

PROGETTO PER LA REALIZZAZIONE DI UNA CENTRALE EOLICA OFFSHORE DENOMINATA "SCICLI" E OPERE DI CONNESSIONE POTENZA NOMINALE: 750 MW

Procedura di Valutazione di Impatto Ambientale ex D.lgs.152/2006 Domanda di Autorizzazione Unica ex D.lgs. 387/ 2003 Domanda di Concessione Demaniale Marittima ex R.D. 327/1942

NINFEA RINNOVABILI S.r.I. Largo augusto n. 3 20122 - MILANO

20122 - MILANO P.IVA: 11920550966

N. TITOLO ELABORATO

RELAZIONE TECNICA STRUTTURALE STAZIONE ELETTRICA OFFSHORE DI TRASFORMAZIONE 66/220kV

DATA	REVISIONE	EMISSIONE	VERIFICATO	APPROVATO
LUGLIO 2024	00	TECNOCONSULT	NINFEA	NINFEA
			RINNOVABILI	RINNOVABILI

CODICE COMMESSA	SCICLI	CODICE ELABORATO	REL_51

INDICE DELLA RELAZIONE

1	INTI	RODUZIONE	10			
1.1	Brev	BREVE DESCRIZIONE DEL PROGETTO				
2	sco	SCOPO DEL DOCUMENTO				
3	DAT	I DI PROGETTO	13			
3.1	ΜΑΤ	ERIALI	13			
3.2	Maf	RINE GROWTH (CRESCITA MARINA)	13			
3.3	COE	FFICIENTI IDRODINAMICI	13			
3.4	Par	AMETRI GEOTECNICI	13			
3.4	4.1	Parametri geotecnici utilizzati per dimensionamento e verifica delle fondazioni temporanee	14			
3.4	4.2	Parametri geotecnici utilizzati per il pre-dimensionamento e la verifica dei pali di fondazione	15			
3.5	DAT	I DI VENTO	16			
3.6	DAT	I SISMICI	17			
3.6	5.1	Spettro sismico secondo NTC	17			
3.6	5.1.1	Spettro di risposta Elastico	20			
3.6	5.1.2	Spettro di risposta di Progetto	20			
3.6	6.2	Spettro sismico secondo ISO	23			
3.6	5.2.1	Spettro di risposta ALE	25			
3.6	5.2.2	Spettro di risposta ELE	26			
3.6	6.3	Spettri sismici impiegati	27			
3.6	5.3.1	Piattaforma	27			
4	CRIT	TERI DI PROGETTO	28			
5	ME	rodologia di calcolo	29			
5.1	Ριάτ	TAFORMA	29			
5.2	1.1	Modello SACS	29			
5.2	1.1.1	Generale	29			
5.2	5.1.1.2 Pali di fondazione		30			
5.1	1.1.3	Telaio strutturale di irrigidimento (Jacket)	30			

NINFEA RINNOVABILI

5	.1.1.4	Boat landing	
5	.1.1.5	J-tube e supporti	35
5	.1.1.6	Topside	
5	.1.1.7	Sistema di riferimento globale	43
5	.1.1.8	Condizioni al contorno	43
5	.1.1.9	Lunghezze effettive	44
5	.1.1.10	Pali di fondazione	44
5	.1.1.10.:	1 Pre-dimensionamento dei pali di fondazione	44
5	5.1.2	Carichi permanenti	
5	5.1.3	Carichi variabili	47
5	5.1.4	Carichi ambientali	47
5	.1.4.1	Proprietà dell'acqua di mare	47
5	.1.4.2	Crescita marina (marine growth)	47
5	.1.4.3	Coefficienti idrodinamici	47
5	.1.4.4	Carico da vento	47
5	.1.4.5	Carichi d'onda e corrente	48
5	5.1.5	Dati Sismici	
5	5.1.6	Combinazioni di carico	
5.2	Fon	IDAZIONI TEMPORANEE (MUDMAT)	50
5	5.2.1	Capacità portante verticale	
5	.2.2	Resistenza allo scorrimento	51
5	.2.3	Verifiche tramite dominio di resistenza	51
5	.2.4	Calcolo dei cedimenti	52
5	.2.4.1	Cedimenti immediati e cedimenti di consolidazione	52
5	.2.4.2	Cedimenti di consolidazione	52
5.3	BAT	titura Pali	53
6	RIS	ULTATI	55
6.1	Ριατ	TAFORMA	55
6	5.1.1	Analisi statiche	55
6	5.1.1.1	Stato Limite Ultimo (SLU)	

NINFEA RINNOVABILI

	6.1.1.1.1	Pali di fondazione emergenti dal terreno	56
	6.1.1.1.2	Telaio strutturale di irrigidimento (jacket)	57
	6.1.1.1.3	J-tube e supporti	61
	6.1.1.1.4	Topside	63
	6.1.1.1.5	Pali di fondazioni infissi nel terreno	66
	6.1.1.1.6	Verifiche geotecniche per le fondazioni temporanee (mudmats)	68
	6.1.2	Analisi modale	70
	6.1.2.1	Parametri dinamici	70
	6.1.2.2	Coefficienti di partecipazione	72
	6.1.3	Analisi sismica	74
	6.1.3.1.1	Pali di fondazione emergenti dal terreno	74
	6.1.3.1.2	Telaio strutturale di irrigidimento (jacket)	75
	6.1.3.1.3	J-tube e supporti	79
	6.1.3.1.4	Topside	81
	6.1.4	Verifica geotecnica dei pali di fondazione	
6.	2 ВАТТ	titura Pali	86
	6.2.1	Risultati della simulazione di battitura	
7	CON	ICLUSIONI	90
8	RIFE	ERIMENTI	92

INDICE DELLE FIGURE

-igura 1-1 – Layout di impianto	11
Figura 3.1 – Caratteristiche tecniche del macchinario usato per l'esecuzione della prova CPT	14
Figura 3.2 – Software "Spettri NTC"	18
Figura 3.3 - Periodi di ritorno associati agli stati limite	20
Figura 3.4 – Spettro elastico orizzontale per lo stato limite: SLC	20
Figura 3.5 – Spettro di progetto orizzontale per lo stato limite: SLC	22
Figura 3.6 – Spettro ALE orizzontale per 5 % damping	25
Figura 3.7 – Spettro ELE orizzontale per 5 % damping	26
Figura 3.8 – Confronto fra spettro di progetto NTC18 E spettro ELE ISO 19901	27

Figura 5.1 – Modello SACS STO globale (sinistra) e zona emergente (destra)	29
Figura 5.2 – Sistema di irrigidimento strutturale (Jacket)	30
Figura 5.3 – Piloni del Jacket	31
Figura 5.4 – Elementi di irrigidimento di piano	32
Figura 5.5 – Elementi di controventamento	33
Figura 5.6 – Elementi di controventamento	
Figura 5.7 – Elementi tubolari del supporto per j-tube	35
Figura 5.8 – Elementi tubolari j-tubes	36
Figura 5.9 – Modello del Top-side	37
Figura 5.10 – Elementi verticali (colonne)	38
Figura 5.11 - Elementi diagonali (controventi)	39
Figura 5.12 - Travi di piano (el. +15.6 m)	40
Figura 5.13 - Travi di piano (elevazione +23.6 m)	40
Figura 5.14 - Travi di piano (elevazione +31.6 m)	41
Figura 5.15 - Travi di piano (elevazione +39.6 m)	41
Figura 5.16 - Travi di piano (elevazione +47.6 m)	42
Figura 5.17 - Travi di piano (elevazione +52.6 m)	42
Figura 5.18 – Assi di riferimento globale	43
Figura 5.19 – Portata di 8 pali Diametro 2000mm, spessore 40mm, palo tappato	44
Figura 5.20 – Portata di 8 pali diametro 2000mm, spessore 40mm, palo cavo	45
Figura 5.21 - Dominio di resistenza in condizioni non drenate	51
Figura 5.22 – Modello della battitura del palo	53
Figura 6.1 – UC massimi pali emergenti dal terreno	56
Figura 6.2 – UC massimi nei piloni del jacket	57
Figura 6.3 – UC massimi elementi di irrigidimento orizzontali jacket	58
Figura 6.4 – UC massimi elementi di irrigidimento orizzontali jacket	59
Figura 6.5 – UC massimi elementi del boat landing	60
Figura 6.6 – UC massimi supporti j-tube	61

NINFEA RINNOVABILI

Figura 6.7 – UC massimi j-tube	62
Figura 6.8 - UC elementi verticali TopSide	63
Figura 6.9 - UC massimi elementi diagonali TopSide	64
Figura 6.10 – UC massimi elementi orizzontali TopSide	65
Figura 6.11 – Massimo spostamento laterale dei pali di fondazione	66
Figura 6.12 – Massimo spostamento assiale dei pali di fondazione	
Figura 6.13 – UC massimi dei pali di fondazione	67
Figura 6.14 - Dominio di resistenza mudmat 24m x 24m	68
Figura 6.15 – Evoluzione dei cedimenti nel tempo, 100 anni	69
Figura 6.16 – Evoluzione dei cedimenti nel tempo, 100 giorni	
Figura 6.17 – UC massimi pali emergenti dal terreno (SISM)	74
Figura 6.18 – UC massimi nei piloni del jacket (SISM)	75
Figura 6.19 – UC massimi elementi di irrigidimento orizzontali jacket	76
Figura 6.20 – UC massimi elementi di irrigidimento orizzontali jacket (SISM)	77
Figura 6.21 – UC massimi elementi del boat landing (SISM)	
Figura 6.22 – UC massimi supporti j-tube (SISM)	79
Figura 6.23 – UC massimi j-tube (SISM)	80
Figura 6.24 - UC elementi verticali TopSide (SISM)	81
Figura 6.25 - UC massimi elementi diagonali TopSide (SISM)	82
Figura 6.26 – UC massimi elementi orizzontali TopSide (SISM)	83
Figura 6.27 – Inviluppo UC pali di fondazione (SISM)	84
Figura 6.28 – Spostamento assiale pali di fondazione (SISM)	84
Figura 6.29 – Spostamento laterale pali di fondazione (SISM)	85
Figura 6.30 – Dati del martello e del palo	86
Figura 6.31 – Rappresentazione del suolo e del modello di calcolo	87
Figura 6.32 – Conteggio dei colpi ed energia di impatto	87
Figura 6.33 – Output calcoli di battitura	88

INDICE DELLE TABELLE

Tabella 3.1 – Caratteristiche meccaniche acciaio strutturale (EN 10025)	13
Tabella 3.2 – Caratteristiche meccaniche acciaio strutturale (EN 10025)	15
Tabella 3.3 – Dati velocità estrema del vento rappresentativa di 2 ore (m/s) – H _{ref} 10m	16
Tabella 3.4 – Dati velocità estrema del vento rappresentativa di 2 ore (m/s) – H _{ref} 80m	16
Tabella 3.5 – Dati velocità estrema del vento – 3 secondi (m/s), Href 80 m	16
Tabella 3.6 – Dati velocità estrema del vento – 10 minuti (m/s), H _{ref} 80 m	17
Tabella 3.7 – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato	18
Tabella 3.8 – Categorie topografiche	18
Tabella 3.9 – Valori minimi della Vita nominale V _N di progetto per i diversi tipi di costruzioni	19
Tabella 3.10 – Valori del coefficiente d'uso C _U	19
Tabella 3.11 – Probabilità di superamento P _{VR} in funzione dello stato limite considerato	19
Tabella 3.12 – Valori massimi del valore di base q ₀ (Tab. 7.3.II da NTC18)	21
Tabella 3.13 – Zona sismica del sito	23
Tabella 3.14 – Probabilità annua target di guasto, <i>P</i> _f	23
Tabella 3.15 – Categoria di rischio sismico, SRC	23
Tabella 3.16 – Categorie di sottosuolo	24
Tabella 3.17 – Valori di C _a e C _v per fondazioni su pali profondi	24
Tabella 3.18 – Fattore di scala per spettro ALE (N _{ALE})	25
Tabella 3.19 – Fattore di capacità di riserva sismica per il sistema strutturale C _r	26
Tabella 4.1 – Coefficienti di sicurezza per la resistenza delle membrature e la stabilità	28
Tabella 5.1 – Dimensioni sezioni pali	30
Tabella 5.2 – Dimensioni sezioni piloni del jacket	31
Tabella 5.3 – Dimensioni sezioni elementi di irrigidimento orizzontale	32
Tabella 5.4 – Dimensioni sezioni elementi di irrigidimento diagonale	33
Tabella 5.5 – Dimensioni sezioni elementi del boat landing	34
Tabella 5.6 – Dimensioni sezioni elementi tubolari del supporto per j-tube	35
Tabella 5.7 – Dimensioni sezioni elementi tubolari j-tubes	36
Tabella 5.8 – Dimensioni sezioni elementi tubolari j-tubes	38

Tabella 5.9 – Dimensioni sezioni elementi tubolari j-tubes	39
Tabella 5.10 – Dimensioni sezioni elementi HE (el. +15.6 m)	40
Tabella 5.11 – Dimensioni sezioni elementi HE (el. +23.6 m)	40
Tabella 5.12 – Dimensioni sezioni elementi HE (el. +31.6 m)	41
Tabella 5.13 – Dimensioni sezioni elementi HE (el. +39.6 m)	41
Tabella 5.14 – Dimensioni sezioni elementi HE (el. +47.6 m)	42
Tabella 5.15 – Dimensioni sezioni elementi HE (el. +52.6 m)	42
Tabella 5.16 – Valori di portata 8 pali diametro 2000mm, spessore 40mm, palo tappato e cavo	46
Tabella 5.17 – Pesi strutturali	46
Tabella 5.18 – Velocità del vento	48
Tabella 5.19 – Dati onda	48
Tabella 5.20 – Dati corrente	48
Tabella 5.21 – Combinazioni di Carico – Analisi statica	49
Tabella 5.22 — Combinazioni di Carico — Analisi Sismica	49
Tabella 6.1 – UC massimi pali emergenti dal terreno	56
Tabella 6.2 – UC massimi nei piloni del jacket	57
Tabella 6.3 – UC massimi elementi di irrigidimento orizzontale jacket	58
Tabella 6.4 – UC massimi elementi di irrigidimento diagonale jacket	59
Tabella 6.5 – UC massimi elementi del boat landing	60
Tabella 6.6 – UC massimi supporti j-tube	61
Tabella 6.7 – UC massimi j-tube	62
Tabella 6.8 – UC massimi j-tube	63
Tabella 6.9 – UC massimi elementi diagonali TopSide	64
Tabella 6.10 – UC massimi elementi orizzontali TopSide	65
Tabella 6.11 – Dimensioni e capacità portante di progetto mudmat	68
Tabella 6.12 – Cedimenti mudmat	69
Tabella 6.13 – Parametri dinamici della struttura	71
Tabella 6.14 - Coefficienti di partecipazione	73

Tabella 6.15 – UC massimi pali emergenti dal terreno (SISM)	. 74
Tabella 6.16 – UC massimi nei piloni del jacket (SISM)	. 75
Tabella 6.17 – UC massimi elementi di irrigidimento orizzontale jacket	. 76
Tabella 6.18 – UC massimi elementi di irrigidimento diagonale jacket (SISM)	. 77
Tabella 6.19 – UC massimi elementi del boat landing (SISM)	. 78
Tabella 6.20 – UC massimi supporti j-tube (SISM)	. 79
Tabella 6.21 – UC massimi j-tube (SISM)	. 80
Tabella 6.22 – UC massimi j-tube (SISM)	. 81
Tabella 6.23 – UC massimi elementi diagonali TopSide (SISM)	. 82
Tabella 6.24 – UC massimi elementi orizzontali TopSide (SISM)	. 83
Tabella 6.25 - UC massimi capacità assiale terreno argilloso	. 84
Tabella 7.1 – Palo di fondazione	. 90
Tabella 7.2 - Combined unity checks dei gruppi più sollecitati (Analisi statica)	. 90
Tabella 7.3 - Combined unity checks dei gruppi più sollecitati (Analisi sismica)	. 91

1 INTRODUZIONE

L'energia eolica è una delle fonti energetiche rinnovabili fondamentali per la transizione ecologica.

Nel 2023 in Europa, l'installazione di impianti eolici ha registrato un aumento significativo di +17 GW, un record storico, ma, nonostante questa evoluzione, la capacità eolica installata sembra essere ancora insufficiente per soddisfare gli obiettivi della Unione Europea al 2030.

Infatti, la Direttiva 2023/2413 di promozione dell'energia da fonti rinnovabili (c. d. RED III), pubblicata nella Gazzetta Ufficiale Europea del 31 ottobre 2023, ha aumentato dal 32 % al 42,5 % l'obiettivo dell'Unione relativo alla quota di energia da fonti rinnovabili nel consumo lordo di energia entro il 2030, con l'ambizione di raggiungere il 45 %.

In Italia, la potenza eolica installata annuale non segue l'andamento richiesto per raggiungere gli obiettivi 2030 e nel 2023 i nuovi impianti, secondo dati Terna-Gaudì, ammontano a circa 488 MW, in leggera diminuzione sul 2022 (-7%).

Con la sempre minore disponibilità di siti da destinare all'installazione di parchi eolici onshore, l'eolico offshore rappresenta una possibilità per incrementare le energie rinnovabili in Italia e raggiungere sia gli obiettivi energetici posti dalle istituzioni europee per il 2030 sia gli obiettivi intermedio al 2025 e quello del 2030 indicati dal nuovo PNIEC in via di approvazione.

L'Italia è contraddistinta da mari profondi e l'eolico galleggiante presenta le caratteristiche idonee per lo sviluppo di questa specifica tecnologia. Infatti, le strutture flottanti possono essere posizionate anche dove i fondali hanno notevoli profondità, rimanendo anche molto distanti dalla costa. Questo consente la riduzione dell'impatto visivo percepito dalla terraferma e consente lo sfruttamento di aree con disponibilità più elevata della risorsa vento.

1.1 Breve descrizione del progetto

In linea con gli indirizzi di politica energetica nazionale ed internazionale relativi alla promozione dell'utilizzo delle fonti rinnovabili volti alla riduzione delle emissioni di gas climalteranti, NINFEA RINNOVABILI S.r.l. si propone di avviare un progetto per la realizzazione di un nuovo impianto eolico offshore denominato "Scicli", di potenza pari a 750 MW, in uno specchio d'acqua nello Stretto di Sicilia a circa 27km dalla costa Siciliana tra Marina di Modica e Marina di Ragusa.

Il progetto prevede l'installazione offshore di:

- 50 aerogeneratori di potenza nominale di 15 MW cadauno, per una potenza nominale complessiva pari a 750 MW, localizzati ad una distanza minima di 27 km e massima di 40 km dalla costa Siciliana;
- 2 sottostazioni elettriche offshore su fondazione fissa (jacket) per l'innalzamento della tensione da 66 kV a 220 kV, ubicate ad una distanza minima di 33 km da costa;
- Cavi di campo (inter-array) per il collegamento delle turbine alle sottostazioni elettriche offshore;

• 4 cavidotti di export a 220 kV per il trasporto dell'energia dalle stazioni elettriche offshore al punto di giunzione a terra.

Il progetto prevede l'installazione onshore di:

- Buca giunti e gruppo di compensazione a terra;
- Cavidotto terrestre per il trasporto di energia dalla stazione di compensazione a terra alla stazione di trasformazione da 220kV a 380kV (stazione utente) ubicata nei pressi della futura Stazione Terna;
- Stazione di trasformazione da 220kV a 380kV (stazione utente);
- Cavidotto di collegamento a 380kV dalla stazione utente alla futura stazione Terna.

Per la connessione del Parco Eolico off-shore di Scicli sono previste delle opere di connessione che consistono in nuove opere della Rete di Trasmissione Nazionale (RTN), in particolare una nuova Stazione Elettrica (SE) a 380 kV da inserire in entra – esci alla esistente linea 380 kV della RTN "Chiaramonte Gulfi – Priolo. Per la nuova SE RTN è in fase di approvazione, da parte di Terna.

Lo schema di connessione alla RTN è individuato nella Soluzione Tecnica Minima Generale (STMG), con codice pratica 202203856, rilasciata da Terna S.p.A. allegata al preventivo di connessione.

Figura 1-1 – Layout di impianto

2 SCOPO DEL DOCUMENTO

Scopo del presente documento è la progettazione e verifica strutturale delle piattaforme che ospiteranno le Stazioni di Trasformazione Offshore (STO1 e STO2) relative al parco eolico offshore a largo del comune di Scicli (Sicilia). Nello specifico sono state effettuate analisi statiche e sismiche, nonché progettazione e verifica delle fondazioni.

Per le fondazioni è stata scelta la tecnologia del palo battuto, comunemente usata per le piattaforme offshore tradizionali del settore oil&gas. Oltre al dimensionamento e alla verifica dei pali di fondazione, è stata svolta una verifica di battitura allo scopo di individuare il martello più adeguato ad assicurare tempi di battitura e sollecitazioni sostenibili.

Per questa tipologia di opere è previsto l'utilizzo di fondazioni temporanee (mudmats), che hanno lo scopo di prevenire l'affondamento del jacket nel substrato, che generalmente è molto scadente per i primi metri, almeno fino all'infissione dei pali. A tale scopo è stato fatto un dimensionamento e una verifica di portanza e successivamente sono stati calcolati i cedimenti attesi, sia istantanei che di consolidazione, studiandone l'andamento nel corso del tempo.

Le analisi sono state svolte impiegando i parametri geotecnici attualmente disponibili e che coinvolgono solo i primi 3 metri di terreno e dovranno, pertanto, essere ripetute dopo l'esecuzione di indagini più approfondite.

3 DATI DI PROGETTO

3.1 Materiali

Le caratteristiche del materiale previsto per la realizzazione delle opere in oggetto sono riportate nella tabella Tabella *3.1*.

Denominazione	Tensione di snervamento minima f _{yk}			ma f _{yk}	Tensione di rottura f _{tk}		
	[MPa]					[MPa]	
	Spessore nominale [mm]				Spessore nominale [mm]		
	< 16	>16	>40	>63	>80	< 2	>3
	≥ 10	≤ 40	≤ 63	≤ 80	≤ 100	20	≤ 100
S 355	355	345	335	325	315	510 to 680	470 to 630

Tabella 3.1 – Caratte	eristiche meccaniche	e acciaio strutturale	(EN 10025)
-----------------------	----------------------	-----------------------	------------

3.2 Marine Growth (crescita marina)

Per tenere conto dell'accrescimento marino sul raggio del palo, è stato assunto un valore pari a 5cm a ridosso della superficie del mare in una fascia compresa fra -5m e +1m.

3.3 Coefficienti idrodinamici

I seguenti coefficienti idrodinamici sono stati considerati nel calcolo:

- C_D = 0.75 (coefficiente di trascinamento);
- C_M = 2.00 (coefficiente d'inerzia).

3.4 Parametri geotecnici

Allo stato attuale sono presenti solamente delle indagini superficiali. Sono state svolte delle prove CPT (Cone Penetration Test) limitatamente ai primi 3 metri di terreno al di sotto del fondale marino [rif. /A7/].

In particolare è stata valutata la prova CPT006, perché realizzata in una zona prossima a quella della piattaforma, con una quota batimetrica molto simile. Come riportato nella già citata relazione, la prova CPT006 è stata eseguita dalla nave "Urbano monti", equipaggiata con "Datem Neptune 3000 Miniature coiled rod CPT system", di cui si riportano le caratteristiche in Figura 3.1.

	Technical Sp	ecification	
Dimensions	1602mm(L) x 1602mm(W) x 1963mm(H), all ± 15mm	Tip Accuracy	Better than 100kPa
Weight in Air	1500kg approx.	Sleeve Accuracy	Better than 10kPa
Weight in Sea Water	1200kg approx.	Inclination Accuracy	Better than 1º
Thrust Capacity	1000kg (approx. 10kN, 2cm² 50MPa, 5cm² 20MPa)	Cone Data Rate	20 Hz
Max Penetration	10m	Cone Type	Detachable, Digital Subtraction
Depth Rating	3000m	Cone Sensors	Tip, Sleeve Friction & Inclination
Penetration Speed	2cm/sec ±10%	Optional Sensors	Piezo - Ranges to Suit
Retract Speed	5cm/sec approx.	Cone Tip Area	2cm ²
Power Requirement	240 Vac 1ph 50/60 Hz, 2 kw	Cone Sleeve Area	30cm ²
Umbilical Voltage	650v	Operating System	Microsoft Windows [™] XP, Vista and 7
Telemetry Link	FSK		
Frame Sensors	Altimeters & Tilt		
Frame Sensor Data Rate	1 Hz		

Figura 3.1 – Caratteristiche tecniche del macchinario usato per l'esecuzione della prova CPT

3.4.1 Parametri geotecnici utilizzati per dimensionamento e verifica delle fondazioni temporanee

Al fine di determinare i parametri geotecnici da utilizzare per dimensionare le fondazioni temporanee (mudmats), in questa fase sono state valutate le prove CPT precedentemente menzionate ipotizzando che il terreno al di sotto delle fondazioni sia omogeneo ed uguale allo strato noto per una profondità pari alla dimensione del lato della fondazione (24 m), ovvero per tutta la porzione di terreno che verosimilmente collabora nel generare i cedimenti. La C_u (coesione non drenata) è stata stimata in circa 15 kPa a partire dai dati relativi alla prova CPT006. Nel referto della della prova CPT è fornita anche la resistenza alla punta (q_c), che prima di essere utilizzata nei calcoli necessita di essere corretta in funzione del cono utilizzato per l'indagine. La q_c letta alla quota di 2 metri dal fondo del mare è stata, dunque, corretta tramite la seguente relazione:

$$q_t = q_c + \left(1 - \frac{A_n}{A_t}\right)u_2 = 140 + \left(1 - \frac{2}{30}\right)125 \, kPa = 256.67 \, kPa$$

Dove:

- A_n/A_t è il rapporto tra le aree del cono e dello sleeve utilizzati per eseguire la prova (vedi caratteristiche tecniche);
- qt è la resistenza alla punta corretta;
- q_c è la resistenza alla punta misurata;
- u₂ è la pressione interstiziale registrata durante la prova;

E' stato, poi, calcolato il modulo confinato (M), stimato come:

$$M = \alpha (q_t - \sigma_{\nu 0}) = 878.67 \, kPa$$

Con:

• α : coefficiente che per le argille assume valori compresi tra 3 e 8.5 (è stato usato il valore 4);

• σ_{v0} : pressione totale alla quota di 2 metri dal fondo del mare;

Il modulo elastico in condizioni non drenate è stato calcolato come:

$$E_u = K \cdot C_u = 200 * 14.64 \ kPa = 732.22 \ kPa$$

Essendo:

- K è un coefficiente che esprime il rapporto tra E_u e C_u ed assume mediamente valori compresi tra 100 e 1000. In questa fase è stato assunto cautelativamente il valore di 200.
- C_u è la resistenza a taglio del terreno in condizioni non drenate, conosciuta anche come "coesione non drenata".

Il modulo elastico E', che tiene conto della dissipazione delle sovrapressioni è stato stimato secondo quanto riportato nella norma (DNV-CN30.4.1992) al paragrafo 5.3.2.2:

$$E' = \frac{(1-2\nu)(1+\nu)}{(1-\nu)}M = 410.04 \, kPa$$

Con:

- ν =0.4 (Modulo di Poisson);
- M = Modulo confinato;

Non disponendo di alcuna prova edometrica, il coefficiente di consolidazione C_v è stato stimato con il valore di 5e-7 m²/s, che sovrastima ragionevolmente la velocità del cedimento nel tempo.

3.4.2 Parametri geotecnici utilizzati per il pre-dimensionamento e la verifica dei pali di fondazione

Non essendo ancora state effettuate le prove atte a restituire la corretta composizione del terreno è stata ipotizzata una stratigrafia allo scopo di portare avanti i calcoli per il dimensionamento dei pali di fondazione.

Strato	Cu [kPa]	γ [kN/m³]	Tipologia	Z _i [m]	Z _f [m]
1	15	18.5	Argilla lievemente OC	0	3
2	30	19.0	Argilla lievemente OC	3	15
3	100	19.5	Argilla lievemente OC	15	∞

Tabella 3.2 – Caratteristiche meccaniche acciaio strutturale (EN 10025)

N.B. i parametri sopra esposti saranno aggiornati una volta eseguite ed elaborate le prove penetrometriche prescritte.

3.5 Dati di vento

I dati da vento sono stati estratti dalla relazione meteomarina [Ref./A6/] e successivamente elaborati in accordo alle ISO 19901 per estrarre i valori delle raffiche a 3 secondi e 10 minuti.

Dir (°N)	1 YEAR	10 YEARS	50 YEARS	100 YEARS	500 YEARS
0-30	12.82	18.13	21.92	23.56	27.4
30-60	16.25	20.37	23.02	24.14	26.66
60-90	16.59	20.05	22.23	23.13	25.17
90-120	15.44	18.93	21.1	22	24.01
120-150	14.48	17.2	18.76	19.38	20.75
150-180	13.76	17.07	19.07	19.89	21.71
180-210	13.24	17.39	20.27	21.51	24.38
210-240	15.16	19.15	21.82	22.95	25.55
240-270	17.54	20.7	22.6	23.37	25.09
270-300	18.44	21.12	22.72	23.38	24.83
300-330	18.01	21.01	22.86	23.62	25.33
330-0	15.26	19.21	21.68	22.7	25
Omnidir.	19.89	22.83	24.78	25.6	27.47

Tabella 3.3 – Dati velocità estrema del vento rappresentativa di 2 ore (m/s) – H_{ref} 10m

Dir (°N)	1 YEAR	10 YEARS	50 YEARS	100 YEARS	500 YEARS
0-30	14.59	21.4	26.4	28.59	33.76
30-60	19.1	24.28	27.66	29.08	32.32
60-90	19.66	23.96	26.67	27.79	30.32
90-120	18.43	22.74	25.42	26.53	29
120-150	17.49	21.21	23.42	24.32	26.31
150-180	16.97	21.34	24	25.1	27.54
180-210	15.95	21.1	24.82	26.44	30.23
210-240	17.76	22.32	25.3	26.54	29.38
240-270	20.8	24.87	27.3	28.29	30.48
270-300	21.92	25.33	27.38	28.22	30.09
300-330	21.34	25.16	27.56	28.55	30.79
330-0	17.7	22.7	25.9	27.23	30.25
Omnidir.	23.79	27.64	30.23	31.32	33.84

Tabella 3.4 – Dati velocità estrema del vento rappresentativa di 2 ore (m/s) – H_{ref} 80m

Di seguito i valori della velocità estrema alla quota di 80 metri riferiti ad un periodo di 3 secondi:

Dir.	1	YEAR	10	YEAR	50	YEAR	10	0 YEAR
(°N)	lu(z)	Uw,T(z)	lu(z)	Uw,T(z)	lu(z)	Uw,T(z)	lu(z)	Uw,T(z)
0-30	0.098	19.1	0.115	29.3	0.128	37.2	0.134	40.8
30-60	0.109	25.8	0.123	33.8	0.131	39.3	0.135	41.6
60-90	0.111	26.6	0.122	33.3	0.129	37.6	0.132	39.5
90-120	0.108	24.8	0.119	31.4	0.126	35.6	0.128	37.4
120-150	0.105	23.4	0.115	29.0	0.120	32.4	0.123	33.8
150-180	0.104	22.6	0.115	29.2	0.122	33.3	0.125	35.1
180-210	0.101	21.1	0.114	28.8	0.124	34.6	0.128	37.3
210-240	0.106	23.8	0.118	30.7	0.125	35.4	0.128	37.4
240-270	0.114	28.3	0.124	34.7	0.130	38.7	0.133	40.3
270-300	0.117	30.1	0.125	35.5	0.131	38.8	0.133	40.2
300-330	0.115	29.2	0.125	35.2	0.131	39.1	0.134	40.7
330-0	0.106	23.7	0.119	31.3	0.127	36.4	0.130	38.5
Omnidir.	0.121	33.0	0.131	39.2	0.138	43.5	0.141	45.4

Tabella 3.5 – Dati velocità estrema del vento – 3 secondi (m/s), Href 80 m

Dir.	1	YEAR	10) YEAR	50) YEAR	10	0 YEAR
(°N)	lu(z)	Uw,T(z)	lu(z)	Uw,T(z)	lu(z)	Uw,T(z)	lu(z)	Uw,T(z)
0-30	0.098	16.0	0.115	23.9	0.128	29.8	0.134	32.5
30-60	0.109	21.2	0.123	27.3	0.131	31.4	0.135	33.1
60-90	0.111	21.9	0.122	26.9	0.129	30.2	0.132	31.5
90-120	0.108	20.4	0.119	25.5	0.126	28.7	0.128	30.0
120-150	0.105	19.4	0.115	23.7	0.120	26.3	0.123	27.4
150-180	0.104	18.8	0.115	23.8	0.122	27.0	0.125	28.3
180-210	0.101	17.6	0.114	23.6	0.124	28.0	0.128	29.9
210-240	0.106	19.7	0.118	25.0	0.125	28.5	0.128	30.0
240-270	0.114	23.2	0.124	28.0	0.130	30.9	0.133	32.1
270-300	0.117	24.5	0.125	28.6	0.131	31.0	0.133	32.0
300-330	0.115	23.8	0.125	28.4	0.131	31.2	0.134	32.4
330-0	0.106	19.6	0.119	25.4	0.127	29.2	0.130	30.8
Omnidir.	0.121	26.7	0.131	31.3	0.138	34.5	0.141	35.8

Di seguito i valori elaborati riferiti ad un periodo di 10 minuti.

Tabella 3.6 – Dati velocità estrema del vento – 10 minuti (m/s), H_{ref} 80 m

3.6 Dati sismici

Ai fini della progettazione delle piattaforme che ospitano le Stazioni di Trasformazione Offshore (STO1 e STO2) e delle relative fondazioni sono stati ricavati gli spettri sismici prendendo a riferimento due normative, ovvero le norme tecniche per le costruzioni [Rif./A5/] e le norme ISO (normativa specifica per la progettazione di piattaforme a mare) [Rif./A2/].

Lo spettro sismico utilizzato per la progettazione delle strutture è stato scelto valutando il più cautelativo fra le due normative analizzate.

Spettro sismico secondo NTC 3.6.1

Per la valutazione dell'accelerazione spettrale è necessario valutare i parametri sismici a partire dalla conoscenza della posizione del sito in cui l'opera verrà ubicata, dalla categoria di sottosuolo e dalla categoria topografica.

Di seguito vengono riportate le procedure per ricavare lo spettro di risposta sismica della piattaforma.

I parametri necessari alla valutazione dello spettro sismico sono di seguito riportati:

- ubicazione opera: zona di mare antistante la costa di Scicli.
- categoria di sottosuolo: C; .
- categoria topografica: T1;

La descrizione di tali categorie è illustrata qui nel seguito.

Categoria	Caratteristiche della superficie topografica
А	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri- stiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s
с	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi- stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego- rie C o D, con profondità del substrato non superiore a 30 m.

Tabella 3.7 – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15º
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^\circ \le i \le 30^\circ$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Tabella 3.8 – Categorie topografiche

Tali dati vengono inseriti nel programma "Spettri NTC" per l'elaborazione dell'azione sismica.

Figura 3.2 – Software "Spettri NTC"

Nella fase iniziale, tramite le coordinate in ED50, viene individuata la pericolosità del sito. Le azioni sismiche vengono successivamente calcolate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U :

$$V_r = C_u \times V_n$$

 C_u è pari a 1 per classe d'uso II, mentre V_n viene assunto invece pari a 50 anni.

	TIPI DI COSTRUZIONI	
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

Tabella 3.9 – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

CLASSE D'USO	I	П	Ш	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Tabella 3.10 – Valori del coefficiente d'uso C_U

Le probabilità di superamento nel periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono fissati dalla Normativa e indipendenti dal periodo di riferimento V_R . Nel caso in esame, come si osserva dalla seguente tabella, la probabilità di superamento nel periodo di riferimento SLC (stato limite di collasso) è del 5%.

Stati Limite	$\mathbf{P}_{\mathbf{V_R}}$: Probabilità di superamento nel periodo di riferimento $\mathbf{V_R}$					
Stati limite di esercizio	SLO	81%				
	SLD	63%				
Chati line ite sultine i	SLV	10%				
Stati limite ultimi	SLC	5%				

Tabella 3.11 – Probabilità di superamento P_{VR} in funzione dello stato limite considerato

E' possibile ottenere il periodo di ritorno del sisma dalla seguente relazione:

$$T_R = -\frac{V_R}{\ln(1 - P_{VR})}$$

Nella Figura 3.3 sono riportati i periodi ritorno del sisma associato ai vari stati limite.

Figura 3.3 - Periodi di ritorno associati agli stati limite

3.6.1.1 Spettro di risposta Elastico

lo spettro di risposta elastico è il seguente:

Figura 3.4 – Spettro elastico orizzontale per lo stato limite: SLC

3.6.1.2 Spettro di risposta di Progetto

Per la determinazione delle azioni sismiche in base alle quali valutare il rispetto degli stati limite ultimi al fine del progetto o della verifica di una struttura, il fattore di struttura(q) è un fattore di riduzione che permettere di ottenere gli spettri di progetto (riferiti ad un oscillatore elementare a comportamento anelastico) da quelli degli spettri di risposta elastici (riferiti ad un oscillatore elementare a comportamento elastico lineare).

Il fattore di struttura definisce quindi lo spettro di progetto a partire dallo spettro di risposta elastica (con l'eccezione del primo tratto ad andamento lineare, lo spettro di progetto è ottenuto da quello di risposta elastica mediante divisione per il fattore di struttura).

Per la valutazione del fattore di struttura occorre per prima cosa determinare la classe di duttilità. Nel caso la struttura abbia comportamento strutturale dissipativo, si distinguono due livelli di Capacità Dissipativa o Classi di Duttilità (CD):

- Classe di duttilità alta (CD"A");
- Classe di duttilità bassa (CD"B").

Nel caso in esame si è deciso di progettare la struttura in CD"B".

Il valore del fattore di struttura q da utilizzare per, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale. Esso può essere calcolato tramite la seguente espressione:

$$q = q_0 \times K_r$$

Dove q_0 è il valore massimo del fattore di struttura che dipende dal livello di duttilità attesa, dalla tipologia strutturale e dal rapporto α_u/α_1 tra il valore dell'azione sismica per il quale si verifica la formazione di un numero di cerniere plastiche tali da rendere la struttura labile e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione; mentre K_r rappresenta un fattore riduttivo che dipende dalle caratteristiche di regolarità in altezza della costruzione, con valore pari ad 1 per costruzioni regolari in altezza.

Il valore di q_0 assunto è pari a 4 come riportato nella tabella seguente:

	qo		
Tipologia strutturale	CD"A"	CD"B"	
Costruzioni d'acciaio (§ 7.5.2.2) e composte di acciaio-calc	estruzzo (§ 7.6.2.2)		
Strutture intelaiate	$50 \alpha / \alpha$	4.0	
Strutture con controventi eccentrici	5,0 0,0,01	4,0	
Strutture con controventi concentrici a diagonale tesa attiva	4,0	4,0	
Strutture con controventi concentrici a V	2,5	2,0	
Strutture a mensola o a pendolo inverso	2,0 α_u/α_1	2,0	
Strutture intelaiate con controventi concentrici	4,0 α_u/α_1	4,0	
Strutture intelaiate con tamponature in murature	2,0	2,0	

Tabella 3.12 – Valori massimi del valore di base q₀ (Tab. 7.3.II da NTC18)

La struttura è stata valutata come non regolare in altezza, quindi il fattore K_r è stato assunto pari a 0.8.

Il fattore di struttura è:

$$q = 4 \times 0.8 = 3.2$$

lo spettro di risposta di progetto è il seguente:

Figura 3.5 – Spettro di progetto orizzontale per lo stato limite: SLC

3.6.2 Spettro sismico secondo ISO

Lo spettro sismico è stato ricavato mediante la "Simplified seismic action procedure" secondo le norme ISO (ISO 19901-2 "Seismic design procedure and criteria", 2017)

Per la valutazione dell'accelerazione spettrale è necessario valutare i parametri sismici a partire dalla conoscenza della categoria di rischio sismico (SRC), dalla categoria di sottosuolo e dalla tipologia di fondazione.

La zona sismica del sito in questione è stata identificata usando le mappe sismiche generiche delle accelerazioni spettrali per le aree offshore del mondo che sono presentate nell'allegato B della normativa ISO. I parametri relativi all'area in questione sono i seguenti:

 $S_{a,map}(0.2 \text{ s}) = 0.25 \text{ g}$

 $S_{a,map}(1.0 s) = 0.10 g$

I valori di accelerazione sono espressi in g e corrispondono ad accelerazioni spettrali smorzate del 5% su affioramento roccioso, definite come classe di sito A/B. Queste accelerazioni hanno un periodo di ritorno medio di 1 000 anni. La zona sismica del sito è la 1 come riportato nella Tabella 3.13

$S_{a,map}(1,0)$	<0,03 g	0,03 <i>g</i> to 0,10 <i>g</i>	0,11 <i>g</i> to 0,25 <i>g</i>	0,26 <i>g</i> to 0,45 <i>g</i>	>0,45 g
Seismic zone	0	1	2	3	4

Tabella 3.13 – Zona sismica del sito

Il livello di esposizione della Piattaforma è L1, poiché tutte le strutture offshore presidiate devono essere classificate come tali per le azioni sismiche. Le probabilità annuale target di guasto associate al livello di esposizione L1 è riportato nella Tabella 3.14:

Exposure level	$P_{\rm f}$
L1	4 × 10 ⁻⁴ = 1/2 500
L2	1 × 10 ⁻³ = 1/1 000
L3	$2,5 \times 10^{-3} = 1/400$

Tabella 3.14 – Probabilità annua target di guasto, Pf

La categoria di rischio sismico della struttura è la SRC3, determinata in base al livello di esposizione e alla zona sismica del sito secondo la Tabella 3.15.

Site seismic zone	Exposure level			
	L1	L2	L3	
0	SRC 1	SRC 1	SRC 1	
1	SRC 3	SRC 2	SRC 2	
2	SRC 4	SRC 2	SRC 2	
3	SRC 4	SRC 3	SRC 2	
4	SRC 4	SRC 4	SRC 3	

Tabella 3.15 – Categoria di rischio sismico, SRC

I parametri necessari alla valutazione dello spettro sismico sono di seguito riportati:

- categoria di sottosuolo: D
- tipologia fondazione: pali profondi ($C_a = 1.0$; $C_v = 1.2$)

La descrizione di tali categorie è illustrata qui nel seguito.

		Average pr	Average properties in the effective seabed			
Site class	Soil profile name	Soil shear wave velocity V̄ _s m/s	Cohesionless: normalized cone penetration resistance \overline{q}_{cl}^{a}	Cohesive: soil undrained shear strength $ar{s}_u$ kPa		
A/B	Hard rock/rock, thickness of soft sediments <5 m	<i>V</i> _s > 750	Not applicable	Not applicable		
С	Very dense hard soil and soft rock	350 < V̄ _s ≤750	$\overline{q}_{cl} \ge 200$	$\bar{s}_{\rm u} \ge 200$		
D	Stiff to very stiff soil	$180 < \bar{V}_{\rm S} \le 350$	$80 \le \overline{q}_{cl} < 200$	$80 \le \overline{s}_u < 200$		
Е	Soft to firm soil	$120 < \bar{V}_{\rm S} \le 180$	$\overline{q}_{cl} < 80$	$\overline{s}_{\rm u} < 80$		
F		Any profile, including those otherwise classified as A to E, con ing soils having one or more of the following characteristics: $\overline{V}_s \leq 120$; soils vulnerable to potential failure or collapse under seismic actions such as liquefiable soils, highly sensitive clays, collaps: weakly cemented soils; ooze ^b with a thickness of more than 10 m; soil layers with high gas content or ambient excess pore press greater than 30 % of <i>in situ</i> effective overburden; layers greater than 2 m thick with sharp contrast in shear way velocity (greater than ±30 %) and/or undrained shear strengt		ied as A to E, contain- characteristics: se under seismic ive clays, collapsible xcess pore pressure den; rrast in shear wave hed shear strength		

Tabella 3.16 – Categorie di sottosuolo

Site class	Ca	Cv
A/B	1,0	0,8
С	1,0	1,0
D	1,0	1,2
Е	1,0	1,8
F	а	а

Tabella 3.17	– Valori di Ca e C	per fondazioni su	pali profondi
		v per ronauzioni su	pun protonui

3.6.2.1 Spettro di risposta ALE

Per ogni periodo dell'oscillatore, T, le accelerazioni spettrali orizzontali ALE sono ottenute dai corrispondenti valori dell'accelerazione spettrale del sito di 1000 anni moltiplicati per il fattore di scala (N_{ALE}) che dipende dal livello di esposizione della struttura (vedi Tabella *3.18*)

Exposure level	ALE scale factor N _{ALE}
L1	1,60
L2	1,15
L3	0,85

Tabella 3.18 - Fattore di scala per spettro ALE (N_{ALE})

lo spettro di risposta ALE è il seguente:

Figura 3.6 – Spettro ALE orizzontale per 5 % damping

3.6.2.2 Spettro di risposta ELE

Le accelerazioni spettrali orizzontali ELE al periodo dell'oscillatore, T, possono essere ottenute dividendo lo spettro ALE per il fattore di capacità di riserva sismica per il sistema strutturale C_r (vedi Tabella 3.19)

Characteristics of structure design	C _r
The recommendations for ductile design according to 11.4 are followed and a non-linear static pushover analysis according to 11.6.3 is performed to verify the global performance of the structure under ALE conditions.	2,80
The recommendations for ductile design according to 11.4 are followed, but a non-linear static pushover analysis to verify ALE performance is not performed.	2,00
The structure has a minimum of three legs and a bracing pattern consisting of leg-to-leg diagonals with horizontals, or X-braces without horizontals. The slenderness ratio (<i>K</i> · <i>L</i> / <i>r</i>) of primary bracing in vertical frames is limited to no more than 80 [with the corresponding column slenderness parameter λ not exceeding $80/\pi \times \sqrt{f_{yc}/E}$, see Clause 13] and $f_y D/E t \leq 0,069$. For X-bracing in vertical frames the same restrictions apply, where the length <i>L</i> to be used depends on the loading pattern of the X-bracing. A non-linear analysis to verify ALE performance is not performed.	1,40
If none of the above characterizations apply.	1,10

Tabella 3.19 – Fattore di capacità di riserva sismica per il sistema strutturale Cr

Io spettro di risposta ELE è il seguente:

Figura 3.7 – Spettro ELE orizzontale per 5 % damping

3.6.3 Spettri sismici impiegati

3.6.3.1 Piattaforma

Il grafico seguente mette a confronto lo spettro di progetto ricavato dalla NTC18 [Rif./A5/] con lo spettro ELE ricavato dalle normative ISO [Rif./A2/]

Figura 3.8 – Confronto fra spettro di progetto NTC18 E spettro ELE ISO 19901

Confrontando i due spettri è possibile concludere che per periodi superiori a 0.1 secondi ed inferiori a 4 secondi, lo spettro di risposta ELE (ISO) è sicuramente più conservativo. Dopo aver svolto l'analisi modale di cui al paragrafo 6.1.2 è possibile concludere che i periodi propri di vibrazione della struttura sono compresi in tale range e pertanto l'analisi sismica sarà condotta con lo spettro ELE calcolato secondo le ISO.

4 CRITERI DI PROGETTO

Il progetto della fondazioni delle STO è stato redatto in accordo alla normativa ISO (ISO 19901-4 Geotechnical and foundation design considerations). Il calcolo dei cedimenti è stato fatto seguendo la trattazione contenuta nelle norme DNV [Ref./A8/].

La verifica è condotta nel rispetto del metodo agli stati limite. La sicurezza strutturale nei confronti degli stati limite ultimi deve essere verificata confrontando la capacità di progetto R_d, in termini di resistenza, duttilità e/o spostamento della struttura o membratura strutturale, con il corrispondente valore di progetto della domanda E_d.

La verifica della sicurezza nei riguardi degli stati limite ultimi (SLU) è espressa dall'equazione formale:

 $R_d \geq E_d$

La resistenza di progetto delle membrature Rd si pone nella forma

$$R_d = \frac{R_k}{\gamma_M}$$

Dove:

 R_k è il valore caratteristico della resistenza della membratura;

 γ_M è il fattore parziale globale relativo al modello di resistenza adottato.

Resistenza delle Sezioni di Classe 1-2-3-4	$\gamma_{M0} = 1,05$
Resistenza all'instabilità delle membrature	$\gamma_{M1} = 1,05$
Resistenza all'instabilità delle membrature di ponti stradali e ferroviari	$\gamma_{M1} = 1,10$
Resistenza, nei riguardi della frattura, delle sezioni tese (indebolite dai fori)	γ _{M2} =1,25

Tabella 4.1 – Coefficienti di sicurezza per la resistenza delle membrature e la stabilità

5 METODOLOGIA DI CALCOLO

5.1 Piattaforma

5.1.1 Modello SACS

5.1.1.1 Generale

Le Piattaforme che ospiteranno la Stazioni di Trasformazione Offshore (STO1 e STO2) sono state modellate utilizzando il software di analisi strutturale agli elementi finiti "SACS versione 11.3" su un modello tridimensionale comprendente i pali di fondazione, il sistema di irrigidimento strutturale (jacket), la parte superiore della piattaforma (topside), il boat landing ed i J-tube (che ospiteranno i cavi elettrici).

In particolare, è stata modellata solo una delle due piattaforme (STO2), ovvero quella situata nel punto con la maggior profondità del fondale, che si trova nella zona più occidentale del sito. La piattaforma modellata ha un'altezza complessiva di 223.6 m dal fondale marino ed essendo ubicata in zona con livello medio mare pari a 170 m, l'altezza emergente della struttura è di 52.6 m (compreso helicopter-deck). La parte superiore della piattaforma (Top-Side) è posizionata a 15.6 m dal livello medio mare e presenta una lunghezza di 56 m, una larghezza di 25 m ed un'altezza di 32 m che diventano 37 se si considera anche il deck per l'atterraggio degli elicotteri. Tutti i dati del modello vengono assegnati utilizzando il sistema di unità SI. La Figura 5.1 mostra il modello FEM tridimensionale per l'analisi in sito.

L'altra piattaforma (STO1) è situata in una zona con profondità del fondale di circa 153 m ed è localizzata nella zona più ad est del sito. Il modello resta valido anche per la piattaforma della STO1 a patto di eliminare la zona di base (quella con i piloni rettilinei) e quindi posizionare gli sleeves e i mudmats più in alto.

Figura 5.1 – Modello SACS STO globale (sinistra) e zona emergente (destra)

Tutti i principali componenti strutturali sono stati rappresentati in SACS da elementi trave, che all'interno del software vengono chiamati "element", con proprietà di rigidezza assiale e flessionale corrispondenti alle geometrie di ciascun membro. Sono stati inseriti inoltre degli elementi *plate* per tener conto del peso degli orizzontamenti, nonché per poter applicare i carichi di piano sotto forma di pressione.

5.1.1.2 Pali di fondazione

La struttura sarà fondata su n. 8 pali in acciaio disposti in modo da avere due pali per ciascun pilone del jacket.

Le dimensioni delle sezioni tubolari dei pali sono riportate nella Tabella 5.1 qui sotto:

	DIMENSIONS			MATERIAL	
GROUP LABEL	OD	thk	SECTIONS	DENSITY	Color ID
	cm	cm	1116	t/m³	
PL1	200	4	TUB	7.849	-

Tabella 5.1	– Dimensioni sezioni	pali
1000110 011	Dimension Section	pun

La modellazione relativa alla sezione dei pali di fondazione sotto la linea del terreno è stata realizzata tramite il Modello PSI SACS. Il suolo è stato rappresentato con molle non lineari dal modulo PSI SACS per tenere conto dell'interazione struttura/suolo non lineare.

5.1.1.3 Telaio strutturale di irrigidimento (Jacket)

La vista isometrica del sistema di irrigidimento strutturale (Jacket) è mostrata in Figura 5.2

Figura 5.2 – Sistema di irrigidimento strutturale (Jacket)

Piloni del Jacket

Figura 5.3 – Piloni del Jacket

Le dimensioni delle sezioni tubolari delle piloni del jacket sono riportate nella Tabella 5.2:

	PORZIONE	LUNGHEZZA	DIMENSIONS			MATERIAL	
GROUP			OD	thk	SECTIONS TYPE	DENSITY	Color ID
LADEL		m	cm	cm		T/m ³	
	1	5.5		6	TUB	7.849	
LG1	2	5	250				
	3	5					
LG2	-	32.27	250	6	TUB	7.849	
LG3	-	30.25	250	5	TUB	7.849	
LG4	-	28.24	200	4	TUB	7.849	
LG5	-	26.22	200	4	TUB	7.849	
LG6	-	26.22	180	4	TUB	7.849	
LG7	-	22.19	180	4	TUB	7.849	
LG8	1	1.01	190	4	TUB	7.849	
	2	2.00	100				
TP1	-	5.04	200-250	4	CONE	7.849	
TP2	-	5.24	180-200	4	CONE	7.849	

Tabella 5.2 – Dimensioni sezioni piloni del jacket

Elementi di irrigidimento orizzontali jacket

Figura 5.4 – Elementi di irrigidimento di piano

Le dimensioni delle sezioni tubolari dell'irrigidimento del jacket sono riportate nella Tabella 5.3.

GROUP LABEL	DIMENSIONS			MATERIAL	
	OD	thk	SECTIONS	DENSITY	Color ID
	cm	cm	1112	T/m ³	
JKP	150	2.0	TUB	7.849	
CVH	90	3.5	TUB	7.849	
BAS	160	3	TUB	7.849	

Tabella 5.3 – Dimensioni sezioni elementi di irrigidimento orizzontale

Elementi di irrigidimento diagonali jacket

Figura 5.5 – Elementi di controventamento

Le dimensioni delle sezioni tubolari dell'irrigidimento del jacket sono riportate nella Tabella 5.4 qui sotto:

GROUP LABEL	DIMENSIONS		SECTIONS	MATERIAL	Calando
	UD	UNK	TYPF	DENSIT	Color ID
	cm	cm		T/m³	
CV	110	3	TUB	7.849	
CW	140	3	TUB	7.849	
CWW	150	3.5	TUB	7.849	

Tabella 5.4 – Dimensioni sezioni elementi di irrigidimento diagonale

5.1.1.4 Boat landing

Il boat landing è stato progettato in modo tale da consentire l'accesso alla struttura in tutte le possibili condizioni legate alle maree. In particolare, il deck è stato suddiviso in due livelli, uno posizionato ad una quota di 1.5 m sopra la HAT (+0.13 s.l.m., vedi rif. /A6/), quindi alla quota di 1.63 m s.l.m. e l'altro posizionato 1.5 m sotto la LAT (-0.14 m s.l.m., vedi rif./A6/), quindi alla quota di -1.64 m s.l.m.

Figura 5.6 – Elementi di controventamento

GROUP	DIMENSIONS			MATERIAL	
	OD	thk	SECTIONS	DENSITY	Color ID
	cm	cm	1112	T/m³	
BL1	100	3	TUB	7.849	
BL2	50	2.5	TUB	7.849	
BL3	35	2	TUB	7.849	
BL4	30	2	TUB	7.849	
BL5	60	2.5	TUB	7.849	
BLD	25	1.5	TUB	7.849	
BLH	20	1.5	TUB	7.849	
BLV	30	2	TUB	7.849	
BLW	40	3	TUB	7.849	

Le dimensioni delle sezioni tubolari del boat landing sono riportate nella Tabella 5.5 qui sotto:

Tabella 5.5 – Dimensioni sezioni elementi del boat landing

5.1.1.5 J-tube e supporti

Supporti J-Tube

Figura 5.7 – Elementi tubolari del supporto per j-tube

Le dimensioni delle sezioni tubolari dei supporti dei j-tube sono riportate nella Tabella 5.6 qui sotto:

GROUP LABEL	DIMEN	ISIONS		MATERIAL	Color ID
	OD	thk	SECTIONS	DENSITY	
	cm	cm		T/m³	
SJ	50.0	2.5	TUB	7.849	
RJ	65.0	3	TUB	7.849	

Tabella 5.6 – Dimensioni sezioni elementi tubolari del supporto per j-tube

<u>J-Tube</u>

Nella piattaforma saranno presenti:

- n.4 J-Tubes d'ingresso dal lato sud della piattaforma;
- n.3 J-Tubes d'ingresso dal lato nord della piattaforma;
- n.2 J-Tubes di uscita dal lato ovest della piattaforma;

Figura 5.8 – Elementi tubolari j-tubes

Le dimensioni delle sezioni tubolari dei j-tube sono riportate nella Tabella 5.7:

GROUP LABEL	DIMENSIONS		GEGTIONS	MATERIAL	
	OD	thk	SECTIONS	DENSITY	Color ID
	cm	cm	111 6	T/m³	
CON	65	2.5	TUB	7.849	
СОМ	75	2.5	TUB	7.849	
ТАР	65-130	1.6	TUB	7.849	

Tabella 5.7 – Dimensioni sezioni elementi tubolari j-tubes

5.1.1.6 Topside

Il Top-side, così come il Jacket, è una struttura reticolare costituita da aste di tipo tubolare (colonne e controventi) e ad H (travi di piano primo e second'ordine). Sono stati inseriti anche degli elementi bidimensionali allo scopo di tenere in conto, almeno in parte, del peso degli orizzontamenti, ma anche per poter inserire i carichi sulle strutture orizzontali sotto forma di pressione. Nella Figura 5.9 è mostrato il modello globale del top-side.

Figura 5.9 - Modello del Top-side

L'insieme di tutti i piani, compreso l'Helicopter-Deck, dà luogo ad una superficie di circa 5900 m², così suddivisi:

- Piano 0: 1400 m²;
- Piano 1: 1400 m²;
- Piano 2: 1400 m²;
- Piano 3: 250 m²;
- Piano 4: 1275 m²;
- Helicopter deck: 212.5 m²;

Si descrivono nello specifico tutte le aste in termini di proprietà geometriche e meccaniche dividendo le stesse in diversi gruppi, per semplicità di esposizione. In particolare si distinguono le aste verticali, quelle diagonali ed infine quelle orizzontali.

Elementi verticali (colonne)

Figura 5.10 – Elementi verticali (colonne)

	DIMENSIONS			MATERIAL	
GROUP	OD	thk	SECTIONS	DENSITY	Color ID
LADEL	cm	cm	1112	T/m³	
COL	80	1.5	TUB	7.849	
DLA	150	3	TUB	7.849	
DLB	150	3	TUB	7.849	
DLC	150	3	TUB	7.849	
DLD	150	3	TUB	7.849	
DLE	150	3	TUB	7.849	
CL1	60	2	TUB	7.849	
CL2	60	2	TUB	7.849	
CL3	60	2	TUB	7.849	
CL4	60	2	TUB	7.849	

Tabella 5.8 – Dimensioni sezioni elementi tubolari j-tubes

Elementi diagonali (controventi)

Figura 5.11 - Elementi diagonali (controventi)

GROUP	GROUP DIMENSIONS SECTIONS		MATERIAL		
LABEL	OD	thk		DENSITY	Color ID
LADEL	cm	cm		T/m³	
HCV	60	2	TUB	7.849	
TSC	90	2.5	TUB	7.849	
CV3	80	2	TUB	7.849	

Tabella 5.9 – Dimensioni sezioni elementi tubolari j-tubes

<u>Travi di piano (El +15.6 m) – Piano 0</u>

Figura 5.12 - Travi di piano (el. +15.6 m)

		DIMENSIONS					
GROUP	Width	Flange thk	Web thk	Height	SECTIONS	DENSITY	Color ID
LABEL	cm	cm	cm	cm		T/m ³	
P1	30	3.6	1.9	100	HEB1000	7.849	
P1S	30	3	2.7	60	HEB600	7.849	
P1T	60	4	3	120	HEB1200	7.849	

Tabella 5.10 – Dimensioni sezioni elementi HE (el. +15.6 m)

<u>Travi di piano (El +23.6 m) – Piano 1</u>

Figura 5.13 - Travi di piano (elevazione +23.6 m)

	DIMENSIONS					MATERIAL	
GROUP	Width	Flange thk	Web thk	Height	SECTIONS	DENSITY	Color ID
LABEL	cm	cm	cm	cm	1111	T/m ³	
P2	30	3.6	1.9	100	HEB1000	7.849	
P2S	30	3	2.7	60	HEB600	7.849	
P2T	60	4	3	120	HEB1200	7.849	

Tabella 5.11 – Dimensioni sezioni elementi HE (el. +23.6 m)

<u>Travi di piano (El +31.6 m) – Piano 2</u>

Figura 5.14 - Travi di piano (elevazione +31.6 m)

		DIMENSIONS			MATERIAL		
GROUP	Width	Flange thk	Web thk	Height	SECTIONS	DENSITY	Color ID
	cm	cm	cm	cm	1111	T/m ³	
P2	30	3.6	1.9	100	HEB1000	7.849	
P2S	30	3	2.7	60	HEB600	7.849	
P2T	60	4	3	120	HEB1200	7.849	

Tabella 5.12 – Dimensioni sezioni elementi HE (el. +31.6 m)

<u>Travi di piano (El +39.6 m) – Piano 3</u>

Figura 5.15 - Travi di piano (elevazione +39.6 m)

 ∇

		DIMENSIONS					
GROUP	Width	Flange thk	Web thk	Height	SECTIONS	DENSITY	Color ID
	cm	cm	cm	cm		T/m ³	
Р3	30	3.6	1.9	100	HEB1000	7.849	
P3S	30	3	2.7	60	HEB600	7.849	

Tabella 5.13 – Dimensioni sezioni elementi HE (el. +39.6 m)

<u>Travi di piano (El +47.6 m) – Piano 4</u>

Figura 5.16 - Travi di piano (elevazione +47.6 m)

		DIMENSION	DIMENSIONS			MATERIAL	
GROUP	Width	Flange thk	Web thk	Height	SECTIONS	DENSITY	Color ID
LADEL	cm	cm	cm	cm		T/m ³	
P4	30	3.6	1.9	100	HEB1000	7.849	
P4S	30	3	2.7	60	HEB600	7.849	
P4T	60	4	3	120	HEB1200	7.849	

Tabella 5.14 – Dimensioni sezioni elementi HE (el. +47.6 m)

Travi di piano (El +52.6 m) – Helicopter Deck

Figura 5.17 - Travi di piano (elevazione +52.6 m)

	DIMENSIONS			MATERIAL			
GROUP	Width	Flange thk	Web thk	Height	SECTIONS	DENSITY	Color ID
LADEL	cm	cm	cm	cm	1112	T/m ³	
P5	30	3.6	1.9	100	HEB1000	7.849	

Tabella 5.15 – Dimensioni sezioni elementi HE (el. +52.6 m)

5.1.1.7 Sistema di riferimento globale

Il sistema di assi globali del modello è definito come segue (vedi Figura 5.18):

- L'asse X è positivo dalla riga 1 alla riga 2
- L'asse Y è positivo dalla riga A alla riga B
- L'asse Z è verticale, positivo verso l'alto.

L'origine è al centro della struttura, all'elevazione del livello medio mare.

Figura 5.18 – Assi di riferimento globale

Il nord della piattaforma corrisponde al nord geografico.

5.1.1.8 Condizioni al contorno

Per i pali di fondazione, i nodi PILEHD coincidono con i giunti di sommità dei pali.

5.1.1.9 Lunghezze effettive

Le lunghezze effettive delle aste sono definite in accordo alla normativa API (API RP2A-WSD).

5.1.1.10 Pali di fondazione

5.1.1.10.1 Pre-dimensionamento dei pali di fondazione

L'interazione tra pali e suolo è stata analizzata utilizzando il modulo PSI ("Pile-Soil interaction") di SACS. I dati geotecnici utilizzati sono riportati al paragrafo 3.4.2. Al fine di trovare la lunghezza minima da assegnare ai pali nel modello, è stato svolto un pre-dimensionamento in cui si esamina la portanza ai carichi verticali in funzione del numero e della lunghezza dei pali. Il peso della struttura è riportato nel paragrafo 5.1.2 ed è di circa 132.53 MN considerando un coefficiente di contingenza pari a 1.2. I calcoli che seguono sono stati condotti considerando un fattore di correlazione pari a 1.7 e un fattore parziale di sicurezza per la portata a compressione di 1.15.

Nella Figura 5.19 è mostrata la portata relativa a n.8 pali di fondazione di diametro 2000 mm e spessore 40 mm, nell'ipotesi di palo tappato (plugged), ovvero di considerare utili ai fini della portata solamente l'area laterale esterna al palo e la base considerata piena.

Figura 5.19 – Portata di 8 pali Diametro 2000mm, spessore 40mm, palo tappato

Nella Figura 5.20 è mostrata la portata relativa a n.8 pali di fondazione del diametro di 2000 mm e spessore 40 mm, nell'ipotesi di palo cavo (hollow pile), ovvero in cui la portata dipende dalla superficie laterale interna ed esterna del palo e dall'area di base effettiva seppur esigua.

Figura 5.20 – Portata di 8 pali diametro 2000mm, spessore 40mm, palo cavo

Nella Tabella 5.16 sono riassunti i dati esposti nei due precedenti grafici. In particolare è possibile vedere come le portate del palo tappato, siano sempre inferiori alle portate del palo cavo.

Si può, dunque supporre che la portata reale della palificata sia compresa tra quella relativa alle due ipotesi di calcolo.

(8 pali)	Portata [MN]				
L [m]	Palo tappato	Palo cavo			
70.0 m	135.90	220.72			
72.5 m	142.32	232.08			
75.0 m	148.75	243.44			
77.5 m	155.18	254.81			
80.0 m	161.61	266.17			
82.5 m	168.03	277.54			
85.0 m	174.46	288.90			

Tabella 5.16 – Valori di portata 8 pali diametro 2000mm, spessore 40mm, palo tappato e cavo

Da questa analisi è possibile osservare che la lunghezza minima da assegnare ai pali per far fronte ai soli carichi permanenti è di 70 m. La modellazione, dunque, sarà effettuata con pali della lunghezza di <u>70 m</u>.

In virtù dei parametri geotecnici del terreno e del peso strutturale del singolo palo di fondazione, il valore della self-penetration è stato stimato in 3.05 m.

Per simulare il collegamento fra i pali fuori terra e le gamba del jacket (garantito dal calcestruzzo gettato nell'intercapedine fra la gamba del jacket e il palo) sono stati modellati dei collegamenti rigidi fittizi su più livelli (wishbone) che hanno il compito di trasferire le sollecitazioni dalla struttura alle fondazioni.

5.1.2 Carichi permanenti

Il peso dell'acciaio dei pali e della struttura in generale è stato generato direttamente dal modello SACS in base alla densità degli elementi modellati. Gli elementi modellati dei pali e jacket hanno una densità di 7.849 t/m³.

Per tenere conto delle incertezze di peso relative alla progettazione e alla fabbricazione delle strutture, nelle analisi è stato considerato un fattore di contingenza di peso (γ_{wgt}) di 1,20.

Nella Tabella 5.17 sono riportati i pesi strutturali.

Componenti Diattaforma		20% Contingenza
	Peso Nello (KN)	Peso Lordo (kN)
Jacket	19871.57	23845.88
Topside	90567.71	108681.25
Peso Piattaforma	110439	132527.13

Tabella 5.17 – Pesi strutturali

5.1.3 Carichi variabili

Oltre ai pesi statici della struttura, sono stati applicati dei carichi variabili di 5 kPa a tutte le superfici orizzontali del Top-Side. In aggiunta a questi e allo scopo di simulare il peso degli equipaggiamenti, sono stati aggiunti ulteriori 5 kPa a tutte le superfici orizzontali del Top-Side comprese tra le colonne principali escludendo, quindi, solamente le zone a sbalzo.

5.1.4 Carichi ambientali

I carichi ambientali utilizzati per i controlli strutturali della piattaforma si basano su periodi di ritorno di 10 anni (condizioni operative) e 100 anni (condizioni di tempesta estrema).

5.1.4.1 Proprietà dell'acqua di mare

Sono state considerate le seguenti proprietà dell'acqua di mare:

- Densità: 1030 kg/m³
- Conducibilità termica: 0,59 W/m-K
- Resistività: 0,21 ohm-m
- Salinità di progetto: circa 3,4%
- Viscosità cinematica: 1,03x10-6 m2/s (a 25°C)

5.1.4.2 Crescita marina (marine growth)

Al fine di tenere in considerazione l'effetto previsto della crescita marina sulla struttura durante la sua vita utile di progetto, si considera una crescita marina di 50 mm sulla sezione trasversale dei componenti immersi in acqua dall'elevazione 170.00 m a 5.00 m dal fondo del mare. La densità secca della crescita marina è di 1375 kg/m³. Nessuna crescita marina è stata applicata ai pali all'interno dei piloni del jacket.

5.1.4.3 Coefficienti idrodinamici

Al fine di tenere in considerazione l'effetto della crescita marina sull'azione idrodinamica che la struttura può sperimentare durante la sua vita utile di progetto, sono stati considerati i coefficienti idrodinamici riportati al paragrafo 3.3. Questa influenza deriva da un aumento del coefficiente di resistenza dovuto alla rugosità, all'aumento del diametro e all'aggiunta di densità che variano con la profondità e con il tempo per tutta la vita utile di progetto della struttura.

5.1.4.4 Carico da vento

I carichi del vento sono stati generati da SACS secondo le normative API [Rif./A1/] e applicati sia alle membrature principali, sia sulle aree da vento coincidenti con le facce laterali dell'elemento solido che simula il topside, come pressione esercitata sulle aree investite utilizzando opportuni coefficienti del fattore di forma. Per ogni velocità del vento considerata, i carichi sono definiti per 4 direzioni, ad intervalli di 90°. Il calcolo della forza del vento si basa su un tempo di raffica di 3 secondi a 80 m di altitudine sul livello del mare; i valori sono riportati nella Tabella *5.18* seguente per i diversi periodi di restituzione:

Tag	Descrizione	U _{wind} (m/s)
Uwind_10	Vento per condizioni operative con periodo di ritorno 10 anni	39.2
Uwind_100	Vento per condizioni di tempesta estrema con periodo di ritorno 100 anni	45.4

Tabella 5.18 – Velocità del vento

5.1.4.5 Carichi d'onda e corrente

I carichi d'onda e di corrente adottati sono valori omnidirezionali applicati sulle 4 direzioni principali, ad intervalli di 90°.

Le altezze e i periodi delle onde sono gli stessi per tutte le intestazioni delle onde (valori omnidirezionali). L'effetto Doppler della corrente sul periodo dell'onda viene calcolato automaticamente dal programma di calcolo SACS. I dati sono riassunti nelle seguenti tabelle:

Onde estreme (OMNI)						
100 ANNI						
Data Set	Hs (m) Tp(s) H _{max} (m)					
WD 7.48 11.4 14.48						

Tabella J.19 – Dati Uliua

Correnti (m/s) (OMNI)					
Data Set	100 ANNI				
Data Set	U_{sup}	$U_{bottom}^{(1)}$			
WD	0.6	0.15			

Tabella 5.20 – Dati corrente

5.1.5 Dati Sismici

L'azione sismica impiegata per la progettazione della piattaforma è quella ricavata secondo le normative ISO [Rif./A2/] come da paragrafo 3.6.3.

5.1.6 Combinazioni di carico

Di seguito sono riportate le combinazioni analizzate per l'analisi statica:

	Tag	Tag binazion Descrizione		n Descrizione		Qi	Qj	Carico	da Vento,	Corrente	e Onda
	i di carico	Descrizione	weight	Sostituibili	Non sostituibili	N	w	S	E		
	3ST	Solo carico gravitazionale	1.30	1.50	1.30	-	-	-	-		
	S	Massima gravità - Condizioni di tempesta estrema (vento, Corrente e Onda da S)	1.30	1.50	1.30	-	-	1.10	-		
SLU	E	Massima gravità - Condizioni di tempesta estrema (vento, Corrente e Onda da E)	1.30	1.50	1.30	-	-	-	1.50		
	N	Massima gravità - Condizioni di tempesta estrema (vento, Corrente e Onda da N)	1.30	1.50	1.30	1.50	-	-	-		
	W	Massima gravità - Condizioni di tempesta estrema (vento, Corrente e Onda da W)	1.30	1.50	1.30	-	1.50	-	-		
	E-S	Massima gravità - Condizioni S operative (vento, Corrente e Onda da S)		1.00	1.00	-	-	1.00	-		
Щ	E-E	Massima gravità - Condizioni operative (vento, Corrente e Onda da E)	1.00	1.00	1.00	-	-	-	1.00		
12	E-N	Massima gravità - Condizioni operative (vento, Corrente e Onda da N)	1.00	1.00	1.00	1.00	-	-	-		
	E-W	Massima gravità - Condizioni operative (vento, Corrente e Onda da W)	1.00	1.00	1.00	-	1.00	-	-		

Tabella 5.21 – Combinazioni di Carico – Analisi statica

Di seguito è riportata la combinazione analizzata per l'analisi sismica:

Tag Combinazion	Descrizione	Qi Azione Sismica						Cari	co da '	Vento, (Correr	nte e C	Onda	
i di carico			Tutti	N/S	E/W	z	Ν	NW	W	SW	S	SE	Ε	NE
SISM	Carico gravitazionale – Azione sismica	1.10	1.10	1.00	1.00	0.50	-	-	-	-	-	-	-	-

Tabella 5.22 – Combinazioni di Carico – Analisi Sismica

5.2 Fondazioni temporanee (mudmat)

5.2.1 Capacità portante verticale

La verifica della capacità portante ai carichi verticali e allo sliding è stata eseguita con riferimento alla normativa ISO 19901-4 "Geotechnical and foundation design considerations" [Rif./A3/]. Le prove penetrometriche svolte fino al momento attuale hanno indagato solo i primi 3 metri di terreno al di sotto del fondale. Al fine di calcolare la capacità portante delle fondazioni temporanee è stato ipotizzato che il terreno si mantenga omogeneo almeno fino alla quota di 24 metri sotto il fondale (strato di terreno che produce cedimenti).

Al fine di valutare i cedimenti immediati è stata utilizzata la procedura di calcolo della capacità portante ultima (Q_{lim}) in condizioni non drenate. In accordo alla norma già citata è possibile calcolare la Q_{lim} secondo la seguente espressione:

$$Q_{lim,d} = \left[F\left(N_c \cdot C_u + \frac{kB'}{4}\right) k_c + \sigma_{\nu 0}' \right] \frac{A'}{\gamma_M}$$

Dove:

- *F* è un fattore di correzione dipendente dal rapporto kB'/C_u;
- N_c è il fattore di capacità portante dovuto alla coesione pari a 2 + π = 5.14;
- C_u è la coesione non drenata
- K è il tasso di crescita con la quota della coesione non drenata, assunta cautelativamente pari a 0;
- *B'* è la dimensione minima efficace della fondazione pari al lato diminuito 2 volte l'eccentricità dei carichi generata dai momenti flettenti;
- A' è l'area efficace della fondazione;
- γ_m è il fattore parziale di sicurezza pari a 1.5.
- K_c è un coefficiente correttivo definito come segue:

$$\circ \quad k_c = 1 + s_c + d_c - i_c$$

• $s_c = 0.18(1 - 2i_c) \left(\frac{B'}{t'}\right)$ (coefficiente correttivo relativo alla forma della fondazione)

- \circ $d_c = 0.3 \arctan\left(\frac{D}{B'}\right)$ (coefficiente correttivo relativo all'approfondimento della fondazione)
- \circ $i_c = 0.5 0.5 \sqrt{1 \frac{H}{A \cdot C_u}}$ (coefficiente correttivo relativo all'inclinazione del carico)
- o D = 2m (approfondimento della fondazione o quota di infissione delle gonne)

5.2.2 Resistenza allo scorrimento

La resistenza allo scorrimento di progetto è stata valutata secondo la relazione riportata al paragrafo A.7.3, della normativa già citata, ovvero:

$$Q_{d,H} = \frac{C_u}{\gamma_M} A$$

Con γ_M uguale a 1.5.

5.2.3 Verifiche tramite dominio di resistenza

Per eseguire la verifica si segue la metodologia riportata in normativa ISO [Rif./A3/] al cap.7.3, che prevede la costruzione di un dominio di resistenza per tener conto della riduzione di capacità portante rispetto ai carichi verticali quando sono presenti anche carichi taglianti.

In tale dominio, si riporta il carico verticale dovuto ai permanenti e successivamente a partire da esso, si traccia un vettore (E_E) che ha per componenti le forze verticali e orizzontali (V_E ed H_E) relative ai carichi ambientali.

La capacità portante di progetto sarà, dunque, uguale al modulo del vettore $Q_{d,R}$ costruito come il prolungamento di E_E fino alla curva di inviluppo delle resistenze:

Figura 5.21 - Dominio di resistenza in condizioni non drenate

5.2.4 Calcolo dei cedimenti

5.2.4.1 Cedimenti immediati e cedimenti di consolidazione

Il calcolo dei cedimenti è stato svolto secondo le prescrizioni della norma DNV [Rif./A8/], ovvero tramite la seguente relazione:

$$\delta_{average} = 0.85 \; \frac{q \; B}{E} (1 - \nu^2)$$

Dove:

- q è la pressione applicata alla fondazione;
- B è pari al lato della fondazione;
- *v* è il modulo di Poisson = 0.4;
- E è il modulo elastico e vale E_u (modulo non drenato) *nel calcolo dei cedimenti immediati ed E' (modulo* di Young) nel calcolo dei cedimenti di lungo periodo. *I valori di Eu ed E' sono riportati nel paragrafo* 3.4.1;

5.2.4.2 Cedimenti di consolidazione

I cedimenti di consolidazione vengono stimati con la stessa relazione riportata al paragrafo precedente, dove l'unica differenza consiste nell'usare il modulo di Young del terreno (E') invece del modulo non drenato.

Per calcolare il procedere dei cedimenti di consolidazione nel tempo è possibile utilizzare la formula semiempirica di Sivaram and Swamee (1977) che lega il coefficiente di tempo non dimensionale T_i al grado di consolidazione U_m :

$$U_{m} = \frac{\left(4 \cdot \frac{T_{i}}{\pi}\right)^{0.5}}{\left[1 + \left(4 \cdot \frac{T_{i}}{\pi}\right)^{2.8}\right]^{0.179}}$$

Utilizzando l'approccio classico della teoria della consolidazione è possibile esprimere il coefficiente adimensionale di tempo come:

$$T_i = \frac{t_i \cdot C_V}{H^2}$$

Dove:

- ti è il tempo trascorso [sec];
- C_v è il coefficiente di consolidazione paragrafo 3.4.1;
- H è il massimo spessore di drenaggio, in questo caso uguale allo spessore dello strato coesivo;

Sostituendo l'espressione di T_i all'interno dell'espressione per il calcolo di U_m è possibile ricavare il grado di consolidazione in funzione del tempo. In fine, moltiplicando U_m per il cedimento di lungo periodo precedentemente calcolato è possibile esprimere quest'ultimo come funzione del tempo.

5.3 Battitura Pali

In questa sezione viene riportata la modalità di verifica relativamente alla "pile driveability" ovvero la possibilità di un palo, sotto determinate condizioni, di essere battuto o infisso su un terreno tramite dei martelli idraulici o vibroinfisso.

Il programma GRLWEAP simula il comportamento di un palo guidato da un martello a percussione o da un martello vibrante. Il programma si basa su modelli matematici, che descrivono il movimento e le forze del martello, il sistema di guida, il palo e il terreno sotto l'azione del martello. In determinate condizioni, i modelli approssimano solo in modo grossolano situazioni dinamiche, spesso complesse. La risposta del suolo e le prestazioni del martello devono essere verificate mediante prove e misurazioni statiche e/o dinamiche. Stime di flessione, sollecitazioni locali (ad es. contatto con casco o morsetto, superfici rocciose irregolari, ecc.), effetti di precompressione devono essere tenuti in considerazione dall'utente.

Un'analisi di equazioni d'onda si basa generalmente su dati di input, che rappresentano situazioni normali. In particolare, il file dati martello fornito con il programma presuppone che il martello sia in buone condizioni di funzionamento. Benché i dati di input selezionati sono state le migliori informazioni disponibili nel momento in cui l'analisi viene eseguita tuttavia, i dati di input e quindi i risultati possono differire in modo significativo dalle condizioni reali del campo.

L'analisi è stata eseguita in accordo al modello matematico di seguito schematizzato

Figura 5.22 – Modello della battitura del palo

Sulla base delle caratteristiche terreno selezionato, della dimensione del palo, dei pesi e della lunghezza di infissione necessaria, i passi da seguire sono:

- Selezione del martello o dei martelli: possono essere lanciate analisi con diversi martelli al fine di paragonare gli esiti dell'infissione, oppure può essere previsto un cambio di martello al raggiungimento di una determinata quota di infissione;
- Calcolo del tempo di battitura: è possibile vedere come questo cambi non solo in funzione del martello scelto, ma anche del blowrate designato;
- Verifica delle tensioni di battitura all'interno del palo: serve ad assicurarsi che il palo possa sopportare le sollecitazioni derivanti dalla battitura;

6 RISULTATI

I risultati sono espressi in termini di "unity check" (UC). Con questo criterio, il controllo viene eseguito confrontando le sollecitazioni effettive presenti nella struttura con le sollecitazioni massime ammissibili definite dalle norme di progettazione, che in questo caso sono le norme ISO.

Lo unity check è espresso come un rapporto tra la sollecitazione effettiva e la sollecitazione massima ammissibile. Tale formulazione può riferirsi ad esempio a sforzi di taglio (V_{xy} , V_{xz}), di flessione (My, Mz), di torsione (Tx) o assiali (tensione e compressione).

La verifica finale viene condotta in termini di "combined unity check" ovvero di un unico unity check che tiene conto del fatto che tutte le sollecitazioni considerate agiscono contemporaneamente sulla sezione. Tale valore è sempre più alto del maggiore tra gli unity check associati alle singole sollecitazioni. Dunque:

- Se UC ≤ 1.0: la sezione in esame soddisfa i criteri di progetto e le sollecitazioni sono entro i limiti ammissibili.
- Se UC > 1.0: la sezione in esame non soddisfa i criteri di progetto, indicando che le sollecitazioni effettive superano le sollecitazioni massime ammissibili. In questo caso, la struttura potrebbe necessitare di modifiche progettuali per ridurre le sollecitazioni o di rinforzi aggiuntivi per soddisfare le normative.

6.1 Piattaforma

6.1.1 Analisi statiche

Di seguito si riportano i massimi valori di Unity Check, per gli elementi analizzati.

6.1.1.1 Stato Limite Ultimo (SLU)

6.1.1.1.1 Pali di fondazione emergenti dal terreno

Il programma fornisce direttamente un combined unity check per la parte di pali che emerge dal terreno e che si adagia all'interno degli sleeves. La combinazione che provoca lo stress maggiore in questo gruppo strutturale è la combinazione "S", ovvero quella che contiene le azioni ambientali provenienti da sud e dirette verso nord della piattaforma; in tale combinazione di carico il combined unity check è pari a 0.28.

La Figura *6.1* mostra la distribuzione del combined UC per tutte le sezioni lungo lo sviluppo dei pali e la Tabella *6.1* riassume i dati appena esposti.

Figura 6.1 – UC massimi pali emergenti dal terreno

CRURRO		TERRENO ARGILLO	SO
GRUPPU	MEMBRO	COMBINAZIONE	COMBINED
	CRITICO	DI CARICO	UC
PL1	0094-010A	S	0.28

Tabella 6.1 – UC massimi pali emergenti dal terreno

6.1.1.1.2 Telaio strutturale di irrigidimento (jacket)

<u>Piloni del jacket</u>

Il massimo combined UC è 0.64 ed è raggiunto in uno degli elementi del gruppo TP1 nella combinazione di carico "S", ovvero quella in cui i carichi ambientali arrivano da sud e sono diretti verso nord. Il gruppo TP1 contiene elementi di forma conica che raccordano sezioni a diametro differente. I risultati in forma grafica degli U.C. sono riportati in Figura 6.2, dove gli elementi più sollecitati sono ben visibili, perché sono gli unici di colore giallo.

Figura 6.2 – UC massimi nei piloni del jacket

La Tabella 6.2 riassume i principali risultati dell'analisi in termini di Combined Unity Check (U.C.).

CDUDD		TERRENO ARGILLOS	0
GRUPP	MEMBRO	COMBINAZIONE DI	COMBINED
UID	CRITICO	CARICO	UC
LG1	0360-103L	S	0.45
LG2	103L-203L	S	0.46
LG3	203L-303L	S	0.44
LG4	0469-404L	S	0.51
LG5	503L-403L	S	0.48
LG6	0409-604L	S	0.41
LG7	0465-604L	E	0.34
LG8	803L-903L	S	0.42
TP1	304L-0469	S	0.64
TP2	504L-0409	S	0.42

Tabella 6.2 – UC massimi nei piloni del jacket

Elementi di irrigidimento orizzontale jacket

Il massimo valore di combined UC è di 0.71 ed è raggiunto da alcuni elementi del gruppo JKP, che contiene i traversi orizzontali del jacket. La combinazione in cui si verifica questo valore di UC è la "E", ovvero quella in cui le azioni ambientali arrivano da est e sono dirette verso ovest; i grafici delle U.C. sono riportati in Figura *6.3* e la Tabella *6.3* riassume i principali risultati dell'analisi in termini di Unity Check (U.C.).

Figura 6.3 – UC massimi elementi di irrigidimento orizzontali jacket

CDUDDO	TERRENO ARGILLOSO				
	MEMBRO	COMBINAZIONE DI	COMBINED		
10	CRITICO	CARICO	UC		
JKP	0173-0020	E	0.71		
CVH	0039-0025	Ν	0.16		
BAS	0361-0159	N	0.25		

Tabella 6.3 – UC massimi elementi di irrigidimento orizzontale jacket

Elementi di irrigidimento diagonale jacket

Gli elementi più sollecitati rientrano nel gruppo CW, di cui fanno parte alcuni dei controventi vicini alla base del jacket. Il massimo combined UC è pari a 0.78 e si verifica nella combinazione di carico "E", ovvero quella in cui le azioni ambientali arrivano da est e sono dirette verso ovest. I risultati in forma grafica relativi agli U.C. sono riportati in Figura *6.4*.

Figura 6.4 – UC massimi elementi di irrigidimento orizzontali jacket

La Tabella *6.4* riassume i principali risultati dell'analisi in termini di Unity Check (U.C.) per ciascuno gruppo di elementi facenti parte di questo insieme.

CRURRO	TERRENO ARGILLOSO				
ID	MEMBRO	COMBINAZIONE DI	COMBINED		
	CRITICO	CARICO	UC		
CV	304L-0017	Е	0.68		
CW	0021-104L	E	0.78		
CWW	203L-101L	Ν	0.33		

Tabella 6.4 – UC massimi elementi di irrigidimento diagonale jacket

59/92

Boat landing

Gli elementi più sollecitati rientrano nel gruppo BLH, di cui fanno parte alcuni dei controventi di piano del boat landing. Il massimo combined UC è pari a 0.39 e si verifica nella combinazione di carico "W", ovvero quella in cui le azioni ambientali arrivano da ovest e sono dirette verso est. I risultati in forma grafica relativi agli U.C. sono riportati in Figura *6.5*.

Figura 6.5 – UC massimi elementi del boat landing

La Tabella 6.5 riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.) per ciascun gruppo di elementi facenti parte della struttura del boat landing.

CRURRO		TERRENO ARGILLOSO	
GRUPPO	MEMBRO	COMBINAZIONE DI	COMBINED
	CRITICO	CARICO	UC
BL1	604L-0460	S	0.21
BL2	0475-0305	E	0.13
BL3	0466-0488	E	0.15
BL4	0529-0526	E	0.16
BL5	0456-0457	W	0.25
BLH	046A-0512	W	0.39
BLV	0509-0515	W	0.10
BLD	0521-0528	W	0.18
BLW	046°-0521	W	0.12

Tabella 6.5 – UC massimi elementi del boat landing

6.1.1.1.3 J-tube e supporti

Supporti J-tube

Gli elementi più sollecitati rientrano nel gruppo RJ, di cui fanno parte le aste che sostengono i J-tubes. Il massimo combined UC è pari a 0.94 e si verifica nella combinazione di carico "W", ovvero quella in cui le azioni ambientali arrivano da ovest e sono dirette verso est. I risultati in forma grafica relativi agli U.C. sono riportati in Figura 6.6.

Figura 6.6 – UC massimi supporti j-tube

La Tabella 6.6 riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.) per ciascun gruppo di elementi facenti parte di questo insieme.

0011000			
ID	MEMBRO CRITICO	COMBINAZIONE DI CARICO	COMBINED UC
SJ	845C-0233	E	0.81
RJ	0426-0412	W	0.94

<u>J-tube</u>

Gli elementi più sollecitati rientrano nel gruppo CON, di cui fanno parte i J-tubes usati per l'input dei cavi, ovvero quelli posti sui lati sud e nord della struttura. Il massimo combined UC è pari a 0.73 e si verifica nella combinazione di carico "N", ovvero quella in cui le azioni ambientali arrivano da nord e sono dirette verso sud. I risultati in forma grafica relativi agli U.C. sono riportati in Figura 6.7.

Figura 6.7 – UC massimi j-tube

La Tabella 6.7 riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.) per ciascun gruppo di elementi facenti parte di questo insieme.

CRUBBO		TERRENO ARGILLOSO				
ID	MEMBRO CRITICO	COMBINAZIONE DI CARICO	COMBINED UC			
CON	244C-344C	Ν	0.73			
COM	0261-0266	W	0.25			
ТАР	0.384-0.352	-	0.00			

Tabella 6.7 – UC massimi j-tube

6.1.1.1.4 Topside

Elementi verticali

Gli elementi più sollecitati rientrano nel gruppo DLA, di cui fanno parte le zone di base delle colonne principali del top-side. Il massimo combined UC è pari a 0.74 e si verifica nella combinazione di carico "N", ovvero quella in cui le azioni ambientali arrivano da nord e sono dirette verso sud. I risultati in forma grafica relativi agli U.C. sono riportati in Figura *6.8*.

Figura 6.8 - UC elementi verticali TopSide

La Tabella 6.11 riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.) per ciascun gruppo di elementi facenti parte di questo insieme.

GRUPPO ID	TERRENO ARGILLOSO				
	MEMBRO CRITICO	COMBINAZIONE DI CARICO	COMBINED UC		
CL1	0089-0088	E	0.32		
Cl2	0083-0082	E	0.53		
CL3	0076-0077	W	0.50		
CL4	0081-0080	W	0.40		
COL	0001-0004	E	0.38		
DLA	0674-0010	Ν	0.74		
DLB	0010-0040	Ν	0.32		
DLC	B03L-C03L	E	0.30		
DLD	0046-0047	S	0.22		
DLE	0047-0048	S	0.26		

Tabella 6.8 – UC massimi j-tube

Elementi diagonali

Gli elementi più sollecitati rientrano nel gruppo CV3, di cui fanno parte i controventi principali del top-side. Il massimo combined UC è pari a 0.68 e si verifica nella combinazione di carico "N", ovvero quella in cui le azioni ambientali arrivano da nord e sono dirette verso sud. I risultati in forma grafica relativi agli U.C. sono riportati in Figura *6.9*.

Figura 6.9 - UC massimi elementi diagonali TopSide

La Tabella 6.9 riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.) per ciascun gruppo di elementi facenti parte di questo insieme.

GRUPPO ID	TERRENO ARGILLOSO			
	MEMBRO CRITICO	COMBINAZIONE DI CARICO	COMBINED UC	
HCV	0677-0626	W	0.19	
TSC	0046-A03L	W	0.44	
CV3	0010-0082	Ν	0.68	

Tabella 6.9 – UC massimi elementi diagonali TopSide

Elementi orizzontali

Gli elementi più sollecitati rientrano nel gruppo POS, di cui fanno parte le travi secondarie del piano 0 del top side. Il massimo combined UC è pari a 0.79 e si verifica nella combinazione di carico "N", ovvero quella in cui le azioni ambientali arrivano da nord e sono dirette verso sud. I risultati in forma grafica relativi agli U.C. sono riportati in Figura *6.10*.

Figura 6.10 – UC massimi elementi orizzontali TopSide

La Tabella *6.10* riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.) per ciascun gruppo di elementi facenti parte di questo insieme.

GRUPPO ID	TERRENO ARGILLOSO				
	MEMBRO CRITICO	COMBINAZIONE DI CARICO	COMBINED UC		
PO	0539-0453	E	0.61		
POS	A01L-0424	Ν	0.79		
POT	0453-0010	Ν	0.74		
P1	B03L-0554	E	0.61		
P1S	0559-0572	W	0.34		
P1T	0547-0004	E	0.69		
P2	C03L-0595	E	0.57		
P2S	0618-0604	W	0.34		
P2T	0587-0076	W	0.38		
P3	0626-0064	W	0.40		
P3S	0626-0630	E	0.32		
P4	0637-E03L	W	0.65		
P4S	0663-0653	W	0.54		
P4T	0043-0645	W	0.37		
P5	0725-0724	E	0.16		

Tabella 6.10 – UC massimi elementi orizzontali TopSide

6.1.1.1.5 Pali di fondazioni infissi nel terreno

Sono stati previsti n.8 pali di fondazione, ciascuno della lunghezza di 70 m e disposti in blocchi da 2 per ciascun pilone del jacket. La stratigrafia del terreno e i relativi parametri meccanici sono riportati al paragrafo 3.4.2.

La Figura 6.11 riassume i principali risultati dell'analisi in termini di spostamento laterale dei pali di fondazione.

Figura 6.11 – Massimo spostamento laterale dei pali di fondazione

La Figura 6.11 riassume i principali risultati dell'analisi in termini di cedimento assiale dei pali di fondazione.

Figura 6.12 – Massimo spostamento assiale dei pali di fondazione

La Figura 6.11 riassume i principali risultati dell'analisi in termini di unity check.

Figura 6.13 – UC massimi dei pali di fondazione

6.1.1.1.6 Verifiche geotecniche per le fondazioni temporanee (mudmats)

Capacità portante per carichi verticali e orizzontali

Le quantità riportate nella Tabella 6.11 Tabella 6.16 – UC massimi nei piloni del jacket (SISM) sono state calcolate conformemente a quanto riportato nel paragrafo 5.2 del presente documento e supponendo di introdurre nella struttura 4 mudmats delle dimensioni di 24m x 24m, uno per ciascun pilone della piattaforma.

Dimensioni mudmat	24 x 24	m²
Capacità portante verticale	44089.05	kN
Capacità portante orizzontale	5623.47	kN

Tabella 6.11 – Dimensioni e capacità portante di progetto mudmat

Dominio di resistenza

In figura Figura 6.14 è riportato il dominio di resistenza del terreno in termini di interazione tra resistenza ai carichi verticale (capacità portante) e resistenza alle forze trasversali (capacità allo sliding).

Figura 6.14 - Dominio di resistenza mudmat 24m x 24m

Calcolo dei cedimenti

I cedimenti sono stati calcolati secondo quanto discusso nel capitolo <u>5.2.4</u> del presente documento e ottenendo le reazioni vincolari presenti alla base di ciascun pilone da un modello che prevede la presenza del solo jacket.

Cedimenti immediati	0.29	m
Cedimenti di consolidazione	2.03	m

Tabella 6.12 – Cedimenti mudmat

La Figura *6.15* mostra l'evoluzione dei cedimenti in un arco temporale di 100 anni. Come è possibile osservare il cedimento di consolidazione inizia ad assestarsi intorno ai 70 dopo l'applicazione del carico, mentre a 100 anni si raggiunge il plateau con un cedimento totale di 2.03 m. Verosimilmente i pali saranno infissi dopo un periodo che va da qualche giorno a qualche settimana rispetto alla posa in opera del jacket, per cui solamente una quota parte di tali cedimenti potrà avere effettivamente luogo.

Figura 6.15 – Evoluzione dei cedimenti nel tempo, 100 anni

Nella figura Figura 6.16 è mostrata l'evoluzione dei cedimenti in un arco temporale più breve (100 giorni). Il massimo valore dei cedimenti raggiunti durante questo periodo (0.46 m) può essere utilizzato come stima dei cedimenti massimi raggiungibili prima dell'installazione dei pali.

Figura 6.16 – Evoluzione dei cedimenti nel tempo, 100 giorni

6.1.2 Analisi modale

L'analisi modale della struttura ha evidenziato i parametri dinamici riportati in Tabella 6.13.

6.1.2.1 Parametri dinamici

In questa analisi sono stati considerati i primi 50 modi di vibrare della struttura.

MODE	FREQ.(CPS)	GEN. MASS	EIGENVALUE	PERIOD(SECS)	
1	0.433741	6.16E+03	1.35E-01	2.3055212	
2	0.436211	5.58E+03	1.33E-01	2.2924699	
3	0.604883	2.43E+03	2.43E+03 6.92E-02		
4	0.808253	1.85E+04	3.88E-02	1.2372356	
5	0.855132	2.75E+03	3.46E-02	1.1694101	
6	0.930129	6.20E+03	2.93E-02	1.0751202	
7	0.943085	3.15E+03	2.85E-02	1.0603502	
8	0.957789	5.68E+03 2.76E		1.0440708	
9	1.06347	1.18E+02	2.24E-02	0.9403182	
10	1.165749	1.22E+03	1.86E-02	0.8578178	
11	1.319692	1.06E+02	1.45E-02	0.7577525	
12	1.393084	1.90E+03	1.31E-02	0.7178317	
13 1.507798		4.91E+03	1.11E-02	0.6632186	
14	14 1.616997 1.93		9.69E-03	0.6184304	
15 1.641626 2		2.69E+02	9.40E-03	0.6091522	
16 1.740777 1.93E		1.93E+03	8.36E-03	0.5744561	

17	1.789868 4.14E+03		7.91E-03 0.558700		
18	1.802488	1.26E+03	7.80E-03	0.5547888	
19	1.820973	1.17E+03	7.64E-03	0.5491571	
20	2.090653	9.59E+01	5.80E-03	0.4783194	
21	2.328351	7.49E+03	4.67E-03	0.4294886	
22	2.455525	7.74E+03	4.20E-03	0.4072448	
23	2.483319	9.01E+03	4.11E-03	0.4026869	
24	2.540877	8.42E+03	3.92E-03	0.3935648	
25	2.568425	6.19E+02	3.84E-03	0.3893436	
26	2.667127	5.91E+03	3.56E-03	0.3749353	
27	2.76456	8.45E+03	3.31E-03	0.3617212	
28	3.005774	9.40E+03	2.80E-03	0.3326931	
29	3.286027	7.74E+03	2.35E-03	0.3043189	
30	3.3121	6.76E+03	2.31E-03	0.3019233	
31	3.345721	9.67E+02	2.26E-03	0.2988892	
32	3.379109	8.53E+02	2.22E-03	0.295936	
33	3.558029	7.92E+01	2.00E-03	0.2810545	
34	3.902139	2.24E+03	1.66E-03	0.2562697	
35	3.907543	1.95E+03	1.66E-03	0.2559153	
36	3.996436	8.25E+02	1.59E-03	0.250223	
37	4.05806	1.27E+03	1.54E-03	0.2464231	
38	4.131815	9.80E+02	1.48E-03	0.2420244	
39	4.143303	4.32E+03	1.48E-03	0.2413533	
40	4.281318	3.58E+03	1.38E-03	0.2335729	
41	4.425638	1.48E+03	1.29E-03	0.2259561	
42	4.611972	4.33E+02	1.19E-03	0.216827	
43	4.677973	4.84E+03	1.16E-03	0.2137678	
44	4.737655	1.48E+03	1.13E-03	0.2110749	
45	4.833477	5.75E+03	1.08E-03	0.2068904	
46	4.879275	8.44E+03	1.06E-03	0.2049485	
47	4.930676	4.44E+03	1.04E-03	0.202812	
48	5.007577	3.97E+03	1.01E-03	0.1996974	
49	5.105665	1.44E+03	9.72E-04	0.1958609	
50	5.228041	2.72E+03	9.27E-04	0.1912762	

Tabella 6.13 – Parametri dinamici della struttura

In particolare, i periodi dei modi studiati sono compresi nel range che va da 0.19 a 2.31 secondi. Questo dato conferma quanto asserito nel paragrafo 3.6.3, ovvero che lo spettro di risposta più gravoso è quello calcolato secondo le norme ISO.

6.1.2.2 Coefficienti di partecipazione

Nella Tabella *6.14* sono riportati i coefficienti di partecipazione associati ai vari modi, nonché i coefficienti cumulati in cui è possibile vedere che il movimento dei modi considerati coinvolge quasi il 100% della massa in X e in Y e il 92,3% della massa in Z.

MODE	Х	Y	Z	X (cumulativa)	Y (cumulativa)	Z (cumulativa)
1	0.687	0.017	0.000	0.687	0.017	0.000
2	0.017	0.671	0.000	0.704	0.688	0.000
3	0.000	0.000	0.001	0.705	0.688	0.001
4	0.000	0.001	0.000	0.705	0.689	0.001
5	0.000	0.000	0.000	0.705	0.689	0.001
6	0.217	0.000	0.000	0.922	0.689	0.001
7	0.009	0.001	0.000	0.930	0.689	0.001
8	0.000	0.251	0.000	0.931	0.940	0.001
9	0.000	0.000	0.020	0.931	0.940	0.021
10	0.000	0.000	0.000	0.931	0.940	0.021
11	0.000	0.000	0.030	0.931	0.940	0.051
12	0.000	0.000	0.000	0.931	0.940	0.051
13	0.000	0.002	0.000	0.931	0.942	0.051
14	0.000	0.000	0.144	0.931	0.942	0.195
15	0.000	0.000	0.028	0.931	0.942	0.223
16	0.018	0.000	0.035	0.949	0.942	0.258
17	0.000	0.013	0.091	0.949	0.955	0.349
18	0.001	0.003	0.326	0.950	0.958	0.675
19	0.000	0.000	0.088	0.950	0.958	0.763
20	0.000	0.000	0.017	0.950	0.958	0.779
21	0.000	0.000	0.000	0.950	0.958	0.779
22	0.000	0.000	0.000	0.951	0.958	0.780
23	0.015	0.000	0.009	0.966	0.958	0.788
24	0.000	0.005	0.000	0.966	0.963	0.788
25	0.005	0.000	0.099	0.971	0.963	0.888
26	0.018	0.000	0.008	0.988	0.963	0.896
27	0.000	0.015	0.000	0.988	0.978	0.896
28	0.000	0.000	0.000	0.988	0.978	0.896
29	0.004	0.000	0.000	0.992	0.978	0.896
30	0.002	0.000	0.000	0.994	0.978	0.896
31	0.000	0.002	0.000	0.994	0.980	0.896
32	0.000	0.004	0.000	0.994	0.984	0.896
33	0.000	0.000	0.010	0.994	0.984	0.907
34	0.000	0.000	0.002	0.994	0.984	0.909
35	0.000	0.000	0.003	0.994	0.984	0.912
36	0.000	0.002	0.000	0.995	0.986	0.912
37	0.000	0.003	0.002	0.995	0.988	0.914
38	0.000	0.000	0.004	0.995	0.989	0.918
39	0.000	0.000	0.000	0.995	0.989	0.919
----	-------	-------	-------	-------	-------	-------
40	0.000	0.000	0.000	0.995	0.989	0.919
41	0.000	0.000	0.001	0.995	0.989	0.919
42	0.000	0.000	0.000	0.995	0.989	0.919
43	0.000	0.000	0.000	0.996	0.990	0.919
44	0.002	0.000	0.000	0.997	0.990	0.920
45	0.000	0.006	0.000	0.997	0.996	0.920
46	0.000	0.002	0.001	0.997	0.998	0.920
47	0.000	0.000	0.003	0.997	0.998	0.923
48	0.000	0.001	0.000	0.997	0.999	0.923
49	0.000	0.001	0.000	0.997	1.000	0.923
50	0.000	0.000	0.000	0.998	1.000	0.923

Tabella 6.14 - Coefficienti di partecipazione

Dai risultati ottenuti è possibile concludere che per l'analisi sismica è più conservativo utilizzare lo spettro di risposta ELE calcolato secondo le ISO e che i modi di vibrare considerati sono ampiamente sufficienti a cogliere il comportamento dinamico globale della struttura.

6.1.3 Analisi sismica

L'analisi sismica è stata svolta utilizzando lo spettro di risposta calcolato secondo le norme ISO [Rif./A2/], così come riportato nel paragrafo 3.6.3.

Di seguito si riportano i massimi valori di Unity Check in forma grafica e tabellare, per ciascun gruppo di elementi analizzati.

6.1.3.1.1 Pali di fondazione emergenti dal terreno

Il massimo combined UC è pari a 0.19. La Figura 6.17 mostra i risultati ottenuti in forma grafica.

Figura 6.17 – UC massimi pali emergenti dal terreno (SISM)

La Tabella 6.15 riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.).

GRUPPO ID		TERRENO ARGILLOSO		
	MEMBRO	COMBINAZIONE DI	COMBINED	
	CRITICO	CARICO	UC	
PL1	0094-010A	SISM	0.19	

Tabella 6.15 – UC massimi pali emergenti dal terreno (SISM)

6.1.3.1.2 Telaio strutturale di irrigidimento (jacket)

<u>Piloni del jacket</u>

Il massimo valore di combined UC è 0.36 ed è raggiunto contemporaneamente da alcuni elementi appartenenti ai gruppi TP1 ed LG4. Il gruppo TP1 contiene elementi di forma tronco conica che raccordano sezioni a diametro differente, mentre LG4 contiene elementi a sezione tubolare facenti parte dei piloni del jacket. I risultati in forma grafica degli U.C. sono riportati in Figura *6.18*.

Figura 6.18 – UC massimi nei piloni del jacket (SISM)

La Tabella *6.16* riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.) per ciascun gruppo di elementi facenti parte di questo insieme.

CRURRO	٦	TERRENO ARGILLOSO		
ID	MEMBRO CRITICO	COMBINAZIONE DI CARICO	COMBINED UC	
LG1	0360-103L	SISM	0.29	
LG2	103L-203	SISM	0.33	
LG3	203L-303L	SISM	0.31	
LG4	0108-403L	SISM	0.36	
LG5	503L-403L	SISM	0.33	
LG6	0410-603L	SISM	0.27	
LG7	601L-701L	SISM	0.28	
LG8	701L-801L	SISM	0.29	
TP1	303L-0108	SISM	0.36	
TP2	503L-0410	SISM	0.24	

Tabella 6.16 – UC massimi nei piloni del jacket (SISM)

Elementi di irrigidimento orizzontale jacket

Il massimo valore di combined UC è 0.54 ed è raggiunto da alcuni elementi appartenenti al gruppo JKP il qual contiene i traversi del jacket. I risultati in forma grafica degli U.C. sono riportati in Figura *6.19*.

Figura 6.19 – UC massimi elementi di irrigidimento orizzontali jacket

La Tabella *6.17* riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.) per ciascun gruppo di elementi facenti parte di questo insieme.

GRUPPO	TERRENO ARGILLOSO		
	MEMBRO	COMBINAZIONE	COMBINED
ID.	CRITICO	DI CARICO	UC
JKP	0173-0020	SISM	0.54
CVH	0021-0029	SISM	0.15
BAS	0361-0159	SISM	0.26

Tabella 6.17 – UC massimi elementi di irrigidimento orizzontale jacket

Elementi di irrigidimento diagonale jacket

Il massimo valore di combined UC è 0.57 ed è raggiunto da alcuni elementi appartenenti al gruppo CW il qual contiene alcuni controventi del jacket. I risultati in forma grafica degli U.C. sono riportati in Figura 6.20.

Figura 6.20 – UC massimi elementi di irrigidimento orizzontali jacket (SISM)

La Tabella *6.18* riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.) per ciascun gruppo di elementi facenti parte di questo insieme.

GRUPPO		TERRENO ARGILLOSO		
	MEMBRO	COMBINAZIONE DI	COMBINED	
	CRITICO	CARICO	UC	
CV	304L-0017	SISM	0.39	
CW	0021-104L	SISM	0.57	
CWW	203L-101L	SISM	0.28	

Tabella 6.18 – UC massimi elementi di irrigidimento diagonale jacket (SISM)

Boat landing

Il massimo valore di combined UC è 0.13 ed è raggiunto da alcuni elementi appartenenti al gruppo BL1 che contiene gli elementi principali del boat landing. I risultati in forma grafica degli U.C. sono riportati in Figura *6.21*.

Figura 6.21 – UC massimi elementi del boat landing (SISM)

La Tabella *6.19* riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.) per ciascun gruppo di elementi facenti parte di questo insieme.

CRURRO	TERRENO ARGILLOSO			
GRUPPO	MEMBRO	COMBINAZIONE	COMBINED	
	CRITICO	DI CARICO	UC	
BL1	604L-0460	SISM	0.13	
BL2	0472-0475	SISM	0.06	
BL3	0489-0518	SISM	0.06	
BL4	0521-0518	SISM	0.06	
BL5	0456-0457	SISM	0.10	
BLH	0470-0518	SISM	0.05	
BLV	0512-0518	SISM	0.05	
BLD	0521-0528	SISM	0.09	
BLW	046A-0521	SISM	0.05	

Tabella 6.19 – UC massimi elementi del boat landing (SISM)

6.1.3.1.3 J-tube e supporti

Supporti J-tube

Il massimo valore di combined UC è 0.70 ed è raggiunto da alcuni elementi appartenenti al gruppo RJ che contiene gli elementi di sostegno dei J-Tubes. I risultati in forma grafica degli U.C. sono riportati in Figura *6.22*.

Figura 6.22 – UC massimi supporti j-tube (SISM)

La Tabella *6.20* riassume i principali risultati dell'analisi in termini di Combined Unity Check (U.C.) per ciascun gruppo di elementi appartenenti a questo insieme.

0011000	TERRENO ARGILLOSO		
GRUPPO	MEMBRO	COMBINAZIONE	COMBINED
	CRITICO	DI CARICO	UC
SJ	845C-0233	SISM	0.61
RJ	0426-0412	SISM	0.70

Tabella 6.20 - UC massimi supporti j-tube (SISM)

<u>J-tube</u>

Il massimo valore di combined UC è 0.43 ed è raggiunto da alcuni elementi appartenenti al gruppo CON che contiene gli elementi costituenti i J-tubes di input per i cavi. I risultati in forma grafica degli U.C. sono riportati in Figura *6.23*.

Figura 6.23 - UC massimi j-tube (SISM)

La Tabella *6.21* riassume i principali risultati dell'analisi in termini di Combined Unity Check (U.C.) per ciascun gruppo di elementi facenti parte di questo insieme.

0011000	TERRENO ARGILLOSO		
GRUPPO	MEMBRO	COMBINAZIONE	COMBINED
10	CRITICO	DI CARICO	UC
CON	244C-344C	SISM	0.43
СОМ	0394-0281	SISM	0.19
TAP	-	SISM	0.00

Tabella 6.21 – UC massimi j-tube (SISM)

6.1.3.1.4 Topside

Elementi verticali

Il massimo valore di combined UC è 0.51 ed è raggiunto da alcuni elementi appartenenti al gruppo DLA che contiene gli elementi di base delle colonne principali del top-side. I risultati in forma grafica degli U.C. sono riportati in Figura *6.24*.

Figura 6.24 - UC elementi verticali TopSide (SISM)

La Tabella *6.22* riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.) per ciascun gruppo di elementi appartenente all'insieme.

0011000	TERRENO ARGILLOSO		
GRUPPO	MEMBRO	COMBINAZIONE	COMBINED
	CRITICO	DI CARICO	UC
CL1	0084-0083	SISM	0.22
Cl2	0083-0082	SISM	0.36
CL3	0076-0077	SISM	0.33
CL4	0081-0080	SISM	0.26
COL	0055-0058	SISM	0.27
DLA	0.674-0010	SISM	0.51
DLB	0010-0040	SISM	0.22
DLC	B03L-C03L	SISM	0.22
DLD	0046-0047	SISM	0.16
DLE	0047-0048	SISM	0.18

Tabella 6.22 – UC massimi j-tube (SISM)

Elementi diagonali

Il massimo valore di combined UC è 0.47 ed è raggiunto da alcuni elementi appartenenti al gruppo CV3 che contiene i controventi principali del top-side. I risultati in forma grafica degli U.C. sono riportati in Figura *6.25*.

Figura 6.25 - UC massimi elementi diagonali TopSide (SISM)

La Tabella *6.23* riassume i principali risultati dell'analisi in termini di Combined Unity Check (U.C.) per ciascun gruppo di elementi facenti parte di questo insieme.

0011000	TERRENO ARGILLOSO			
GRUPPO	MEMBRO	COMBINAZIONE	COMBINED	
	CRITICO	DI CARICO	UC	
HCV	0677-0626	SISM	0.14	
TSC	0046-A03L	SISM	0.34	
CV3	0010-0082	SISM	0.47	

Elementi orizzontali

Il massimo valore di combined UC è 0.64 ed è raggiunto da alcuni elementi appartenenti al gruppo POS che contiene le travi secondarie del piano 0 del top-side. I risultati in forma grafica degli U.C. sono riportati in Figura 6.26.

Figura 6.26 – UC massimi elementi orizzontali TopSide (SISM)

La Tabella 6.24 riassume i principali risultati dell'analisi in termini di combined Unity Check (U.C.) per ciascun gruppo di elementi appartenenti a questo insieme.

0011000		TERRENO ARGILLOS	50
ID	MEMBRO	COMBINAZIONE	COMBINED
	CRITICO	DI CARICO	UC
P0	0537-0453	SISM	0.41
POS	0415-A03L	SISM	0.64
POT	0453-0010	SISM	0.53
P1	B03L-0554	SISM	0.45
P1S	0574-0558	SISM	0.23
P1T	0598-0041	SISM	0.23
P2	C03L-0595	SISM	0.42
P2S	0618-0604	SISM	0.24
P2T	0598-0041	SISM	0.23
P3	0626-0064	SISM	0.33
P3S	0626-0630	SISM	0.18
P4	0637-E03L	SISM	0.43
P4S	0663-0653	SISM	0.35
P4T	0043-0645	SISM	0.23
P5	0725-0724	SISM	0.10

Tabella 6.24 – UC massimi elementi orizzontali TopSide (SISM)

6.1.4 Verifica geotecnica dei pali di fondazione

La Tabella 6.25 riassume i principali risultati dell'analisi in termini di Unity Check (U.C.) relativi alla capacità assiale del terreno.

						* * *	* S 0	ΙL	MA	х	(M	U	M A	хι	A I	L C A	Р	АСІТҮ	ѕимм	ARY	* *	*					
PI	LE	GRP	*****	*** P	ILE ****	*****	****	****	****	* C(эмрі	RES	SION	***	***	*****	×	*******	•**** TI	ENSION *	****	***1	(***)	***			
1.1	JT		PILE	HEAD	WEIGHT	PEN.	CAP	ACITY		мах.			CRITI	CAL	CON	NDITIO	Ν	CAPACITY	MAX.	CRIT	ICAL	00	IDIT	[ON	*MAX I	МUМ»	*
			0.D.	ТНК.			(INC	L. WT)	LOAC)		LOAD) L	OAD	SAFET	Y	(INCL. WT)	LOAD	LOA	DL	OAD	SAFE	TY	UNITY	LOA	1D
			CM	CM	KN	м	- K	Ν		KN			KN	C	ASE	FACTO	R	KN	KN	KN	C	ASE	FACT	r o R	CHECK	CAS	ŝE
00	369	PL1	200.00	4.00	1328.9	70.0	-349	90.4	-29	894.	.4	-2	29894.	4	Ν	1.1	7	37572.1	0.0	9	. 0	E	100.	. 00	1.28		Ν
00	972	PL1	200.00	4.00	1328.9	70.0	-349	90.4	-29	482.	.5	-2	29482.	5	Ν	1.1	9	37572.1	0.0	0	. 0	Е	100.	.00	1.26		Ν
00	391	PL1	200.00	4.00	1328.9	70.0	-349	90.4	-29	831.	.4	-2	29831.	4	S	1.1	7	37572.1	0.0	9	. 0	Е	100.	. 00	1.28		S
00	394	PL1	200.00	4.00	1328.9	70.0	-349	90.4	-30	855.	. 8	-3	30855.	8	S	1.1	3	37572.1	0.0	0	. 0	Е	100.	.00	1.32		S
01	127	PL1	200.00	4.00	1328.9	70.0	-349	90.4	-29	3 08 .	. 0	-2	29308.	0	W	1.1	9	37572.1	0.0	9	. 0	Е	100	.00	1.26		W
01	128	PL1	200.00	4.00	1328.9	70.0	-349	90.4	-28	749.	. 8	-2	28749.	8	Е	1.2	2	37572.1	0.0	0	. 0	E	100	.00	1.23		Е
01	142	PL1	200.00	4.00	1328.9	70.0	-349	90.4	-28	669.	. Ó	-2	28669.	6	Ε	1.2	2	37572.1	0.0	0	. 0	Е	100	.00	1.23		Е
01	126	PL1	200.00	4.00	1328.9	70.0	-349	90.4	-30	175.	.4	-3	30175.	4	W	1.1	6	37572.1	0.0	9	. 0	E	100.	. 00	1.29		W

Tabella 6.25 - UC massimi capacità assiale terreno argilloso

Le figure Figura 6.27, Figura 6.28 e Figura 6.29 mostrano rispettivamente l'inviluppo degli unity check, gli spostamenti assiali e gli spostamenti laterali della palificata di fondazione.

Figura 6.27 – Inviluppo UC pali di fondazione (SISM)

Figura 6.28 – Spostamento assiale pali di fondazione (SISM)

Figura 6.29 – Spostamento laterale pali di fondazione (SISM)

6.2 Battitura Pali

In questa sezione vengono riportati i risultati relativamente alla "pile driveability" ovvero la possibilità di un palo, sotto determinate condizioni, di essere battuto o infisso su un terreno tramite dei martelli idraulici o a vibrazione. Il programma utilizzato è il GRLWEAP.

6.2.1 Risultati della simulazione di battitura

Dati di input principali:

HAMMER DAT	ΓA						
Hammer Mode		S-400	Made By:		IHC		
Hammer ID:		327	Hammer Type:		ECH		
Hammer Datab	base Type:	PDI					
Hammer Datab	base Name:			PE)IHammer.gwh		
Hammer and D	rive System	Segment Data	a				
Segment	Weight	Stiffness	COR	C-Slack	Damping		
-	kN	kN/mm	-	mm	kN/m/s		
1	7,406	23.871,8	1,000	0,000			
2	7,406	23.871,8	1,000	0,000			
3	7,406	23.871,8	1,000	0,000			
4	46,903	212.356,1	1,000	0,000			
5	46,903	212.356,1	1,000	0,000			
6	46,903	212.356,1	1,000	0,000			
7	11,228	45.158,1	1,000	0,000			
8	11,228	45.158,1	1,000	0,000			
9	11,228	44.632,8	1,000	3,048			
Helmet	275,790				286,0		
Hammer Asser	mbly Data						
Segment	Weight	Stiffness	COR	C-Slack	T-Slack		
-	kN	kN/mm	-	mm	mm		
1	144,211	28.386,7	1,000	0,000	0,000		
2	144,211	28.386,7	0,850	3,048	999,000		
564,213 kN tot	al unreduced	hammer (ram	excluded) and I	nelmet weig	ght (g = 9,81 m/s ²)		
564,213 kN tota	al reduced ha	immer (ram e:	xcluded) and hel	met weight	(g = 9,81 m/s²)		
Dam Waight: //	-NI)	106 61	Dom Longth: (n	-	7 45		
Ram Weight. (r	(N) 2)	190,01	Ram Lengin. (r	n)	7,40		
Kam Area. (Cm	F) Stroke: (m)	3.425,34	Actual (Ea) Ota	alsa: (ma)	2.02		
Efficiency:	Stroke. (m)	2,02	Actual (Eq) Str	2,02			
Efficiency.		0,950	Raled Energy.	(KJ)	390,72		
Hammer Cushi	ion		Pile Cushion				
Cross Sect. Are	ea: (cm²)	0.00	Cross Sect. Are	ea: (cm²)	0.00		
Elastic Modulus	s: (MPa)	0.0	Elastic Modulus	Modulus: (MPa)			
Thickness: (mn	n)	0,00	0,00 Thickness: (mm)				

0,00	Cross Sect. Area: (cm ²)	0,00
0,0	Elastic Modulus: (MPa)	0,0
0,00	Thickness: (mm)	0,00
0,000	Coeff. of Restitution:	0,500
3,048	RoundOut: (mm)	3,048
0,0	Stiffness: (kN/mm)	0,0
275,790		
	Pile Type:	Open-End Pipe
85,000	Pile Penetration: (m)	70,000
2,00	Toe Area: (cm ²)	2.463,01
	0,00 0,00 0,000 3,048 0,0 275,790 85,000 2,00	0,00 Cross Sect. Area: (cm²) 0,0 Elastic Modulus: (MPa) 0,00 Thickness: (mm) 0,000 Coeff. of Restitution: 3,048 RoundOut: (mm) 0,0 Stiffness: (kN/mm) 275,790 Pile Type: 85,000 Pile Penetration: (m) 2,00 Toe Area: (cm²)

Figura 6.30 – Dati del martello e del palo

Figura 6.31 – Rappresentazione del suolo e del modello di calcolo

Figura 6.32 – Conteggio dei colpi ed energia di impatto

NINFEA RINNOVABILI Largo Augusto 3 Milano 20122 PI 11920550966 Pec ninfearinnovabili@legalmail.it REA MI - 2630749

I risultati visibili in forma grafica nella Figura 6.32, sono riportati anche in formato tabellare nella Figura 6.33 in cui:

- Rut (ultimate resistance): rappresenta la resistenza ultima del terreno e da una misura diretta della portata a compressione del palo.
- Rshaft (Shaft Resistance): resistenza al taglio sviluppata lungo la superficie laterale del palo. È la forza di attrito tra il palo e il terreno che resiste al movimento del palo.
- Rtoe (Toe Resistance): resistenza sviluppata alla punta del palo. Rappresenta la forza di reazione alla base dovuta alla penetrazione nel terreno.
- max C-str (Maximum Compressive Stress): massimo sforzo di compressione che il palo subisce durante il colpo del martello.
- max T-str (Maximum Tensile Stress): massimo sforzo di trazione che il palo subisce durante il colpo del martello.
- Stroke (Hammer Stroke): è la lunghezza di corsa del maglio, ovvero l'altezza da cui il martello viene lasciato cadere.
- Enthru (Energy Through): energia trasmessa al palo durante un colpo del martello. È una misura dell'energia effettiva che viene trasferita dal martello al palo, tenendo conto delle perdite di energia dovute all'inefficienza del sistema di infissione.

TECNO	TECNOCONSULT ENGINEERING CONSTRUCTION SR 17/07/2024													
SCICLI	SUIGLI - MILE DRIVEABILITY + OD2000000000000000000000000000000000000													
Death	Denth But Rohaft Rice Blow Ct My C Str My T Str Stroke ENTUDI Lammor													
Deptn	Rut kN	Ksna kN	τ	kN kN	Blow bl/m	Ut 1	MX C-	-Str. a	MX 1-3	Str. a	Stroke	ENTHRU k.l	Hammer	
3.0	142.0	108 7		33.3	0.0		0.0	0	0.00)	2.02	0.0	S-400	
6.0	402.6	336.1		66.5	0.0		0.0	0	0.00)	2.02	0.0	S-400	
9.0	646.9	580.4		66.5	0.0		0.0	- D	0.00)	2.02	0.0	S-400	
12.0	908.3	841.8		66.5	0.0		0.0	- D	0.00)	2.02	0.0	S-400	
15,0	1.186,7	1.120	2	66.5	0,0		0.0	0	0,00)	2,02	0,0	S-400	
18,0	1.988,8	1.767	1	221,7	0,0		0,0	D	0,00)	2,02	0,0	S-400	
21,0	2.704,2	2.482	5	221,7	20,5	5	151,	62	107,5	51	2,02	358,8	S-400	
24,0	3,433,2	3.211	6	221,7	25,1	1	151,	40	99,8	8	2,02	356,4	S-400	
27,0	4.130,4	3.908	7	221,7	27,7	7	151,	14	92,7	1	2,02	354,1	S-400	
30,0	4.827,5	4.605	8	221,7	34,8	3	150,	90	86,3	8	2,02	350,9	S-400	
33,0	5.524,6	5.303	0	221,7	39,7	7	150,	58	81,7	1	2,02	347,6	S-400	
36,0	6.221,8	6.000	1	221,7	44,0)	150,	34	77,6	7	2,02	346,5	S-400	
39,0	6.918,9	6.697	2	221,7	49,7	7	150,	03	73,8	2	2,02	346,5	S-400	
42,0	7.616,0	7.394	3	221,7	55,4	1	149,	78	70,1	1	2,02	346,5	S-400	
45,0	8.313,1	8.091	5	221,7	60,4	1	149,	49	66,6	9	2,02	346,5	S-400	
48,0	9.010,3	8.788	6	221,7	65,2	2	149,	27	63,4	9	2,02	346,5	S-400	
51,0	9.707,4	9.485	7	221,7	69,9)	149,	01	61,5	7	2,02	346,5	S-400	
54,0	10.404,5	10.182	,9	221,7	74,3	3	148,	86	59,79	9	2,02	346,5	S-400	
57,0	11.101,7	10.880	,0	221,7	78,9)	148,	68	58,0	3	2,02	346,5	S-400	
60,0	11.798,8	11.577	,1 :	221,7	83,5	5	148,	55	56,3	1	2,02	346,4	S-400	
63,0	12.495,9	12.274	,3	221,7	88,3	3	148,	51	54,6	2	2,02	346,3	S-400	
66,0	13.193,1	12.971	,4	221,7	93,5	5	148,	42	53,0	0	2,02	346,2	S-400	
69,0	13.890,2	13.668	,5	221,7	99,4	1	148,	44	51,73	2	2,02	346,1	S-400	
70,0	14.122,6	13.900	,9	221,7	101,	5	148,4	40	51,23	3	2,02	346,1	S-400	
Total Num	Total Number of Blows: 2982 (starting at penetration 3,0 m)													
Driving Tir	ne(min):	99 74	59	49	42	37	33	29	27	24				
@Blow Ra	ate:	30 40	50	60	70	80	90	100	110	120				
Driving Tir	- Driving Time for continuously running hammer; any wait time not included.													

Figura 6.33 – Output calcoli di battitura

Dai risultati sopra riportati si evince che , con il martello scelto (400 kJ) e considerando le caratteristiche geotecniche sopra riportate, sia possibile infiggere il palo in meno di 1 ora.

Essendo il palo composto in acciaio S355 con uno spessore di 4 cm (f_{yk} = 345 MPa, vedi paragrafo 3.1), la tensione massima ammissibile è calcolabile come:

$$\theta_{amm} = \frac{f_{yk}}{\gamma_m} = \frac{345 MPa}{1.15} = 300 MPa$$

Per cui confrontando tale valore con le tensioni di battitura riportate in Figura *6.33* si può concludere che le tensioni si mantengono ammissibili durante tutto il processo di infissione.

7 CONCLUSIONI

Nel presente elaborato è stata riportata la progettazione strutturale delle piattaforme elettriche di trasformazione offshore eseguendo le seguenti analisi:

- Statica;
- Modale;
- Sismica;
- Verifica delle fondazioni (temporanee e operative);
- Battitura dei pali;

La STO sarà costituita da due sistemi strutturali preassemblati a terra e trasportati in situ:

- Telaio strutturale di irrigidimento (Jacket);
- Top-Side;

Il sistema di fondazione prevede 8 pali battuti, suddivisi in 4 coppie ovvero una coppia per ciascun pilone. I pali saranno infissi all'interno di appositi sleeves in acciaio posti ai quattro vertici della base del jacket ed aventi le seguenti caratteristiche geometriche:

ITENA	OD	WT	Lunghezza totale	Lunghezza entro terra
	[cm]	[mm]	[m]	[m]
Pali di fondazione	200	40	85	70

Tabella 7.1 – Palo di fondazione

Dai risultati delle analisi svolte emerge che la struttura e il sistema di fondazione sono in grado di sostenere in sicurezza i carichi applicati sia in condizioni statiche che sismiche. In particolare, si riportano di seguito i valori di combined unity check relativi ai gruppi di elementi più sollecitati in condizioni statiche (Tabella 7.2) e sismiche (Tabella 7.3).

GRUPPO	U.C. (ANALISI STATICA)
RJ	0.94
POS	0.79
CW	0.78
DLA	0.74
CON	0.73

Tabella 7.2 - Combined unity checks dei gruppi più sollecitati (Analisi statica)

GRUPPO	U.C. (ANALISI SISMICA)
RJ	0.70
POS	0.64
CW	0.57
JKP	0.54
DLA	0.51

Tabella 7.3 - Combined unity checks dei gruppi più sollecitati (Analisi sismica)

I pali risultano essere installabili dal punto di vista della battitura con un martello da 400 kJ in un tempo compreso tra i 24 e 99 minuti in base alla frequenza di battitura (blowrate) utilizzata. Utilizzando un blowrate medio, ovvero di 70 colpi al minuto il singolo palo è installabile in circa 42 minuti.

Le analisi svolte dovranno essere rieseguite/confermate nella fase esecutiva utilizzando dati geotecnici profondi, non disponibili in questa fase di progetto.

8 RIFERIMENTI

- /A1/ API RP2A-WSD . (s.d.)
- /A2/ ISO 19901-2 "Seismic design procedure and criteria". (2017).
- /A3/ ISO 19901-4 Geotechnical and foundation design considerations. (s.d.).
- /A4/ Italy, B. r. Geophysical and geotechnical survey Scicli provisional report (2024).
- /A5/ Decreto ministeriale 17 gennaio 2018 Norme Tecniche per le costruzioni (NTC2018);
- /A6/ REL_12-RELAZIONE METEOMARINA;
- /A7/ REL_31-RELAZIONE GEOLOGICA (OFFSHORE);
- /A8/ DNV-CN-30.4.1992 cap.5.3.2.5;