# PROPONENTE:

# **CUBICO MODENA S.r.I.**

Via A. Manzoni 43 20121 Milano (MI) c.f. e p.iva 13389990964 cubicomodena@legalmail.it



REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO AVANZATO E OPERE DI CONNESSIONE ALLA R.T.N. DELLA POTENZA DI PICCO MODULI FOTOVOLTAICI 35,7 MWD

# IMPIANTO AGRIVOLTAICO AVANZATO "MODENA SFP"

COMUNE DI SAN FELICE SUL PANARO (MO) E COMUNE DI FINALE EMILIA (MO) REGIONE EMILIA ROMAGNA

# PROGETTO DEFINITIVO

# VALUTAZIONE PREVISIONALE DI IMPATTO ACUSTICO INDAGINE FONOMETRICA (L.447/1995)

| Codifica Elaborato: SFP.30.ACU                                                                          | Data: 21/06/24                                                                                                                           | Scala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GSR<br>TECH                                                                                             | ORONE NOESTERN DE LA SALA SALA SALA SALA SALA SALA SALA                                                                                  | Ordine des Periti Industrial  Fer. Ind.  Per. Ind.  Per |
| GSR TECH srl<br>via del casale della castelluccia 39<br>Roma 00123<br>info@gsrtech.it<br>gsrtech@pec.it | Ing. Giovanni Maria Giansanti Di Muzio ing.giansanti@gsrtech.com ing.giansanti@pec.ording.roma.it  Ordine degli Ingegneri di Roma A34380 | Per. Ind. Adriano Urciuoli<br>Tecnico Competente in Acustica<br>Iscrizione elenco Nazionale n.7737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PROGETTAZIONE E<br>COORDINAMENTO                                                                        | PROGETTAZIONE                                                                                                                            | STUDIO SPECIALISTICO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# **Sommario**

| Premessa                                                                                    | 3  |
|---------------------------------------------------------------------------------------------|----|
| DESCRIZIONE DEL PROGETTO                                                                    | 3  |
| - Ubicazione dell'area                                                                      | 5  |
| Elaborato grafico impianto Agrivoltaico                                                     | 5  |
| Immagine di Google area dell'impianto agrivoltaico con individuazione ricettori             | 7  |
| MACCHINE ED IMPIANTI                                                                        | 8  |
| Livelli di rumore degli impianti                                                            | 8  |
| Zonizzazione acustica Comune di San Felice sul Panaro                                       | 10 |
| Zonizzazione acustica Comune di Finale Emilia                                               | 11 |
| Riferimenti legislativi                                                                     | 12 |
| Strumenti di misura                                                                         | 13 |
| Stima                                                                                       | 14 |
| Incertezza di misura                                                                        | 14 |
| Valutazione Previsionale di impatto acustico                                                | 15 |
| Misurazione effettuate per la taratura del modello                                          | 17 |
| Post Operam                                                                                 | 19 |
| Tabella previsione di impatto Acustico Agrivoltaico Post operam                             | 21 |
| Previsione di impatto acustico durante la fase di realizzazione e di dismissione dell'opera | 22 |
| Cronoprogramma dei lavori                                                                   | 22 |
| Scenari più rumorosi                                                                        | 23 |
| Attività di Cantiere                                                                        | 24 |
| Conclusioni                                                                                 | 27 |

#### **DESCRIZIONE DEL PROGETTO**

Richiedente: Cubico Modena srl con sede in MILANO (MI) VIA ALESSANDRO MANZONI 43

CAP 20121 - Legale rappresentante: Ing. Umberto Preda nato a Novara il 10-02-1979.

Progettista: Ing. Giovanni Maria Giansanti Di Muzio iscritto all'Ordine degli Ingegneri di Roma al num. A34380.

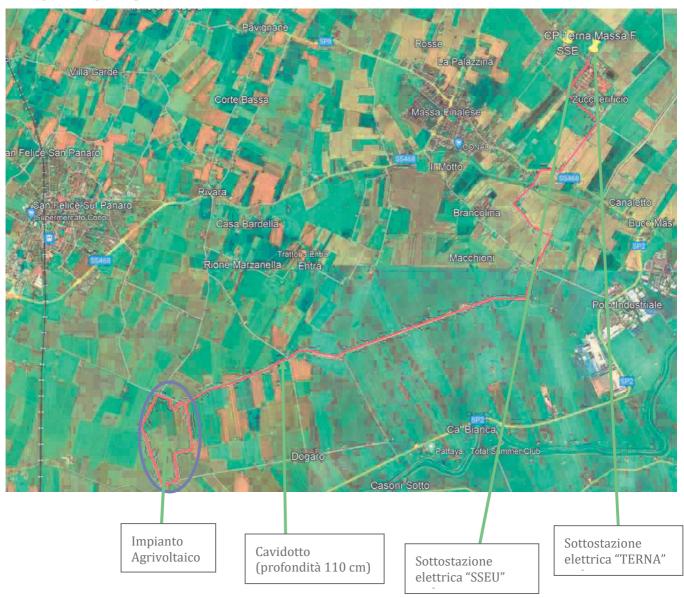
Il progetto prevede la realizzazione di un impianto agrivoltaico all'interno di un terreno agricolo di potenza di circa 35,7 MW, sito nel Comune di San Felice sul Panaro, collegato alla RTN presso la Stazione Elettrica di Massa Finalese (nel Comune di Finale Emilia) di Terna, il tutto nella Provincia di Modena e come meglio decritto ed evidenziato negli altri elaborati progettuali.

La superficie dell'area interessata dal progetto fotovoltaico è di circa 45 ettari.

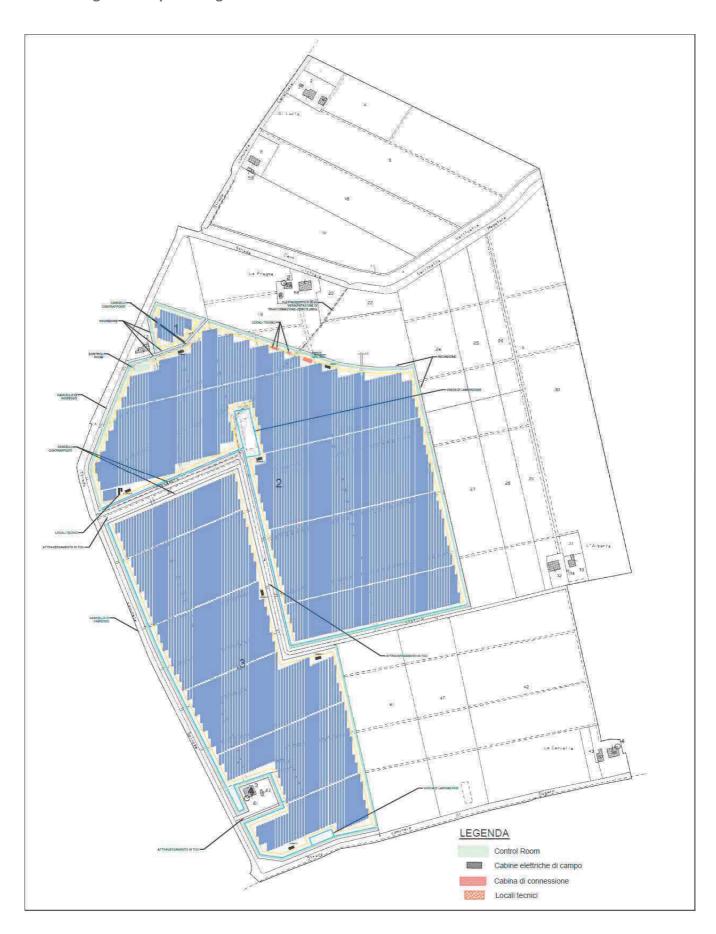
Verranno installati 49.998 moduli fotovoltaici di potenza unitaria di 715 Wp, in silicio cristallino, su strutture ad inseguimento solare monoassiale. L'impianto fotovoltaico sarà suddiviso in campi omogenei, ognuno con la medesima organizzazione interna: la conversione da corrente continua a corrente alternata è realizzata tramite inverter di stringa modello Sungrow SG350HX (o similari) di potenza unitaria pari a 320 kW lato AC, montati ai lati della struttura metallica porta moduli.

Ciascuno campo è collegato ad un trasformatore MT/BT alloggiato all'interno di una cabina elettrica ad esso dedicata (cosiddetta cabina di campo), pertanto sono previsti: 101 inverter di stringa, 6 volumi tecnici adibiti a 6 cabine di trasformazione più un'ulteriore cabina tecnica principale. Da questa cabina principale partirà un cavidotto interrato in MT a 20 kV a profondità 110 cm di lunghezza di circa 8 km fino ad arrivare alla Sottostazione Elettrica Utente SSEU dove l'energia viene sopraelevata da 20 kV a 150 kV per mezzo di trasformatore ad olio. All'interno della SSEU si troverà anche un locale tecnico all'interno del quale si troveranno anche i sistemi di controllo, protezione e misura dell'energia.

Dalla SSEU un'ulteriore cavidotto interrato in AT a 150 kV di circa 300 metri, posto ad una profondità di posa di 130 cm, collegherà l'impianto alla Rete di Trasmissione Nazionale nella Sottostazione Elettrica Terna sita in Via Valle Acquosa a Finale Emilia.


Le cabine di campo e la cabina principale saranno del tipo prefabbricato in monoblocco in calcestruzzo (cav) o in pannello sandwich o, in alternativa, in monoblocco in metallo tipo "solar station"). Il locale tecnico all'interno della SSEU sarà del tipo prefabbricato in monoblocco in calcestruzzo (cav) o in pannello sandwich.

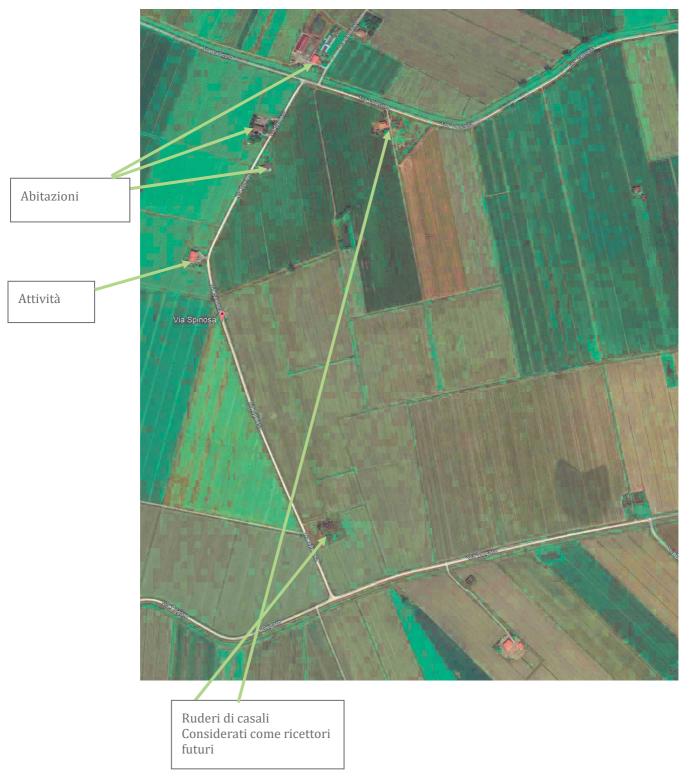
L'impianto agrivoltaico, per la sua natura, converte la radiazione solare in energia e pertanto funziona solo durante il periodo diurno. Durante la notte, l'impianto si "spenge" e rimarranno attivi soltanto i servizi ausiliari di telesorveglianza.


In fase di esercizio, le sorgenti di rumore dell'impianto fotovoltaico sono costituite dalla presenza di inverter e trasformatori, ubicati in cabine monoblocco dotate di ventole di raffreddamento che si azionano saltuariamente nel periodo estivo in occasione di giornate particolarmente torride mentre, in fase di cantiere, le fonti di rumore sono rappresentate dalle attrezzature utilizzate quali escavatori, mini-pale, autocarri, macchine battipalo e trapani che, a seconda della fase di lavorazione, vengono anch'esse azionate discontinuamente per le operazioni inerenti. La fase di cantiere è analoga sia in fase di costruzione che di dismissione dell'impianto pertanto verrà svolta una sola valutazione.

# - Ubicazione dell'area

# Immagine Google maps con inserita l'area di intervento




# Elaborato grafico impianto Agrivoltaico



# Immagine di Google area dell'impianto agrivoltaico con individuazione ricettori

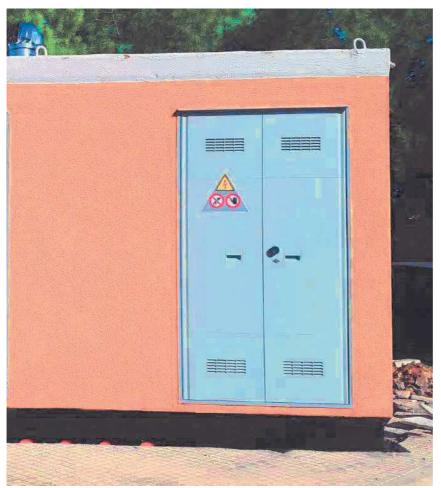
Sono presenti abitazioni isolate e aziende agricole con annesse abitazioni.

Non sono presenti recettori sensibili di Classe 1



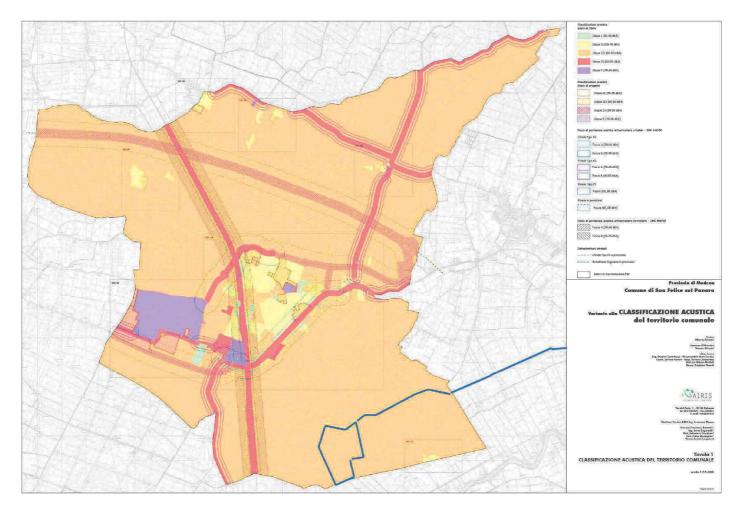
#### **MACCHINE ED IMPIANTI**

Le uniche fonti di rumore significative nell'impianto fotovoltaico provengono dalle cabine prefabbricate dove sono alloggiati i trasformatori e gli inverter e anche gli inverter alloggiati sulle stringhe, di seguito tipo e quantità.


- N. 101 inverter di stringa modello Sungrow Sg350hx da 320 kW
- N. 7 cabine del tipo monoblocco in cls prefabbricato dove all'interno vi saranno alloggiati:
- n. 01 Trasformatore MT/BT
- N. 1 cabine tecnica principale tipo monoblocco in cls prefabbricato dove all'interno vi saranno alloggiati:
- n.01 Trasformatore BT/TM e partirà da questa cabina principale un cavidotto interrato in MT fino ad arrivare alla Sottostazione Elettrica Utente SSEU
- N. 1 Sottostazione Elettrica Utente SSEU dove l'energia viene sopraelevata da 20 kV a 150 kV per mezzo di trasformatore ad olio ed inviata alla R.T.N.

# Livelli di rumore degli impianti

| Macchinari                                                                                                                      | Livello potenza sonora dB(A) |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| inverter di stringa modello <u>Sungrow Sg350hx da 320 kW</u>                                                                    | 69,0                         |
| cabina del tipo monoblocco in cls prefabbricato dove all'interno vi saranno alloggiati:                                         | 75,3                         |
| n. 01 Trasformatore MT/BT                                                                                                       |                              |
| N. 1 cabine tecnica principale del tipo monoblocco in cls prefabbricato dove all'interno vi saranno alloggiati:                 | 75,3                         |
| n.01 Trasformatore BT/TM                                                                                                        |                              |
| N. 1 cabine del tipo monoblocco in cls prefabbricato dove all'interno vi saranno alloggiati:                                    | 75,3                         |
| n.01 Trasformatore BT/TM e contabilizzatori di energia                                                                          |                              |
| N. 1 Sottostazione Elettrica Utente SSEU dove l'energia viene sopraelevata da 20 kV a 150 kV per mezzo di trasformatore ad olio | 80,0                         |




In foto esempio di inverter di stringa



In foto Modulo monoblocco in cls prefabbricato

# Zonizzazione acustica Comune di San Felice sul Panaro



L'area di progetto Evidenziata con il colore Blù, risulta classificata dagli strumenti comunali in Classe III (Area di tipo misto).

Il D.P.C.M. del 14 novembre 1997 "Determinazione dei valori limite delle sorgenti sonore", ha determinato i valori limite di emissione, i valori limite di immissione; per la classe III i valori sono i seguenti:

Emissione: 55,0 dBA

Immissione: 60,0 dBA

Sono stati riportati solo i valori del periodo diurno (06,00 - 22,00) in quanto durante il periodo notturno l'impianto è spento.

#### Zonizzazione acustica Comune di Finale Emilia

Il Comune di Finale Emilia non risulta avere una zonizzazione acustica del territorio , pertanto le aree in esame ai sensi dell'art. 8 comma 1 del D.P.C.M. 14.11.1997 "Determinazione dei valori limite delle sorgenti sonore", possono ricadere:

La sottostazione Elettrica Utente SSEU dove l'energia viene sopraelevata da 20 kV a 150 kV per mezzo di trasformatore ad olio si può collocare in una zona di CLASSE V, ossia aree prevalentemente industriali, interessate da insediamenti industriali e con scarsità di abitazioni.

In tale area:

I limiti di emissione previsti sono: 65 dB(A) nel periodo diurno I limiti assoluti di immissione sono: 70 dB(A) nel periodo diurno I limiti differenziali di immissione sono: 5 dB(A) nel periodo diurno

Le aree agricole di Via Vallicela, Via Persicello e Via Ceresa si possono collocare in una zona di Classe III Aree di tipo misto

I limiti di emissione previsti sono: 55 dB(A) nel periodo diurno I limiti assoluti di immissione sono: 60 dB(A) nel periodo diurno I limiti differenziali di immissione sono: 5 dB(A) nel periodo diurno

Sono stati riportati solo i valori del periodo diurno (06,00 - 22,00) in quanto durante il periodo notturno l'impianto è spento.

In attesa della suddivisione del territorio comunale si possono applicare come da D.P.C.M. 01/03/1991 per le sorgenti sonore fisse i seguenti limiti di accettabilità:

-----

| Zonizzazione                   |    | Limite notturno <br>  Leq (A) |
|--------------------------------|----|-------------------------------|
| Tutto il territorio nazionale  | 70 | 60                            |
| Zona A (decreto ministeriale   |    |                               |
| n. 1444/68) (*)                | 65 | 55                            |
| Zona B (decreto ministeriale   |    |                               |
| n. 1444/68) (*)                | 60 | 50                            |
| Zona esclusivamente industria- |    |                               |
| le                             | 70 | 70                            |

\_\_\_\_\_

# Riferimenti legislativi

La legge 26 ottobre 1995 n. 447 stabilisce i principi fondamentali in materia di tutela dell'ambiente esterno e dell'ambiente abitativo dall'inquinamento acustico dovuto alle sorgenti sonore fisse e mobili.

Il D.P.C.M. del 14 novembre 1997 "Determinazione dei valori limite delle sorgenti sonore", ha determinato i valori limite di emissione, i valori limite di immissione, i valori di attenzione ed i valori di qualità per le diverse classi di destinazione d'uso del territorio.

Per effettuare le indagini lungo il perimetro dell'impianto ed in ambiente abitativo e/o similari sono state adottate ove possibile le tecniche di rilevamento e di misurazione stabiliti dal D.P.C.M. 1/03/91 e dal Decreto del Ministero dell'Ambiente del 16 marzo 1998.

L'impianto indagato rientra nella zonizzazione del territorio comunale di San Felice sul Panaro in classe III. I ricettori si trovano nella classe III. Si riportano di seguito i valori limite di emissione e di immissione così come riportati nel D.P.C.M. sopra riportato.

Tabella B - valori limite di emissione - Leq in dB(A) (art. 2)

| cl  | assi di destinazione d'uso<br>del territorio | tempi di                | riferimento               |
|-----|----------------------------------------------|-------------------------|---------------------------|
|     |                                              | diurno<br>(06.00-22.00) | notturno<br>(22.00-06.00) |
| I   | aree particolarmente protette                | 45                      | 35                        |
| II  | aree prevalentemente residenziali            | 50                      | 40                        |
| III | aree di tipo misto                           | 55                      | 45                        |
| IV  | aree di intensa attività umana               | 60                      | 50                        |
| V   | aree prevalentemente industriali             | 65                      | 55                        |
| VI  | aree esclusivamente industriali              | 65                      | 65                        |

Tabella C - valori limite assoluti di immissione - Leq in dB(A) (art. 3)

| cl  | assi di destinazione d'uso<br>del territorio | tempi di                | riferimento               |
|-----|----------------------------------------------|-------------------------|---------------------------|
|     |                                              | diurno<br>(06.00-22.00) | notturno<br>(22.00-06.00) |
| I   | aree particolarmente protette                | 50                      | 40                        |
| II  | aree prevalentemente residenziali            | 55                      | 45                        |
| III | aree di tipo misto                           | 60                      | 50                        |
| IV  | aree di intensa attività umana               | 65                      | 55                        |
| V   | aree prevalentemente industriali             | 70                      | 60                        |
| VI  | aree esclusivamente industriali              | 70                      | 70                        |

Il Comune di Finale Emilia non risulta zonizzato, si applicano i limiti come da D.P.C.M. 01/03/1991 per tutto il territorio nazionale (limite diurno) 70,0 dBA

# Strumenti di misura

# Sono stati utilizzati:

- Un fonometro Marca Acoem 01 dB, Modello Fusion, Matr. 10876.
- Un fonometro Marca Acoem 01 dB, Modello Fusion, Matr. 15396
- Calibratore Marca Quest mod. QC-10, Matr. QE 4010034

Nell'allegato n°1 si rimettono i certificati di taratura degli strumenti.

I fonometri sono stati calibrati all'inizio ed alla fine del ciclo di misura ottenendo il valore prescritto dal fabbricante con il calibratore sopra specificato prima e dopo il ciclo di misura.

I risultati sono riportati nelle tabelle con la simbologia appresso specificata:

*La* = Livello di rumore ambientale (dBA)

*Lr* = Livello di rumore residuo (dBA)

Le = Livello di emissione (dBA)

LD = Livello differenziale di rumore (La - Lr) in dBA

# Incertezza di misura

L'incertezza di misura è stata calcolata come riportato nelle indicazioni tecniche del Rapporto Tecnico UNI TR 11326-1:2009 e citate nella Specifica Tecnica UNI TR 11326-2:2015.

Sulla base delle indicazioni fornite dal Rapporto Tecnico UNI TR 11326-1:2009 per la valutazione in oggetto sono state adottati i valori di incertezza indicati nella tabella che segue.

| Со                  | ntributi                             | Parametro         | Valore | Note                                         |
|---------------------|--------------------------------------|-------------------|--------|----------------------------------------------|
| Strumentazione di   | Calibratore                          | U <sub>slm</sub>  |        | Capitolo 6.1.1                               |
| misura              | Misuratore                           | $U_cal$           | 0,49   | della UNI TR<br>11326-1:2009                 |
|                     | Distanza sorgente-<br>ricettore      | U <sub>dist</sub> |        |                                              |
| Posizione di misura | Distanza da superfici<br>riflettenti | U <sub>rifl</sub> | 0,3    | Valore massimo calcolato nel punto di misura |
|                     | Altezza dal suolo                    | U <sub>alt</sub>  |        | •                                            |

 $L'incertezza\ composta\ u_c\ (L_{Aeq,T})\ si\ ottiene\ come\ radice\ quadrata\ dei\ quadrati\ dei\ singoli\ contributi:$ 

$$u_o = \sqrt{{u_{slm}}^2 + {u_{oal}}^2 + {u_{disc}}^2 + {u_{rifl}}^2 + {u_{alc}}^2} = \sqrt{\textbf{0.49}^2 + \textbf{0.3}^2} = \textbf{0.57} \text{ dB}$$

L'incertezza estesa viene ottenuta moltiplicando l'incertezza composta per un fattore di copertura k scelto sulla base del livello di fiducia che si vuole raggiungere

È stato utilizzato per il calcolo k = 1,645 (caso monolaterale) grazie al quale si ottiene un livello di fiducia del 95%.

$$U = u_c \times K = 0.57 \times 1.645 - = 0.94 \text{ dB}$$

# Valutazione Previsionale di impatto acustico

#### Simulazione con il software previsionale Cadna

La simulazione è stata effettuata attraverso l'impiego del software Cadna A versione 2019 (build 167.4905).

La predisposizione della documentazione sulla previsione dell'impatto acustico, prende avvio dalla descrizione dell'opera e dalla caratterizzazione acustica ante operam, finalizzata alla valutazione dell'interazione tra i vari elementi che determinano lo stato dell'ambiente, per la successiva stima dell'impatto acustico prodotto dall'attività durante l'esercizio dell'impianto, la fase di realizzazione e di dismissione dell'opera.

La caratterizzazione acustica della situazione ante operam per la definizione del rumore residuo, comprensivo dei contributi di tutte le sorgenti sonore preesistenti a quanto in progetto, è stata effettuata attraverso l'impiego di tecniche di rilievo sul campo , ai sensi delle leggi ordinarie nazionali in materia di acustica in vigore, in riferimento al D.M. 16 marzo 1998 (Tecniche di rilevamento e di misurazione dell'inquinamento acustico).

La stima dell'impatto acustico è stata eseguita attraverso il calcolo previsionale dell'incremento dei livelli sonori nei confronti dei ricettori e dell'ambiente circostante .

Il calcolo è stato eseguito attraverso l'impiego di tecniche di simulazione numerica che hanno permesso la determinazione dei livelli di rumore ambientale, in conformità alla norma UNI ISO 9613-2/2006.

La simulazione è stata effettuata attraverso l'impiego del software Cadna A versione 2019 (build 167.4905).

Lo studio di valutazione previsionale di impatto acustico ambientale si è sinteticamente articolato nelle seguenti fasi:

- analisi dei dati progettuali;
- rilievi acustici e caratterizzazione delle principali sorgenti presenti nelle vicinanze;
- stima dei livelli di pressione sonora utilizzando un modello di calcolo che simula la propagazione sonora in ambiente esterno;
- confronto dei risultati con la normativa acustica in vigore e, qualora si rendesse necessario, eventuale indicazione di interventi di mitigazione acustica.

Ai fini della stesura della presente valutazione di impatto acustico sono stati esaminati i seguenti documenti:

- dati geometrici e planivolumetrici del progetto;
- geometria e morfologia del contesto;
- Piano di Zonizzazione acustica del Comune di San Felice sul Panaro.

Gli esiti delle elaborazioni matematiche eseguite mediante l'utilizzo del software previsionale sono indicate in forma grafica nelle immagini che seguiranno, rappresentanti le isolinee determinate nel periodo di riferimento (diurno).

# Impostazione di Calcolo

Standard di propagazione con sorgenti puntiformi: CNOSSOS EU (2015)

Standard di propagazione con sorgenti stradali: CNOSSOS EU (2015)

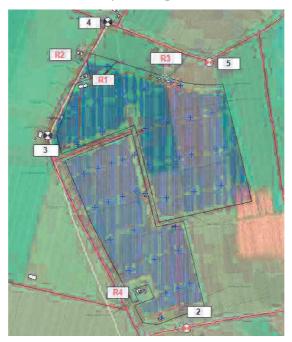
Assorbimento terreno: 0.5

Coefficiente assorbimento facciate edifici: 0.21

Ordine di riflessione raggi sonori: 2

Periodo di riferimento: diurno

Propagazione sonora: 2km


Cartografia utilizzata: Open Street Map

Immagini: Google maps

#### **Procedura**

Importando la cartografia si è ricostruito lo scenario del sito in oggetto di studio. In particolare, sono stati importati i dati relativi all'orografia (curve di livello), edifici e viabilità.

Di seguito nell'immagine il modello dell'impianto agrivoltaico in fase di esercizio.



# Misurazione effettuate per la taratura del modello

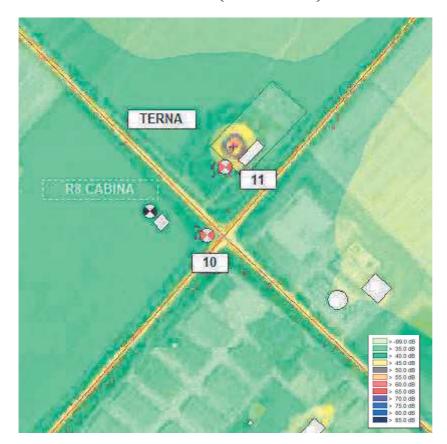
Di seguito le misurazioni effettuate in loco, necessarie per la taratura del modello (clima acustico).



| Postazione | Coordinate geografiche (m)  | *Livello di rumore<br>misurato (dBA) | Dati elaborati dal<br>modello CadnaA<br>(dBA) |
|------------|-----------------------------|--------------------------------------|-----------------------------------------------|
| 1          | 44°48'18.51"N 11° 9'58.12"E | 58,5 ± 0,94                          | 57,5                                          |
| 2          | 44°48'17.23"N 11° 9'51.25"E | 54,0 ± 0,94                          | 54,0                                          |
| 3          | 44°48'41.48"N 11° 9'32.54"E | 44,5 ± 0,94                          | 43,5                                          |
| 4          | 44°48'56.04"N 11° 9'42.09"E | 46,5 ± 0,94                          | 46,0                                          |
| 5          | 44°48'51.82"N 11° 9'59.65"E | 39,5 ± 0,94                          | 40,0                                          |
| 6          | 44°49'15.16"N 11°11'20.54"E | 37,5 ± 0,94                          | 37,5                                          |
| 7          | 44°49'55.42"N 11°13'38.52"E | 48,5 ± 0,94                          | 49,0                                          |
| 8          | 44°50'40.30"N 11°13'41.77"E | 77,0 ± 0,94                          | 77,0                                          |
| 9          | 44°50'55.95"N 11°14'12.14"E | 61,0 ± 0,94                          | 60,5                                          |
| 10         | 44°51'30.81"N 11°14'12.88"E | 42,0 ± 0,94                          | 42,5                                          |
| 11         | 44°51'33.66"N 11°14'13.97"E | 45,5 ± 0,94                          | 45,5                                          |

 $<sup>^{\</sup>ast}$  in tutte le misurazioni , non sono state riscontrate componenti tonali, conponenti tonali in bassa frequenza e rumore impulsivo

# Clima acustico

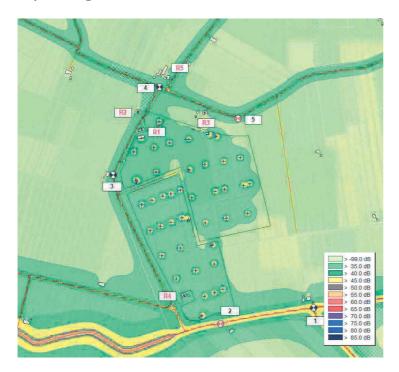

Le mappe di seguito riportate, definiscono in planimetria le postazioni di calcolo nei pressi dei ricettori più prossimi all'impianto, denominati rispettivamente R1, R2, R3, R4, R5 e R8.

R8 non è un ricettore ma bensì un punto ad una distanza di 15 metri dalla cabina

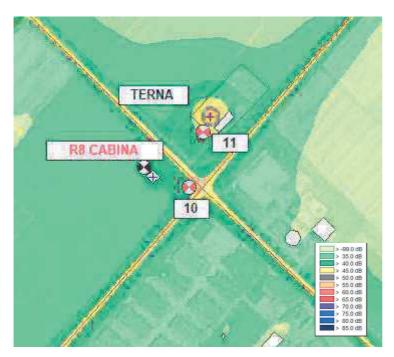
# Impianto agrivoltaico di Felice Sul Panaro



Centrale Terna e zona limitrofe (Massa Finalese)



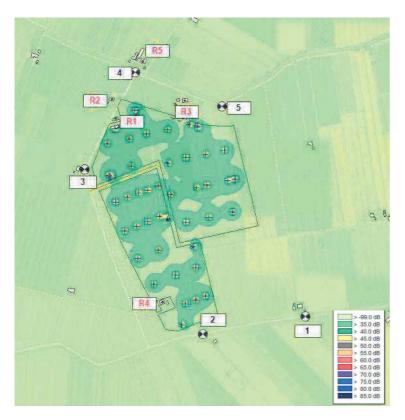

# Impatto acustico dopo l'esecuzione dell'opera


# **Post Operam**

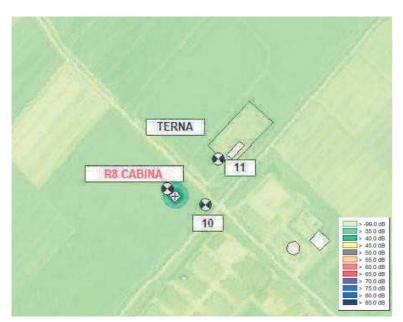
Le mappe di seguito riportate, definiscono i livelli di immissione

# Impianto Agrivoltaico




Cabina Sottostazione Elettrica Utente SSEU dove l'energia viene sopraelevata da 20 kV a 150 kV




# Emissione Post Operam

Le mappe di seguito riportate, definiscono i livelli di emissione

# Impianto Agrivoltaico



Cabina Sottostazione Elettrica Utente SSEU dove l'energia viene sopraelevata da 20 kV a 150 kV



Di seguito i valori della previsione di impatto acustico dopo l'esecuzione dell'opera

| Ricettore           | Zonizzazione | Limite | Residuo<br>Lr | Immissione<br>La | Emissione<br>Le | Differenziale in<br>facciata<br>Ld | Conformità |
|---------------------|--------------|--------|---------------|------------------|-----------------|------------------------------------|------------|
|                     |              | dB(A)  | dB(A)         | dB(A)            | dB(A)           | dB(A)                              |            |
| R1 (Via Spinosa)    | III          | 60     | 38,5 ± 1,0    | 39,5 ± 1,0       | 25,0 ± 1,5      | 1,0                                | Conforme   |
| R2 (Via Spinosa)    | III          | 60     | 37,0 ± 1,5    | 37,5 ± 1,5       | 28,5 ± 1,5      | 0,5                                | Conforme   |
| R3 (Via Vallicella) | III          | 60     | 27,0 ± 1,5    | 29,5 ± 1,0       | 26,5 ± 1,0      | 2,5                                | Conforme   |
| R4 (Via Spinosa)    | III          | 60     | 35,5± 2,5     | 35,5 ± 2,5       | 26,0 ± 1,5      | 0                                  | Conforme   |
| R5 (Via Cardinala)  | III          | 60     | 38,0 ± 1,5    | 38,0 ± 1,5       | 22,5 ± 1,0      | 0                                  | Conforme   |
| R8 (Zuccherificio)  |              |        | 37,0 ± 2,0    | 39,0 ± 1,5       | 34,0 ± 1,0      | 2,0                                | Conforme   |

<sup>\*</sup>Valori arrotondati a 0,5 dB

# Previsione di impatto acustico durante la fase di realizzazione e di dismissione dell'opera

# Cronoprogramma dei lavori

|                                | OLTAICO NEL COMUNE DI SAN FELICE<br>NARO - CRONOPROGRAMMA   | +         | 2         | 3         | 4         | 5         | 9         | 7         | 80        | 6         | 10        | 11        | 12        | 13        | 14        | 15        | 16        | 17        | 18        | 19        | 20        | 21        | 22        | 23        | 25        | 56        | 27        | 28        | 30        | 31        | 32        | 33        | 34        | 35            | 36            |               |                        |            |
|--------------------------------|-------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|---------------|---------------|------------------------|------------|
| SEZIONE                        | ATTIVITA'                                                   | SETTIMANA     | SETTIMANA     |               | Macchine<br>utilizzate |            |
|                                | Pulizia Sito, Livellamenti locali del<br>terreno            |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           | П         |               |               | Autocarro+Gru | Bobcat                 | Escavatore |
|                                | Realizzazione canali e vasche di<br>laminazione             |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               | Autocarro     | Bobcat                 | Escavatore |
| APPRONTAMENT<br>O DEL CANTIERE | Installazione recinzione perimetrale                        |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               |               | Trapano A              |            |
| O DEL CAN HERE                 | Installazione sistema di<br>videosorveglianza               |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               | Battipalo     | Trapano A              | vvitatore  |
|                                | Delimitazione-preparazione piste di cantiere                |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               | Bobcat        |                        |            |
|                                | Installazione Locali tecnici e servizi                      |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               | Autocarro+Gru |                        |            |
|                                | Infissione Pali                                             |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               | Battipalo     |                        |            |
|                                | Installazione Tracker                                       |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               | Autocarro+Gru | Trapano A              | vvitatore  |
|                                | Realizzazione scavi e posa cavidotti                        |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               | Escavatore    | Bobcat                 |            |
|                                | Installazione Moduli Fotovoltaici                           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               | Autocarro+Gru | Trapano A              | witatore   |
| CANTIERE                       | Posa cabine di campo e di<br>trasformazione                 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               | Autocarro+Gru | Betoniera              |            |
|                                | Cablaggi BT-MT-Segnale<br>Risistemazione stradelli impianto |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               | Bobcat        | Escavator              | e          |
|                                | Installazione sistema di monitoraggio                       |           |           |           |           |           | -         |           |           |           |           |           |           |           |           |           |           |           |           |           |           | _         | _         | _         |           | -         | _         | -         |           |           |           |           | $\vdash$  | $\rightarrow$ | -             |               |                        |            |
|                                | Commissioning<br>Collaudi e test                            | _         |           |           |           | -         | -         |           |           |           |           | -         | -         |           |           | -         |           |           | -         |           |           | -         | -         | _         |           | -         | -         | -         | -         | -         |           |           |           | $\rightarrow$ | $\rightarrow$ |               |                        |            |
|                                | Smobilizzazione area di cantiere                            |           |           |           |           | _         | _         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           | -         |           |           |           |           |           |           |           |           |           |           |               |               | Bobcat        | Autocarro              | +Gru       |
|                                | Realizzazione scavi e posa cavidotti                        |           |           |           |           | -         | _         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               | Autocarro+Gru |                        |            |
|                                | Sistemazione area SSEU                                      |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           | -         | =             |               |               |                        | Betoniera  |
| ALLACCIO ALLA                  | Installazione vano tecnico e trasformatori                  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           | -         |               |               | Autocarro+Gru |                        |            |
| RETE E MESSA IN                | Collaudi in corso d'opera                                   |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               |               |                        |            |
| ESERCIZIO                      | Misura e Verifica impianti di terra                         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               |               |                        |            |
|                                | Collaudo opere di rete                                      |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               | $\neg$        |               |                        |            |
|                                | Messa in esercizio                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               |               |                        |            |
|                                |                                                             |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |               |               |               |                        |            |

| TIPOLOGIA          | MARCA     | MODELLO     |
|--------------------|-----------|-------------|
|                    |           |             |
| Bobcat             | Bobcat    | S510        |
| Autocarro+Gru      | IVECO     | Stralis     |
| Battipalo          | Pauscelli | 700         |
| Mini Escavatore    | Kubota    | U 50        |
| Trapano Avvitatore | Makita    |             |
| Betoniera          | Imer      | Syntesi 300 |

Per la valutazione dell'impatto acustico sono state considerate le fasi più rilevanti nella produzione del rumore che, come da cronoprogramma dei lavori, corrispondono alle fasi:

# Scenari più rumorosi

| Scenario | Attività                                                   | Macchine utilizzate                           | Note                                              |
|----------|------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| 1        | Cantiere impianto agrivoltaico                             | Escavatore + Battipalo + Trapano Avvitatore + | Scenario nella postazione più vicina ai ricettori |
|          |                                                            | Autocarro+gru                                 | Anche durante la fase di dismissione impianto     |
| 2        | Posa cavidotto (8 km ) Comune di San felice sul<br>Pianaro | Escavatore + bobcat + autocarro+gru           | Scenario nella postazione più vicina ai ricettori |
| 3        | Posa cavidotto (8 km ) Comune di Massa<br>Finalese         | Escavatore + bobcat + autocarro+gru           | Scenario nella postazione più vicina ai ricettori |

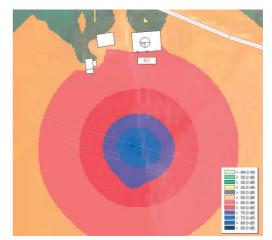
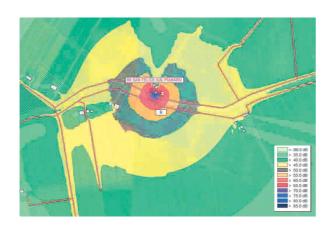
# Tabella dei macchinari utilizzati

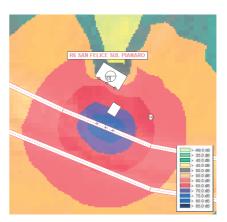
| Tabella del madellitati dell'Etati |                              |                    |  |  |
|------------------------------------|------------------------------|--------------------|--|--|
| Macchinari                         | Livello potenza sonora dB(A) | Tempo di<br>lavoro |  |  |
| Bobcat - S510                      | 102.0                        | 8 h                |  |  |
| Autocarro + Gru IVECO Stralis      | 95.0                         | 8 h                |  |  |
| Battipalo                          | 106.0                        | 8 h                |  |  |
| Escavatore                         | 105.0                        | 8 h                |  |  |
| Betoniera                          | 93.0                         | 8 h                |  |  |
| Mini-Escavatore Kubota U50         | 93.0                         | 8 h                |  |  |
| Trapano Avvitatore                 | 93.0                         | 8 h                |  |  |
|                                    |                              |                    |  |  |

# Attività di Cantiere

Nelle immagini seguenti un esempio grafico di come il rumore colpisce il recettore R3.



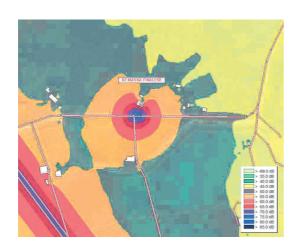





 Tabella Scenario 1 - Cantiere impianto agrivoltaico (Escavatore + Battipalo + Trapano Avvitatore + Autocarro+gru)

| Ricettore | Limite | Residuo<br>Lr | Immissione<br>La | Emissione<br>Le | Conformità |
|-----------|--------|---------------|------------------|-----------------|------------|
|           | dB(A)  | dB(A)         | dB(A)            | dB(A)           |            |
| R1        | *70    | 38,5 ± 1,0    | 65,5 ± 1,5       | 65,5 ± 1,5      | *Conforme  |
| R2        | *70    | 37,0 ± 1,5    | 66,5 ± 1,0       | 66,5 ± 1,0      | *Conforme  |
| R3        | *70    | 27,0 ± 1,5    | 60,0 ± 1,5       | 60,0 ± 1,5      | *Conforme  |
| R4        | *70    | 35,5± 2,5     | 63,5 ± 1,5       | 63,5 ± 1,5      | *Conforme  |
| R5        | *70    | 38,0 ± 1,5    | 52,5 ± 2,0       | 52,5 ± 2,0      | *Conforme  |

<sup>\*</sup> Rientra nei limiti imposti dal punto 3 della delibera Regione Emilia Romagna, Giunta Regionale n. 1197 del 21/09/2020

Tabella Scenario 2 - Posa cavidotto (8 km ) Comune di San felice sul Pianaro (Escavatore + bobcat + autocarro+gru)






| Ricettore | Limite | Residuo<br>Lr | Immissione<br>La | Emissione<br>Le | Conformità |
|-----------|--------|---------------|------------------|-----------------|------------|
|           | dB(A)  | dB(A)         | dB(A)            | dB(A)           |            |
| R6        | *70    | 36,5 ± 1,5    | 62,5 ± 1,0       | 62,5 ± 1,0      | *Conforme  |

<sup>\*</sup> Rientra nei limiti imposti dal punto 3 della delibera Regione Emilia Romagna, Giunta Regionale n. 1197 del 21/09/2020

Tabella Scenario 3 - Posa cavidotto (8 km ) Comune di Massa Finalese (Escavatore + Battipalo + Trapano Avvitatore + Autocarro+gru)





| Ricettore | Limite | Residuo<br>Lr | Immissione<br>La | Emissione<br>Le | Conformità |
|-----------|--------|---------------|------------------|-----------------|------------|
|           | Giorno | Giorno        | Giorno           | Giorno          |            |
|           | dB(A)  | dB(A)         | dB(A)            | dB(A)           |            |
| R7        | *70    | 49,0 ± 3,5    | 67,5 ± 1,0       | 67,5 ± 1,0      | *Conforme  |

<sup>\*</sup> Rientra nei limiti imposti dal punto 3 della delibera Regione Emilia Romagna, Giunta Regionale n. 1197 del 21/09/2020

# Conclusioni

# Previsione di impatto acustico durante la fase di realizzazione e di dismissione dell'opera:

Presso il Comune di San Felice sul Panaro

La rumorosità ambientale prevista nelle diverse fasi di cantiere temporaneo o mobile, necessarie per la realizzazione dell'impianto e del cavidotto, rientra nei limiti imposti dal punto 3 della delibera Regione Emilia Romagna, Giunta Regionale n. 1197 del 21/09/2020.

Non sono da prevedere opere di mitigazione acustica

# Presso il Comune di Finale Emilia

La rumorosità ambientale prevista per la realizzazione del cavidotto,e della Cabina Sottostazione Elettrica Utente SSEU dove l'energia viene sopraelevata da 20 kV a 150 kV, rientra nei limiti imposti dal punto 3 della delibera Regione Emilia Romagna, Giunta Regionale n. 1197 del 21/09/2020.

Non sono da prevedere opere di mitigazione acustica.

Previsionne di impatto acustico in fase di esercizio:

Il valore limite di emissione nelle postazioni indagate rispetterà i limiti della rispettiva classe di

appartenenza.

Il valore limite assoluto di immissione nelle postazioni indagate rispetterà i limiti della rispettiva

classe di appartenenza.

Per le zone non esclusivamente industriali, oltre ai limiti massimi in assoluto, per il rumore

all'interno degli ambienti abitativi, sono stabilite anche le differenze da non superare tra il

livello equivalente del rumore ambientale e quello del rumore residuo (d: livello differenziale di

rumore): 5 dB(A) per il periodo diurno; 3dB(A) per il periodo notturno (art. 4, D.P.C.M. del

14/11/97). Specificando anche quando questi non sono applicabili al comma 2 dell'articolo

citato.

Dalla valutazione di impatto acustico effettuata anche in facciata ad abitazioni riportata nelle

tabelle di misura della relazione, si evidenzia che il livello differenziale di rumore Ld, anche se

non applicabile, sarà al di sotto dei limiti previsti dal D.P.C.M. citato.

Il Progetto indagato è Compatibile acusticamente con la zona esaminata.

Non sono da prevedere opere di mitigazione e compensazione.

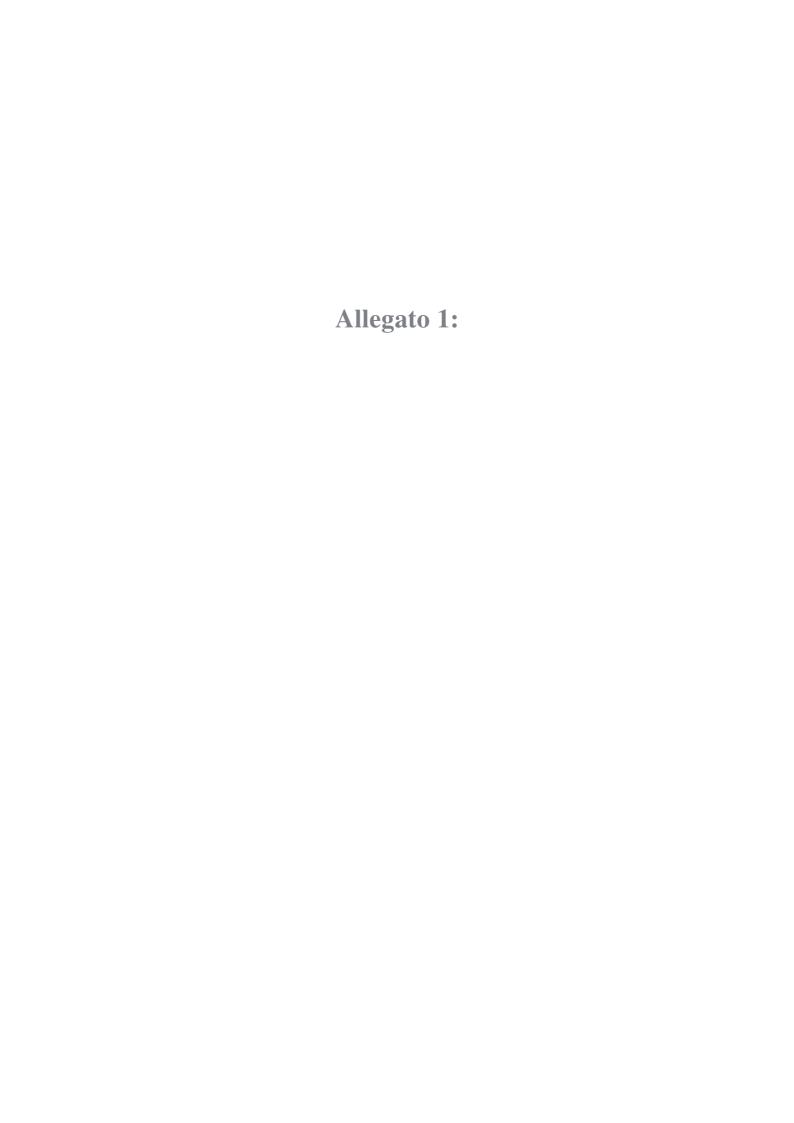
In conclusione nelle condizioni normali di lavoro, le sorgenti di rumore provocate dall'impianto

agrivoltaico, con potenza di circa 35,7 MWp da ubicare nel Comune di San Felice Sul Panaro

(Mo) e nel Comune di Finale Emilia (Mo), non saranno da considerarsi sorgenti disturbanti.

Roma, 21 giugno 2024

1. Certificati di taratura fonometro


2. Iscrizione Elenco Nazionale dei Tecnici Competenti in Acustica

3. Elaborati fonometrici

Il Richiedente Ing. Umberto Preda Per. Ind. Adriano Urciuoli Tecnico Competente in Materia di Acustica Numero Iscrizione Elenco Nazionale N. 7737

**Documento Firmato digitalmente** 







L.C.E. S.r.l. a Socio Unico Via dei Platani, 7/9 Opera (MI) T. 02 57602858 - www.lce.it - info@lce.it

# Centro di Taratura LAT N° 068 Calibration Centre Laboratorio Accreditato di Taratura Accredited Calibration Laboratory





LAT N° 068

Pagina 1 di 9 Page 1 of 9

# CERTIFICATO DI TARATURA LAT 068 51438-A Certificate of Calibration LAT 068 51438-A

 - data di emissione date of issue
 2023-09-04

 - cliente customer
 TECNOSIB SRL 00155 - ROMA (RM)

 - destinatario receiver
 TECNOSIB SRL 00155 - ROMA (RM)

# Si riferisce a

Referring to - oggetto

- costruttore manufacturer

- modello model

- matricola serial number

data di ricevimento oggetto date of receipt of itemdata delle misure

date of measurements
- registro di laboratorio

registro di laboratorio laboratory reference Analizzatore

01-dB

FUSION

10876

2023-09-01

2023-09-04

Reg. 03

Il presente certificato di taratura è emesso in base all'accreditamento LAT N° 068 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 068 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Direzione Tecnica (Approving Officer)



L.C.E. S.r.l. a Socio Unico Via dei Platani, 7/9 Opera (MI) T. 02 57602858 - www.lce.it - info@lce.it

# Centro di Taratura LAT N° 068 Calibration Centre Laboratorio Accreditato di Taratura Accredited Calibration Laboratory





LAT N° 068

Pagina 1 di 6 Page 1 of 6

#### CERTIFICATO DI TARATURA LAT 068 51439-A Certificate of Calibration LAT 068 51439-A

- data di emissione 2023-09-04 date of issue - cliente **TECNOSIB SRL** customer 00155 - ROMA (RM) - destinatario **TECNOSIB SRL** 00155 - ROMA (RM) receiver

# Si riferisce a

Referring to - oggetto

Filtri 1/3 ottave

- costruttore manufacturer

01-dB

- modello model

FUSION

- matricola

10876

serial number - data di ricevimento oggetto

2023-09-01

date of receipt of item - data delle misure

date of measurements

2023-09-04

- registro di laboratorio laboratory reference

Reg. 03

Il presente certificato di taratura è emesso in base all'accreditamento LAT N° 068 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 068 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

> Direzione Tecnica (Approving Officer)



L.C.E. S.r.l. a Socio Unico Via dei Platani, 7/9 Opera (MI) T. 02 57602858 - www.lce.it - info@lce.it

# Centro di Taratura LAT N° 068 Calibration Centre Laboratorio Accreditato di Taratura Accredited Calibration Laboratory





LAT N° 068

Pagina 1 di 4 Page 1 of 4

#### CERTIFICATO DI TARATURA LAT 068 51437-A Certificate of Calibration LAT 068 51437-A

- data di emissione date of issue
- cliente TECNOSIB SRL customer 00155 - ROMA (RM)
- destinatario TECNOSIB SRL receiver 00155 - ROMA (RM)

# Si riferisce a

Referring to - oggetto

Calibratore

 costruttore manufacturer

Quest

- modello

QC-10

- matricola

QE4010034

serial number
- data di ricevimento oggetto

2023-09-01

date of receipt of item - data delle misure

2020 00 0

date of measurements

2023-09-04

- registro di laboratorio laboratory reference

Reg. 03

Il presente certificato di taratura è emesso in base all'accreditamento LAT N° 068 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 068 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Direzione Tecnica (Approving Officer)



# Documentation Métrologique Metrological documentation

**FUSION 15396** 

Date d'émission : Date of issue :

26/10/2023

1

Référence Document

: NOT1536 : Documentation métrologique - Metrological documentation FRGB

www.acoemgroup.com

support@acoemgroup.com

# TABLE DES MATIERES TABLE OF CONTENT

| Chapitre I. | Constat de verification  | Verification certificate |
|-------------|--------------------------|--------------------------|
| Chapitre 2. | Certificat d'étalonnage  | Calibration certificate1 |
| Chapitre 3, | Certificat de conformite | Conformity certificate   |

Intel Brand of BCORTS

# Chapitre 1. **CONSTAT DE VERIFICATION** VERIFICATION CERTIFICATE

CV-DTE-L-23-PVE-85447

DELIVRE PAR: ISSUED BY:

ACOEM

Service Métrologie

85 route de Marcilly 69380 LISSIEU France

INSTRUMENT VERIFIE INSTRUMENT CHECKED

Désignation :

Designation:

Sonomètre Intégrateur-Moyenneur Integrating-Averaging Sound Level Meter

Constructeur:

01dB

Manufacturer:

Type:

FUSION

N° de serie : Serial number:

15396

N° d'identification : Identification number

Date d'émission :

Date of issue :

26/10/2023

Ce constat comprend pages
This certificate includes pages

LE RESPONSABLE PRODUCTION MANUFACTURING MANAGER Francis FERASIN

LA REPRODUCTION DE CE CONSTAT N'EST AUTORISEE QUE SOUS LA FORME DE FAC-SIMILE PHOTOGRAPHIQUE INTEGRAL

CE DOCUMENT NE PEUT PAS ETRE UTILISE EN LIEU ET PLACE D'UN CERTIFICAT D'ETALONNAGE. CE DOCUMENT EST REALISE SUIVANT LES RECOMMANDATIONS DU FASCICULE DE DOCUMENTATION X 07-011.

THIS DOCUMENT CAN'T BE USED AS CALIBRATION CERTIFICATE. IT IS COMPLIANT WITH THE X 07-041 STANDARD RECOMMENDATIONS

#### CV-DTb L-23-PVII-85447

#### IDENTIFICATION:

IDENTIFICATION:

|                                 | Senometre<br>Sound hold moter | Preamptificateur<br>Preamptist | Microphone Afforciations |
|---------------------------------|-------------------------------|--------------------------------|--------------------------|
| Construction# :<br>Manufacturer | 01dB                          |                                | GRAS                     |
| Type:                           | FUSION                        | Interne - Internal             | -AOCD                    |
| Nuroeto de sárie :              | 15396                         |                                | 579835                   |

#### PROGRAMME DE VERIFICATION:

VERIFICATION PROGRAM;

Ce sonomètre a été vérifié sur les caractéristiques suivantes:

- Réponse en fréquence du sonomètre
- . Linéarité
- Pondérations fréquentielles A-B-C-Z
- Bruit de fond
  Filtre 1/1 et 1/3 octave

This sound level meter has been verified on its following characteristics:

• Frequency response of the sound level meter

- Linearity
   A-B-C-Z Weighting
- Background noise 1/1 and 1/3 Octave filter

#### METHODE DE VERIFICATION:

VERIFICATION METHOD:

L'appareil est vérifié dans une salle climatisée. Les caractéristiques sont vérifiées étalonnées avec un

multimètre et un générateur étalonnés en amplitude et en fréquence. Des corrections constructeurs sont appliquées pour prendre en compte les effets des accessoires et du boîtier selon la norme IEC 61672-3

The instrument is controlled in an air conditioned room. The other characteristics are verified with multimeter and generator calibrated in amplitude and in frequency. Some manufacturer's corrections have been applied to account the acoustical effect from the case of the sound level meter and his accessories (IEC 61672-3).

#### CONDITIONS DE VERIFICATION :

VERIFICATION CONDITIONS

Date de l'étalonnage :

.26 - 10 - 2023.

Date of Calibration (tranch format)

Nom de l'opérateur :

Telmo Monteiro

Operator Name

Instruction d'étalonnage : P118-NOT-01 Calibration instruction

Pression atmosphérique : 97,46 kPa

Static pressure

Température : Temperature

Taux d'humidité relative : 53,2 %HR

Relative humidity

#### MOYENS DE MESURE UTILISES POUR LA VERIFICATION :

INSTRUMENTS USED FOR VERIFICATION:

| Désignation                        | Constructeur   | Туре    | N° de série   | N° d'identification   |
|------------------------------------|----------------|---------|---------------|-----------------------|
| Designation                        | Manufacturer   | Туре    | Serial number | Identification number |
| Générateur BF / Waveform generator | Helwet-Packard | 33120A  | US36036418    | APM 5399              |
| Calibreur acoustique / Calibrator  | 01dB-Metravib  | CAL31   | 94751         | APM 6236              |
| Boite à décades / Decade box       | 01dB-Metravib  | OUT1694 | 1605204       | APM 5543              |
| Pré-amplificateur / preamplifier   | 01dB-Metravib  | PRE21A  | 20453         | APM 1435              |

Tous les moyens de mesure utilisés sont raccordés aux étalons de référence de la société ACOEM. Les étalons de référence de la société ACOEM sont raccordés aux étalons nationaux par un étalonnage COFRAC. La liste de ces étalons est disponible sur simple demande auprès du responsable métrologique du laboratoire.

All the measuring instruments are calibrated using the ACOEM reference standards. ACOEM reference standards are calibrated with COFRAC certificate of calibration. The reference standard list is available on simple request to the head of the Metrology Lab.

#### RESULTATS:

Results:

Le jugement de conformité de chaque test est établi suivant les totérances données dans les normes suivantes :

Conformity decision has born teken with the toterance descriptions in the following standards:

LEC 61250

IEC 61250

IEC 61250

IEC 61672-1 classe

ANSI S1.11 class

ANSI S1.4 class

#### CV-D1H-L-23-PVE-85447

#### Linéarité Linearity

| Description Description | Résultat<br>Result |
|-------------------------|--------------------|
| Linearite               | Conforme           |
| Linearity               | Compliant          |

Pondérations fréquentielles A-B-C-Z A-B-C-Z Weightings

| Description Description   | Résultat<br>Result |
|---------------------------|--------------------|
| Pondération fréquentielle | Conforme           |
| Frequency weighting       | Compliant          |

Bruit de fond Background noise

| Description   | Résultat  |
|---------------|-----------|
| Description   | Result    |
| Bruit de fond | Conforme  |
| Noise level   | Compliant |

8

#### CV-L71E-L-23-PVU-85447

### Filtre d'octave 1/1 Octave filter

| Description                                     | Result    |
|-------------------------------------------------|-----------|
| Fréquence centrale filtre 1/1 octave            | Conforme  |
| 1/1 Octave filter central frequency attenuation | Compliant |

## Filtre de 1/3 d'octave 1/3 Octave filter

| Description Description                         | Résultat<br>Result |
|-------------------------------------------------|--------------------|
| Fréquence centrale filtre 1/3 octave            | Conforme           |
| 1/3 Octave filter central frequency attenuation | Compliant          |

Les données liées au DMK01 sont issues de la réponse en fréquence du microphone associé à l'influence typique du DMK01.

The DMK01's results describes the association of the microphone acoustical response with the tipical DMK01 influence.

Fin du constat de vérification End of verification certificate

9

### Chapitre 2. CERTIFICAT D'ETALONNAGE **CALIBRATION CERTIFICATE**

CE-DTE-L-23-PVE-85447

DELIVRE PAR: ISSUED BY:

ACOEM

Service Métrologie

85 route de Marcilly 69380 LISSIEU France

INSTRUMENT ETALONNE CALIBRATED INSTRUMENT

Désignation:

Sonomètre Intégrateur-Moyenneur Integrating-Averaging Sound Level Meter

Designation:

Constructeur: Manufacturer:

01dB

Type:

FUSION

N° de serie : Serial number :

15396

Type:

N° d'identification :

Identification number

Date d'émission :

Date of issue :

26/10/2023

Ce certificat comprend This certificate includes

Pages

LE RESPONSABLE PRODUCTION MANUFACTURING MANAGER Francis FERASIN

LA REPRODUCTION DE CE CERTIFICAT N'EST AUTORISEE QUE SOUS LA FORME DE FAC-SIMILE PHOTOGRAPHIQUE INTEGRAL. THIS CERTIFICATE MAY NOT BE REPRODUCED OTHER THAN IN FULL BY PHOTOGRAPHIC PROCESS

CE CERTIFICAT EST CONFORME AU FASCICULE DE DOCUMENTATION FD X 07-012.

THIS CERTIFICATE IS COMPLIANT WITH THE FD X 07-012 STANDARD DOCUMENTATION

#### CE-010-L-25-PVE-85447

#### IDENTIFICATION:

| SECTOR ENGRAPHICAL AUTOS TO | Sonomètre<br>Sonot less mets | Preamplificatour   | Microprione |
|-----------------------------|------------------------------|--------------------|-------------|
| Constructeur!).             | 01dB                         |                    | GRAS        |
| Type<br>Type                | FUSION                       | Interne - Internal | 40CD        |
| Numéro de série :           | 15396                        |                    | 579835      |

#### PROGRAMME D'ETALONNAGE:

CAUBRATION PROGRAM.

Ce Sonomètre a été étalonné sur les caractéristiques suivantes :

- Réponse en fréquence du sonomètre en champ libre
- Linéarité

Linearite
 Pondérations fréquentielles A-B-C-Z
The Sound level meter has been calibrated on the following characteristics:
 Free field frequency response of the sound level meter
 Linearity
 A-B-C-Z frequency weightings

#### METHODE D'ETALONNAGE:

CALBRATION METHOD: L'appareil est étalonné dans une salle climatisée. Les caractéristiques sont étalonnées avec un

L'appareil est étaionne dans une salle climatisee. Les caracteristiques sont étalonnées avec un multimètre et un générateur étalonnés en amplitude et en fréquence. Des corrections constructeurs sont appliquées pour prendre en compte les effets des accessoires et du boîtier selon la norme IEC 61672-3

The instrument is calibrated in an air conditioned room. The other characteristics are verified with multimeter and generator calibrated in amplitude and in frequency. Some manufacturer's corrections have been applied to account the acoustical effect from the case of the sound level meter and his accessories (IEC 61672-3).

CONDITIONS D'ETALONNAGE:
CALIBRATION CONDITIONS:

Date de l'étalonnage : Date of Calibration (trench format)

26 - 10 - 2023.

Nom de l'opérateur :

Telmo Monteiro

Operator Name Instruction d'étalonnage :

P118-NOT-01

Calibration instruction

Pression atmosphérique : 97,46 kPa

Static pressure

Température :

22,7 °C

Temperature Taux d'humidité relative : 53,2 %HR

Relative humidity

#### MOYENS DE MESURES UTILISES POUR L'ETALONNAGE :

INSTRUMENTS USED FOR CALIBRATION:

| Désignation                        | Constructeur   | Туре    | N° de série   | N° d'identification   |
|------------------------------------|----------------|---------|---------------|-----------------------|
| Designation                        | Manufacturer   | Туре    | Serial number | Identification number |
| Générateur BF / Waveform generator | Helwet-Packard | 33120A  | US38036418    | APM 5399              |
| Calibreur accustique / Calibrator  | 01dB-Metravlb  | CAL31   | 94751         | APM 6236              |
| Boite à décades / Decade box       | 01dB-Metravib  | OUT1694 | 1605204       | APM 5543              |
| Pré-amplificateur / preamplifica   | 01dB-Metravib  | PRE21A  | 20453         | APM 1435              |

Tous los moyens de mosure utilisés sont raccordés aux étalons de référence de la société ACOEM. Les étalons de référence de la société ACOEM sont raccordés aux étalons nationaux par un étalonnage COFRAC. La liste de ces étalons est disponible sur simple demande auprès du responsable métrologique du laboratoire.

All the measuring instruments are calibrated using the ACOEM reference standards. ACOEM reference standards are calibrated vith COFRAC certificate of calibration. The reference standards list is available on simple request to the head of the Metrology lab.

#### RESULTATS:

RESULTS:

Les incertitudes élargies mentionnées sont celles correspondant à deux incertitudes types (k=2). Les incertitudes types sont calculées en tenant compte des différentes composantes d'incertitudes, étalons de référence, moyens d'étalonnage, conditions d'environnement, contribution de l'instrument étalonné, répétabilité ...

Mentioned axpended uncertainties correspond to two standard uncertainty types (k=2). Standard uncertainties nœ calculated including different uncertainty components, reference standards, instruments used, environmental conditions, calibrated instrument contribution, repeatability...

Brand of BCCGC **●** 0148

#### CR-DYE-L-23-PVE-85447

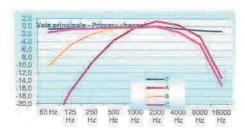
Pondération fréquentielle Frequency Weighting

| Pondération f          | requentielle | (voie Interne | ) - Frequence | cy weightin | The State of the S |
|------------------------|--------------|---------------|---------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0" Short<br>windscreen | Z            | Α             | В             | C           | Incertitude<br>uncertainty<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 63 Hz                  | ~0.8         | -27.0         | -10,1         | -1,6        | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 125 Hz                 | -0.6         | -16.8         | -4.9          | -0.8        | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 250 Hz                 | -0.6         | -9.3          | -2.0          | -0.6        | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 500 Hz                 | -0.4         | -3.6          | -0.6          | -0.3        | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1000 Hz                | -0.3         | -0.3          | -0.3          | -0.3        | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2000 Hz                | 0.1          | 1.3           | 0.0           | -0.1        | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4000 Hz                | -0.6         | 0.3           | -1.3          | -1.4        | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8000 Hz                | -1.1         | -2.6          | -4.5          | -4.6        | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16000 Hz               | -1.3         | -13.2         | -15.0         | -15.1       | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

@ 01/08

Linéarité Linearity

| Lineatifé (voie principale) | Valeur nominale<br>Nominal value | Valeur affichée<br>Displayed value | Incertitudes          |
|-----------------------------|----------------------------------|------------------------------------|-----------------------|
| Linearity (Primary channel) | ( dB )                           | (dB)                               | Uncertainty<br>( dB ) |
| Leg 35 dBZ / 8000 Hz        | 35,0                             | 35.0                               | 0,23                  |
| Leg 40 dBZ / 8000 Hz        | 40,0                             | 40.1                               | 0,23                  |
| Leg 50 dBZ / 8000 Hz        | 50,0                             | 50,0                               | 0.20                  |
| Leg 60 dBZ / 8000 Hz        | 60.0                             | 60,0                               | 0,20                  |
| Leg 70 dBZ / 8000 Hz        | 70,0                             | 70.0                               | 0,20                  |
| Leg 80 dBZ / 8000 Hz        | 80.0                             | 80.0                               | 0,20                  |
| Leg 90 dBZ / 8000 Hz        | 90,0                             | 90.0                               | 0,20                  |
| Leg 100 dBZ / 8000 Hz       | 100,0                            | 100.0                              | 0.20                  |
| Leg 110 dBZ / 8000 Hz       | 110.0                            | 109,9                              | 0,20                  |
| Leg 120 dBZ / 8000 Hz       | 120,0                            | 119,8                              | 0,20                  |
| Leo 130 dBZ / 8000 Hz       | 130,0                            | 129,8                              | 0,20                  |
| Leg 134 dBZ / 8000 Hz       | 134,0                            | 133.7                              | 0,20                  |
| Leg 134 dBA / 8000 Hz       | 134,0                            | 133.6                              | 0,20                  |
| Leg 130 dBA / 8000 Hz       | 130.0                            | 129,8                              | 0,20                  |
| Leg 120 dBA / 8000 Hz       | 120,0                            | 119.8                              | 0,20                  |
| Leg 110 dBA / 8000 Hz       | 110.0                            | 109.9                              | 0,20                  |
| Leg 100 dBA / 8000 Hz       | 100,0                            | 100.0                              | 0,20                  |
| Leg 90 dBA / 8000 Hz        | 90,0                             | 90.0                               | 0,20                  |
| Leg 80 dBA / 8000 Hz        | 80.0                             | 80.0                               | 0.20                  |
| Leg 70 dBA / 8000 Hz        | 70.0                             | 70.0                               | 0.20                  |
| Leg 60 dBA / 8000 Hz        | 60,0                             | 60,0                               | 0,20                  |
| Leg 50 dBA / 8000 Hz        | 50,0                             | 50,0                               | 0,20                  |
| Leg 40 dBA / 8000 Hz        | 40,0                             | 40,1                               | 0,23                  |
| Leq 30 dBA / 8000 Hz        | 30,0                             | 30.1                               | 0,23                  |
| Leg 26 dBA / 8000 Hz        | 26,0                             | 26,2                               | 0.23                  |


#### Filtre Filter

| Fittre par bande d'octave (Voie principale)  Octave fitter (primary channel) | Valeur nominale<br>Nominal value<br>( dB ) | Valeur affichée<br>Displayed value<br>( dB ) | Incertitudes<br>Uncertainty<br>( dB ) |
|------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|---------------------------------------|
| Leg 110 dB / 1/1 Octave / 31,5 Hz                                            | 110,0                                      | 109,9                                        | 0,5                                   |
| Leg 110 dB / 1/1 Octave / 63 Hz                                              | 110,0                                      | 109,9                                        | 0,5                                   |
| Leg-110 dB / 1/1 Octave / 125 Hz                                             | 110,0                                      | 109,9                                        | 0,5                                   |
| Leg 110 dB / 1/1 Octave / 250 Hz                                             | 110,0                                      | 110,0                                        | 0,3                                   |
| Leq 110 dB / 1/1 Octave / 500 Hz                                             | 110,0                                      | 110,0                                        | 0,3                                   |
| Leg 110 dB / 1/1 Octave / 1000 Hz                                            | 110,0                                      | 110,0                                        | 0.3                                   |
| Leg 110 dB / 1/1 Octave / 2000 Hz                                            | 110,0                                      | 110,0                                        | 0,4                                   |
| Leg 110 dB / 1/1 Octave / 4000 Hz                                            | 110,0                                      | 110,0                                        | 0.4                                   |
| Leg 110 dB / 1/1 Octave / 8000 Hz                                            | 110,0                                      | 110,0                                        | 0,4                                   |

| Fiftre tiers d'octave (Vole principale) | Valeur nominale | Valeur affichée | Incertitudes |
|-----------------------------------------|-----------------|-----------------|--------------|
|                                         | Nominal value   | Displayed value | Uncertainty  |
| Third octave filter (Primary channel)   | (dB)            | (dB)            | (dB)         |
| Leg 110 dB / 1/3 Octave / 25 Hz         | 110,0           | 109,9           | 0,5          |
| Leg 110 dB / 1/3 Octave / 31,5 Hz       | 110,0           | 109,9           | 0.5          |
| Leg 110 dB / 1/3 Octave / 40 Hz         | 110,0           | 109,9           | 0.5          |
| Leg 110 dB / 1/3 Octave / 50 Hz         | 110.0           | 109,9           | 0,5          |
| Leg 110 dB / 1/3 Octave / 83 Hz         | 110,0           | 109,9           | 0.5          |
| Leg 110 dB / 1/3 Octave / 80 Hz         | 110,0           | 109.9           | 0,5          |
| Leg 110 dB / 1/3 Octave / 100 Hz        | 110,0           | 110.0           | 0,5          |
| Leg 110 dB / 1/3 Octave / 125 Hz        | 110,0           | 109,9           | 0,5          |
| Leg 110 dB / 1/3 Octave / 160 Hz        | 116,0           | 110,0           | 0,5          |
| Leg 110 dB / 1/3 Octave / 200 Hz        | 110,0           | 110,0           | 0.3          |
| Leg 110 dB / 1/3 Octave / 250 Hz        | 110,0           | 110.0           | 0,3          |
| Leg 110 dB / 1/3 Octave / 315 Hz        | 110,0           | 110,0           | 0.3          |
| Leg 110 dB / 1/3 Octave / 400 Hz        | 110,0           | 110,0           | 0.3          |
| Leg 110 dB / 1/3 Octave / 500 Hz        | 110.0           | 110,0           | 0,3          |
| Leg 110 dB / 1/3 Octave / 630 Hz        | 110,0           | 110,0           | 0.3          |
| Leg 110 dB / 1/3 Octave / 800 Hz        | 110,0           | 110,0           | 0.3          |
| Leg 110 d8 / 1/3 Octave / 1000 Hz       | 110.0           | 110.0           | 0,3          |
| Leg 110 dB / 1/3 Octave / 1250 Hz       | 110.0           | 110,0           | 0,4          |
| Leg 110 d8 / 1/3 Octave / 1600 Hz       | 110,0           | 110.0           | 0,4          |
| Leg 119 d8 / 1/3 Octave / 2000 Hz       | 110,0           | 110,0           | 0,4          |
| Leg 110 d8 / 1/3 Octave / 2500 Hz       | 110,0           | 110,0           | 0,4          |
| Leg 110 dB / 1/3 Octave / 3150 Hz       | 1,10,0          | 110,0           | 0.4          |
| Leg 110 dB / 1/3 Octave / 4000 Hz       | 110,0           | 110,0           | 0,4          |
| Leg 110 dB / 1/3 Octave / 5000 Hz       | 110,0           | 110,0           | 6,4          |
| Leg 110 dB / 1/3 Octave / 6300 Hz       | 110,0           | 110,0           | 0,4          |
| Leg 119 dB / 1/3 Octave / 8000 Hz       | 110,0           | 109,9           | 0,4          |
| Leg 110 dB / 1/3 Octave / 10000 Hz      | 110.0           | 109,9           | 0,6          |

Brand of aCOEM

#### Réponse acoustique Acoustic response

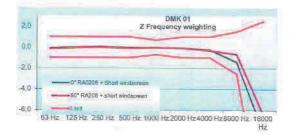


@ outs

#### OPTION DMK 01 (1/3)

Les données liées au DMK01 sont issues de la réponse en fréquence du microphone associé à l'influence typique du DMK01.

The DMK01's results describes the association of the microphone acoustical response with the tipical DMK01 influence.


| Filtre per bande d'octave (DMK 01)  Octave filter (with DMK01) | Valeur nominale<br>Nominal value<br>( d8 ) | Valeur affichée<br>Displayed value<br>( dB ) | Incertitudes<br>Uncertainty<br>( dB ) |
|----------------------------------------------------------------|--------------------------------------------|----------------------------------------------|---------------------------------------|
| Leg 110 dB / 1/1 Octave / 31,5 Hz                              | 110,0                                      | 109.9                                        | 0,5                                   |
| Leg 110 dB / 1/1 Octave / 63 Hz                                | 110,0                                      | 109.9                                        | 0.5                                   |
| Leg 110 dB / 1/1 Octave / 125 Hz                               | 110,0                                      | 109,9                                        | 0,5                                   |
| Leg 110 dB / 1/1 Octave / 250 Hz                               | 110,0                                      | 110,0                                        | 0,3                                   |
| Leq 110 dB / 1/1 Octave / 500 Hz                               | 110,0                                      | 110,0                                        | 0,3                                   |
| Leg 110 dB / 1/1 Octave / 1000 Hz                              | 110,0                                      | 110,0                                        | 0.3                                   |
| Leg 110 dB / 1/1 Octave / 2000 Hz                              | 110,0                                      | 110,0                                        | 0,4                                   |
| Leg 110 dB / 1/1 Octave / 4000 Hz                              | 110,0                                      | 110,0                                        | 0,4                                   |
| Leg 110 dB / 1/1 Octave / 8000 Hz                              | 110.0                                      | 110,0                                        | 0,4                                   |

| Filtre tiers d'octave (DMK 01)  Third octave filter (with DMK01) | Valeur nominale<br>Nominal value<br>( dB ) | Valeur affichée<br>Displayed value<br>( dB ) | Incertitudes<br>Uncertainty<br>( dB ) |
|------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|---------------------------------------|
| Leg 110 dB / 1/3 Octave / 25 Hz                                  | 110,0                                      | 109,9                                        | 0.5                                   |
| Leg 110 d8 / 1/3 Octave / 31.5 Hz                                | 110,0                                      | 109,9                                        | 0.5                                   |
| Leg 110 dB / 1/3 Octave / 49 Hz                                  | 110,0                                      | 109.9                                        | 0.5                                   |
| Leg 110 dB / 1/3 Octave / 50 Hz                                  | 110,0                                      | 109,9                                        | 0.5                                   |
| Leg 110 d8 / 1/3 Octave / 63 Hz                                  | 110,0                                      | 109.9                                        | 0.5                                   |
| Leg 110 dB / 1/3 Octave / 80 Hz                                  | 110,0                                      | 109.9                                        | 0,5                                   |
| Leg 110 dB / 1/3 Octave / 100 Hz                                 | 110,0                                      | 110.0                                        | 0,5                                   |
| Leg 110 dB / 1/3 Octave / 125 Hz                                 | 110,0                                      | 109,9                                        | 0,5                                   |
| Leg 118 dB / 1/3 Octave / 160 Hz                                 | 110,0                                      | 110,0                                        | 0.5                                   |
| Leg 110 dB / 1/3 Octave / 200 Hz                                 | 110,0                                      | 110.0                                        | 0,3                                   |
| Leg 110 dB / 1/3 Octave / 250 Hz                                 | 110,0                                      | 110.0                                        | 0,3                                   |
| Leg 110 dB / 1/3 Octave / 315 Hz                                 | 110.0                                      | 110,0                                        | 0,3                                   |
| Leg 110 dB / 1/3 Octave / 400 Hz                                 | 110.0                                      | 110,0                                        | 0,3                                   |
| Leg 110 dB / 1/3 Octave / 500 Hz                                 | 110,0                                      | 110,0                                        | 0.3                                   |
| Leg 110 dB / 1/3 Octave / 630 Hz                                 | 110,0                                      | 110,0                                        | 0.3                                   |
| Leg 110 dB / 1/3 Octave / 800 Hz                                 | 110,0                                      | 110,0                                        | 0.3                                   |
| Leg 110 dB / 1/3 Octave / 1000 Hz                                | 110,0                                      | 110,0                                        | 0.3                                   |
| Leg 110 dB / 1/3 Octave / 1250 Hz                                | 110,0                                      | 110,0                                        | 0.4                                   |
| Leg 110 dB / 1/3 Octave / 1600 Hz                                | 110,0                                      | 110.0                                        | 0,4                                   |
| Leg 110 d8 / 1/3 Octave / 2000 Hz                                | 110.0                                      | 110,0                                        | 0,4                                   |
| Leg 110 dB / 1/3 Octave / 2500 Hz                                | 110,0                                      | 110,0                                        | 0,4                                   |
| Leg 110 dB / 1/3 Octave / 3150 Hz                                | 110,0                                      | 110,0                                        | 0,4                                   |
| Leg 110 dB / 1/3 Octave / 4000 Hz                                | 110,0                                      | 110.0                                        | 0,4                                   |
| Leg 110 dB / 1/3 Octave / 5000 Hz                                | 110,0                                      | 110,0                                        | 0,4                                   |
| Leg 110 dB / 1/3 Octave / 6300 Hz                                | 110,0                                      | 110,0                                        | 0.4                                   |
| Leg 110 dB / 1/3 Octave / 8000 Hz                                | 110,0                                      | 109,9                                        | 0,4                                   |
| Leg 110 dB / 1/3 Octave / 10000 Hz                               | 110,0                                      | 109,9                                        | 0,6                                   |

Brand of SCORM @ mun

### OPTION DMK 01 (2/3)

| Linéanié (avec DMK01)  | Valeur rominale<br>Nominal value | Valeur affichée<br>Displayed value | Incertitudes<br>Uncertainty |
|------------------------|----------------------------------|------------------------------------|-----------------------------|
| Linearity (with DMK01) | (dB)                             | (dB)                               | (dB)                        |
| Leg 35 dBZ / 8000 Hz   | 35.0                             | 35.0                               | 0,23                        |
| Leg 40 dBZ / 8000 Hz   | 40,0                             | 40,1                               | 0,23                        |
| Leg 50 dBZ / 8000 Hz   | 50,0                             | 50.0                               | 0,20                        |
| Leg 60 dBZ / 8000 Hz   | 60,0                             | 60,0                               | 0,20                        |
| Leq 70 dBZ / 8000 Hz   | 70.0                             | 70,0                               | 0,20                        |
| Leg 80 dBZ / 8000 Hz   | 80,0                             | 80.0                               | 0.20                        |
| Leq 90 dBZ / 8000 Hz   | 90,0                             | 90.0                               | 0.20                        |
| Leg 100 dBZ / 8000 Hz  | 100,0                            | 100.0                              | 0,20                        |
| Leg 110 dBZ / 8000 Hz  | 110.0                            | 109.9                              | 0,20                        |
| Leg 120 dBZ / 8000 Hz  | 120,0                            | 119,8                              | 0,20                        |
| Leg 130 dBZ / 8000 Hz  | 130,0                            | 129.8                              | 0.20                        |
| Leg 134 dBZ / 8000 Hz  | 134.0                            | 133,7                              | 0.20                        |
| Leg 134 dBA / 8000 Hz  | 134.0                            | 133,7                              | 0.20                        |
| Leg 130 dBA / 8000 Hz  | 130,0                            | 129.8                              | 0,20                        |
| Leg 120 dBA / 8000 Hz  | 120,0                            | 119,8                              | 0,20                        |
| Leg 110 dBA / 8000 Hz  | 110,0                            | 109,9                              | 0.20                        |
| Leg 100 dBA / 8000 Hz  | 100.0                            | 100.0                              | 0,20                        |
| Leg 90 dBA / 8000 Hz   | 90,0                             | 90.0                               | 0.20                        |
| Leg 80 dBA / 8000 Hz   | 80,0                             | 80,0                               | 0.20                        |
| Leg 70 dBA / 8000 Hz   | 70,0                             | 70,0                               | 0,20                        |
| Leq 60 dBA / 8000 Hz   | 60,0                             | 60,0                               | 0.20                        |
| Leg 50 dBA / 8000 Hz.  | 50.0                             | 50.0                               | 0.20                        |
| Leg 40 dBA / 8000 Hz   | 40,0                             | 40,0                               | 0.23                        |
| Leg 30 dBA / 8000 Hz   | 30,0                             | 30,2                               | 0,23                        |
| Leg 26 dBA / 8000 Hz   | 26.0                             | 26.2                               | 0.23                        |



#### OPTION DMK 01 (3/3)

|          |                   | uentielle (avec DMK01) |             |
|----------|-------------------|------------------------|-------------|
|          |                   | ighting (with DMK01)   |             |
| Z        | 0* RA0208 + Short | 90" RA208 + shod       | Incertitude |
| -        | windscreen        | windscreen             | uncertainty |
| 63 Hz    | -0,1              | 0,2                    | 0.45        |
| 126 Hz   | 0,0               | -0,1                   | 0.45        |
| 250 Hz   | 0,1               | 0.0                    | 0,29        |
| 500 Hz   | 0,0               | -0,1                   | 0.29        |
| 1000 Hz  | 0,0               | 0.0                    | 0.29        |
| 2000 Hz  | -0,1              | -0,1                   | 0.29        |
| 4000 Hz  | -0,2              | +0,3                   | 0,39        |
| 8000 Hz  | -1.4              | -0,7                   | 0,61        |
| 6000 Hz  | -7,9              | -6,3                   | 0,61        |
|          | 0° RA0208 + Short | 90" RA208 + short      | incertitude |
| A        | windscreen        | windscreen             | uncertainty |
| 63 Hz    | -26,4             | -26,4                  | 0,45        |
| 125 Hz   | -16.2             | -16,3                  | 0,45        |
| 250 Hz   | -8,6              | -8,7                   | 0,29        |
| 500 Hz   | -3,3              | -3,3                   | 0,29        |
| 1000 Hz  | 0.0               | 0.0                    | 0,29        |
| 2000 Hz  | 1,2               | 1,2                    | 0,29        |
| 4000 Hz  | 7,0               | 0,6                    | 0.39        |
| 8000 Hz  | -3,0              | -2,2                   | 0,61        |
| 16000 Hz | -19,9             | -18,3                  | 0,61        |
| W. T.    | 0" RA0208 + Short | 90° RA208 + short      | Incertitude |
| В        | windscreen        | windscreen             | uncertainty |
| 63 Hz    | -9,5              | -9,6                   | 0,45        |
| 125 Hz   | 4.2               | 4.3                    | 0,45        |
| 250 Hz   | -1,3              | -1,4                   | 0.29        |
| 500 Hz   | -0,3              | -0.4                   | 0,29        |
| 1000 Hz  | 0,0               | 0.0                    | 0.29        |
| 2000 Hz  | -0,2              | -0,2                   | 0.29        |
| 4000 Hz  | -1.0              | -1,1                   | 0,39        |
| 8000 Hz  | -4,8              | 4,1                    | 0,61        |
| 16000 Hz | -21,7             | -20,1                  | 0.61        |
| 181      | 0" RA0208 + Short | 90" RA208 + short      | Incertitude |
| C        | windscreen        | windscreen             | uncertainty |
| 63 Hz    | -0,9              | -1,0                   | 0,45        |
| 125 Hz   | -0,2              | -0,2                   | 0,45        |
| 250 Hz   | 0,1               | 0.0                    | 0,29        |
| 500 Hz   | 0,0               | -0,1                   | 0,29        |
| 1000 Hz  | 0,0               | 0,0                    | 0.29        |
| 2000 Hz  | -0.3              | 40,3                   | 0.29        |
| 4000 Hz  | -1,1              | -1,2                   | 0,39        |
| 8000 Hz  | -4.9              | -4.2                   | 0.61        |
| 16000 Hz | -21,8             | -20.2                  | 0.61        |

Fin du certificat d'étalonnage End of calibration certificate

# Chapitre 3.

### **CERTIFICAT DE CONFORMITE CONFORMITY CERTIFICATE**

#### CC-DTE-L-23-PVE-85447

Nous, fabricant We, manufacturer

Acoem

200, Chemin des Ormeaux

F 69578 LIMONEST Cedex- FRANCE

déclarons sous notre seule responsabilité que le produit suivant : declare under our own responsibility that the following equipment:

> Désignation : Designation:

Sonomètre Intégrateur Moyenneur

Integrating-Averaging Sound level meter

Référence :

Reference:

FUSION

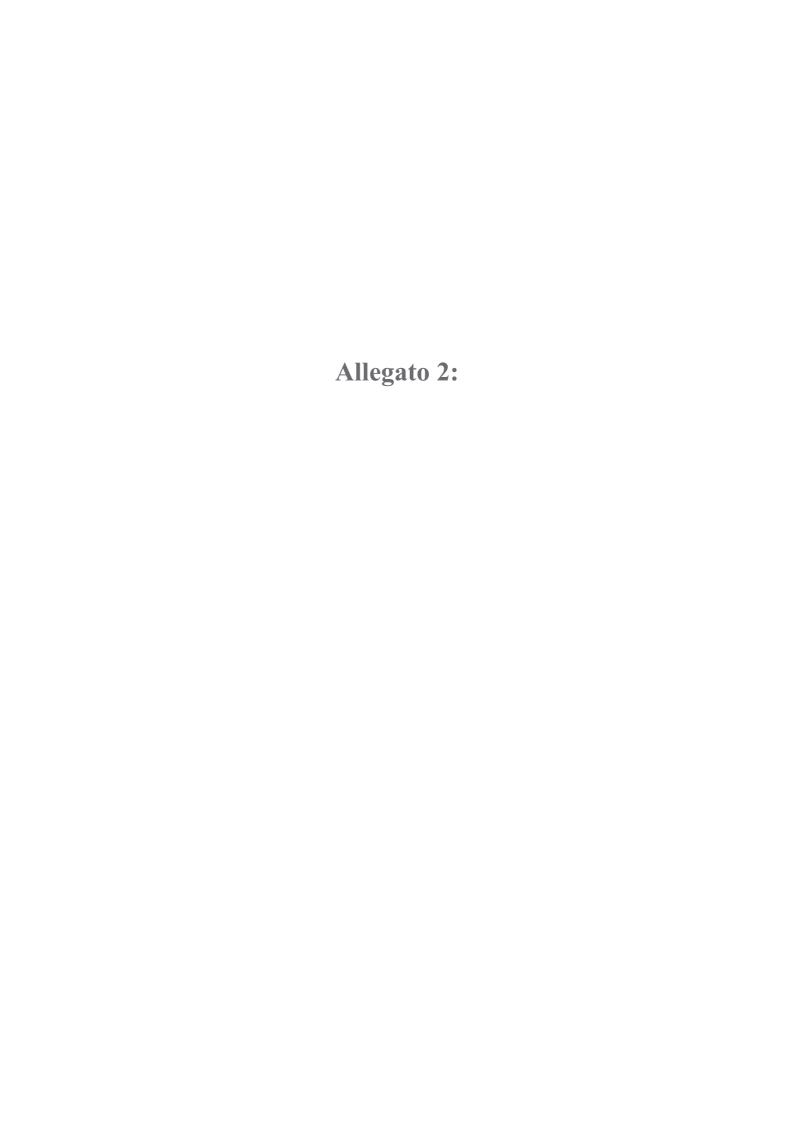
Numéro de série :

Serial Number:

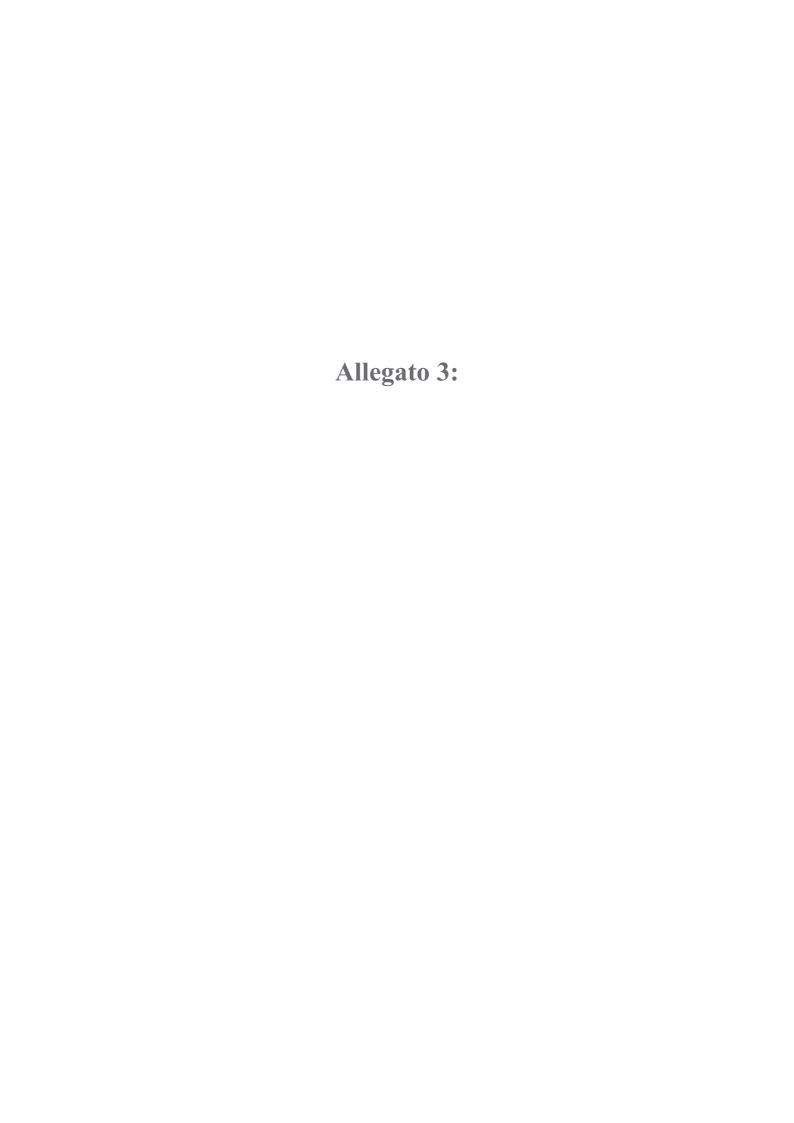
est conforme aux dispositions des normes suivantes : complies with the requirements of the following standards:

|                    | Norme       | Classe | Edition du   |
|--------------------|-------------|--------|--------------|
|                    | Standard    | Class  | Edition of   |
| Sonomètre :        | IEC 60651   | 1      | 10-2000      |
| Sound level meter: | IEC 60804   | 9      | 10-2000      |
|                    | IEC 61672-1 | 1      | 09-2013      |
|                    | IEC 61260   | 1      | 07-1995-2011 |
|                    | ANSI S1.11  | -      | 2004         |
|                    | ANIELETA    | 4      | 1002 1005    |

et répond en tout point, après vérification et essais, aux exigences spécifiées, aux normes et règlements applicables, sauf exceptions, réserves ou dérogations énumérées dans la présente déclaration de conformité.


After testing and verification, this device satisfies all specified requirements and applicable standards and regulations apart from exceptions, reservations, or exemptions listed in this conformance certificate.

Date


LE RESPONSABLE PRODUCTION MANUFACTURING MANAGER Francis FERASIN

Date

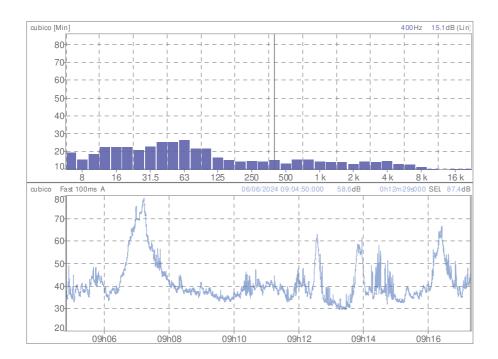
2614012022







Misure fonometriche Postazione 1


Allegato 3

File 20240606\_090450\_091719.cmg

Inizio 06/06/2024 09:04:50:000

Fine 06/06/2024 09:17:19:000

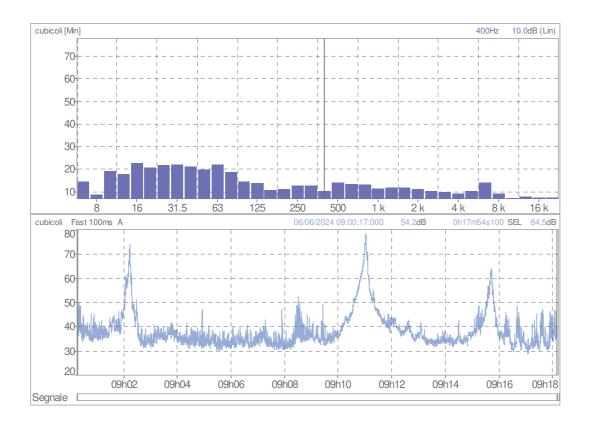
Canale Tipo Wgt Unit Leq Lmin Lmax cubico Fast A dB 58,6 29,3 79,1

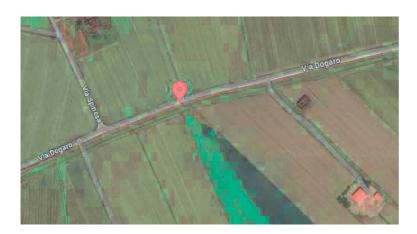




Misure fonometriche Postazione 2

Allegato 3


File 20240606\_090017\_091810.cmg


Inizio 06/06/2024 09:00:17:000

Fine 06/06/2024 09:18:11:100

Canale Tipo Ponderazione Unit Leq Lmin Lmax

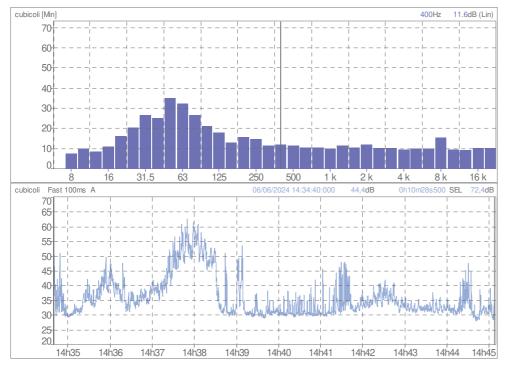
Cubicoli Fast A dB 54,2 28,6 78,3





Misure fonometriche Postazione 3

Allegato 3


File 20240606\_143440\_144508.cmg

Inizio 06/06/2024 14:34:40:000

Fine 06/06/2024 14:45:08:500

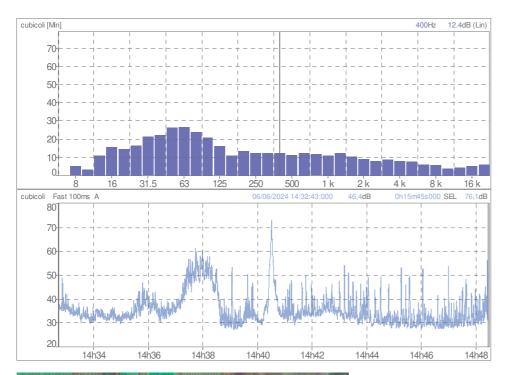
Canale Tipo Ponderazione Unit Leq Lmin Lmax

cubicoli Fast A dB 44,4 27,9 62,7





Misure fonometriche Postazione 4


Allegato 3


File 20240606\_143243\_144828.cmg

Inizio 06/06/2024 14:32:43:000

Fine 06/06/2024 14:48:28:000

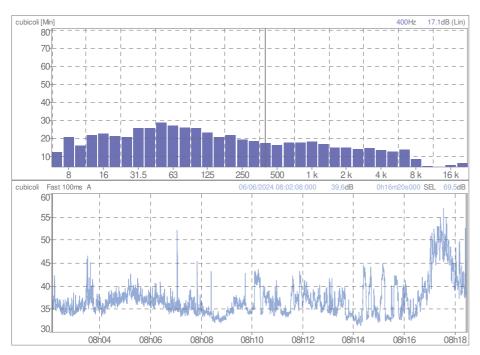
Canale Tipo Ponderazione Unit Leq Lmin Lmax cubicoli Fast A dB 46,4 27,0 72,8





Misure fonometriche Postazione 5

Allegato 3


File 20240606\_080208\_081828.cmg

Inizio 06/06/2024 08:02:08:000

Fine 06/06/2024 08:18:28:000

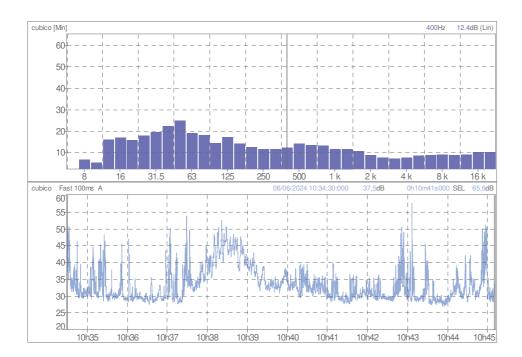
Canale Tipo Ponderazione Unit Leq Lmin Lmax

cubicoli Fast A dB 39,6 31,3 56,8





Misure fonometriche Postazione 6


Allegato 3

File 20240606\_103430\_104511.cmg

Inizio 06/06/2024 10:34:30:000

Fine 06/06/2024 10:45:11:000

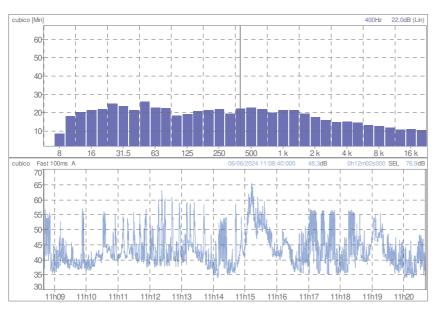
Canale Tipo Ponderazione Unit Leq Lmin Lmax cubico Fast A dB 37,5 26,9 57,6





Misure fonometriche

Allegato 3


Postazione 7

File 20240606\_110840\_112042.cmg

Inizio 06/06/2024 11:08:40:000

Fine 06/06/2024 11:20:42:000

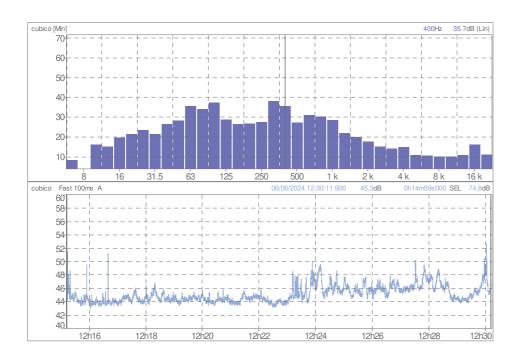
Canale Tipo Ponderazione Unit Leq Lmin Lmax
Cubico Fast A dB 48,3 33,8 65,5





Misure fonometriche Postazione 8

Allegato 3


FUSTazione o

File 20240606\_113656\_120001.cmg

Inizio 06/06/2024 11:36:56:000

Fine 06/06/2024 12:00:01:000

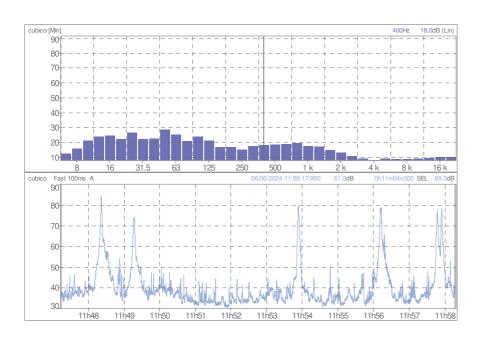
Canale Tipo Ponderazione Unit Leq Lmin Lmax Cubicoli Fast A dB 76,8 32,2 108,7





## Misure fonometriche Postazione 9

#### Allegato 3


File 20240606\_114714\_115818.cmg

Inizio 06/06/2024 11:47:14:000

Fine 06/06/2024 11:58:18:000

Canale Tipo Ponderazione Unit Leq Lmin Lmax

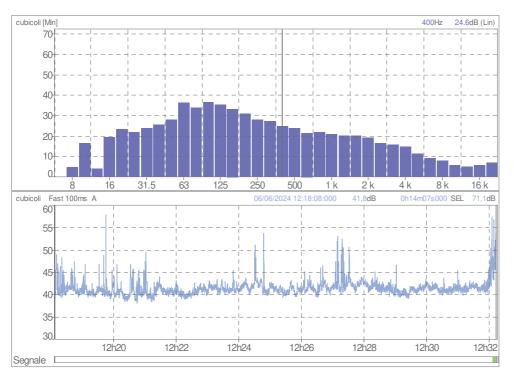
cubico Fast A dB 61,0 30,5 84,0





Misure fonometriche Postazione 10

Allegato 3


File 20240606\_121808\_123214.cmg

Inizio 06/06/2024 12:18:08:000

Fine 06/06/2024 12:32:15:000

Canale Tipo Ponderazione Unit Leq Lmin Lmax

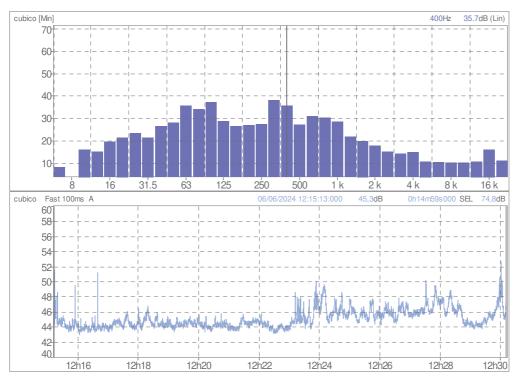
Cubicoli Fast A dB 41,8 37,9 57,9





Misure fonometriche Postazione 11

Allegato 3


File 20240606\_121513\_123012.cmg

Inizio 06/06/2024 12:15:13:000

Fine 06/06/2024 12:30:12:000

Canale Tipo Ponderazione Unit Leq Lmin Lmax

cubico Fast A dB 45,3 43,0 52,7



