

Provincia di Taranto

Committente:

CAST WIND S.R.L

Piazza Europa,14 87100 Cosenza (CS) - Italy Tel. centralino + 39 0984 408606

Documento:

PROGETTO DEFINITIVO

Titolo del Progetto:

PARCO EOLICO "CASTELLANETA"

Elaborato:

REPORT SHADOW FLICKERING

CODICE PRATICA

PROGETTO	DISCIPLINA	AMBITO	TIPO ELABORATO	PROGRESSIVO	SCALA
E-CAS	A	-	RE	7	

NOME FILE:

E-CAS-A-RE-7_Report_shadow_flickering.pdf

Progettazione:

Ing. Mauro Di Prete

Rev:	Data Revisione	Descriz	ione Revisione	Redatto	Controllato	Approvato
00	SETTEMBRE 2024	PRIMA	EMISSIONE	IRIDE SRL	GEMSA PRO	CAST WIND

Indice

1	Pre	emessa	3
2	Ce	enni sul fenomeno dello shadow flickering	4
3	Ca	Ilcolo dello shadow flickering	6
	3.1	Descrizione del contesto territoriale	6
	3.2	Configurazione di impianto	8
	3.3	Definizione dell'ambito di studio	10
	3.4	Individuazione dei ricettori	11
	3.5	Metodologia di calcolo del software utilizzato	
	3.6	Risultati	
4	Co	onclusioni	49
5	Δn	nnendice A	50

1 PREMESSA

Nei comuni di Castellaneta e Palagianello (TA) è prevista la realizzazione di un campo eolico costituito da 10 aerogeneratori, con potenza unitaria di 7,2 MW.

Le opere di connessione quali un tratto di cavidotto e la Sottostazione Elettrica interesseranno anche il Comune di Ginosa (TA).

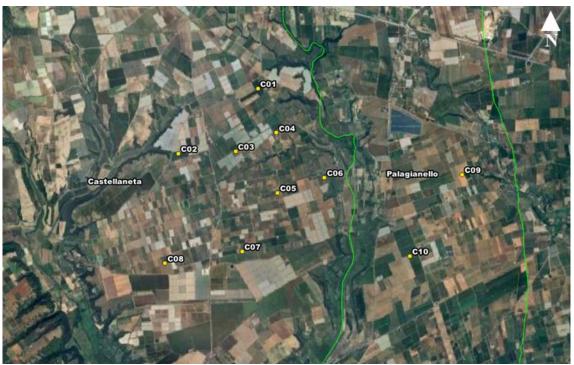


Figura 1-1 Localizzazione del campo eolico oggetto di studio

La torre dell'aerogeneratore è costituita da un tubolare tronco conico suddiviso in più sezioni per un'altezza di 119 m; il rotore ha un diametro max pari a 162 m.

2 CENNI SUL FENOMENO DELLO SHADOW FLICKERING

Le turbine eoliche, come altre strutture fortemente sviluppate in altezza, proiettano un'ombra sulle aree adiacenti in presenza di luce solare diretta.

I cosiddetto fenomeno del "flickering" indica l'effetto di lampeggiamento che si verifica quando le pale del rotore in movimento "tagliano" la luce solare in maniera intermittente.

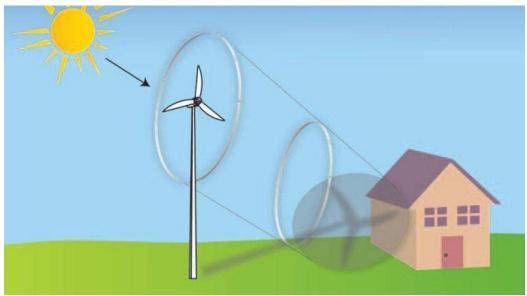


Figura 2-1 Esempio di effetto flickering

Questa variazione alternata di intensità luminosa, a lungo andare, può provocare fastidio agli occupanti delle abitazioni le cui finestre risultano esposte al fenomeno stesso. Ovviamente, tale fenomeno risulta assente sia quando il sole è oscurato da nuvole o nebbia, sia quando, in specifiche condizioni di vento, le pale del generatore non sono in rotazione.

In particolare, le frequenze che possono provocare un senso di fastidio sono comprese tra i 2,5 ed i 20 Hz (Verkuijlen and Westra, 1984), e, l'effetto sugli individui è simile a quello che si sperimenterebbe in seguito alle variazioni di intensità luminosa di una lampada ad incandescenza sottoposta a continui sbalzi della tensione della rete di alimentazione elettrica.

Tuttavia, i più recenti aerogeneratori tripala operano ad una velocità di rotazione massima di 25 giri al minuto, corrispondente ad una frequenza di passaggio delle pale sulla verticale inferiore a 0,5 Hz, minore, quindi, della frequenza critica di 2,5 Hz.

Inoltre, i generatori di grande potenza (dal MW in su, come nel caso in oggetto) mediamente non superano la velocità di rotazione di 15 giri al minuto, corrispondente a frequenze di passaggio delle pale (0,25 Hz) ampiamente minori di quelle ritenute fastidiose per la maggioranza degli individui.

Studi condotti sui possibili effetti dello shadow flickering sulla salute umana raccomandano, al fine di ridurre al minimo i fastidi, una velocità di flickering non superiore a 3 tagli al secondo (Harding, 4 Aprile

2008). Nel caso di aerogeneratori tripala, tale frequenza si traduce in una velocità massima di rotazione del rotore di 60 rpm (rotazioni per minuto).

Le relazioni spaziali tra un aerogeneratore ed un ricettore sensibile, così come la direzione del vento, l'intensità del medesimo, la copertura del cielo, la posizione del sole (variabile nell'arco dell'anno) risultano essere fattori chiave per la esistenza e durata del fenomeno di shadow flickering.

Per distanze dell'ordine dei 500 m, il fenomeno in esame potrebbe verificarsi all'alba oppure al tramonto, ossia in quelle ore in cui le ombre risultano molto lunghe per effetto della piccola elevazione solare. Al di là di una certa distanza, in realtà l'ombra smette di essere un problema perché il rapporto tra lo spessore della pala ed il diametro del sole diventa molto piccolo.

Come è facile immaginare, la condizione più penalizzante corrisponde al caso in cui il piano del rotore risulta ortogonale alla congiungente ricettore – sole; infatti, in tali condizioni, l'ombra proiettata darà origine ad un cerchio di diametro pari al rotore del generatore eolico.

Sebbene il fenomeno possa essere percepito anche all'esterno, esso risulta evidente e fastidioso in quegli ambienti con finestrature rivolte verso le ombre.

In un'ottica generale e in relazione alle condizioni meteoclimatiche medie della penisola italiana, è possibile affermare che le aree soggette al fenomeno di shadow flickering non si estendono mai oltre i 500-1000 m dall'aerogeneratore e le zone a maggiore impatto ricadono solitamente entro i 300 m di distanza dalle macchine con durata del fenomeno dell'ordine delle 200 ore all'anno e non superiore in genere ai 20/30 minuti di durata nell'arco di una giornata.

L'intensità del fenomeno è definita come la differenza di luminosità che si percepisce in presenza ed in assenza di flickering in una data posizione. In generale, si può affermare che:

- avendo le pale una forma rastremata con lo spessore che cresce verso il mozzo; il fenomeno risulterà tanto più intenso quanto maggiore sarà la porzione di disco solare coperta dalla pala stessa e quanto minore la distanza dal ricettore;
- l'intensità del flickering sarà minima quando l'ombra prodotta è generata all'estremità delle pale;
- maggiori distanze tra generatore e ricettore determinano ombre meno nette; in tal caso l'effetto flickering risulterà meno intenso e distinto.

La tipologia di aerogeneratore prevista per l'installazione ha una velocità di rotazione nominale di 12,1 rpm, nettamente inferiore alla frequenza massima raccomandata per la tutela della salute umana.

Tuttavia, una progettazione attenta è fondamentale per evitare questo fenomeno.

In relazione a ciò, si fa presente che, quale misura di prevenzione, già in fase di scelta delle aree sulle quali ubicare l'impianto si è cercato di localizzare gli aerogeneratori il più possibile distanti dall'area urbana oltreché dagli edifici abitativi e lavorativi.

3 CALCOLO DELLO SHADOW FLICKERING

3.1 Descrizione del contesto territoriale

Il comune di Castellaneta si trova nella provincia di Taranto in Puglia. Il comune si estende per 242 km² e ha una densità abitativa di 66,14 abitanti/km². Castellaneta si trova ad un'altitudine di 245 metri s.l.m.

Il comune di Palagianello si trova anch'esso nella provincia di Taranto. Il comune si estende per 43 km² e ha una densità abitativa di 171,48 abitanti/km². Il comune si trova ad un'altitudine di 130 metri s.l.m.

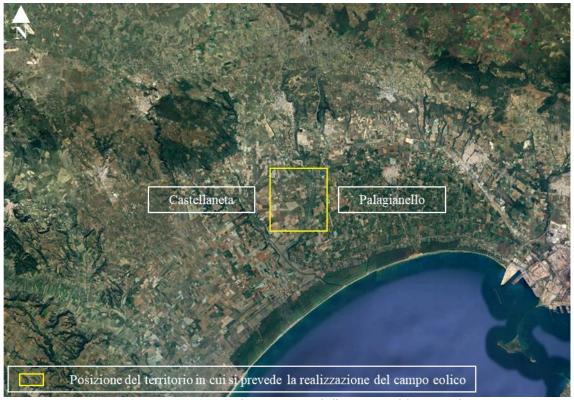


Figura 3-1 Contesto territoriale in cui si prevede l'inserimento del campo eolico

Nello specifico, il contesto in cui il progetto si inserisce è delimitato:

- a Nord dai centri abitati di Castellaneta e Palagianello;
- a Sud dal Mar Ionio;
- a Est dal comune di Palagiano;
- ad Ovest dal comune di Ginosa.

Dalle indagini effettuate, la presenza antropica in questa porzione di territorio è molto ridotta se non per la presenza di alcuni agglomerati urbani posti, comunque, a distanza notevole dal campo eolico di progetto.

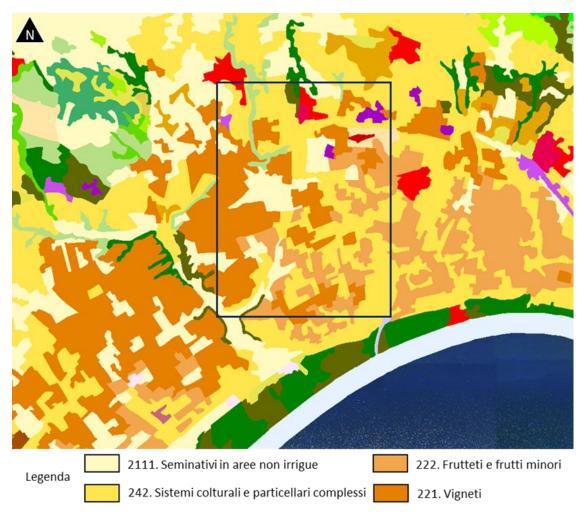


Figura 3-2 Inquadramento area di intervento su Carta uso suolo Corine Land Cover, fonte: Geo portale Nazionale

In generale, l'area interessata dalla realizzazione del parco eolico è omogenea per conformazione e caratteristiche meteoclimatiche in quanto tutto l'ambito di studio ricade su territori con elevazione compresa tra i 15 m e i 75 m s.l.m.

3.2 Configurazione di impianto

Nelle seguenti tabelle vengono geolocalizzati, definiti e descritti dal punto di vista tecnico gli aerogeneratori la cui installazione è prevista per il campo eolico in progetto.

Acronovatoro	60	Coordinate geografiche WGS-84 33N		
Aerogeneratore	Comune	Est (m)	Nord (m)	
C01	Castellaneta	664220	4494421	
C02	Castellaneta	662781	4493240	
C03	Castellaneta	663818	4493285	
C04	Castellaneta	664557	4493618	
C05	Castellaneta	664573	4492530	
C06	Castellaneta	665426	4492809	
C07	Castellaneta	663934	4491470	
C08	Castellaneta	662543	4491261	
C09	Palagianello	667911	4492860	
C10	Palagianello	666967	4491386	

Tabella 3-1 Coordinate geografiche puntuali aerogeneratori di progetto

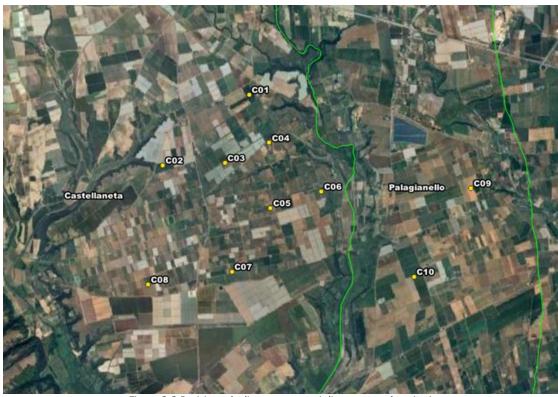


Figura 3-3 Posizione degli aerogeneratori di progetto sul territorio

Di seguito è riportata una scheda riassuntiva delle principali caratteristiche delle turbine che si intendono installare:

N° aerogeneratori	10	
Potenza nominale	7,2 MW	
Diametro rotore	162 m	
Altezza mozzo rotore	119 m	
Tipologia torre	Tubolare	

Tabella 3-2 Estratto delle specifiche tecniche delle turbine che si intendono installare

3.3 Definizione dell'ambito di studio

In generale, come ambito di studio si intende la porzione di territorio che si ritiene potenzialmente interferita dalle opere in progetto nelle loro modalità di funzionamento. Di conseguenza, a ciascun aerogeneratore è stata associata un'area di potenziale interferenza dovuta al fenomeno di shadow flickering delimitata da una circonferenza avente centro nel singolo aerogeneratore e raggio pari a 1000 m.

L'ambito di studio complessivo (cfr. Figura 3-4) del parco eolico in progetto è quindi definito dall'inviluppo delle 10 singole aree, ciascuna definita per ogni aerogeneratore secondo il suddetto criterio.

Figura 3-4 Ambito di studio shadow flickering per il campo eolico in progetto

In questo caso il progetto si inserisce in un contesto in cui non sono presenti altri aerogeneratori esistenti ed autorizzati.

3.4 Individuazione dei ricettori

Ai fini della previsione degli impatti indotti sulle abitazioni e sugli edifici lavorativi dall'impianto eolico in progetto, sono stati censiti i ricettori presenti nel raggio di 1 km dagli aerogeneratori. Distanza oltre la quale si può ipotizzare essere nullo il fenomeno di shadow flickering.

I ricettori sono stati individuati calcolando l'inviluppo delle circonferenze di raggio pari a 1 km con centro geometrico corrispondente alle coordinate geografiche degli aerogeneratori, precedentemente indicate (vedi Tabella 3-1).

Sono stati quindi censiti un totale di 280 edifici, dei quali 77 risultano essere adibiti ad uso residenziale ed i restanti 203 risultano essere ruderi, box o depositi agricoli classificati come "Altri ricettori".

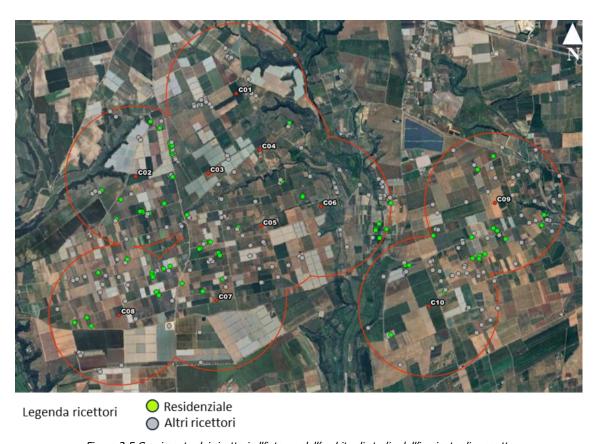


Figura 3-5 Censimento dei ricettori all'interno dell'ambito di studio dell'impianto di progetto

Sebbene il fenomeno possa essere percepito anche all'esterno, esso risulta evidente e fastidioso in quegli ambienti abitativi o lavorativi con finestrature che si trovano sul prolungamento della direttrice sole-turbina, per questo motivo, si è considerato nella simulazione la presenza di finestre di altezza 1 metro e larghezza 1 metro posizionate ad altezza dal suolo di 2 metri e disposte su tutte le facciate degli edifici.

Per lo stesso motivo, seppur censiti per completezza, sono stati esclusi dall'analisi i ricettori classificati come "Altri ricettori" in quanto non sensibili al fenomeno indagato.

In Appendice A sono riportati i riferimenti geografici, l'uso in atto dei fabbricati, la distanza dall'aerogeneratore più vicino e l'orientamento delle finestre ipotizzato. Le celle evidenziate in tabella rappresentano i ricettori per i quali è stata eseguita l'analisi dell'interferenza da shadow flickering in quanto a destinazione d'uso residenziale.

Figura 3-6 Esempio di identificazione dell'orientamento delle finestre dei ricettori

Data l'entità dei ricettori in studio, è stata ipotizzata una disposizione fissa delle finestre rispetto al nord pari a 0, 90, 180 e 270 gradi. In questo modo sono state prese in considerazioni tutte le possibili esposizioni delle finestrature al fenomeno di shadow flickering, rendendo i risultati dell'analisi ancor più cautelativi e completi.

3.5 Metodologia di calcolo del software utilizzato

L'analisi dell'impatto da shadow flickering prodotto da un campo eolico è realizzata, generalmente, attraverso l'impiego di specifici applicativi che modellano il fenomeno in esame. I pacchetti software impiegati per la progettazione di impianti eolici contengono moduli specifici per il calcolo e l'analisi del fenomeno di flickering.

L'analisi si basa sull'impiego di un modello digitale del terreno dell'area oggetto di progettazione, sulle posizioni (E, N, quota) degli aerogeneratori e dei ricettori sensibili, nonché sui dati che correlano la posizione del sole nell'arco dell'anno con le condizioni operative delle turbine nello stesso arco di tempo.

Al fine di calcolare la posizione relativa del sole nell'arco di un anno rispetto al parco eolico ed ai ricettori è necessario definire la longitudine, la latitudine ed il fuso orario dell'area interessata dal progetto.

Nello specifico, la valutazione tecnica è stata eseguita con l'ausilio del software WindFarm 5 della ReSoft Ltd, software di simulazione specifico per la progettazione di impianti eolici.

Figura 3-7 Stralcio dell'area di studio in Windfarm: ricettori (verde) e aerogeneratori (rosso)

Il Software consente di analizzare la posizione del sole nell'arco di un anno per identificare i tempi in cui ogni turbina può proiettare ombre sulle finestre degli edifici vicini. In particolare, il modello permette di:

- calcolare il potenziale per le ombre intermittenti alle finestre delle abitazioni;
- creare mappe di impatto potenziale che mostrano le ore d'ombra intermittente per l'intero parco eolico o per le singole macchine (curve di isodurata) nell'arco dell'anno.

Il software utilizza una serie di dati di input caratterizzanti quali:

l'altimetria della zona simulata (formato GTH, vedi Figura 3-8);

- la disposizione geografica delle turbine e dimensione geometrica dei loro componenti (torre e pale);
- la disposizione geografica dei ricettori sensibili al fenomeno indagato (abitazioni/edifici lavorativi
 e relative finestre);
- la latitudine e longitudine dell'area interessata.

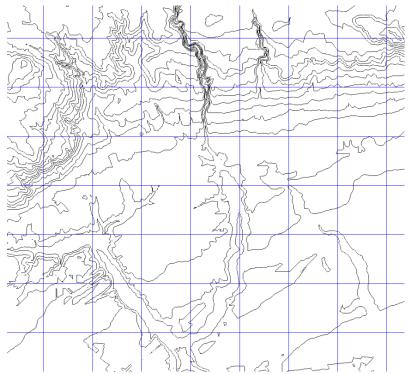


Figura 3-8 Esempio di curve di livello del terreno in WindFarm

Sulla base di questi dati il software calcola il numero di ore annue di esposizione allo shadow flickering per ciascun nodo del grigliato che copre l'intera area, nonché il numero di ore di esposizione per gli ambienti abitativi/lavorativi attraverso le finestre.

```
Project : CASTELLANETA
Run Name : SHF Castellaneta.WFK
Title : SHF Castellaneta
        : 12:40:49, 09 Aug 2024
Time
SUMMARY OF MERGED SHADOW TIMES ON EACH HOUSE FROM ALL TURBINES
 House Easting Northing Days
                                  Max
                                        Mean
                                               Total
                           per hours hours
                                               hours
                                 per
                          vear
                                  day
                                         day
        661910 4491155
                         101 1.02
137 1.52
                                        0.78
                                               78.84
         662086 4491228
                                        1.05 144.46
                          138
         662146 4491107
                                1.41
                                        0.98 134.90
         662243 4491869
                            32
                                 0.40
                                        0.30
                                                9.46
                                        0.82 111.02
         662293
                 4493040
                           135
                                 1.20
                           82
                                 0.50
         662505 4492634
                                        0.39
                                               32.29
         662571
                 4492906
                            56
                                 0.53
                                        0.41
                                               22.98
         662660 4492056
                            80
                                 0.50
                                        0.34
                                               26.90
         662841
                 4492736
                            96
                                 0.53
                                        0.36
                                               34.86
         662872
         662872 4492745
662873 4492735
                            93
                                 0.51
                                        0.36
                                               33.76
                            93
    11
                                 0.46
                                        0.34
                                               31.38
                           87
    12
         662887
                 4492725
                                 0.40
                                        0.33
                                               28.82
         662979
                 4492711
                             74
                                 0.42
    13
                                        0.30
                                               22.16
                 4491831
                                 0.67
         663012
                           182
                                        0.41
                                               74.68
                                 0.67
         663016
                 4491868
                            137
                                        0.40
         663025
                 4491805
                           192
                                 0.73
                                        0.48
                                               91.87
                                               87.07
    18
         663038 4491824
                           190
                                 0.69
                                        0.46
         663080
                 4491595
                           186
                                 1.02
                                        0.67
                                              123.83
                                  0.61
         663126
                 4493928
                            177
                                        0.48
```

Figura 3-9 Esempio di output elaborato tramite WindFarm5

Per l'esecuzione della simulazione sono stati fissati i seguenti parametri:

- coordinate geografiche baricentriche (UTM): 635723m Est, 4514404 m Nord;
- coordinate geografiche delle turbine considerate (vedi Tabella 3-1);
- coordinate geografiche dei ricettori considerati e disposizione delle finestre;
- risoluzione di calcolo: 50 m;
- raggio d'influenza massimo: 1 km dal punto di installazione dell'aerogeneratore;
- altezza del punto di vista dell'osservatore: 2 m;
- parametri turbina (cfr. Tabella 3-2):

o diametro rotore: 162 m,

o altezza torre: 119 m,

larghezza media della pala: 3 m.

Il modello numerico utilizzato, produce in output una mappa di impatto, e prende in considerazione un caso molto cautelativo, relativo ad una configurazione puramente teorica, che vede la costante e contemporanea presenza dei fattori di attivazione del fenomeno, ossia sole scevro da nubi (potenzialità di generare ombre) e velocità del vento superiore a quella di cut-in (rotore in moto).

Di seguito vengono riportate tutte le ipotesi utilizzate per il calcolo del fenomeno di shadow flickering effettuato tramite il software WindFarm:

- il sole splende per tutta la giornata, dall'alba al tramonto (cioè, si è sempre in assenza di copertura nuvolosa);
- il piano di rotazione delle pale è sempre perpendicolare alla direttrice sole aerogeneratore (ovvero l'aerogeneratore "insegue" il sole);
- gli aerogeneratori sono sempre operativi;
- non sono presenti alberi o altri ostacoli che, intercettando l'ombra degli aerogeneratori, riducano o annullino l'effetto di flickering.

Ciò considerato si evince che i risultati ai quali si perverrà sono estremamente cautelativi, trattandosi di una stima puramente teorica. Allo scopo di pervenire a valori più realistici, prossimi al caso reale, è stato corretto il dato di output prendendo in considerazione l'eliofania locale e le ore stimate di funzionamento dell'impianto eolico nell'arco dell'anno.

Nel caso in analisi, sapendo che il tempo in cui il sole permane al di sopra dell'orizzonte nell'arco dell'anno è di circa 4380 ore; tenendo conto dell'eliofania media locale (2400 h/anno¹²), ovvero il numero di ore in cui il cielo è libero da nubi durante il giorno, e a partire dalle registrazioni anemometriche relative alla stazione meteorologica più vicina all'area di studio e climaticamente compatibile, si è stimato che l'impianto eolico sarà in funzione per circa il 60% del tempo nell'arco dell'anno.

Nella seguente figura è riportato uno stralcio della mappa ottenuta dal software Windfarm; si sottolinea che tale mappa è stata realizzata utilizzando i dati output relativi al caso peggiore.

² Lavagnini A., Martorelli S., Coretti C. (1987). Radiazione solare in Italia. Mappe mensili della radiazione globale giornaliera. Roma, CNR, Ist. Fis. Atm., pag. 48

16

¹ Pinna M. (1985). L'eliofania in Italia. Mem. Soc. Geogr. It., 39: pag. 23-58

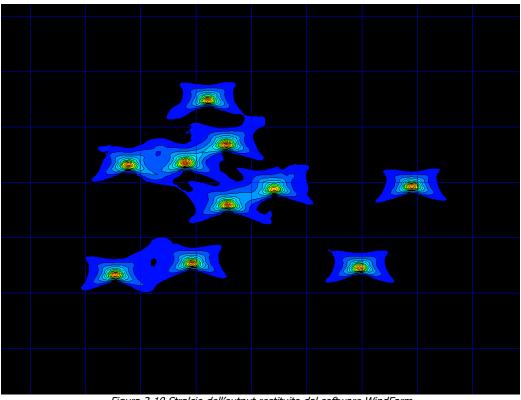


Figura 3-10 Stralcio dell'output restituito dal software WindFarm

In definitiva, i valori calcolati dal modello numerico (ore di ombreggiamento intermittente all'anno) sono desunti in funzione della probabilità composta di avere contemporaneamente l'occorrenza di rotore in moto (vento) e sole libero da nubi (ombre), fenomeni, questi ultimi, stocasticamente indipendenti.

3.6 Risultati

La seguente tabella riassume i risultati dell'analisi eseguita considerando il parco eolico di progetto, sui 77 ricettori considerati, secondo la metodologia di calcolo descritta nel paragrafo precedente.

	Caso po	Caso reale	
Ricettore	Giorni /anno	Ore /anno	[ore/anno]
R4	101	79	47
R11	137	144	87
R12	138	135	81
R15	32	9	6
R20	135	111	67
R27	82	32	19
R30	56	23	14
R35	80	27	16
R40	96	35	21
R42	93	34	20
R43	93	31	19
R44	87	29	17
R48	74	22	13
R49	140	47	28
R50	182	75	45
R51	137	54	33
R52	192	92	55
R53	190	87	52
R55	186	124	74
R56	177	86	51
R58	151	108	65
R60	201	102	61
R61	85	31	19
R65	184	123	74

Dia	Caso pe	Caso reale		
Ricettore	Giorni /anno	Ore /anno	[ore/anno]	
R66	138	155	93	
R67	146	172	103	
R68	153	188	113	
R69	161	201	121	
R72	173	214	129	
R73	181	213	128	
R75	190	210	126	
R76	199	254	152	
R78	156	198	119	
R79	198	201	120	
R86	104	125	75	
R87	75	30	18	
R96	149	78	47	
R99	151	79	48	
R100	199	171	103	
R102	222	402	241	
R107	148	77	46	
R112	156	97	58	
R116	164	56	33	
R117	138	50	30	
R122	138	183	110	
R131	0	0	0	
R138	182	324	194	
R157	178	120	72	
R158	159	164	98	
R165	256	342	205	
R166	272	347	208	
R167	263	348	209	

Disattons	Caso pe	Caso reale	
Ricettore	Giorni /anno	Ore /anno	[ore/anno]
R184	141	67	40
R185	150	74	45
R187	175	84	51
R188	118	40	24
R197	165	82	49
R198	0	0	0
R200	78	40	24
R203	0	0	0
R206	0	0	0
R211	101	47	28
R218	177	279	167
R234	0	0	0
R235	24	6	4
R239	20	6	3
R240	50	23	14
R242	33	11	7
R246	40	15	9
R251	0	0	0
R252	0	0	0
R255	0	0	0
R259	19	4	2
R271	124	68	41
R272	124	78	47
R280	54	29	17

Tabella 3-3 Risultati di calcolo – Impianto di progetto

Nella Tabella 3-3 vengono riportati il numero di giorni e di ore in cui è fisicamente possibile che il fenomeno si presenti (caso peggiore) e il valore reale atteso di ore l'anno in cui il fenomeno potrebbe presentarsi (caso reale). A tal proposito è importante sottolineare che anche il caso reale, calcolato

tenendo conto dell'eliofania locale e delle ore di funzionamento dell'impianto, è comunque un valore cautelativo in quanto nella stima non si è tenuto conto degli effetti mitigativi dovuti al piano di rotazione delle pale non sempre ortogonale alla direttrice sole-finestra e all'eventuale presenza di ostacoli e/o vegetazione interposti tra il sole e la finestra.

Sempre dalla Tabella 3-3 si evince che dei 77 ricettori analizzati quelli interessati dal fenomeno di shadow flickering sono 69 e per alcuni di essi si verifica un superamento delle 100 ore annue.

Di seguito, per ogni ricettore per cui è stato ottenuto il superamento delle 100 ore/anno è stato elaborato un calendario dell'ombra che riporta in maniera grafica i periodi dell'anno in cui è possibile il verificarsi del fenomeno (condizioni del caso peggiore).

Al fine di garantire una più chiara comprensione di tali grafici, prima di effettuarne la disamina, si riporta una guida alla lettura degli stessi:

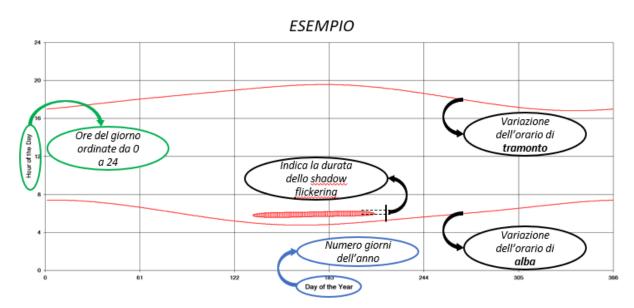


Figura 3-11 Esempio di output grafico dei risultati di simulazione del fenomeno di shadow flickering

Le curve di colore rosso indicano l'ora dell'alba e del tramonto mentre le aree campite il periodo in cui è possibile che il fenomeno si verifichi.

Inoltre, sull'asse delle ascisse sono riportati i giorni dell'anno e su quello delle ordinate l'ora del giorno (ora solare).

Per quanto riguarda il ricettore R67 (cfr. Figura 3-12), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C02** dal 1 gennaio al 2 febbraio circa tra le 14:50 e le 15:55 e dal 9 novembre al 31 dicembre circa tra le 14:35 e le 15:45;
- **C03** dal 1 gennaio al 12 febbraio circa tra le 7:40 e le 8:45 e dal 30 ottobre al 31 dicembre circa tra le 7:20 e le 8:35;
- **C04** dal 11 marzo al 30 marzo circa tra le 6:10 e le 6:40 e dal 12 settembre al 1 ottobre tra le 5:55 e le 6:25.

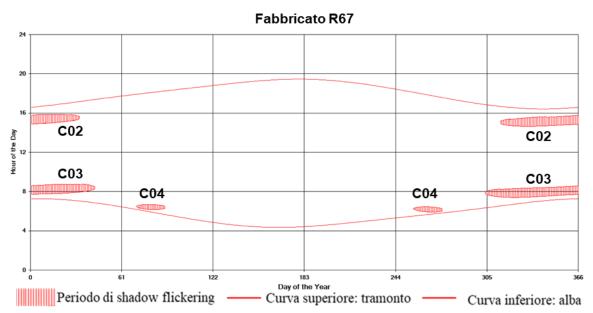


Figura 3-12 Periodi di shadow flickering per il ricettore R67

Per quanto riguarda il ricettore R68 (cfr. Figura 3-13), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C02** dal 1 gennaio al 6 febbraio circa tra le 14:55 e le 16:00 e dal 4 novembre al 31 dicembre circa tra le 14:40 e le 15:50;
- **C03** dal 1 gennaio al 16 febbraio circa tra le 7:40 e le 8:45 e dal 26 ottobre al 31 dicembre circa tra le 7:15 e le 8:30;
- **C04** dal 14 marzo al 1 aprile circa tra le 6:05 e le 6:40 e dal 10 settembre al 29 settembre tra le 5:50 e le 6:25.

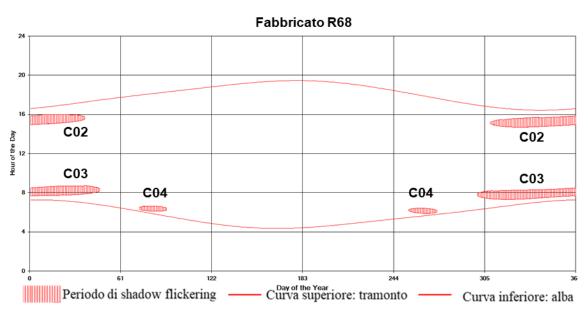


Figura 3-13 Periodi di shadow flickering per il ricettore R68

Per quanto riguarda il ricettore R69 (cfr. Figura 3-14), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C02** dal 1 gennaio al 10 febbraio circa tra le 15:00 e le 16:05 e dal 31 ottobre al 31 dicembre circa tra le 14:45 e le 15:55;
- **C03** dal 1 gennaio al 20 febbraio circa tra le 7:40 e le 8:40 e dal 23 ottobre al 31 dicembre circa tra le 7:10 e le 8:25;
- **C04** dal 15 marzo al 3 aprile circa tra le 6:00 e le 6:35 e dal 8 settembre al 27 settembre tra le 5:50 e le 6:25.

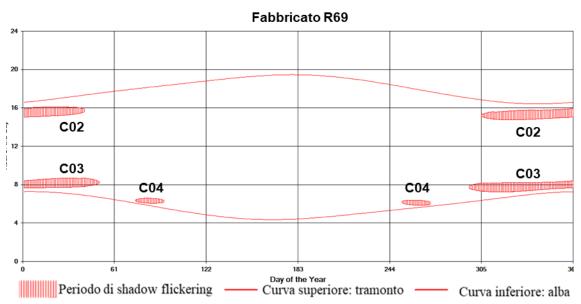


Figura 3-14 Periodi di shadow flickering per il ricettore R69

Per quanto riguarda il ricettore R72 (cfr. Figura 3-15), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C02** dal 1 gennaio al 16 febbraio circa tra le 15:10 e le 16:15 e dal 25 ottobre al 31 dicembre circa tra le 14:50 e le 16:05;
- **C03** dal 1 gennaio al 25 febbraio circa tra le 7:35 e le 8:40 e dal 17 ottobre al 31 dicembre circa tra le 7:05 e le 8:10;
- **C04** dal 18 marzo al 6 aprile circa tra le 5:55 e le 6:30 e dal 5 settembre al 25 settembre tra le 5:45 e le 6:20.

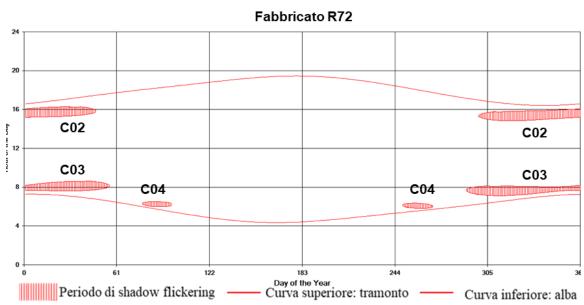


Figura 3-15 Periodi di shadow flickering per il ricettore R72

Per quanto riguarda il ricettore R73 (cfr. Figura 3-16), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C02** dal 1 gennaio al 20 febbraio circa tra le 15:20 e le 16:25 e dal 21 ottobre al 31 dicembre circa tra le 14:55 e le 16:05;
- **C03** dal 1 gennaio al 29 febbraio circa tra le 7:30 e le 8:25 e dal 14 ottobre al 31 dicembre circa tra le 7:00 e le 8:05;
- **C04** dal 20 marzo al 9 aprile circa tra le 5:55 e le 6:30 e dal 3 settembre al 23 settembre tra le 5:45 e le 6:20;
- **C05** dal 15 dicembre al 28 dicembre circa tra le 7:50 e le 8:05.

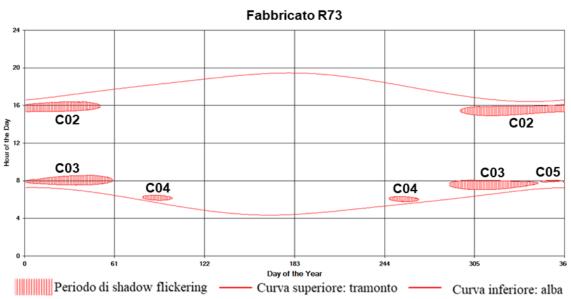


Figura 3-16 Periodi di shadow flickering per il ricettore R73

Per quanto riguarda il ricettore R75 (cfr.Figura 3-17), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C02** dal 1 gennaio al 25 febbraio circa tra le 15:30 e le 16:35 e dal 17 ottobre al 31 dicembre circa tra le 15:00 e le 16:05;
- **C03** dal 11 gennaio al 4 marzo circa tra le 7:25 e le 8:35 e dal 9 ottobre al 2 dicembre circa tra le 6:55 e le 8:05;
- **C04** dal 22 marzo al 11 aprile circa tra le 5:50 e le 6:25 e dal 31 agosto al 20 settembre tra le 5:45 e le 6:20;
- **C05** dal 1 gennaio al 3 gennaio circa tra le 7:55 e le 8:05 e dal 9 dicembre al 31 dicembre circa tra le 7:45 e le 8:05.

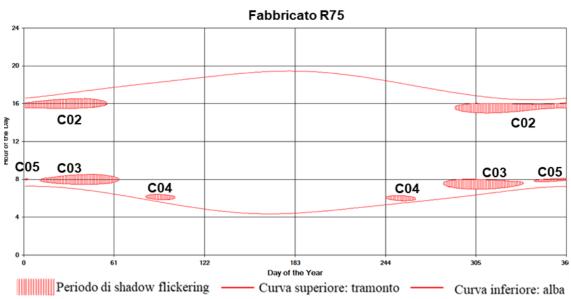


Figura 3-17 Periodi di shadow flickering per il ricettore R75

Per quanto riguarda il ricettore R76 (cfr.Figura 3-18), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C02** dal 20 marzo al 8 maggio circa tra le 16:40 e le 17:55 e dal 3 agosto al 22 settembre circa tra le 16:40 e le 17:55;
- **C03** dal 30 marzo al 29 maggio circa tra le 5:35 e le 6:55 e dal 14 luglio al 13 settembre circa tra le 5:40 e le 7:00;
- **C04** dal 23 aprile al 20 maggio circa tra le 5:00 e le 5:35 e dal 23 luglio al 19 agosto tra le 5:10 e le 5:45;
- **C05** dal 12 gennaio al 8 febbraio circa tra le 7:20 e le 7:55 e dal 3 novembre al 1 dicembre circa tra le 6:55 e le 7:25.

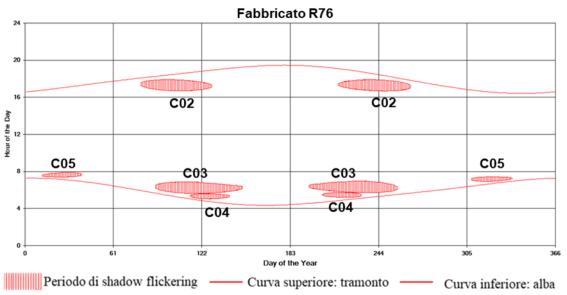
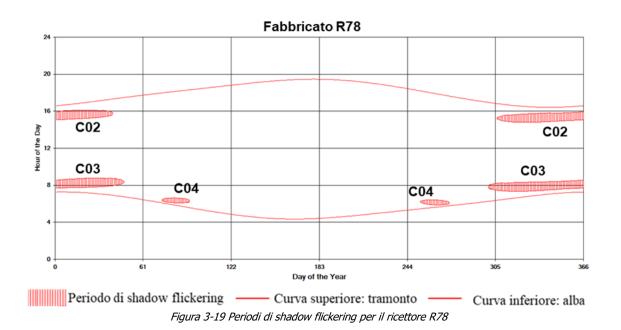



Figura 3-18 Periodi di shadow flickering per il ricettore R76

Per quanto riguarda il ricettore R78 (cfr.Figura 3-19), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C02** dal 1 gennaio al 9 febbraio circa tra le 15:00 e le 16:10 e dal 1 novembre al 31 dicembre circa tra le 14:45 e le 15:55;
- **C03** dal 1 gennaio al 17 febbraio circa tra le 7:40 e le 8:45 e dal 26 ottobre al 31 dicembre circa tra le 7:20 e le 8:35;
- **C04** dal 14 marzo al 2 aprile circa tra le 6:05 e le 6:40 e dal 9 settembre al 29 settembre tra le 5:50 e le 6:25.

Per quanto riguarda il ricettore R79 (cfr.Figura 3-20), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C02** dal 2 gennaio al 29 febbraio circa tra le 15:35 e le 16:40 e dal 12 ottobre al 10 dicembre circa tra le 15:05 e le 16:10;
- **C03** dal 19 gennaio al 8 marzo circa tra le 7:20 e le 8:30 e dal 5 ottobre al 24 novembre circa tra le 6:50 e le 8:00;
- **C04** dal 25 marzo al 14 aprile circa tra le 5:45 e le 6:20 e dal 29 agosto al 18 settembre tra le 5:40 e le 6:15;
- **C05** dal 1 gennaio al 7 gennaio circa tra le 7:50 e le 8:10 e dal 5 dicembre al 31 dicembre circa tra le 7:40 e le 8:10.11.

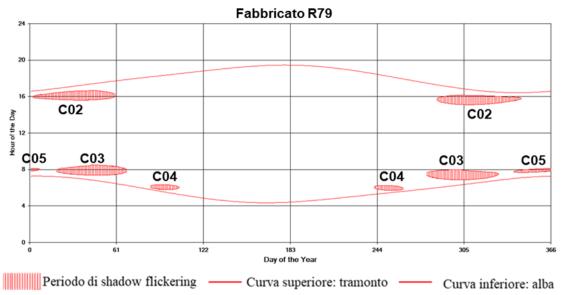
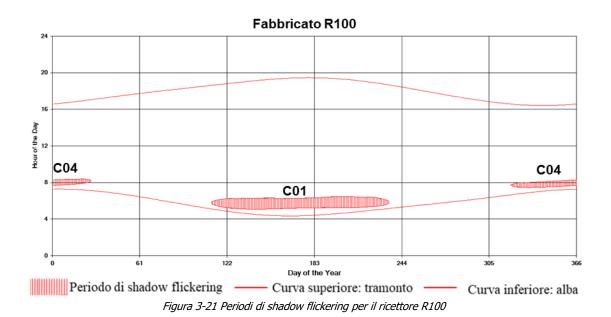



Figura 3-20 Periodi di shadow flickering per il ricettore R79

Per quanto riguarda il ricettore R100 (cfr.Figura 3-21Figura 3-19), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C01** dal 20 aprile al 22 agosto circa tra le 5:00 e le 6:30;
- **C04** dal 1 gennaio al 27 gennaio circa tra le 7:40 e le 8:20 e dal 15 novembre al 31 dicembre circa tra le 7:25 e le 8:15.

iRide

Per quanto riguarda il ricettore R102 (cfr.Figura 3-22Figura 3-20), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C07** dal 5 gennaio al 23 aprile circa tra le 7:35 e le 10:05 e dal 19 agosto al 8 dicembre circa tra le 7:15 e le 9:40;
- **C08** dal 17 febbraio al 9 marzo circa tra le 16:50 e le 17:25 e dal 4 ottobre al 24 ottobre circa tra le 16:20 e le 17:25.

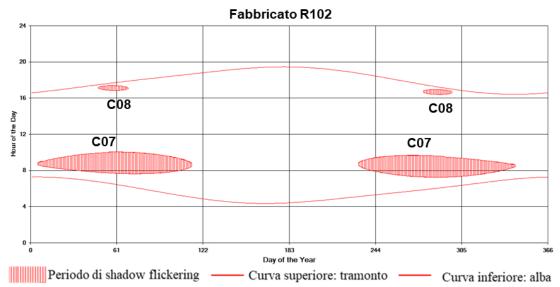
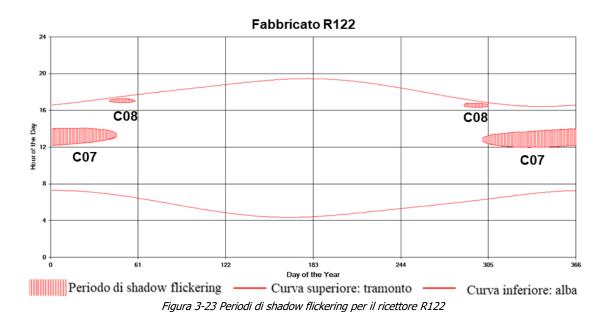



Figura 3-22 Periodi di shadow flickering per il ricettore R102

Per quanto riguarda il ricettore R122 (cfr.Figura 3-23 Figura 3-19), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C07** dal 1 gennaio al 15 febbraio circa tra le 12:10 e le 14:05 e dal 27 ottobre al 31 dicembre tra le 11:55 e le 14:00;
- **C08** dal 10 febbraio al 28 febbraio circa tra le 16:40 e le 17:15 e dal 14 ottobre al 31 ottobre circa tra le 16:15 e le 16:50.

Per quanto riguarda il ricettore R138 (cfr.Figura 3-24 Figura 3-20), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C02** dal 17 maggio al 25 luglio circa tra le 18:35 e le 19:10;
- **C05** dal 23 marzo al 20 settembre circa tra le 5:40 e le 7:40;
- **C06** dal 16 aprile al 11 maggio circa tra le 5:10 e le 5:45 e dal 1 agosto al 27 agosto circa tra le 5:15 e le 5:55.

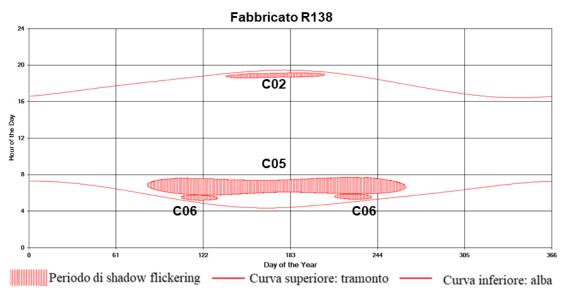


Figura 3-24 Periodi di shadow flickering per il ricettore R138

Per quanto riguarda il ricettore R165 (cfr.Figura 3-25 Figura 3-20), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C03** dal 14 aprile al 6 maggio circa tra le 17:50 e le 18:25 e dal 5 agosto al 27 agosto circa tra le 17:55 e le 18:30;
- **C05** dal 1 gennaio al 13 febbraio circa tra le 15:20 e le 16:15 e dal 28 ottobre al 31 dicembre circa tra le 14:55 e le 16:05;
- **C06** dal 9 gennaio al 4 aprile circa tra le 7:35 e le 9:30 e dal 8 settembre al 3 dicembre circa tra le 7:05 e le 9:05.

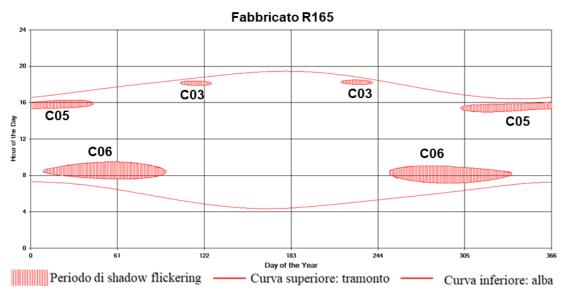


Figura 3-25 Periodi di shadow flickering per il ricettore R165

Per quanto riguarda il ricettore R166 (cfr.Figura 3-26Figura 3-20), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C03** dal 16 aprile al 8 maggio circa tra le 17:55 e le 18:25 e dal 3 agosto al 25 agosto circa tra le 18:00 e le 18:30;
- **C05** dal 1 gennaio al 16 febbraio circa tra le 15:25 e le 16:25 e dal 25 ottobre al 31 dicembre circa tra le 15:00 e le 16:05;
- **C06** dal 20 gennaio al 12 aprile circa tra le 7:25 e le 9:25 e dal 31 agosto al 22 novembre circa tra le 7:00 e le 9:00.

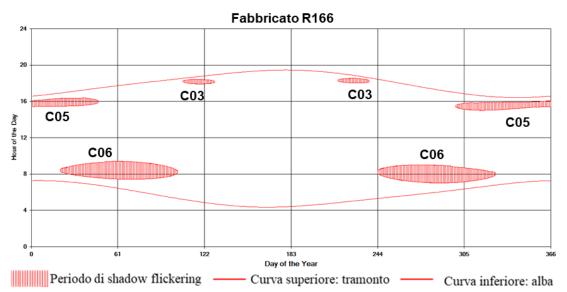


Figura 3-26 Periodi di shadow flickering per il ricettore R166

Per quanto riguarda il ricettore R167 (cfr.Figura 3-27Figura 3-20), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

- **C03** dal 15 aprile al 7 maggio circa tra le 17:50 e le 18:25 e dal 4 agosto al 26 agosto circa tra le 18:00 e le 18:30;
- **C05** dal 1 gennaio al 15 febbraio circa tra le 15:20 e le 16:20 e dal 27 ottobre al 31 dicembre circa tra le 15:00 e le 16:05;
- **C06** dal 13 gennaio al 7 aprile circa tra le 7:30 e le 9:30 e dal 4 settembre al 29 novembre circa tra le 7:05 e le 9:05.

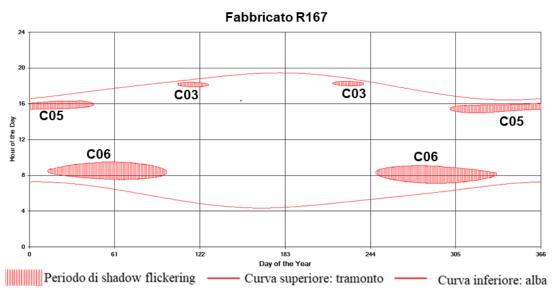


Figura 3-27 Periodi di shadow flickering per il ricettore R167

Per quanto riguarda il ricettore R218 (cfr.Figura 3-28Figura 3-20), si riportano le turbine eoliche di progetto che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi di riferimento:

• **C10** dal 1 gennaio al 18 marzo circa tra le 14:05 e le 16:00 e dal 24 settembre al 31 dicembre circa tra le 13:35 e le 15:35.

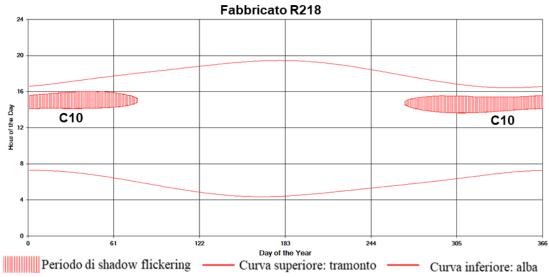


Figura 3-28 Periodi di shadow flickering per il ricettore R218

Per approfondire ulteriormente i ricettori per cui è stato ottenuto il superamento delle 100 ore annue, nelle seguenti figure è mostrata la loro localizzazione rispetto agli aerogeneratori che causano l'effetto dello shadow flickering.

In Figura 3-29 e in Figura 3-30 è quindi mostrata la localizzazione dei ricettori R67, R68, R69, R72, R73, R75, R78 e R79 rispetto agli aerogeneratori C02, C03 e C04.

Figura 3-29 Localizzazione ricettori R67, R68, R69, R72, R73, R75, R78e R79 rispetto agli aerogeneratori che causano l'effetto dello shadow flickering

Figura 3-30 Lati dei ricettori esposti all'effetto dello shadow flickering

Come si evince dalle figure sopra riportate, i ricettori R67, R68, R69 e R78 si trovano a ridosso di altri ricettori residenziali e non, i quali potrebbero schermare gli effetti dello shadow flickering degli aerogeneratori C03 e C04. Per quanto riguarda i ricettori R72, R73, R75 e R79, si può osservare come tali ricettori siano circondato da alberi i quali potrebbero limitare e/o mitigare l'effetto dello shadow flickering.

In Figura 3-31 e in Figura 3-32 è invece mostrata la localizzazione del ricettore R76 rispetto agli aerogeneratori C02, C03, C04 e C05.

Figura 3-31 Localizzazione ricettore R76 rispetto agli aerogeneratori che causano l'effetto dello shadow flickering

Figura 3-32 Lati del ricettore esposti all'effetto dello shadow flickering

In Figura 3-32 si può osservare come il ricettore R76 sia circondato da alberi che potrebbero limitare e/o mitigare l'effetto dello shadow flickering.

In Figura 3-33 e in Figura 3-34 è invece mostrata la localizzazione del ricettore R100 rispetto agli aerogeneratori C01 e C04.

Figura 3-33 Localizzazione ricettore R100 rispetto agli aerogeneratori che causano l'effetto dello shadow flickering

Figura 3-34 Lati del ricettore esposti all'effetto dello shadow flickering

In Figura 3-34 si può osservare come il ricettore R100 sia in parte circondato da alberi che potrebbero limitare e/o mitigare l'effetto dello shadow flickering. Dagli esami condotti il superamento avviene tra le ore 5:00 e le 6:30, momento in cui la maggior parte della popolazione dorme.

In Figura 3-35 e in Figura 3-36 è invece mostrata la localizzazione del ricettore R102 rispetto agli aerogeneratori C07 e C08.

Figura 3-35 Localizzazione ricettore R102 rispetto agli aerogeneratori che causano l'effetto dello shadow flickering

Figura 3-36 Lati del ricettore esposti all'effetto dello shadow flickering

In Figura 3-36 si può osservare come il ricettore R102 sia circondato da alberi che potrebbero limitare e/o mitigare l'effetto dello shadow flickering.

In Figura 3-37 e in Figura 3-38 è invece mostrata la localizzazione del ricettore R102 rispetto agli aerogeneratori C07 e C08.

Figura 3-37 Localizzazione ricettore R122 rispetto agli aerogeneratori che causano l'effetto dello shadow flickering

Figura 3-38 Lati del ricettore esposti all'effetto dello shadow flickering

In Figura 3-38 si può osservare come il ricettore R122 sia circondato da alberi che potrebbero limitare e/o mitigare l'effetto dello shadow flickering.

In Figura 3-39 e in Figura 3-40 è invece mostrata la localizzazione del ricettore R138 rispetto agli aerogeneratori C02, C05 e C06.

Figura 3-39 Localizzazione ricettore R138 rispetto agli aerogeneratori che causano l'effetto dello shadow flickering

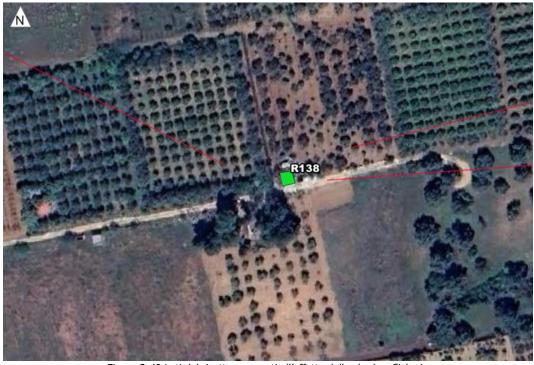


Figura 3-40 Lati del ricettore esposti all'effetto dello shadow flickering

Per il ricettore R138 si ritiene di prevedere opere di mitigazione quali siepi arboree o, in funzione dei futuri accordi con il proprietario, installare oscuranti, quali tende o tapparelle, alle eventuali aperture della facciata rivolta verso l'aerogeneratore.

In Figura 3-41 e in Figura 3-42 è invece mostrata la localizzazione dei ricettori R165, R166 e R167 rispetto agli aerogeneratori C03, C05 e C06.

Figura 3-41 Localizzazione ricettori R165, R166 e R167 rispetto agli aerogeneratori che causano l'effetto dello shadow flickering

Figura 3-42 Lati dei ricettori esposti all'effetto dello shadow flickering

In Figura 3-42 si può osservare come i ricettori R165, R166 e R167 siano circondati da alberi che potrebbero limitare e/o mitigare l'effetto dello shadow flickering.

Infine, in Figura 3-43 viene mostrata la localizzazione del ricettore R218 rispetto all'aerogeneratore C10. In particolare, in Figura 3-44 si può osservare che tale ricettore è circondato da alberi che potrebbero limitare e/o mitigare l'effetto dello shadow flickering.

Figura 3-43 Localizzazione ricettore R218 rispetto all'aerogeneratori che causa l'effetto dello shadow flickering

Figura 3-44 Lati del ricettore esposti all'effetto dello shadow flickering

Si ricorda che il calcolo del superamento reale del numero di ore è comunque un valore cautelativo in quanto nella stima non si è tenuto conto degli effetti mitigativi dovuti al piano di rotazione delle pale non sempre ortogonale alla direttrice sole-finestra.

Al fine di limitare l'esposizione all'effetto di shadow flickering sui ricettori, sono comunque praticabili possibili opere di mitigazione quali:

- realizzazione di barriere sempreverdi prospicienti alle aperture finestrate degli edifici,
- installazione di oscuranti, quali tende o tapparelle, alle aperture della facciata rivolta verso l'aerogeneratore.

Un altro modo per contrastare l'effetto sarebbe quello di, in seguito ad un monitoraggio post-operam, programmare degli spegnimenti programmati dell'aerogeneratore responsabile del superamento delle 100 ore.

Si specifica che a valle dell'effettiva realizzazione dell'impianto autorizzato verrà effettuato un monitoraggio in post-operam e verranno in questa fase definite le misure di mitigazione più adeguate da adottare per ogni ricettore.

4 CONCLUSIONI

A seguito di quanto descritto nei paragrafi precedenti si può concludere che, pur considerando una stima cautelativa, in quanto non si è tenuto conto degli effetti mitigativi dovuti al piano di rotazione delle pale non sempre ortogonale alla direttrice sole-finestra e all'eventuale presenza di ostacoli e/o vegetazione interposti tra il sole e la finestra, il fenomeno dello shadow flickering correlato alla presenza dell'impianto di progetto si può verificare su 69 dei 77 ricettori considerati ai fini dell'analisi (vedi Tabella 3-3).

L'incidenza di tale fenomeno sulla qualità della vita può ritenersi trascurabile in quanto, il valore di durata simulato ed atteso del fenomeno è nella maggior parte dei casi (60 su 77 fabbricati) inferiore al valore di riferimento pari ad 100 ore l'anno.

A tali considerazioni va altresì sottolineato che:

- dall'analisi effettuata per verificare gli effetti dello shadow flickering è emerso che la maggior parte dei ricettori risultano essere circondati da alberi che potrebbero mitigare l'effetto dello shadow flickering, ad eccezione del ricettore R138 che verrà mitigato tramite la realizzazione di barriere verdi schermanti e/o installazione di oscuranti;
- la velocità di rotazione della turbina è stata cautelativamente considerata pari un valore di 12,1
 rpm, maggiore del valore di rotazione nominale pari ad 9,50 rotazioni al minuto, ma nettamente
 inferiore a 60 rpm, frequenza massima raccomandata al fine di ridurre al minimo i fastidi e
 soddisfare le condizioni di benessere;
- le turbine in progetto sono lontane dai ricettori analizzati, essendo le distanze comprese tra 230 m e 990 m con la maggioranza dei ricettori localizzati a più di 500 metri di distanza. In tali circostanze l'effetto dell'ombra è trascurabile poiché il rapporto tra lo spessore della pala e la distanza dal ricettore è molto ridotto.

Stante tutto quanto sopra riportato è possibile concludere come l'interferenza della componente in esame, relativa allo shadow flickering, sui ricettori presi in considerazione possa considerarsi non significativa.

5 APPENDICE A

Disattana	Tipologia	Distanza da	Coordinate UTM		Numero finestre e
Ricettore	icettore ripologia	aerogeneratore [m]	Long E [m]	Lat N [m]	orientamento rispetto al Nord
R1	Altri ricettori	879	661661	4491347	4(0 - 90 - 180 - 270)
R2	Altri ricettori	820	661885	4491778	4(0 - 90 - 180 - 270)
R3	Altri ricettori	807	661886	4491751	4(0 - 90 - 180 - 270)
R4	Residenziale	622	661910	4491155	4(0 - 90 - 180 - 270)
R5	Altri ricettori	797	661917	4491769	4(0 - 90 - 180 - 270)
R6	Altri ricettori	786	661943	4491775	4(0 - 90 - 180 - 270)
R7	Altri ricettori	762	661972	4490728	4(0 - 90 - 180 - 270)
R8	Altri ricettori	783	661989	4490684	4(0 - 90 - 180 - 270)
R9	Altri ricettori	744	662013	4490715	4(0 - 90 - 180 - 270)
R10	Altri ricettori	727	662059	4491812	4(0 - 90 - 180 - 270)
R11	Residenziale	447	662086	4491228	4(0 - 90 - 180 - 270)
R12	Residenziale	419	662146	4491107	4(0 - 90 - 180 - 270)
R13	Altri ricettori	648	662165	4492995	4(0 - 90 - 180 - 270)
R14	Altri ricettori	610	662203	4493028	4(0 - 90 - 180 - 270)
R15	Residenziale	671	662243	4491869	4(0 - 90 - 180 - 270)
R16	Altri ricettori	816	662262	4490481	4(0 - 90 - 180 - 270)
R17	Altri ricettori	559	662264	4493013	4(0 - 90 - 180 - 270)
R18	Altri ricettori	396	662273	4491581	4(0 - 90 - 180 - 270)
R19	Altri ricettori	846	662277	4490449	4(0 - 90 - 180 - 270)
R20	Residenziale	514	662293	4493040	4(0 - 90 - 180 - 270)
R21	Altri ricettori	487	662309	4491696	4(0 - 90 - 180 - 270)
R22	Altri ricettori	594	662348	4491826	4(0 - 90 - 180 - 270)
R23	Altri ricettori	990	662414	4494167	4(0 - 90 - 180 - 270)
R24	Altri ricettori	977	662427	4494158	4(0 - 90 - 180 - 270)
R25	Altri ricettori	689	662494	4492608	4(0 - 90 - 180 - 270)
R26	Altri ricettori	888	662500	4494088	4(0 - 90 - 180 - 270)
R27	Residenziale	656	662505	4492634	4(0 - 90 - 180 - 270)

D '	-	Distanza da	Coordin	nate UTM	Numero finestre e
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]	orientamento rispetto al Nord
R28	Altri ricettori	789	662522	4492053	4(0 - 90 - 180 - 270)
R29	Altri ricettori	538	662541	4491802	4(0 - 90 - 180 - 270)
R30	Residenziale	379	662571	4492906	4(0 - 90 - 180 - 270)
R31	Altri ricettori	710	662580	4490546	4(0 - 90 - 180 - 270)
R32	Altri ricettori	202	662633	4491460	4(0 - 90 - 180 - 270)
R33	Altri ricettori	747	662632	4492007	4(0 - 90 - 180 - 270)
R34	Altri ricettori	901	662645	4492343	4(0 - 90 - 180 - 270)
R35	Residenziale	793	662660	4492056	4(0 - 90 - 180 - 270)
R36	Altri ricettori	443	662670	4491690	4(0 - 90 - 180 - 270)
R37	Altri ricettori	255	662719	4492987	4(0 - 90 - 180 - 270)
R38	Altri ricettori	239	662781	4491203	4(0 - 90 - 180 - 270)
R39	Altri ricettori	547	662821	4493795	4(0 - 90 - 180 - 270)
R40	Residenziale	499	662841	4492736	4(0 - 90 - 180 - 270)
R41	Altri ricettori	523	662849	4493763	4(0 - 90 - 180 - 270)
R42	Residenziale	497	662872	4492745	4(0 - 90 - 180 - 270)
R43	Residenziale	510	662873	4492735	4(0 - 90 - 180 - 270)
R44	Residenziale	520	662887	4492725	4(0 - 90 - 180 - 270)
R45	Altri ricettori	587	662942	4492672	4(0 - 90 - 180 - 270)
R46	Altri ricettori	558	662952	4492702	4(0 - 90 - 180 - 270)
R47	Altri ricettori	881	662967	4492372	4(0 - 90 - 180 - 270)
R48	Residenziale	554	662979	4492711	4(0 - 90 - 180 - 270)
R49	Residenziale	803	662995	4494019	4(0 - 90 - 180 - 270)
R50	Residenziale	727	663012	4491831	4(0 - 90 - 180 - 270)
R51	Residenziale	761	663016	4491868	4(0 - 90 - 180 - 270)
R52	Residenziale	721	663025	4491805	4(0 - 90 - 180 - 270)
R53	Residenziale	739	663038	4491824	4(0 - 90 - 180 - 270)
R54	Altri ricettori	777	663051	4491860	4(0 - 90 - 180 - 270)
R55	Residenziale	616	663080	4491595	4(0 - 90 - 180 - 270)
R56	Residenziale	740	663126	4493928	4(0 - 90 - 180 - 270)

D.	-	Distanza da	Coordin	nate UTM	Numero finestre e
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]	orientamento rispetto al Nord
R57	Altri ricettori	835	663094	4491895	4(0 - 90 - 180 - 270)
R58	Residenziale	623	663111	4491542	4(0 - 90 - 180 - 270)
R59	Altri ricettori	863	663148	4494029	4(0 - 90 - 180 - 270)
R60	Residenziale	869	663182	4491924	4(0 - 90 - 180 - 270)
R61	Residenziale	548	663189	4492853	4(0 - 90 - 180 - 270)
R62	Altri ricettori	843	663223	4492516	4(0 - 90 - 180 - 270)
R63	Altri ricettori	710	663262	4491106	4(0 - 90 - 180 - 270)
R64	Altri ricettori	797	663252	4491896	4(0 - 90 - 180 - 270)
R65	Residenziale	808	663276	4491957	4(0 - 90 - 180 - 270)
R66	Residenziale	687	663277	4493731	4(0 - 90 - 180 - 270)
R67	Residenziale	673	663277	4493708	4(0 - 90 - 180 - 270)
R68	Residenziale	660	663279	4493684	4(0 - 90 - 180 - 270)
R69	Residenziale	644	663285	4493662	4(0 - 90 - 180 - 270)
R70	Altri ricettori	500	663290	4493263	4(0 - 90 - 180 - 270)
R70	Altri ricettori	500	663290	4493263	4(0 - 90 - 180 - 270)
R72	Residenziale	622	663289	4493630	4(0 - 90 - 180 - 270)
R73	Residenziale	607	663293	4493607	4(0 - 90 - 180 - 270)
R74	Altri ricettori	671	663294	4493722	4(0 - 90 - 180 - 270)
R75	Residenziale	588	663300	4493581	4(0 - 90 - 180 - 270)
R76	Residenziale	500	663311	4493232	4(0 - 90 - 180 - 270)
R76	Residenziale	500	663311	4493232	4(0 - 90 - 180 - 270)
R78	Residenziale	636	663302	4493675	4(0 - 90 - 180 - 270)
R79	Residenziale	576	663302	4493556	4(0 - 90 - 180 - 270)
R80	Altri ricettori	626	663303	4491461	4(0 - 90 - 180 - 270)
R81	Altri ricettori	596	663311	4493621	4(0 - 90 - 180 - 270)
R82	Altri ricettori	564	663319	4493572	4(0 - 90 - 180 - 270)
R83	Altri ricettori	472	663351	4493488	4(0 - 90 - 180 - 270)
R84	Altri ricettori	827	663420	4492552	4(0 - 90 - 180 - 270)
R85	Altri ricettori	843	663434	4492527	4(0 - 90 - 180 - 270)

Disattana	Time to min	Distanza da	Coordin	nate UTM	Numero finestre e
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]	orientamento rispetto al Nord
R86	Residenziale	536	663444	4491709	4(0 - 90 - 180 - 270)
R87	Residenziale	663	663516	4492686	4(0 - 90 - 180 - 270)
R88	Altri ricettori	681	663542	4492656	4(0 - 90 - 180 - 270)
R89	Altri ricettori	696	663545	4492638	4(0 - 90 - 180 - 270)
R90	Altri ricettori	567	663553	4491901	4(0 - 90 - 180 - 270)
R91	Altri ricettori	595	663614	4494268	4(0 - 90 - 180 - 270)
R92	Altri ricettori	608	663620	4494236	4(0 - 90 - 180 - 270)
R93	Altri ricettori	591	663652	4494244	4(0 - 90 - 180 - 270)
R94	Altri ricettori	494	663694	4491016	4(0 - 90 - 180 - 270)
R95	Altri ricettori	565	663676	4494257	4(0 - 90 - 180 - 270)
R96	Residenziale	766	663687	4492204	4(0 - 90 - 180 - 270)
R97	Altri ricettori	903	663710	4490585	4(0 - 90 - 180 - 270)
R98	Altri ricettori	489	663717	4494327	4(0 - 90 - 180 - 270)
R99	Residenziale	768	663711	4492212	4(0 - 90 - 180 - 270)
R100	Residenziale	516	663718	4494269	4(0 - 90 - 180 - 270)
R101	Altri ricettori	530	663714	4494258	4(0 - 90 - 180 - 270)
R102	Residenziale	223	663742	4491599	4(0 - 90 - 180 - 270)
R103	Altri ricettori	819	663753	4492276	4(0 - 90 - 180 - 270)
R104	Altri ricettori	420	663778	4494329	4(0 - 90 - 180 - 270)
R105	Altri ricettori	429	663773	4494359	4(0 - 90 - 180 - 270)
R106	Altri ricettori	827	663766	4492308	4(0 - 90 - 180 - 270)
R107	Residenziale	827	663772	4492289	4(0 - 90 - 180 - 270)
R108	Altri ricettori	429	663790	4494305	4(0 - 90 - 180 - 270)
R109	Altri ricettori	556	663824	4492023	4(0 - 90 - 180 - 270)
R110	Altri ricettori	403	663839	4494274	4(0 – 90 – 180 - 270)
R111	Altri ricettori	584	663853	4492053	4(0 - 90 - 180 - 270)
R112	Residenziale	751	663851	4492302	4(0 - 90 - 180 - 270)
R113	Altri ricettori	400	663862	4494233	4(0 - 90 - 180 - 270)
R114	Altri ricettori	552	663878	4492027	4(0 - 90 - 180 - 270)

5		Distanza da	Coordin	nate UTM	Numero finestre e
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]	orientamento rispetto al Nord
R115	Altri ricettori	202	663961	4493125	4(0 - 90 - 180 - 270)
R116	Residenziale	658	663962	4492146	4(0 - 90 - 180 - 270)
R117	Residenziale	636	663982	4492112	4(0 - 90 - 180 - 270)
R118	Altri ricettori	398	663988	4492919	4(0 - 90 - 180 - 270)
R119	Altri ricettori	578	664003	4492657	4(0 - 90 - 180 - 270)
R120	Altri ricettori	407	664002	4492918	4(0 - 90 - 180 - 270)
R121	Altri ricettori	563	664020	4492662	4(0 - 90 - 180 - 270)
R122	Residenziale	310	664028	4491771	4(0 - 90 - 180 - 270)
R123	Altri ricettori	551	664031	4492663	4(0 - 90 - 180 - 270)
R124	Altri ricettori	539	664045	4492665	4(0 - 90 - 180 - 270)
R125	Altri ricettori	656	664062	4495066	4(0 - 90 - 180 - 270)
R126	Altri ricettori	226	664066	4491664	4(0 - 90 - 180 - 270)
R127	Altri ricettori	342	664065	4491793	4(0 - 90 - 180 - 270)
R128	Altri ricettori	367	664091	4493535	4(0 - 90 - 180 - 270)
R129	Altri ricettori	540	664093	4494949	4(0 - 90 - 180 - 270)
R130	Altri ricettori	468	664101	4492501	4(0 - 90 - 180 - 270)
R131	Residenziale	535	664107	4494954	4(0 - 90 - 180 - 270)
R132	Altri ricettori	348	664105	4493486	4(0 - 90 - 180 - 270)
R133	Altri ricettori	501	664123	4494921	4(0 - 90 - 180 - 270)
R134	Altri ricettori	512	664145	4494935	4(0 - 90 - 180 - 270)
R135	Altri ricettori	366	664187	4493302	4(0 - 90 - 180 - 270)
R135	Altri ricettori	366	664187	4493302	4(0 - 90 - 180 - 270)
R137	Altri ricettori	339	664234	4492489	4(0 - 90 - 180 - 270)
R138	Residenziale	323	664248	4492512	4(0 - 90 - 180 - 270)
R139	Altri ricettori	292	664306	4492394	4(0 - 90 - 180 - 270)
R140	Altri ricettori	974	664315	4495393	4(0 - 90 - 180 - 270)
R141	Altri ricettori	260	664390	4494622	4(0 - 90 - 180 - 270)
R142	Altri ricettori	449	664415	4492103	4(0 - 90 - 180 - 270)
R143	Altri ricettori	313	664418	4492250	4(0 - 90 - 180 - 270)

p:	-	Distanza da	Coordin	nate UTM	Numero finestre e
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]	orientamento rispetto al Nord
R144	Altri ricettori	210	664433	4494423	4(0 - 90 - 180 - 270)
R145	Altri ricettori	358	664493	4492882	4(0 - 90 - 180 - 270)
R146	Altri ricettori	279	664501	4494387	4(0 - 90 - 180 - 270)
R147	Altri ricettori	609	664550	4491919	4(0 - 90 - 180 - 270)
R148	Altri ricettori	686	664576	4491723	4(0 - 90 - 180 - 270)
R149	Altri ricettori	700	664592	4491723	4(0 - 90 - 180 - 270)
R150	Altri ricettori	225	664607	4492303	4(0 - 90 - 180 - 270)
R151	Altri ricettori	246	664615	4492281	4(0 - 90 - 180 - 270)
R152	Altri ricettori	598	664734	4491950	4(0 - 90 - 180 - 270)
R153	Altri ricettori	231	664795	4492614	4(0 - 90 - 180 - 270)
R154	Altri ricettori	758	664813	4491804	4(0 - 90 - 180 - 270)
R155	Altri ricettori	544	664840	4493148	4(0 - 90 - 180 - 270)
R156	Altri ricettori	511	664853	4493189	4(0 - 90 - 180 - 270)
R157	Residenziale	536	664870	4493169	4(0 - 90 - 180 - 270)
R158	Residenziale	547	664974	4494000	4(0 - 90 - 180 - 270)
R159	Altri ricettori	517	664960	4493952	4(0 - 90 - 180 - 270)
R160	Altri ricettori	674	664964	4491974	4(0 - 90 - 180 - 270)
R161	Altri ricettori	984	665053	4494973	4(0 - 90 - 180 - 270)
R162	Altri ricettori	671	665118	4492099	4(0 - 90 - 180 - 270)
R163	Altri ricettori	581	665146	4493646	4(0 - 90 - 180 - 270)
R164	Altri ricettori	727	665160	4492080	4(0 - 90 - 180 - 270)
R165	Residenziale	307	665164	4492974	4(0 - 90 - 180 - 270)
R166	Residenziale	295	665166	4492953	4(0 - 90 - 180 - 270)
R167	Residenziale	295	665169	4492965	4(0 - 90 - 180 - 270)
R168	Altri ricettori	450	665274	4493237	4(0 - 90 - 180 - 270)
R169	Altri ricettori	384	665401	4492417	4(0 - 90 - 180 - 270)
R170	Altri ricettori	341	665630	4493088	4(0 - 90 - 180 - 270)
R171	Altri ricettori	339	665636	4493079	4(0 - 90 - 180 - 270)
R172	Altri ricettori	308	665646	4493032	4(0 - 90 - 180 - 270)

5		Distanza da	Coordin	nate UTM	Numero finestre e
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]	orientamento rispetto al Nord
R173	Altri ricettori	334	665650	4493061	4(0 - 90 - 180 - 270)
R174	Altri ricettori	308	665660	4493013	4(0 - 90 - 180 - 270)
R175	Altri ricettori	574	665697	4493329	4(0 - 90 - 180 - 270)
R176	Altri ricettori	592	665691	4493344	4(0 - 90 - 180 - 270)
R177	Altri ricettori	423	665703	4492475	4(0 - 90 - 180 - 270)
R178	Altri ricettori	569	665710	4493315	4(0 - 90 - 180 - 270)
R179	Altri ricettori	683	665799	4492232	4(0 - 90 - 180 - 270)
R180	Altri ricettori	633	665983	4493120	4(0 - 90 - 180 - 270)
R181	Altri ricettori	910	666103	4491074	4(0 - 90 - 180 - 270)
R182	Altri ricettori	697	666108	4492974	4(0 - 90 - 180 - 270)
R183	Altri ricettori	860	666167	4492366	4(0 - 90 - 180 - 270)
R184	Residenziale	844	666207	4492468	4(0 - 90 - 180 - 270)
R185	Residenziale	840	666207	4492488	4(0 - 90 - 180 - 270)
R186	Altri ricettori	907	666253	4493205	4(0 - 90 - 180 - 270)
R187	Residenziale	863	666257	4492563	4(0 - 90 - 180 - 270)
R188	Residenziale	944	666265	4492359	4(0 - 90 - 180 - 270)
R189	Altri ricettori	860	666279	4492963	4(0 - 90 - 180 - 270)
R190	Altri ricettori	855	666277	4492927	4(0 - 90 - 180 - 270)
R191	Altri ricettori	921	666291	4493141	4(0 - 90 - 180 - 270)
R192	Altri ricettori	869	666291	4492951	4(0 - 90 - 180 - 270)
R193	Altri ricettori	936	666308	4493162	4(0 - 90 - 180 - 270)
R194	Altri ricettori	920	666306	4493089	4(0 - 90 - 180 - 270)
R195	Altri ricettori	766	666319	4491807	4(0 - 90 - 180 - 270)
R196	Altri ricettori	915	666335	4492963	4(0 - 90 - 180 - 270)
R197	Residenziale	970	666362	4492487	4(0 - 90 - 180 - 270)
R198	Residenziale	641	666430	4490977	4(0 - 90 - 180 - 270)
R199	Altri ricettori	985	666410	4492934	4(0 - 90 - 180 - 270)
R200	Residenziale	988	666424	4492861	4(0 - 90 - 180 - 270)
R201	Altri ricettori	923	666562	4490549	4(0 - 90 - 180 - 270)

D '	-	Distanza da	Coordin	nate UTM	Numero finestre e
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]	orientamento rispetto al Nord
R202	Altri ricettori	707	666616	4492008	4(0 - 90 - 180 - 270)
R203	Residenziale	648	666632	4491970	4(0 - 90 - 180 - 270)
R204	Altri ricettori	582	666621	4491866	4(0 - 90 - 180 - 270)
R205	Altri ricettori	576	666648	4491880	4(0 - 90 - 180 - 270)
R206	Residenziale	610	666687	4491969	4(0 - 90 - 180 - 270)
R207	Altri ricettori	623	666993	4492020	4(0 - 90 - 180 - 270)
R208	Altri ricettori	598	667016	4490787	4(0 - 90 - 180 - 270)
R209	Altri ricettori	869	667024	4492840	4(0 - 90 - 180 - 270)
R210	Altri ricettori	638	667020	4492032	4(0 - 90 - 180 - 270)
R211	Residenziale	986	667029	4492391	4(0 - 90 - 180 - 270)
R212	Altri ricettori	511	667027	4491900	4(0 - 90 - 180 - 270)
R213	Altri ricettori	916	667069	4492486	4(0 - 90 - 180 - 270)
R214	Altri ricettori	828	667088	4492715	4(0 - 90 - 180 - 270)
R215	Altri ricettori	888	667104	4492479	4(0 - 90 - 180 - 270)
R216	Altri ricettori	520	667120	4491887	4(0 - 90 - 180 - 270)
R217	Altri ricettori	392	667142	4491744	4(0 - 90 - 180 - 270)
R218	Residenziale	300	667194	4491598	4(0 - 90 - 180 - 270)
R219	Altri ricettori	330	667208	4491621	4(0 - 90 - 180 - 270)
R220	Altri ricettori	538	667293	4491822	4(0 - 90 - 180 - 270)
R221	Altri ricettori	964	667304	4493615	4(0 - 90 - 180 - 270)
R222	Altri ricettori	552	667305	4491827	4(0 - 90 - 180 - 270)
R223	Altri ricettori	950	667319	4493609	4(0 - 90 - 180 - 270)
R224	Altri ricettori	621	667389	4491852	4(0 - 90 - 180 - 270)
R225	Altri ricettori	823	667388	4492218	4(0 - 90 - 180 - 270)
R226	Altri ricettori	698	667449	4492321	4(0 - 90 - 180 - 270)
R227	Altri ricettori	725	667454	4492290	4(0 - 90 - 180 - 270)
R228	Altri ricettori	763	667481	4491966	4(0 - 90 - 180 - 270)
R229	Altri ricettori	747	667479	4491939	4(0 - 90 - 180 - 270)
R230	Altri ricettori	775	667499	4491957	4(0 - 90 - 180 - 270)

D :	-	Distanza da	Coordin	nate UTM	Numero finestre e
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]	orientamento rispetto al Nord
R231	Altri ricettori	399	667507	4492874	4(0 - 90 - 180 - 270)
R232	Altri ricettori	714	667513	4491856	4(0 - 90 - 180 - 270)
R233	Altri ricettori	552	667538	4491368	4(0 - 90 - 180 - 270)
R234	Residenziale	581	667582	4492369	4(0 - 90 - 180 - 270)
R235	Residenziale	840	667596	4492068	4(0 - 90 - 180 - 270)
R236	Altri ricettori	516	667613	4492426	4(0 - 90 - 180 - 270)
R237	Altri ricettori	613	667619	4493403	4(0 - 90 - 180 - 270)
R238	Altri ricettori	776	667651	4491004	4(0 - 90 - 180 - 270)
R239	Residenziale	530	667665	4493335	4(0 - 90 - 180 - 270)
R240	Residenziale	821	667685	4492060	4(0 - 90 - 180 - 270)
R241	Altri ricettori	825	667677	4491815	4(0 - 90 - 180 - 270)
R242	Residenziale	769	667692	4492106	4(0 - 90 - 180 - 270)
R243	Altri ricettori	794	667720	4491117	4(0 - 90 - 180 - 270)
R244	Altri ricettori	759	667729	4491336	4(0 - 90 - 180 - 270)
R245	Altri ricettori	917	667752	4491871	4(0 - 90 - 180 - 270)
R246	Residenziale	731	667772	4492133	4(0 - 90 - 180 - 270)
R247	Altri ricettori	510	667805	4492358	4(0 - 90 - 180 - 270)
R248	Altri ricettori	187	667816	4493024	4(0 - 90 - 180 - 270)
R249	Altri ricettori	896	667846	4491190	4(0 - 90 - 180 - 270)
R250	Altri ricettori	495	667873	4493359	4(0 - 90 - 180 - 270)
R251	Residenziale	655	667889	4493527	4(0 - 90 - 180 - 270)
R252	Residenziale	351	667893	4492501	4(0 - 90 - 180 - 270)
R253	Altri ricettori	990	667903	4491744	4(0 - 90 - 180 - 270)
R254	Altri ricettori	350	667921	4493214	4(0 - 90 - 180 - 270)
R255	Residenziale	389	667946	4492461	4(0 - 90 - 180 - 270)
R256	Altri ricettori	982	667957	4491362	4(0 - 90 - 180 - 270)
R257	Altri ricettori	461	667979	4492400	4(0 - 90 - 180 - 270)
R258	Altri ricettori	799	668018	4493657	4(0 - 90 - 180 - 270)
R259	Residenziale	532	668065	4492346	4(0 - 90 - 180 - 270)

Studio Shadow Flickering

D '		Distanza da	Coordin	nate UTM	Numero finestre e
Ricettore Ti	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]	orientamento rispetto al Nord
R260	Altri ricettori	270	668163	4492971	4(0 - 90 - 180 - 270)
R261	Altri ricettori	449	668175	4493226	4(0 - 90 - 180 - 270)
R262	Altri ricettori	908	668207	4491993	4(0 - 90 - 180 - 270)
R263	Altri ricettori	519	668251	4493263	4(0 - 90 - 180 - 270)
R264	Altri ricettori	414	668291	4492684	4(0 - 90 - 180 - 270)
R265	Altri ricettori	679	668293	4492295	4(0 - 90 - 180 - 270)
R266	Altri ricettori	634	668371	4493315	4(0 - 90 - 180 - 270)
R267	Altri ricettori	571	668408	4492574	4(0 - 90 - 180 - 270)
R268	Altri ricettori	568	668484	4492889	4(0 - 90 - 180 - 270)
R269	Altri ricettori	632	668497	4492610	4(0 - 90 - 180 - 270)
R270	Altri ricettori	953	668497	4493616	4(0 - 90 - 180 - 270)
R271	Residenziale	727	668580	4492542	4(0 - 90 - 180 - 270)
R272	Residenziale	716	668619	4492688	4(0 - 90 - 180 - 270)
R273	Altri ricettori	781	668661	4492621	4(0 - 90 - 180 - 270)
R274	Altri ricettori	815	668692	4492611	4(0 - 90 - 180 - 270)
R275	Altri ricettori	901	668728	4492459	4(0 - 90 - 180 - 270)
R276	Altri ricettori	838	668753	4492902	4(0 - 90 - 180 - 270)
R277	Altri ricettori	843	668756	4492878	4(0 - 90 - 180 - 270)
R278	Altri ricettori	921	668841	4492963	4(0 - 90 - 180 - 270)
R279	Altri ricettori	997	668834	4493245	4(0 - 90 - 180 - 270)
R280	Residenziale	928	668844	4492947	4(0 - 90 - 180 - 270)