

GRE.EEC.R.27.IT.P.14456.00.052.00

PAGE

1 di/of 7

TITLE: AVAILABLE LANGUAGE: EN

IMPIANTO FOTOVOLTAICO FLOTTANTE PRESENZANO INFERIORE

Presenzano (CE) 42,678 MWdc – 35,640 MWac

Progetto definitivo per autorizzazione

RELAZIONE TECNICA DI COMPATIBILITA' ELETTROMAGNETICA NUOVO STALLO STAZIONE RTN 220 KV

File: GRE FEC R 27 IT P 14456 00 052 00 docx

								F	le: (JKE		C.R	27.	II .F	2.144	156.0	JU.U	52.0	u.a	ocx		
00	09/10/2023	Prima emissione									D.Stangalino				M,laquinta				D.Stangalino			
	00/10/2020																					
REV.	DATE	DESCRIPTION					v				PREPARED				VERIFIED				APPROVED			
	GRE VALIDATION																					
-						-						-										
COLLABORATORS						VERIFIED BY						VALIDATED BY										
PROJECT	/PLANT	GRE CODE																				
Presenzano Inferiore		GROUP	FUNCION	TYPE	ISS	UER	CC	DUNTRY	TEC			PLAN	PLANT		SYSTEM		PR	OGRES	RESSIVE RE		/ISION	
		GRE	EEC	R	2	7	I	Т	Р	1	4	4	5	6	0	0	0	5	2	0	0	
CLASSIFICATION						UTILIZATION SCOPE																

This document is property of Enel Green Power S.p.A. It is strictly forbidden to reproduce this document, in whole or in part, and to provide to others any related information without the previous written consent by Enel Green Power S.p.A.

GRE.EEC.R.27.IT.P.14456.00.052.00

PAGE

2 di/of 7

INDEX

1.	INTRO	DUZIONE	3
2.	NORMA	TIVA DI RIFERIMENTO	4
3.	CAMPI	MAGNETICI	4
	3.1.	Generalità	4
	3.2.	Campo magnetico prodotto dal nuovo stallo	5
4.	CAMPI	ELETTRICI	6
5.	CONSI	DERAZIONI SU POSSIBILE ESPOSIZIONE LAVORATORI (D.LGS 159/2016)	6
6.	CONCL	USIONI	7

GRE.EEC.R.27.IT.P.14456.00.052.00

PAGE

3 di/of 7

1. INTRODUZIONE

Il presente documento ha come scopo la valutazione dei campi elettromagnetici prodotti dalle apparecchiature elettriche del nuovo stallo utente che sarà realizzato all'interno della esistente stazione Terna a 220 kV, ubicata entro l'area della centrale idroelettrica di Presenzano (CE).

La valutazione del campo magnetico consiste nella determinazione della distanza di prima approssimazione (nel seguito indicata con Dpa) in accordo alle prescrizioni del DPCM del 8 luglio 2003.

Ai fini della protezione della popolazione dall'esposizione ai campi elettrici e magnetici alla frequenza di rete (50Hz) generati da linee e cabine elettriche, il DPCM 8 luglio 2003 (artt. 3 e 4) fissa, in conformità alla Legge 36/2001 (art. 4, c. 2):

- i limiti di esposizione del campo elettrico1 (5 kV/m) e del campo magnetico (100 μ T) come valori efficaci, per la protezione da possibili effetti a breve termine;
- il valore di attenzione (10 µT) e l'obiettivo di qualità (3 µT) del campo magnetico da intendersi come mediana nelle 24 ore in normali condizioni di esercizio, per la protezione da possibili effetti a lungo termine connessi all'esposizione nelle aree di gioco per l'infanzia, in ambienti abitativi, in ambienti scolastici e nei luoghi adibiti a permanenza non inferiore a 4 ore giornaliere (c.d. luoghi tutelati)

Le DPA si applicano nel caso di:

- realizzazione di nuovi elettrodotti (inclusi potenziamenti) in prossimità dei luoghi tutelati;
- progettazione di nuovi luoghi tutelati in prossimità di elettrodotti esistenti.

Il valore di attenzione si riferisce ai luoghi tutelati esistenti nei pressi di elettrodotti esistenti; l'obiettivo di qualità si riferisce, invece, alla progettazione di nuovi elettrodotti in prossimità di luoghi tutelati esistenti o alla progettazione di nuovi luoghi tutelati nei pressi di elettrodotti esistenti.

Il DPCM 8 luglio 2003, all'art. 6, in attuazione della Legge 36/01 (art. 4 c. 1 lettera h), introduce la metodologia di calcolo delle fasce di rispetto, definita nell'allegato al Decreto 29 maggio 2008 (Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto degli elettrodotti). Detta fascia comprende tutti i punti nei quali, in normali condizioni di esercizio, il valore di induzione magnetica può essere maggiore o uguale all'obiettivo di qualità.

La metodologia di calcolo per la determinazione delle fasce di rispetto degli elettrodotti prevede una procedura semplificata di valutazione con l'introduzione della Distanza di Prima Approssimazione (DPA), nel rispetto dell'obiettivo di qualità di $3~\mu T$ del campo magnetico.

Si precisa che buona parte delle opere, ossia tutte le opere di impianto, ad eccezione delle opere di connessione alla sottostazione esistente, rientrano all'interno della già recintata area pertinente l'impianto, pertanto non troverebbero applicazione le prescrizioni del DPCM 8 luglio 2003 (in quanto la centrale non è accessibile dalla popolazione, ma solo dagli operatori della centrale).

Tuttavia, è opportuno comunque verificare il calcolo delle DPA, ai fini di accertare che non vi siano rischi per gli operatori e che tali distanze non siano tali da

GRE.EEC.R.27.IT.P.14456.00.052.00

PAGE

4 di/of 7

interessare anche aree esterne alla centrale.

Si riportano inoltre le considerazioni in merito all'esposizione dei lavoratori che opereranno sull'impianto e la loro possibile esposizione, in applicazione al D. Lgs. 159/2016 (che ha modificato il D.Lgs 81/2008).

2. NORMATIVA DI RIFERIMENTO

Nella stesura della presente relazione tecnica, sono state seguite le prescrizioni indicate e applicabili al caso specifico dalle seguenti norme:

- ✓ Decreto Ministeriale del 21 marzo 1988 n. 449 "Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee elettriche aeree esterne".
- ✓ Legge Quadro n. 36 del 22/02/01 e relativo DPCM 08-07-2003 sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici.
- ✓ Decreto del Presidente del Consiglio dei Ministri 8 luglio 2003: Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti.
- ✓ Decreto Ministeriale 29 maggio 2008: Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti.
- ✓ Norma CEI 106-11: "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003".
- ✓ Guida CEI 211-4 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee e da stazioni elettriche".
- ✓ Guida CEI CLC/TR 50453 "Valutazione dei campi elettromagnetici attorno ai trasformatori di potenza".
- ✓ DLgs 81/2008 del 9/4/2008 "Testo unico sulla sicurezza".
- ✓ Norma CEI EN 61936-1, "Impianti elettrici con tensione superiore a 1 kV in c.a. Parte 1: Prescrizioni comuni".

3. CAMPI MAGNETICI

3.1. GENERALITÀ

L'intensità del campo magnetico prodotto dagli elettrodotti (sia linee in cavo che conduttori nudi aerei) e/o dalle apparecchiature elettriche installate nelle sottostazioni elettriche può essere calcolata con formule approssimate secondo i modelli bidimensionali indicati dal DPCM 8/7/2003 e dal DM 29/5/2008.

La Norma CEI 106-11 costituisce una guida per la determinazione della fascia di rispetto per gli elettrodotti in accordo al suddetto DPCM.

La fascia di rispetto comprende lo spazio circostante un elettrodotto, al di sopra e al di sotto del livello del suolo, dove l'induzione magnetica è uguale o maggiore dell'obiettivo di qualità.

Secondo la Legge 36/01 e il DPCM 8/7/03 allegato A l'obiettivo di qualità corrisponde al limite di 3 µT da rispettare nella costruzione dei nuovi elettrodotti.

Dalla proiezione al suolo della fascia di rispetto si ottiene la Dpa (distanza di prima approssimazione) misurata tra la proiezione al suolo del baricentro dei conduttori e la proiezione al suolo della fascia di rispetto.

GRE.EEC.R.27.IT.P.14456.00.052.00

PAGE

5 di/of 7

Infine si tenga presente che l'intensità del campo magnetico è funzione dell'intensità della corrente e della distanza tra i conduttori e diminuisce all'aumentare della distanza dal baricentro dei conduttori.

A favore della sicurezza per il calcolo della fascia di rispetto, il DM 29/5/2008 impone che si utilizzi la portata massima dell'elettrodotto e/o delle linee in cavo, e non la corrente di massimo impiego. La portata massima è definita in funzione delle caratteristiche costruttive delle apparecchiature e delle linee elettriche.

Si precisa, inoltre, che secondo quanto previsto dal Decreto 29 maggio 2008, la tutela in merito alle fasce di rispetto di cui all'art. 6 del DPCM 8 luglio 2003 si applica alle linee elettriche aeree ed interrate, esistenti ed in progetto ad esclusione di:

- linee esercite a frequenza diversa da quella di rete di 50 Hz (ad esempio linee di alimentazione dei mezzi di trasporto);
- linee di classe zero ai sensi del DM 21 marzo 1988, n. 449 (come le linee di telecomunicazione);
- linee di prima classe ai sensi del DM 21 marzo 1988, n. 449 (quali le linee di bassa tensione);
- linee di Media Tensione in cavo cordato ad elica (interrate o aeree);
- in quanto le relative fasce di rispetto hanno un'ampiezza ridotta, inferiore alle distanze previste dal DM 21 marzo 1988, n. 449 e s.m.i.

Pertanto, stando a quanto sopra precisato, la valutazione dei campi elettromagnetici si applicherà solo alle parti di alta e media tensione presenti in impianto, descritte nei paragrafi che seguono.

3.2. CAMPO MAGNETICO PRODOTTO DAL NUOVO STALLO

Lo stallo di nuova realizzazione è ubicato all'interno dell'area della stazione esistente, opportunamente recintata, con installazione in aria e apparecchiature fissate su appositi basamenti e strutture metalliche.

Per il calcolo della distanza di prima approssimazione è stata utilizzata la seguente formula:

Dpa = $0.34*\sqrt{P*I}$ [m]

Ove P = distanza tra le sbarre

I = corrente nominale delle sbarre

Considerando la disposizione delle apparecchiature (sbarre orizzontali con distanza di 3,2 m) e i valori nominali di dimensionamento (2000 A), si ottiene una fascia di rispetto e quindi una Dpa (distanza di prima approssimazione) di 27,2 m, oltre la quale l'induzione è inferiore ai 3 microtesla e quindi nei limiti di legge imposti dalla normativa nazionale (obiettivo di qualità del DPCM 8/7/03).

I 27,2 m vanno calcolati dal baricentro dei conduttori e quindi dalla fase centrale delle sbarre in aria.

La proiezione al suolo di tale fascia di rispetto determina la distanza di prima approssimazione Dpa che risulta essere quindi di 27,2 m.

GRE.EEC.R.27.IT.P.14456.00.052.00

PAGE

6 di/of 7

4. CAMPI ELETTRICI

Il campo elettrico prodotto dalle apparecchiature del nuovo stallo risulta inferiore al valore di 5 kV/m imposto dalla Norma.

5. CONSIDERAZIONI SU POSSIBILE ESPOSIZIONE LAVORATORI (D.LGS 159/2016)

Il Lgs. 159/2016 riguarda l'attuazione della direttiva 2013/35/UE sulle disposizioni minime di sicurezza e di salute relative all'esposizione dei lavoratori ai rischi derivanti dagli agenti fisici (campi elettro-magnetici) e che abroga la direttiva 2004/40/CE. In particolare, il decreto arreca modifiche ad alcuni articoli del D.Lgs 81/2008, che già prevedeva le disposizioni di salute e sicurezza dei lavoratori anche in relazione all'esposizione ai campi elettromagnetici.

Come stabilito dall'art. 206 del D.Lgs. 81/2008, cosi come modificato dal D.Lgs. 159/2016, il campo di applicazione è riferito alla determinazione dei "requisiti minimi per la protezione dei lavoratori contro i rischi per la salute e la sicurezza derivanti dall'esposizione ai campi elettromagnetici (da 0 Hz a 300 GHz), come definiti dall'articolo 207, durante il lavoro. Le disposizioni riguardano la protezione dai rischi per la salute e la sicurezza dei lavoratori dovuti agli effetti biofisici diretti e agli effetti indiretti noti provocati dai campi elettromagnetici."

Il decreto definisce tra gli altri parametri:

"Valori Limite di Esposizione (VLE), valori stabiliti sulla base di considerazioni biofisiche e biologiche, in particolare sulla base degli effetti diretti acuti e a breve termine scientificamente accertati, ossia gli effetti termici e la stimolazione elettrica dei tessuti";

"Valori di azione (VA)", livelli operativi stabiliti per semplificare il processo di dimostrazione della conformità ai pertinenti VLE e, ove appropriato, per prendere le opportune misure di protezione o prevenzione specificate" (n.d.a. sempre nel medesimo capo del D.Lqs.)

Come riportato all' Art. 208 (Valori Limite di esposizione e valori di azione):

- "1. Le grandezze fi siche relative all'esposizione ai campi elettromagnetici sono indicate nell'allegato XXXVI, parte I. I VLE relativi agli effetti sanitari, i VLE relativi agli effetti sensoriali e i VA sono riportati nell'allegato XXXVI, parti II e III.
- 2. Il datore di lavoro assicura che l'esposizione dei lavoratori ai campi elettromagnetici non superi i VLE relativi agli effetti sanitari e i VLE relativi agli effetti sensoriali, di cui all'allegato XXXVI, parte II per gli effetti non termici e di cui all'allegato XXXVI, parte III per gli effetti termici. Il rispetto dei VLE relativi agli effetti sanitari e dei VLE relativi agli effetti sensoriali deve essere dimostrato ricorrendo alle procedure di valutazione dell'esposizione di cui all'articolo 209. Qualora l'esposizione dei lavoratori ai campi elettromagnetici superi uno qualsiasi dei VLE, il datore di lavoro adotta misure immediate in conformità dell'articolo 210, comma 7. [...]"

L'articolo prosegue indicando le condizioni in cui si considera che i VLE sono rispettati e le condizioni in cui è possibile superare i valori di esposizione (adottando specifiche misure/condizioni operative).

GRE.EEC.R.27.IT.P.14456.00.052.00

PAGE

7 di/of 7

In ogni caso tutti i rischi per i lavoratori derivanti da campi elettromagnetici sul luogo di lavoro dovranno essere opportunamente valutati dal datore di lavoro nell'ambito della valutazione dei rischi di cui all'art.181 del D.Lgs. 81/2008, ed in caso si rendesse necessario il datore di lavoro dovrà provvedere alla misura o al calcolo dei livelli dei campi elettromagnetici a cui i lavoratori sono esposti, tenendo conto (come indicato nell'art. 209 del D.Lgs. 81/2008 e ss.mm.ii.) anche delle guide pratiche della Commissione europea, delle norme tecniche europee e di quelle del Comitato Elettrotecnico Italiano (CEI), nonché delle buone prasi individuate o emanate dalla Commissione consultiva permanente di cui all'art. 6 del D.Lgs.81/2008, delle informazioni reperibili presso le banche dati INAIL o delle Regioni.

In generale, sia per la fase di cantiere relativa alla costruzione dell'impianto, sia per la fase di esercizio e dunque per le operazioni di gestione, controllo e manutenzione dell'impianto e delle opere connesse, dovranno essere rispettati i disposti del D.Lgs. 81/2008 e ss.mm.ii. (pertato anche relativamente alle modifiche sull'esposizione ai campi elettromagnetici introdotte con il D.Lgs. 159/2016) ed i rischi di esposizione per i lavoratori, nonché le relative misure di prevenzione e protezione, dovranno essere attentamente valutate nell'ambito della valutazione dei rischi e riportati nel Documento di Valutazione dei Rischi (DVR) e nel Documento Unico di Valutazione dei Rischi Interferenziali (DUVRI).

Nello specifico si rileva che:

- L'organizzazione della Proponente tra le diverse attività svolte a tutela della salute e sicurezza dei lavoratori (Dipartimento HS&E) - effettua campagne di misure del campo elettromagnetico negli impianti più rappresentativi attualmente in esercizio;
- 2) Gli impianti (dai generatori alla SSE) non sono presidiati e perciò viene esclusa a priori la permanenza di personale durante l'esercizio per una durata >4h;
- 3) Le operazioni di manutenzione, soprattutto in SSE e lungo il cavidotto, riguardano componenti elettrici per i quali in caso di intervento viene disalimentata la corrente e quindi dette operazioni avvengono in assenza di campi elettromagnetici.

Sulla base delle misurazioni dei campi elettromagnetici in impianti che per struttura e condizioni operative sono paragonabili a quelli previsti dal Progetto e in virtù delle procedure operative/di manutenzione usualmente adottate dalla Proponente, è quindi fondatamente ipotizzabile che i livelli di esposizione dei lavoratori (e della popolazione) a campi elettromagnetici non superino i limiti di esposizione. In ogni caso la specifica valutazione dei rischi di esposizione inerente il Progetto dovrà essere effettuata nelle fasi successive e comunque prima dell'inizio lavori.

6. CONCLUSIONI

Trattandosi di una stazione esistente, la DPA e la fascia di rispetto del nuovo stallo ricadono all'interno della fascia di rispetto della stazione stessa.