PROPONENTE

Repower Renewable Spa
Via Lavaredo, 44
30174 Venezia

PROGETTAZIONE

INSE Srl viale Michelangelo 71 80129 - Napoli - Italia t 081.5797998 tecnico@insesrl.it Amm. Francesco Di Maso Ing. Luigi Malafarina Ing. Pasquale Esposito Ing. Nicola Galdiero

NICOLA GALDIERC Z.

NICOLA GALDIERC Z.

INGEGNELCIVILE AVAILABLE C.

INDUSTRIAL DELLA: IN PAR UNIT

VSEZIONE A.

VSEZIONE A.

VSEZIONE A.

17370

17370

N° COMMESSA

PARCO EOLICO "GIAMBOI-BLANDANO", 24 MW + 20 MW ACCUMULO

1518-1534

PARCO AGRIVOLTAICO "RACARRUME", 25 MW + 20 MW ACCUMULO COMUNI DI BUSETO PALIZZOLO (TP), VALDERICE (TP), ERICE (TP), TRAPANI (TP)

PIANO TECNICO OPERE DI RETE TERNA

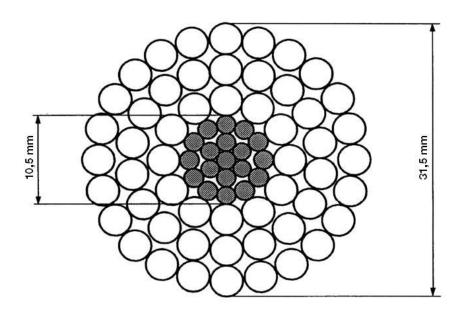
ELABORATO CARATTERISTICHE COMPONENTI LINEE AEREE

CODICE ELABORATO S303-EL04-R

Scala: -:-

Formato: A4

01	Febbraio 2024	Integrazione richiesta da Terna del 09/02/2024	INSE Srl	F. DI MASO	REPOWER RENEWABLE SPA
00	Luglio 2023	PRIMA EMISSIONE	INSE Srl	F. DI MASO	REPOWER RENEWABLE SPA
REV.	DATA	DESCRIZIONE REVISIONE	REDATTO	VERIFICA	APPROVAZIONE


Specifica di componente

CONDUTTORE A CORDA DI ALLUMINIO-ACCIAIO Ø 31,5 mm

LIN_00000C2

Rev. 00
del 02/07/2012

Rev. 1 di 2

TIPO CONDUTTORE	2/1	2/2 (*)		
THE CONDUTTORE	NORMALE	INGRASSATO		
FORMAZIONE		Alluminio	54 x 3,50	54 x 3,50
PORIVIAZIONE		Acciaio	19 x 2,10	19 x 2,10
		Alluminio	519,5	519,5
SEZIONI TEORICHE	(mm ²)	Acciaio	65,80	65,80
		Totale	585,30	585,30
TIPO DI ZINCATURA DELL'ACCIAIO			Normale	Maggiorata
MASSA TEORICA	(Kg/m)		1,953	2,071(**)
RESISTENZA ELETTR. TEORICA A 20°C	(Ω/km)		0,05564	0,05564
CARICO DI ROTTURA	(daN)		16852	16516
MODULO ELASTICO FINALE	(daN/mm²	2)	6800	6800
COEFFICIENTE DI DILATAZIONE	(K ⁻¹)		19,4 x 10 ⁻⁶	19,4 x 10 ⁻⁶

^(*) Per zone ad alto inquinamento salino

Storia de	Storia delle revisioni						
Rev. 00	del 02/07/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna RQUT0000C2 rev. 01 del					
		25/07/2002 (C.D'Ambrosa, A.Posati, R.Rendina)					

ISC - Uso INTERNO

Elaborato			Verificato			Approvato
ITI s.r.l.			A. Piccinin SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posati SRI-SVT-LAE

^(**) Compresa massa grasso pari a 103,39 gr/m.

Specifica di componente

CONDUTTORE A CORDA DI ALLUMINIO – ACCIAIO Ø 31,5 mm

Codifica LIN_000000C2

Rev. 00 Pag. **2** di 2

NOTE

1. Materiale

Mantello esterno in Alluminio ALP E 99,5 UNI 3950:1957.

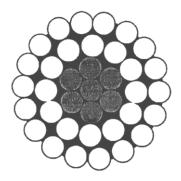
Anima in acciaio a zincatura normale tipo 170 (CEI 7-2:1997), zincato a caldo.

Anima in acciaio a zincatura maggiorata tipo 3 secondo prescrizioni LIN_000C3905 Appendice A.

2. Prescrizioni

Per la costruzione, il collaudo e la fornitura: LIN_000C3905.

Per le caratteristiche dei prodotti di protezione: CEI EN 50326:2003.


Per le modalità di ingrassaggio: CEI EN 50182:2002.

- 3. Imballo e pezzature: bobine da 2.000 m (salvo diversa prescrizione in sede di ordinazione).
- 4. Unità di misura: l'unità di misura con la quale deve essere espressa la quantità del materiale è la massa in chilogrammi (Kg).
- 5. Modalità di applicazione dei prodotti di protezione

Il conduttore tipo 2/2 dovrà essere completamente ingrassato, ad eccezione della superficie esterna dei fili elementari del mantello esterno.

Le modalità di ingrassaggio devono essere rispondenti alla Norma CEI EN 50182:2002 Caso 4 Figura B.1, annesso B.

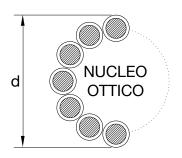
La massa teorica di grasso espressa in gr/m, con una densità di 0,87 gr/cm³, calcolata secondo la Norma CEI EN 50182:2002 dovrà essere pari a 103,39 gr/m.

Cfr. Norma CEI EN 50182:2002 Caso 4 Figura B.1, annesso B

6. Caratteristiche dei prodotti di protezione

Il grasso deve essere conforme alla Norma CEI EN 50326:2003 tipo 20A180 ovvero 20B180.

Il Fornitore del conduttore, dovrà consegnare la documentazione di conformità del grasso utilizzato.


Tabella dati CORDA DI GUARDIA CON 24 FIBRE OTTICHE Ø11,5 mm

Codifica:

UX LC25

Rev. 00
Pag. 1 di 1

del 11/01/2008

DIAMETRO NOMINALE ES	(mm)	≤ 11,5		
MASSA UNITAIRA TEORIO	CA (Eventuale grasso	compreso)	(kg/m)	≤ 0,6
RESISTENZA ELETTRICA	TEORICA A 20 °C		(ohm/km)	≤ 0,9
CARICO DI ROTTURA			(daN)	≥ 7450
MODULO ELASTICO FINA	(daN/mm²)	≥ 10000		
COEFFICIENTE DI DILATA	(1/°C)	≤ 16,0E-6		
MAX CORRENTE C.TO C.	(kA)	≥ 10		
	NUMERO		(n°)	24
FIRST OTTIONS ON S	ATTENUAZIONE	a 1310 nm	(dB/km)	≤ 0,36
FIBRE OTTICHE SM-R (Single Mode Rediced)	ATTENUAZIONE	a 1550 nm	(dB/km)	≤ 0,22
(Onligic Wode Rediced)	DISPERSIONE	a 1310 nm	(ps/nm · km)	≤ 3,5
	CROMATICA	a 1550 nm	(ps/nm · km)	≤ 20

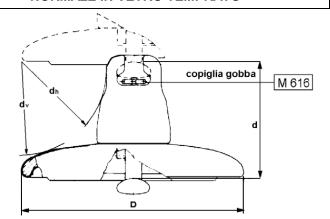
- 1. Prescrizioni per la costruzione ed il collaudo: C3907.
- 2. Prescrizioni per la fornitura: C3911.
- 3. Imballo e pezzature: bobine da 4000 m (salvo diversa prescrizione in sede di ordinazione).
- 4. Unità di misura: la quantità del materiale deve essere espressa in m.
- 5. Sigillatura: eseguita mediante materiale termoresistente e autovulcanizzante.

Descrizione ridotta:

COR GUAR	ACS	2 4 x	F I B R	OTT	1 1 , 5
Matricola SAP:					
1 0 0 4 2 2 0					

Storia delle revisioni					
Rev. 00	del 11/01/2008	Prima emissione.			

Elaborato	Verificato	Approvato
S. Tricoli	A. Posati	R. Rendina
ING-ILC	ING-ILC	ING-ILC


Specifica di componente

ISOLATORI CAPPA E PERNO DI TIPO NORMALE IN VETRO TEMPRATO

LIN_00000J1

Rev. 01
del 10/11/2015

Pag. **1** di 1

TIPO			1/2	1/3	1/4	1/5	1/6
Carico di Rottura (kN)		70	120	160	210	400	300
Diametro Nominale Part	e Isolante (mm)	255	255	280	280	360	320
Passo (mm)		146	146	146	170	205	195
Accoppiamento CEI 36-10 (grandezza)			16 A	20	20	28	24
Linea di Fuga Nominale Minima (mm)			295	315	370	525	425
dh Nominale Minimo (m	m)	85	85	85	95	115	100
dv Nominale Minimo (mi	m)	102	102	102	114	150	140
Condizioni di Prova in	Numero di Isolatori Costituenti la Catena	9	13	21	18	15	16
Nebbia Salina	Tensione (kV)	98	142	243	243	243	243
Salinità di Tenuta (*) (kg	/ m³)	14	14	14	14	14	14

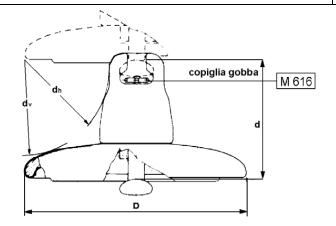
(*) La salinità di tenuta, verificata su una catena, viene convenzionalmente assunta come caratteristica propria del tipo di elemento isolante.

NOTE

- 1. Materiali: parte isolante in vetro sodocalcico temprato; cappa in ghisa malleabile (UNI EN 1562:2007) zincata a caldo oppure ghisa sferoidale di caratteristiche meccaniche equivalenti (UNI EN 1563:2009) e per basse temperature (LT); perno in acciaio al carbonio (UNI EN 10083-1:2006) zincato a caldo; copiglia in acciaio inossidabile austenitico UNI EN 10088-1:2005; cemento di tipo alluminoso.
- 2. Tolleranze:
 - a) sul valore nominale del passo: secondo la pubblicazione IEC 305 (1974) par. 3.
 - b) sugli altri valori nominali: secondo la Norma CEI 36-20 (1998) par. 17.
- 3. Su ciascun esemplare deve essere marcata la sigla U seguita dal carico di rottura dell'isolatore, il marchio di fabbrica del costruttore e l'anno di fabbricazione.
- 4. Prescrizioni: per la costruzione, il collaudo e la fornitura LIN_000J3900.
- 5. Tensione di tenuta alla perforazione elettrica ad impulso in aria: 2,8 p.u. (per unità della tensione di scarica 50% a impulso atmosferico standard di polarità negativa).
- 6. L'unità di misura con la quale deve essere espressa la quantità di materiale è il numero di esemplari (n).

Storia dell	Storia delle revisioni						
Rev. 00	del 30/03/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna UX LJ1 rev. 00 del 03/04/2009 (M. Meloni – A. Posati – R. Rendina)					
Rev. 01	del 10/11/2015	Aggiornate le note relative a materiali e tensione di tenuta alla perforazione elettrica ad impulso in aria. Eliminata la nota relativa alla tenuta alla perforazione elettrica f.i. in olio					

ISC - Uso INTERNO


Elaborato		Verificato			Approvato
S. Memeo ING-TSS-STL-LAE		P. Berardi ING-TSS-STL-LAE	M. Marzinotto ING-TSS-CSI		A. Posati ING-TSS-STL

Specifica di componente

ISOLATORI CAPPA E PERNO DI TIPO ANTISALE IN VETRO TEMPRATO

Codifica LIN_000000J2 Rev. 01 Pag. **1** di 1 del 10/11/2015

	2/1	2/2	2/3	2/4	
Carico di Rottura (kN)		70	120	160	210
Diametro Nominale Parte	e Isolante (mm)	280	280	320	320
Passo (mm)		146	146	170	170
Accoppiamento CEI 36-10 (grandezza)		16A	16A	20	20
Linea di Fuga Nominale Minima (mm)		430	425	525	520
dh Nominale Minimo (mr	dh Nominale Minimo (mm)		75	90	90
dv Nominale Minimo (mr	n)	85	85	100	100
Condizioni di Prova in	Numero di Isolatori Costituenti la Catena	9	13	18	18
Nebbia Salina	Tensione (kV)	98	142	243	243
Salinità di Tenuta (*) (kg/	⁷ m³)	56	56	56	56

La salinità di tenuta, verificata su una catena, viene convenzionalmente assunta come caratteristica propria del tipo di elemento isolante.

NOTE

- 1. Materiali: parte isolante in vetro sodocalcico temprato; cappa in ghisa malleabile (UNI EN 1562:2007) zincata a caldo oppure ghisa sferoidale di caratteristiche meccaniche equivalenti (UNI EN 1563:2009) e per basse temperature (LT); perno in acciaio al carbonio (UNI EN 10083-1:2006) zincato a caldo, copiglia in acciaio inossidabile austenitico UNI EN 10088-1:2005; cemento di tipo alluminoso.
- 2. Tolleranze:
 - a) sul valore nominale del passo: secondo la pubblicazione IEC 305 (1974) par. 3.
 - b) sugli altri valori nominali: secondo la Norma CEI 36-20 (1998) par. 17.
- 3. Su ciascun esemplare deve essere marcata la sigla U seguita dal carico di rottura dell'isolatore, il marchio di fabbrica del costruttore e l'anno di fabbricazione.
- 4. Prescrizioni: per la costruzione, il collaudo e la fornitura LIN_000J3900.
- 5. Tensione di tenuta alla perforazione elettrica ad impulso in aria: 2,8 p.u. (per unità della tensione di scarica 50% a impulso atmosferico standard di polarità negativa).
- 6. L'unità di misura con la quale deve essere espressa la quantità di materiale è il numero di esemplari (n).

Storia dell	Storia delle revisioni					
Rev. 00	del 30/03/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL LJ2 Ed. 6 del Luglio 1989				
Rev. 01	del 10/11/2015	Aggiornate le note relative a materiali e tensione di tenuta alla perforazione elettrica ad impulso in aria. Eliminata la nota relativa alla tenuta alla perforazione elettrica f.i. in olio				

ISC – Uso INTERNO	
-------------------	--

Elaborato	Verificato		Approvato
S. Memeo ING-TSS-STL-LAE	P. Berardi ING-TSS-STL-LAE	M. Marzinotto ING-TSS-CSI	A. Posati ING-TSS-STL
m05I0001SG-r00			

Guida di progetto

LIN_0000M257

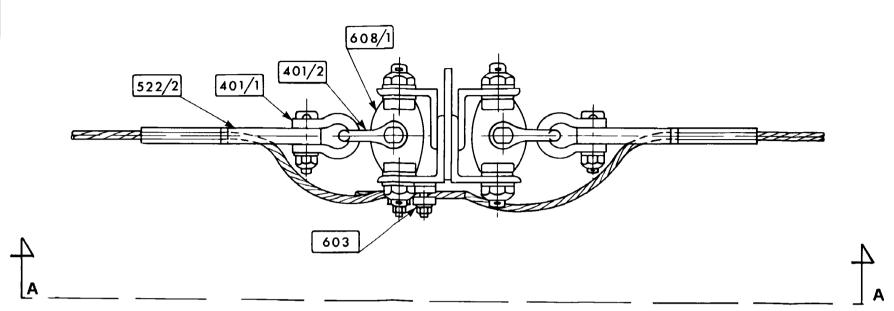
Rev. 01
del 20/11/2017

Reg. 1 di 2

LINEE 132/150 kV

EQUIPAGGIAMENTI PER SOSPENSIONE ED AMARRO DELLE FUNI DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

Storia de	Storia delle revisioni				
Rev. 00	del 01/06/2012	Prima emissione.			
Rev. 01	del 20/11/2017	Sostituzione del morsetto di sospensione metacentrico con il morsetto di sospensione a barrette preformate e della morsa di amarro a bulloni con la morsa di amarro preformata.			


ISC -	Uso INTERNO

Elaborato		Verificato		Approvato	
R. Costagliola ING-TAM-ILI	A. Piccinin ING-TAM-ILI	P. Berardi ING-TAM-ILI		E. Di Vito ING-TAM-ILI	

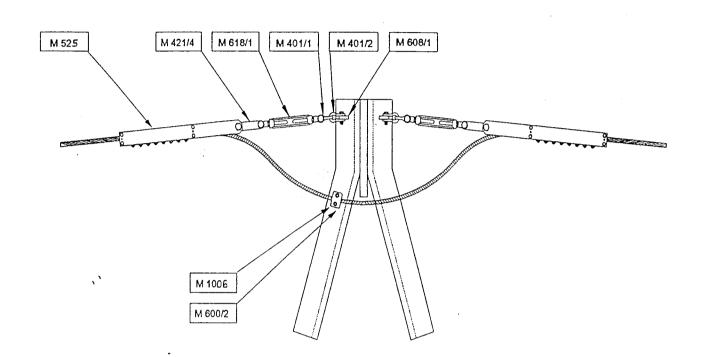
LINEE A 380 kV -ARMAMENTO PER AMARRO DELLA CORDA DI GUARDIA IN ACCIAIO O IN ACCIAIO RIVESTITO DI ALLUMINIO (ALUMOWELD) Ø 11,5 25 XX BF

LM 253

Luglio 1994 Ed 4 - 1/1

- AITC - UNITÀ INGEGNERIA IMPIANTISTICA 2

000


DIVISIONE TRASMISSIONE INGEGNERIA

LINEE A 380kV ARMAMENTO DI AMARRO PASSANTE PER FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11.5 mm

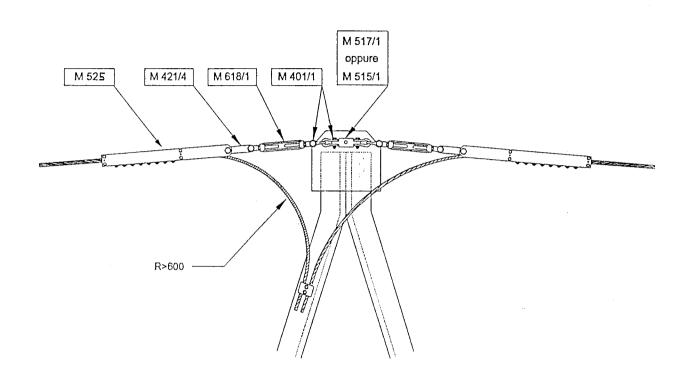
TINLTUM0000225

Revisione: 00

Pagina: 1/1

Riferimento: DC 25

Rev.	Data	Descrizione della revisione	Redatto e Verificato	Collaborazioni	Approvato
	41107		TIN/LIN		TIN/LIN
00	4-11-97	PRIMA EMISSIONE	him		may


DIVISIONE TRASMISSIONE INGEGNERIA

LINEE A 380kV ARMAMENTO DI AMARRO IN SOSPENSIONE PER FUNE DI GUARDIA CON FIBRE OTTICHE \varnothing 11.5 mm

TINLTUM0000226

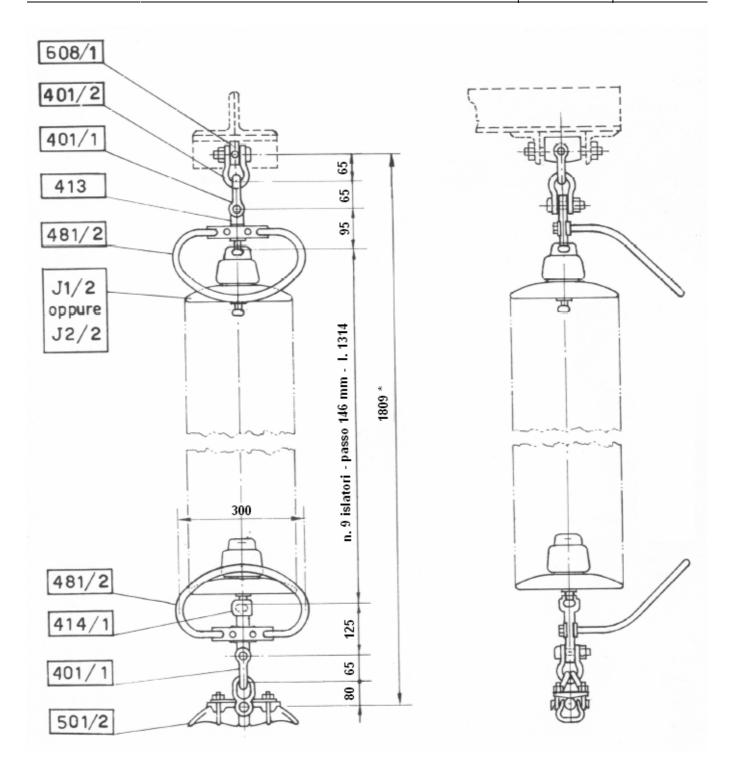
Revisione: 00

Pagina: 1/1

Note

- 1) Particolari precauzioni devono essere prese durante i lavori in quanto nei sostegni di sospensione non è prevista la verifica dei cimini per il tiro pieno unilaterale con coefficiente di sicurezza 2.
- 2) Le quantità dei morsetti bifilari M 1007 e delle staffe di fissaggio M 600 per la discesa della fune di guardia alla scatola di giunzione devono essere specificate in funzione del tipo ed altezza del sostegno sul quale viene realizzata la discesa.
- 3) Il particolare M 515/1 viene montato sui cimini con passo 78 mm. Il particolare M 517/1 viene montato sui cimini con passo 100 mm.

Riferimento: DC 25


Sosti	tuisce il :		Sostituito dal	•		
Rev.	Data	Descrizione della revisione	Redatto e Verificato	Collaboraz	ioni	Approvato
00	4-11-37		TIN/LIN			TIN/LIN Approvato
00	4-11-97	PRIMA EMISSIONE	kelst.			Indu

LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER SOSPENSIONE SEMPLICE

Codifica: **LM21**Rev. 00
del 29/06/2007

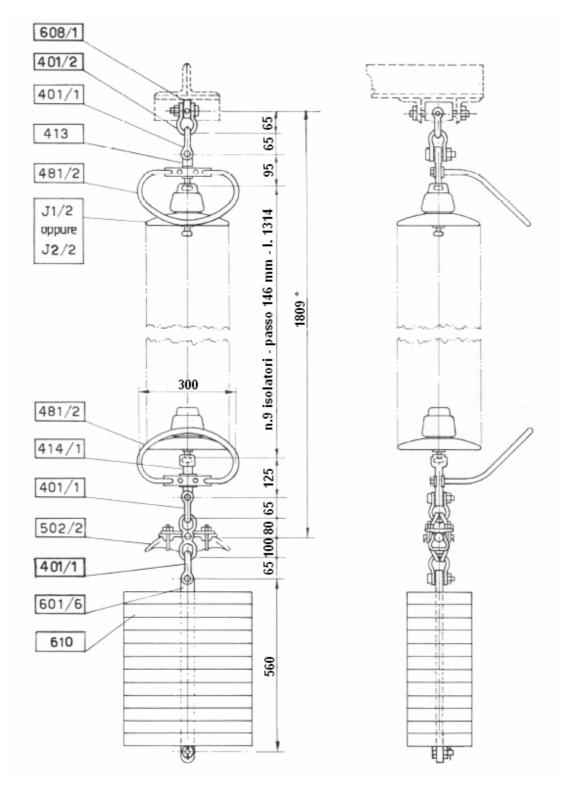
Rev. 1 di 1

^{*} La quota aumentata di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121)

Riferimento: C2

Storia delle revisioni			
Rev. 00	del 29/06/2007	Prima emissione.	

	Elaborato	Verificato		Approvato
Ī	G. Lavecchia	A. Posati	S. Tricoli	R. Rendina
	ING-ILC-COL	ING-ILC-COL	ING-ILC-COL	ING-ILC



LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER SOSPENSIONE CON CONTRAPPESO

Codifica: LM24

Rev. 00 del 29/06/2007

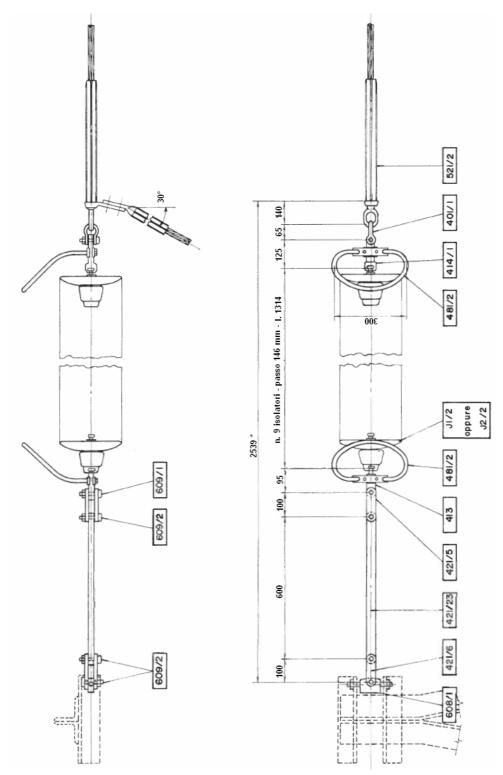
Pag. 1 di 1

^{*} La quota aumenta di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121)

Riferimento: C2

Storia delle revisioni		
Rev. 00	del 29/06/2007	Prima emissione.

Elaborato	Verificato		Approvato	
G. Lavecchia	A. Posati	S. Tricoli	R. Rendina	
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL	ING-ILC	



LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER AMARRO SEMPLICE

Codifica: LM121

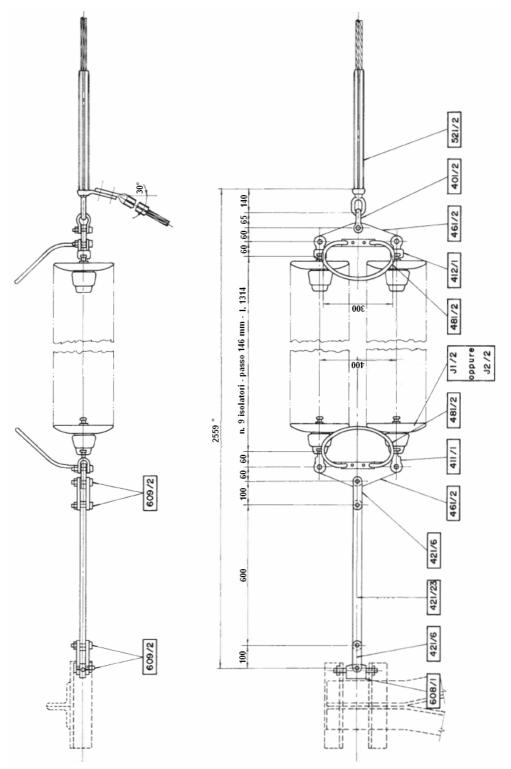
Rev. 00
del 29/06/2007

Rev. 00 Pag. 1 di 1

^{*} La quota aumenta di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121) Riferimento C2

Storia de	lle revisioni	
Rev. 00	del 29/06/2007	Prima emissione.

Elaborato	Verificato		Approvato	
G. Lavecchia	A. Posati	S. Tricoli	R. Rendina	Ī
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL	ING-ILC	



LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER AMARRO DOPPIO

Codifica: LM122

Rev. 00
del 29/06/2007

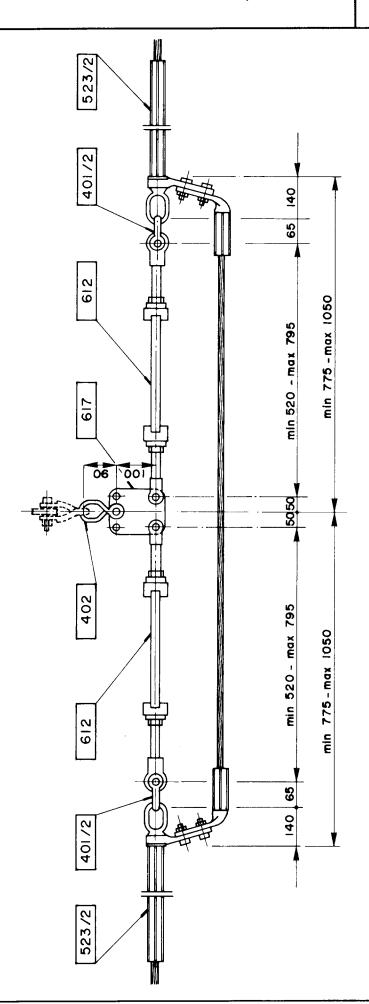
Pag. 1 di 1

^{*} La quota aumenta di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121) Riferimento C2

Storia de	lle revisioni	
Rev. 00	del 29/06/2007	Prima emissione.

Elaborato	Verificato	Approvato		
G. Lavecchia	A. Posati	S. Tricoli		R. Rendina
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL		ING-ILC

UNIFICAZIONE


ENEL

DISPOSITIVO PER AMARRO BILATERALE SINGOLO PER EQUIPAGGIAMENTI DI SOSPENSIONE A "I" CONDUTTORE IN ALL. - ACC. Ø 31,5

25 XX AQ

LM 133

Luglio 1994 Ed.3 - 1/1

DCO - AITC - UNITA' INGEGNERIA IMPIANTISTICA 2 - DDI - VICE DIREZIONE TECNICA

Riferimento: C2

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

TABELLA DELLE CORRISPONDENZE SOSTEGNI – GRUPPI MENSOLE

LIN_0000\$700

Rev. 00
del 28/06/2012

Pag. **1** di 4

	SOSTEGNI	MENSOLE			
TIPO	RIFERIMENTO	GRUPPO	RIFERIMENTO		
L	701/1 ÷ 9	А	701/20 ÷ 21		
N	702/1 ÷ 12	A 702/20 ÷ 29			
М	703/1 ÷ 9	А	703/20 ÷ 29		
Р	704/1 ÷ 14	В	704/20 ÷ 29		
V	705/1 ÷ 12	В	705/20 ÷ 29		
С	706/1 ÷ 9	D	706/20 ÷ 31		
E	707/1 ÷ 9	D	707/20 ÷ 31		
E*	708/1 ÷ 9	D	708/20 ÷ 21		

NOTE

1. I riferimenti a sostegni e mensole in tabella sono riportati come indicato nel documento LIN 00000000.

Storia delle revisioni						
Rev. 00	del 28/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna UXLS700 rev. 00 del 31/12/2007 (L.Alario, A.Posati, R.Rendina)				

ISC – Uso INTERNO

Elaborato	Verificato	Approvato		
ITI s.r.l.	P. Berardi SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posati SRI-SVT-LAE



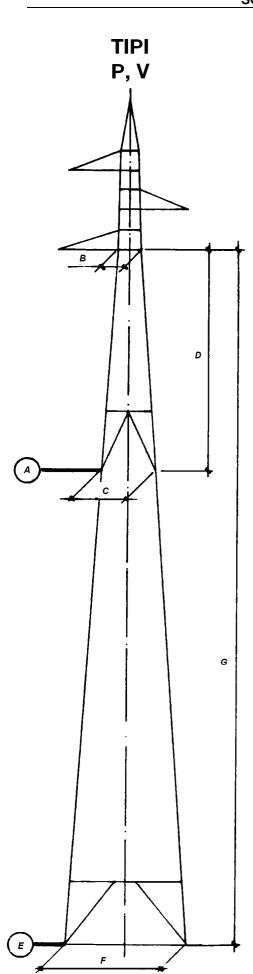
LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

CONDUTTORE Ø 31,5 mm – TIRO PIENO TABELLA DELLE CORRISPONDENZE SOSTEGNI – GRUPPI MENSOLE

Codifica LIN_0000\$700

Rev. 00 Pag. **2** di 4

		Altezza	inferiore	Altezza superiore					
Sostegno tipo	A (m) B (m)		C (m)	D (m)	E (m)	F (m)	G (m)		
L	9	9 1.10		11.30	33	5.53	35.30		
N	9	1.10	2.52	11.30	42	6.65	44.30		
М	9	1.10	2.52	11.30	33	5.53	35.30		



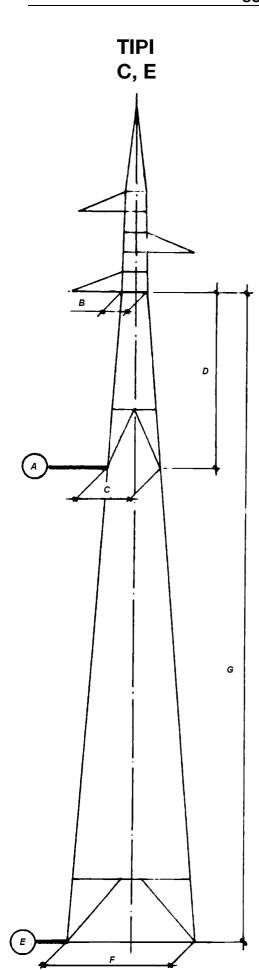
LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

TABELLA DELLE CORRISPONDENZE SOSTEGNI – GRUPPI MENSOLE

Codifica LIN_0000\$700

Rev. 00 Pag. **3** di 4

		Altezza	inferiore	Altezza superiore				
Sostegno tipo	A (m)	B (m) C (m)		D (m)	E (m)	F (m)	G (m)	
P	9	1.30	2.81	11.30	48	8.04	50.30	
V	9	1.30	2.81	11.30	42	7.19	44.30	



LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

TABELLA DELLE CORRISPONDENZE SOSTEGNI – GRUPPI MENSOLE

Codifica LIN_0000\$700

Rev. 00 Pag. 4 di 4

		Altezza	inferiore	Altezza superiore				
Sostegno tipo	A (m) B (m)		C (m)	D (m)	E (m)	F (m)	G (m)	
С	9	1.40	2.78	9.20	33	6.49	33.20	
E	9	1.40	2.78	9.20	33	6.49	33.20	

N.B. – I tronchi e le basi del sostegno E* hanno schema identico a quello dei sostegni C, E.

Tavola per montaggio meccanico LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO **SOSTEGNI TIPO "N"**

Codifica LIN 0000S702 Pag. **1** di 7

del 28/06/2012

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOSTEGNI (***)			Montante				TRO	NCHI				Descri	Piedi	Fondazione	Moncone (**)	
TIDO	RIF.	Parte comune	ausiliario	I	П	III	IV	V	VI	VII	VIII	Base	(n.4 pezzi)	normale (**)	Moncone ()	Peso (Kg) (*)
TIPO	NIF.				ELEMENTI STRUTTURALI (*)									RIF.		
N9	702/1	TN 19 (1296)	-	-	-	-	-	-	-	-	-	TN 7 (237)	TN 16 (691)	F 102 /295	F 43/2	2224
N12	702/2	TN 19 (1296)	TN 20 (283)	-	-	-	-	-	-	-	-	TN 8 (661)	TN 16 (691)	F 102 /295	F 43/2	2931
N15	702/3	TN 19 (1296)	-	TN 21 (892)	-	-	-	-	-	-	-	TN 9 (332)	TN 35 (693)	F 102 /295	F 44/3	3213
N18	702/4	TN 19 (1296)	TN 20 (283)	TN 21 (892)	-	-	-	-	-	-	-	TN 10 (757)	TN 35 (693)	F 102 /295	F 44/3	3921
N21	702/5	TN 19 (1296)	-	TN 21 (892)	TN 40 (948)	-	-	-	-	-	-	TN 11 (646)	TN 35 (693)	F 103 /275	F 44/1	4475
N24	702/6	TN 19 (1296)	TN 20 (283)	TN 21 (892)	TN 40 (948)	-	-	-	-	-	-	TN 12 (936)	TN 35 (693)	F 103 /285	F 44/2	5048
N27	702/7	TN 19 (1296)	-	TN 21 (892)	TN 40 (948)	TN 23 (998)	-	-	-	-	-	TN 13 (660)	TN 36 (785)	F 103 /285	F 44/2	5579
N30	702/8	TN 19 (1296)	TN 20 (283)	TN 21 (892)	TN 40 (948)	TN 23 (998)	-	-	-	-	-	TN 14 (1146)	TN 36 (785)	F 103 /285	F 44/2	6348
N33	702/9	TN 19 (1296)	-	TN 21 (892)	TN 40 (948)	TN 23 (998)	TN 24 (1096)	-	-	-	-	TN 15 (979)	TN 36 (785)	F 103 /285	F 44/2	6994
N36	702/10	TN 19 (1296)	TN 20 (283)	TN 21 (892)	TN 40 (948)	TN 23 (998)	TN 24 (1096)	-	-	-	-	TN 37 (1351)	TN 36 (785)	F 103 /285	F 44/2	7649
N39	702/11	TN 19 (1296)	-	TN 21 (892)	TN 40 (948)	TN 23 (998)	TN 24 (1096)	TN 25 (1174)	-	-	-	TN 38 (1167)	TN 36 (785)	F 103 /285	F 44/2	8356
N42	702/12	TN 19 (1296)	TN 20 (283)	TN 21 (892)	TN 40 (948)	TN 23 (998)	TN 24 (1096)	TN 25 (1174)	-	-	-	TN 39 (1574)	TN 36 (785)	F 103 /295	F 44/3	9046

^{(*) –} Il peso totale dell'allungato (esclusi i monconi) e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

^{(***) –} Ogni sostegno viene indicato con TIPO (con la lettera corrispondente al tipo di sostegno, seguita dall'altezza utile) e con RIF. (con riferimento al nome del documento, seguito da un progressivo, come da LIN_00000000) che contraddistingue la sua composizione.

Rev. 00	del 28/06/2012	II documento, re 31/12/2007 (L.Ala		ituisce il documento Tern	a UXLS702 rev. 00 de	
			ISC	-Uso INTERNO		
			İ			La
Elaborato			Verificato			Approvato

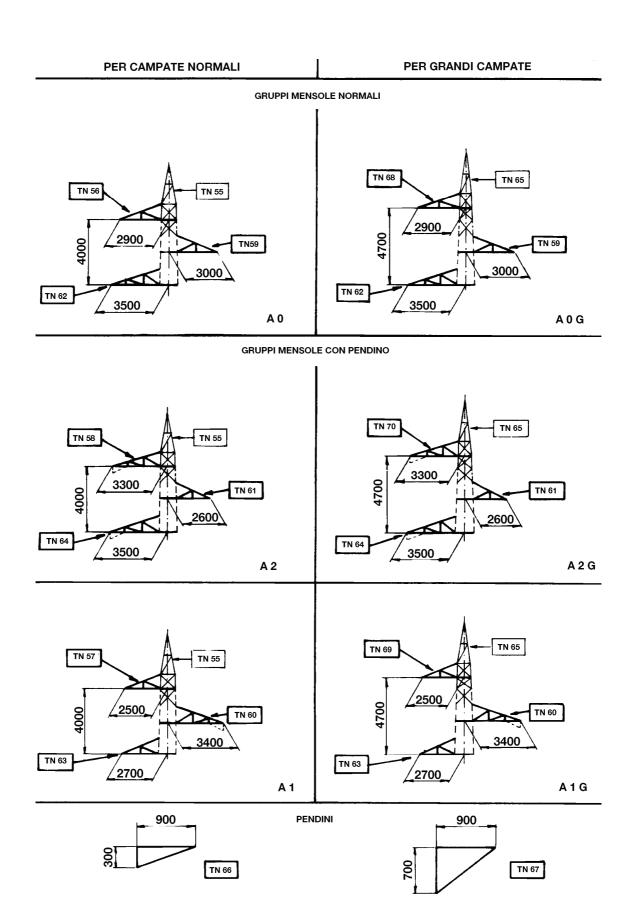
^{(**) –} Fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "N"

Codifica LIN_0	0000S702
Rev. 00	Pag. 2 di 7

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO "A"

GRUPPI N	GRUPPI MENSOLE			ELEMENTI STI	RUTTURALI (*)			
TIPO	RIF.	Cimino	Mensola alta	Mensola	Mensola	Pen	dino	PESO (kg) (*)
TIFO	nii .	Cillino	Wellsold alla	media	bassa	tipo	n. pezzi	()
A0	702/20	TN 55 (348)	TN 56 (115)	TN 59 (111)	TN 62 (134)	-	-	708
A1	702/21	TN 55 (348)	TN 57 (95)	TN 60 (150)	TN 63 (98)	TN 66 (30)	1	721
A2	702/22	TN 55 (348)	TN 58 (145)	TN 61 (98)	TN 64 (145)	TN 66 (30)	2	796
A1*	702/23	TN 55 (348)	TN 57 (95)	TN 60 (150)	TN 63 (98)	TN 67 (30)	1	721
A2*	702/24	TN 55 (348)	TN 58 (145)	TN 61 (98)	TN 64 (145)	TN 67 (30)	2	796
A0G	702/25	TN 65 (436)	TN 68 (119)	TN 59 (111)	TN 62 (134)	-	-	800
A1G	702/26	TN 65 (436)	TN 69 (97)	TN 60 (150)	TN 63 (98)	TN 66 (30)	1	811
A2G	702/27	TN 65 (436)	TN 70 (147)	TN 61 (98)	TN 64 (145)	TN 66 (30)	2	886
A1*G	702/28	TN 65 (436)	TN 69 (97)	TN 60 (150)	TN 63 (98)	TN 67 (30)	1	811
A2*G	702/29	TN 65 (436)	TN 70 (147)	TN 61 (98)	TN 64 (145)	TN 67 (30)	2	886

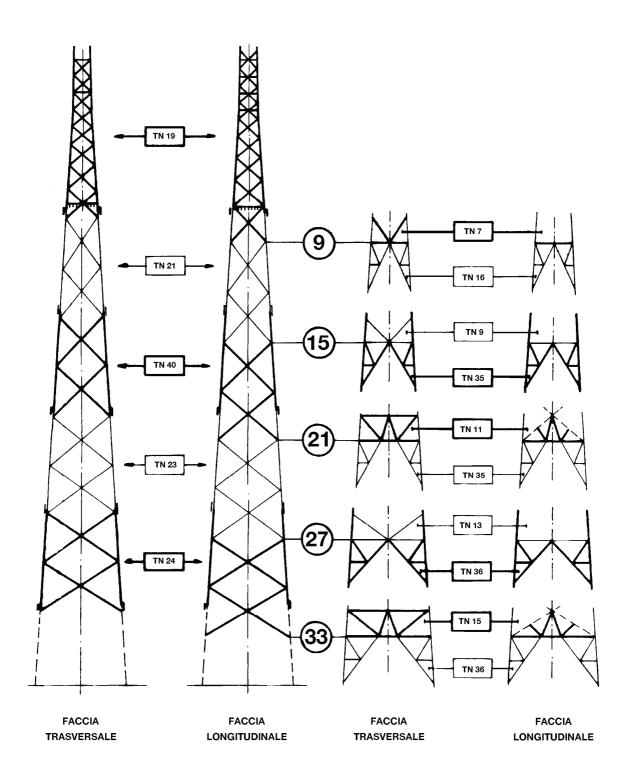

^{(*) –} Il peso totale dell'allungato e dei singoli elementi strutturali, indicato tra parentesi, è comprensivo della zincatura. I pesi sono espressi in Kg.

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

Codifica LIN_0000S702 Rev. 00 Pag. **3** di 7

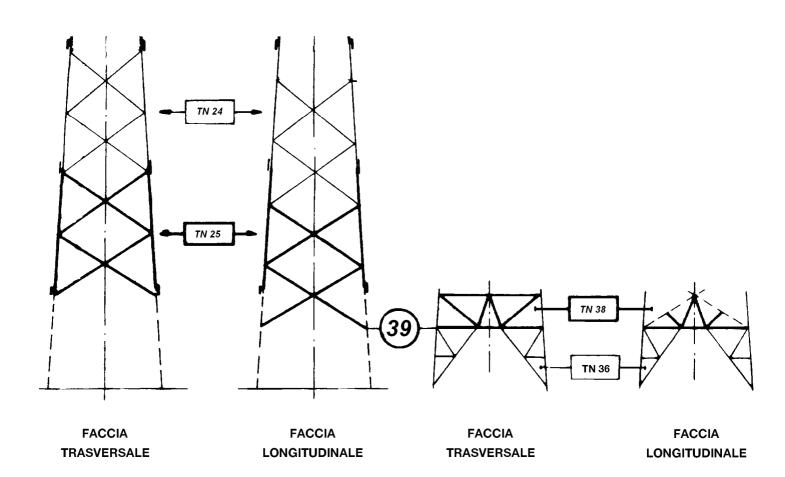
SOSTEGNI TIPO "N"

G R O U P


Tavola per montaggio meccanico

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "N"

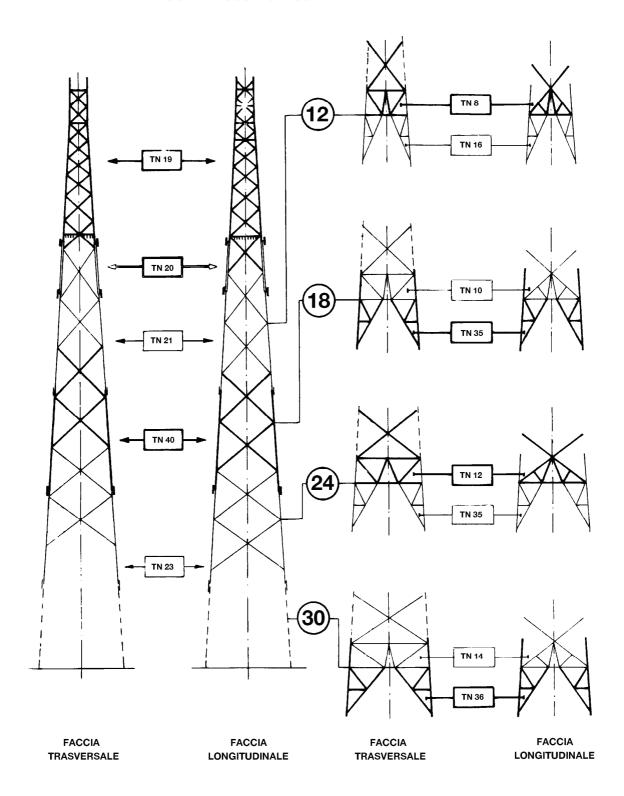
LIN_0000\$702


Rev. 00 Pag. **4** di 7

SCHEMA SOSTEGNI CON ALTEZZE DISPARI

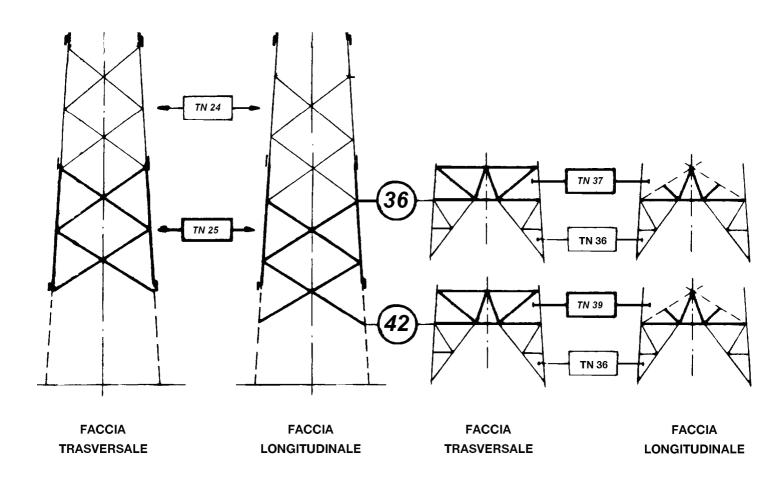
odifica LIN	N_0000S702	
Rev. 00	Pag. 5 di 7	

SCHEMA SOSTEGNI CON ALTEZZE DISPARI



LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "N"

LIN_0000\$702


Rev. 00 Pag. **6** di 7

SCHEMA SOSTEGNI CON ALTEZZE PARI

Codifica LIN_	0000S702
Rev. 00	Pag. 7 di 7

SCHEMA SOSTEGNI CON ALTEZZE PARI

Tavola per montaggio meccanico LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "M"

Rev. 00 del 28/06/2012 Pag. **1** di 5

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOST (**	EGNI **)		Montante				TRO	NCHI					Piedi Fondazione	Fondazione	(44)	Peso (Kg) (*)
TIDO	DIE	Parte comune	ausiliario	ı	II	III	IV	V	VI	VII	VIII	- Base	(n.4 pezzi)		Moncone (**)	
TIPO	RIF.						ELEMENTI STI	RUTTURALI (*)						R	IF.	
M9	703/1	TM 37 (1301)	-	-	-	-	-	-	-	-	-	TM 7 (234)	TM 16 (765)	F 102 /295 F 103 /275	F 44/3 F 44/1	2300
M12	703/2	TM 37 (1301)	TM 38 (336)	-	-	-	-	-	-	-	-	TM 8 (662)	TM 16 (765)	F 103 /275	F 44/1	3064
M15	703/3	TM 37 (1301)	-	TM 39 (1006)	-	-	-	-	-	-	-	TM 9 (330)	TM 35 (754)	F 103 /285	F 44/2	3391
M18	703/4	TM 37 (1301)	TM 38 (336)	TM 39 (1006)	-	-	-	-	-	-	-	TM 10 (754)	TM 35 (754)	F 103 /285	F 44/2	4151
M21	703/5	TM 37 (1301)	-	TM 39 (1006)	TM 40 (1009)	-	-	-	-	-	-	TM 11 (647)	TM 35 (754)	F 103 /285	F 44/2	4717
M24	703/6	TM 37 (1301)	TM 38 (336)	TM 39 (1006)	TM 40 (1009)	-	-	-	-	-	-	TM 12 (929)	TM 35 (754)	F 103 /295	F 44/3	5335
M27	703/7	TM 37 (1301)	-	TM 39 (1006)	TM 40 (1009)	TM 41 (1117)	-	-	-	-	-	TM 13 (597)	TM 54 (813)	F 103 /295	F 44/3	5843
M30	703/8	TM 37 (1301)	TM 38 (336)	TM 39 (1006)	TM 40 (1009)	TM 41 (1117)	-	-	-	-	-	TM 14 (1095)	TM 54 (813)	F 103 /295	F 44/3	6677
M33	703/9	TM 37 (1301)	-	TM 39 (1006)	TM 40 (1009)	TM 41 (1117)	TM 42 (1171)	-	-	-	-	TM 15 (937)	TM 54 (813)	F 103 /295	F 44/3	7354

^{(*) –} Il peso totale dell'allungato (esclusi i monconi) e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

Storia d	elle revisioni							
Rev. 00	del 28/06/2012	edatto in prima emission ario, A.Posati, R.Rendina)		ce il documento	Terna	UXLS703	rev.	00 del
		ISC –U	so INTERNO					
Elaborato		Verificato				Approvato		
ITI s.r.l.		P. Berardi SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE			A. Posati SRI-SVT-I		

Questo documento contiene informazioni di proprietà di Terna Rete Italia Gruppo Terna S.p.A. e deve essere utilizzato esclusivamente dal destinatario in relazione alle finalità per le quali è stato ricevuto. E' vietata qualsiasi forma di riproduzione o di divulgazione senza l'esplicito consenso di Terna Rete Italia Gruppo Terna S.p.A.

^{(**) –} Fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

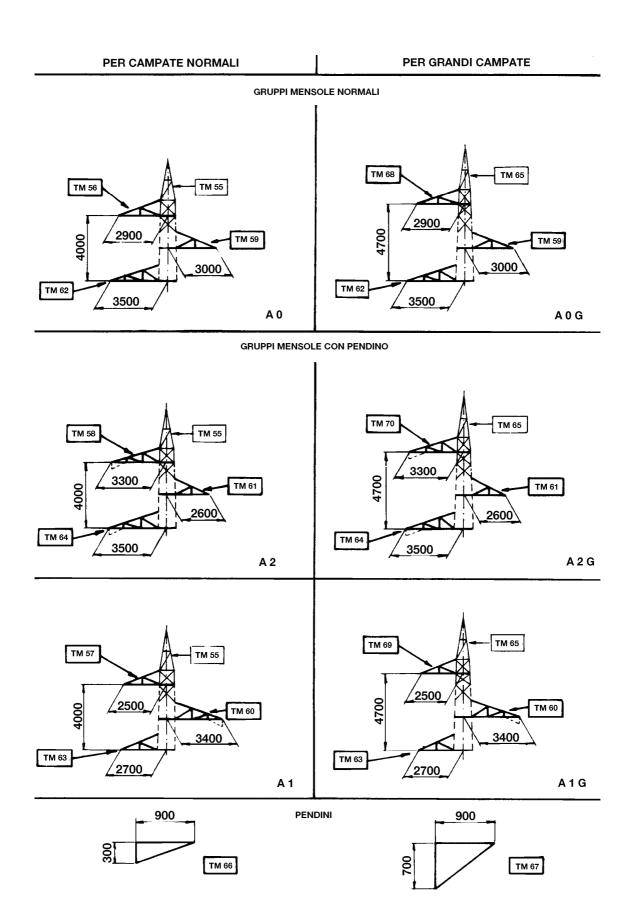
^{(***) –} Ogni sostegno viene indicato con TIPO (con la lettera corrispondente al tipo di sostegno, seguita dall'altezza utile) e con RIF. (con riferimento al nome del documento, seguito da un progressivo, come da LIN_00000000) che contraddistingue la sua composizione.

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "M"

Codifica LIN_(0000\$703
Rev. 00	Pag. 2 di 5

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO "A"

GRUPPI N	GRUPPI MENSOLE			ELEMENTI STI	RUTTURALI (*)			
TIPO	RIF.	Cimino	Mensola alta	Mensola	Mensola	Pen	dino	PESO (kg) (*)
TIFO	nii .	Cillino	ivierisora arta	media	bassa	tipo	n. pezzi	()
A0	703/20	TM 55 (367)	TM 56 (111)	TM 59 (111)	TM 62 (131)	-	-	720
A1	703/21	TM 55 (367)	TM 57 (94)	TM 60 (146)	TM 63 (98)	TM 66 (30)	1	735
A2	703/22	TM 55 (367)	TM 58 (146)	TM 61 (98)	TM 64 (140)	TM 66 (30)	2	811
A1*	703/23	TM 55 (367)	TM 57 (94)	TM 60 (146)	TM 63 (98)	TM 67 (35)	1	740
A2*	703/24	TM 55 (367)	TM 58 (146)	TM 61 (98)	TM 64 (140)	TM 67 (35)	2	821
A0G	703/25	TM 65 (430)	TM 68 (113)	TM 59 (111)	TM 62 (131)	-	-	785
A1G	703/26	TM 65 (430)	TM 69 (98)	TM 60 (146)	TM 63 (98)	TM 66 (30)	1	802
A2G	703/27	TM 65 (430)	TM 70 (147)	TM 61 (98)	TM 64 (140)	TM 66 (30)	2	875
A1*G	703/28	TM 65 (430)	TM 69 (98)	TM 60 (146)	TM 63 (98)	TM 67 (35)	1	807
A2*G	703/29	TM 65 (430)	TM 70 (147)	TM 61 (98)	TM 64 (140)	TM 67 (35)	2	885

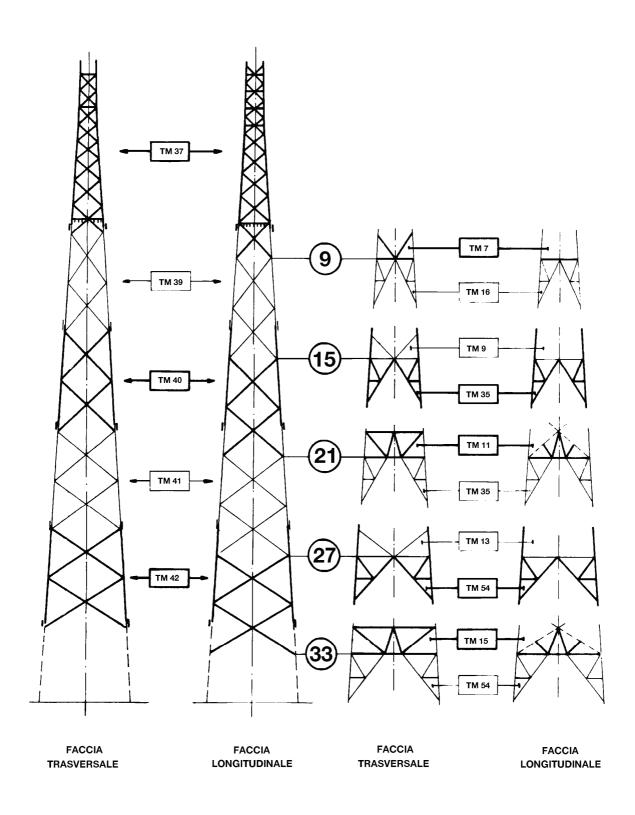

^{(*) –} Il peso totale dell'allungato e dei singoli elementi strutturali, indicato tra parentesi, è comprensivo della zincatura. I pesi sono espressi in Kg.

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

LIN_0000\$703

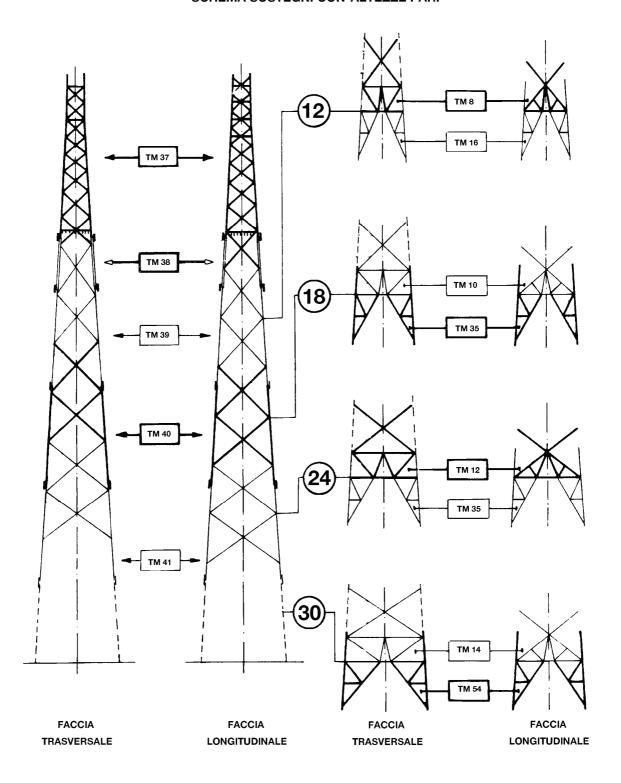
Rev. 00 Pag. **3** di 5

SOSTEGNI TIPO "M"



LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

Codifica LIN_0000\$703 Pag. **4** di 5 Rev. 00


SOSTEGNI TIPO "M"

SCHEMA SOSTEGNI CON ALTEZZE DISPARI

SOSTEGNI TIPO "M"

SCHEMA SOSTEGNI CON ALTEZZE PARI

Tavola per montaggio meccanico LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "P"

Codifica
LIN_0000\$704

Rev. 00
del 28/06/2012

Pag. 1 di 7

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOS ⁻	ΓEGNI **)		Montante				TRO	NCHI				_	Piedi	Piedi Fondazione Moncone (**)		
TIPO	DIE	Parte comune	ausiliario	I	П	III	IV	V	VI	VII	VIII	Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	RIF.						ELEMENTI ST	RUTTURALI (*)						R	IF.	
P9	704/1	TP 81 (1427)	-	-	-	-	-	-	-	-	-	TP 87 (255)	TP 96 (758)	F103 /275 F103 /285	F 44/1	2440
P12	704/2	TP 81 (1427)	TP 82 (347)	-	-	-	-	-	-	-	-	TP 88 (754)	TP 96 (758)	F103 /285	F 44/2	3286
P15	704/3	TP 81 (1427)	-	TP 83 (1070)	-	-	-	-	-	-	-	TP 89 (364)	TP 97 (816)	F103 /295	F 44/3	3677
P18	704/4	TP 81 (1427)	TP 82 (347)	TP 83 (1070)	-	-	-	-	-	-	-	TP 90 (833)	TP 97 (816)	F103 /295	F 44/3	4493
P21	704/5	TP 81 (1427)	-	TP 83 (1070)	TP 84 (1153)	-	-	-	-	-	-	TP 91 (676)	TP 97 (816)	F103 /295	F 44/3	5142
P24	704/6	TP 81 (1427)	TP 82 (347)	TP 83 (1070)	TP 84 (1153)	-	-	-	-	-	-	TP 92 (960)	TP 97 (816)	F103 /305	F 44/4	5773
P27	704/7	TP 81 (1427)	-	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	-	-	-	-	-	TP 93 (650)	TP 98 (971)	F103 /305	F 48/1	6479
P30	704/8	TP 81 (1427)	TP 82 (347)	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	-	-	-	-	-	TP 94 (1201)	TP 98 (971)	F103 /305	F 48/1	7377
P33	704/9	TP 81 (1427)	-	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	TP 86 (1318)	-	-	-	-	TP 95 (1043)	TP 98 (971)	F103 /305	F 48/1	8190
P36	704/10	TP 81 (1427)	TP 82 (347)	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	TP 86 (1318)	-	-	-	-	TP 32 (1469)	TP 98 (971)	F103 /305	F 48/1	8963
P39	704/11	TP 81 (1427)	-	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	TP 86 (1318)	TP 192 (1503)	-	-	-	TP 33 (1227)	TP 98 (971)	F103 /325	F 48/2	9877
P42	704/12	TP 81 (1427)	TP 82 (347)	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	TP 86 (1318)	TP 192 (1503)	-	-	-	TP 194 (1903)	TP 98 (971)	F103 /325	F 48/2	10900
P45	704/13	TP 81 (1427)	-	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	TP 86 (1318)	TP 192 (1503)	TP 193 (1831)	-	-	TP 199 (1110)	TP 201 (1302)	F103 /325	F 48/2	11922
P48	704/14	TP 81 (1427)	TP 82 (347)	TP 83 (1070)	TP 84 (1153)	TP 85 (1208)	TP 86 (1318)	TP192 (1503)	TP193 (1831)	-	-	TP 200 (2598)	TP 201 (1302)	F103 /325	F 48/2	13757

^{(*) –} Il peso totale dell'allungato (esclusi i monconi) e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

^{(***) –} Ogni sostegno viene indicato con TIPO (con la lettera corrispondente al tipo di sostegno, seguita dall'altezza utile) e con RIF. (con riferimento al nome del documento, seguito da un progressivo, come da LIN_00000000) che contraddistingue la sua composizione.

Storia del	lle revisioni	
Rev. 00	del 28/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna UXLS704 rev. 00 de 31/12/2007 (L.Alario, A.Posati, R.Rendina)
		ISC -Uso INTERNO

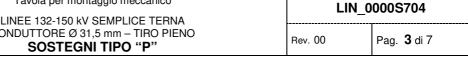
Elaborato	Verificato	Verificato				
ITI s.r.l.	P. Berardi SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posati SRI-SVT-LAE		

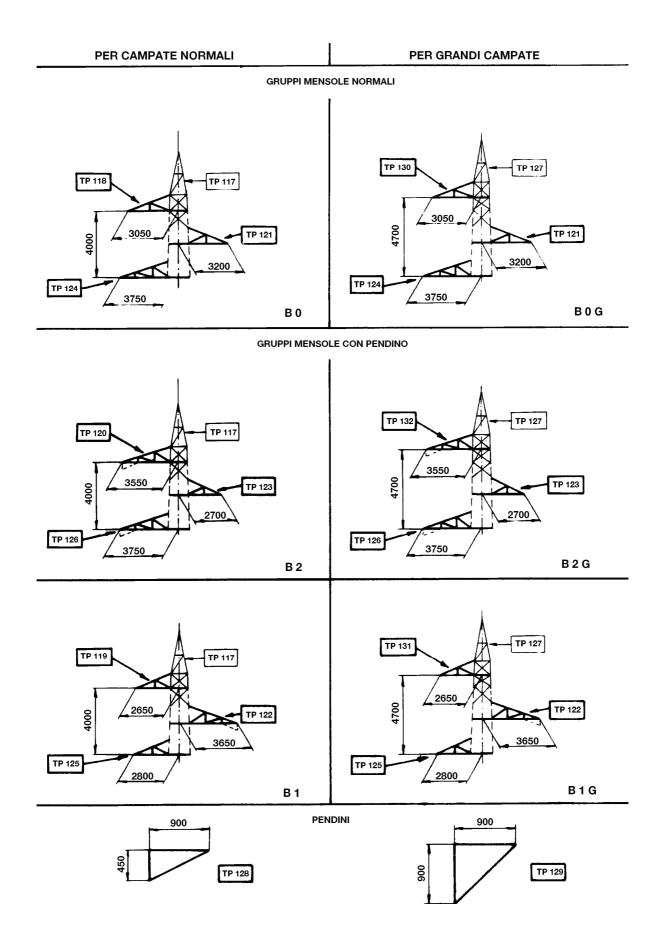
^{(**) –} Fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "P"

Codifica LIN_0000S704								
Rev. 00	Pag. 2 di 7							

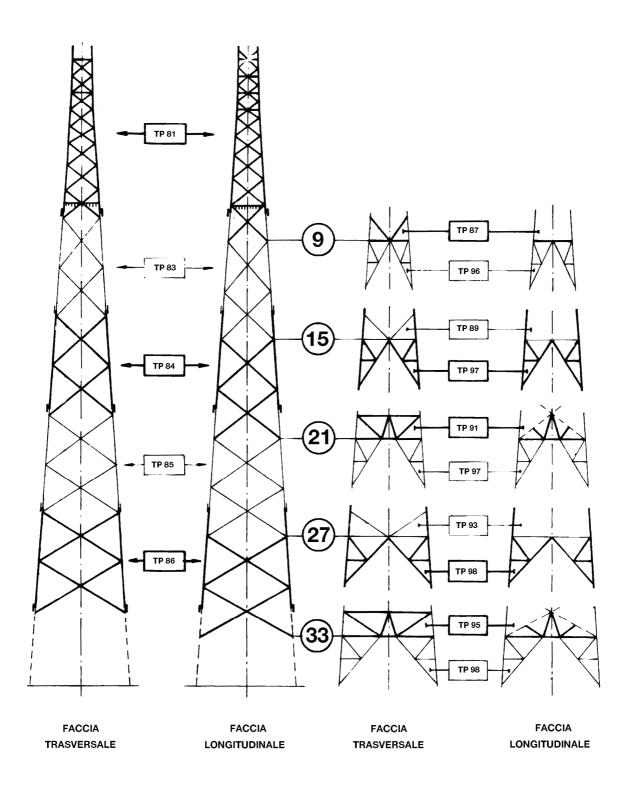
ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO "B"


GRUPPI MENSOLE		ELEMENTI STRUTTURALI (*)						
TIPO RIF.	DIE	Cimino	Mensola alta	Mensola media	Mensola bassa	Pendino		PESO (kg) (*)
	nii .					tipo	n. pezzi	()
В0	704/20	TP 117 (380)	TP 118 (106)	TP 121 (112)	TP 124 (134)	-	-	732
B1	704/21	TP 117 (380)	TP 119 (91)	TP 122 (194)	TP 125 (96)	TP 128 (31)	1	792
B2	704/22	TP 117 (380)	TP 120 (186)	TP 123 (94)	TP 126 (198)	TP 128 (31)	2	920
B1*	704/23	TP 117 (380)	TP 119 (91)	TP 122 (194)	TP 125 (96)	TP 129 (33)	1	794
B2*	704/24	TP 117 (380)	TP 120 (186)	TP 123 (94)	TP 126 (198)	TP 129 (33)	2	924
B0G	704/25	TP 127 (432)	TP 130 (110)	TP 121 (112)	TP 124 (134)	-	-	788
B1G	704/26	TP 127 (432)	TP 131 (90)	TP 122 (194)	TP 125 (96)	TP 128 (31)	1	843
B2G	704/27	TP 127 (432)	TP 132 (187)	TP 123 (94)	TP 126 (198)	TP 128 (31)	2	973
B1*G	704/28	TP 127 (432)	TP 131 (90)	TP 122 (194)	TP 125 (96)	TP 129 (33)	1	845
B2*G	704/29	TP 127 (432)	TP 132 (187)	TP 123 (94)	TP 126 (198)	TP 129 (33)	2	977


^{(*) –} Il peso totale dell'allungato e dei singoli elementi strutturali, indicato tra parentesi, è comprensivo della zincatura. I pesi sono espressi in Kg.

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

Codifica LIN_0000S704

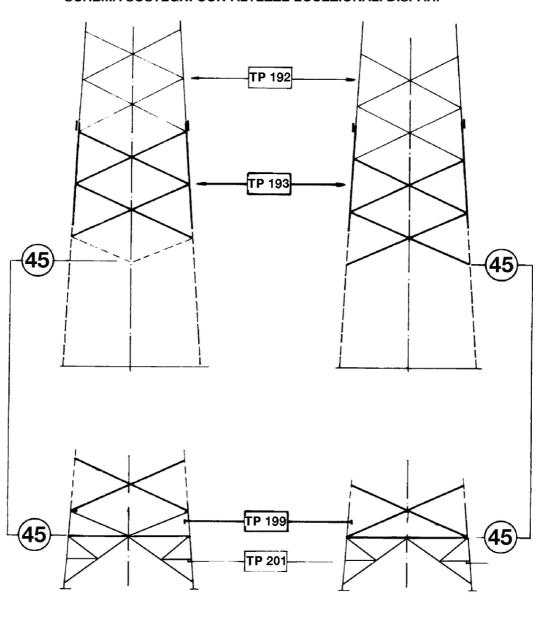


LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "P"

LIN_0000\$704

Rev. 00 Pag. 4 di 7

SCHEMA SOSTEGNI CON ALTEZZE DISPARI



LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO

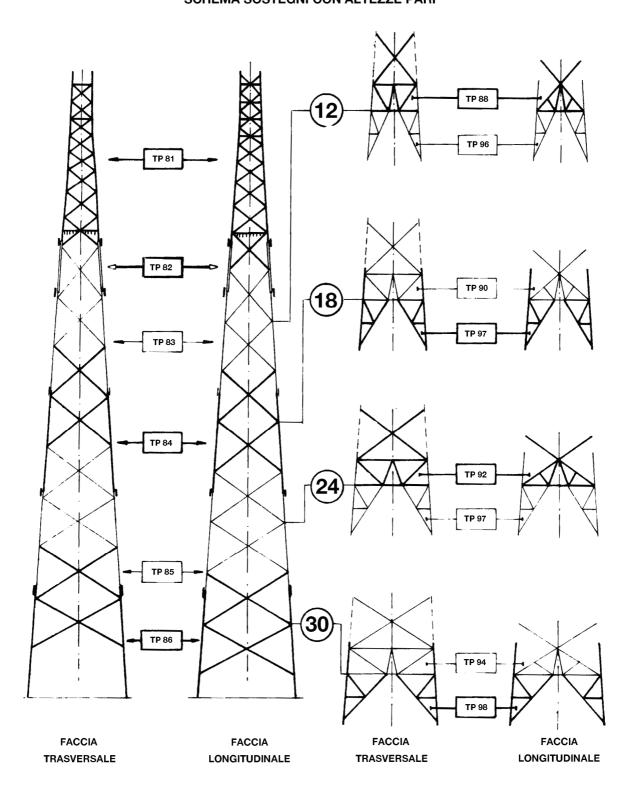
Codifica LIN_0000S704 Pag. **5** di 7 Rev. 00

SOSTEGNI TIPO "P"

SCHEMA SOSTEGNI CON ALTEZZE ECCEZIONALI DISPARI

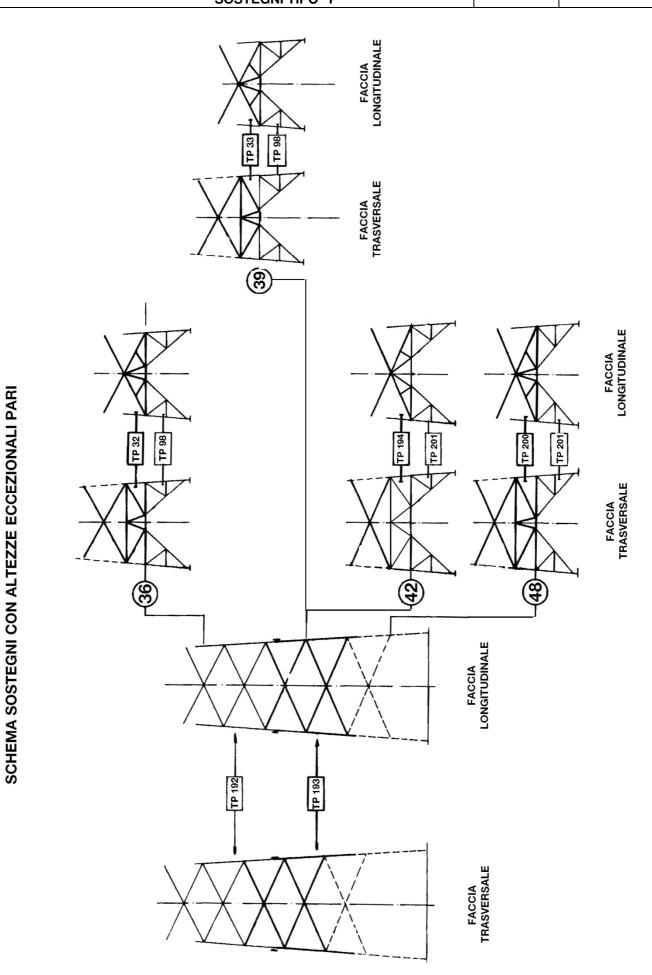
FACCIA **TRASVERSALE**

FACCIA LONGITUDINALE



LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "P"

LIN_0000\$704


Rev. 00 Pag. 6 di 7

SCHEMA SOSTEGNI CON ALTEZZE PARI

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "P"

Codifica LIN_0000S704 Rev. 00 Pag. **7** di 7

Tavola per montaggio meccanico LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "V"

Codifica
LIN_0000\$705

Rev. 00
del 28/06/2012

Pag. 1 di 7

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOST (*	ΓEGNI **)		Montante		TRONCHI								Piedi	Fondazione	(44)	
TIPO	DIE	Parte comune	ausiliario	I	II	III	IV	V	VI	VII	VIII	- Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	RIF.			ELEMENTI STRUTTURALI (*)											RIF.	
V9	705/1	TV 99 (1781)	-	-	-	-	-	-	-	-	-	TV 87 (268)	TV 114 (957)	F 103 /325	F 45/2	3006
V12	705/2	TV 99 (1781)	TV 100 (487)	-	-	-	-	-	-	-	-	TV 88 (811)	TV 114 (957)	F 103 /325	F 45/2	4035
V15	705/3	TV 99 (1781)	-	TV 101 (1388)	-	-	-	-	-	-	-	TV 89 (396)	TV 115 (1069)	F 103 /325	F 45/2	4634
V18	705/4	TV 99 (1781)	TV 100 (487)	TV 101 (1388)	-	-	-	-	-	-	-	TV 90 (910)	TV 115 (1069)	F 103 /325	F 45/2	5635
V21	705/5	TV 99 (1781)	-	TV 101 (1388)	TV 102 (1541)	-	-	-	-	-	-	TV 91 (702)	TV 115 (1069)	F 104 /305	F 45/1	6481
V24	705/6	TV 99 (1781)	TV 100 (487)	TV 101 (1388)	TV 102 (1541)	-	-	-	-	-	-	TV 92 (1069)	TV 115 (1069)	F 104 /305	F 45/1	7335
V27	705/7	TV 99 (1781)	-	TV 101 (1388)	TV 102 (1541)	TV 103 (1645)	-	-	-	-	-	TV 93 (685)	TV 116 (1310)	F 104 /305	F 46/1	8350
V30	705/8	TV 99 (1781)	TV 100 (487)	TV 101 (1388)	TV 102 (1541)	TV 103 (1645)	-	-	-	-	-	TV 94 (1287)	TV 116 (1310)	F 104 /305	F 46/1	9439
V33	705/9	TV 99 (1781)	-	TV 101 (1388)	TV 102 (1541)	TV 103 (1645)	TV 104 (1828)	-	-	-	-	TV 95 (1047)	TV 116 (1310)	F 104 /315	F 46/2	10540
V36	705/10	TV 99 (1781)	TV 100 (487)	TV 101 (1388)	TV 102 (1541)	TV 103 (1645)	TV 104 (1828)	-	-	-	-	TV 96 (1534)	TV 116 (1310)	F 104 /315	F 46/2	11514
V39	705/11	TV 99 (1781)	-	TV 101 (1388)	TV 102 (1541)	TV 103 (1645)	TV 104 (1828)	TV 105 (1956)	-	-	-	TV 97 (1258)	TV 116 (1310)	F 104 /315	F 46/2	12707
V42	705/12	TV 99 (1781)	TV 100 (487)	TV 101 (1388)	TV 102 (1541)	TV 103 (1645)	TV 104 (1828)	TV 105 (1956)	-	-	-	TV 98 (1863)	TV 116 (1310)	F 104 /315	F 46/2	13799

^{(*) –} Il peso totale dell'allungato (esclusi i monconi) e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

06/2012	·	ario, A.Posati, R.Rend	. 55	tuisce il documento Terna	a UXLS705 rev. 00 de
		ISC	-Uso INTERNO		
		Verificato			Approvato
		P. Berardi SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posati SRI-SVT-LAE
	contiene info		Verificato P. Berardi SRI-SVT-LAE	Verificato P. Berardi A. Guarneri SRI-SVT-LAE SRI-SVT-LAE	Verificato P. Berardi A. Guarneri

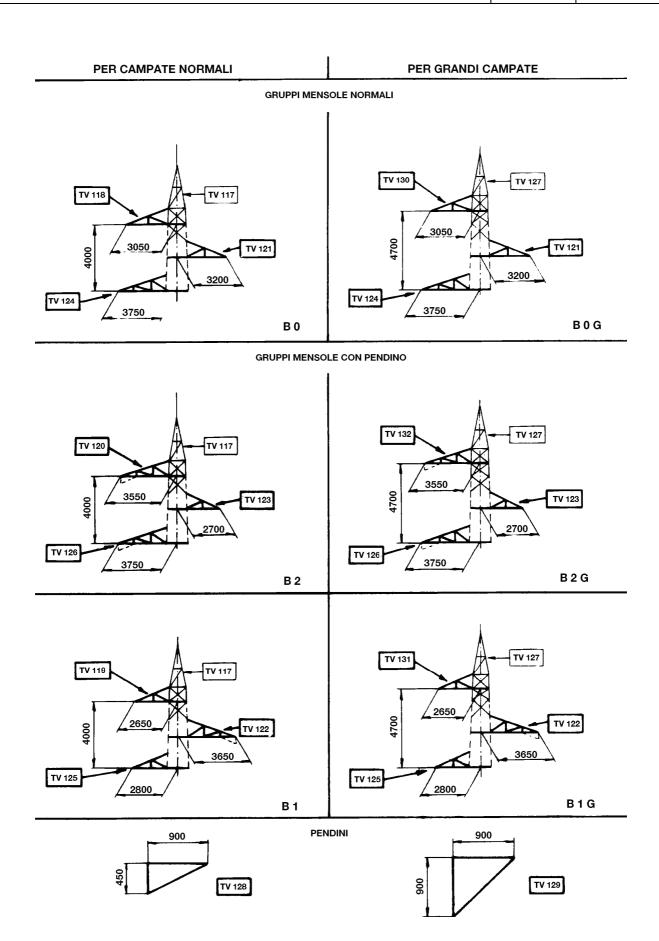
^{(**) –} Fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

^{(***) –} Ogni sostegno viene indicato con TIPO (con la lettera corrispondente al tipo di sostegno, seguita dall'altezza utile) e con RIF. (con riferimento al nome del documento, seguito da un progressivo, come da LIN_00000000) che contraddistingue la sua composizione.

LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "V"

Codifica LIN_0	000\$705
Rev. 00	Pag. 2 di 7

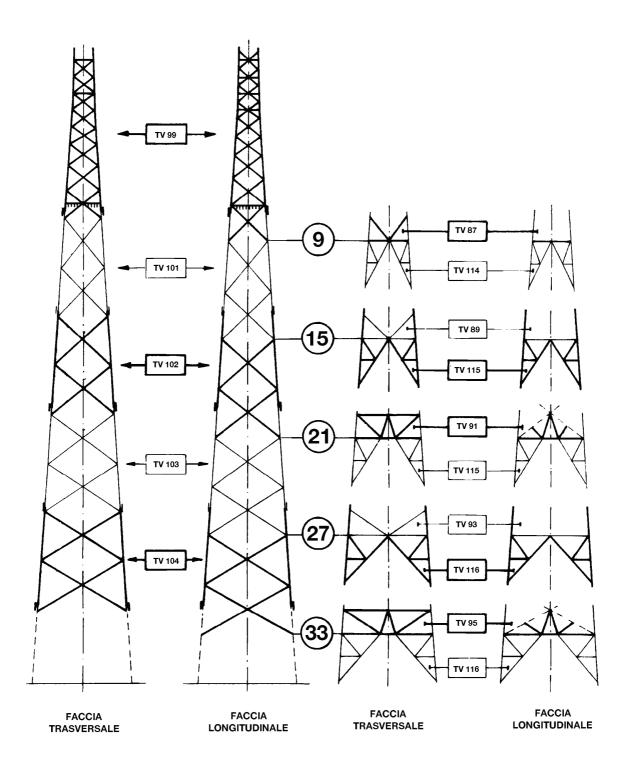
ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO "B"


GRUPPI N	MENSOLE			ELEMENTI STI	RUTTURALI (*)			
TIPO	RIF.	Cimino	Mensola alta	Mensola	Mensola	Pen	dino	PESO (kg) (*)
TIFO	rui .	Cillino	Wellsold alla	media	bassa	tipo	n. pezzi	
В0	705/20	TV 117 (392)	TV 118 (110)	TV 121 (122)	TV 124 (146)	-	-	770
B1	705/21	TV 117 (392)	TV 119 (96)	TV 122 (208)	TV 125 (99)	TV 128 (31)	1	826
B2	705/22	TV 117 (392)	TV 120 (198)	TV 123 (97)	TV 126 (212)	TV 128 (31)	2	961
B1*	705/23	TV 117 (392)	TV 119 (96)	TV 122 (208)	TV 125 (99)	TV 129 (38)	1	833
B2*	705/24	TV 117 (392)	TV 120 (198)	TV 123 (97)	TV 126 (212)	TV 129 (38)	2	975
B0G	705/25	TV 127 (497)	TV 130 (115)	TV 121 (122)	TV 124 (146)	-	-	880
B1G	705/26	TV 127 (497)	TV 131 (98)	TV 122 (208)	TV 125 (99)	TV 128 (31)	1	933
B2G	705/27	TV 127 (497)	TV 132 (200)	TV 123 (97)	TV 126 (212)	TV 128 (31)	2	1068
B1*G	705/28	TV 127 (497)	TV 131 (98)	TV 122 (208)	TV 125 (99)	TV 129 (38)	1	940
B2*G	705/29	TV 127 (497)	TV 132 (200)	TV 123 (97)	TV 126 (212)	TV 129 (38)	2	1082

^{(*) –} Il peso totale dell'allungato e dei singoli elementi strutturali, indicato tra parentesi, è comprensivo della zincatura. I pesi sono espressi in Kg.

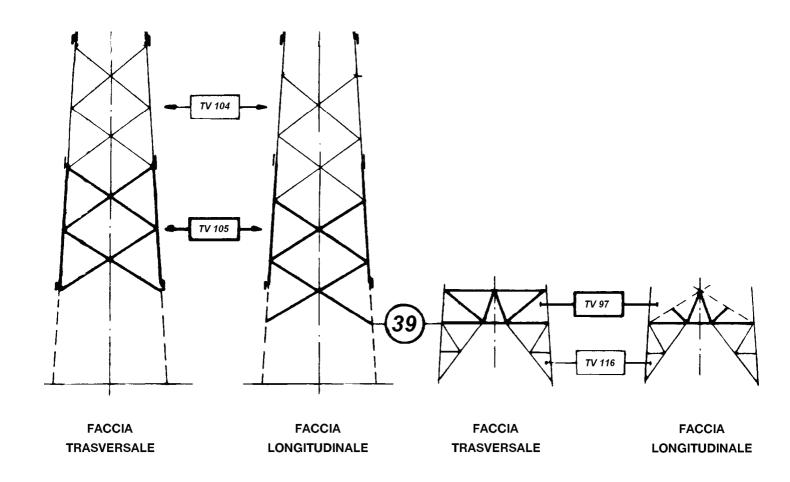
LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO

Codifica LIN_0000S705 Pag. **3** di 7 Rev. 00



LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "V"

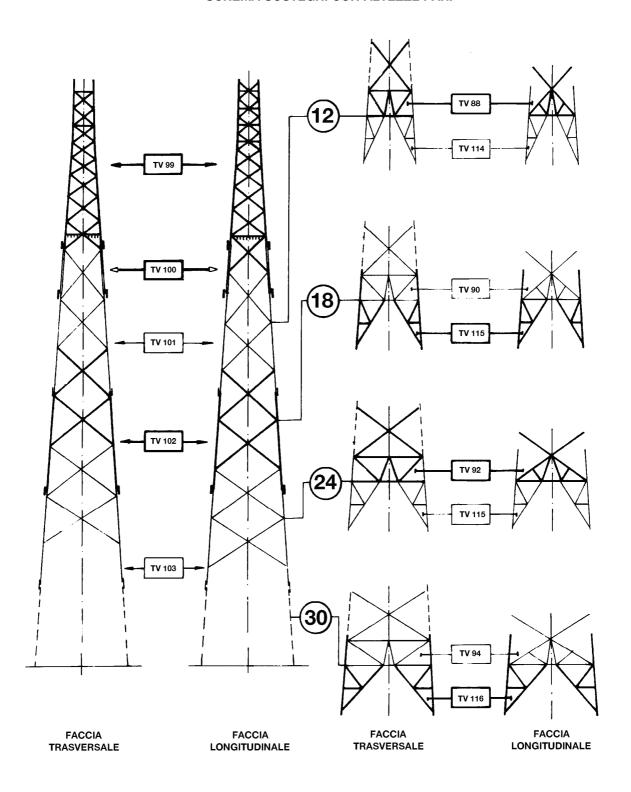
LIN_0000\$705


Rev. 00 Pag. **4** di 7

SCHEMA SOSTEGNI CON ALTEZZE DISPARI

Codifica LIN_(0000S705
Rev. 00	Pag. 5 di 7

SCHEMA SOSTEGNI CON ALTEZZE DISPARI

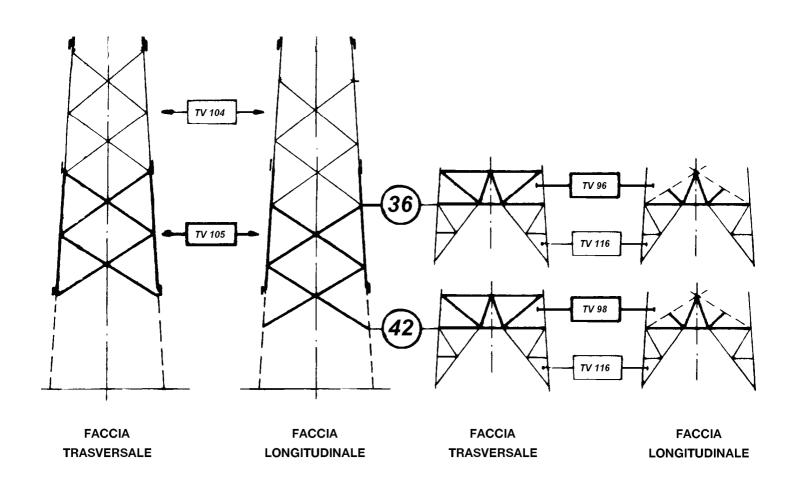


LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "V"

LIN_0000\$705

Rev. 00 Pag. **6** di 7

SCHEMA SOSTEGNI CON ALTEZZE PARI



LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "V"

LIN_0000\$705

Rev. 00 Pag. **7** di 7

SCHEMA SOSTEGNI CON ALTEZZE PARI

Tavola per montaggio meccanico LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO **SOSTEGNI TIPO "C"**

Codifica LIN 0000S706 Pag. **1** di 6

del 28/06/2012

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOS [*]	TEGNI ***)		Montante				TRO	NCHI					Piedi	Fondazione	(++)	
TIPO	DIE	Parte comune	ausiliario	ı	II	III	IV	V	VI	VII	VIII	- Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	RIF.						ELEMENTI ST	RUTTURALI (*)						R	IF.	
C9	706/1	TC 143 (1992)	-	-	-	-	-	-	-	-	1	TC 149 (381)	TC 158 (1514)	F 104 /315	F 49/1	3887
C12	706/2	TC 143 (1992)	TC 144 (750)	-	-	-	-	-	-	-	-	TC 150 (1092)	TC 158 (1514)	F 104 /315	F 49/1	5348
C15	706/3	TC 143 (1992)	-	TC 145 (1979)	-	-	-	-	-	-	-	TC 151 (518)	TC 159 (1605)	F 105 /325	F 49/2	6094
C18	706/4	TC 143 (1992)	TC 144 (750)	TC 145 (1979)	-	-	-	-	-	-	-	TC 152 (1138)	TC 159 (1605)	F 105 /325	F 49/2	7464
C21	706/5	TC 143 (1992)	-	TC 145 (1979)	TC 146 (2070)	-	-	-	-	-	1	TC 153 (980)	TC 159 (1605)	F 105 /325	F 49/2	8626
C24	706/6	TC 143 (1992)	TC 144 (750)	TC 145 (1979)	TC 146 (2070)	-	-	-	-	-	-	TC 154 (1733)	TC 159 (1605)	F 105 /335	F 49/3	10129
C27	706/7	TC 143 (1992)	-	TC 145 (1979)	TC 146 (2070)	TC 147 (2181)	-	-	-	-	-	TC 155 (769)	TC 160 (1666)	F 105 /335	F 49/3	10657
C30	706/8	TC 143 (1992)	TC 144 (750)	TC 145 (1979)	TC 146 (2070)	TC 147 (2181)	-	-	-	-	1	TC 156 (1550)	TC 160 (1666)	F 105 /335	F 49/3	12188
C33	706/9	TC 143 (1992)	-	TC 145 (1979)	TC 146 (2070)	TC 147 (2181)	TC 148 (2283)	-	-	-	-	TC 157 (1430)	TC 160 (1666)	F 105 /335	F 49/3	13601

^{(*) –} Il peso totale dell'allungato (esclusi i monconi) e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

Storia d	lelle revisioni						
Rev. 00	del 28/06/201	2	edatto in prima emi ario, A.Posati, R.Ren	ssione, aggiorna e sost dina)	ituisce il documento	Terna UXLS706 rev. (00 del
			ISC	-Uso INTERNO			
Elaborato			Verificato			Approvato	
ITI s.r.l.			P. Berardi SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posati SRI-SVT-LAE	
				po Terna S.p.A. e deve esser e o di divulgazione senza l'esp			

^{(**) –} Fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

^{(***) -} Ogni sostegno viene indicato con TIPO (con la lettera corrispondente al tipo di sostegno, seguita dall'altezza utile) e con RIF. (con riferimento al nome del documento, seguito da un progressivo, come da LIN_000000000) che contraddistingue la sua composizione.

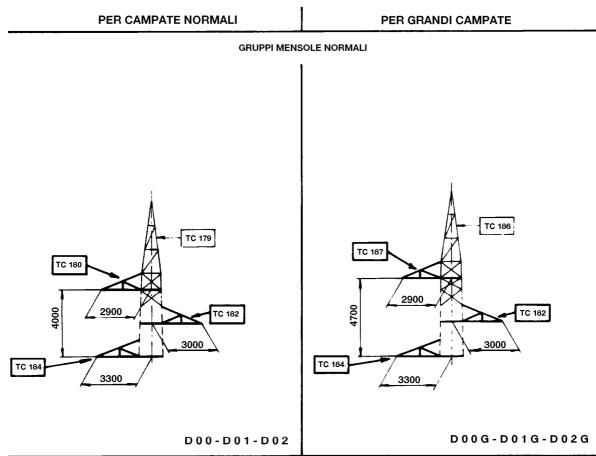
LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "C"

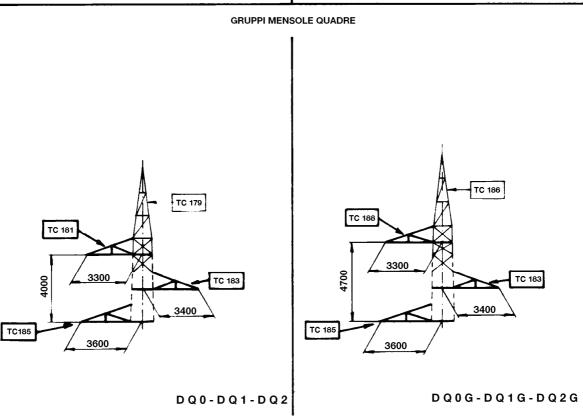
Codifica LIN_(0000S706
Rev. 00	Pag. 2 di 6

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO "D"

GRUPPI	MENSOLE				ELEMENTI ST	RUTTURALI (*)				
TIPO	RIF.	Cimino	Mensola	Mensola	Mensola		Mensole di giro)	n. Pezzi	PESO (kg) (*)
TIPO	HIF.	Cimino	alta	media	bassa	alta	media	bassa	11. Pezzi	()
D00	706/20	TC 179 (624)	TC 180 (142)	TC 182 (144)	TC 184 (166)	-	-	-		1076
D01	706/21	TC 179 (624)	TC 180 (142)	TC 182 (144)	TC 184 (166)	-	TC 204 (**)	-		1076
D02	706/22	TC 179 (624)	TC 180 (142)	TC 182 (144)	TC 184 (166)	TC 203 (**)	-	TC 205(**)		1076
D00G	706/23	TC 186 (737)	TC 187 (145)	TC 182 (144)	TC 184 (166)	-	-	-		1192
D01G	706/24	TC 186 (737)	TC 187 (145)	TC 182 (144)	TC 184 (166)	-	TC 204(**)	-		1192
D02G	706/25	TC 186 (737)	TC 187 (145)	TC 182 (144)	TC 184 (166)	TC 206(**)	-	TC 205(**)		1192
DQ0	706/26	TC 179 (624)	TC 181 (303)	TC 183 (315)	TC 185 (331)	-	-	-		1573
DQ1	706/27	TC 179 (624)	TC 181 (303)	TC 183 (315)	TC 185 (331)	-	TC 208(**)	-		1573
DQ2	706/28	TC 179 (624)	TC 181 (303)	TC 183 (315)	TC 185 (331)	TC 207	-	TC 209(**)		1573
DQ0G	706/29	TC 186 (737)	TC 188 (301)	TC 183 (315)	TC 185 (331)	-	-	-		1684
DQ1G	706/30	TC 186 (737)	TC 188 (301)	TC 183 (315)	TC 185 (331)	-	TC 208(**)	-		1684
DQ2G	706/31	TC 186 (737)	TC 188 (301)	TC 183 (315)	TC 185 (331)	TC 210(**)	-	TC 209(**)		1684

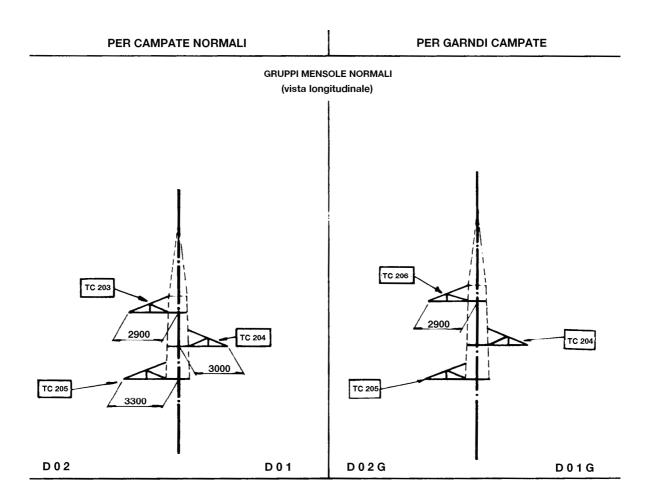
^{(*) –} Il peso totale dell'allungato e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

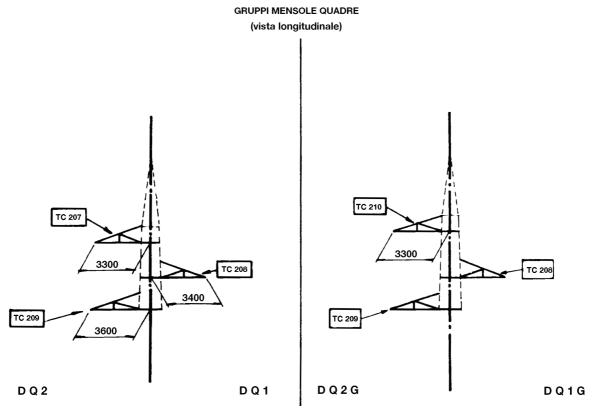

^{(**) –} Le mensole di giro TC 203 - TC 204 - TC 205 - TC 206 - TC 207 - TC 208 - TC209 - TC 210 non sono disponibili.

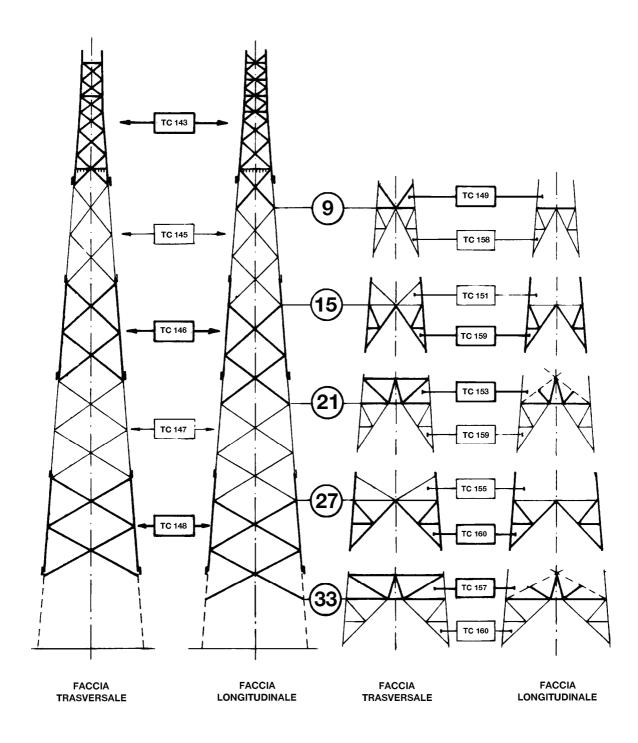


LIN_0000\$706

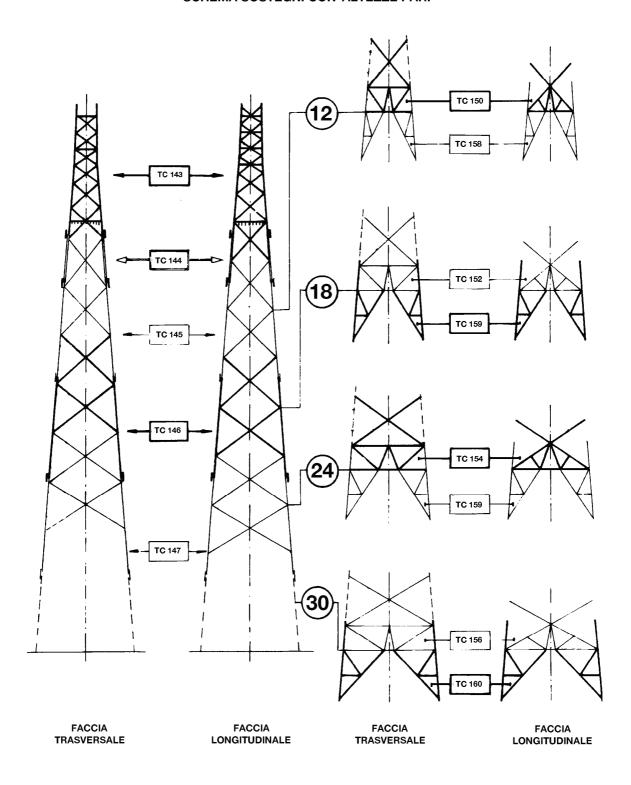
Rev. 00 Pag. **3** di 6






LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "C" LIN_0000\$706

Rev. 00 Pag. **4** di 6


SCHEMA SOSTEGNI CON ALTEZZE DISPARI

LIN_0000\$706

Rev. 00 Pag. **6** di 6

SCHEMA SOSTEGNI CON ALTEZZE PARI

Tavola per montaggio meccanico LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO **SOSTEGNI TIPO "E"**

Codifica LIN 0000S707 Pag. **1** di 6

del 28/06/2012

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

SOS ⁻	TEGNI ***)		ne Montante					NCHI					Piedi	Fondazione		
TIPO	DIE	Parte comune	ausiliario	ı	II	III	IV	V	VI	VII	VIII	- Base	(n.4 pezzi)	normale (**)	Moncone (**)	Peso (Kg) (*)
TIPO	RIF.						ELEMENTI ST	RUTTURALI (*)						R	IF.	
E9	707/1	TE 161 (2656)	-	-	-	-	-	-	-	-	ı	TE 167 (400)	TE 176 (1820)	F 109 /335	F 50/2	4876
E12	707/2	TE 161 (2656)	TE 162 (919)	-	-	-	-	-	-	-	-	TE 168 (1119)	TE 176 (1820)	F 109 /335	F 50/2	6514
E15	707/3	TE 161 (2656)	-	TE 163 (2367)	-	-	-	-	-	-	-	TE 169 (531)	TE 177 (1943)	F 109 /335	F 50/2	7497
E18	707/4	TE 161 (2656)	TE 162 (919)	TE 163 (2367)	-	-	-	-	-	-	-	TE 170 (1254)	TE 177 (1943)	F 109 /335	F 50/2	9139
E21	707/5	TE 161 (2656)	-	TE 163 (2367)	TE 164 (2473)	-	-	-	-	-	1	TE 171 (1032)	TE 177 (1943)	F 105 /345	F 50/3	10471
E24	707/6	TE 161 (2656)	TE 162 (919)	TE 163 (2367)	TE 164 (2473)	-	-	-	-	-	-	TE 172 (1140)	TE 177 (1943)	F 105 /345	F 50/3	11498
E27	707/7	TE 161 (2656)	-	TE 163 (2367)	TE 164 (2473)	TE 165 (2554)	-	-	-	-	-	TE 173 (825)	TE 178 (2121)	F 105 /345	F 50/3	12996
E30	707/8	TE 161 (2656)	TE 162 (919)	TE 163 (2367)	TE 164 (2473)	TE 165 (2554)	-	-	-	-	-	TE 174 (1668)	TE 178 (2121)	F 107 /305	F 50/1	14758
E33	707/9	TE 161 (2656)	-	TE 163 (2367)	TE 164 (2473)	TE 165 (2554)	TE 166 (2837)	-	-	-	-	TE 175 (1505)	TE 178 (2121)	F 107 /305	F 50/1	16513

^{(*) –} Il peso totale dell'allungato (esclusi i monconi) e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in Kg.

Rev. 00	del 28/06/2012	edatto in prima emi ario, A.Posati, R.Ren		ituisce il documento Terr	na UXLS707 rev. 00 d
		ISC	-Uso INTERNO		
Elaborato		Verificato			Approvato
		P. Berardi	A. Guarneri		A. Posati

^{(**) –} Fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STINFDN, 150STINFON, 150STINMNC.

^{(***) -} Ogni sostegno viene indicato con TIPO (con la lettera corrispondente al tipo di sostegno, seguita dall'altezza utile) e con RIF. (con riferimento al nome del documento, seguito da un progressivo, come da LIN_000000000) che contraddistingue la sua composizione.

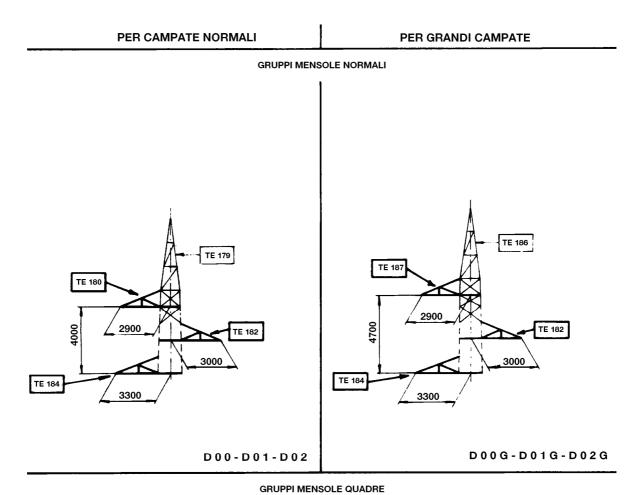
LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "E"

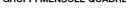
Codifica LIN_(0000\$707
Rev. 00	Pag. 2 di 6

ELEMENTI STRUTTURALI COMPONENTI I GRUPPI MENSOLE TIPO "D"

GRUPPI N	MENSOLE		ELEMENTI STRUTTURALI (*)							
TIPO	DIE	Oinsin s	Mensola	Mensola	Mensola	Mensole di				PESO (kg) (*)
TIPO	RIF.	Cimino	alta	media	bassa	alta	media	bassa	n. Pezzi	()
D00	707/20	TE 179 (704)	TE 180 (143)	TE 182 (155)	TE 184 (167)	-	-	-		1169
D01	707/21	TE 179 (704)	TE 180 (143)	TE 182 (155)	TE 184 (167)	-	TE 204 (**)	-		1169
D02	707/22	TE 179 (704)	TE 180 (143)	TE 182 (155)	TE 184 (167)	TE 203 (**)	-	TE 205(**)		1169
D00G	707/23	TE 186 (884)	TE 187 (154)	TE 182 (155)	TE 184 (167)	-	-	-		1360
D01G	707/24	TE 186 (884)	TE 187 (154)	TE 182 (155)	TE 184 (167)	-	TE 204(**)	-		1360
D02G	707/25	TE 186 (884)	TE 187 (154)	TE 182 (155)	TE 184 (167)	TE 206(**)	-	TE 205(**)		1360
DQ0	707/26	TE 179 (704)	TE 181 (317)	TE 183 (320)	TE 185 (337)	-	-	-		1678
DQ1	707/27	TE 179 (704)	TE 181 (317)	TE 183 (320)	TE 185 (337)	-	TE 208(**)	-		1678
DQ2	707/28	TE 179 (704)	TE 181 (317)	TE 183 (320)	TE 185 (337)	TE 207	-	TE 209(**)		1678
DQ0G	707/29	TE 186 (884)	TE 188 (328)	TE 183 (320)	TE 185 (337)	-	-	-		1869
DQ1G	707/30	TE 186 (884)	TE 188 (328)	TE 183 (320)	TE 185 (337)	-	TE 208(**)	-		1869
DQ2G	707/31	TE 186 (884)	TE 188 (328)	TE 183 (320)	TE 185 (337)	TE 210(**)	-	TE 209(**)		1869

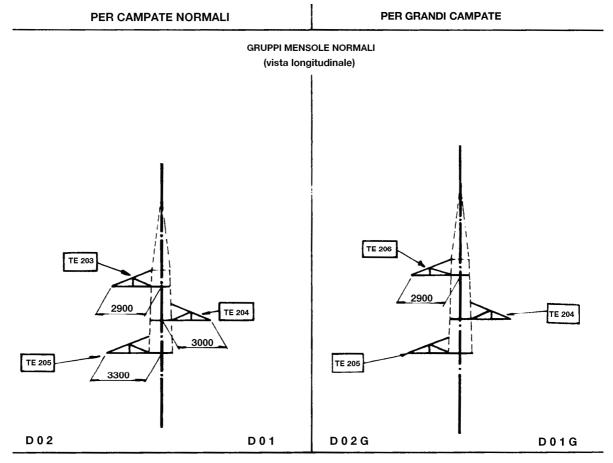
^{(*) –} Il peso totale dell'allungato e dei singoli elementi strutturali, indicato tra parentesi, è comprensivo della zincatura. I pesi sono espressi in Kg.

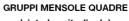

 $^{(^{**})-\}text{Le mensole di giro TE 203 - TE 204 - TE 205 - TE 206 - TE 207 - TE 208 - TE 209 - TE 210 non sono disponibili.}$

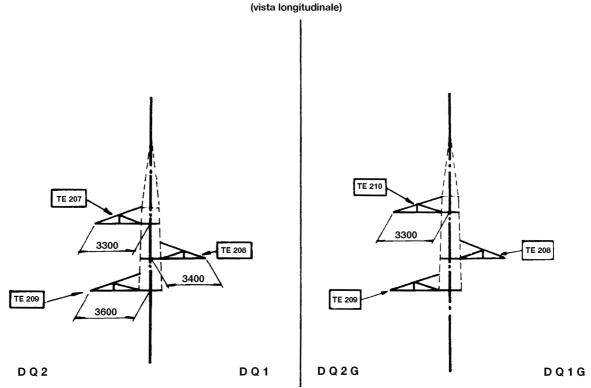


LIN_0000\$707

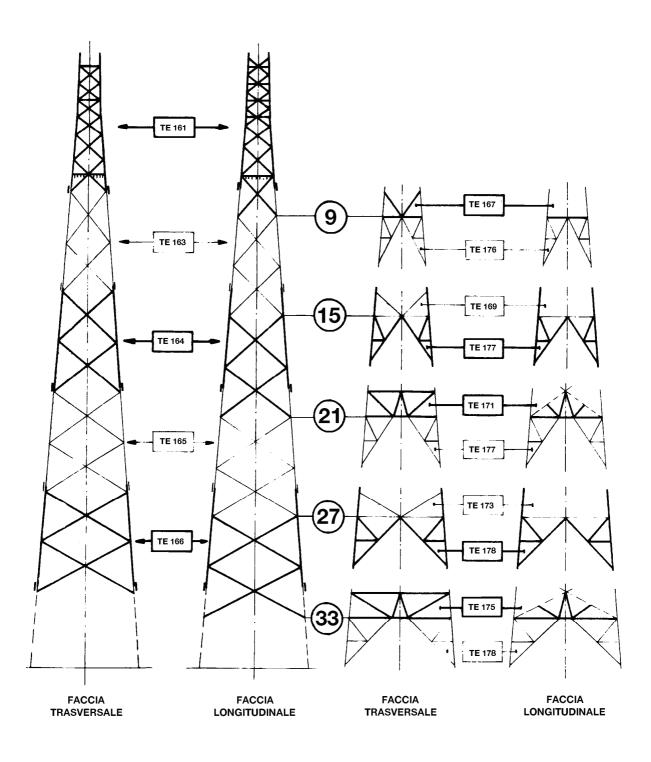
Rev. 00 Pag. **3** di 6






LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "E" Codifica
LIN_0000\$707

Rev. 00 Pag. 4 di 6

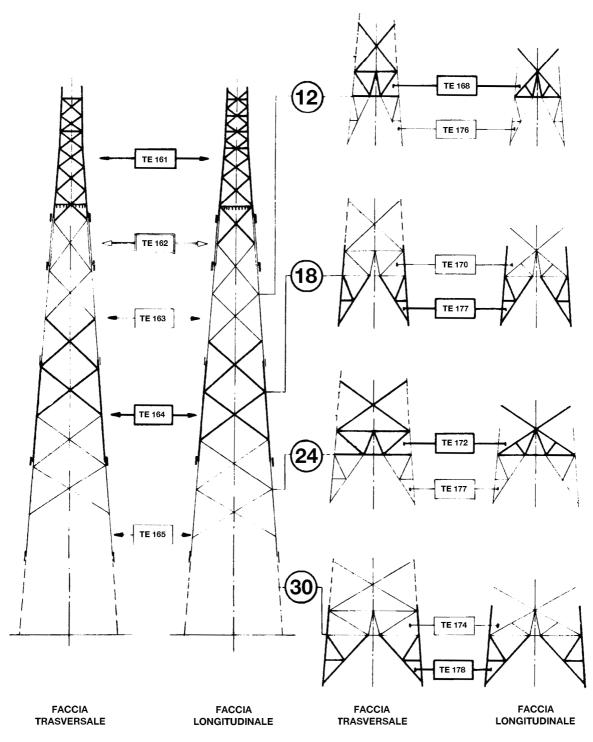


LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "E"

LIN_0000\$707

Rev. 00 Pag. **5** di 6

SCHEMA SOSTEGNI CON ALTEZZE DISPARI



LINEE 132-150 kV SEMPLICE TERNA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "E"

LIN_0000\$707

Rev. 00 Pag. **6** di 6

SCHEMA SOSTEGNI CON ALTEZZE PARI

Codifica	
P005	5UC001
Rev. 00 del 13/09/2007	Pagina 1 di 12

LINEA ELETTRICA AEREA A 132-150 k	V SEMPLICE TERNA	A TRIANGOLO -	TIRO PIENO
CONDUTTORI Ø	31.5 mm – EDS 21% -	ZONA "A"	

UTILIZZAZIONE DEL SOSTEGNO "C"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P005UC001

Rev. 00
Pagina 2 di 12

del 13/09/2007

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014920 – Rev.0 – Settembre 2007**

Codifica P005UC001 Rev. 00 Pagina 3 di 12 del 13/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4 0.4 D.4 T.T.E.E	NOTIONE DRING	DALL	CONDUTTORE	CORDA DI GUARDIA			
2.1 CARATTERISTICHE PRINCIPALI			RQUT0000C2	LC 23	LC 51	LC 50	
	MATERIALE			Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio	
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9	
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (AI + Lega AI)	
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70	
	TOTALE	(mm ²)	583,30	78,94	80,65	176,60	
MASS	SA UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820	
MODULO DI ELASTICITA' (N/mm²)			68000	175000	155000	88000	
COEFFICIENTE DI DILATAZIONE (1/°C)			19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶	
CARICO DI ROTTURA (daN)			16852	12231	9000	10600	

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA				
	RQUT0000C2	LC 23	LC 51	LC 50		
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643		

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UC001

Rev. 00
del 13/09/2007

Pagina 4 di 12

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	ORDA DI GUARDIA (*	*)
		RQUT0000C2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum Li^3}{\sum Li}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr i

Codifica P005UC001 Rev. 00 Pagina 5 di 12 del 13/09/2007

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

 $T = v Cm + 2 sen \delta/2 T_0 + t^*$ Azione trasversale (2) Conduttori $P = p Cm + K T_0 + p^*$ zione verticale (3)

Ove:

= spinta del vento per metro di conduttore

= peso per metro di conduttore i valori di v e di p sono riportati in 2.2 р

= spinta del vento su isolatori e morsetteria

= peso di isolatori e morsetteria p* T_0 = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CC	NDUTTORE		CORDA DI GUARDIA (**)					
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLA ⁻ MORSE	TORI E TTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)	
MSA	5450	120	170	2120 (2745)	2077 (2711)	2985 (3580)	0	0	

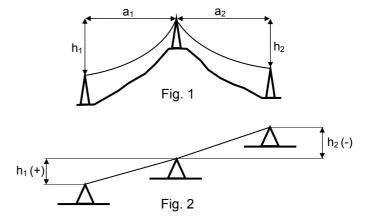
(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

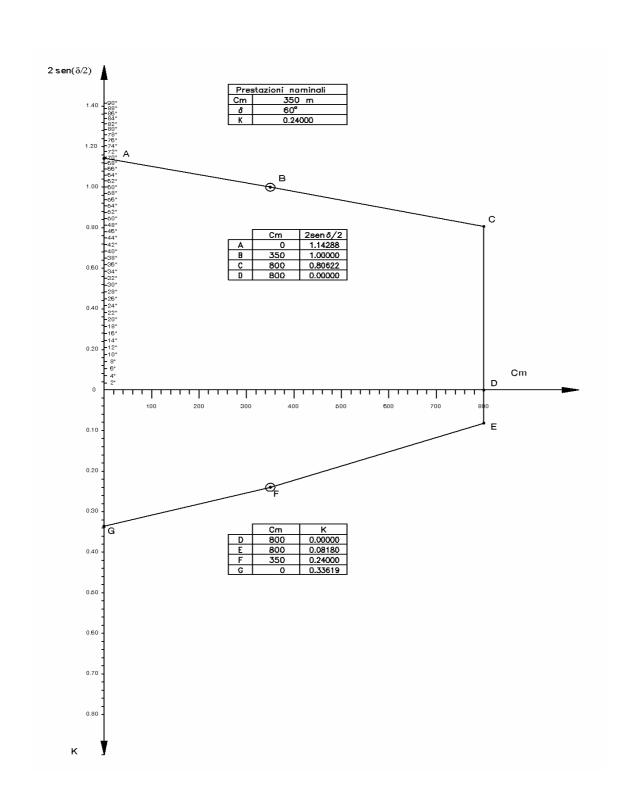

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

Cm = campata media = angolo di deviazione = costante altimetrica (*)

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UC001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UC001

Rev. 00 del 13/09/2007

Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i , δ_i) è necessario che i punti (Cm_i , δ_i) e (Cm_i , K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

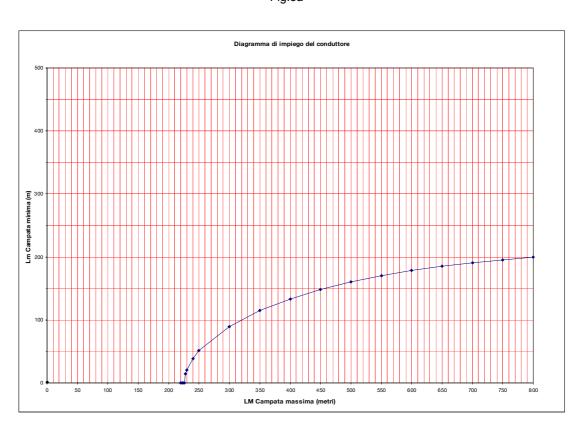
Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

-Azioni longitudinali:

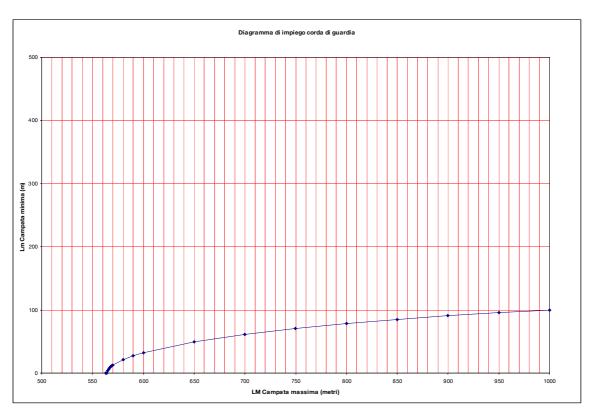

Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, sia minore o eguale dei valori di squilibrio considerato per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a



Codifica P005UC001

Rev. 00 del 13/09/2007

Pagina 8 di 12

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

P005UC001

Rev. 00
Pagina 9 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

STATO DEI CONDUTTORI		C	ONDUTTOR	E.	CORDA DI GUARDIA (*)			
	IPOTESI	R	QUT0000C	2	LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
MSA	NORMALE	6349	2149	220	(4120)	(1204)	(1200)	
		6349	0	220	(4120)	(0)	(1200)	
	ECCEZIONALE (**)	3235	1160	5450	(2060)	(602)	(3580)	
		3235	0	5450	(2060)	(0)	(3580)	

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

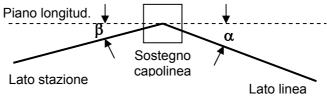
Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

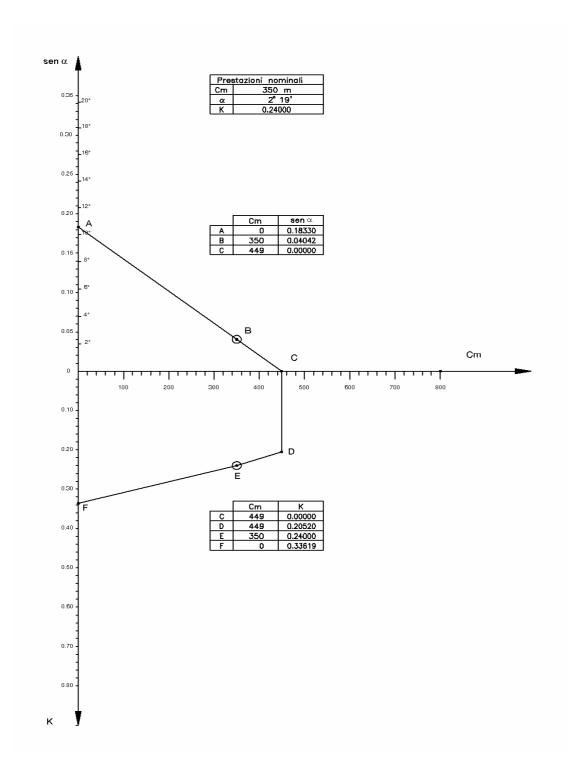
(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno C viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)




Fig. 4

P005UC001

Rev. 00
Pagina 10 di 12

del 13/09/2007

P005UC001

Rev. 00

Pagina 11 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

STATO DEI CONDUTTORI		C	ONDUTTOR	E	CORDA DI GUARDIA (*)			
	IPOTESI	R	QUT0000C	2	LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
MSA	NORMALE	1119	2149	5450	(1740)	(1204)	(3580)	
		1119	0	5450	(1740)	(0)	(3580)	
	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)	
		0	0	0	(0)	(0)	(0)	

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To.

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle seguenti relazioni:

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

E quindi la somma T + L non supera il valore del calcolo finche rimanga:

sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

P005UC001

Rev. 00

Pagina 12 di 12

del 13/09/2007

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P00	5UE001
Rev. 00 del 13/09/2007	Pagina 1 di 12

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 21% - 2	ZONA "A"	

UTILIZZAZIONE DEL SOSTEGNO "E"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato	Verificato			Approvato
L. Alario	L. Alario			R. Rendina
ING-ILC-COL	ING-ILC-COL			ING-ILC

P005UE001

Rev. 00

del 13/09/2007

Pagina 2 di 12

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014921 – Rev.0 – Settembre 2007**

Codifica P005UE001 Rev. 00 Pagina 3 di 12 del 13/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

2.1 CARATTERISTICHE PRINCIPALI		CONDUTTORE	CORDA DI GUARDIA			
		RQUT0000C2	LC 23	LC 51	LC 50	
MATERIALE		All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio	
DIAMETRO CIRCOSCRITTO (mm)		31,5	11,5	11,5	17,9	
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (AI + Lega AI)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm ²)	583,30	78,94	80,65	176,60
MASS	SA UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820
MODU	JLO DI ELASTICITA'	(N/mm ²)	68000	175000	155000	88000
COEFFICIENTE	E DI DILATAZIONE	(1/°C)	19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶
CARICO DI ROTTURA (daN)		16852	12231	9000	10600	

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA		
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UE001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 4 di 12

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	CORDA DI GUARDIA (**)			
		RQUT0000C2	LC 23	LC 51	LC 50	
CONDIZIONE EDS	V (daN/m)	0	0	0	0	
	P (daN/m)	1,9159	0,6090	0,5270	0,8044	
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044	
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)	
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)	
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarri

Codifica P00	5UE001
Rev. 00 del 13/09/2007	Pagina 5 di 12

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases} Azione \ trasversale & T = v \ Cm + 2 \ sen \ \delta/2 \ T_0 + t^* & (2) \\ Azione \ verticale & P = p \ Cm + K \ T_0 + p^* & (3) \end{cases}$

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

 p^* = peso di isolatori e morsetteria T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)				
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLA ⁻ MORSE	TORI E TTERIA
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	5450	120	170	2120 (2745)	2077 (2711)	2985 (3580)	0	0

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

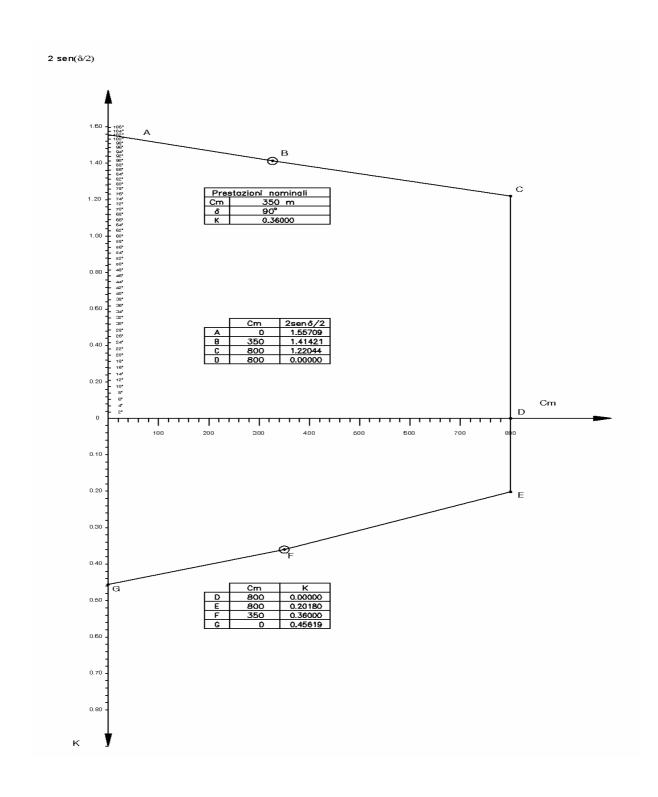
Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

 $\begin{array}{lll} \mathsf{Cm} & = \mathsf{campata} \; \mathsf{media} \\ \delta & = \mathsf{angolo} \; \mathsf{di} \; \mathsf{deviazione} \\ \mathsf{K} & = \mathsf{costante} \; \mathsf{altimetrica} \; (*) \end{array}$

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UE001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica P005UE001

Rev. 00 del 13/09/2007

Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i , δ_i) è necessario che i punti (Cm_i , δ_i) e (Cm_i , K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

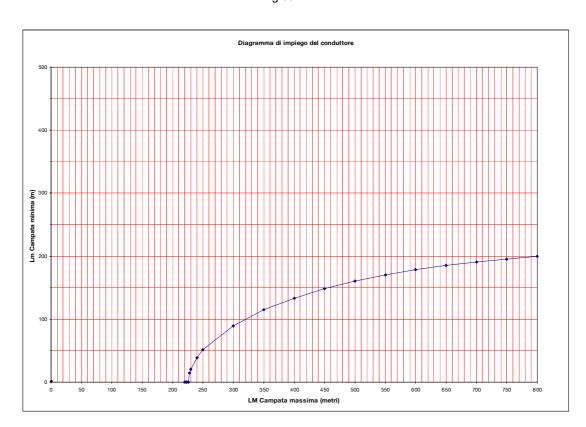
Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

- Azioni longitudinali:

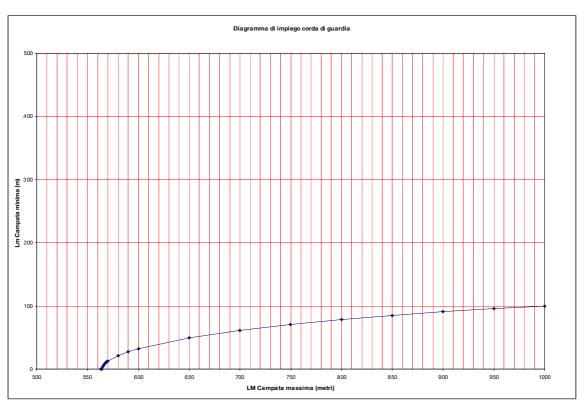

Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, sia minore o eguale dei valori di squilibrio considerato per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a



Codifica P005UE001

Rev. 00 del 13/09/2007

Pagina 8 di 12

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

P005UE001

Rev. 00
Pagina 9 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella sequente tabella:

		C	ONDUTTOR	E.	CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NORMALE	8607	2803	220	(5603)	(1634)	(1200)
MSA ECCEZIONAL	NORMALE	8607	0	220	(5603)	(0)	(1200)
		4364	1487	5450	(2802)	(817)	(3580)
	ECCEZIONALE (**)	4364	0	5450	(2802)	(0)	(3580)

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

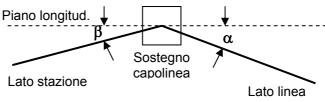
Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

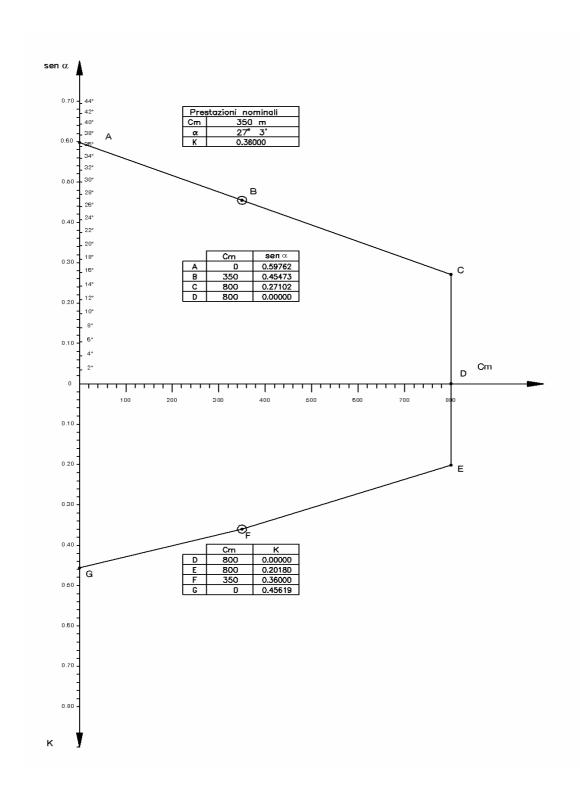
(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P . L. indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno E viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)




Fig. 4

P005UE001

Rev. 00
Pagina 10 di 12

del 13/09/2007

P005UE001

Rev. 00

Pagina 11 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

		C	ONDUTTOR	E	CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NORMALE	3377	2803	5450	(3223)	(1634)	(3580)
MSA	NORMALE	3377	0	5450	(3223)	(0)	(3580)
		0	0	0	(0)	(0)	(0)
	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle sequenti relazioni:

Conduttori
$$\begin{cases} & \text{Azione trasversale} & \text{T = v Cm + T}_0 \text{ sen } \alpha \text{ + t* (2')} \\ & \text{Azione longitudinale} & \text{L = T}_0 \cos \alpha \text{ + t*} \end{cases}$$

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

Conduttori
$$\begin{cases} &\text{Azione trasversale} &\text{T = v Cm} + T_0 \sin \alpha + T'_0 \sin \beta + t^* \\ &\text{Azione longitudinale} &\text{L = T}_0 \cos \alpha - T_0 \cos \beta \end{cases}$$

E quindi la somma T + L non supera il valore del calcolo finche rimanga:

sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

Codifica P005UE001

Rev. 00 Pagina 12 di 12

del 13/09/2007

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P005	5UM001
	Pagina 1 di 8

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 21% - 2	ZONA "A"	

UTILIZZAZIONE DEL SOSTEGNO "M"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P005UM001

Rev. 00
Pagina 2 di 8

del 30/05/2007

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014912 – Rev.0 – Settembre 2007**

Codifica P005UM001 Rev. 00 Pagina 3 di 8 del 30/05/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

2.1 CARATTERISTICHE PRINCIPALI			CONDUTTORE		CORDA DI GUAR	DIA
			RQUT0000C2	LC 23	LC 51	LC 50
MATERIALE			All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASS	MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000	
COEFFICIENTE	DI DILATAZIONE	(1/°C)	19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10⁻ ⁶	17 X 10 ⁻⁶
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA		
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UM001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 4 di 8

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	*)	
		RQUT0000C2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarri

Codifica P00	5UM001
Rev. 00 del 30/05/2007	Pagina 5 di 8

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

 p^* = peso di isolatori e morsetteria T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)				
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLATORI E MORSETTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	5450	100	150	2120 (2745)	2077 (2711)	2985 (3580)	0	0

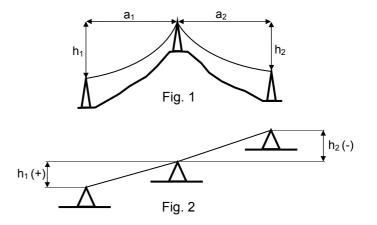
(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

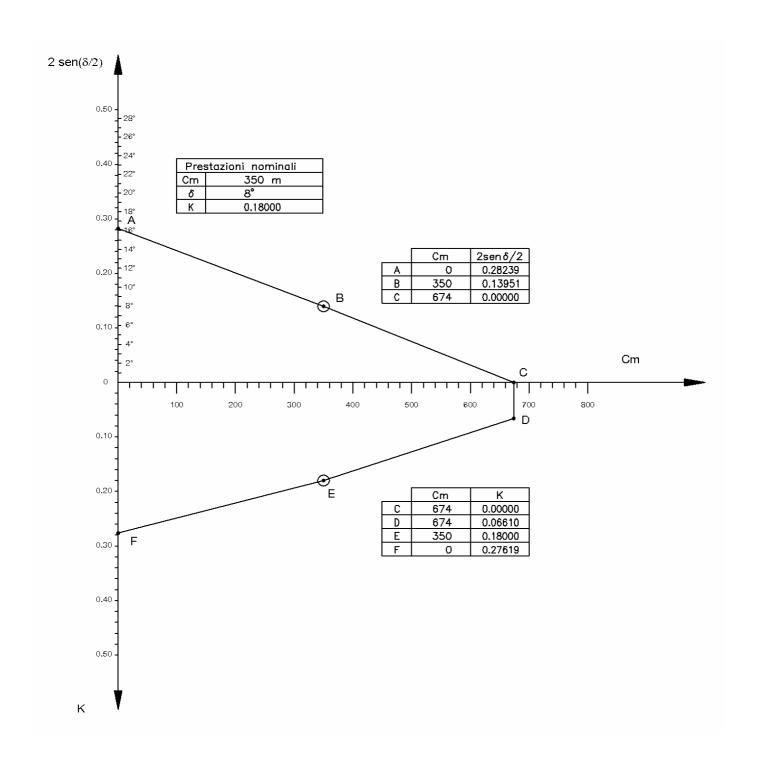

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

 $\begin{array}{lll} \mathsf{Cm} &=& \mathsf{campata\ media} \\ \delta &=& \mathsf{angolo\ di\ deviazione} \\ \mathsf{K} &=& \mathsf{costante\ altimetrica\ (*)} \end{array}$

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UM001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 6 di 8

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UM001

Rev. 00 del 30/05/2007

Pagina 7 di 8

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, δ_i) è necessario che i punti (Cm_i, δ_i) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

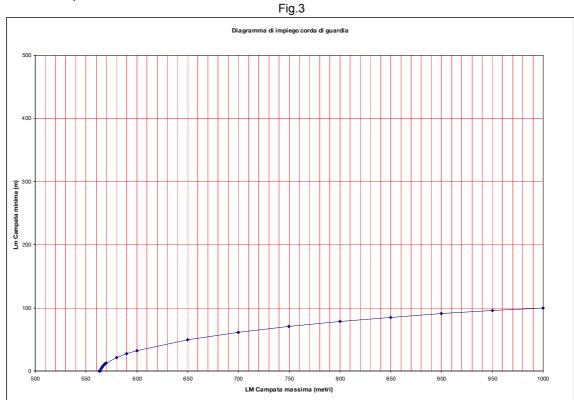
3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)


- Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3 , che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_m) tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Codifica P005UM001

Rev. 00 del 30/05/2007

Pagina 8 di 8

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		C	ONDUTTOR	E	CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	F	QUT0000C	2	LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE	1640	1802	0	(1040)	(989)	(1200)	
MSA -	NONMALE	1640	0	0	(1040)	(0)	(1200)	
	ECCEZIONALE (**)	870	976	5450	(520)	(495)	(3580)	
		870	0	5450	(520)	(0)	(3580)	

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P005	5UN001
Rev. 00 del 13/09/2007	Pagina 1 di 8

LINEA ELETTRICA AEREA A 132-150 kV SEMPLICE TERNA A TRIANGOLO – TIRO PIENO CONDUTTORI \varnothing 31,5 mm – EDS 21% - ZONA "A"

UTILIZZAZIONE DEL SOSTEGNO "N"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P005UN001

Rev. 00
Pagina 2 di 8

del 30/05/2007

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014914 – Rev.0 – Settembre 2007**

Codifica P005UN001 Rev. 00 Pagina 3 di 8 del 30/05/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

O.4. CADATTER	CONDUTTORE		CORDA DI GUAR	ARDIA		
2.1 CARATTERISTICHE PRINCIPALI			RQUT0000C2	LC 23	LC 51	LC 50
	MA	TERIALE	All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASS	MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000	
COEFFICIENTE DI DILATAZIONE (1/°C)		19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10⁻ ⁶	17 X 10 ⁻⁶	
CARICO DI RO	CARICO DI ROTTURA (daN)			12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA		
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UN001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 4 di 8

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	*)	
		RQUT0000C2	LC 23	LC 51	LC 50
CONDIZIONE EDS	V (daN/m)	0	0	0	0
	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr \hat{I}

P005UN001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 5 di 8

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

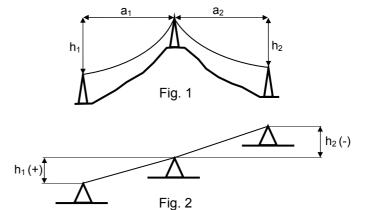
	CONDUTTORE			CORDA DI GUARDIA (**)				
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLATORI E MORSETTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	5450	100	150	2120 (2745)	2077 (2711)	2985 (3580)	0	0

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

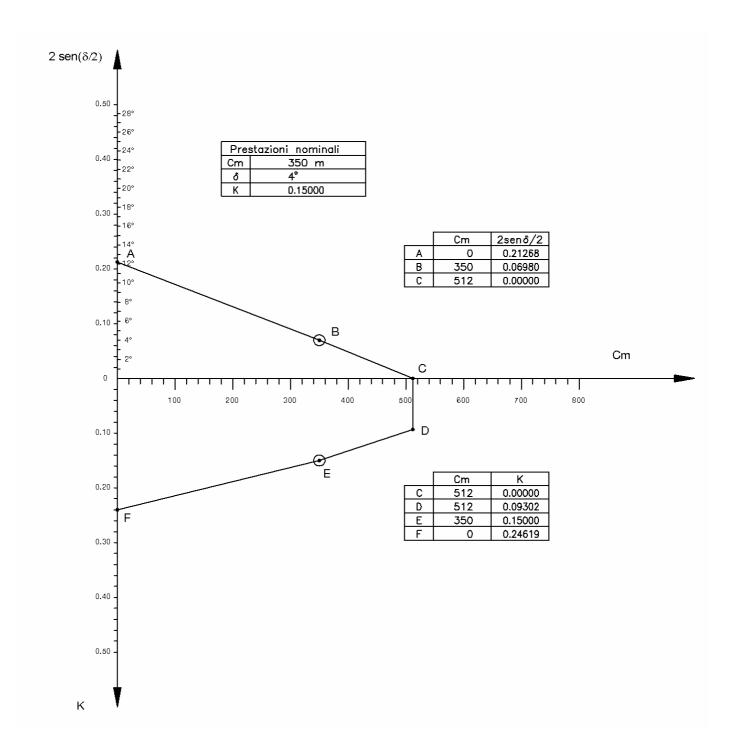

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UN001

Rev. 00
del 30/05/2007

Rev. 00
Pagina 6 di 8

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UN001

Rev. 00 del 30/05/2007

Pagina 7 di 8

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, δ_i) è necessario che i punti (Cm_i, δ_i) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

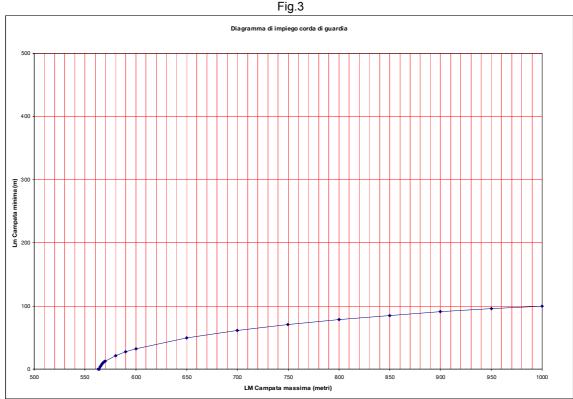
3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)


- Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3 , che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_m) tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

P005UN001

Rev. 00

del 30/05/2007

Pagina 8 di 8

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI	F	QUT0000C	2	LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE	1260	1639	0	(790)	(882)	(1200)	
MSA		1260	0	0	(790)	(0)	(1200)	
	ECCEZIONALE (**)	680	895	5450	(395)	(441)	(3580)	
		680	0	5450	(395)	(0)	(3580)	

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P00	5UP001
Rev. 00 del 13/09/2007	Pagina 1 di 8

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 21% - 2	ZONA "A"	

UTILIZZAZIONE DEL SOSTEGNO "P"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P005UP001

Rev. 00
Pagina 2 di 8

del 13/09/2007

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014916 – Rev.0 – Settembre 2007**

Codifica P005UP001 Rev. 00 Pagina 3 di 8 del 13/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

O.4. CADATTER	ICTIONE PRINCIP	2411	CONDUTTORE		CORDA DI GUAR	DIA
2.1 CARATTER	ISTICHE PRINCIF	ALI	RQUT0000C2	LC 23	LC 51	LC 50
	MATERIALE			Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820	
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000	
COEFFICIENTE DI DILATAZIONE (1/°C)			19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10⁻ ⁶	17 X 10 ⁻⁶
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA			
	RQUT0000C2	LC 23	LC 51	LC 50	
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643	

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UP001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 4 di 8

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	ORDA DI GUARDIA (*	*)
		RQUT0000C2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarri

P005UP001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 5 di 8

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

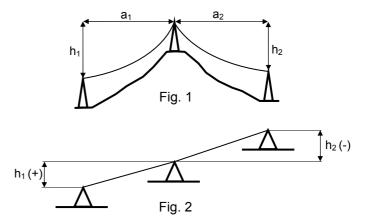
	CONDUTTORE			CORDA DI GUARDIA (**)				
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLATORI E MORSETTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	5450	100	150	2120 (2745)	2077 (2711)	2985 (3580)	0	0

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

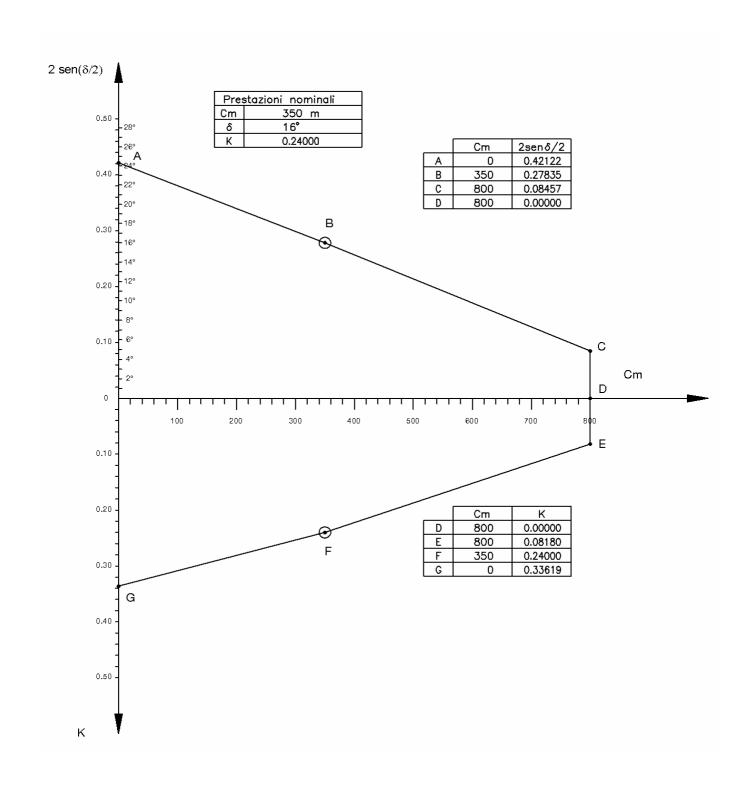

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UP001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 6 di 8

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica P005UP001

Rev. 00 del 13/09/2007

Pagina 7 di 8

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, δ_i) è necessario che i punti (Cm_i, δ_i) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

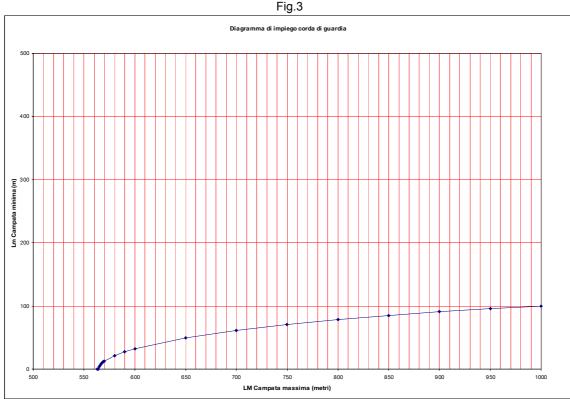
3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)


- Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3 , che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_m) tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

P005UP001

Rev. 00

del 13/09/2007

Pagina 8 di 8

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

Azioni longitudinali:

sono state assunte pari al tiro T₀

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		CONDUTTORE CORDA DI GUARDIA				DIA (*)	
STATO DEI CONDUTTORI	IPOTESI	F	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NORMALE	2396	2129	0	(1537)	(1204)	(1200)
MSA		2396	0	0	(1537)	(0)	(1200)
	ECCEZIONALE (**)	1248	1140	5450	(769)	(602)	(3580)
		1248	0	5450	(769)	(0)	(3580)

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P00	5UV001
Rev. 00 del 15/09/2007	Pagina 1 di 10

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 21% - 2	ZONA "A"	

UTILIZZAZIONE DEL SOSTEGNO "V"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 15/09/2007	Prima emissione

Elaborato		Verificato			Approvato
L. Alario		L. Alario			R. Rendina
ING-ILC-COL		ING-ILC-COL			ING-ILC

P005UV001

Rev. 00

del 15/09/2007

Pagina 2 di 10

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014919 – Rev.0 – Settembre 2007**

Codifica P005UV001 Rev. 00 Pagina 3 di 10 del 15/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

2.1 CARATTERISTICHE PRINCIPALI		CONDUTTORE	CORDA DI GUARDIA			
		RQUT0000C2	LC 23	LC 51	LC 50	
MATERIALE		All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio	
DIAMETRO CIRCOSCRITTO (mm)		31,5	11,5	11,5	17,9	
SEZIONI TEORICHE	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASS	A UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820
MODU	ILO DI ELASTICITA'	(N/mm ²)	68000	175000	155000	88000
COEFFICIENTE	DI DILATAZIONE	(1/°C)	19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10⁻ ⁶	17 X 10 ⁻⁶
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA		
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P005UV001

Rev. 00
del 15/09/2007

Rev. 00
Pagina 4 di 10

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha (\Theta_d - \Theta_b) + \frac{1}{SE} (T_d - T_b) = \frac{p'_d^2 L^2}{24 T_d^2} - \frac{p'_b^2 L^2}{24 T_b^2}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	*)	
		RQUT0000C2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr \hat{I}

P005UV001

Rev. 00
del 15/09/2007

Rev. 00
Pagina 5 di 10

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

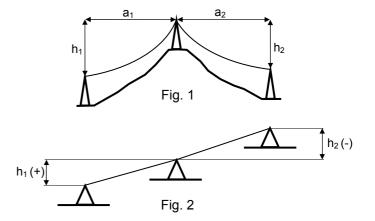
	CONDUTTORE		CORDA DI GUARDIA (**)					
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50 ISOLATORI E MORSETTERIA		-
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	5450	100	150	2120 (2745)	2077 (2711)	2985 (3580)	0	0

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

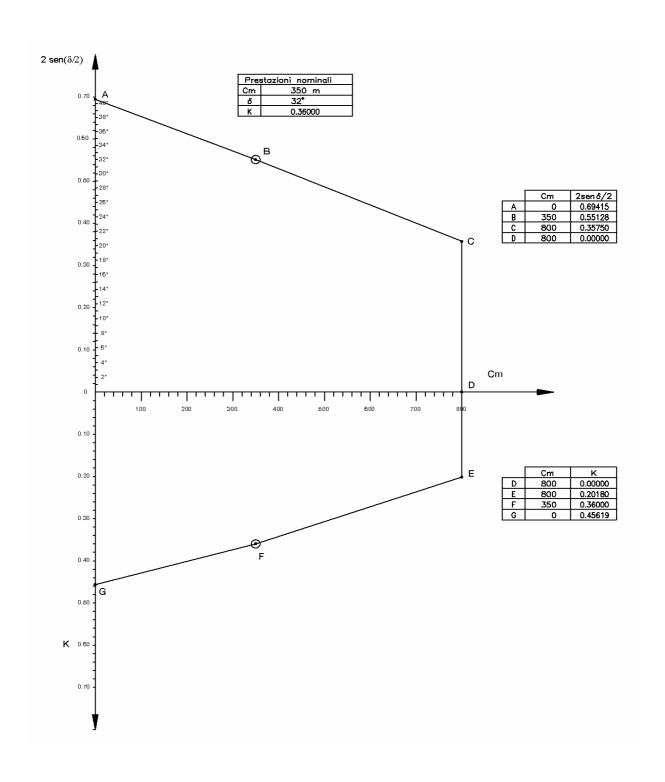

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UV001

Rev. 00
del 15/09/2007

Rev. 00
Pagina 6 di 10

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UV001

Rev. 00 del 15/09/2007

Pagina 7 di 10

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, δ_i) è necessario che i punti (Cm_i, δ_i) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

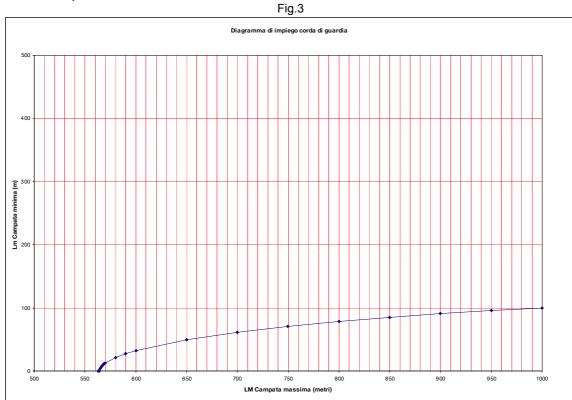
3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)


- Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3 , che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_m) tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Codifica P005UV001

Rev. 00 del 15/09/2007

Pagina 8 di 10

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	F	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
MSA	NORMALE	3884	2783	0	(2514)	(1634)	(1200)
		3884	0	0	(2514)	(0)	(1200)
	ECCEZIONALE (**)	1992	1467	5450	(1257)	(817)	(3580)
		1992	0	5450	(1257)	(0)	(3580)

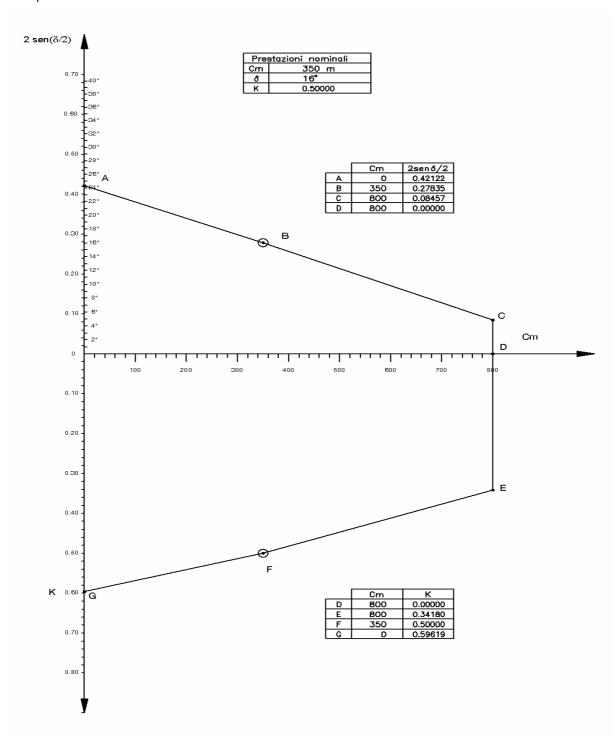
- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

P005UV001

Rev. 00
del 15/09/2007


Rev. 00
Pagina 9 di 10

3.4 UTILIZZAZIONE DEL SOSTEGNO IN CORRISPONDENZA DI PRESTAZIONI VERTICALI PARTICOLARMENTE ELEVATE

Al sostegno V è affidato anche il compito di raccogliere i casi nei quali il carico verticale risulta particolarmente elevato, cioè si hanno valori di Cm e K esterni ai limiti del diagramma riportato al punto 3.2 .

Al tal fine il sostegno è stato verificato anche con azioni verticali maggiorate, concomitanti però con azioni trasversali ridotte.

Si è ottenuto in tal modo il diagramma riportato nella pagina seguente, da adoperarsi in alternativa con il precedente

P005UV001

Rev. 00

Pagina 10 di 10

del 15/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

		C	ONDUTTOR	lΕ	CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NORMALE	2396	3546	0	(1537)	(2135)	(1200)
MSA		2396	0	0	(1537)	(0)	(1200)
	ECCEZIONALE (**)	1248	1848	5450	(769)	(1068)	(3580)
		1248	0	5450	(769)	(0)	(3580)

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

150 kV Semplice terna a triangolo

FONDAZIONI CR (σt_{amm}= 2.0 – 3.9 daN/cmq)
TABELLA DELLE CORRISPONDENZE
SOSTEGNI – MONCONI - FONDAZIONI

Coulica.						
150STINFON						
Rev. 05 del 28/09/2010	Pag. 1 di 3					

150 kV Semplice terna a triangolo

Conduttore singolo Ø 31,5 – Zona A EDS 21% - Zona B EDS 18%

Fondazioni CR (σt_{amm} = 2.0 - 3.9 daN/cmq)

Tabelle delle corrispondenze sostegni – monconi - fondazioni

Storia de	Storia delle revisioni					
Rev. 00	del 31/12/2007	Prima Emissione.				
Rev. 01	del 04/08/2008	Inserita tabella delle corrispondenze sostegni - monconi - fondazioni per terreni con $\sigma t_{amm} \leqq 2.0$ daN/cmq.				
Rev. 02	del 04/08/2008	Eseguite modifiche redazionali.				
Rev. 03	del 05/12/2008	Per i sostegni E – E* sono state aggiornate le tabelle di corrispondenza sostegni – monconi – fondazioni per terreni con $\sigma t_{amm} \leq 2.0 \text{ daN/cmq}$ e $\sigma t_{amm} \leq 3.9 \text{ daN/cmq}$.				
Rev. 04	del 22/05/2009	Eseguite modifiche redazionali.				
Rev. 05	del 28/09/2010	Eseguite modifiche redazionali comprensive dei titoli delle tabelle per terreni con pressione ammissibile 2.0 – 3.9 daN/cmq.				

Elaborato		Verificato			Approvato
L.Alario SRI/SVT/LIN		L.Alario SRI/SVT/LIN	A.Posati SRI/SVT/LIN		A.Posati SRI/SVT/LIN

150 kV Semplice terna a triangolo

FONDAZIONI CR (σt_{amm} = 2.0 – 3.9 daN/cmq) TABELLA DELLE CORRISPONDENZE SOSTEGNI – MONCONI - FONDAZIONI Codifica: 150STINFON

Rev. 05 Pag. **2** di 3

Fondazioni CR (2.0 daN/cmq ≤ σt_{amm} < 3.9 daN/cmq)

SOSTEGNO		MON	CONE	FONDAZIONE		
TIPO	ALTEZZA (PIEDI)	TIPO	ALTEZZA (MM)	TIPO	ALTEZZA (CM)	
L	9 (-2/+3) ÷ 33 (-2/+3)	LF 43	3700	LF 103	335	
	9 (-2/+3) ÷ 12 (-2/+3)	LF 43	3700	LF 103	335	
N	15 (-2/+3) ÷ 18 (-2/+3)	LF 44	3700	LF 103	333	
	21 (-2/+3) ÷ 42 (-2/+3)	LF 44	3500	LF 104	315	
	9 (-2/+1)	LF 44	3700	LF 103	335	
M	9 (+2/+3) ÷ 33 (-2/+3)	LF 44	3500	LF 104	315	
	9 (-2/+3) ÷ 21 (-2/+3)	15.44	3500		315	
Р	24 (-2/+3)	LF 44	3900	LF 104	355	
	27 (-2/+3) ÷ 48 (-2/+3)	LF 48	3900		355	
	9 (-2/+3) ÷ 18 (-2/+3)	=	3900	LF 104	355	
V	21 (-2/+3) ÷ 24 (-2/+3)	LF 45	4200	LF 110	385	
	27 (-2/+3) ÷ 42 (-2/+3)	LF 46	4200		385	
0	9 (-2/+3) ÷ 12 (-2/+3)	15.40	4200	LF 110	385	
С	15 (-2/+3) ÷ 33 (-2/+3)	LF 49	4000	LF 106	365	
	9 (-2/ -1) (*)		2750	LF 301	240	
E	9 (±0/+3) (*) ÷ 18 (-2/+3)	15.50	4400	LF 113	405	
	21 (-2/+3) ÷ 27 (-2/+3)	LF 50	4000	LF 106	365	
	30 (-2/+3) ÷ 33 (-2/+3)		3800	LF 111	345	
	9 (±0/+3)	LF 46	4400	15.440	405	
	12 (-2/+3)	LF 54	4400	LF 113	405	
E*	15 (-2/-1)	15.50	4100	LF 114	375	
	15 (±0/+3) ÷ 24 (-2/+3)	LF 50	3800		345	
	27 (-2/+3) ÷ 33 (-2/+3)	LF 53	3800	LF 111	345	

 $^{(\}begin{tabular}{l}(\begin{tab$

150 kV Semplice terna a triangolo

FONDAZIONI CR (σt_{amm} = 2.0 – 3.9 daN/cmq) TABELLA DELLE CORRISPONDENZE SOSTEGNI – MONCONI - FONDAZIONI Codifica: 150STINFON

Pag. **3** di 3

Rev. 05

• Fondazioni CR ($\sigma t_{amm} \ge 3.9 \text{ daN/cmq}$)

SOSTEGNO		МС	NCONE	FONDAZIONE		
TIPO	ALTEZZA (PIEDI)	TIPO	ALTEZZA (MM)	TIPO	ALTEZZA (CM)	
	9 (-2/+3) ÷ 12 (-2/+3)	LE 42	3100	LE 400	275	
L	15 (-2/+3) ÷ 33 (-2/+3)	LF 43	3300	LF 102	295	
	9 (-2/+3) ÷ 12 (-2/+3)	LF 43	3300	LE 102	205	
	15 (-2/+3) ÷ 18 (-2/+3)		3300	LF 102	295	
N	21 (-2/+3)	15.44	3100		275	
	24 (-2/+3) ÷ 39 (-2/+3)	LF 44	3200	LF 103	285	
	42 (-2/+3)		3300		295	
	9 (-2/+1)		3300	LF 102	295	
	9 (+2/+3) ÷ 12 (-2/+3)	15.44	3100		275	
M	15 (-2/+3) ÷ 21 (-2/+3)	LF 44	3200	LF 103	285	
	24 (-2/+3) ÷ 33 (-2/+3)		3300		295	
	9 (-2/+2)		3100		275	
	9 (+3) ÷ 12 (-2/+3)	1544	3200		285	
	15 (-2/+3) ÷ 21 (-2/+3)	LF 44	3300		295	
Р	24 (-2/+3)		3400	LF 103	005	
	27 (-2/+3) ÷ 36 (-2/+3)	LF 48	3400		305	
	39 (-2/+3) ÷ 42 (-2/+3)		0000		005	
	45 (-1/+3) ÷ 48 (-1/+3)		3600		325	
	9 (-2/+3) ÷ 18 (-2/+3)	15.45	3600	LF 103	325	
V	21 (-2/+3) ÷ 24 (-2/+3)	LF 45	3400		205	
V	27 (-2/+3) ÷ 30 (-2/+3)	LE 40	3400	LF 104	305	
	33 (-2/+3) ÷ 42 (-2/+3)	LF 46	3500		315	
	9 (-2/+3) ÷ 12 (-2/+3)		3500	LF 104	315	
С	15 (-2/+3) ÷ 21 (-2/+3)	LF 49	3600	LE 405	325	
	24 (-2/+3) ÷ 33 (-2/+3)		3700	LF 105	335	
	9 (-2/±0)		4100	LF 115	375	
F	9 (+1/+3) ÷ 18 (-2/+3)	1.5.50	3700	LF 109	335	
E	21 (-2/+3) ÷ 27 (-2/+3)	LF 50	3800	LF 105	345	
	30 (-2/+3) ÷ 33 (-2/+3)		3400	LF 107	305	
	9 (±0)	15.40	4100	LF 115	375	
	9 (+1/+3)	LF 46	3600		325	
- +	12 (-2/+3)	LF 54	3700	LF 109	335	
E*	15 (-2/±0)	1.5.5	4000		365	
	15 (+1/+3) ÷ 24 (-2/+3)	LF 50	3400	LE 407	005	
ı	27 (-2/+3) ÷ 33 (-2/+3)	LF 53	3400	LF 107	305	

Codifica

LIN_00F20002

Rev. 00
del 28/06/2012

Pag. 1 di 20

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO

RACCOLTA FONDAZIONI

Storia de	elle revisioni	
Rev. 00	del 28/06/2012	Il documento viene redatto in prima emissione

ISC – Uso INTERNO

Elaborato		Verificato	Approvato		
ITI s.r.l.		P. Berardi SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posati SRI-SVT-LAE

Terna Rete Italia

Scheda tecnica prescrittiva

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI

Codifica LIN_00F20002

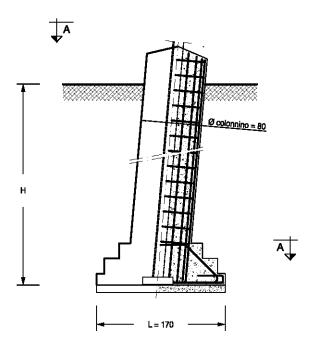
Pag. **2** di 20

Rev. 00

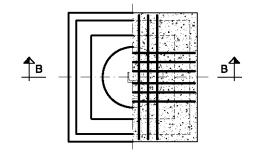
SOMMARIO

1	FONDAZIONI DI CLASSE CR σ_{amm} = 3,9 daN/cm ² – F102	3
2	FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 e 3,9 daN/cm ² – F103	4
3	FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 e 3,9 daN/cm ² – F104	5
4	FONDAZIONI DI CLASSE CR σ_{amm} = 3,9 daN/cm ² – F105	6
5	FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 daN/cm ² – F106	7
6	FONDAZIONI DI CLASSE CR σ_{amm} = 3,9 daN/cm ² – F107	8
7	FONDAZIONI DI CLASSE CR σ_{amm} = 3,9 daN/cm ² – F108	9
8	FONDAZIONI DI CLASSE CR σ_{amm} = 3,9 daN/cm ² – F109	10
9	FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 daN/cm ² – F110	11
10	FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 daN/cm ² – F111	12
11	FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 daN/cm ² – F112	13
12	FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 daN/cm ² – F113	14
13	FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 daN/cm ² – F114	15
14	FONDAZIONI DI CLASSE CR σ_{amm} = 3,9 daN/cm ² – F115	16
15	FONDAZIONI DI CLASSE CR σ_{amm} = 3,9 daN/cm ² – F116	17
16	FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 daN/cm ² – F301	18
17	FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 daN/cm ² – F302	19
18	FONDAZIONI DI CLASSE CR σ_{amm} = 3,9 daN/cm ² – F303	20

Terna Rete Italia TERNA GROUP


Scheda tecnica prescrittiva

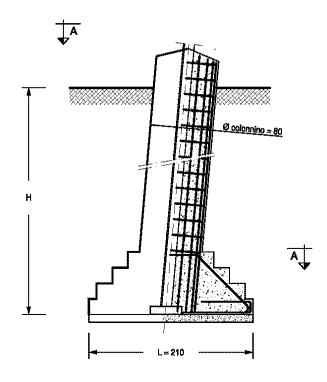
LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI


Codifica LIN_00F20002 Pag. **3** di 20 Rev. 00

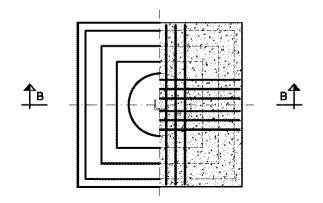
FONDAZIONI DI CLASSE CR σ_{amm} = 3,9 daN/cm² – F102

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE



Fondaz	ione	Massa armatura		Volumi		Cario	chi dimensionan	ti (daN)	Serie di impiego
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT
102/275	275	181,28	2,432	0,289	8,237	40847	38981	6140	ST
102/295	295	189,22	2,533	0,289	8,815	48093	44385	6468	ST


- Tabella delle corrispondenze sostegni- monconi- fondazioni:
 SEMPLICE TERNA: doc. 150STINFON
- Elenco documenti fondazioni- Rapporti di calcolo Disegni costruttivi: SEMPLICE TERNA: doc. 150STINFDN
- Disegno costruttivo: doc. P005DF001

FONDAZIONI DI CLASSE CR $\sigma_{amm} = 2.0 \text{ e } 3.9 \text{ daN/cm}^2 - \text{F103}$

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

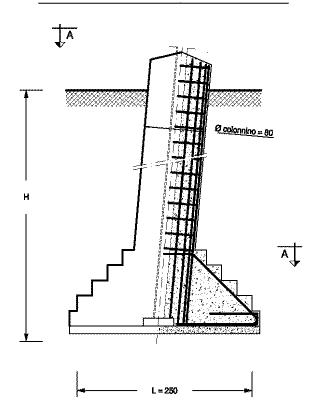
	$\sigma_{\text{amm}} = 3.9 \text{ daN/cm}^2$													
Fondaz	ione	Massa armatura		Volumi		Cario	chi dimensionan	ti (daN)	Serie di impiego					
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT					
103/275	275	189,52	3,477	0,441	12,569	49328	45781	6357	ST					
103/285	285	194,01	3,528	0,441	13,010	54518	50063	5965	ST					
103/295	295	197,46	3,578	0,441	13,451	57789	53074	7168	ST e DT					
103/305	305	201,95	3,628	0,441	13,892	64215	57595	5852	ST e DT					
103/325	325	209,89	3,729	0,441	14,774	71840 64832 7757			ST e DT					

	$\sigma_{amm} = 2.0 \text{ daN/cm}^2$												
Fondazione Massa armatura Volumi						Carichi dimensionanti (daN)			Serie di impiego				
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT				
103/335													

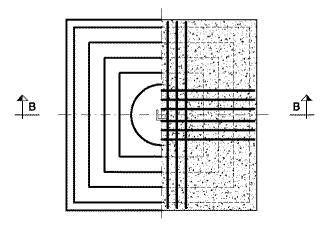
DOCUMENTI DI RIFERIMENTO:

- Tabella delle corrispondenze sostegni- monconi- fondazioni:

SEMPLICE TERNA: doc. 150STINFON
 DOPPIA TERNA: doc. 150DTINFON


- Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi:

SEMPLICE TERNA: doc. 150STINFDNDOPPIA TERNA: doc. 150DTINFDN


- Disegno costruttivo: doc. P005DF002

FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 e 3,9 daN/cm² – F104

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

Scheda tecnica prescrittiva

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI

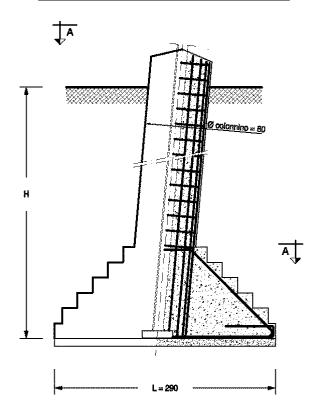
Codifica LIN 00F20002 Pag. **5** di 20 Rev. 00

				$\sigma_{\sf am}$	$_{\rm m} = 3.9$	daN/cm²	2		
Fondazi	ione	Massa armatura				Cari	chi dimensionan	ti (daN)	Serie di impiego
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT
104/305	305	290,32	4,954	0,625	19,688	79459	71070	6535	ST e DT
104/315	315	294,49	4,703	0,625	20,313	83355	74958	11329	ST (C,V) e DT (M)

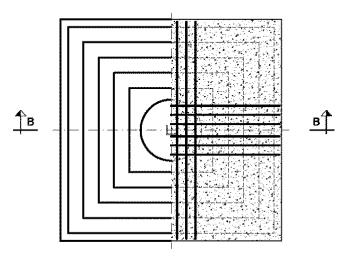
	$\sigma_{amm} = 2.0 \text{ daN/cm}^2$												
Fondazione Massa armatura Volumi Carici							Carichi dimensionanti (daN) Serie di im						
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	cls-250 cls-150 scavo Compressione Trazione Tagli				Taglio	ST/DT				
104/315	315	294,49	4,703	0,625	20,313	57789	53074	7168	ST (M,N,P) e DT (L,N)				
104/355	355	313,27	5,205	0,625	22,813	71840	64832	7757	ST e DT				

DOCUMENTI DI RIFERIMENTO:

Tabella delle corrispondenze sostegni- monconi- fondazioni:
- SEMPLICE TERNA: doc. 150STINFON - DOPPIA TERNA: doc. 150DTINFON


Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi: - SEMPLICE TERNA: doc. 150STINFDN

- DOPPIA TERNA: doc. 150DTINFDN


Disegno costruttivo: doc. P005DF003

FONDAZIONI DI CLASSE CR $\sigma_{amm} = 3.9 \text{ daN/cm}^2 - \text{F105}$

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

Scheda tecnica prescrittiva

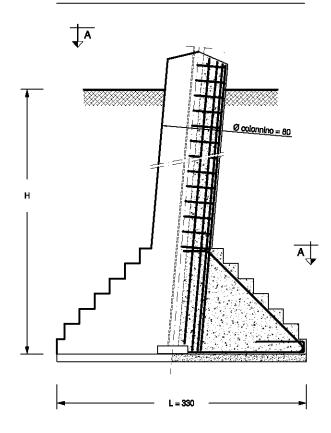
LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI

Codifica LIN 00F20002 Pag. **6** di 20 Rev. 00

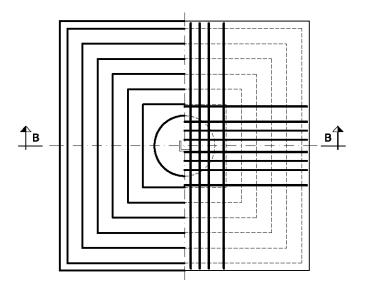
Fondaz	ione	Massa armatura		Volumi		Cario	chi dimensionan	iti (daN)	Serie di impiego
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT
105/325	325	361,96	6,844	0,841	28,174	86406	81200	8088	ST
105/335	335	365,90	6.894	0.841	29.015	109913	99224	8654	ST e DT
105/335	333	365,90	6,694	0,041	29,015	109918	99242	8655	DT (V pesante)
105/345	345	270.00	6.944	0.841	29.856	120173	105875	7240	ST e DT
105/345	343	370,88	0,944	0,041	29,000	120241	105858	6094	DT (V pesante)

DOCUMENTI DI RIFERIMENTO:

Tabella delle corrispondenze sostegni- monconi- fondazioni:
SEMPLICE TERNA: doc. 150STINFON
DOPPIA TERNA: doc. 150DTINFON


Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi: - SEMPLICE TERNA: doc. 150STINFDN

- DOPPIA TERNA: doc. 150DTINFDN


Disegno costruttivo: doc. P005DF004

FONDAZIONI DI CLASSE CR $\sigma_{amm} = 2.0 \text{ daN/cm}^2 - \text{F106}$

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

Scheda tecnica prescrittiva

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI

Codifica LIN 00F20002 Pag. **7** di 20

Fondaz	ione	Massa armatura		Volumi		Cario	chi dimensionan	nti (daN)	Serie di impiego
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT
106/365	365	354,64	9,362	1,089	40,838	120173	105875	8654	ST e DT
100/303	303	334,04	9,002	1,009	40,030	120241	105858	8655	DT (V pesante)

DOCUMENTI DI RIFERIMENTO:

Tabella delle corrispondenze sostegni- monconi- fondazioni:
- SEMPLICE TERNA: doc. 150STINFON - DOPPIA TERNA: doc. 150DTINFON

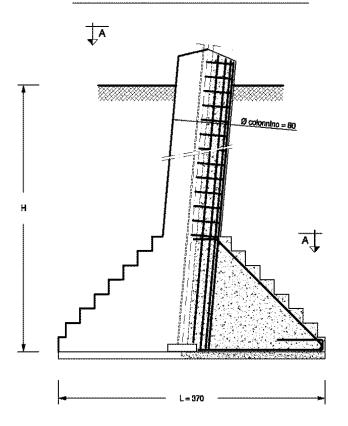
Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi:

- SEMPLICE TERNA: doc. 150STINFDN - DOPPIA TERNA: doc. 150DTINFDN Disegno costruttivo: doc. P005DF008

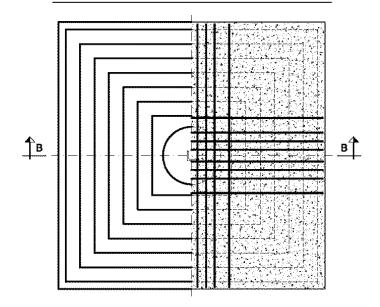
ISC - Uso INTERNO

Terna Rete Italia

Scheda tecnica prescrittiva


LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI Codifica

LIN_00F20002


Rev. 00 Pag. **8** di 20

6 FONDAZIONI DI CLASSE CR $\sigma_{amm} = 3.9 \text{ daN/cm}^2 - \text{F107}$

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

Fondaz	ione	Massa armatura		Volumi		Cario	chi dimensionar	ti (daN)	Serie di impiego
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT
107/305	305	679,18	11,970	1,369	43,124	128969	118194	17613	ST e DT
107/303	303	679,16	11,970	1,309	43,124	122013	106924	5599	DT (V pesante)

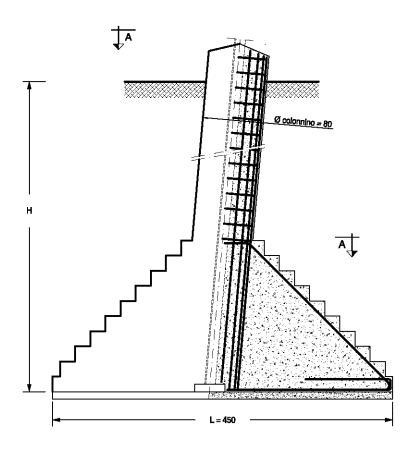
DOCUMENTI DI RIFERIMENTO:

- Tabella delle corrispondenze sostegni- monconi- fondazioni:

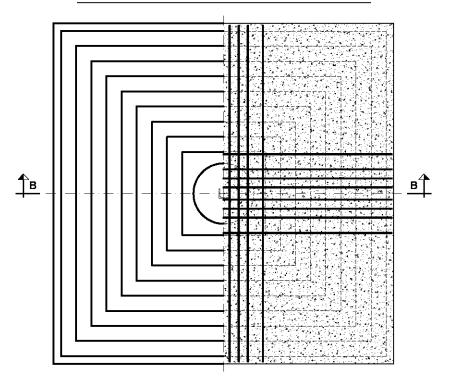
SEMPLICE TERNA: doc. 150STINFON
 DOPPIA TERNA: doc. 150DTINFON

- Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi:

SEMPLICE TERNA: doc. 150STINFDN
 DOPPIA TERNA: doc. 150DTINFDN
 Disegno costruttivo: doc. P005DF005


Terna Rete Italia TERNA GROUP

Scheda tecnica prescrittiva


LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI

Codifica LIN_00F20002 Pag. **9** di 20

FONDAZIONI DI CLASSE CR σ_{amm} = 3,9 daN/cm² – F108 SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

Fondaz	ione	Massa armatura		Volumi		Cari	chi dimensionan	ti (daN)	Serie di impiego
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	cls-250 cls-150 scayo			Trazione	Taglio	ST/DT
108/345	345	821,10	20,022	2,025	71,888	206395	189104	10739	DT

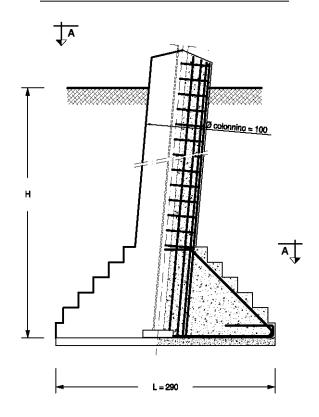
DOCUMENTI DI RIFERIMENTO:

Tabella delle corrispondenze sostegni- monconi- fondazioni:
- DOPPIA TERNA: doc. 150DTINFON

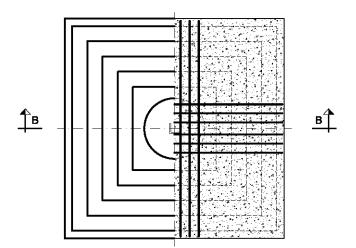
Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi: - DOPPIA TERNA: doc. 150DTINFDN

Disegno costruttivo: doc. P005DF006

Terna Rete Italia TERNA GROUP


Scheda tecnica prescrittiva

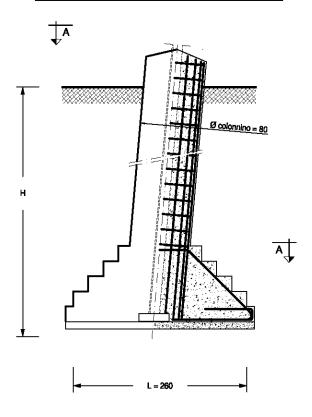
LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI


Codifica LIN 00F20002 Pag. **10** di 20 Rev. 00

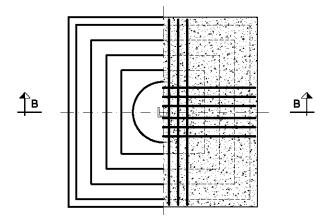
FONDAZIONI DI CLASSE CR $\sigma_{amm} = 3.9 \text{ daN/cm}^2 - \text{F109}$

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE



Fondaz	ione	Massa armatura		Volumi		Cario	chi dimensionan	nti (daN)	Serie di impiego
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT
109/325	325	477,24	7,536	0,841	28,174	86447	82151	15995	ST
109/335	335	484,35	7,615	0,841	29,015	107019	99769	21290	ST
109/365	365	508,22	7,850	0,841	31,538	119638	110215	17643	ST


- Tabella delle corrispondenze sostegni- monconi- fondazioni:
 SEMPLICE TERNA: doc. 150STINFON
- Elenco documenti fondazioni- Rapporti di calcolo Disegni costruttivi: SEMPLICE TERNA: doc. 150STINFDN
- Disegno costruttivo: doc. P005DF007

FONDAZIONI DI CLASSE CR $\sigma_{amm} = 2.0 \text{ daN/cm}^2 - \text{F110}$

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

Scheda tecnica prescrittiva

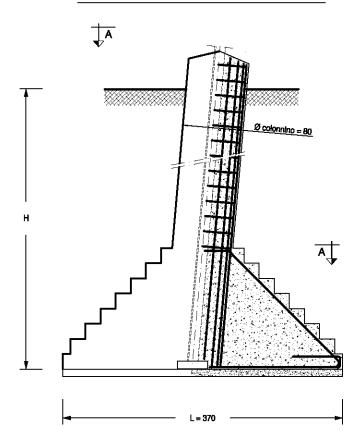
LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI

Codifica LIN 00F20002 Pag. **11** di 20 Rev. 00

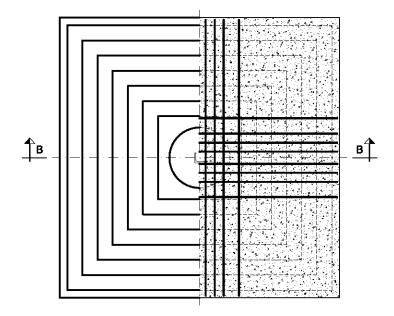
Fondaz	ione	Massa armatura		Volumi		Cario	chi dimensionan	ti (daN)	Serie di impiego
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT
110/385	385	482,91	5,458	0,676	26,702	83355	74958	11329	ST e DT

DOCUMENTI DI RIFERIMENTO:

Tabella delle corrispondenze sostegni- monconi- fondazioni:
- SEMPLICE TERNA: doc. 150STINFON - DOPPIA TERNA: doc. 150DTINFON


Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi:

- SEMPLICE TERNA: doc. 150STINFDN - DOPPIA TERNA: doc. 150DTINFDN Disegno costruttivo: doc. P005DF009


ISC - Uso INTERNO

10 FONDAZIONI DI CLASSE CR $\sigma_{amm} = 2.0 \text{ daN/cm}^2 - \text{F111}$

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

Scheda tecnica prescrittiva

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI Codifica
LIN_00F20002

Rev. 00 Pag. 12 di 20

Fondaz	ione	Massa armatura		Volumi		Cario	chi dimensionan	ti (daN)	Serie di impiego
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	cls-250 cls-150 scavo		Compressione	Trazione	Taglio	ST/DT
111/345	345	514.58	12,171	1,369	48,600	128969	118194	17613	ST e DT
111/343	343	514,56	12,171	1,509	40,000	122013	106924	5599	DT (V pesante)

DOCUMENTI DI RIFERIMENTO:

- Tabella delle corrispondenze sostegni- monconi- fondazioni:

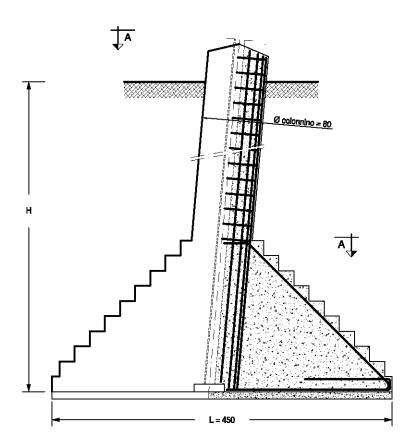
SEMPLICE TERNA: doc. 150STINFON
 DOPPIA TERNA: doc. 150DTINFON

- Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi:

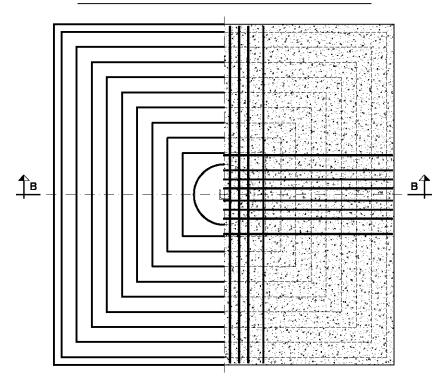
SEMPLICE TERNA: doc. 150STINFDN
 DOPPIA TERNA: doc. 150DTINFDN
 Disegno costruttivo: doc. P005DF010

ISC - Uso INTERNO

Terna Rete Italia TERNA GROUP


Scheda tecnica prescrittiva

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI


Codifica LIN_00F20002 Pag. **13** di 20 Rev. 00

FONDAZIONI DI CLASSE CR $\sigma_{amm} = 2.0 \text{ daN/cm}^2 - \text{F112}$

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

Fondaz	zione Massa armatura Volumi			Cari	Serie di impiego				
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT
112/405	405	766,33	20,324	2,025	84,038	206395	189104	10739	DT

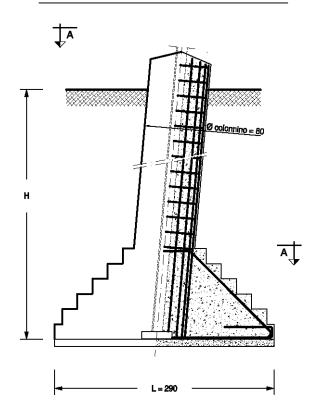
DOCUMENTI DI RIFERIMENTO:

Tabella delle corrispondenze sostegni- monconi- fondazioni:
- DOPPIA TERNA: doc. 150DTINFON

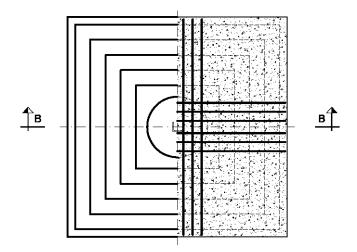
Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi: - DOPPIA TERNA: doc. 150DTINFDN

Disegno costruttivo: doc. P005DF011

Terna Rete Italia TERNA GROUP


Scheda tecnica prescrittiva

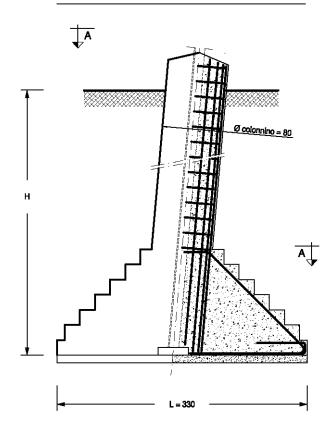
LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI


Codifica LIN_00F20002 Pag. **14** di 20 Rev. 00

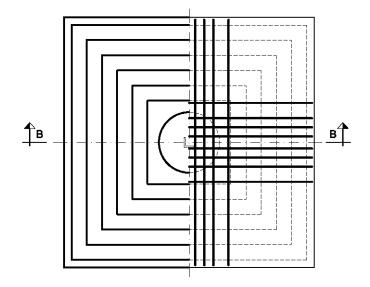
12 FONDAZIONI DI CLASSE CR $\sigma_{amm} = 2.0 \text{ daN/cm}^2 - \text{F113}$

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE



Fondazi	Fondazione Massa armatura			Volumi		Cari	Serie di impiego		
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT
113/405	405	597,98	7,246	0,841	34,902	107019	99769	21290	ST


- Tabella delle corrispondenze sostegni- monconi- fondazioni:
 SEMPLICE TERNA: doc. 150STINFON
- Elenco documenti fondazioni- Rapporti di calcolo Disegni costruttivi: SEMPLICE TERNA: doc. 150STINFDN
- Disegno costruttivo: doc. P005DF012

FONDAZIONI DI CLASSE CR $\sigma_{amm} = 2.0 \text{ daN/cm}^2 - \text{F114}$

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

Scheda tecnica prescrittiva

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI

Codifica LIN 00F20002 Pag. **15** di 20

Fondazione Massa armatura			Volumi			Carichi dimensionanti (daN)			
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT
114/375	375	598,75	9,412	1,089	41,927	116664	107642	17643	ST

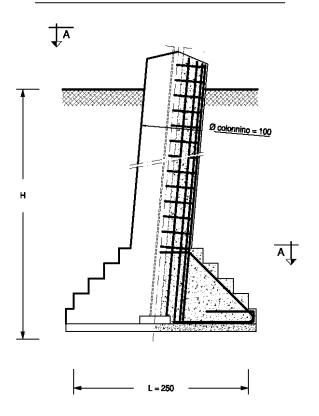
DOCUMENTI DI RIFERIMENTO:

Tabella delle corrispondenze sostegni- monconi- fondazioni:
- SEMPLICE TERNA: doc. 150STINFON

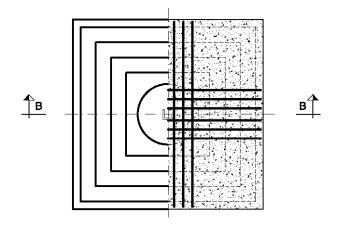
Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi: - SEMPLICE TERNA: doc. 150STINFDN

Disegno costruttivo: doc. P005DF013

Terna Rete Italia TERNA GROUP


Scheda tecnica prescrittiva

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI


Codifica LIN 00F20002 Pag. **16** di 20 Rev. 00

FONDAZIONI DI CLASSE CR σ_{amm} = 3,9 daN/cm² – F115

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

Fondazi	Fondazione Massa armatura Volumi		Cario	ti (daN)	Serie di impiego				
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT
115/375	375	445,08	6,196	0,625	24,063	98572	88196	16033	ST

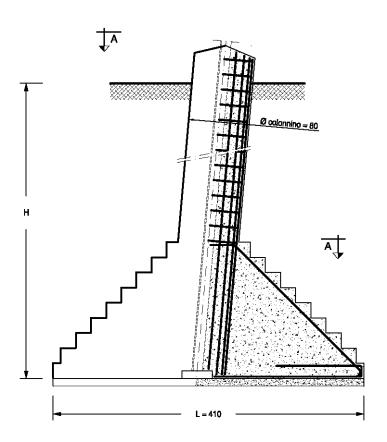
DOCUMENTI DI RIFERIMENTO:

Tabella delle corrispondenze sostegni- monconi- fondazioni:
- SEMPLICE TERNA: doc. 150STINFON

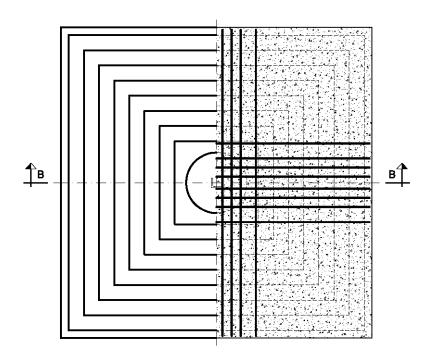
Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi: - SEMPLICE TERNA: doc. 150STINFDN

Disegno costruttivo: doc. P005DF014

Terna Rete Italia TERNA GROUP


Scheda tecnica prescrittiva

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI


Codifica LIN 00F20002 Pag. **17** di 20 Rev. 00

FONDAZIONI DI CLASSE CR $\sigma_{amm} = 3.9 \text{ daN/cm}^2 - \text{F116}$

SEZIONE B-B PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

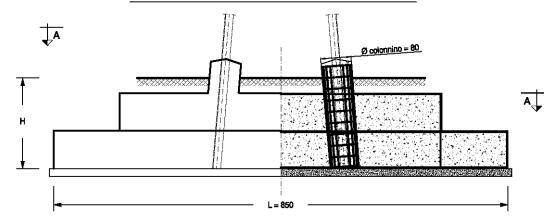
Fondaz	ione	Massa armatura	Volumi			Cari	ti (daN)	Serie di impiego	
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Compressione	Trazione	Taglio	ST/DT
116/405	405	735,65	16,038	1,681	69,762	189620	175145	14204	DT

DOCUMENTI DI RIFERIMENTO:

Tabella delle corrispondenze sostegni- monconi- fondazioni:
- DOPPIA TERNA: doc. 150DTINFON

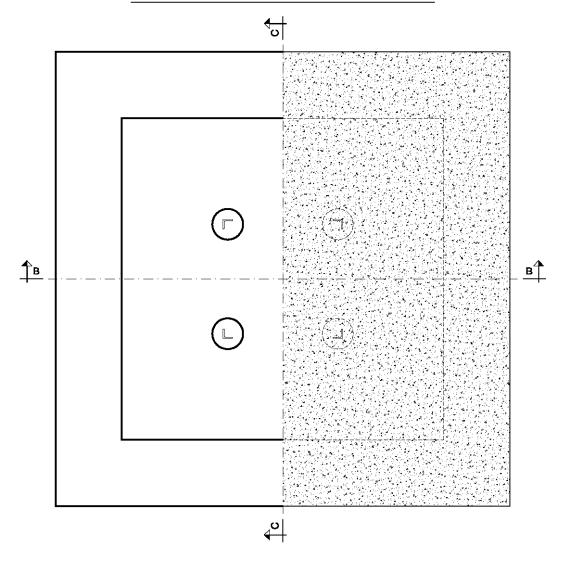
Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi: - DOPPIA TERNA: doc. 150DTINFDN

Disegno costruttivo: doc. P005DF015


LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI

Codifica LIN 00F20002 Pag. **18** di 20

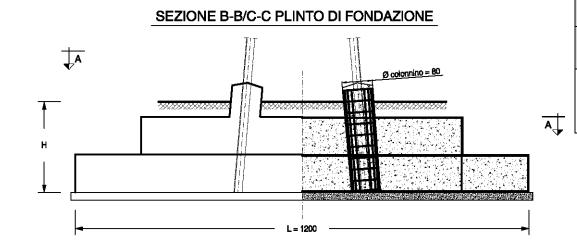
Rev. 00


FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 daN/cm² – F301

SEZIONE B-B/C-C PLINTO DI FONDAZIONE

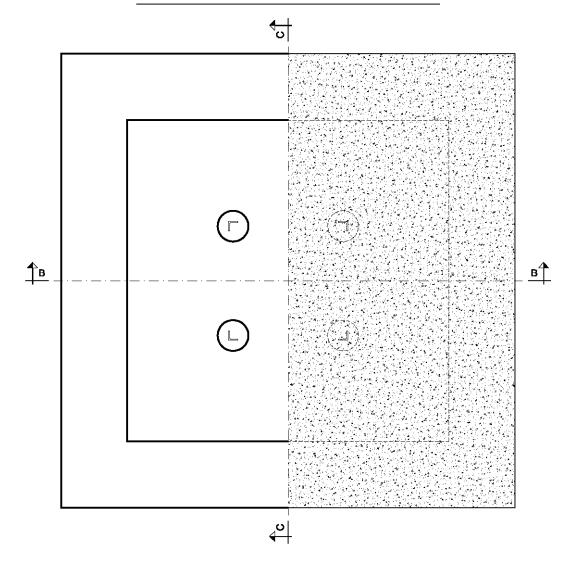
Fondaz	Fondazione Massa a		Volumi			Carichi dimensionanti (daN)						Serie di impiego
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Fx	Fy	Р	Mx	Му	Azione di riferimento	ST/DT
301/240	240	7258	78,7	15,1	196,8	1,98 E+04	-3,36E+04	2,76E+04	3,71E+05	2,45E+05	Max momento MX e max azione verticale	
001/240	2-10	, 250	70,7	10,1	100,0	5,47E+04	-2,98E+03	2,21E+04	4,27E+04	5,95E+05	Max momento MY	ST

PIANTA - SEZIONE A-A PLINTO FONDAZIONE


- Tabella delle corrispondenze sostegni- monconi- fondazioni:
 SEMPLICE TERNA: doc. 150STINFON
- Elenco documenti fondazioni- Rapporti di calcolo Disegni costruttivi: SEMPLICE TERNA: doc. 150STINFDN
- Disegno costruttivo: doc. P005DFB02

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI

Codifica LIN 00F20002


Pag. **19** di 20 Rev. 00

FONDAZIONI DI CLASSE CR σ_{amm} = 2,0 daN/cm² – F302

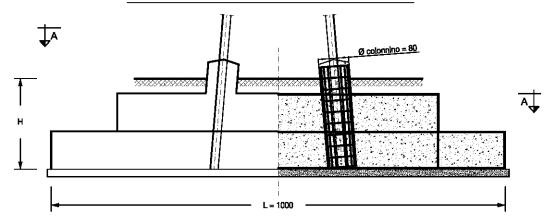
Fondaz	ione	Massa armatura		Volumi		Carichi dimensionanti (daN)						Serie di impiego
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Fx	Fy	Р	Mx	Му	Azione di riferimento	ST/DT
302/240	240	17375	218,0	29.8	387,0	-3,40 E+04	-6,08E+04	5,15E+04	8,16E+05	-4,67E+05	Max momento MX e max azione verticale	
302/240	240 17375	17373	210,0	25,0	307,0	9,88E+04	-4,03E+03	1,21E+04	6,90E+04	1,29E+06	Max momento MY	DT

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

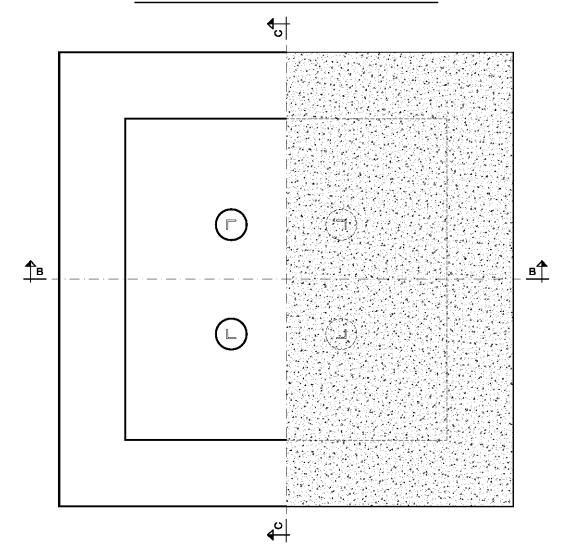
DOCUMENTI DI RIFERIMENTO:

Tabella delle corrispondenze sostegni- monconi- fondazioni:
- DOPPIA TERNA: doc. 150DTINFON

Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi: - DOPPIA TERNA: doc. 150DTINFDN


doc. P005DFB03 Disegno costruttivo:

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA FONDAZIONI


Codifica LIN 00F20002 Pag. **20** di 20 Rev. 00

FONDAZIONI DI CLASSE CR σ_{amm} = 3,9 daN/cm² – F303

SEZIONE B-B/C-C PLINTO DI FONDAZIONE

PIANTA - SEZIONE A-A PLINTO FONDAZIONE

Fondaz	Fondazione Massa					Carichi dimensionanti (daN)						Serie di impiego
Tipo	H (cm)	Ptot (kg)	Volume cls-250 (m³)	Volume cls-150 (m³)	Volume scavo (m³)	Fx	Fy	Р	Mx	Му	Azione di riferimento	ST/DT
303/300	300	11725	142,3	20,8	332,9	1,02 E+05	-4,03E+03	1,71E+04	7,50E+04	2,16E+06	Max momento MY e max azione verticale	
000/000	300 11725	11/25 142,3 20		20,0	20,0 332,9	3,48E+04	-6,08E+04	5,68E+04	9,36E+05	7,65E+05	Max momento MX	DT

DOCUMENTI DI RIFERIMENTO:

Tabella delle corrispondenze sostegni- monconi- fondazioni:
- DOPPIA TERNA: doc. 150DTINFON

Elenco documenti fondazioni- Rapporti di calcolo – Disegni costruttivi: - DOPPIA TERNA: doc. 150DTINFDN

Disegno costruttivo: doc. P005DFB01

Codifica LIN_00F20003 Rev. 00 Pag. **1** di 13

del 28/06/2012

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA **CONDUTTORE Ø 31,5 mm - TIRO PIENO**

RACCOLTA MONCONI

Storia de	elle revisioni	
Rev. 00	del 28/06/2012	Il documento viene redatto in prima emissione

ISC - Uso INTERNO

Elaborato	Verificato	Approvato		
ITI s.r.l.	P. Berardi SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posati SRI-SVT-LAE

Terna Rete Italia

Scheda tecnica prescrittiva

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA MONCONI

LIN_00F20003

Rev. 00 Pag. **2** di 13

SOMMARIO

1	MONCONI F43	3
2	MONCONI F44	4
3	MONCONI F45	5
4	MONCONI F46	6
5	MONCONI F48	7
6	MONCONI F49	8
7	MONCONI F50	9
8	MONCONI F53	10
9	MONCONI F54	11
10	MONCONI F55	12
11	MONCONI F56	13

1

Scheda tecnica prescrittiva

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA MONCONI

Codifica	LIN_0	0F20	0003
Rev. 00		Pag	3 di 13

MONCONI F43

_ -	Н	Massa	Serie di impiego	MONCONI (m)	ANGOLARE L 130 x 10 A	BULLONI (n) 8 Ø 20
Tipo	(mm)	(kg)	ST/DT	SQUADRETTE (s)	ANGOLARE L 150 x 12 A	BULLONI (s) 6 Ø 24
43/1	3100	93	ST			
43/2	3300	97	ST			
43/3	3700	106	ST	m s		H

NOTE:

- 1. Per le marcature vedere documento LIN_00S10051.
- 2. Prescrizioni per la fornitura, la costruzione e il collaudo vedere documento LIN_00S10001, LIN_00S10002, LIN_00S10003.
- 3. L'unità di misura per gli elementi strutturali è il numero degli esemplari (n).

- Tabella delle corrispondenze sostegni- monconi- fondazioni:
 - SEMPLICE TERNA: doc. 150STINFON
- Elenco documenti monconi- Rapporti di calcolo Disegni costruttivi:
 - SEMPLICE TERNA: doc. 150STINMNC
- Disegno costruttivo: doc. P005DX001

2

Scheda tecnica prescrittiva

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA MONCONI

Codifica	LIN_0	0F20	0003
Rev. 00		Pag.	4 di 13

MONCONI F44

	1	<u> </u>	1	<u> </u>	ANICOL ADE	DILLI ONI ()
			Serie di impiego	MONCONI (m)	ANGOLARE L 140 x 12 A	BULLONI (n) 8 Ø 20
Tipo	H (mm)	Massa (kg)	ST/DT	SQUADRETTE (s)	ANGOLARE L 140 x 12 A L 180 x 16 A	BULLONI (s) 12 Ø 24
44/1	3100	146	ST			
44/2	3200	148	ST			
44/3	3300	151	ST e DT		_ [] _ [
44/4	3400	154	ST e DT			
44/5	3500	156	ST e DT	ī,	110	
44/6	3700	162	ST	(n		
44/7	3900	167	ST e DT	7	[]	
					+ + 1	
						,
					1 111	
						' <u> </u>
				m -		
						1
					<u>l</u> ! l	Н
				(s)		
				\	110	
				\ F		
				Y.	414	
				L	+	

NOTE:

- 1. Per le marcature vedere documento LIN 00S10051.
- 2. Prescrizioni per la fornitura, la costruzione e il collaudo vedere documento LIN_00S10001, LIN_00S10002, LIN_00S10003.
- 3. L'unità di misura per gli elementi strutturali è il numero degli esemplari (n).

DOCUMENTI DI RIFERIMENTO:

- Tabella delle corrispondenze sostegni- monconi- fondazioni:

SEMPLICE TERNA: doc. 150STINFON
 DOPPIA TERNA: doc. 150DTINFON

Elenco documenti monconi- Rapporti di calcolo – Disegni costruttivi:

SEMPLICE TERNA: doc. 150STINMNC
 DOPPIA TERNA: doc. 150DTINMNC

- Disegno costruttivo: doc. P005DX002

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA MONCONI

Codifica	LIN_0	0F20	0003
Rev. 00		Pag	5 di 13

HACCOLIA

3 MONCONI F45

	Н	Massa	Serie di impiego	MONCONI (m)	ANGOLARE L 150 x 16 A	BULLONI (n) 8 Ø 24
Tipo	(mm)	(kg)	ST/DT	SQUADRETTE (s)	ANGOLARE L 150 x 16 A L 200 x 16 A	BULLONI (s) 18 Ø 24
45/1	3400	215	ST e DT			
45/2	3600	223	ST e DT			
45/3	3900	234	ST e DT	1	_ [_]	
45/4	4200	245	ST e DT			
				ň	119	
				<u> </u>	11 41	
				Ť	(!!4 !!	
				1	\ <u>_</u>	
				-		
				-		7
				1		
				1	' = #'=!=	
				(m)-		
					li l	
				-	li I	Н
				(s)		
				7	1 1	
				\ `	\ 4	ļ
				\ _		
					\$ \$	
				- 1	1 41	
				4		
				-		
				-		

NOTE:

- 1. Per le marcature vedere documento LIN 00S10051.
- 2. Prescrizioni per la fornitura, la costruzione e il collaudo vedere documento LIN_00S10001, LIN_00S10002, LIN_00S10003.
- 3. L'unità di misura per gli elementi strutturali è il numero degli esemplari (n).

DOCUMENTI DI RIFERIMENTO:

- Tabella delle corrispondenze sostegni- monconi- fondazioni:

SEMPLICE TERNA: doc. 150STINFON
 DOPPIA TERNA: doc. 150DTINFON

Elenco documenti monconi- Rapporti di calcolo – Disegni costruttivi:

SEMPLICE TERNA: doc. 150STINMNC
 DOPPIA TERNA: doc. 150DTINMNC

- Disegno costruttivo: doc. P005DX003

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO

Codifica	LIN_0	0F20	0003
Rev. 00		Pag.	6 di 13

RACCOLTA MONCONI

4 MONCONI F46

Tion	Н	Massa	Serie di impiego	MONCONI (m)	ANGOLARE L 150 x 18 A	BULLONI (n) 6 Ø 24
Tipo	(mm)	(kg)	ST/DT	SQUADRETTE (s)	ANGOLARE L 150 x 18 A	BULLONI (s) 24 Ø 24
46/1	3400	259	ST e DT			
46/2	3500	263	ST e DT		Thirt	
46/3	3600	267	ST		1	
46/4	4200	293	ST e DT		 	
46/5	4400	301	ST	(n)	11; ' 11	
46/6	4100	288	ST			
					#	
						1
					1 11 1	
					11 _ 1	
					1111	<u></u>
						0
				FF		H
				1	* i * i	Ï
					110	_
						૭
					# 4	
				<u> </u>	##	
					DII 10/	
				10	 	
						y
					1	

NOTE:

- 1. Per le marcature vedere documento LIN_00S10051.
- 2. Prescrizioni per la fornitura, la costruzione e il collaudo vedere documento LIN_00S10001, LIN_00S10002, LIN_00S10003.
- 3. L'unità di misura per gli elementi strutturali è il numero degli esemplari (n).

- Tabella delle corrispondenze sostegni- monconi- fondazioni:
 - SEMPLICE TERNA: doc. 150STINFON
 DOPPIA TERNA: doc. 150DTINFON
- Elenco documenti monconi- Rapporti di calcolo Disegni costruttivi:
 - SEMPLICE TERNA: doc. 150STINMNC
 DOPPIA TERNA: doc. 150DTINMNC
- Disegno costruttivo: doc. P005DX004

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO

Codifica LIN 00F20003 Rev. 00 Pag. **7** di 13

RACCOLTA MONCONI

5 **MONCONI F48**

	н	Massa	Serie di impiego	MONCONI (m)	ANGOLARE L 150 x 14 A	BULLONI (n) 6 Ø 20
Tipo	(mm)	(kg)	ST/DT	SQUADRETTE (s)	ANGOLARE L 150 x 16 A L 200 x 16 A	BULLONI (s) 18 Ø 24
48/1	3400	196	ST e DT			
48/2	3600	203	ST e DT			
48/3	3900	213	ST e DT		_ [- .
					/ H]	
				(n		
				1		
				1	\	
						1 1
					1 11 1	
					= = = =	
				(m)-		1
					1 1	Н
				(s)	<u>l</u> !	
				T		
				\ `	1	
				\ F		
				I V	φ φ	
				1	+	
				1		
				1		
				1		

NOTE:

- 1. Per le marcature vedere documento LIN 00S10051.
- 2. Prescrizioni per la fornitura, la costruzione e il collaudo vedere documento LIN_00S10001, LIN_00S10002, LIN 00S10003.
- 3. L'unità di misura per gli elementi strutturali è il numero degli esemplari (n).

DOCUMENTI DI RIFERIMENTO:

Tabella delle corrispondenze sostegni- monconi- fondazioni:

SEMPLICE TERNA: doc. 150STINFON DOPPIA TERNA: doc. 150DTINFON

Elenco documenti monconi- Rapporti di calcolo – Disegni costruttivi:

SEMPLICE TERNA: doc. 150STINMNC DOPPIA TERNA: doc. 150DTINMNC

doc. P005DX005 Disegno costruttivo:

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA MONCONI

Codifica	LIN_0	0F20	0003
Rev. 00		Pag.	8 di 13

6 MONCONI F49

Tipo	Н	Massa	Serie di impiego	MONCONI (m)	ANGOLARE L 200 x 16 A	BULLONI (n) 6 Ø 24
Про	(mm)	(kg)	ST/DT	ST/DT SQUADRETTE (s)	ANGOLARE L 150 x 18 A	BULLONI (s) 36 Ø 24
49/1	3500	309	ST			
49/2	3600	314	ST		That	
49/3	3700	319	ST		11-1-1	
49/4	4000	334	ST	- /	 	
49/5	4200	344	ST	@ (11; ' 11	
					111	
						1
					'	
					11-1	
						<u></u>
						•
				F		H
				1 !+	4	
						2
					# 1	9
					# 4	
				F	110	
					1 pl	
				10		
					li . T	1
					<u> </u>	
					1	

NOTE:

- 1. Per le marcature vedere documento LIN_00S10051.
- 2. Prescrizioni per la fornitura, la costruzione e il collaudo vedere documento LIN_00S10001, LIN_00S10002, LIN_00S10003.
- 3. L'unità di misura per gli elementi strutturali è il numero degli esemplari (n).

- Tabella delle corrispondenze sostegni- monconi- fondazioni:
 - SEMPLICE TERNA: doc. 150STINFON
- Elenco documenti monconi- Rapporti di calcolo Disegni costruttivi:
 - SEMPLICE TERNA: doc. 150STINMNC
- Disegno costruttivo: doc. P005DX006

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO

Codifica LIN 00F20003 Rev. 00 Pag. **9** di 13

RACCOLTA MONCONI

7 **MONCONI F50**

The s	Н	Massa	Serie di impiego	MONCONI (m)	ANGOLARE L 200 x 22 A	BULLONI (n) 8 Ø 24
Tipo	(mm)	(kg)	ST/DT	SQUADRETTE (s)	ANGOLARE L 180 x 20 A	BULLONI (s) 36 Ø 24
50/1	3400	419	ST e DT			
50/2	3700	439	ST e DT		Thirt	
50/3	3800	446	ST e DT		11-1	
50/4	4000	460	ST e DT		/ 	
50/5	4100	467	ST	(11; ' 11	
50/6	4400	487	ST			
50/7	2750	374	ST		##	
						1
					1 1	
					11 1	(m)
						0
				FF		H
				ļ.	+ +	
						S
				NAG	# 1	
				F		
				14		
				LT	44-1	
					1: 1	V
					567	

NOTE:

- 1. Per le marcature vedere documento LIN 00S10051.
- Prescrizioni per la fornitura, la costruzione e il collaudo vedere documento LIN 00S10001, LIN 00S10002, LIN 00S10003.
- 3. L'unità di misura per gli elementi strutturali è il numero degli esemplari (n).

- Tabella delle corrispondenze sostegni- monconi- fondazioni:
 - SEMPLICE TERNA: doc. 150STINFON DOPPIA TERNA: doc. 150DTINFON
- Elenco documenti monconi- Rapporti di calcolo Disegni costruttivi:
 - SEMPLICE TERNA: doc. 150STINMNC DOPPIA TERNA: doc. 150DTINMNC
- doc. P005DX007 Disegno costruttivo:

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO

Codifica	LIN_0	0F20	003
Rev. 00		Pag.	10 di 13

RACCOLTA MONCONI

8 **MONCONI F53**

	н	Massa	Serie di impiego	MONCONI (m)	ANGOLARE L 200 x 24 A	BULLONI (n) 8 Ø 24		
Tipo	(mm)	(kg)	ST/DT	SQUADRETTE (s)	ANGOLARE L 180 x 20 A	BULLONI (s) 12 Ø 24 (Lung.80) 24 Ø 24 (Lung.85)		
53/1	3400	443	ST					
53/2	3800	473	ST		The			
					in			
					/ 			
				(h)				
					+			
					m + 7	A		
					m H			
				FE				
				Li*				
						S		
				_	##			
				F				
				16	4			
					4! 4 1	-		
						y		
					1	3.6		

NOTE:

- 1. Per le marcature vedere documento LIN_00S10051.
- 2. Prescrizioni per la fornitura, la costruzione e il collaudo vedere documento LIN_00S10001, LIN_00S10002, LIN 00S10003.
- 3. L'unità di misura per gli elementi strutturali è il numero degli esemplari (n).

- Tabella delle corrispondenze sostegni- monconi- fondazioni:
 - SEMPLICE TERNA: doc. 150STINFON
- Elenco documenti monconi- Rapporti di calcolo Disegni costruttivi:
 - SEMPLICE TERNA: doc. 150STINMNC
- Disegno costruttivo: doc. P005DX008

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO

Codifica	LIN_0	0F20	0003
Rev. 00		Pag.	11 di 13

RACCOLTA MONCONI

9 MONCONI F54

Tipo	Н	Massa	Serie di impiego	MONCONI (m)	ANGOLARE L 180 x 18 A	BULLONI (n) 8 Ø 24
Про	(mm)	(kg)	ST/DT	SQUADRETTE (s)	ANGOLARE L 150 x18 A	BULLONI (s) 24 Ø 24
54/1	3700	311	ST e DT			
54/2	4000	326	DT		That	
54/3	4400	346	ST		11-1	
34/3	4400	340		(E)	+ + + + + + + + + +	(m) H
				10		
						y
					1	

NOTE:

- 1. Per le marcature vedere documento LIN 00S10051.
- 2. Prescrizioni per la fornitura, la costruzione e il collaudo vedere documento LIN_00S10001, LIN_00S10002, LIN_00S10003.
- 3. L'unità di misura per gli elementi strutturali è il numero degli esemplari (n).

- Tabella delle corrispondenze sostegni- monconi- fondazioni:
 - SEMPLICE TERNA: doc. 150STINFON
 DOPPIA TERNA: doc. 150DTINFON
- Elenco documenti monconi- Rapporti di calcolo Disegni costruttivi:
 - SEMPLICE TERNA: doc. 150STINMNC
 DOPPIA TERNA: doc. 150DTINMNC
- Disegno costruttivo: doc. P005DX009

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO **RACCOLTA MONCONI**

Codifica LIN_00F20003

Rev. 00 Pag. 12 di 13

10 MONCONI F55

	1	1			******	
Tipo	Н	Massa	Serie di impiego	MONCONI (m)	ANGOLARE L 180 x 18 A	BULLONI (n) 20 Ø 24
Про	(mm)	(kg)	ST/DT	SQUADRETTE (s)	ANGOLARE L 180 x18 A	BULLONI (s) 68 Ø 24
55/1	3800	613	DT			
55/2	4400	673	DT		ella	1
55/3	3350	567	DT	(n)	ф ф	
55/4	2750	466	DT		6 6	
						
						7
					'	
					10112	
				(m)		
				0	1 1	
						Н
					\$\$ \$ \$	
				(s)	88 69	
						84
					₽	

NOTE:

- 4. Per le marcature vedere documento LIN 00S10051.
- 5. Prescrizioni per la fornitura, la costruzione e il collaudo vedere documento LIN_00S10001, LIN_00S10002, LIN_00S10003.
- 6. L'unità di misura per gli elementi strutturali è il numero degli esemplari (n).

- Tabella delle corrispondenze sostegni- monconi- fondazioni:
 - DOPPIA TERNA: doc. 150DTINFON
- Elenco documenti monconi- Rapporti di calcolo Disegni costruttivi:
 - DOPPIA TERNA: doc. 150DTINMNC
- Disegno costruttivo: doc. P006DX001

LINEE 132-150 kV SEMPLICE E DOPPIA TERNA CONDUTTORE Ø 31,5 mm - TIRO PIENO RACCOLTA MONCONI

Codifica	LIN_0	0F20	0003
Rev. 00		Pag	13 di 13

NACCOLTA WO

11 MONCONI F56

	н	Massa	Serie di impiego	MONCONI (m)	ANGOLARE L 200 x 18 A	BULLONI (n) 20 Ø 24
Tipo	(mm)	(kg)	ST/DT	SQUADRETTE (s)	ANGOLARE L 180 x18 A	BULLONI (s) 68 Ø 24
56/1	3800	662	DT			
56/2	4400	730	DT		ella	1
				(n)	ф ф	
					6 6	
					~ ~	
						7
						7
					'	
					10 Ha	
				_	 	
				(m)		
					_	
						Н
					1 1111	
				(s)	\$\$ \$ \$	
					88 8	
				Ì		
					₽	
						9(5)

NOTE:

- 7. Per le marcature vedere documento LIN 00S10051.
- 8. Prescrizioni per la fornitura, la costruzione e il collaudo vedere documento LIN_00S10001, LIN_00S10002, LIN_00S10003.
- 9. L'unità di misura per gli elementi strutturali è il numero degli esemplari (n).

- Tabella delle corrispondenze sostegni- monconi- fondazioni:
 - DOPPIA TERNA: doc. 150DTINFON
- Elenco documenti monconi- Rapporti di calcolo Disegni costruttivi:
 - DOPPIA TERNA: doc. 150DTINMNC
- Disegno costruttivo: doc. P006DX002