IMPIANTO AGRIVOLTAICO DENOMINATO "PV GROTTAGLIE" CON POTENZA NOMINALE DI 35,3276 MVA E POTENZA INSTALLATA DI 39.807,6 MWp

REGIONE PUGLIA

PROVINCIA di TARANTO COMUNE di GROTTAGLIE OPERE DI CONNESSIONE ALLA RTN NEI COMUNI DI GROTTAGLIE E TARANTO

_		_
	Pì	ROGETTO DEFINITIVO
Tav.:	Titolo:	
R13a		Relazione Pericolosità Sismica
Scala:	Formato Stampa:	Codice Identificatore Elaborato

Scala:	Formato Stampa:	Codice Identificatore Elaborato			
n.a.	A4	R13a_RelazionePericolositàSismica_13a			

Progettazione:	Committente:
Dott. Ing. Fabio CALCARELLA	PV - INVEST ITALIA S.R.L.
Studio Tecnico Calcarella Via Vito Mario Stampacchia, 48 - 73100 Lecce Mob. +39 340 9243575 fabio.calcarella@gmail.com - fabio.calcarella@ingpec.eu	Indirizzo: Via Sant'Osvaldo, 67 - 39100 Bolzano (BZ) P.IVA: 03047190214 - REA: BZ - 227293 PEC: pvinvestitaliasrl@legalmail.it
UELLA PRODUCTION IN Nº CATOLINA IN 1874 IN 187	

Data	Motivo della revisione:	Redatto:	Controllato:	Approvato:
Settembre 2024	Prima emissione	GS	FC	PV - INVEST ITALIA s.r.l.

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- PERICOLOSITA' SISMICA -

1 PREMESSA

La presente Relazione di pericolosità Sismica è stata redatta a corredo del progetto di realizzazione di un **impianto agrivoltaico** denominato "PV Grottaglie" organizzato in 6 sottocampi suddivisi in 3 Macro Aree ricadenti in comune di Grottaglie (TA). Il soggetto proponente è la società **PV – Invest Italia s.r.l.** con sede in via Sant'Osvaldo, 67 39100 Bolzano (BZ). La società è iscritta nella Sezione Ordinaria della Camera di Commercio Industria Agricoltura ed Artigianato di Bolzano, con numero REA BZ 227293, C.F. e P.IVA N. 03047190214.

L'impianto agrivoltaico è costituito da:

- 1) Aree di impianto fotovoltaico a terra su inseguitori monoassiali con asse di rotazione nord sud e relative opere di connessione alla Rete di Trasmissione Nazionale
- 2) aree di coltivazione a oliveto super intensivo e colture foraggere avvicendate a colture orticole tra le file di ulivi e collocate anche al di sotto degli inseguitori monoassiali.
- 3) aree di naturalità collocate lungo le fasce limitrofe alla recinzione di impianto (aree di mitigazione e compensazione).

Queste aree insistono su varie particelle catastali aventi una superficie complessiva di 73,2 ha di cui 46,85 ha completamente recintati dove è prevista l'installazione degli inseguitori monoassiali.

Le aree di impianto sono suddivise in tre "Macro Aree", denominate A, B, C a loro volta suddivise in aree più piccole come sinteticamente indicato nella seguente tabella

Lotto	Superficie a disposizione (mq)	Superficie a disposizione (ha)	Superficie recintata (mq)	Superficie recintata (ha)
Campo A1	168.229	16,82	118.015	11,80
Campo A2	184.778	18,48	128.918	12,89
Macro Area A	353.007	35,30	246.933	24,69
Campo B3	62.045	6,20	19.702	1,97
Campo B4	90.206	9,02	62.571	6,26
Macro Area B	152.251	15,23	82.273	8,23
Campo C5	129.283	12,93	80.480	8,05
Campo C6	97.741	9,77	58.857	5,89
Macro Area C	227.024	22,70	139.336	13,93
TOTALE	732.282	73,23	468.542	46,85

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

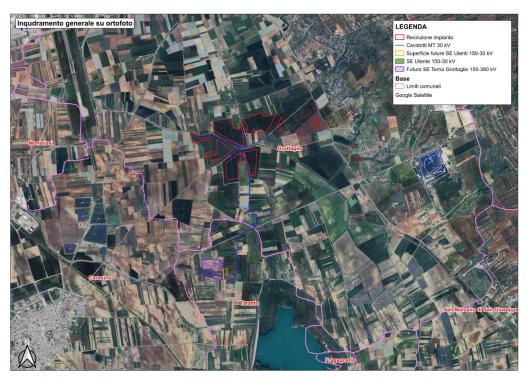


Fig. 1.1 – Individuazione delle aree di impianto su immagine satellitare

Fig. 1.2 - Inquadramento Macro Aree A (in ciano), B (in verde) e C (in viola)

L'impianto fotovoltaico ha una potenza installata di 39.808 kWp a fronte di una potenza immessa in rete di **35.250 kW**. Esso è costituito da:

 56.868 moduli fotovoltaici di potenza unitaria paria a 700 Wp, installati su strutture di sostegno in acciaio di tipo mobile (inseguitori), con relativi motori elettrici per la movimentazione. Le strutture saranno ancorate al suolo tramite paletti in acciaio

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

direttamente infissi nel terreno al fino di ridurre sia i movimenti terra (scavi e rinterri) che le opere di ripristino conseguenti. È previsto in particolare che siano installati 2.031 inseguitori che sostengono 28 moduli ciascuno.

- Inverter c.c./c.a. e Trasformatori MT/BT installati su Skid preassemblati in stabilimento
 dal fornitore e contenenti oltre ad inverter e trasformatore anche le relative protezioni
 BT e MT, denominati Power Control System (PCS). Il numero e la potenza degli
 inverter (e di conseguenza dei trasformatori) all'interno di ciascun Campo saranno
 diverse a seconda della dimensione del Campo stesso.
- Cabine di Raccolta (CdR) che raccolgono in MT a 30 kV tutta l'energia prodotta nei Campi
- La rete BT interna di ciascun Campo, ovvero dei cavi BT in c.c. (cavi solari) e relativa quadristica elettrica (quadri di parallelo stringhe), sino agli inverter.
- La rete MT interna di ciascun Campo, costituita dai cavidotti interrati di collegamento tra gli Skid e le Cabine di Raccolta e fra le CdR.
- La rete MT esterna dall'ultima CdR di ciascun Campo al locale MT della SSE Utente di trasformazione e Consegna.
- SSE Utente MT/AT dove avviene la trasformazione di tensione 30/150 kV e la consegna dell'energia prodotta. Nella SSE Utente saranno installati due trasformatori di potenza pari a 100 MVA ciascuno con relative protezioni oltre che un edificio locali tecnici.
- Gruppi di misura con trasduttori sulle sbarre AT in uscita dai quattro trasformatori. Gli Apparecchi di Misura saranno installati all'interno di specifico locale tecnico.

Il collegamento in cavo AT tra SSE Utente e la nuova SE TERNA "Taranto 380" avverrà interamente su terreno agricolo ed avrà una lunghezza di circa 200 m.

Nel presente elaborato tecnico è stimata l'azione sismica che dovrà essere utilizzata nelle verifiche agli stati limite o nella progettazione; in funzione di ciò sono stati definiti:

- la *vita nominale* dell'opera, che congiuntamente alla *classe d'uso*, permette di determinare il *periodo di riferimento*;
- il periodo di riferimento e i diversi stati limite da considerare, dopo aver definito le relative probabilità di superamento è possibile stabilire il periodo di ritorno associato a ciascun stato limite;
- la pericolosità sismica di base per il sito interessato alla realizzazione dell'opera, facendo riferimento agli studi condotti sul territorio nazionale dal Gruppo di Lavoro 2004 nell'ambito della convenzione-progetto S1 DPC-INGV 2004-2006 e i cui risultati sono stati promulgati mediante l'Ordinanza del Presidente del Consiglio dei Ministri (OPCM) 3519/2006.

2 VITA NOMINALE, CLASSI D'USO E PERIODO DI RIFERIMENTO

Nel **DM 17 gennaio 2018**-Aggiornamento delle «Norme tecniche per le costruzioni» il periodo di riferimento, che non può essere inferiore a 35 anni, è dato dalla seguente relazione:

$$V_{R} = V_{N} \cdot C_{U} (2.1)$$

dove:

VR = periodo di riferimento

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

V_N = vita nominale

Cu = coefficiente d'uso

La vita nominale di un'opera strutturale V_N, secondo le NTC 2018, è definita come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata e viene definita attraverso tre diversi valori, a seconda dell'importanza dell'opera e perciò delle esigenze di durabilità.

I valori minimi di V_N da adottare per i diversi tipi di costruzione sono riportati nella Tab.

2.1. Tali valori possono essere anche impiegati per definire le azioni dipendenti dal tempo.

Tab. 2.1 – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

	TIPI DI COSTRUZIONI	Valori minimi di V _N (anni)
1	Costruzioni temporanee e	10
	provvisorie	
2	Costruzioni con livelli di prestazioni	50
3	Costruzioni con livelli di prestazioni	100
	elevati	

Nel caso specifico $V_N = 50$ anni.

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso. Le NTC 2018 prevedono quattro classi d'uso a ciascuna delle quali è associato un valore del coefficiente d'uso:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli. Cu = 0.7;

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti. $C_{IJ} = 1.0$;

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso. $C_U = 1.5$;

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica. $C_{1,1} = 2.0$;

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

Nel caso in esame viene presa in considerazione la classe d'uso II a cui è associato il coefficiente d'uso $C_{ij} = 1$.

Ricavati i valori di V_N e C_U , è possibile calcolare il periodo di riferimento V_R , che qui vale: $V_R = 50 * 1 = 50$ anni.

3 STATI LIMITE, PROBABILITÀ DI SUPERAMENTO E PERIODO DI RITORNO

Le NTC 2018 prendono in considerazione 4 possibili *stati limite* (SL) individuati facendo riferimento alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti: due sono *stati limite di esercizio* (SLE) e due sono *stati limite ultimi* (SLU). Uno stato limite è una condizione superata la quale l'opera non soddisfa più le esigenze per la quale è stata progettata.

Più in particolare le opere e le varie tipologie strutturali devono essere dotate di capacità di garantire le prestazioni previste per le condizioni di esercizio (sicurezza nei confronti di SLE) e di capacità di evitare crolli, perdite di equilibrio e di dissesti gravi, totali o parziali, che possano compromettere l'incolumità delle persone o comportare la perdita di beni, oppure provocare gravi danni ambientali e sociali, oppure mettere fuori servizio l'opera (sicurezza nei confronti di SLU).

Gli stati limite di esercizio sono:

- Stato Limite di Operatività (SLO): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;
- Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.

Gli stati limite ultimi sono:

- Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali;
- Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la
 costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici
 e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un
 margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti
 del collasso per azioni orizzontali.

Ad ogni stato limite è associata una probabilità di superamento P_{VR} (Tabella 3.1), ovvero la probabilità che, nel periodo di riferimento V_R , si verifichi almeno un evento sismico

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

(n \geq 1) di $\mathbf{a_g}$ prefissata ($\mathbf{a_g}$ = accelerazione orizzontale massima del suolo) avente frequenza media annua di ricorrenza λ = 1/T_R ($\mathbf{T_R}$ = periodo di ritorno).

Tabella 3.1- Stati limite e rispettive probabilità di superamento, nel periodo di riferimento VR

Stato limite di esercizio: operatività	SLO	P _{VR} = 81%
Stato limite di esercizio: danno	SLD	P _{VR} = 63%
Stati limite ultimo: salvaguardia della vita	SLV	P _{VR} = 10%
Stati limite ultimo: di prevenzione del collasso	SLC	P _{VR} = 5%

Fissati V_R e P_{VR} associata ad ogni stato limite, è possibile calcolare il periodo di ritorno dell'azione sismica T_R , espresso in anni, mediante l'espressione:

$$T_{R} = -\frac{V_{R}}{\ln(1 - P_{VR})}$$
 (3.1)

Tale relazione tra P_{VR} (probabilità) e T_R (statistica) risulta biunivoca poiché utilizza la distribuzione discreta Poissoniana.

Poiché è **V_R = 50 anni**, il tempo di ritorno T_R sarà:

Tabella 3.2- Stati limite e rispettivi tempi di ritorno, nel periodo di riferimento VR

Stato limite di esercizio: operatività	SLO	T _R = 30
Stato limite di esercizio: danno	SLD	T _R = 50
Stati limite ultimo: salvaguardia della vita	SLV	T _R = 475
Stati limite ultimo: di prevenzione del collasso	SLC	T _R = 975

4 DEFINIZIONE DELLA PERICOLOSITÀ SISMICA DI BASE

La pericolosità sismica di base, cioè le caratteristiche del moto sismico atteso al sito di interesse, nelle NTC 2018, per una determinata probabilità di superamento, si può ritenere definita quando vengono designati un'accelerazione orizzontale massima (a_g) ed il corrispondente spettro di risposta elastico in accelerazione, riferiti ad un suolo rigido e ad una superficie topografica orizzontale.

Per poter definire la pericolosità sismica di base le NTC 2018 si rifanno ad una procedura basata sui risultati disponibili anche sul sito web dell'INGV http://esse1-gis.mi.ingv.it/, nella sezione "Mappe interattive della pericolosità sismica".

Secondo le NTC 2018 le forme spettrali sono definite per 9 differenti periodi di ritorno T_R (30, 50, 72, 101, 140, 201, 475, 975 e 2475 anni) a partire dai valori dei seguenti parametri riferiti a terreno rigido orizzontale, cioè valutati in condizioni ideali di sito, definiti nell'**Allegato A** alle NTC08:

 $\mathbf{a_g}$ = accelerazione orizzontale massima;

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

- **F_O** = valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- **Tc*** = periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I tre parametri si ricavano per il 50° percentile ed attribuendo a:

- aq, il valore previsto dalla pericolosità sismica S1
- Fo e TC* i valori ottenuti imponendo che le forme spettrali in accelerazione, velocità e spostamento previste dalle NTC08 scartino al minimo dalle corrispondenti forme spettrali previste dalla pericolosità sismica S1 (il minimo è ottenuto ai minimi quadrati, su valori normalizzati).

I valori di questi parametri vengono forniti in tabella (Tabella 4.1), contenuta nell'**Allegato B** delle NTC08 (a cui le NTC 2018 fanno riferimento), per i 10751 punti di un reticolo di riferimento in cui è suddiviso il territorio nazionale, identificati dalle coordinate geografiche longitudine e latitudine.

Tabella 4.1- Stralcio della tabella contenuta nell'Allegato B delle NTC08, che fornisce i 3 parametri di pericolosità sismica, per diversi periodi di ritorno e per ogni nodo del reticolo che viene identificato da un ID e dalle coordinate geografiche.

			7	$\Gamma_{R} = 30$)	7	$\Gamma_{R} = 50$)	7	$\Gamma_{R} = 72$		Т	R = 10	1
ID	LON	LAT	ag	F ₀	T* _C	ag	F ₀	T* _C	ag	F ₀	T* _C	ag	F ₀	T* _C
13111	6.5448	45.1340	0.263	2.500	0.180	0.340	2.510	0.210	0.394	2.550	0.220	0.469	2.490	0.240
13333	6.5506	45.0850	0.264	2.490	0.180	0.341	2.510	0.210	0.395	2.550	0.220	0.469	2.490	0.240
13555	6.5564	45.0350	0.264	2.500	0.180	0.340	2.510	0.200	0.393	2.550	0.220	0.466	2.500	0.240
13777	6.5621	44.9850	0.263	2.500	0.180	0.338	2.520	0.200	0.391	2.550	0.220	0.462	2.510	0.240
12890	6.6096	45.1880	0.284	2.460	0.190	0.364	2.510	0.210	0.431	2.500	0.220	0.509	2.480	0.240
13112	6.6153	45.1390	0.286	2.460	0.190	0.366	2.510	0.210	0.433	2.500	0.220	0.511	2.480	0.240
13334	6.6210	45.0890	0.288	2.460	0.190	0.367	2.510	0.210	0.434	2.500	0.220	0.511	2.490	0.240
13556	6.6268	45.0390	0.288	2.460	0.190	0.367	2.510	0.210	0.433	2.510	0.220	0.510	2.490	0.240
13778	6.6325	44.9890	0.288	2.460	0.190	0.366	2.520	0.210	0.430	2.510	0.220	0.507	2.500	0.240
14000	6.6383	44.9390	0.286	2.470	0.190	0.363	2.520	0.210	0.426	2.520	0.220	0.502	2.500	0.240
14222	6.6439	44.8890	0.284	2.470	0.190	0.360	2.530	0.210	0.421	2.530	0.220	0.497	2.500	0.240
12891	6.6803	45.1920	0.306	2.430	0.200	0.389	2.500	0.210	0.467	2.470	0.230	0.544	2.490	0.230
10228	6.6826	45.7940	0.283	2.420	0.200	0.364	2.460	0.220	0.430	2.460	0.240	0.505	2.440	0.250
13113	6.6860	45.1430	0.309	2.430	0.200	0.391	2.510	0.210	0.470	2.470	0.230	0.546	2.490	0.230
10450	6.6885	45.7450	0.278	2.440	0.200	0.356	2.480	0.220	0.415	2.500	0.230	0.485	2.470	0.250
13335	6.6915	45.0930	0.310	2.430	0.200	0.392	2.510	0.210	0.470	2.480	0.230	0.546	2.500	0.230
10672	6.6942	45.6950	0.275	2.450	0.200	0.351	2.490	0.210	0.406	2.520	0.230	0.475	2.490	0.250
13557	6.6973	45.0430	0.311	2.440	0.200	0.392	2.520	0.210	0.469	2.480	0.230	0.545	2.500	0.230
13779	6.7029	44.9930	0.310	2.440	0.200	0.391	2.520	0.210	0.467	2.480	0.230	0.543	2.500	0.230

Qualora la pericolosità sismica del sito sul reticolo di riferimento non consideri il periodo di ritorno T_R corrispondente alla V_R e P_{VR} fissate, il valore del generico parametro p ad esso corrispondente potrà essere ricavato per interpolazione (Figura 4.1), a partire dai dati relativi ai tempi di ritorno previsti nella pericolosità di base, utilizzando la seguente espressione dell'Allegato A alle NTC08:

4.2

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

$$\log(p) = \log(p_1) + \log\left(\frac{p_2}{p_1}\right) \cdot \log\left(\frac{p_2}{p_1}\right) \cdot \left\lceil \log\left(\frac{T_{R2}}{T_{R1}}\right) \right\rceil^{-1}$$
 (4.1)

nella quale p è il valore del parametro di interesse (a_g , F_O , T_C *) corrispondente al periodo di ritorno T_R desiderato, mentre $p_{1, 2}$ è il valore di tale parametro corrispondente al periodo di ritorno $T_{R1, 2}$.

Per un qualunque punto del territorio non ricadente nei nodi del reticolo di riferimento, i valori dei parametri p possono essere calcolati come media pesata dei valori assunti da tali parametri nei quattro vertici della maglia elementare del reticolo di riferimento contenente il punto in esame, utilizzando l'espressione dell'Allegato A alle NTC08:

$$p = \frac{\sum_{i=1}^{4} \frac{p_i}{d_i}}{\sum_{i=1}^{4} \frac{1}{d_i}}$$
 (4.2)

nella quale p è il valore del parametro di interesse (a_g , F_O , T_C *) corrispondente al punto considerato, p_i è il valore di tale parametro nell'i-esimo vertice della maglia elementare contenente il punto in esame e d_i è la distanza del punto in esame dall'i-esimo vertice della suddetta maglia.

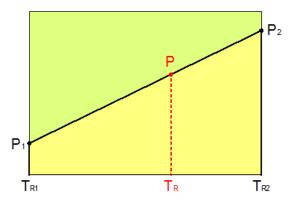


Figura 4.1 - Interpolazione dei periodi di ritorno, per ottenere i parametri di pericolosità sismica, in accordo alla procedura delle NTC08.

La procedura per interpolare le coordinate geografiche è schematizzata nella Figura

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

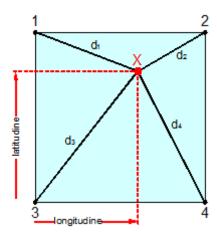


Figura 4.2 - Interpolazione delle coordinate geografiche, per ottenere i parametri di pericolosità sismica, in accordo alla procedura delle NTC08.

Pertanto, per poter procedere all'interpolazione delle coordinate geografiche, in accordo alla procedura delle NTC08, bisogna calcolare le distanze che intercorrono tra i 4 punti del reticolo e il punto di interesse. Questo calcolo può essere eseguito approssimativamente utilizzando le formule della trigonometria sferica, che danno la distanza geodetica tra due punti, di cui siano note le coordinate geografiche. Utilizzando quindi il teorema di Eulero, la distanza d tra due punti, di cui siano note latitudine e longitudine, espresse però in radianti, si ottiene dall'espressione seguente:

$$d = R \cdot \arccos[\sin(\ln t\beta) \cdot \sin(\ln t\alpha) + \cos(\ln t\beta) \cdot \cos(\ln t\alpha) \cdot \cos(\ln t\alpha - \ln t\beta)]$$
(4.3)

dove R = 6371 è il raggio medio terrestre in km, mentre lata, lona, lat β e lon β sono la latitudine e la longitudine, espresse in radianti, di due punti A e B di cui si vuole calcolare la distanza.

La formula di interpolazione sopra proposta, semplice da usare, presenta però l'inconveniente di condurre a valori di pericolosità lievemente diversi per punti affacciati ma appartenenti a maglie contigue. La modestia delle differenze (scostamenti in termini di PGA dell'ordine di ±0,01g ossia della precisione dei dati) a fronte della semplicità d'uso, rende tale stato di cose assolutamente accettabile.

Qualora si vogliano rappresentazioni continue della funzione interpolata, si dovrà ricorrere a metodi di interpolazione più complessi, ad esempio i polinomi di Lagrange.

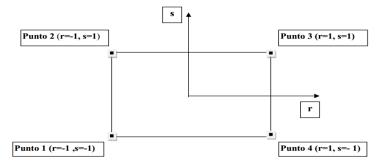


Figura 4.3 - Applicazione dell'interpolazione bilineare.

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

Definiti i 4vertici di una generica maglia i polinomi di Lagrange sono così determinati:

$$h_1 = (1-r) \cdot (1-s)/4 \qquad (4.4)$$

$$h_2 = (1-r) \cdot (1+s)/4 \qquad (4.5)$$

$$h_3 = (1+r) \cdot (1+s)/4 \qquad (4.6)$$

$$h_4 = (1+r) \cdot (1-s)/4 \qquad (4.7)$$

Tra le coordinate x, y di un punto generico e le coordinate r, s dello stesso punto valgono le seguenti relazioni:

$$4x = \sum_{i=1}^{4} h_{i} \cdot x_{i} = \left[(1-r) \cdot (1-s) \cdot x_{1} + (1-r) \cdot (1+s) \cdot x_{2} + (1+r) \cdot (1+s) \cdot x_{3} + (1+r) \cdot (1-s) \cdot x_{4} \right]$$

$$4y = \sum_{i=1}^{4} h_{i} \cdot y_{i} = \left[(1-r) \cdot (1-s) \cdot y_{1} + (1-r) \cdot (1+s) \cdot y_{2} + (1+r) \cdot (1+s) \cdot y_{3} + (1+r) \cdot (1-s) \cdot y_{4} \right]$$

$$(4.8)$$

La soluzione del sistema di equazioni non lineari è ottenuta iterativamente e, tramite i valori di r ed s, si determinano i parametri a_q , F_0 , T_c^* dall'equazione:

$$4p = \sum_{i=1}^{4} h_i \cdot p_i = \left[(1-r) \cdot (1-s) \cdot p_1 + (1-r) \cdot (1+s) \cdot p_2 + (1+r) \cdot (1+s) \cdot p_3 + (1+r) \cdot (1-s) \cdot p_4 \right]$$
(4.10)

Dove p rappresenta il parametro cercato.

5 Pericolosità sismica di sito

Il moto generato da un terremoto in un sito dipende dalle particolari condizioni locali, cioè dalle caratteristiche topografiche e stratigrafiche dei depositi di terreno e degli ammassi rocciosi e dalle proprietà fisiche e meccaniche dei materiali che li costituiscono. Per la singola opera o per il singolo sistema geotecnico la risposta sismica locale consente di definire le modifiche che un segnale sismico subisce, a causa dei fattori anzidetti, rispetto a quello di un sito di riferimento rigido con superficie topografica orizzontale (sottosuolo di categoria A, definito al § 3.2.2).

5.1 Coefficienti sismici

I coefficienti sismici orizzontale k_h e verticale k_V dipendono del punto in cui si trova il sito oggetto di analisi e del tipo di opera da calcolare. Il parametro di entrata per il calcolo è il tempo di ritorno (T_R) dell'evento sismico che è valutato come segue:

$$T_{R} = -\frac{V_{R}}{\ln(1 - P_{VR})}$$
 (5.1)

Con V_R vita di riferimento della costruzione e PVR probabilità di superamento, nella vita di riferimento, associata allo stato limite considerato. La vita di riferimento dipende dalla vita nominale della costruzione e dalla classe d'uso della costruzione (in linea con quanto previsto al punto 2.4.3 delle NTC). In ogni caso V_R non può essere inferiore a 35 anni.

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

5.2 Stabilità dei pendii e fondazioni

Nel caso di stabilità dei pendii i coefficienti k_h e k_V sono così determinati:

$$k_h = \beta_s \cdot \left(\frac{a_{max}}{g}\right) (5.2)$$

$$k_{v} = \pm 0.5 \cdot k_{h}$$
 (5.3)

Con

b_S coefficiente di riduzione dell'accelerazione massima attesa al sito;
 a_{max} accelerazione orizzontale massima attesa al sito;
 g accelerazione di gravità.

I valori di β_S sono riportati nella tabella 5.1.

Tabella 5.1- Coefficienti di riduzione dell'accelerazione massima attesa al sito.

	Categoria di sottosuolo			
	A B, C, D, E			
	β_{S}	β_{S}		
$0.2 < a_g(g) \le 0.4$	0.30	0.28		
$0.1 < a_g(g) \le 0.2$	0.27	0.24		
a _g (g) ≤ 0.1	0.20	0.20		

Tutti i fattori presenti nelle precedenti formule dipendono dall'accelerazione massima attesa al sito di riferimento rigido e dalle caratteristiche geomorfologiche del territorio.

$$a_{\text{max}} = S_{S} \cdot S_{T} \cdot a_{g} \quad (5.4)$$

Ss (effetto di amplificazione stratigrafica) $(0.90 \le Ss \le 1.80)$ è funzione di F_0 (Fattore massimo di amplificazione dello spettro in accelerazione orizzontale) e della categoria di suolo (A, B, C, D, E). e del rapporto a_g/g . S_T (effetto di amplificazione topografica), varia con il variare delle quattro categorie topografiche:

T1:
$$S_T = 1.0$$
; **T2**: $S_T = 1.20$; **T3**: $S_T = 1.20$; **T4**: $S_T = 1.40$.

5.3 Fronti scavo e rilevati

Il comportamento in condizioni sismiche dei fronti di scavo e dei rilevati può essere analizzato con gli stessi metodi impiegati per i pendii naturali; specificamente mediante metodi pseudostatici, metodi degli spostamenti e metodi avanzati di analisi dinamica.

Nei metodi pseudostatici l'azione sismica è rappresentata da un'azione statica equivalente, costante nello spazio e nel tempo, proporzionale al peso W del volume di terreno potenzialmente instabile. Le componenti orizzontale e verticale di tale forza devono essere

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

ricavate in funzione delle proprietà del moto atteso nel volume di terreno potenzialmente instabile e della capacità di tale volume di subire spostamenti senza significative riduzioni di resistenza.

In mancanza di studi specifici, le componenti orizzontale e verticale della forza statica equivalente possono esprimersi come

$$F_h = k_h \cdot W \text{ ed } F_V = k_V \cdot W$$

con k_h e k_V rispettivamente pari ai coefficienti sismici orizzontale e verticale definiti nel $\S~7.11.3.5.2~e$

adottando i seguenti valori del coefficiente di riduzione dell'accelerazione massima attesa al sito:

 β s = 0.38 nelle verifiche dello stato limite ultimo (SLV)

βs = 0.47 nelle verifiche dello stato limite di esercizio (SLD).

Nelle verifiche di sicurezza si deve controllare che la resistenza del sistema sia maggiore delle azioni (condizione [6.2.1]) impiegando lo stesso approccio di cui al § 6.8.2 per le opere di materiali sciolti e fronti di scavo, ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici (§ 7.11.1) e impiegando le resistenze di progetto calcolate con un coefficiente parziale pari a gp = 1.2.

Si deve inoltre tener conto della presenza di manufatti interagenti con l'opera.

5.4 Muri di sostegno

Per i muri di sostegno pendii i coefficienti kh e k_V sono così determinati:

$$k_h = \beta_m \cdot \left(\frac{a_{\text{max}}}{g}\right) (5.5)$$
$$k_v = \pm 0.5 \cdot k_h \quad (5.6)$$

Con:

 eta_m coefficiente di riduzione dell'accelerazione massima attesa al sito, per i muri che non siano in grado di subire spostamenti relativi rispetto al terreno assume valore unitario altrimenti assume i valori riportati di seguito.

 β_{m} = 0.38 nelle verifiche allo stato limite ultimo (SLV)

 β_{m} = 0.47 nelle verifiche allo stato limite di esercizio (SLD).

I valori del coefficiente β_{m} possono essere incrementati in ragione di particolari caratteristiche prestazionali del muro, prendendo a riferimento il diagramma di in Figura 5.2.

a_{max} accelerazione orizzontale massima attesa al sito;g accelerazione di gravità.

Tutti i fattori presenti nelle precedenti formule dipendono dall'accelerazione massima attesa sul sito di riferimento rigido e dalle caratteristiche geomorfologiche del territorio.

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

$$a_{\text{max}} = S_{S} \cdot S_{T} \cdot a_{g} \quad (5.7)$$

S è il coefficiente comprendente l'effetto di amplificazione stratigrafica Ss e di amplificazione topografica S_T.

 $\mathbf{a}_{\mathbf{Q}}$ accelerazione orizzontale massima attesa su sito di riferimento rigido.

5.5 Paratie

In mancanza di studi specifici, a_h (accelerazione orizzontale) può essere legata all'accelerazione di picco a_{max} attesa nel volume di terreno significativo per l'opera mediante la relazione:

$$a_h = k_h \cdot g = \alpha \cdot \beta \cdot a_{max}$$
 (5.8)

dove:

g è l'accelerazione di gravità;

kh è il coefficiente sismico in direzione orizzontale;

α ≤ 1 è un coefficiente che tiene conto della deformabilità dei terreni interagenti con l'opera. Può essere ricavato a partire dall'altezza complessiva H della paratia e dalla categoria di sottosuolo mediante il diagramma in Figura 5.1:

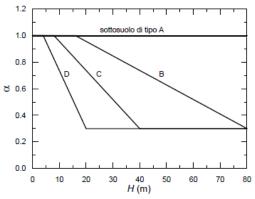


Figura 5.1 - Diagramma per la valutazione del coefficiente di deformabilità α.

Per il sottosuolo di categoria E si utilizzano le curve dei sottosuoli C o D in dipendenza dei valori assunti dalla velocità equivalente Vs.Per la valutazione della spinta nelle condizioni di equilibrio limite passivo deve porsi $\alpha = 1$.

Il valore del coefficiente β può essere ricavato dal diagramma riportato in Figura 5.2, in funzione del

massimo spostamento u_s che l'opera può tollerare senza riduzioni di resistenza.

Per
$$u_S$$
 = 0 si ha β = 1; $u_s \le 0.005 \cdot H$
Se $\alpha \cdot \beta \le 0.2$ deve assumersi $k_h = 0.2 \cdot a_{max}/g$

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

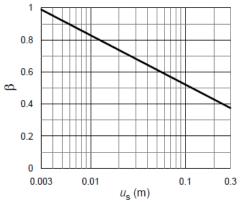
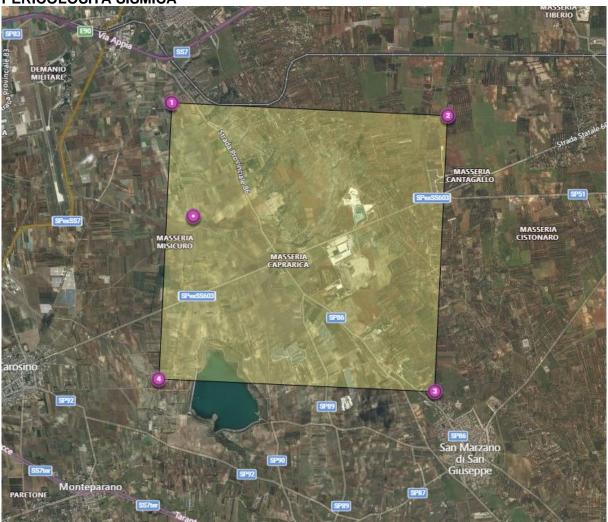


Figura 5.2 - Diagramma per la valutazione del coefficiente di spostamento β.

L'accelerazione di picco a_{max} è valutata mediante un'analisi di risposta sismica locale, ovvero come

$$a_{\text{max}} = S_{\text{S}} \cdot S_{\text{T}} \cdot a_{\text{g}} \quad (5.9)$$

dove:


S è il coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T), di cui al § 3.2.3.2;

 $\mathbf{a}_{\mathbf{q}}$ è l'accelerazione orizzontale massima attesa su sito di riferimento rigido.

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

PERICOLOSITÀ SISMICA

Data: 25/07/2024

Vita nominale (Vn): 50 [anni]

Classe d'uso: II Coefficiente d'uso (Cu): 1

Periodo di riferimento (Vr): 50 [anni]

Periodo di ritorno (Tr) SLO: 30 [anni] Periodo di ritorno (Tr) SLD: 50 [anni] Periodo di ritorno (Tr) SLV: 475 [anni] Periodo di ritorno (Tr) SLC: 975 [anni]

Tipo di interpolazione: Media ponderata

Coordinate geografiche del punto

Latitudine (WGS84): 40,4942703 [°]
Longitudine (WGS84): 17,4405441 [°]
Latitudine (ED50): 40,4952545 [°]
Longitudine (ED50): 17,4413395 [°]

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

Coordinate dei punti della maglia elementare del reticolo di riferimento che contiene il sito e valori della distanza rispetto al punto in esame

Punto	ID	Latitudine (ED50)	Longitudine (ED50)	Distanza
		[°]	[°]	[m]
1	34359	40,515760	17,436170	2321,81
2	34360	40,513430	17,501810	5497,70
3	34582	40,463490	17,498720	6002,31
4	34581	40,465810	17,433140	3346,52

Parametri di pericolosità sismica per TR diversi da quelli previsti nelle NTC, per i nodi della maglia elementare del reticolo di riferimento

Punto 1

i unto i				
Stato limite	Tr	ag	F0	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0,021	2,409	0,224
SLD	50	0,028	2,382	0,280
	72	0,033	2,409	0,317
	101	0,038	2,480	0,335
	140	0,042	2,548	0,354
	201	0,047	2,628	0,369
SLV	475	0,058	2,791	0,411
SLC	975	0,068	2,947	0,428
	2475	0,083	3,065	0,451

Punto 2

Stato limite	Tr	ag	F0	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0,020	2,435	0,217
SLD	50	0,027	2,366	0,280
	72	0,032	2,391	0,316
	101	0,036	2,479	0,335
	140	0,040	2,556	0,351
	201	0,044	2,619	0,372
SLV	475	0,055	2,793	0,420
SLC	975	0,064	2,951	0,439
	2475	0,076	3,174	0,459

Punto 3

Stato limite	Tr	ag	F0	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0,020	2,427	0,218
SLD	50	0,027	2,364	0,281
	72	0,032	2,395	0,317
	101	0,036	2,492	0,336
	140	0,040	2,569	0,353
	201	0,044	2,628	0,374
SLV	475	0,055	2,806	0,423
SLC	975	0,064	2,967	0,443
	2475	0,076	3,196	0,464

Punto 4

Stato limite	Tr	ag	F0	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0,022	2,409	0,225
SLD	50	0,028	2,382	0,282

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

	72	0,033	2,414	0,320
	101	0,038	2,496	0,336
	140	0,042	2,568	0,355
	201	0,046	2,645	0,371
SLV	475	0,057	2,814	0,414
SLC	975	0,067	2,975	0,433
	2475	0,080	3.177	0,456

Punto d'indagine

i dinto dinidaginic				
Stato limite	Tr	ag	F0	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0,021	2,416	0,222
SLD	50	0,028	2,376	0,281
SLV	475	0,057	2,800	0,415
SLC	975	0,066	2,958	0,434

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- PERICOLOSITA' SISMICA -

PERICOLOSITÀ SISMICA DI SITO

Coefficiente di smorzamento viscoso ξ:

5 %

Fattore di alterazione dello spettro elastico $\eta = [10/(5+)\xi]^{\Lambda}(1/2)$:

1,000

Categoria sottosuolo: C

Categoria topografica:

T1: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media minore o uguale a 15°

Muri di sostegno NTC 2008

Coefficienti	SLO	SLD	SLV	SLC
kh	0,006	0,008	0,015	0,018
kv	0,003	0,004	0,008	0,009
amax [m/s ²]	0,309	0,410	0,833	0,976
Beta	0,180	0,180	0,180	0,180

Muri di sostegno che non sono in grado di subire spostamenti

Coefficienti	SLO	SLD	SLV	SLC
kh	0,032	0,042	0,085	0,100
kv	0,016	0,021	0,042	0,050
amax [m/s ²]	0,309	0,410	0,833	0,976
Beta	1,000	1,000	1,000	1,000

Paratie NTC 2008

Altezza paratia (H):

3,0 [m]

Spostamento amm	issibile us:		0,0	[5 [m]
Coefficienti	SLO	SLD	SLV	

Coefficienti	SLO	SLD	SLV	SLC
kh	0,021	0,027	0,055	0,065
kv	-	-	-	
amax [m/s ²]	0,309	0,410	0,833	0,976
Beta	0,650	0,650	0,650	0,650

Stabilità di pendii e fondazioni

Juliani di					
Coefficienti	SLO	SLD	SLV	SLC	
kh	0,006	0,008	0,017	0,020	
kv	0,003	0,004	0,008	0,010	
amax [m/s ²]	0,309	0,410	0,833	0,976	
Beta	0,200	0,200	0,200	0,200	

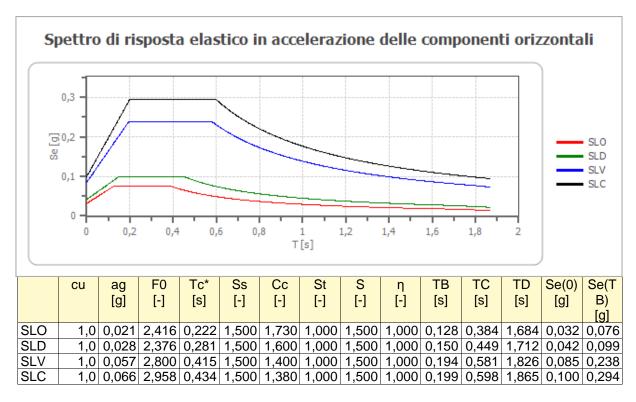
Muri di sosteano NTC 2018

Coefficienti	SLO	SLD	SLV	SLC
kh		0,020	0,032	
kv		0,010	0,016	
amax [m/s2]	0,309	0,410	0,833	0,976
Beta		0,470	0,380	

Fronti di scavo e rilevati

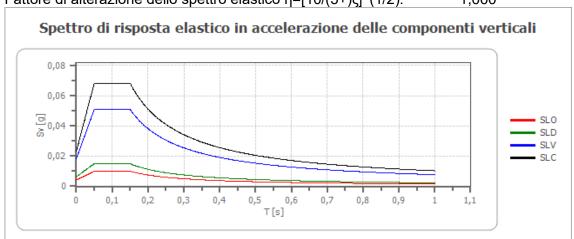
Coefficienti	SLO	SLD	SLV	SLC		
kh		0,020	0,032			
kv		0,010	0,016			
amax [m/s ²]	0,309	0,410	0,833	0,976		
Beta		0,470	0,380			

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE


- RELAZIONE GEOLOGICA -

Paratie NTC 2018

Altezza paratia (H): 3,0 [m]
Spostamento ammissibile us: 0,015 [m]


Coefficienti	SLO	SLD	SLV	SLC
kh	0,024	0,032	0,066	0,077
kv				
amax [m/s ²]	0,309	0,410	0,833	0,976
Beta	0,776	0,776	0,776	0,776

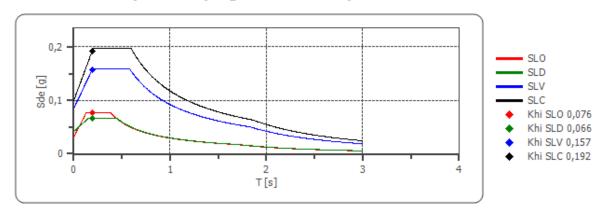
Spettro di risposta elastico in accelerazione delle componenti orizzontali

Spettro di risposta elastico in accelerazione delle componenti verticali

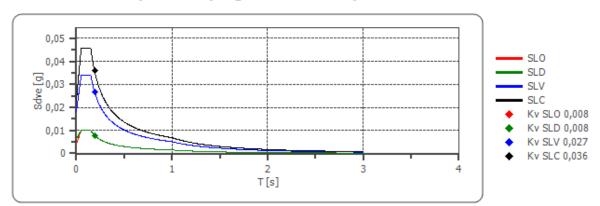
Coefficiente di smorzamento viscoso ξ : 5 % Fattore di alterazione dello spettro elastico n=[10/(5+) ξ]^(1/2): 1,000

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -


	cu	ag	F0	Tc*	Ss	Сс	St	S	η	TB	TC	TD	Se(0)	Se(T
		[g]	[-]	[s]	[-]	[-]	[-]	[-]	[-]	[s]	[s]	[s]	[g]	B)
														[g]
SLO	1,0	0,021	2,416	0,222	1	1,730	1,000	1,000	1,000	0,050	0,150	1,000	0,004	0,010
SLD	1,0	0,028	2,376	0,281	1	1,600	1,000	1,000	1,000	0,050	0,150	1,000	0,006	0,015
SLV	1,0	0,057	2,800	0,415	1	1,400	1,000	1,000	1,000	0,050	0,150	1,000	0,018	0,051
SLC	1,0	0,066	2,958	0,434	1	1,380	1,000	1,000	1,000	0,050	0,150	1,000	0,023	0,068

Spettro di progetto


Fattore di struttura spettro orizzontale q: 1,50
Fattore di struttura spettro verticale q: 1,50
Periodo fondamentale T: 0,19 [s]

	SLO	SLD	SLV	SLC
khi = Sde(T) Orizzontale	0,076	0,066	0,157	0,192
[g]				
kv = Sdve(T) Verticale [g]	0,008	0,008	0,027	0,036

Spettro di progetto delle componenti orizzontali

Spettro di progetto delle componenti verticali

MODELLO GEOLOGICO, CARATTERIZZAZIONE GEOLOGICO-TECNICA E SISIMICA DEL SITO DELL'IMPIANTO AGRIVOLTAICO DENOMINATO PV GROTTAGLIE

- RELAZIONE GEOLOGICA -

	cu	ag	F0	Tc*	Ss	Сс	St	S	q	TB	TC	TD	Sd(0)	Sd(TB)
		[g]	[-]	[s]	[-]	[-]	[-]	[-]	[-]	[s]	[s]	[s]	[g]	[g]
SLO	1,0	0,021	2,416	0,222	1,500	1,730	1,000	1,500	1,000	0,128	0,384	1,684	0,032	0,076
orizzontale														
SLO	1,0	0,021	2,416	0,222	1,500	1,730	1,000	1,000	1,000	0,050	0,150	1,000	0,004	0,010
verticale														
SLD	1,0	0,028	2,376	0,281	1,500	1,600	1,000	1,500	1,500	0,150	0,449	1,712	0,042	0,066
orizzontale														
SLD	1,0	0,028	2,376	0,281	1,500	1,600	1,000	1,000	1,500	0,050	0,150	1,000	0,006	0,010
verticale														
SLV	1,0	0,057	2,800	0,415	1,500	1,400	1,000	1,500	1,500	0,194	0,581	1,826	0,085	0,158
orizzontale														
SLV	1,0	0,057	2,800	0,415	1,500	1,400	1,000	1,000	1,500	0,050	0,150	1,000	0,018	0,034
verticale														
SLC	1,0	0,066	2,958	0,434	1,500	1,380	1,000	1,500	1,500	0,199	0,598	1,865	0,100	0,196
orizzontale														
SLC	1,0	0,066	2,958	0,434	1,500	1,380	1,000	1,000	1,500	0,050	0,150	1,000	0,023	0,046
verticale														