA' INDICI:		
Peso specifico Peso dell'unità di volume Peso secco unità di volume Contenuto naturale d'acqu. Porosità Indice di porosità	$\gamma_s = 2.761$ $\gamma = 2.117$ $\gamma_d = 1.865$ $w = 0.135$ $n = 0.324$ $e = 0.480$	[t/m ³ .]
Grado di saturazione	5 = 0.776	

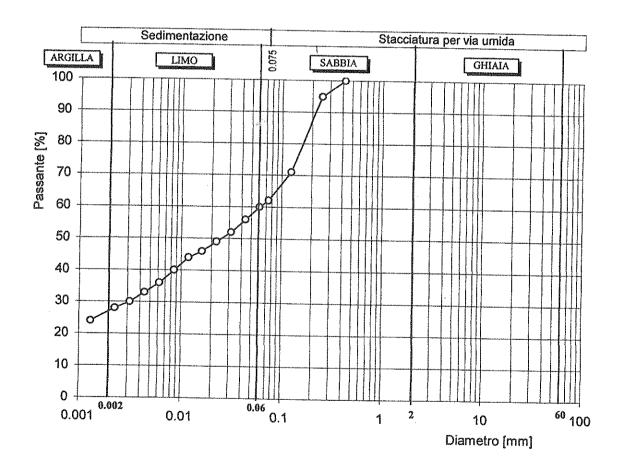
ļ	LIMITI DI ATTERBERG E INDICI:					
	Limite di Liquidità $W_L = C$	0.327				
	Limite di Plasticità $W_P = C$	0.199				
	Indice di plasticità $I_P = 0$					
	Indice di Attività $A = C$).474				
	DIAGRAMMA DI PLASTICITA					
	100 BASSA MEDIA ALTA					
	80					
	Ga barrel					
	60	-				
	40					
	20					
	0	_				
	0 20 40 60 80 W _L [%	100 6]				

Prove meccaniche eseguite:

Taglio diretto (CD)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 28; Campione N. 1; Profondità da 8.00 a m 8.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. SABBIA CON LIMO CON ARGILLA.-

GRANULOMETRIA [%] Ghiaia 00 | Sabbia 40 | Limo 33 | Argilla 27

L'Ingegnère Geotecnico

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 28; Campione N. 1; Profondità da 8.00 a m 8.50

PROVA DI TAGLIO DIRETTO(CD)

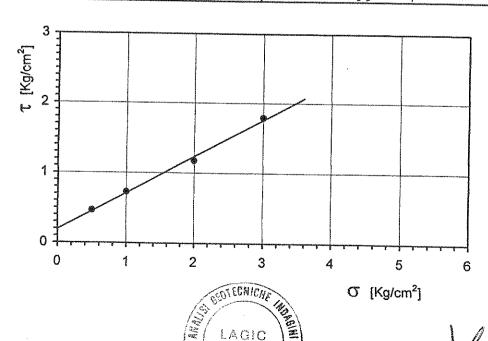
TIPO DI PROVA

VELOCITÀ DI DEFORMAZIONE

APPLICAZIONE DEL CARICO

Consolidata drenata (CD)

O.004 mm/min


a deformazione controllata

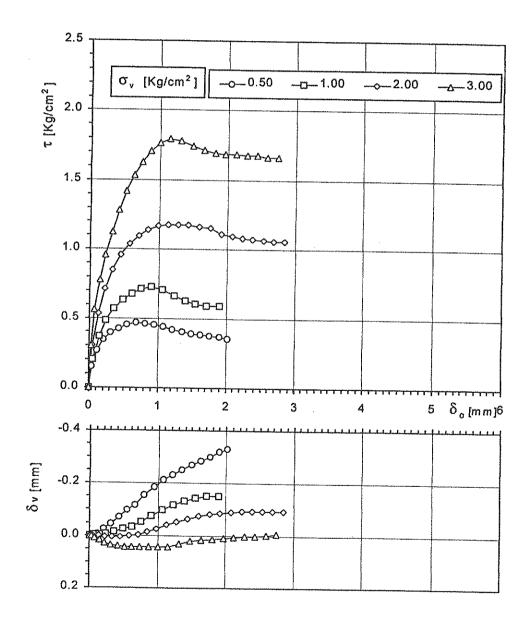
DIMENSIONI DEI PROVINI

1 Haca	60.60 700 2	1 4 4		····	
Base	$6.0 \times 6.0 = 36.0 \text{ cm}^2$	Δ I + α	0.0	1	
		Altezza	2.0 cm	: Values	72 / 7 1
				i Volume	72.0 cm ³
					, 2.0 UII

	PROVINO N.	1	2	3	4
CONDIZIONI PRIMA DELLA PRI	OVA:				
Peso dell'unità di volume	γ [t/m³]	2.118	2.132	2.104	2.114
Contenuto naturale d'acqua	W	0.136	0.135	0.136	0.134
Porosità	n	0.325	0.320	0.329	0.325
Grado di saturazione	5	0.781	0.795	0.764	0.768
CONDIZIONI INIZIALI DI PROVA:	***************************************				
Pressione verticale CONDIZIONI A ROTTURA:	σ _ν [Kg/cm²]	0.50	1.00	2.00	3.00
Tensione tangenziale	τ [Kg/cm²]	0.466	0.727	1.178	1.791
Spostamento orizzontale	δ_o [mm]	0.67	0.90	1.13	1.15
Contenuto d'acqua	W _r	0.157	0.150	0.149	0.163

Coesione [Kg/cm²] c' = 0.191 Angolo d'attrito [°] $\phi' = 27.58$

L'ingepaere Geotecnico


Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 28; Campione N. 1; Profondità da 8.00 a m 8.50

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_o) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

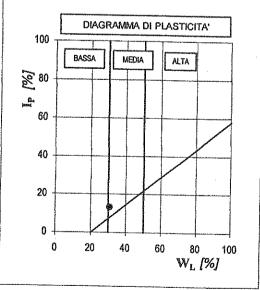
Sondaggio N. 29; Campione N. 1; Profondità da 5.00 a m 5.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 08/01/2004

Data di apertura: 29/01/2004


CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con sabbia argilloso poco consistente di colore bruno rossastro.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_s = 2.733$	[t/m ³]
Peso dell'unità di volume	$\gamma = 1.995$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.600$	[t/m ³]
Contenuto naturale d'acque	w = 0.247	. ,
Porosità	n = 0.415	
Indice di porosità	e = 0.708	
Grado di saturazione	5 = <i>0.</i> 953	

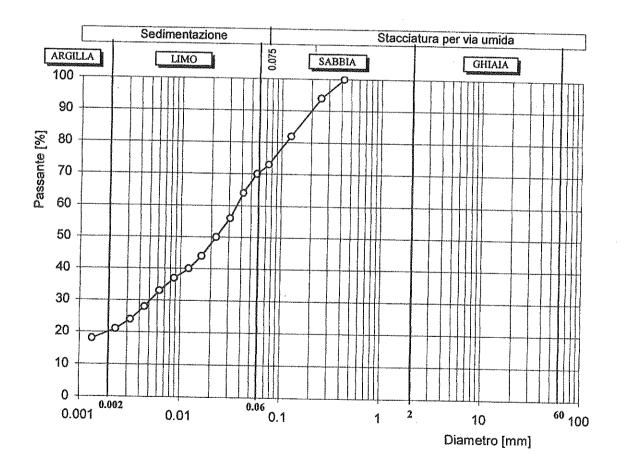
LIMITI DI ATTERBER	G E INDICI:			
Limite di Liquidità	$W_L = 0.309$			
Limite di Plasticità	$W_P = 0.178$			
Indice di plasticità	$l_P = 0.131$			
Indice di Consistenza	$I_{\rm c} = 0.473$			
Indice di Attività	A = 0.655			
DIAGRAMMA DI PLASTICITA				

Prove meccaniche eseguite:

* Taglio diretto (CD)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 29; Campione N. 1; Profondità da 5.00 a m 5.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON SABBIA ARGILLOSO.-

GRANULOMETRIA [%]	29 Limo 51 Arailla 20

Cert. N. 233 cJ

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 29; Campione N. 1; Profondità da 5.00 a m 5.50

PROVA DI TAGLIO DIRETTO(CD)

TIPO DI PROVA

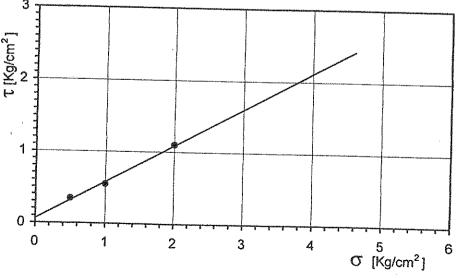
VELOCITÀ DI DEFORMAZIONE

APPLICAZIONE DEL CARICO

a deformazione controllata

DIMENSIONI DEI PROVINI

Base $6.0 \times 6.0 = 36.0 \text{ cm}^2$ Altezza 2.0 cmVelocità Di Deformazione

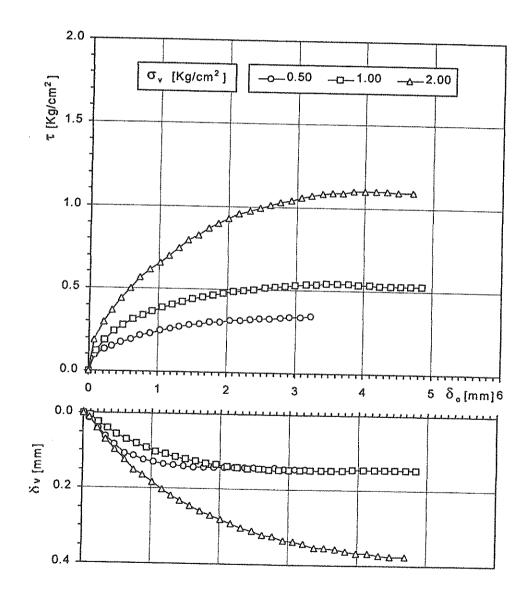

Applicazione del Carico

a deformazione controllata

Volume 72.0 cm^3

	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PR	OVA:			
Peso dell'unità di volume	γ [t/m³]	2.017	1.997	1.971
Contenuto naturale d'acqua	W	0.247	0.246	0.248
Porosità	n	0.408	0.414	0.422
Grado di saturazione	9	0.978	0.953	0.927
CONDIZIONI INIZIALI DI PROVA	:			0.0.2.
Pressione verticale CONDIZIONI A ROTTURA:	σ _ν [Kg/cm²]	0.50	1.00	2.00
Tensione tangenziale	τ [Kg/cm²]	0.341	0.541	1.102
Spostamento orizzontale	δ_o [mm]	3.23	3.61	4.16
Contenuto d'acqua	W,	0.214	0.207	0.196

Coesione [Kg/cm²] c' = 0.061 Angolo d'attrito [°] φ' = 27.22


Luigi Tripadi)

Indagine: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 29; Campione N. 1; Profondità da 5.00 a m 5.50

PROVA DI TAGLIO DIRETTO (CD)

Tensione tangenziale (τ) - Spostamento orizzontale (δ_0) Cedimento verticale (δ_v) - Spostamento orizzontale (δ_o)

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 29; Campione N. 2; Profondità da 21.00 a m 21.50

STATO DEL CAMPIONE: Indisturbato

CONTENITORE: Fustella metallica; D = 85 mm; L = 600 mm

Data di prelievo: 08/01/2004

Data di apertura: 18/02/2004

CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Limo con argilla con veli e/o sacche sabbiose e sporadici elementi fossiliferi, di colore grigiatro, moderatamente consistente.-

PROPRIETA' INDICI:		
Peso specifico	$\gamma_s = 2.759$	[t/m ³]
Peso dell'unità di volume	$\gamma = 2.029$	[t/m ³]
Peso secco unità di volume	$\gamma_d = 1.621$	[t/m³]
Contenuto naturale d'acqua	w = 0.252	. j
Porosità	n = 0.413	
Indice di porosità	e = 0.702	
Grado di saturazione	9 = 0.990	

Limite di Liquidità	$W_L = 0.474$
Limite di Plasticità	$W_P = 0.256$
Indice di plasticità	$I_P = 0.218$
Indice di Consistenza Indice di Attività	I _c = 1.018 A = 0.589
	71 = 0.000
DIAGRAMMA DI	PLASTICITA'
BASSA MEDIA	
% 80 WEDS	ALTA
60 60	
40	
20	
20	
0	
0 20 40	60 80 100 W _L [%]

LIMITI DI ATTERBERG E INDICI:

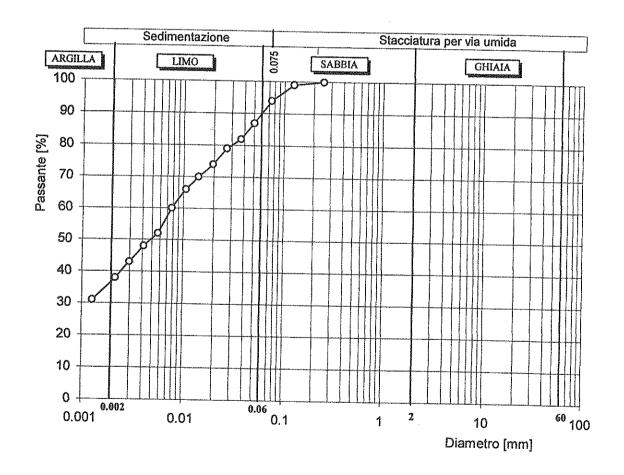
Prove meccaniche eseguite:

- Consolidazione edometrica
- Compressione triassiale (UU)

LAGIC SERVICE STREET

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 29; Campione N. 2; Profondità da 21.00 a m 21.50

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I. LIMO CON ARGILLA SABBIOSO.-

GRANULOMETRIA [%]	Ghiaia 00 Sabbia 10 Limo 53 Arailla 3	37
	3	- 1

L'Angegnere fidotecnico (Lyigi Trippdi) Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B — Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a

Mandatoriccio (km 306+00).-

Sondaggio N. 29; Campione N. 2; Profondità da 21.00 a m 21.50

PROVA DI COMPRESSIONE EDOMETRICA

Dati sperimentali diagramma (e - log σ_v)

DATI INIZIALI DEL PROVINO:

Altezza

= 2.00 (cm)

Peso dell'unità di volume

 $\gamma = 2.005$

(t/mc)

Diametro

= 5.047 (cm)

Contenuto naturale d'acqua

w = 0.273

3

Volume = 2

= 40.00 (cmc)

Indice di porosità Grado di saturazione

e = 0.75496 = 1.000

Contenuto d'acqua a fine prova w = 0.270

Carico	Cedimenti	Altezza Provino	Indice di porosità	Modulo Edometrico
σv	Σδν	Н	e	Eed
(Kg/cmq)	(mm)	(mm)		(Kg/cmą)
(*) O.1	0.019	19.981	0.7533	
(*) 0.2	0.039	19.961	0.7515	
(*) 0.4	0.090	19.910	0.7470	
(*) 0.8	0.174	19.826	0.7397	e de la composition della comp
1.5	0.342	19.658	0.7249	<i>8</i> 3
3	0.668	19.332	0.6963	90
6	1.110	18.890	0.6575	131
12	1.667	18.333	0.6086	203
24	2.369	17.631	0.5471	313
12	2.227	17.773	0.5595	
6	2.010	17.990	0.5786	
1.5	1.446	18.554	0.6280	
0.4	0.813	19.187	0.6836	

Nota: (*) il provino tende a rigonfiare

сJ

Indice di Compressibilità

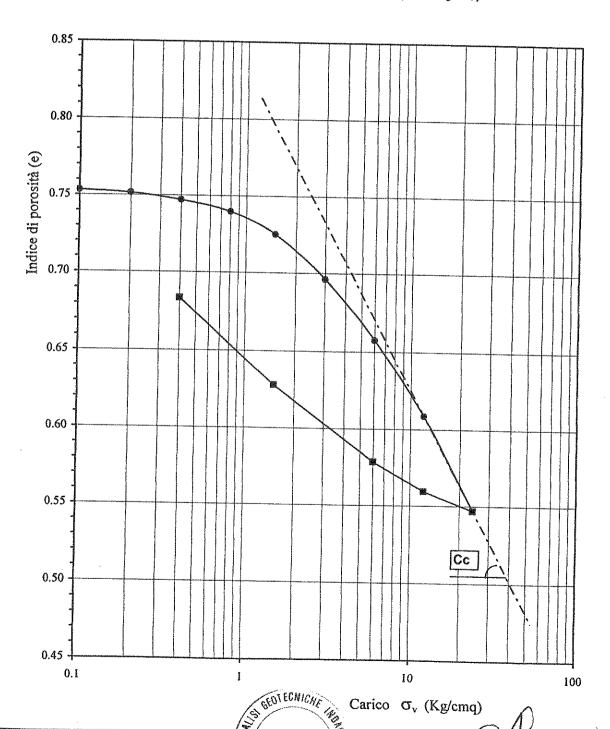
Cc = 0.205

LAGIC s.a.s.

GEOTECNICHE

Cert. N.

239


сJ

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 29; Campione N. 2; Profondità da 21.00 a m 21.50

PROVA DI COMPRESSIONE EDOMETRICA

Diagramma Indice di porosità - Logaritmo del carico (e - log σ_{v})

LAGIO

ENOW 1 - 1143

(Luigi Tripodi)

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 29; Campione N. 2; Profondità da 21.00 a m 21.50

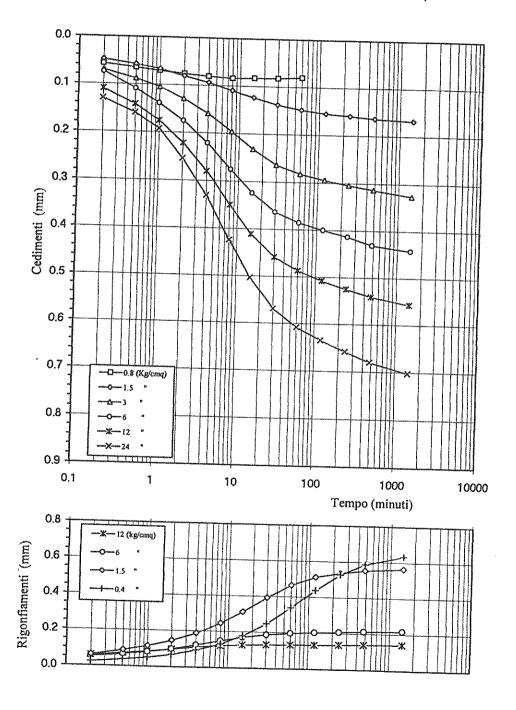
PROVA DI COMPRESSIONE EDOMETRICA

Dati sperimentali diagramma (cedimenti - tempo)

		William Company of the Company		****		
Tempo		Cedimenti relativi ai carichi applicati				
(minuti)		(mm)				
0.2	0.057	0.048	0.070	0.074	0.110	0.130
0.5	0.065	0.058	0.088	0.109	0.142	0.160
MANAGEMENT AND	0.071	0.067	0.105	0.139	0.176	0.193
2	0.076	0.081	0.129	0.175	0.222	0.254
4	0.081	0.094	0.159	0.221	0.280	0.331
8	0.084	0.110	0.196	0.275	0.350	0.424
15	0.083	0.124	0.232	0.324	0.411	0.504
30	0.082	0.138	0.264	0.363	0.459	0.569
60	0.080	0.148	0.282	0.385	0.487	0.608
120	(*)	0.155	0.294	0.400	0.508	0.635
240		0.159	0.304	0.413	0.525	0.658
480		0.164	0.313	0.431	0.541	0.680
1440		0.168	0.326	0.442	0.557	0.702
Carico (Kg/cmq)	0.8	1.5	3	6	12	24

Nota: (*) il provino tende a rigonfiare

сJ


Lingeriere Geotecnico
(Luig Tripodi)

Lavori di costruzione della SS 106 Jonica (E 90) cat. B-Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 29; Campione N. 2; Profondità da 21.00 a m 21.50

PROVA DI COMPRESSIONE EDOMETRICA

Diagramma Cedimenti/Rigonfiamenti - Logaritmo del tempo

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS)
Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.it

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984

INDAGINE:

Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 29; Campione N. 2; Profondità da 21.00 a m 21.50

PROVA DI COMPRESSIONE TRIASSIALE (UU)

TIPO DI PROVA

Non consolidata non drenata (UU)

DIMENSIONI DEI PROVINI

- Diametro 3.80 cm
 Altezza 7.60 cm
- Volume 86.20 cm³

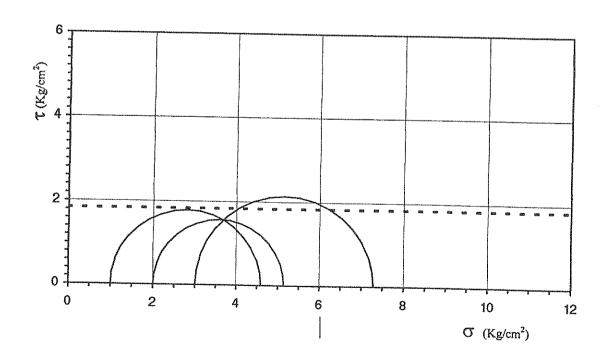
APPLICAZIONE DEL CARICO

a deformazione controllata

VELOCITÀ DI DEFORMAZIONE

1.00 mm/min

The state of the s	PROVINO N.	1	2	3
CONDIZIONI PRIMA DELLA PR	OVA:			
Peso dell'unità di volume	γ (t/m ³)	2.040	2.056	2.061
Contenuto naturale d'acqua	W	0.240	0.228	0.225
Porosità	n	0.405	0.394	0.391
Grado di saturazione	5	0.976	0.969	0.966
CONDIZIONI INIZIALI DI PROVA				
Pressione laterale totalevertical	$\sigma_3 (Kg/cm^2)$	1.00	2.00	3.00
CONDIZIONI A ROTTURA:	**************************************			
Tensione deviatorica	$\sigma_1 - \sigma_3 (Kg/cm^2)$	3.59	3.14	4.29
Deformazione assiale	ε _a (%)	9.72	15.38	16.41


Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 29; Campione N. 2; Profondità da 21.00 a m 21.50

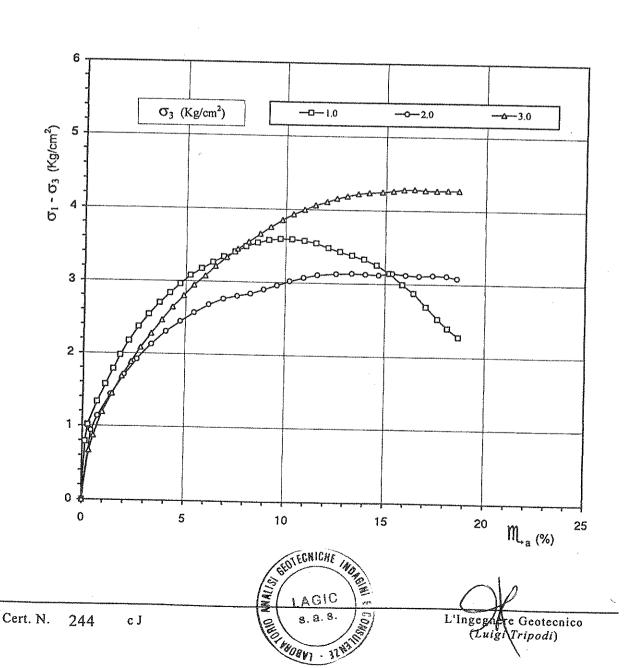
PROVA DI COMPRESSIONE TRIASSIALE (UU)

Inviluppo di rottura nel piano τ - σ

PROVINO	σ_3	$\sigma_{\scriptscriptstyle 1}$	σ_c	τ_c
N.	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm ²)
1	1.00	4.59	2.80	1.80
2	2.00	5.14	3.57	1.57
3	3.00	7.29	5.14	2.14
	$\Sigma \tau_c / 3 =$	1.837	(Kg/cm ²)	

L'Ingegne Geotecnico

Laboratorio di Geotecnica Associato ALGI N.25 dal 1984


INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B – Megalotto 9 – dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 29; Campione N. 2; Profondità da 21.00 a m 21.50

PROVA DI COMPRESSIONE TRIASSIALE (UU)

Diagramma:

Curve tensioni deviatoriche - deformazioni assiali $(\sigma_1\text{-}\sigma_3$ - $\epsilon_a)$

LAGIC S.a.S.

Via S. Antonello, 13 - 87040 Montalto Uffugo (CS) Tel. - Fax: 0984/937001 - 937628, e-mail: lagic@libero.lt

Laboratorio di Geotecnica Associato ALGI N.25 dai 1984 '-

INDAGINE: Lavori di costruzione della SS 106 Jonica (E 90) cat. B -Megalotto 9 - dall'aeroporto di S. Anna (km 235+800) a Mandatoriccio (km 306+00).-

Sondaggio N. 30; Campione N. 1; Profondità da 13.70 a m 14.00

STATO DEL CAMPIONE: Rimaneggiato

CONTENITORE: Involucro di plastica

Data di prelievo: Data di apertura:

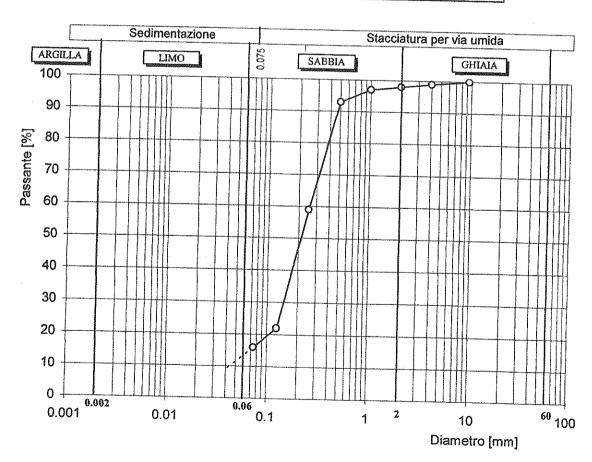
CARATTERISTICHE GENERALI DEL CAMPIONE

DESCRIZIONE:

Sabbia limosa con tratti e/o zone arenitiche di colore bruno marrone, da poco a moderatamente addensata.-

ANALISI GRANULOMETRICA

CLASSIFICA Norme A.G.I.


SABBIA LIMOSA .-

GRANULOMETRIA

Ghiaia 02

Sabbia

Limo 14

Geotecnico (ripodi)