

Committente

VALLETTA SOLAR SRL

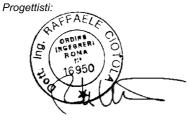
VIA VITTORIA NENNI 8/1

ALBINEA (RE)

CAP 42020

p.iva 03033860358

Titolo del Progetto:


Progetto per la realizzazione e l'esercizio di un parco agrivoltaico avanzato della potenza di 60,49484 MW, delle opere connesse e delle infrastrutture indispensabili denominato "Valletta"

Documento	Progetto di fattibilità tecnico-economica ai sensi del D.lgs 36/23 Art. 41	a	N° Tavola: REL09				
Elaborato:		SCALA:	-				
	Relazione tecnico descrittiva opere elettriche	FOGLIO:	1 di 1				
		FORMATO:	A4				
folder:	der: Nome File: RFI 09 Relazione tecnico descrittiva opere elettriche rev 00 ndf						

Progettazione:

NEW DEVELOPMENTS srl piazza Europa, 14 - 87100 Cosenza (CS)

Dott. ing. Raffaele Ciotola

Rev:	Data Revisione:	Descrizione Revisione	Redatto	Controllato	Approvato
00	15/07/2024	PRIMA EMISSIONE	New. Dev.	VS	VS

INDICE

1	OGGETT	CO	3
2	SCOPO		3
3	NORMA	TIVA DI RIFERIMENTO	3
4	DESCRIZ	ZIONE DEGLI IMPIANTI ELETTRICI	5
5	LINEE IN	NTERRATE 30 kV	5
	5.1 Cara	atteristiche dei cavi	ϵ
	5.2 Prof	fondità di posa e disposizione dei cavi	ϵ
	5.3 Rete	e di terra	7
	5.4 Cab	oina di Sezionamento	7
	5.5 Cad	lute di tensione e perdite di potenza	7
6	STAZION	NE DI TRASFORMAZIONE 30/132 kV (SET)	Ģ
	6.1 Sist	rema a 132 kV	9
	6.1.1	Caratteristiche apparati	Ģ
	6.1.2	Interruttori Automatici	11
	6.1.3	Sezionatori rotatvi orizzontali	12
	6.1.4	Trasformatori di corrente TA	13
	6.1.5	Trasformatori di tensione	14
	6.1.6	Scaricatori di sovratensione	15
	6.1.7	Trasformatore di potenza	16
	6.2 Sezi	ione 30 kV	17
	6.2.1	Tensioni di esercizio (distanze minime)	18
	6.2.2	Carpenterie metalliche	18
	6.2.3	Struttura metallica per apparecchiature a 132 k V	18
	6.2.4	Strutture metalliche a 30 k V	19
	6.2.5	Sbarre	19
	6.2.6	Sbarra da 30 kV	19
	6.2. 7	Celle a media tensione (30 kV)	21
	6.2.8	Tipo di celle	21
	6.2.9	Caratteristiche dell'apparecchiatura	22
	6.2.9.1	Interruttori	22
	6.2.9.2	Trasformatori di corrente	22
	6.2.9.3	Trasformatori di tensione delle sbarre	23

	6.2.9.4	Sezionatori tripolari	23
	6.2.10	Reattanza di messa a terra	23
	6.2.11	Caratteristiche	24
	6.2.12	Servizi ausiliari	25
	6.2.13	Servizi ausiliari in c.a.	25
	6.2.13.1	Trasformatori di servizi ausiliari	25
	6.2.13.2	Gruppo elettrogeno	25
	6.2.14	Servizi ausiliari in c.c.	25
	6.3 Misu	ıra energia	26
	6.3.1	Misure di energia (fatturazione)	26
	6.3.2	Ulteriori apparati di misura	27
	6.4 Tele	controllo e telecominicazioni	27
	6.5 Open	re civili	27
	6.5.1	Piattaforma	27
	6.5.2	Fondazioni	27
	6.5.3	Basamento e deposito di olio del trasformatore MT/AT	28
	6.5.4	Drenaggio di acqua pluviale	28
	6.5.5	Canalizzazioni elettriche	28
	6.5.6	Acceso e viali interni	28
	6.5. 7	Recinzione	28
	6.6 Edif	icio di Controllo SET	29
	6.7 Mess	sa a terra	29
	6.8 Cario	chi elettrici	30
	6.8.1	Massima corrente di impiego	30
	6.8.2	Correnti nominali lato 132 e 30 kV Errore. Il segnalibro non	ı è definito.
7	STALLO	DI CONSEGNA E-DISTRIBUZIONE (IR - IMPIANTO DI RETE)	31
3	CAVIDO	TTO A 132 kV	34

1 OGGETTO

La società Valletta Solar Srl intende realizzare, nell'ambito del territorio del comune di Finale Emilia (MO), un Parco Fotovoltaico della potenza nominale di 50.000 kW che sarà denominato "Valletta".

2 SCOPO

Scopo del presente documento è la descrizione ed il calcolo degli impianti elettrici che convogliano l'energia prodotta dal PE nella rete di AT di proprietà della società edistribuzione.

La Soluzione Tecnica Minima Generale di e-distribuzione Cod. di rintracciabilità 398995347 prevede che l'impianto venga collegato in antenna a 132 kV su un nuovo stallo linea AT presso la Cabina Primaria denominata "Finale Emilia".

3 NORMATIVA DI RIFERIMENTO

- R.D. 11 Dicembre 1933 n° 1775 "Testo Unico delle disposizioni di Legge sulle Acque e sugli Impianti Elettrici",
- Legge 22/02/01 n° 36, "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici", (G.U. n° 55 del 7 marzo 2001),
- DPCM 08/07/03, "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti", (GU n° 200 del 29/08/03),
- DM 21/03/88 "Disciplina per la costruzione delle linee elettriche aeree esterne" e successive modifiche ed integrazioni,
- Circolare Ministero Ambiente e Tutela del Territorio DSA/2004/25291 del 14/11/04 in merito ai criteri per la determinazione della fascia di rispetto,
- DM 29/05/08 "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti",
- Legge 28/03/86 n. 339 "Nuove norme per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne",

- D.M.LL.PP 21/03/88 n° 449 "Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee elettriche aeree esterne",
- D.M.LL.PP 16/01/91 n° 1260 "Aggiornamento delle norme tecniche per la disciplina della costruzione e l'esercizio delle linee elettriche aeree esterne",
- D.M.LL.PP. 05/08/98 "Aggiornamento delle norme tecniche per la progettazione, esecuzione ed esercizio delle linee elettriche esterne",
- Artt. 95 e 97 del D.Lgs n° 259 del 01/08/03,
- Circola Ministeriale n. DCST/3/2/7900/42285/2940 del 18/02/82 "Protezione delle linee di telecomunicazione per perturbazioni esterne di natura elettrica Aggiornamento delle Circolare del Mini. P.T. LCI/43505/3200 del 08/01/68,
- Circolare "Prescrizione per gli impianti di telecomunicazione allacciati alla rete pubblica, installati nelle cabine, stazioni e centrali elettriche AT", trasmessa con nota Ministeriale n. LCI/U2/2/71571/SI del 13/03/73,
- DPR 151/11 Regolamento recante semplificazione della disciplina dei procedimenti relativi alla prevenzione incendi, a norma dell'articolo 49 comma 4-quater, decreto-legge 31 maggio 2010, n. 78, convertito con modificazioni dalla L. 30/07/2010, n. 122,
- CEI 7-6 Norme per il controllo della zincatura a caldo per immersione su elementi di materiale ferroso destinati a linee e impianti elettrici,
- CEI 99-2 Impianti elettrici con tensione superiore a 1 kV in c.a Parte 1: Prescrizioni comuni I Ed. 2011,
- CEI 99-3 Messa a terra degli impianti elettrici a tensione superiore a 1 kV in c.a. I Ed. 2011,
- CEI 11-4 Esecuzione delle linee elettriche aeree esterne,
- CEI 99-27 Impianti di produzione, trasmissione e distribuzione pubblica di energia elettrica: Linee in cavo,
- CEI 11-25 Calcolo delle correnti di cortocircuito nelle reti trifasi a corrente alternata,
- CEI 11-27 Lavori su impianti elettrici,
- CEI EN 50110-1-2 esercizio degli impianti elettrici,
- CEI 36-12 Caratteristiche degli isolatori portanti per interno ed esterno destinati a sistemi con tensioni nominali superiori a 1000 V,
- CEI 64-2 Impianti elettrici in luoghi con pericolo di esplosione,

- CEI 64-8 Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua,
- CEI 11-32 Impianti di produzione di energia elettrica connessi a sistemi di III categoria,
- CEI 103-6 fascicolo 4091 Edizione agosto 1997, Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto,
- CEI 11-60, "Portata al limite termico delle linee elettriche aeree esterne", 2a Ed.,
- CEI 0-16, "Regola tecnica di riferimento per la connessione di Utente Attivi e passivi alle reti MT ed AT delle imprese distributrici di energia elettrica",
- Codice di Rete TERNA.

4 DESCRIZIONE DEGLI IMPIANTI ELETTRICI

Gli impianti elettrici sono costituiti da:

- Impianto fotovoltaico: costituito da nº13 gruppi di conversione (Power Station) che convertono l'energia prodotta dai moduli fotovoltaici da continua (DC) in alternata (AC);
- *le linee interrate in MT a 30 kV*: convogliano la produzione elettrica dalle Power Station alla Stazione di Trasformazione 30/132 kV;
- la stazione di trasformazione 30/132 kV (SET): trasforma l'energia al livello di tensione della rete AT. In questa stazione vengono posizionati gli apparati di protezione e misura dell'energia prodotta;
- stallo e-distribuzione a 132 kV (IR impianto di rete per la connessione): è il nuovo stallo di consegna a 132 kV che verrà realizzato sulla sezione a 132 kV della Cabina Primaria "Finale Emilia" di proprietà di e-distribuzione;
- *n*° 1 *collegamento in cavo a 132 kV:* tratto di cavo interrato a 132 kV necessario per il collegamento in antenna della SET al IR.

5 LINEE INTERRATE 30 kV

La rete di media tensione a 30 kV sarà composta da n° 3 circuiti con posa completamente interrata. Il tracciato planimetrico della rete è mostrato nelle tavole allegate.

Nelle tavole allegate vengono anche riportati lo schema unifilare dove con indicazione della lunghezza e della sezione corrispondente di ciascuna terna di cavo e viene descritta la modalità e le caratteristiche di posa interrata.

5.1 Caratteristiche dei cavi

La rete a 30 kV sarà realizzata per mezzo di cavi unipolari del tipo ARE4H1R (o equivalente) con conduttore in alluminio. Le caratteristiche elettriche di portata e resistenza dei cavi in alluminio sono riportate nella seguente tabella (portata valutata per posa interrata a 1,2 m di profondità, temperatura del terreno di 20° C e resistività termica del terreno di 1 K m /W):

Sezione	Portata	Resistenza
[mm ²]	[A]	[Ohm/km]
150	322	0,262
500	620	0,084
630	704	0,061

Caratteristiche elettriche cavo MT

5.2 Profondità di posa e disposizione dei cavi

I cavi verranno posati con una protezione meccanica (lastra o tegolo) ed un nastro segnalatore. Su terreni pubblici e su strade pubbliche la profondità di posa dovrà essere comunque non inferiore a 1,2 m previa autorizzazione della Provincia. I cavi verranno posati in una trincea scavata a sezione obbligata. Mantenendo valide le ipotesi di temperatura e resistività del terreno, i valori di portata indicati nel precedente paragrafo vanno moltiplicati per dei coefficienti di correzione che tengono conto della profondità di posa di progetto, del numero di cavi presenti in ciascuna trincea e della ciclicità di utilizzo dei cavi.

Dove necessario si dovrà provvedere alla posa indiretta dei cavi in tubi, condotti o cavedi. Per i condotti e i cunicoli, essendo manufatti edili resistenti non è richiesta una profondità minima di posa né una protezione meccanica supplementare. Lo stesso dicasi per i tubi 450 o 750, mentre i tubi 250 devono essere posati almeno a 0,6 m con una protezione meccanica.

In questi casi si applicheranno i seguenti coefficienti:

• lunghezza ≤ 15m: nessun coefficiente riduttivo,

• lunghezza \geq 15 m: 0,8 m,

• Si installerà una terna per tubo che dovrà avere un diametro doppio di quello

apparente della terna di cavi.

Nella stessa trincea verranno posati i cavi di energia, la fibra ottica necessaria per la

comunicazione e la corda di terra.

5.3 Rete di terra

La rete di terra sarà costituita dai seguenti elementi:

• anello posato attorno a ciascuna Power Station,

• la corda di collegamento tra ciascun anello e la stazione elettrica (posata nella stessa

trincea dei cavi di potenza),

maglia di terra della stazione di trasformazione,

maglia di terra della stazione di connessione alla rete AT.

La rete sarà formata da un conduttore nudo in rame da 50 mm² e si assumerà un valore di

resistività ρ del terreno pari a 150 Ω m.

5.4 Cabina di Sezionamento

Le Power Station saranno raccolte in 3 gruppi, ciascuno afferente ad una rispettiva linea a

30 kV.

5.5 Cadute di tensione e perdite di potenza

Sulla base dei calcoli svolti e di seguito riportati, sono stati ottenuti i seguenti risultati:

• Cadute di tensione massima nel circuito 1: 1,5%

• Perdite totali rete MT: 0,4 % (217 kW)

CADUTE DI TENSIONE E PERDITE DI POTENZA

7

CIRCUITO 1								
TRATTO	P [kW]	Lungh.	lb [A]	COEF.	CAVO	Iz (A)	e total	Perdite
INATIO	F [KVV]	(m)	ID [A]	RID.	(mm2)	12 (A)	(%)	(kW)
A.3 - A.2	6652	160	128	0,75	150	242	1,5	2
A.2 - A.1	10476	150	202	0,75	150	242	1,4	5
A.1 - B.1	13756	2850	265	0,75	630	528	1,4	37
B.1 - SET	19084	4700	367	0,65	630	458	1,0	116
				-				159

CIRCUITO 2								
TRATTO	P [kW]	Lungh.	lb [A]	COEF.	CAVO	I= (A)	e total	Perdite
IIVATIO	L [KVV]	(m)	in [4]	RID.	(mm2)	Iz (A)	(%)	(kW)
C.1 - D.2	6574	170	127	0,65	150	209	0,1	2
D.3 - D.1	3824	350	74	0,75	150	242	0,2	1
D.1 - D.4	7150	390	138	0,75	150	242	0,2	6
D.4 - D.2	10947	290	211	0,65	500	403	0,1	3
D.2 - SET	20847	200	401	0,65	500	403	0,1	8
								21

CIRCUITO 3								
TRATTO	P [kW]	Lungh.	Ib [A]	COEF.	CAVO	I (A)	e total	Perdite
IRATIO	P [KVV]	(m)	lb [A]	RID.	(mm2)	Iz (A)	(%)	(kW)
F.3 - F.1	3326	350	64	0,75	150	242	0,4	1
F.1 - F.2	6388	220	123	0,75	150	242	0,4	3
F.2 - E.1	9714	510	187	0,75	150	242	0,3	14
E.1 - SET	16135	770	311	0,65	500	403	0,2	19
								36

Il coefficiente di riduzione applicato alla portata del cavo è stato calcolato con le seguenti assunzioni:

- posa diretta nel terreno;
- n°3 terne disposte a trifoglio;
- distanza orizzontale tra le terne di 25 cm;
- resistività del terreno pari a 1,5 Km/W;
- profondità di posa massima 1 m;
- temperatura terreno pari a 20°C.

6 STAZIONE DI TRASFORMAZIONE 30/132 kV (SET)

La SET è necessaria ad elevare la tensione da 30 kV a 132 kV al fine di poter essere immessa nella rete di e-distribuzione. La SET è costituita da una sezione a 132 kV e una sezione a 30 kV avente n°3 montanti di collegamento alle Power Station.

6.1 Sistema a 132 kV

Il sistema AT a 132 kV è costituito dalle seguenti apparecchiature isolate in aria:

STALLO TRASFORMATORE

- N° 1 trasformatore 30/132 kV di potenza 50/60 MVA (ONAN/ONAF) con variatore di rapporto sotto carico, TRAFO;
- N° 3 scaricatori di sovratensione, SC;
- N° 3 trasformatori di tensione induttivi (fatturazione), TVI;
- N° 3 trasformatori di corrente (protezione e fatturazione), TA;
- N° 1 interruttore automatico, isolato in SF₆ con comando tripolare, INT;
- N° 3 trasformatori di tensione capacitivi (protezione), TVC;
- N° 1 sezionatore di isolamento rotativo (tripolare), SEZ.

6.1.1 Caratteristiche apparati

Come dati di progetto si adottano i seguenti valori:

_	Tensione nominale:	132 kV
_	Tensione massima:	145 kV
_	Livello di isolamento:	
	- Tensione a frequenza industriale (1 minuto 50 Hz) (valore efficace)	275 kV
	- Tensione a impulso atmosferico (onda 1,2 / 50 $\mu s)$ (cresta)	650 kV
•	Corrente nominale montante di linea	800 A
•	Corrente nominale montante trasformatore:	270 A
•	Massima corrente di cortocircuito	31,5 kA
•	Tempo di estinzione dei guasti:	0,5 s
•	Altezza dell'installazione	1000 m

100117

La norma CEI 99-2 definisce le distanze minime che bisogna rispettare dai punti in tensione. Si adotteranno distanze sempre superiori a quelle specificate nella suddetta norma, in particolare:

• Distanza fase-terra: 3,3 m

• Distanza fase-fase: 2,2 m

• Distanza fase-suolo: 4,5 m

La corrente massima di esercizio in AT è di 220 A, corrispondente al regime di piena potenza del PE, inferiore alle correnti nominali degli apparati e dei conduttori utilizzati.

La corrente di cortocircuito che l'impianto (apparati e cavi) può sopportare per 0,5 s è di 31,5 kA. Tale valore di corrente è notevolmente superiore alla reale corrente di cortocircuito al punto di connessione del parco sulla linea a 132 kV.

6.1.2 Interruttori Automatici

GRANDEZZE NOMINALI			
Тіро	Y4/3-4	Y4/5-6	
Tensione nominale (kV)	14	45	
Livello di isolamento nominale:			
- tensione nominale di tenuta a impulso atmosferico (kV):	6:	50	
- tensione nominale di tenuta a frequenza industriale (kV):	2	75	
Frequenza nominale (Hz)	5	50	
Corrente nominale (A)	20	000	
Durata nominale di corto circuito (s)		1	
Tensioni nominali di alimentazione dei circuiti ausiliari:			
- corrente continua (V)	1	10	
- corrente alternata monofase/trifase a quattro fili (V)	230/400		
Potenza massima assorbita da ogni singolo circuito indipendente (CH, AP1, AP2, AP3, motore/i, climatizzazione):			
- corrente continua (W)	15	500	
- corrente alternata monofase/trifase (VA)	850/	2500	
Corrente di stabilimento nominale di corto circuito (kA)	80	100	
Sequenza di manovra nominale	O-0,3 s-CO-1 min-CO		
Corrente di interruzione nominale di linee a vuoto (A)	5	50	
Corrente di interruzione nominale di cavi a vuoto (A)	10	60	
Corrente di interruzione nominale di batteria di condensatori (A)	40	00	
Corrente di interruzione nominale in discordanza di fase (kA)	8	10	
Durata massima di interruzione (ms)	6	60	
Durata massima di stabilimento/interruzione (ms) (con bobina a lancio)	80		
Durata massima di stabilimento/interruzione (ms) (con bobina a mancanza)	12	20	
Durata massima di chiusura (ms)	1:	50	
Livello di qualificazione sismica	A	F5	

6.1.3 Sezionatori rotatvi orizzontali

GRANDEZZE NOMINALI					
Poli (n°)	3				
Tensione massima (kV)	145-170				
Corrente nominale (A)	2000				
Frequenza nominale (Hz)	50				
Corrente nominale di breve durata:					
- valore efficace (kA)	40-31.5				
- valore di cresta (kA)	100-80				
Durata ammissibile della corrente di breve durata (s)	1				
Tensione di prova ad impulso atmosferico:					
- verso massa (kV)	650				
- sul sezionamento (kV)	750				
Tensione di prova a frequenza di esercizio:					
- verso massa (kV)	275				
- sul sezionamento (kV)	315				
Sforzi meccanici nominali sui morsetti:					
- orizzontale longitudinale (N)	800				
- orizzontale trasversale (N)	250				
- verticale (N)	1000				
Tempo di apertura/chiusura (s)	≤15				
Prescrizioni aggiuntive per il sezionatore di terra					
- Classe di appartenenza	A o B, secondo CEI EN 61129				
- Tensioni e correnti induttive nominali elettromagnetiche ed elettrostatiche (kV, A)	Secondo classe A o B, Tab.1 CEI EN 61129				

6.1.4 Trasformatori di corrente TA

GRANDEZZE NOMINALI						
Massima tensione Um	(kV)	145				
Frequenza	(Hz)	50				
Rapporto di trasformazione nominale						
TA LY36/5 – LY36/6	(A/A)	400/5 800/5 1600/5				
TA LY36/7 – LY36/8	(A/A)	200/5 400/5				
Numero di nuclei	(n°)	3				
Corrente termica nominale permanente	(p.u.)	1,2				
Resistenza secondaria nuclei protezione						
a 75°C	(Ω)	≤ 0,4				
Prestazioni e classi di precisione						
- I nucleo	(VA)	30/0,2 50/0,5				
- II e III nucleo	(VA)	30/5PX30				
Fattore di sicurezza (I nucleo)		10				
Tensione di tenuta a impulso atmosferico	(kV_{cr})	650				
Tensione di tenuta a frequenza						
industriale	(kV)	275				

Le classi indicate si intendono valide per tutti i rapporti

6.1.5 Trasformatori di tensione

GRANDEZZE NOMINALI				
Tensione massima di riferimento per l'isolamento (kV)	145			
Rapporto di trasformazione	$132.000 / \sqrt{3}$			
	100 / √3			
Frequenza nominale (Hz)	50			
Capacità nominale (pF)	4000			
Prestazioni nominali (VA)	40/0,2-75/0,5-100/3P			
Fattore di tensione nominale con tempo di funzionamento di 30s	1,5			
Tensione di tenuta a f.i. per 1 minuto (kV)	275			
Tensione di tenuta a impulso atmosferico (kV)	650			
Scarti della capacità equivalente serie in AF dal valore nominale a frequenza di rete	-20% ÷ 50%			
Resistenza equivalente in AF (Ω)	≤40			
Capacità e conduttanza parassite del terminale di bassa tensione a frequenza compresa tra 40 e 500kHz, compresa l'unità elettromagnetica di misura:				
- C _{pa} (pF)	\leq (300+0,05C _n)			
- G _{pa} (μs)	≤50			
Sforzi meccanici nominali sui morsetti:				
- orizzontale, applicato a 600mm sopra la flangia B (N)	2000			
- verticale, applicato sopra alla flangia B (N)	5000			

(*) Valori superiori potranno essere adottati

(**) I valori relativi alle prestazioni e al numero di nuclei devo intendersi come raccomandati. Altri valori potranno essere adottati in funzione delle esigenze dell'impianto.

6.1.6 Scaricatori di sovratensione

GRANDEZZE NOMINALI				
Tensione di servizio continuo (kV)	92			
Frequenza (Hz)	50			
Salinità di tenuta alla tensione di 98 kV (kg/m³)	Da 14 a 56(*)			
Massima tensione temporanea per 1s (kV)	132			
Tensione residua con impulsi atmosferici di corrente (alla corrente nominale 8/20 μ s) (kV)	336			
Tensione residua con impulsi di corrente a fronte ripido (10 kA - fronte 1 μ s) (kV)	386			
Tensione residua con impulsi di corrente di manovra $$ (500 A, 30/60 $\mu s)$ (kV)	270			
Corrente nominale di scarica (kA)	10			
Valore di cresta degli impulsi di forte corrente (kA)	100			
Classe relativa alla prova di tenuta ad impulsi di lunga durata	3			
Valore efficace della corrente elevata per la prova del dispositivo di sicurezza contro le esplosioni (kA)	40			

^(*) Valori superiori potranno essere adottati

6.1.7 Trasformatore di potenza

Per la trasformazione $30/132~\rm kV$ si prevede un trasformatore di potenza trifase, isolato in olio, installato all'aperto.

1. Caratteristiche costruttive

• Tipo di servizio	continuo
• Raffreddamento	ONAN/ONAF
Potenza nominale	50/60 MVA
Tensioni a vuoto	
- Primario	132± 10x1,2%
- Secondario	30 kV
• Frequenza	50 Hz
• Connessione	Stella/triangolo
Gruppo di connessione	YNd11
Tensione di cortocircuito	12%
2. Isolamento	
 Tensione a impulso atmosferico (1,2/50μs): 	
Primario	650 kV
Neutro del primario	250 kV
Secondario	145 kV
Tensione a frequenza industriale:	
Primario	275 kV
Neutro del primario	95 kV
Secondario	70 kV

6.2 Sezione 30 kV

Il sistema è costituito da elementi necessari a connettere la rete di media tensione del PE ai secondari dei trasformatori di potenza e ad alimentare i Servizi Ausiliari (ss.aa).

Esterno Edificio tecnico:

- Tre scaricatori di sovratensione,
- Tre sezionatori unipolari destinati ad isolare la reattanza di messa a terra,
- Una reattanza di messa a terra del secondario del trasformatore di potenza

Interno Edificio tecnico:

- N°1 cella con interruttore automatico e sezionatore con funzioni di protezione del trasformatore,
- N°3 celle con interruttore automatico e sezionatore con funzioni di protezione della rete a 30 kV del Parco Fotovoltaico,
- N°1 cella misure,
- N°1 celle con interruttore automatico e sezionatore con funzioni di protezione del trasformatore dei servizi ausiliari.

All'interno dell'edificio tecnico saranno installati inoltre gli apparati di misura, comando, controllo e protezione necessari per la corretta funzionalità dell'impianto.

Come dati di progetto si adottano i seguenti valori:

-	Tensione nominale:	30 kV
_	Tensione massima:	36 kV
_	Livello di isolamento	
	-Tensione a impulso atmosferico	145 kV
	-Tensione a frequenza industriale	70 kV
_	Corrente nominale del trasformatore 1:	867 A
_	Corrente nominale di cortocircuito ² :	31,5 kA
_	Tempo di estinzione del guasto:	0,5 s

.

¹ Corrispondente all'elemento con minor corrente nominale

² Corrispondente al potere di interruzione degli interruttori installati nella cella a 30 kV.

6.2.1 Tensioni di esercizio (distanze minime)

	CEI 99-2	Fissata in questo progetto
Distanza minima fase-terra in aria	0,32 m	0,5 m
Distanza minima fase-fase in aria	0,32 m	0,5 m
Altitudine minima fase-suolo	3,2 m	3,6 m

Tab. 4: Verifica distanze minime (Vn = 30 kV, $V 1,2/50 \mu s = 145 \text{ kV}$)

Nel sistema a 30 kV all'interno della sottostazione si utilizzano cavi isolati e segregati in apposite celle prefabbricate, collaudate e certificate dal Costruttore secondo procedure a norma di legge per il livello di isolamento indicato.

6.2.2 Carpenterie metalliche

Tutti gli apparati dell'impianto elettrico esterno saranno installati su idonei supporti metallici. L'altezza dei supporti sarà superiore a 2,25 m per evitare di posizionare barriere di protezione da elementi in tensione. La base della struttura dei supporti sarà realizzata in acciaio ed in grado di sopportare gli sforzi nelle condizioni peggiori. Le fondazioni necessarie per l'ancoraggio delle strutture sono dimensionate per assicurare la stabilità ed evitare ribaltamenti.

La struttura metallica necessaria a supportare gli apparati consta di:

6.2.3 Struttura metallica per apparecchiature a 132 kV

- Sei supporti per trasformatori di tensione,
- Un supporto per sezionatore di consegna,
- Tre supporti per trasformatori di corrente
- Tre supporti per interruttori
- Tre supporti per scaricatori di sovratensione

Le strutture potranno sopportare il tiro totale previsto dei conduttori.

6.2.4 Strutture metalliche a 30 kV

Per ogni trasformatore di potenza:

- Un supporto per il lato sbarra esterna 30 kV in uscita del trasformatore
- Un supporto per l'altro lato della sbarra esterna 30 kV, scaricatori, reattanza di messa a terra ed il suo sezionatore di isolamento.

6.2.5 Sbarre

Le sbarre (di due tipi: sbarre principali e interconnessioni tra gli apparati) saranno scelte in modo tale da sopportare gli sforzi elettrodinamici e termici delle correnti di cortocircuito previste, senza la produzione di deformazioni permanenti.

6.2.6 Sbarra da 30 kV

Sbarre esterne

Comprende dai morsetti dell'avvolgimento secondario del trasformatore di potenza, alla connessione con i cavi isolati che vanno alla cella a 30 kV; la sbarra sarà costituita da:

- Materiale: Tubo di rame 80/70 mm.
- Sezione equivalente del conduttore: 1180 mm²
- Portata nominale conduttore: 2095 A

<u>Isolatore supporto sbarre</u>

La sbarra da 30 kV da esterno è sostenuta da isolatori di appoggio con le seguenti caratteristiche:

_	Tensione massima	36 kV
_	Tensione a impulso atmosferico	145 kV
_	Tensione a frequenza industriale (sotto la pioggia)	70 kV
_	Linea di fuga	850 mm
_	Carica di rottura a flessione	4000 N
_	Carica di rottura a torsione	1200 Nm

Sezionatore

Si installerà un sezionatore per la connessione / disconnessione della reattanza di messa a terra, con le seguenti caratteristiche:

_	Tensione nominale	66 kV

- Tensione a impulso atmosferico:

- Tensione a frequenza industriale:

Il sezionatore è formato da tre sezionatori unipolari e sarà del tipo a due colonne per fase, con apertura verticale e azionamento manuale, senza lama di messa a terra.

Scaricatori di sovratensione

Gli scaricatori di sovratensione saranno ad ossido di zinco con isolamento polimerico.

Si installeranno un totale di tre scaricatori di sovratensione a 30 kV per trasformatori. L'insieme degli scaricatori di sovratensione sarà montato sul supporto della reattanza di messa a terra e sarà equipaggiato con un unico contatore di scarica.

Conduttori interconnessione sbarre esterne - sbarre interne

La connessione tra la sbarra esterna e la cella a 30 kV del trasformatore di potenza, si effettua attraverso:

- Materiale: due terne di cavi di rame
- Tipo di cavo: ARP1H5E (o equivalente)
- Sezione equivalente del singolo conduttore: 630 mm²
- Corrente nominale: 2064 A.

Sbarre interne

Nella sbarra interna delle celle la distanza tra le fasi è di 14,5 cm (sbarre isolate) e permette un passaggio di corrente di 2.000 A.

6.2.7 *Celle a media tensione (30 kV)*

Da punto di vista della struttura, queste celle saranno del tipo incapsulato metallico, isolamento in SF₆, per installazione all'interno.

Le celle da installare sono le seguenti:

- N° 1 cella del trasformatore di potenza (con interruttore automatico);
- N° 3 celle di linea;
- N° 1 cella TSA;
- N° 1 cella misure.

6.2.8 Tipo di celle

Le caratteristiche strutturali di ogni cella sono analoghe, variando unicamente la apparecchiatura installata, compatibilmente alle necessità relative ad ogni servizio.

Le apparecchiature con le quali sarà dotata ogni tipo di cella è la seguente:

Celle dei trasformatori

- Sbarra da 1250 A
- Derivazione a 1250 A
- 1 sezionatore tripolare
- 1 interruttore automatico
- 3 trasformatori di corrente
- 3 trasformatori di tensione

Cella di linea

- Sbarra da 1250 A
- Derivazione a 630 A
- 1 sezionatore tripolare
- 1 interruttore automatico
- 3 trasformatori di corrente
- 3 trasformatori di tensione

Oltre alle apparecchiature menzionate, si dispone di 3 trasformatori di tensione nelle sbarre per poter realizzare misure di tensione e potenza.

6.2.9 Caratteristiche dell'apparecchiatura

Le caratteristiche elettriche dell'apparecchiatura descritta per ciascuna cella sono le seguenti:

36 kV

6.2.9.1 Interruttori

Tensione massima

- Tensione massima
- Tensione a impulso atmosferico
- Tensione a frequenza industriale
– Intensità massime:
- Cella del trasformatore
- Celle di linea
 Intensità di cortocircuito:
- Cella del trasformatore31,5 kA
- Celle di linea31,5 kA
- Isolamentoin SF6
6.2.9.2 Trasformatori di corrente
- Tensione massima
 Rapporti di trasformazione:
- Cella del trasformatore
- Celle di linea (linee C1, C2, C3)
 Potenza e classi di precisione:
- Cella del trasformatore:
■ Primo nucleo (misura)
Secondo nucleo (protezioni)
■ Terzo nucleo (protezioni)15VA; 5P20
- Celle di linea:
■ Primo nucleo (misura)
Secondo nucleo (protezioni)

6.2.9.3 Trasformatori di tensione delle sbarre

- Potenza e classe di precisione:

 - Secondo nucleo (protezioni)......50 VA; 3P

6.2.9.4 Sezionatori tripolari

I sezionatori delle celle saranno tripolari con tre posizioni (sbarre, disinserito, messa a terra) con azionamento manuale per manovre improvvise e blocco meccanico e elettrico con l'interruttore.

_	Tensione massima	36 kV
_	Tensione a impulso atmosferico (1,2/50μs)	145 kV
_	Tensione a frequenza industriale	70 kV
_	Corrente massima:	
	- Cella del trasformatore	1250 A
	- Cella di linea	630 A
_	Corrente di cortocircuito	31,5 kA
_	Isolamento	in SF6

6.2.10 Reattanza di messa a terra

I collegamenti a triangolo del lato 30 kV del trasformatore di potenza e del lato 30 kV dei trasformatori dei singoli aerogeneratori bloccano la componente omopolare della corrente di guasto a terra con conseguente difficoltà da parte delle protezioni MT nel rilevare i guasti a terra.

Per superare tale difficoltà si installa una reattanza di messa a terra avente un collegamento a "zig-zag" sul lato 30 kV. Essa permette di avere neutro artificiale attraverso il quale la componente omopolare della corrente di guasto monofase a terra nella rete MT può scorrere facilitando l'individuazione dei guasti stessi da parte delle protezioni MT.

L'impedenza omopolare offerta alle correnti di guasto a terra ha per componenti la resistenza ohmica degli avvolgimenti e la reattanza di dispersione degli avvolgimenti della reattanza.

La reattanza viene dimensionata in modo da ottenere:

I guasto monofase =
$$3 \cdot I_0 < 500 \text{ A}$$

6.2.11 Caratteristiche

Si installerà una reattanza trifase di messa a terra, insieme al trasformatore di potenza in olio a 30/132 kV, le cui caratteristiche principali sono:

_	Tensione nominale	30 kV
_	Frequenza	50 Hz
_	Gruppo di connessione	Zig-Zag
_	Corrente di guasto a terra per il neutro	500 A
_	Durata del guasto a terra per il neutro	30 s
_	Isolante di parti attiveolio	minerale
_	Refrigerazione	ONAN
_	Tensione a impulso atmosferico (1,2/50μs)	145 kV
_	Sovratensione indotta a 150 Hz e 40 s	60 kV
_	Resistenza del Neutro	$7,25 \Omega$
_	Reattanza del Neutro	103,6 Ω
_	Impedenza omopolare (*)	103,9 Ω

In ogni fase e sul neutro si disporrà un trasformatore di corrente per protezione di tipo Bushing aventi le seguenti caratteristiche:

- Sulla fase
- 3 T.A. tipo BR, rapporto 300/5 A, 15 VA, 5P20
 - Sul neutro
- 1 T.A. tipo BR, rapporto 300/5 A, 15 VA, 5P20

Le protezioni della reattanza saranno termometro e relè Buchholtz con comando di allarme.

6.2.12 Servizi ausiliari

I servizi ausiliari (ss.aa.) della sottostazione sono costituiti da due sistemi di tensione (c.a. e c.c.) necessari per il funzionamento della sottostazione. Si installeranno sistemi di alimentazione in corrente alternata e in corrente continua per alimentare i distinti componenti di controllo, protezione e misura.

I servizi di corrente alternata e continua saranno alloggiati in diversi armadi destinati a realizzare le rispettive distribuzioni.

6.2.13 Servizi ausiliari in c.a.

6.2.13.1 Trasformatori di servizi ausiliari

Per disporre di questi servizi è prevista l'installazione di un trasformatore esterno da 100 kVA.

Le caratteristiche sono le seguenti:

- Trifase isolato in olio

- Connessioni......Zig-zag / Stella
- Gruppo di connessioneZNyn11

6.2.13.2 Gruppo elettrogeno

La sottostazione è dotata di un gruppo elettrogeno fisso che è disponibile come riserva in caso di guasto del trasformatore di servizi ausiliari o fuori servizio del trasformatore 30/132 kV per manutenzione o guasto.

6.2.14 Servizi ausiliari in c.c.

L'alimentazione dei servizi in corrente continua é assicurata da un idoneo sistema raddrizzatore/batterie a 125 Vcc. Le caratteristiche di raddrizzatore e batterie sono:

Raddrizzatore:

- Ingresso (c.a.): 3 x 400 / 230 Vca
- Uscita (c.c.): 125 V_{cc} +10%, -15%
- Corrente nominale: 40 A

Batteria:

- Capacità: 120 Ah

- Autonomia minima (guasto c.a.): 8 h

Le apparecchiature alimentate alla tensione di 110 V_{cc} funzioneranno ininterrottamente. Il

processo di carica delle batterie sarà gestito automaticamente, senza la necessità di alcun

tipo di vigilanza o controllo, quindi più sicuro per il mantenimento di un servizio

permanente.

Le apparecchiature saranno idonee a funzionare con temperature interne all'edificio

comprese tra 10°C e 40°C.

In condizioni di normale funzionamento (corrente alternata presente), il raddrizzatore

fornirà sia la corrente di funzionamento degli ausiliari in corrente continua, sia la corrente

di mantenimento o di carica necessaria per la batteria.

In assenza di corrente alternata di alimentazione, la batteria deve essere in grado di

alimentare i circuiti ausiliari in corrente continua per il tempo prefissato.

Misura energia

6.3.1 Misure di energia (fatturazione)

L'energia esportata e importata del parco si misurerà nel punto di connessione con la rete

del Gestore.

La misura sarà effettuata tramite i tre trasformatori di tensione induttivi dedicati e i tre

trasformatori di corrente (dai secondari di classe di precisione 0,2).

Caratteristiche degli apparati di misura:

1. Trasformatori di tensione:

132: $\sqrt{3}/0,100$: $\sqrt{3}$ 50 VA cl 0,2

2. Trasformatori di corrente:

200/5-5-5-5 A

30VA cl 0,2s (sul secondario di fatturazione)

3. Contatore-registratore elettronico:

Tipo: contatore bidirezionale,

Precisione di misura: Energia attiva (classe 0.2) / Energia reattiva (classe 0.5)

Entrate: $3 \times 100: \sqrt{3} \text{ V e } 3 \times 5 \text{ A}$

26

N° Registri: 6 (Attiva +, Attiva -, Reattiva Induttiva +, Reattiva Induttiva -, Reattiva Capacitiva +, Reattiva Capacitiva -)

Comunicazioni: via modem GSM, incorporato nel contatore-registratore.

6.3.2 Ulteriori apparati di misura

Si disporrà delle seguenti misure nelle UCP.

Montanti 132 kV:

Tensione (V), Corrente (A), Potenza attiva (W), Potenza reattiva (VAr), Frequenza (Hz), Fattore di potenza ($\cos \varphi$)

Celle 30 kV

Tensione (V), Corrente (A), Potenza attiva (W), Potenza reattiva (VAr), Frequenza (Hz), Fattore di potenza ($\cos \varphi$)

6.4 Telecontrollo e telecominicazioni

La UCS sarà connessa via porta di comunicazione RS232 con il computer situato nella sala di controllo. Le informazioni della UCS, unitamente a quelle provenienti dagli aerogeneratori e dalle torri meteorologiche, saranno elaborate con un programma informatico al fine di permettere il controllo in remoto del parco e della sottostazione.

6.5 Opere civili

Le opere civili per la costruzione della ST sono di seguito descritte.

6.5.1 Piattaforma

I lavori riguarderanno l'intera area della sottostazione e consisteranno nell'eliminazione del mantello vegetale, scavo, riempimento e compattamento fino ad arrivare alla quota di appianamento prevista.

6.5.2 Fondazioni

Si realizzeranno le fondazioni necessarie alla stabilità delle apparecchiature esterne a 132 kV e 30 kV.

6.5.3 Basamento e deposito di olio del trasformatore MT/AT

Per l'istallazione dei trasformatori di potenza si costruirà un idoneo basamento, formato da fondazioni di appoggio, una vasca intorno alle fondazioni per la raccolta di olio che, durante un'eventuale fuoriuscita, raccoglierà l'olio isolandolo. Detta vasca dovrà essere impermeabile all'olio ed all'acqua, così come prescritto dalla CEI 99-2.

6.5.4 Drenaggio di acqua pluviale

Il drenaggio di acqua pluviale sarà realizzato tramite una rete di raccolta formata da tubature drenanti che canalizzeranno l'acqua attraverso un collettore verso l'esterno, orientandosi verso le cunette vicine alla sottostazione.

6.5.5 Canalizzazioni elettriche

Si costruiranno le canalizzazioni elettriche necessarie alla posa dei cavi di potenza e controllo. Queste canalizzazioni saranno formate da solchi, archetti o tubi, per i quali passeranno i cavi di controllo necessari al corretto controllo e funzionamento dei distinti elementi dell'impianto.

6.5.6 Acceso e viali interni

E' stato progettato l'accesso alla SET da una strada che passa vicino alla stessa. Si costruiranno i viali interni (4 m di larghezza) necessari a permettere l'accesso dei mezzi di trasporto e manutenzione richiesti per il montaggio e la manutenzione degli apparati della sottostazione.

6.5.7 Recinzione

La recinzione dell'area della SET sarà realizzata da un cordolo di fondazione in calcestruzzo armato gettato in opera sul quale verranno inseriti dei pilastrini prefabbricato in calcestruzzo armato, così come descritto nell'elaborato grafico di dettaglio allegato alla presente relazione tecnica. La recinzione sarà alta 2,3 m dal suolo, rispettando il regolamento che ne stabilisce un'altezza minima di 2 m (CEI 99-2).

L'accesso alla SET sarà costituito da un cancello metallico scorrevole della larghezza di 7 metri.

6.6 Edificio di Controllo SET

L'edificio di controllo SET sarà composto dai seguenti vani:

- Locale celle MT,
- Locale BT e trafo MT/BT,
- Locale Gruppo Elettrogeno,
- Locale comando e controllo.

6.7 Messa a terra

Descrizione

La sottostazione sarà dotata di una rete di dispersione interrata a 0,7 m di profondità.

Messa a terra di Servizio

Si connetteranno direttamente a terra i seguenti elementi, che si considerano messa a terra di servizio:

- I neutri dei trasformatori di potenza e misura,
- Le prese di terra dei sezionatori di messa a terra,
- Le prese di terra degli scaricatori di sovratensione,
- I cavi di terra delle linee aeree che entrano nella sottostazione.

Messa a terra di protezione

Tutti gli elementi metallici dell'impianto saranno connessi alla rete di terra, rispettando le prescrizioni nella CEI 99-2.

Si connetteranno a terra (protezione delle persone contro contatto indiretto) tutte le parti metalliche normalmente non sottoposte a tensione, ma che possano esserlo in conseguenza di avaria, incidenti, sovratensione o tensione indotta. Per questo motivo si connetteranno alla rete di terra:

- le carcasse di trasformatori, motori e altre macchine,
- le carpenterie degli armadi metallici (controllo e celle MT),
- gli schermi metallici dei cavi MT,

- le tubature ed i conduttori metallici.

Nell'edificio non si metteranno a terra:

- Le porte metalliche esterne dell'edificio
- Le sbarre anti-intrusione delle finestre
- Le griglie esterne di ventilazione.

I cavi di messa a terra si fisseranno alla struttura e carcasse delle attrezzature con viti e graffe speciali di lega di rame. Si utilizzeranno saldature alluminotermiche Cadweld ad alto potere di fusione per l'unione sotterranea, per resistere alla corrosione galvanica.

<u>Ipotesi di progetto</u>

Secondo i calcoli, si considerano i seguenti dati di partenza:

Corrente di cortocircuito monofase	31,5 kA
Tempo durata del guasto	0,5 s
Resistenza del terreno (ipotesi)	150 Ωm
Resistenza manto superficiale (10 cm di ghiaia, de Ø 2-4 cm)	3000 Ωm

La rete di terra sarà formata da una maglia di circa 4 m x 4 m, e si realizzerà con un conduttore a corda di rame nuda di sezione 95 mm². Per il collegamento degli apparati alla rete di terra si utilizzerà corda di rame nuda di sezione 125 mm².

La rete di terra della sottostazione sarà connessa alla rete di terra del parco fotovoltaico, in modo da ridurre il valore totale della resistenza di terra e agevolare il drenaggio della corrente di guasto. Conformemente alla CEI 99-2, la terra della SET sarà a sua volta collegata alla rete di terra della cabina di consegna.

6.8 Carichi elettrici

6.8.1 Massima corrente di impiego

La massime correnti di impiego su ciascuna sezione dell'impianto si calcolano per mezzo della seguente formula:

$$I_{I_{M}}(A)_{P} = \frac{S_{N}(M)}{\sqrt{3}x_{N}(k)} \times 1$$
 (

Essendo S_N la potenza nominale del circuito e U_N la corrispondente tensione nominale. Assumendo come ipotesi di calcolo le tensioni e potenze di ciascuna sezione dell'impianto, si ottengono le correnti di impiego riassunte nella seguente tabella:

Sezione	Tensione (kV)	Potenza (kVA)	Corrente (A)
Circuito 1	30	19.084,04	367
Circuito 2	30	20.847,08	401
Circuito 3	30	16.134,76	311
Trasformatore lato MT	30	50.000	962
Trasformatore lato AT	132	50.000	220

7 STALLO DI CONSEGNA E-DISTRIBUZIONE (IR - IMPIANTO DI RETE)

L'impianto di rete per la connessione sarà costituito da uno stallo AT in aria presso la CP "Finale Emilia".

Lo schema di inserimento è quello previsto nella sezione E della "Guida per le connessioni alla rete elettrica di e-distribuzione", così come rappresentato nella seguente figura.

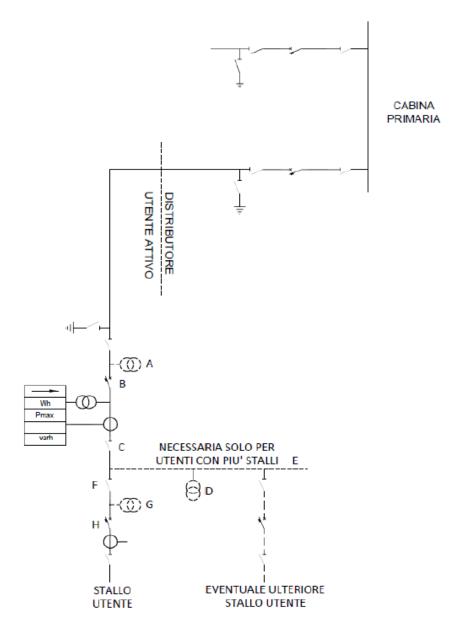


Figura E-4: Connessione in antenna su stallo AT in Cabina Primaria per Cliente Attivo (schema unifilare, rif. CEI 0-16).

7.1 Apparecchiature alta tensione

Per il collegamento del nuovo stallo sarà necessario realizzare il prolungamento della sbarra per n°1 passo sbarra, comprensivo di sezionatore di sbarra.

Lo stallo sarà composto dalle seguenti apparecchiature:

- N° 1 sezionatore di isolamento rotativo lato sbarra;
- N° 3 trasformatori di corrente;
- N° 1 interruttore automatico con comando uni-tripolare;

- N° 3 trasformatori di tensione capacitivi;
- Nº 1 sezionatore di isolamento rotativo lato consegna utente;
- N° 3 scaricatori di sovratensione;
- N° 3 terminali cavo (proprietà del Cliente).

7.2 Rete di terra

La realizzazione del nuovo stallo AT in aria richiederà la realizzazione di una nuova porzione di rete di terra che permetta la messa a terra delle apparecchiature AT e il collegamento alla rete esistente.

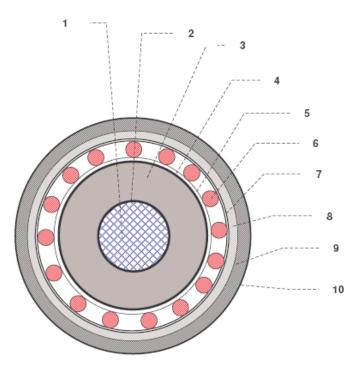
L'impianto di terra di stazione è costituito essenzialmente da un dispersore intenzionale interrato ad una profondità di circa 800 mm ed immerso in terreno vegetale, a cui saranno collegate le armature di tutte le opere civili (dispersori di fatto), le strutture metalliche e le apparecchiature di impianto.

La posa in opera del dispersore intenzionale ed i collegamenti con i dispersori di fatto sarà realizzata durante i lavori delle opere civili, mentre i collegamenti fra la maglia interrata e tutte le apparecchiature e strutture metalliche emergenti saranno realizzate durante i montaggi elettromeccanici.

7.3 Opere civili

Le fondazioni dei sostegni sbarre, delle apparecchiature e degli ingressi di linea in cabina primaria saranno realizzate in calcestruzzo armato gettato in opera; per le sbarre e per le apparecchiature, con l'esclusione degli interruttori, potranno essere realizzate anche fondazioni di tipo prefabbricato con caratteristiche, comunque, uguali o superiori a quelle delle fondazioni gettate in opera. Le coperture dei pozzetti e dei cunicoli facenti parte delle suddette fondazioni, saranno in PRFV con resistenza di 2000 daN. I cunicoli per cavetteria saranno realizzati in calcestruzzo armato gettato in opera, oppure prefabbricati; le coperture in PRFV saranno carrabili con resistenza di 5000 daN.

8 CAVIDOTTO A 132 kV


Per collegare la stazione di trasformazione all'impianto di rete per la connessione (stallo e-distribuzione) verrà realizzato un breve tratto di linea interrata a 132 kV della lunghezza di circa 1.300 m.

Verrà utilizzata una terna di cavi unipolari di tipo estruso per la posa diretta nel terreno, secondo quanto descritto negli elaborati grafici allegati.

CAVO AT XLPE

ARE4H1H5E - 87/150 kV 1×1600

non in scala

- 1 CONDUTTORE: corda rigida rotonda, compatta e tamponata di alluminio. Sez. 1.600 mm²
- 2 SEMICONDUTTORE ESTRUSO
- 3 ISOLANTE ESTRUSO DI XLPE
- 4 SEMICONDUTTORE ESTRUSO
- 5 NASTRO WATER BLOCKING SEMICONDUTTORE
- 6 SCHERMO A FILI DI RAME ricotto non stagnato (Sez. 70 mm²)
- 7 NASTRO WATER BLOCKING SEMICONDUTTORE
- 8 NASTRO DI ALLUMINIO
- 9 GUAINA ESTERNA DI PE
- 10 STRATO CONDUTTIVO: strato semiconduttivo estruso