LIAISON LYON - TURIN / COLLEGAMENTO TORINO - LIONE

Partie commune franco-italienne Section transfrontalière

Parte comune italo-francese Sezione transfrontaliera

NOUVELLE LIGNE LYON TURIN – NUOVA LINEA TORINO LIONE PARTIE COMMUNE FRANCO-ITALIENNE – PARTE COMUNE ITALO-FRANCESE

REVISION DE L'AVANT-PROJET DE REFERENCE – REVISIONE DEL PROGETTO DEFINITIVO CUP C11J05000030001

APPROFONDIMENTI PROGETTUALI

APPROFONDIMENTI PER OSSERVAZIONI REGIONE PIEMONTE Riscontro Osservazioni nn. 49, 50 e 51 (rif. lettera prot. n. CTVA-2014-0812 del 06/03/2014)

COMPLEMENTI DI GEOLOGIA ANALISI DEI RISCHI LITOLOGICI

Relazione di sintesi

Indice	Date/ Data	Modifications / Modifiche	Etabli par / Concepito da	Vérifié par / Controllato da	Autorisé par / Autorizzato da
0	23/05/2014	Première diffusion / Prima emissione	G. AIROLDI (SEA)	A. DEMATTEIS	L. CHANTRON
			G. MIKOLDI (BEN)	V. GRISOGLIO	C. OGNIBENE
A	10/06/2014	Révision suite aux commentaires LTF /	G. AIROLDI (SEA)	A. DEMATTEIS	L. CHANTRON
		Revisione a seguito commenti LTF	G. AIROLDI (SEA)	V. GRISOGLIO	C. OGNIBENE
A l	Dott, Ing. Carlo	Ont. Ing. France	onstruction sco Magnorfi	ANTONIO DEMATTEIS GEOLOGO * SEZ, A SE	
		\mathcal{N}		POFESSIONA	

CODE	P	D	2	C	3	В	Т	S	3	2	0	2	3	A
DOC	Phase / Fase		e	Sigle	e étude / S	Sigla	Émett		ittente		Nun	nero		Indice

A	P	N	N O T						
Statut	/ Stato	7	Гуре / Тір	0					

ADRESSE GED INDIRIZZO GED C3B	//	1/	00	06	94	10	01
-------------------------------	----	----	----	----	----	----	----

LTF sas – 1091 Avenue de la Boisse – BP 80631 – F-73006 CHAMBERY CEDEX (France)
Tél. : +33 (0)4.79.68.56.50 – Fax : +33 (0)4.79.68.56.75
RCS Chambéry 439 556 952 – TVA FR 03439556952
Propriété LTF Tous droits réservés – Proprietà LTF Tutti i diritti riservati

SOMMAIRE / INDICE

RESUME/RIASSUNTO	4
1. INTRODUZIONE	13
1.1 Quadro normativo	
2. DEFINIZIONE DELLE COMPONENTI DI RISCHIO	15
2.1 Sorgenti di pericolo	
2.2 Danno potenziale	
2.3 Relazioni tra la componente pericolosità e la componente danno por	
2.3.1 Approccio metodologico	
3. GESTIONE DEL RISCHIO AMIANTO	
3.1 Individuazione delle potenziali sorgenti di roccia contenente amiant 3.1.1 Caratterizzazione della possibilità di presenza di mineralizzazione	
negli ammassi rocciosi interessati dallo scavo	
3.2 Identificazione dei potenziali ricettori	
3.3 Scenario operativo per la gestione del materiale contenente mineral	i asbestiformi 20
3.3.1 Fase di scavo per il settore di Mompantero (primi 350-400 m c.a	. del Tunnel di
Base)	
3.3.2 Fasi di scavo del tratto del Tunnel di Interconnessione	22
3.3.3 Scavo meccanizzato	
3.3.4 Sistema di compartimentazione della galleria	
3.3.5 Limiti di concentrazione: soglie operative	25
4. GESTIONE DEL RISCHIO RADIOATTIVITÀ NATURALE E GAS RAI	DON 26
4.1 Gestione del rischio connesso all'attività degli isotopi naturali radio	
ammassi rocciosi	_
4.1.1 Caratterizzazione radiometrica dei materiali di scavo	28
4.1.1.1 Identificazione delle carote e degli intervalli di campionan	
4.1.1.2 Prelievo dei campioni	
4.1.1.3 Risultati delle analisi	
4.1.1.4 Confronto dei dati della campagna 2012 con i risultati de	
caratterizzazione radiometrica realizzata dal Politecnico di Torino	
4.1.1.5 Indice di attività (RP112) e Sum Index (RP122)	
4.1.1.6 Caratterizzazione della possibilità di rilevazione di a	
superiore ai tenori medi terrestri per gli isotopi naturali radioattivi	
4.1.2 Identificazione dei potenziali ricettori	
4.1.3.1 Presidi per la valutazione del livello di radioattività del m	
48	ateriale di scavo
4.1.3.2 Presidi per il rilevamento delle variazioni del livello	di radioattività
ambientali per l'ambiente esterno.	
4.1.3.3 Gestione del materiale di scavo avente indice di attività si	
dei documenti RP122 e RP112.	
4.2 Gestione del rischio radon	49
4.2.1 Riferimenti Normativi	
4.2.2 Valori delle concentrazioni di gas radon in ambienti civili per la	bassa Valle
Susa	51

Bureau d'études TSE3 – Gruppo di progetto TSE3 BG Ingénieurs Conseils – AMBERG – LOMBARDI – ARCADIS - TECNIMONT CIVIL CONSTRUCTION - STUDIO QUARANTA - SEA CONSULTING – ITALFERR – INEXIA - SYSTRA

4.2.3 Il contesto geologico della bassa Valle Susa in relazione al rischio radon	53
4.2.3.1 I dati del monitoraggio delle gallerie dell'impianto idroelettrico	di Pont
Ventoux 58	
4.2.3.2 Caratterizzazione della suscettibilità all'emissione di gas radon	lungo il
tracciato 62	
4.2.4 Identificazione dei potenziali ricettori	65
4.2.5 Misure di mitigazione del rischio radon	66
5. BIBLIOGRAFIA	67
ALLEGATO 1: CERTIFICATI DELLE PROVE DI LABORATORIO PER LA	
CARATTERIZZAZIONE RADIOMETRICA DEI MATERIALI	69

RESUME/RIASSUNTO

La présente étude a pour but de fournir le II presente elaborato ha la finalità di fornire il cadre pour la caractérisation et la gestion des risques pour la population et l'environnement liés aux thématiques spécifiques de géologique et de l'environnement en relation avec les travaux de construction des ouvrages de la Nouvelle ligne Turin - Lyon: Amiante; Radioactivité; Gaz Radon. Le document répond aux prescriptions de la résolution du CIPE du 3 Août 2011 nn.24, 96, 101, 103.

La caractérisation des risques pour la population et l'environnement en relation avec les sources de danger est défini sur la base du modèle conceptuel suivant: vérification de la distribution et magnitude de la source de danger, distribution des récepteurs définition de leur vulnérabilité par rapport aux effets de l'agent de danger (résumables dommage potentiel). comme

Amiante.

la base du modèle géologique de référence est creuser dans des roches contenant l'amiante comme suit:

quadro relativo alla caratterizzazione gestione dei rischi per la popolazione e l'ambiente riferiti a specifiche tematiche geologico ambientali in relazione ai lavori di realizzazione delle opere connesse alla Nuova Linea Torino – Lione: Amianto; Radioattività; Radon. L'elaborato recepisce le prescrizioni della Delibera CIPE del 3 agosto 2011 nn.24, 96, 101, 103.

Al fine di procedere ad una caratterizzazione del rischio per la popolazione e l'ambiente in riferimento alle sorgenti di pericolo poc'anzi elencate il modello concettuale seguito è il seguente: verifica della distribuzione e ella magnitudo della sorgente di pericolo; distribuzione dei ricettori e caratterizzazione della loro vulnerabilità agli effetti dell'agente di rischio (sintetizzabili nel termine danno potenziale).

Amianto.

En ce qui concerne le thème de l'amiante, sur In relazione al tema amianto, sulla base del modello geologico di riferimento è definita définie une caractérisation de la possibilité de una caratterizzazione della possibilità di scavo de in rocce contenenti amianto come segue:

Opera	Pk da	Pk a	Lunghezza (m)	Possibile presenza di mineralizzazioni di amianto
	61+080	60+688	392	alta
	60+688	60+599	89	bassa
	60+599	60+565	34	molto bassa
	60+565	60+294	271	bassa
	60+294	60+244	50	molto bassa
Tunnel di Base	60+244	57+409	2835	bassa
Tunnel di Base	57+409	57+344	65	molto bassa
	57+344	55+017	2327	bassa
	55+017	54+966	51	molto bassa
	54+966	54+924	42	bassa
	54+924	53+393	1531	molto bassa
	53+393	51+960	1433	bassa
Town of di	63+870	0+165	165	bassa
Tunnel di Interconnessione	0+165	1+732	1567	bassa
Three Connessione	1+732	1+740	8	molto bassa

Les PK et les longueurs indiquées sont indicatives.

Pk e lunghezze sono indicative.

En plus de la caractérisation des sources sont Oltre alla caratterizzazione delle sorgenti sono

ensuite définis les impacts potentiels sur les quindi definiti i potenziali impatti sui ricettori récepteurs identifiés. En cas d'excavation dans une roche contenant de l'amiante doivent être II modello seguito prevede che in caso di dans évalués les impacts potentiels l'environnement de travail souterrain, en absence de mesures préventives et / ou d'atténuation. Ces effets sont: (a) la dispersion des fibres dans l'atmosphère, (b) la dispersion des fibres libérées par le matériel excavé dans les circuits d'eau souterraine et (c) la présence d'amiante dans le matériel excavé. En outre. en absence de mesures préventives et / ou d'atténuation, les impacts identifiés ont des répercussions sur l'environnement: (a) la propagation des fibres dans l'air, (b) la matériel le présence d'amiante dans d'excavation qui peut être rejeté dans l'air ou dans le sol, (c) la propagation des fibres provenant des circuits de l'eau souterrain dans ceux de surface à partir des points de résurgence. Pour ces impacts sont évidents les possibles conséquences pour la population et pour la santé publique sont mises en évidence.

Afin de prévenir les impacts identifiés les procédures suivantes sont définies pour l'excavation en souterrain articulées fonction du niveau de probabilité et de l'ampleur de la source de danger.

Pour le secteur de Mompantero, le long des 350 à 400 m identifiées, il sera mis en place un système de compartimentation, qui, à partir du front d'excavation, isole trois secteurs opératifs caractérisés par différents niveaux de concentration en fibres : front d'excavation (concentration maximale), zone intermédiaire (aire de décontamination), zone distale (aire décontaminée). Le passage entre le différents secteurs est possible avec des systèmes de décontamination travailleurs, des des appareils et des matériaux. Le matériel d'excavation sera directement scellé dans des big-bags au front d'excavation, stocké en container et envoyé par chemin de fer aux décharges pour déchets dangereux vers l'Allemagne. La ventilation est assurée par un système d'aspiration au front, équipé avec un filtre absolu, pour éviter la dispersion de asbestiformes à l'extérieur, fibres

identificati.

scavo in rocce contenenti amianto debbano essere valutati i possibili impatti nell'ambiente di lavoro in sotterraneo, in assenza di misure preventive e/o mitigative. Questi impatti sono: (a) la dispersione di fibre in atmosfera, (b) la dispersione delle fibre liberate dal marino nei circuiti idrici sotterranei e (c) la presenza di marino contenente amianto. Sempre in assenza di misure preventive e/o mitigative, gli impatti individuati hanno delle ripercussioni per l'ambiente esterno: (a) propagazione di fibre aerodisperse, (b) presenza di cumuli di marino contenenti fibre asbestiformi che si possono liberare nell'aria o nel suolo, (c) propagazione delle fibre dai circuiti sotterranei a quelli superficiali a partire dai punti di risorgenza. Per questi ultimi impatti sono evidenti le possibili ricadute per la popolazione relativamente all'aspetto della salute pubblica.

Al fine di prevenire gli impatti individuati sono definite le procedure di scavo in sotterraneo articolate in funzione del livello di probabilità e magnitudo della sorgente di pericolo.

Per il settore di Mompantero, lungo i 350-400 m individuati, sarà allestito un sistema di compartimentazione, che, a partire dal fronte isola di scavo, tre settori operativi caratterizzati da differenti livelli concentrazione in fibre: fronte di scavo (massima concentrazione); zona intermedia (area di decontaminazione); zona distale (area decontaminata).

Il passaggio da un settore all'altro, procedendo dal fronte di scavo verso l'esterno, avviene attraverso un processo di decontaminazione del personale, dei mezzi e dei materiali. Questi ultimi inoltre sono direttamente sigillati in big-bags al fronte di scavo, stoccati in container e quindi inviati via treno in discarica rifiuti pericolosi per in La ventilazione è prevista in sola aspirazione dal fronte, con filtro assoluto per prevenire et l'aerodispersione di fibre asbestiformi

roche en conditions d'humidification du front. In des barrières de confinement et celle des systèmes de décontamination sont également traitée et filtrée. L'efficacité des mesures adoptés est vérifiée par le programme L'efficacia e l'intensità delle misure adottate è d'auscultation dans l'environnement de travail par le programme d'auscultation environnementales prévues pour l'environnement extérieur.

L'excavation du Tunnel d'Interconnexion sera réalisé méthode conventionnelle. Pour ce secteur sont prévues des mesures qui permettent l'activation immédiate des actions indiquées pour le secteur de Mompantero dans le cas où seraient trouvés des minéraux d'amiante dans les matériaux à excaver.

Pour les zones en excavation mécanisée, où la possibilité de trouver l'amiante est évaluée comme très faible, des contrôles par des forages au front d'excavation et des analyses des matériaux excavés sont prévus.

la première partie du Tunnel de Base, à partir du portail est et pour une longueur 350-400 m d'environ, en cas de découverte de roches contenant de l'amiante le long autre secteurs du tracé, ces matériaux seront envoyés dans des big-bags stockés en container à une décharge de déchets dangereux en Allemagne par train.

Radioactivité.

La caractérisation du tracé par rapport à la présence de minéraux radioactifs a été défini sur la base d'études menées au cours de l'APR2006, par le Politecnico di Torino, et sur la base des résultats des analyses sur échantillons de roche prélevés à partir des carottes des forages réalisées par LTF. En ce qui concerne le tracé du projet de la NLTL permis de caractériser l'étude micaschistes de Clarea (CL), les gneiss

l'excavation avec marteau est réalisé au brise- all'esterno, e lo scavo, con martellone, avviene condizioni di bagnatura del fronte. L'eau utilisé pour ces travaux, ainsi que celle Le acque di lavorazione, delle barriere di confinamento dei processi e decontaminazione sono trattate e filtrate anch'esse

> verificata dal piano di monitoraggio in ambiente di lavoro e dal piano di monitoraggio ambientale previsto per l'ambiente esterno.

> Per il Tunnel di Interconnessione lo scavo avverrà in tradizionale. Per questo settore sono previste misure che permettano l'immediata attivazione dei presidi indicati per il settore di Mompantero nel caso siano rinvenute porzioni dell'ammasso scavato con minerali di amianto (rilevamento al fronte, monitoraggio aerodisperse, eventuali analisi fibre marino).

> Per i settori di scavo meccanizzato, dove la possibilità di rinvenimento di materiali contenenti amianto è valutata come remota, sono comunque previsti controlli con sondaggi in avanzamento e analisi sul marino.

Comme pour les matériaux creusés le long de II marino scavato lungo il primo tratto del Tunnel di Base, a partire dall'imbocco est e per una lunghezza di 400 m circa sarà, come detto, inviato in big-bags omologati stoccati in container presso una discarica per rifiuti pericolosi in Germania via treno. Lo stesso procedimento sarà seguito in caso di rinvenimento di rocce con amianto lungo altre porzioni del tracciato.

Radioattività.

La caratterizzazione del tracciato in relazione alla presenza di minerali radioattivi è stata definita in base agli studi condotti nella fase di APR2006, dal Politecnico di Torino, e ai risultati delle analisi del presente studio su campioni di roccia prelevate dalle carote dei sondaggi eseguiti da LTF. In relazione allo sviluppo del tracciato del progetto della NLTL les lo studio ha permesso la caratterizzazione dei micascisti di Clarea (CL), degli gneiss aplitici aplitiques (AMC) et albitiques du complexe (AMC) e albitci del complesso di Ambin, degli d'Ambin, les schistes carbonatiques phylliteux scisti carbonatici filladici (GCC) e degli gneiss

la Zone Piémontaise e de la Zone à Ecaille.

Pour chaque échantillon a été déterminée l'activité spécifique des isotopes naturels suivantes: ²³⁸U, ²³²Th et ⁴⁰K. Les valeurs mesurées par la présente étude et ceux indagini del presente studio déterminés par le Politecnico di Torino ont été utilisés pour le calcul de l'index d'activité, qui évalue l'aptitude à l'utilisation des déblais comme matériaux de construction, et l'index SI, qui évalue l'importance radiologique des déblais. L'activité spécifique des isotopes naturelles analysés est comparable valeurs moyennes de la croûte terrestre et de nombreux autres matériaux de construction. Pour tous les échantillons analysés le SI est <1; aucun échantillon montre importance radiologique. Les valeurs de l'index d'activité sont inférieurs à 1 (comme demandé par la RP112 de référence) pour 94 échantillons sur 95 analysés (50 dans la présente étude et 45 pour l'étude du Politecnico di Torino). Le seul dépassement des limites concerne échantillon de gneiss aplitiques du Complexe d'Ambin caractérisé par un indice d'activité légèrement supérieur à 1 (valeur calculée 1,3).

Sur la base des résultats obtenus le tracé a été caractérisé en termes de possibilité traverser des zones avec des minéralisations radioactives.

(CCG) et les gneiss de Charbonnel (GCK) de di Charbonnel (GCK) della Zona Piemontese e della Zona a Scaglie.

> Per ciascun campione è stata determinata l'attività specifica dei seguenti isotopi naturali: ²³⁸U, ²³²Th e ⁴⁰K. I valori rilevati con le determinati dal Politecnico di Torino sono stati utilizzati per il calcolo dell'indice di attività, che valuta l'idoneità del marino come materiale da costruzione, e del Sum Index, che valuta la rilevanza radiologica del materiale di scavo. L'attività specifica degli isotopi analizzati è confrontabile con i valori medi rilevati per la crosta terrestre e per molti materiali da costruzione. Per tutti i campioni analizzati il Sum Index risulta essere <1; nessuno dei campioni presenta caratteristiche di rilevanza radiologica. I valori dell'indice di attività risultano inferiori a 1 (come richiesto dalla RP112 di riferimento) per 94 campioni su 95 analizzati (50 per il presente studio e 45 per lo studio del Politecnico). L'unico superamento è verificato per una campione relativo agli gneiss aplitici del Complesso di Ambin caratterizzato da un indice di attività di poco superiore a 1 (valore calcolate 1,3).

> Sulla base dei risultati acquisiti il tracciato è stato caratterizzato in termini di possibilità di attraversamento di settori con mineralizzazioni radioattive.

Settore	Pk da	Pk a	Lunghezza (m)	Possibilità (attività specifica > att. spec. media crosta terrestre)
	44+120	53+400	12200	Bassa
Tunnel di Base	53+400	54+830	1430	Media
	54+830	61+080	6248	Bassa
Piana di Susa*	61+080	63+870	2790	Molto bassa
T1 1' T4'	63+870	0+035	165	Bassa
Tunnel di Interconnessione	0+035	1+900	1865	Bassa

^{*} per la Piana di Susa non sono previste opere in sotterraneo.

En plus de la caractérisation des sources sont Oltre alla caratterizzazione delle sorgenti sono récepteurs identifiés. Le modèle indique que identificati. dans le cas des travaux d'excavation dans des II modello seguito prevede che in caso di

ensuite définis les impacts potentiels sur les quindi definiti i potenziali impatti sui ricettori

roches contenant des minéraux radioactifs scavo in rocce contenenti minerali radioattivi doivent être évalués les possibles effets dans debbano essere valutati i possibili impatti l'environnement de travail, en l'absence de nell'ambiente di lavoro in sotterraneo, in mesures préventives et / ou d'atténuation. Ces assenza di misure preventive e/o mitigative.

poussières radioactives dans l'atmosphère, (b) la dispersion de la poussière radioactive libérée par les matériaux d'excavation dans les circuits d'eau souterraine et (c) la présence des matériaux d'excavation caractérisés par un niveau élevé de radioactivité. En outre, en l'absence de mesures préventives et / ou d'atténuation, les impacts identifiés peuvent avoir des répercussions sur l'environnement: (a) la propagation de la poussière radioactives du lieu de travail vers l'extérieur, (b) la présence des tas de déblais contenant des matériaux radioactifs, qui peuvent générer des poussières rejetés dans l'air ou dans le sol, (c) propagation des poussières radioactives provenant des circuits de l'eau souterrain vers résurgence. Pour ces impacts les possibles conséquences sont mises en évidence pour la ces relations ont été définies des mesures de prévention pour la propagation de la poussière radiologiquement matériaux importants, par conséquent pour l'exposition de la population.

taux de radioactivité dans l'environnement de l'excavation, dans les matériaux d'excavation et dans les matrices affectés. En particulier pour l'atmosphère il sera fait référence à la surveillance de la radioactivité des poussières totales en suspension associées à la présence presenza dei cumuli di deposito. des tas de déblais.

Dans le cas où les auscultations signaleraient In des niveaux de radioactivité supérieurs aux limites définies par la loi, ou d'activité spécifique telles à déterminer des valeurs de l'index SI> 1 ou de l'index d'activité> 1, les dispositions suivantes seront appliquées: activation des barrières d'eau afin de prévenir la propagation de la poussière qui pourrait être radioactive; les matériaux d'excavation seront scellés et transférés vers la décharge suivant les procédures prévus pour la sécurité travailleurs et de la population. des

Gaz radon.

impacts sont les suivants: (a) la dispersion des Questi impatti sono: (a) la dispersione di polveri radioattive in atmosfera, (b) la dispersione delle polveri radioattive liberate dal marino nei circuiti idrici sotterranei e (c) la presenza di marino caratterizzato da un livello di radioattività significativo. Sempre in assenza di misure preventive e/o mitigative, gli impatti individuati hanno delle ripercussioni per l'ambiente esterno: (a) propagazione delle polveri radioattive dagli ambienti di lavoro a quello esterno, (b) presenza di cumuli di marino costituito da materiale radioattivo, da cui si generano polveri che si possono liberare nell'aria o nel propagazione suolo, (c) delle radioattive dai circuiti sotterranei a quelli superficiali a partire dai punti di risorgenza. ceux de surface à partir des points de Per questi ultimi impatti sono evidenti le possibili ricadute per la popolazione relativamente all'aspetto della salute pubblica. population et la santé publique. Sur la base de Sulla base di queste relazioni sono definite le misure di prevenzione della dispersione di polveri e materiali eventualmente risultati radiologicamente rilevanti, auindi dell'esposizione della popolazione.

Les mesures à adopter sont la surveillance des Le misure che saranno adottate sono riferite al monitoraggio dei livelli di radioattività in ambiente di scavo, sul marino e sulle matrici impattate. In particolare per l'atmosfera si farà riferimento al monitoraggio della radioattività delle polveri totali sospese associate alla

> presenza di rilevazioni relative monitoraggio che segnalino il riscontro di livelli radioattività superiore ai limiti di legge o di attività specifica tali da determinare valori del Sum Index >1 o dell'indice di attività >1. si opererà come segue: confinamento del fronte mediante barriere ad acqua al fine di dispersione prevenire la di eventualmente radioattive; il materiale di scavo sarà essere opportunamente sigillato al fronte e trasferito in discarica secondo le modalità di gestione previste per la sicurezza dei lavoratori e della popolazione.

Radon.

En même temps que l'analyse de l'activité spécifique des radio-isotopes naturellement présents dans les échantillons analysés dans la présente étude, il a été mesuré aussi le taux d'émission de gaz radon, afin d'évaluer la propension directe des matériaux à l'émission du radon. Les résultats obtenus pour 50 échantillons analysés indiquent que le taux d'émission de gaz radon des échantillons est comparable à celui observé pour de nombreux matériaux communément utilisés pour la construction et comme pierre ornementale. Les données du suivi du radon pendant les travaux de construction de la centrale hydroélectrique de Pont-Ventoux indiquent une corrélation entre les concentrations en galerie de gaz radon et la présence de zones fracturées et / ou importantes venues d'eau. Sur la base des informations acquises et du modèle hydrogéologique défini pour les travaux souterrains, le tracé a été caractérisé en termes de susceptibilité à l'émission de gaz radon

Unitamente alle analisi dell'attività specifica dei radioisotopi naturali presenti nei campioni analizzati nel corso del presente studio, è stato misurato il rateo di emissione di gas radon, al fine di valutare la propensione diretta dei materiali all'emissione di radon. I risultati acquisiti per i 50 campioni analizzati indicano che il rateo di emissione di gas radon dei campioni è confrontabile con quello rilevato per molti materiali comunemente impiegati per la costruzione e come pietra ornamentale. I dati del monitoraggio del gas radon nel corso dei lavori di realizzazione dell'impianto idroelettrico di Pont-Ventoux indicano una possibile correlazione tra la formazione in galleria di concentrazioni significative di gas radon e la presenza di discontinuità e/o venute cospicue di acqua. In base alle informazioni acquisite ed al modello idrogeologico definito per le opere in sotterraneo, il tracciato in progetto è stato caratterizzato in termini di suscettibilità all'emissione di gas radon.

Settore	Pk da	Pk a	Lunghezza (m)	Suscettibilità Emissione Radon (SER)
	41+120	41+520	400	Media
	41+520	44+070	2550	Bassa
	44+070	44+120	50	Media
	44+120	47+100	2980	Bassa
	47+100	50+100	3000	Alta
	50+100	51+200	1100	Alta
	51+200	52+040	840	Media
T 1 1' D	52+040	53+550	1510	Bassa
Tunnel di Base	53+550	54+950	1400	Bassa
	54+950	56+300	1350	Alta
	56+300	57+100	800	Media
	57+100	57+760	660	Bassa
	57+760	57+820	60	Media
	57+820	60+580	2760	Bassa
	60+580	60+620	40	Alta
	60+620	61+080	460	Bassa
Piana di Susa*	61+080	63+870	2790	Molto bassa
T	63+870	0+240	370	Bassa
Tunnel di Interconnessione	0+240	1+900	1900	Media

^{*} per la Piana di Susa non sono previste opere in sotterraneo.

En plus de la caractérisation des sources ont été ensuite définis les impacts potentiels sur les récepteurs identifiés. Le modèle indique que dans le cas des travaux d'excavation dans les roches ou secteurs où sont possibles phénomènes d'accumulation de gaz radon doivent être évalués les possibles effets dans l'environnement de travail, en absence de mesures préventives et / ou d'atténuation doivent être évalués.

Ces effets sont: (a) la dispersion du gaz dans le tunnel, (b) la dispersion du gaz radon dans les circuits d'eau souterraine et (c) la présence de matériaux d'excavation potentiellement émissifs. En outre, en l'absence de mesures préventives et / ou d'atténuation, les impacts répercussions identifiés ont des l'environnement: (a) la propagation du gaz à partir de la galerie vers l'environnement externe, (b) la présence de matériaux d'excavation potentiellement émissifs, (c) la propagation de gaz à partir des circuits souterrains vers l'atmosphère à partir des points de reprise, (d) l'exposition de la population aux eaux de source enrichies en gaz radon dissous.

Pour ces impacts les possibles conséquences pour la population et la santé publique sont mises évidence. Sur la base de ces relations sont définies les mesures pour la prévention des phénomènes de dispersion de gaz radon.

En plus de la mesure des concentrations de radon dans les galeries et de la caractérisation radiométrique du matériel d'excavation, qui constituent la première garantie pour la détection rapide des sources potentielles de gaz radon, dans l'environnement de travail, la formation d'accumulations de gaz radon est empêché par la présence d'un système de ventilation adapté. Des mesures spécifiques contenues dans le Programme d'Auscultation environnemental) du projet sont également prévues. Elles consistent au suivi des composantes environnementales suivantes:

Oltre alla caratterizzazione delle sorgenti sono quindi definiti i potenziali impatti sui ricettori identificati.

Il modello seguito prevede che in caso di scavo in rocce o settori suscettibili di determinare significative emissioni di gas radon debbano essere valutati i possibili impatti nell'ambiente di lavoro in sotterraneo, in assenza di misure preventive e/o mitigative.

Questi impatti sono: (a) la dispersione del gas in galleria, (b) la dispersione del gas radon nei circuiti idrici sotterranei e (c) la presenza di marino potenzialmente Sempre in assenza di misure preventive e/o mitigative, gli impatti individuati hanno delle ripercussioni per l'ambiente esterno: (a) propagazione del gas dalla galleria all'ambiente esterno, (b) presenza di cumuli di potenzialmente marino emissivi, propagazione del gas dai circuiti sotterranei in atmosfera a partire dai punti di risorgenza, (d) esposizione della popolazione ad acque di sorgente arricchite in gas radon disciolto.

Per questi ultimi impatti sono evidenti le possibili ricadute per la popolazione relativamente all'aspetto della salute pubblica. Sulla base di queste relazioni sono definite le misure di prevenzione delle dispersioni di gas radon dell'esposizione e quindi della popolazione.

Oltre alla misurazione delle concentrazioni di radon in galleria e alla caratterizzazione radiometrica del marino, che costituiscono il primo presidio per il tempestivo rilevamento di potenziali sorgenti di gas radon, in ambiente di lavoro, la formazione di accumuli di gas radon è prevenuta dalla presenza di un corretto sistema di ventilazione. Α questo si accompagnano le specifiche previste dal Piano di Monitoraggio de l'environnement du EIE (Étude d'impact Ambientale del SIA (Studio di Impatto ambientale) del progetto che prevede il monitoraggio delle seguenti matrici ambientali:

- eaux superficielles et eaux souterraines par rapport aux teneurs en uranium, en radio et en radon dissous, afin de permettre la détection d'une augmentation des concentrations qui pourrait avoir des conséquences négatives pour la population et les écosystèmes locaux;
- les concentrations de radon dans l'atmosphère dans les zones les plus proches aux chantiers.
- acque superficiali e acque sotterranee in relazione ai tenori in Uranio, Radio e Radon disciolti al fine di permettere l'individuazione di incrementi di concentrazione che potrebbero avere conseguenze negative sulla popolazione e gli ecosistemi locali;
- concentrazioni di radon in atmosfera nelle aree più prossime ai cantieri.

AVVERTENZA: In rosso sono riportate le modifiche apportate al documento consegnato in fase di progettazione definitiva (PD2_C3B_TS3_0083_"Relazione di sintesi" relativamente all'analisi dei rischi litologici), adottate per rispondere alle osservazioni n. 49 e 51 della Regione Piemonte (rif. lettera prot. n. CTVA-2014-0812 del 06/03/2014):

- Oss. 49. Per la caratterizzazione del marino, per la classificazione dei rifiuti e la valutazione del fondo naturale dei siti di deposito, tenuto conto del rischio sanitario correlato alla presenza di amianto, la ricerca di tale parametro deve essere effettuata sui campione tal quale, opportunamente trattato per la successiva determinazione analitica.
- **Oss. 50**. Le "Analisi dei materiali di scavo e valorizzazione" dovranno essere modificate ed integrate secondo le seguenti indicazioni:
- a) C13a: deve essere prevista la gestione del rischio sanitario correlato alla presenza di amianto anche se in concentrazione inferiore a 1000 mg/kg.
- b) C13b: la classificazione dei rifiuti di tale c1asse e riferita alla quantità totale contenuta nella matrice. Dal momento che la pezzatura del materiale estratto "influenza significativamente la qualità e la rappresentatività del campionamento" (cfr. UN110802p. 12), l'applicazione della procedura analitica indicata nel DM 161/12, che prevede la setacciatura in campo a 2 cm, comporta una sottostima della concentrazione di amianto. Tenuto conto del rischio sanitario correlate, la ricerca di tale parametro deve essere effettuata sui campione tal quale, opportunamente trattato per la successiva determinazione analitica.
- Oss. 51. I documenti relativi a "Analisi dei rischi litologici" e "Gestione del materiale contenente amianto" é necessario che siano modificati ed integrati secondo le seguenti indicazioni:
- a) le procedure di attivazione dei "presidi operativi" (compartimentazione dell'area, sistema di ventilazione etc.) nel caso in cui siano intercettate pietre verdi, senza assumere la concentrazione di 1000 mg/Kg di amianto come riferimento; devono essere modificate prevedendo l'ispezione del fronte di scavo da parte di un geologo, il campionamento e l'analisi devono essere eseguiti al fine di determinare la presenza o l'assenza di amianto.
- b) la procedura descritta al paragrafo 3.3.3 dell' Analisi dei rischi litologici, che prevede la "quantificazione della concentrazione in amianto da eseguire in cantiere attraverso la comparazione del campione prelevato con concentrazioni standard (da predisporre e/o stabiliti e/o condividere con le autorità e agenzie ambientali competenti, preventivamente all'avvio delle scavo"), non può essere applicata perchè priva di fondamento scientifico;
- c) devono essere dettagliate modalità e frequenze dei "presidi di controllo" per entrambe le tecniche di scavo (campionamento sui fronte di avanzamento, del marino e analisi dei sondaggi).

Le parti modificate nel testo si trovano paragrafi del capitolo 3 più sotto.

1. Introduzione

Il rapporto ha la finalità di fornire il quadro relativo alla caratterizzazione e gestione dei rischi per la popolazione e l'ambiente riferiti a specifiche tematiche geologico ambientali in relazione ai lavori di realizzazione delle opere connesse alla Nuova Linea Torino - Lione.

Il presente documento viene redatto al fine di affrontare le seguenti problematiche:

- 1) Amianto;
- 2) Radioattività e Radon;

La redazione del presente elaborato è definita in base ai contenuti della Delibera CIPE del 03/08/2011 ed in particolare in riferimento alle seguenti prescrizioni, di cui si riporta il contenuto pertinente ai fini della stesura della relazione:

N.	Contenuto	Paragrafo
		recepimento
24	 Radioattività: effettuare, con riferimento al Decreto Legislativo n. 230/1995 e successive modifiche (Capo III-bis), prima e durante le operazioni di scavo, un monitoraggio sulla radioattività derivante dalla presenza di radionuclidi naturali e in particolare dalla presenza di radon sia all'interno che all'esterno delle gallerie in costruzione indicando: i livelli di riferimento o di azione, in termini di dosi efficaci, che si intendono adottare per la popolazione e per i lavoratori (oltre ad un livello in termini di concentrazione di attività in aria, 400 Bq m3); l'effettuazione di misure integrate di concentrazione di attività di radon in aria per un congruo periodo di tempo (mesi) anche con rivelatori di tipo passivo, utilizzando anche metodologie di misura mediante tecniche di spettrometria gamma (per la verifica della presenza di sostanze radioattive naturali) e inserendo nell'elenco dei radionuclidi da determinare oltre ai radionuclidi naturali anche i principali radionuclidi artificiali. 	Par. 4.1.3
96	Rischio amianto : qualora vengano superati i valori di preallarme/allarme previsti dal DM 06/9/94, all'interno delle aree di cantiere e/o nel caso in cui venga superato il valore di 1 f/l all'esterno delle aree di cantiere, o negli ambienti di vita, dovranno essere interrotte le autorità lavorative.	Par. 3.3.6
101	Rischio amianto: in relazione alla fase operativa di scavo e di deposito marino si richiede di: - applicare procedure di lavoro idonee alla tutela di lavoratori ed ambiente, quando è prevista la presenza di amianto; - produrre procedure adeguatamente descritte e documentate, anche mediante elaborati grafici; - non utilizzare esplosivi per scavare in presenza di rocce amiantifere.	Par. 3.3
103	Radioattività ambientale e radon: nell'ambito di applicazione per l'avvio delle procedure di gestione del materiale di scavo quale "radioattivo" tenere conto oltre che dei riferimenti normativi nazionali, in termini di concentrazione media e di attività totale del singolo radionuclide, anche dei riferimenti internazionali sulla base dei livelli di allontanamento previsti dal documento "Radiation Protection n. 122" della Commissione Europea.	Par. 4.1.1.5

1.1 Quadro normativo

Il quadro normativo di riferimento del presente elaborato è il seguente:

- D. Lgs. 152/2006 e s.m.i;
- DM Ambiente 10 agosto 2012 n. 161 "Regolamento recante la disciplina

dell'utilizzazione delle terre e rocce da scavo";

- Legge 27 marzo 1992, N.257 "Norme relative alla cessazione dell'impiego dell'amianto";
- Decreto Ministeriale 96 settembre 1994 "Normative e metodologie tecniche di applicazione dell'art. 6, comma 3, e dell'art. 12, comma 2, della legge 27 marzo 1992, n. 257, relativa alla cessazione dell'impiego dell'amianto";
- Titolo IX Capo III del Decreto Legislativo 9 aprile 2008, n. 81 e s.m.i. "Protezione dai rischi connessi all'esposizione all'amianto";
- D. Lgs. n. 230/1995 "Attuazione delle direttive 89/618/Euratom, 90/641/Euratom, 92/3/Euratom e 96/29/Euratom in materia di radiazioni ionizzanti" e s.m.i.;
- Radiation Protection n. 112 Commissione Europea;
- Radiation Protection n. 122 (Part II) Commissione Europea.

2. Definizione delle componenti di rischio

La definizione qualitativa delle tipologie di situazioni di rischio per la popolazione e l'ambiente in relazione alle tematiche affrontate risulta essere funzione dei seguenti elementi:

- distribuzione e tenore della sorgente di pericolo;
- distribuzione dei ricettori e caratterizzazione della loro vulnerabilità agli effetti dell'agente di rischio (sintetizzabili nel termine danno potenziale).

2.1 Sorgenti di pericolo

In prima analisi possono essere distinte due tipologie di sorgenti di pericolo:

- sorgenti primarie di pericolo;
- sorgenti secondarie del pericolo.

Con il termine di *sorgente primaria* di pericolo ci si riferisce al caso in cui l'elemento di pericolosità risulti direttamente associato ad una fonte primaria di emissioni, ossia a particolari condizioni degli ammassi rocciosi, riferibili a specifiche condizioni mineralogiche o strutturali. È questo il caso della presenza di mineralizzazioni asbestiformi o uranifere, che, tenuto conto del contesto geologico locale, risultano circoscritte, se presenti, a determinate porzioni dell'ammasso roccioso. Il conseguente livello di rischio varia in funzione del grado di interferenza diretta dell'azione progettuale con la sorgente emissiva. In generale, nel caso in cui non sia prevista la manipolazione diretta delle sorgenti di pericolo primario, la probabilità di interazione con un potenziale ricettore risulta trascurabile.

Con il termine di *sorgente secondaria* ci si riferisce invece a sorgenti di pericolo la cui presenza è dipendente da una fonte di emissione primaria e da un particolare contesto di trasporto. È questo il caso legato alle emissioni di gas radon, la cui esistenza e tenore sono funzione dei seguenti parametri:

- presenza e concentrazione di minerali radioattivi negli ammassi rocciosi;
- tipologia dei mezzi (aria, acqua) di diffusione;
- geometria dei circuiti preferenziali di diffusione (fratture dell'ammasso, faglie, cavità carsiche, porosità dei terreni).

In questi casi, nell'ambito della gestione del rischio, l'esposizione alle sorgenti di pericolo non è più esclusiva funzione della localizzazione della sorgente primaria, ma è anche funzione dell'ubicazione dei punti di emissione connessi ai circuiti di diffusione. La riduzione e/o annullamento del rischio non sono possibili con la sola assenza di interferenza tra l'azione progettuale e la sorgente di pericolo primario, ma deve essere perseguita mediante l'adozione di opportune modalità operative.

2.2 Danno potenziale

Il danno potenziale è definito sulla base della presenza di ricettori che possono subire effetti nocivi in conseguenza all'esposizione a determinati agenti di pericolo.

Rientrano in questa definizione gli effetti sulla salute umana e sugli ecosistemi, connessi alla presenza di fibre asbestiformi in atmosfera, alla generazione di radiazioni conseguenti al decadimento di minerali radioattivi e alla presenza di gas radon.

La suscettibilità agli effetti nocivi da parte del ricettore è funzione di differenti aspetti: tipologia e concentrazione della sorgente di pericolo, modalità di esposizione, tempo di esposizione, condizioni pregresse del ricettore, etc.

2.3 Relazioni tra la componente pericolosità e la componente danno potenziale

La relazione tra la sorgente di pericolo e i ricettori, e quindi il conseguente danno potenziale, è definita dalla modalità/mezzo di trasporto.

$SORGENTE \rightarrow TRASPORTO \rightarrow RICETTORE$

Questo elemento è funzione della caratteristiche proprie della sorgente di pericolo, del contesto ambientale al contorno e delle modalità operative delle differenti azioni di progetto.

In particolare, specifiche azioni progettuali possono determinare una modificazione dello stato attuale delle matrici ambientali entro cui si collocano le differenti sorgenti, tale da attivare o variare l'intensità della connessione tra sorgente e ricettore.

In ultima analisi è da tenere in conto l'insieme di lavorazioni (scavo, macinazione, deposito di materiali) che possono trasformare un ammasso roccioso in una sorgente di pericolo (es. scavo in "pietre verdi" con liberazione di fibre asbestiformi altrimenti non mobilizzabili).

2.3.1 Approccio metodologico

Nel presente rapporto viene condotta un'analisi finalizzata alla caratterizzazione delle sorgenti di pericolo in relazione alle tematiche affrontate: amianto, radioattività e radon.

Per ciascuna di esse viene definito il quadro della componente geologico-strutturale individuando le potenziali sorgenti di pericolo.

Sulla base delle lavorazioni in progetto e delle modalità di gestione del marino sono quindi individuati i potenziali ricettori.

In base alle possibili relazioni individuabili tra sorgente di pericolo e potenziali ricettori vengono quindi definiti gli scenari di rischio. Per questi ultimi sono proposte le linee di riferimento operativo finalizzate alla gestione/mitigazione/prevenzione del rischio per la popolazione e per l'ambiente.

3. Gestione del rischio amianto

Per una trattazione di maggior dettaglio della tematica si rimanda alla relazione specifica PD2C3BTS32012 "Gestione del materiale contenente amianto". Di seguito viene proposta una sintesi con indicazione della modalità operativa scelta per la gestione del rischio specifico.

3.1 Individuazione delle potenziali sorgenti di roccia contenente amianto

Procedendo da est verso ovest, la realizzazione del Tunnel di Base si sviluppa attraverso rocce della Zona Piemontese, della Zona a Scaglie e del Massiccio di Ambin. Il Tunnel di Interconnessione prevede invece lo scavo in rocce dell'Unità Dora Maira.

Relativamente alla valutazione del rischio amianto, il settore di maggiore criticità individuato è localizzato in prossimità della zona di imbocco est del Tunnel di Base. Il sito è caratterizzato dalla presenza di una scaglia di ofioliti riferibile all'Unità dei Calcescisti con Pietre Verdi (Zona Piemontese), costituita essenzialmente da prasiniti e serpentiniti. Dal punto di vista litologico l'ammasso roccioso è costituito da prasiniti e scisti prasinitici a grana fine, dal colore verde, composte principalmente da anfibolo, clorite, epidoto e plagioclasio albitico e da serpentiniti generalmente massicce a grana medio - fine costituite principalmente da serpentino e clorite. Le rocce di questo settore sono talora coinvolte in zone di taglio fragile – duttile in cui è stata segnalata la presenza di vene con anfibolo a tessitura fibrosa. Le analisi petrografiche hanno evidenziato la presenza di minerali d'amianto asbestiformi: le maggiori concentrazioni di minerali asbestiformi sono localizzate lungo le principali zone di taglio.

In particolare nel settore di Mompantero le specie mineralogiche amiantifere sono principalmente costituite da tremolite, actinolite e crisotilo. Sono stati riconosciuti due principali settori, a monte dell'abitato di Mompantero, dove si possono trovare mineralizzazioni asbestiformi concentrate sia massive che lungo zone di taglio duttile-fragile entro le sequenze ofiolitiche:

- affioramenti di ofioliti presenti lungo strada che porta alle frazioni Bianco e Braida ove nelle rocce dell'unità oceanica, l'anfibolo amiantifero è relativamente ubiquitario; esso è stato individuato all'interno delle rocce basiche, degli scisti attinolitici, mineralizzato in plaghe e vene, anche tardive, sia nelle rocce basiche che ultrabasiche. In particolare le rocce basiche esterne alle zone di taglio contengono anfibolo della serie tremolite attinolite con caratteristiche morfologiche limite tra una specie asbestiforme e una non asbestiforme. In questi casi sono state definite come contenenti amianto tutte quelle rocce in cui è possibile la formazione di fibre amiantifere, nel caso in cui la roccia sia sottoposta a stress meccanici (macinazione, abrasione, fasi di scavo);
- affioramenti di serpentiniti e serpentinoscisti a monte della località Seghino, tra le frazioni Cugno e Giandula, dove il crisotilo si trova esclusivamente nelle rocce ultrabasiche, sia associato al serpentino non fibroso e in particolare nei serpentinoscisti, sia come riempimento di vene mineralizzate. Va sottolineato come fibre di crisotilo siano state rinvenute, anche se in quantità estremamente basse, anche all'interno delle serpentiniti ad antigorite, più massicce e in genere preservate dalle zone di taglio.

Sulla base dell'assetto geologico locale e della configurazione del tracciato in progetto, lo scavo dei primi 400 m circa del Tunnel di Base, dall'imbocco est (piana di Susa), interesserà le rocce ofiolitiche della Zona Piemontese (OMB) (Figura 1).

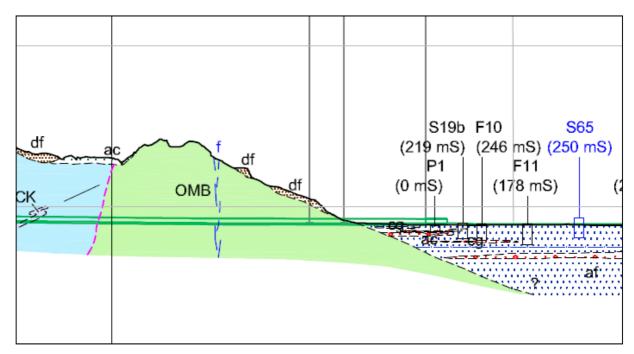


Figura 1 – Stralcio del profilo geologico in asse Tunnel di Base nella zona dell'imbocco est del Tunnel di Base (rif. PD2C3BTS30006).

Le analisi condotte dal Politecnico di Torino (Patrucco, et al., 2005) indicano, per le rocce confrontabili con quelle che saranno oggetto di scavo nel settore di Mompantero, concentrazioni di amianto comprese tra 1 mg/kg e 401.105 mg/kg. Le analisi hanno individuato la presenza di amianto in 12 campioni, sui 33 esaminati.

Per il resto del tracciato in progetto il modello geologico prevede, per alcuni dei litotipi attraversati, la possibilità di rilevare rocce con concentrazioni in amianto elevate in una percentuale stimata pari allo 0,05% del volume di roccia scavata. Per i calcescisti e gli gneiss di Charbonnel della Zona Piemontese e per i Micascisti quarzosi del Complesso di Clarea non è stata rilevata la presenza di amianto. In riferimento a quest'ultima formazione, per le metabasiti (Cl-b) intercalate nei micascisti di Clarea, la presenza di amianto è stata rilevata in concentrazioni comprese tra 12 mg/kg e 22 mg/kg (Patrucco, et al., 2005).

Di seguito sono elencati i litotipi per i quali è valida la previsione proposta:

- le rocce provenienti da zone di faglia (dove le condizioni tettoniche possono portare alla formazione di mineralizzazioni amiantifere) (Perello & Venturini, 2006);
- gli scisti carbonatici filladici (Tunnel di Base) (GCC);
- le cataclasiti carbonatiche del Tunnel di Base (BCC);
- depositi alluvionali e di conoide alluvionale del fondovalle Cenischia (af e ac);
- i calcemicascisti (TCS) e i paragneiss listati (TPG) lungo la Galleria d'Interconnessione.

3.1.1 Caratterizzazione della possibilità di presenza di mineralizzazione asbestiformi negli ammassi rocciosi interessati dallo scavo

Sulla base dei dati acquisiti circa la natura dei litotipi e della loro composizione mineralogica, nella tabella seguente è riportata la caratterizzazione del tracciato in sotterraneo in funzione della probabilità di attraversamento di ammassi rocciosi con mineralizzazioni asbestiformi.

Opera	Pk da	Pk a	Lunghezza (m)	Possibile presenza di mineralizzazioni di amianto
	61+080	60+688	392	alta
	60+688	60+599	89	bassa
	60+599	60+565	34	molto bassa
	60+565	60+294	271	bassa
	60+294	60+244	50	molto bassa
T	60+244	57+409	2835	bassa
Tunnel di Base	57+409	57+344	65	molto bassa
	57+344	55+017	2327	bassa
	55+017	54+966	51	molto bassa
	54+966	54+924	42	bassa
	54+924	53+393	1531	molto bassa
	53+393	51+960	1433	bassa
T1 42	63+870	0+165	165	bassa
Tunnel di	0+165	1+732	1567	bassa
Interconnessione	1+732	1+740	8	molto bassa

Tabella 1 – Possibile presenza di mineralizzazioni asbestiformi per le differenti tratte del tracciato in progetto.

3.2 Identificazione dei potenziali ricettori

In fase di scavo all'eventuale attraversamento di rocce contenenti minerali di amianto si associa la possibilità di dispersione di fibre che possono interessare le seguenti matrici ambientali:

- atmosfera
- suolo
- ambiente idrico
- salute pubblica

In questo senso il modello concettuale seguito è così articolato secondo lo schema seguente.

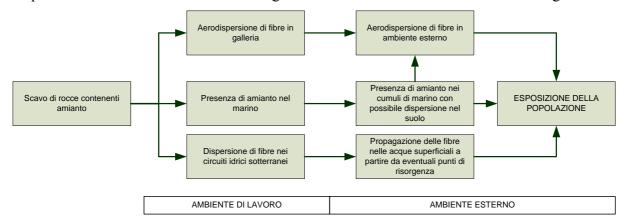


Figura 2 – Modello concettuale seguito per la definizione delle relazioni tra sorgenti e ricettori.

Il modello seguito prevede che in caso di scavo in rocce contenenti amianto debbano essere valutati i possibili impatti nell'ambiente di lavoro in sotterraneo, in assenza di misure preventive e/o mitigative. Questi impatti sono: (a) la dispersione di fibre in atmosfera, (b) la dispersione delle fibre liberate dal marino nei circuiti idrici sotterranei e (c) la presenza di marino contenente amianto. Sempre in assenza di misure preventive e/o mitigative, gli impatti individuati hanno delle ripercussioni per l'ambiente esterno: (a) propagazione di fibre

aerodisperse, (b) presenza di cumuli di marino contenenti fibre asbestiformi che si possono liberare nell'aria o nel suolo, (c) propagazione delle fibre dai circuiti sotterranei a quelli superficiali a partire dai punti di risorgenza. Per questi ultimi impatti sono evidenti le possibili ricadute per la popolazione relativamente all'aspetto della salute pubblica.

Sulla base di queste relazioni sono definite nei paragrafi seguenti le misure di prevenzione delle dispersioni di fibre e quindi dell'esposizione della popolazione.

3.3 Scenario operativo per la gestione del materiale contenente minerali asbestiformi

Con riferimento al modello concettuale esposto nel paragrafo precedente, l'elemento primario di azione coincide con la corretta definizione delle modalità di scavo degli ammassi rocciosi attraversati, in funzione della caratterizzazione del tracciato relativamente alla possibilità i attraversamento di rocce contenenti amianto. La corretta scelta della modalità di scavo è volta al perseguimento dei seguenti obiettivi:

- 1) prevenzione della dispersione di fibre in ambiente di lavoro e quindi nell'ambiente esterno;
- 2) prevenzione della dispersione di fibre nei circuiti idrici sotterranei;
- 3) attivazione delle corrette procedure di gestione del marino.

Il materiale di scavo è gestito in funzione di una procedura di verifica e controllo dell'ammasso roccioso incontrato. La corretta implementazione delle tecniche di scavo previste e delle modalità di gestione del marino sono assicurate dal piano di utilizzo dei materiali di scavo, che prevede in fase di avanzamento, il controllo sistematico della composizione mineralogica del marino, così da determinare la presenza e/o l'assenza di amianto e eventualmente individuare tempestivamente concentrazioni in amianto pericolose. In ambiente sotterraneo, si aggiunge anche il monitoraggio della concentrazione di fibre aerodisperse in galleria. In ambiente esterno, il Piano di Monitoraggio ambientale prevede il monitoraggio della concentrazione di fibre di amianto in atmosfera e nelle acque sotterranee (piano di monitoraggio ambientale, rif. PD2C3C2060), permettendo la tempestiva rilevazione di eventuali situazioni anomale.

Sulla base della caratterizzazione del tracciato è previsto uno scenario riferito al tratto di 350-400 m circa di lunghezza dall'imbocco est del Tunnel di Base (settore Mompantero) lungo cui i dati ricavati dalle analisi condotte indicano, per diverse porzioni dell'ammasso roccioso, concentrazioni in amianto in quantità superiori ai limiti di legge. Considerata l'ubiquità di queste porzioni lungo la tratta di scavo, per l'intera parte del tracciato è prevista l'attivazione dello scenario di scavo più conservativo di quelli che saranno illustrati.

Lungo il resto del tracciato in sotterraneo, il modello seguito prevede la possibilità di incontrare litotipi contenenti amianto in tenori elevati in una percentuale stimata pari allo 0,05% del volume di roccia scavata. Tale valore, proprio di un approccio funzionale ai fini di gestione dell'eventuale rischio, è riferito alle intere tratte per le quali è previsto l'attraversamento delle litologie che possono potenzialmente presentare intercalazioni di rocce contenenti amianto. A livello operativo, la presenza, l'ubicazione e la geometria di eventuali corpi rocciosi amiantiferi devono essere valutate nel corso dell'avanzamento dello scavo; per questa ragione è definita una procedura che ne permetta il tempestivo riconoscimento e la determinazione del contenuto in amianto totale, così da poter attivare le misure previste dalla normativa in tema di tutela della salute e dell'ambiente. In particolare le procedure per questo secondo scenario devono essere definite in funzione della tecnica di scavo: tradizionale

(galleria di Interconnessione) o scavo meccanizzato con TBM (Tunnel di Base esclusi i primi 350-400 m c.a. dall'Imbocco Est).

3.3.1 Fase di scavo per il settore di Mompantero (primi 350-400 m c.a. del Tunnel di Base)

In riferimento alla fase progettuale corrente ed alle metodologie di gestione previste dalla normativa lo scenario operativo individuato per la gestione del materiale di scavo contenente minerali asbestiformi prevede la sigillatura del marino al fronte in contenitori in *big-bags* rinforzati ed il suo conferimento, via treno, in discarica per rifiuti pericolosi.

Lo scavo di questa sezione del Tunnel di Base è preceduto dalla realizzazione di una galleria artificiale in calcestruzzo, che permette l'isolamento del punto di attacco dall'ambiente esterno e l'attivazione del sistema di compartimentazione descritto nel seguito del paragrafo. Lo scavo prevede la seguente configurazione operativa:

- scavo con martellone;
- attivazione scavo in condizioni umide;
- sistema di recupero e depurazione dell'acqua al fronte di scavo con filtri assoluti per il suo riutilizzo per la bagnatura del fronte stesso;
- ispezione continua e sistematica al fronte di scavo da parte di un geologo per la valutazione della tipologia di litotipi scavati;
- ispezione del materiale scavato e campionamento (ogni 5000 m³ di marino, o a ogni passaggio litologico) e prelievo di campioni da inviare a laboratorio per analisi (secondo le modalità indicate nella norma UNI10802 e nell'All. 8 del D.Lgs. 161 del 21/09/2012);
- sistema di ventilazione in aspirazione con filtri assoluti posti a monte dell'emissione; tale sistema determina una depressurizzazione del fronte che richiama esclusivamente aria dall'esterno per la ventilazione della galleria;
- compartimentazione dell'area di scavo tramite barriere dinamiche e statiche secondo il seguente schema:
 - o area contaminata (coincidente con il fronte di scavo) dove il materiale viene sigillato nei *big-bags*; all'interno di questa area i contenitori e i materiali meccanici utilizzati per le operazioni di scavo sono decontaminati mediante sistemi a docce;
 - o area di decontaminazione (intermedia) in cui i contenitori sono trattati in modo tale da diminuire il tasso di contaminazione fino alla decontaminazione totale;
 - area decontaminata (camerone di stoccaggio preliminare dei contenitori); in quest'area la superficie esterna dei contenitori è decontaminata ed è predisposta il sistema di trasferimento al sito di carico su treno per il trasporto al sito definitivo;
- getto di calcestruzzo a ricoprimento del fronte;
- messa in opera del rivestimento provvisorio in corrispondenza della zona di decontaminazione;
- monitoraggio dell'aria e dell'acqua.

Il conferimento del materiale di scavo contenente minerali asbestiformi comporta le seguenti operazioni:

- ispezione al fronte di scavo da parte di un geologo per la valutazione della tipologia dei litotipi scavati e identificazione dei campioni da inviare a laboratorio per analisi: le analisi devono fornire il contenuto in amianto totale;
- chiusura al fronte di scavo del materiale di risulta in apposti contenitori sigillati e idonei al trasporto di materiale in breccia;
- decontaminazione dei contenitori sigillati mediante lavaggio delle superfici esterne per l'eliminazione di qualsiasi traccia di fanghi o altro materiale che possa successivamente generare polveri in atmosfera. La decontaminazione deve avvenire all'apposita area dedicata alla decontaminazione all'interno delle gallerie;
- trasferimento dei contenitori decontaminati verso l'ambiente esterno su automezzi anch'essi decontaminati;
- carico dei contenitori decontaminati in appositi container posti nell'area di cantiere dell'imbocco;
- trasferimento dei container con automezzi pesanti presso l'area di carico e posizionamento dei container su apposti convogli ferroviari per il trasporto merci;
- invio e conferimento finale in discarica per rifiuti pericolosi del materiale via treno seguendo le procedure previste per la spedizione transfrontaliera di rifiuti.

3.3.2 Fasi di scavo del tratto del Tunnel di Interconnessione

Per il Tunnel di Interconnessione si procederà come segue:

- scavo in tradizionale in condizioni umide;
- sistema di recupero e depurazione dell'acqua al fronte di scavo con filtri assoluti per il suo riutilizzo per la bagnatura del fronte stesso;
- ispezione continua e sistematica del fronte di scavo da parte di un geologo, per la valutazione della tipologia di litotipi scavati e la verifica sulla presenza/assenza di mineralizzazioni asbestiformi;
- sondaggi in avanzamento a distruzione per prevenire la dispersione di eventuali fibre di amianto; i sondaggi dovranno essere sovrapposti tra loro per avere una copertura totale su tutta la lunghezza della tratta in scavo;
- ispezione del materiale scavato e dei *cutting* di ogni sondaggio, ogni 5000 m³ di marino (o a ogni passaggio litologico) e prelievo di campioni da inviare a laboratorio per analisi (secondo le modalità indicate nella norma UNI10802 e nell'All. 8 del D.Lgs. 161 del 21/09/2012).

Se determinata la presenza di amianto si procederà con:

- l'esecuzione di sondaggi orizzontali a recupero di nucleo dal fronte di scavo;
- prelievo di campioni lapidei ed eventualmente di fibre dal fronte e dalle carote dei sondaggi in avanzamento;
- preparazione delle sezioni per l'analisi ottica e morfologica al microscopio tramite frantumazione/macinazione che si eseguirà direttamente in cantiere nel laboratorio predisposto.

Lo scavo sarà accompagnato dalla presenza dei seguenti presidi operativi:

- predisposizione di un sistema di ventilazione in aspirazione con filtri assoluti posti a monte dell'emissione; tale sistema determina una depressurizzazione del fronte che richiama esclusivamente aria dall'esterno per la ventilazione della galleria;
- disponibilità di un sistema di compartimentazione della galleria scavata con carro attrezzato con barriere ad acqua nebulizzata e locali per la decontaminazione del personale e dei mezzi; tale carro si sposterà in avanti durante lo scavo così da determinare, in caso di scavo di rocce amiantifere, l'allungamento della zona decontaminata alle spalle del fronte di scavo e mantenendo la zona contaminata limitatamente al settore più prossimo al fronte;
- possibilità di messa in opera del rivestimento provvisorio in corrispondenza della zona di decontaminazione.

Nel caso in cui le analisi in avanzamento indichino la presenza di amianto in tenori elevati si procederà come segue:

- scavo con martellone;
- attivazione scavo in condizioni umide;
- attivazione del sistema di compartimentazione dell'area di scavo tramite barriere dinamiche e statiche secondo il seguente schema:
 - o area contaminata (coincidente con il fronte di scavo) dove il materiale viene sigillato nei *big-bags*; all'interno di questa area i contenitori e i materiali meccanici utilizzati per le operazioni di scavo sono decontaminati mediante sistemi a docce;
 - o area di decontaminazione (intermedia) in cui i contenitori sono trattati in modo tale da diminuire il tasso di contaminazione fino alla decontaminazione totale:
 - o area decontaminata (camerone di stoccaggio preliminare dei contenitori); in quest'area la superficie esterna dei contenitori è decontaminata ed è predisposta il sistema di trasferimento al sito di carico su treno per il trasporto al sito definitivo;
- la compartimentazione avviene tramite i carri mobili che si spostano in prossimità del fronte:
- attivazione del sistema di ventilazione con filtri assoluti in sola aspirazione;
- getto di calcestruzzo a ricoprimento del fronte;
- messa in opera del rivestimento provvisorio in corrispondenza della zona di decontaminazione;
- monitoraggio dell'aria e dell'acqua;
- la gestione del materiale di scavo avverrà in modo analogo come descritto per il settore di Mompantero. Il materiale di risulta sarà sigillato al fronte in contenitori di calcestruzzo che una volta decontaminati (tramite lavaggio in sistemi a doccia) saranno trasferiti all'esterno per invio in container via treno a discarica per rifiuti pericolosi in Germania.

3.3.3 Scavo meccanizzato

Sebbene i dati relativi al modello geologico di riferimento indichino per i tratti scavati con TBM una probabilità di rinvenimento di rocce contenenti minerali asbestiformi da nulla a bassa, nel corso dell'avanzamento dello scavo saranno attivati i seguenti presidi di controllo:

- esecuzione di sondaggi in avanzamento in corrispondenza di tratti caratterizzati da condizioni mineralogiche o strutturali predisponenti la formazione di mineralizzazioni di amianto (es. in presenza di porzioni particolarmente fratturate dell'ammasso roccioso o di discontinuità come faglie, master joint ecc.) con esecuzione di analisi come descritto al paragrafo precedente;
- monitoraggio del marino con campionamento del materiale di risulta e analisi di laboratorio nel corso dello scavo, lungo tratti le cui condizioni strutturali e litologiche possono indicare la presenza di condizioni favorevoli alla presenza di mineralizzazioni fibrose, comunque coerentemente con quanto previsto dal piano di utilizzo del materiale di scavo;
- monitoraggio della concentrazione delle fibre amiantifere aerodisperse.

3.3.4 Sistema di compartimentazione della galleria

Al fine di prevenire la dispersione accidentale di fibre in atmosfera, lo scavo in roccia amiantifera sarà organizzato prevedendo la compartimentazione della galleria in settori a livelli di concentrazione di fibre differenti:

- Zona A: presenza accertata d'amianto (fronte di scavo)
- Zona B: zona di decontaminazione (settore intermedio tra il fronte di scavo)
- Zona C: zona decontaminata (area più distale dal fronte di scavo)

La progressiva diminuzione del livello di concentrazione di fibre in amianto aerodisperse è attuata mediante la compartimentazione dei settori con l'allestimento di barriere ad acqua per isolare i settori caratterizzati da un tasso più elevato di fibre in amianto da quelli posti in posizione più arretrata dal fronte di scavo. Il passaggio di mezzi, materiali e personale da un settore all'altro prevede un processo di decontaminazione che permette di giungere in uscita con un livello di contaminazione nullo. Al fine di garantire questa situazione l'efficacia del sistema di compartimentazione è verificato mediante il monitoraggio delle fibre aerodisperse lungo la galleria e all'imbocco dei tunnel.

Il sistema di ventilazione è strutturato al fine di creare una condizione di depressione al fronte (sistema in sola aspirazione) così da generare un flusso di aria diretto verso l'interno della galleria e mai verso l'esterno. L'apparato di ventilazione è completato da un sistema di filtri assoluti volto a prevenire l'aerodispersione di fibre in ambiente esterno. Il monitoraggio delle fibre aerodisperse menzionato pocanzi avrà lo scopo di verificare l'efficacia del sistema, così da permettere l'immediata attuazione di misure correttive in caso di anomalie.

Il processo di trasporto del marino verso i convogli diretti alla discarica per rifiuti pericolosi è garantito in primo luogo dalla modalità di sigillatura dei materiali di scavo. Questi sono sigillati al fronte in *big-bags* rinforzati, i quali a loro volta sono trasportati all'esterno previa decontaminazione tramite lavaggio. I *big-bags* sono quindi inseriti in container chiusi e trasferiti sui treni merci.

La gestione delle acque di lavorazione, dei sistemi di confinamento e dei sistemi di decontaminazione avviene mediante l'allestimento di un sistema chiuso, che permette il riutilizzo dell'acqua previa depurazione dal carico solido. La presenza di un sistema di filtraggio a farine fossili permette la rimozione delle fibre di amianto.

3.3.5 Limiti di concentrazione: soglie operative

La verifica della concentrazione di fibre di amianto in ambiente esterno (tramite microscopia elettronica in SEM) prevede che nel caso di superamento del valore di 1 f/l vengano immediatamente sospese le attività lavorative. A tale sospensione sarà avviata la procedura di verifica delle modalità operative per individuare le cause che hanno determinato il superamento della soglia di riferimento, così da poter approntare le opportune misure correttive atte a ripristinare le condizioni di lavoro compatibili con la soglia di sicurezza definita.

4. Gestione del rischio radioattività naturale e gas radon

4.1 Gestione del rischio connesso all'attività degli isotopi naturali radioattivi negli ammassi rocciosi

Gli isotopi ²³⁸U, ²³²Th, ⁴⁰K sono presenti in tutte le rocce e sedimenti presenti nella crosta terrestre (De Capitani, et al., 2007) con differenti concentrazioni e rappresentano la maggiore fonte di irradiazione per gli esseri viventi, insieme con la radiazione cosmica a la radiazione associata ai radionuclidi cosmogenici (Trotti, 2007; Harb, et al., 2008). La presenza di questi radioisotopi (definiti anche nuclidi primordiali) è connessa alla formazione della Terra stessa ed è differente in funzione della natura dei litotipi: essa varia in funzione dei processi di formazione degli ammassi rocciosi o dei depositi considerati. I materiali contenenti questi radioisotopi terrestri sono indicati con il termine NORM (*naturally occurring radioactive material*).

Dati bibliografici forniscono valori di concentrazione per i suoli e le rocce della crosta terrestre di questi isotopi: essa è spesso espressa in termini di attività specifica, cioè il numero di disintegrazioni al secondo per unità di massa, misurata in Bq/kg (becquerel al chilogrammo). A titolo di esempio, per gli isotopi considerati in questo studio, l'attività specifica media nella crosta terrestre è pari a 33 Bq/kg per l'²³⁸U e a 34 Bq/kg per il ²³²Th (Righi, et al., 2000). Per il ⁴⁰K dati di letteratura indicano un'attività specifica media per i suoli di 400 Bq/kg (UNSCEAR, 2000) e per gli ammassi rocciosi pari a 850 Bq/kg (Hunter-Smith, 2012). Le attività specifiche medie riportate derivano dal calcolo effettuato su un elevato numero di misurazioni eseguite su campioni prelevati in differenti parti del mondo. Il campo completo di variazione dei valori rilevati è pertanto ampio (UNSCEAR, 2000), come dimostrano i valori riportati in **Tabella 2**. In generale il tenore in ²³⁸U, ²³²Th, ⁴⁰K mostra variazioni correlabili alla natura dei litotipi con livelli più elevati nelle rocce di natura magmatica e orto derivati (es. orto-gneiss) (Anjos, et al., 2005; De Capitani, et al., 2007) e livelli minori per le rocce di natura sedimentaria (Malczewski & Zaba, 2012; Tositti, 2007).

Con riferimento specifico alla Valle Susa sono segnalate mineralizzazioni uranifere in due aree (Gattiglio & Sacchi, 2006):

- un settore in prossimità di loc. Molaretto (comune di Venaus), a valle della SS25 del Moncenisio:
- un settore lungo le pendici meridionali del Monte Segueret (in alta Valle Susa), esterno all'area di studio.

Le mineralizzazioni rilevate in corrispondenza del primo settore sono rinvenute all'interno di livelli di quarziti micacee riferibili al complesso gneissico permo-carbonifero degli scisti di Ambin. La mineralizzazione rinvenuta è costituita da *plecblenda* ed è racchiusa in un livello con spessore massimo pari a 20 cm.

Dati petrografici relativi ad alcuni campioni di roccia appartenente ad elementi di origine intrusiva (metagraniti del Dora Maira e dell'Ambin) (Compagnoni, et al., 2003) indicano tenori di uranio e torio in linea, o inferiori, con i tenori medi riferibili alla crosta terrestre (Gattiglio & Sacchi, 2006).

Nel presente capitolo saranno riportati e discussi i risultati della campagna di analisi del 2012, consistita tra l'altro nella caratterizzazione radiometrica dei campioni prelevati dalle carote dei sondaggi eseguiti da LTF nel corso degli ultimi anni per la progettazione della NLTL. I risultati di questa campagna saranno quindi confrontati con i risultati delle campagne di indagine pregresse condotte dal Politecnico di Torino (Patrucco, et al., 2005) al fine di

giungere ad una caratterizzazione del rischio connesso alla presenza di isotopi radioattivi negli ammassi rocciosi nei quali saranno realizzate le opere in sotterraneo della NLTL.

	Donulation	Concentration in soil (Bq kg ⁻¹)							
Region / country	Population in 1996		^{40}K	2	^{38}U	220	Ra	252	?Th
	(10°)	Mean	Range	Mean	Range	Mean	Range	Mean	Range
Africa									
Algeria	28.78	370	66-1150	30	2-110	50	5-180	25	2-140
Egypt	63.27	320	29-650	37	6-120	17	5-64	18	2-96
North America Costa Rica	3.50	140	6-380	46	11-130	46	11-130	11	1-42
United States [M7]	269.4	370	100-700	35	4-140	40	8-160	35	4-130
C 4 4 .									
South America Argentina	35.22	650	540-750						
1 2 5 4 1 1 1 1	55.22	050	310 730						
East Asia	120.1	250	120 (10			2.4	21 12		
Bangladesh	120.1	350	130-610	22	2 (00	34	21-43	41	1 200
China [P16, Z5]	1232	440	9-1800	33 84	2-690	32 59	2-440	41 95	1-360
- Hong Kong SAR [W12]	6.19	530	80-1100	29	25-130	29	20-110		16-200
India	944.6	400	38-760		7-81		7-81	64	14-16
Japan [M5]	125.4	310	15-990	29	2-59	33	6-98	28	2-88
Kazakstan	16.82	300	100-1 200	37	12-120	35	12-120	60	10-22
Korea, Rep. of	45.31	670	17-1 500		40.00		20.04	0.2	
Malaysia	20.58 58.70	310	170-430	66	49-86	67	38-94	82	63-110 7-120
Thailand	38.70	230	7-712	114	3-370	48	11-78	51	7-120
West Asia								. 250	
Armenia	3.64	360	310-420	46	20-78	51	32-77	30	29-60
Iran (Islamic Rep. of)	69.98	640	250-980			28	8-55	22	5-42
Syrian Arab Republic	14.57	270	87-780	23	10-64	20	13-32	20	10-32
North Europe									
Denmark [N5]	5.24	460	240-610			17	9-29	19	8-30
Estonia	1.47	510	140-1 120			35	6-310	27	5-59
Lithuania	3.73	600	350-850	16	3-30	33	0 510	25	9-46
Norway	4.35	850	230 030	50	5 50	50		45	7 40
Sweden	8.82	780	560-1150	50		42	12-170	42	14-94
W									
West Europe	10.16	200	70 000			26		25	
Belgium	10.16	380	70-900		11 220	26	5-50	27	5-50
Germany	81.92	250	40-1340	25	11-330		5-200	26	7-134
Ireland [M6]	3.55	350	40-800	37	8-120	60	10-200	26	3-60
Luxembourg	0.41	620	80-1 800		5 50	35	6-52	50	7-70
Netherlands [K2]	15.58	270	120-730	40	5-53	23	6-63	25	8-77
Switzerland	7.22	370	40-1 000	40	10-150	40	10-900	25	4-70
United Kingdom [B2]	58.14		0-3 200		2-330	37			1-180
East Europe					1,000		9/3/00/19		
Bulgaria	8.47	400	40-800	40	8-190	45	12-210	30	7-160
Hungary	10.05	370	79-570	29	12-66	33	14-76	28	12-45
Poland [J7]	38.60	410	110-970	26	5-120	26	5-120	21	4-77
Romania [I12]	22.66	490	250-1100	32	8-60	32	8-60	38	11-75
Russian Federation	148.1	520	100-1400	19	0-67	27	1-76	30	2-79
Slovakia	5.35	520	200-1380	32	15-130	32	12-120	38	12-80
South Europe									
Albania	3.40	360	15-1 150	23	6-96			24	4-160
Croatia	4.50	490	140-710	110	83-180	54	21-77	45	12-65
Cyprus	0.76	140	0-670	110	03 100	17	0-120	43	12 0.
Greece	10.49	360	12-1 570	25	1-240	25	1-240	21	1-190
Portugal	9.81	840	220-1230	49	26-82	44	8-65	51	22-10
Slovenia	1.92	370	15-1 410	49	20-02	41	2-210	35	2-10
Spain	39.67	470	25-1 650			32	6-250	33	2-90
Median		400	140-850	35	16-110	35	17-60	30	11-64
D 1.4		420		22		22			
Population-weighted average		420		33		32		45	

Tabella 2 – Attività specifica (Bq/kg) degli isotopi ⁴⁰K, ²³⁸U, ²²⁶Ra e ²³²Th, rilevati nei suoli di differenti nazioni (UNSCEAR, 2000).

4.1.1 Caratterizzazione radiometrica dei materiali di scavo

La caratterizzazione radiometrica è finalizzata alla determinazione dell'attività specifica degli isotopi radioattivi e del tasso di emissione di gas radon dei materiali che saranno scavati per valutare i seguenti aspetti:

- verificare eventuali criticità in relazione alla salute pubblica e alla tutela ambientale;
- valutazione dell'idoneità del loro reimpiego come materiali da costruzione, o per interventi di rimodellamento morfologico;
- completare il quadro utile alla definizione dei protocolli delle attività di scavo e di gestione del marino (rif. PD2TS3C3B2009 e PD2TS3C3B2010);
- fornire elementi di supporto agli studi progettuali di carattere ambientale.

Al fine di determinare la concentrazione di radioisotopi nelle rocce interessate dalle operazioni di scavo è stato condotto uno studio analogo a quello già eseguito per la tratta del Tunnel di Base e del Tunnel di Bussoleno dal Politecnico di Torino (Patrucco et al., 2005). Le analisi condotte nello studio citato sono le seguenti:

- misura dell'attività specifica di ²³⁸U, ²²⁶Ra, ²³²Th, ⁴⁰K espresse in Bq/kg;
- misura dell'attività totale del campione secondo le specifiche del Radiation Protection 122 della Commissione Europea;
- calcolo dell'Indice di attività per la valutazione dell'idoneità al reimpiego del marino come materiale per costruzioni (RP 112);
- determinazione del rateo specifico di emanazione di radon E (in Bq kg⁻¹ h⁻¹) (si veda il par. 4.2).

□ stato dunque definito un protocollo di analisi di campioni da carote di sondaggi eseguiti da LTF nel corso degli anni precedenti alla seguente fase progettuale. Il programma di campionamento e analisi si è articolato nelle seguenti fasi:

- Identificazione delle carote e degli intervalli di campionamento
- Prelievo dei campioni ed esecuzione delle analisi di laboratorio.

4.1.1.1 Identificazione delle carote e degli intervalli di campionamento

Le carote sono state identificate considerando i sondaggi già realizzati nel corso delle campagne indagini condotte da LTF per le precedenti fasi progettuali della NLTL. Gli intervalli individuati per i differenti sondaggi sono stati definiti in base alla consultazione delle relative stratigrafie originali fornite da LTF (F16, F30bis, S4, S5, S8, S42).

Considerati i risultati già acquisiti con le indagini condotte dal Politecnico di Torino, i campioni da destinare a caratterizzazione radiometrica sono stati selezionati in modo da evitare gli intervalli di campionamento già considerati nel corso dei precedenti studi. Al fine di garantire la piena comparazione dei risultati delle analisi radiometriche, i dati relativi ai campioni già analizzati per il sondaggio S42 sono stati integrati prevedendo la misura dell'attività specifica di ²²⁶Ra, ²³²Th, ⁴⁰K espressa in Bq/kg.

Il criterio considerato per la scelta delle carote e degli intervalli di campionamento su cui effettuare la caratterizzazione radiometrica è legato a dati bibliografici relativi alla eventuale presenza di mineralizzazioni radioattive negli ammassi rocciosi interessati dalle attività di scavo.

Sigla	Ubicazione	Caroteca	Unità	Litologia	Intervallo di interesse (da m - a m)	Analisi radiometriche	
F30bis	Vallon d'Etache	Modane	Complesso di Ambin	Gneiss d'Ambin	310-1220	X	
Foods	vanon d Etache	Modane	Complesso di Clarea	Micascisti di Clarea	1220-1450	Λ	
F16	Val d'Ambin	Modane	Complesso di Clarea	Micascisti di Clarea	40-1500	X	
S4	Loc. C.na Porchera – Comune di Giaglione	Susa	Complesso di Clarea	Micascisti di Clarea	103-750	X	
S5	Loc. Pra Piano – Comune di Giaglione	Susa	Complesso di Ambin	Gneiss d'Ambin	315-915	X	
S42	Loc. Marzano – Comune di Mompantero	Susa	Zona Piemontese	Calcescisti, marmi, quarziti micacee, gneiss	60-452	X	
S8	P.te Muet – Comune di Mompantero	Susa	Zona Piemontese	Calcescisti, marmi, quarziti micacee, gneiss	125-520	X	

Tabella 3 – Elenco dei sondaggi considerati per le attività di campionamento e analisi radiometrica

L'ubicazione planimetrica dei sondaggi considerati è riportato nelle Figura 3, Figura 4, Figura 5 e Figura 6.

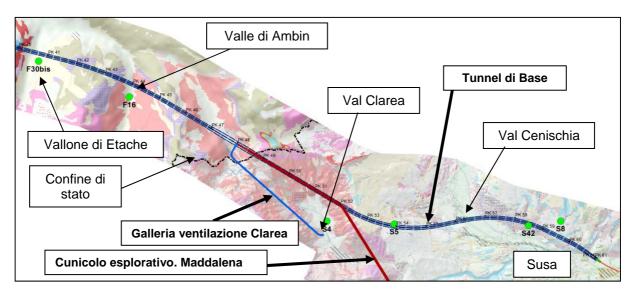


Figura 3 – Ubicazione dei sondaggi considerati (punti in verde) rispetto al tracciato del Tunnel di Base (linea tratteggiata blu scuro). Linea blu chiaro: Galleria di ventilazione Clarea; Linea granata: cunicolo esplorativo della Maddalena (figura non in scala).

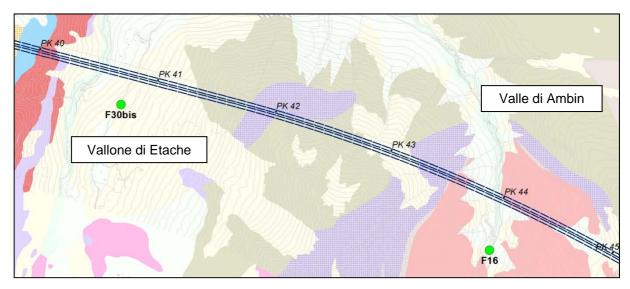


Figura 4 – Lato Francia (vallone di Etache – F30bis; val di Ambin: F16): ubicazione planimetrica dei sondaggi F16 e F30bis (punti in verde) rispetto al tracciato del Tunnel di Base (linee blu e viola).

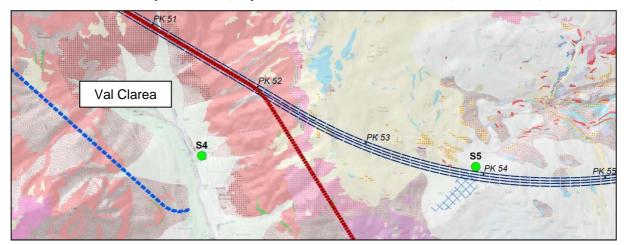


Figura 5 – Lato Italia (Val Clarea – S4; versante destro della Val Cenischia – S5): ubicazione planimetrica dei sondaggi S4 e S5 (punti in verde) rispetto al tracciato del Tunnel di Base (linee blu e viola). Le linee nere rappresentano rispettivamente il tracciato della galleria di ventilazione di Clarea (sinistra) e del cunicolo esplorativo della Maddalena (destra).

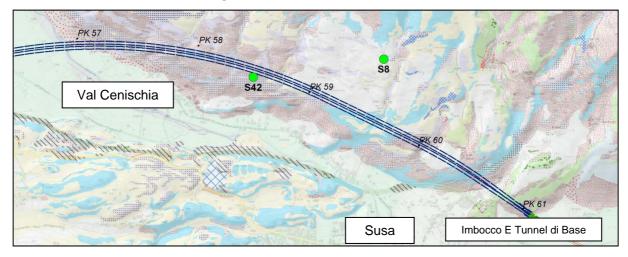


Figura 6 - Lato Italia (settore di Mompantero): ubicazione planimetrica dei sondaggi S8 e S42 (punti in verde) rispetto al tracciato del Tunnel di Base (linee blu e viola).

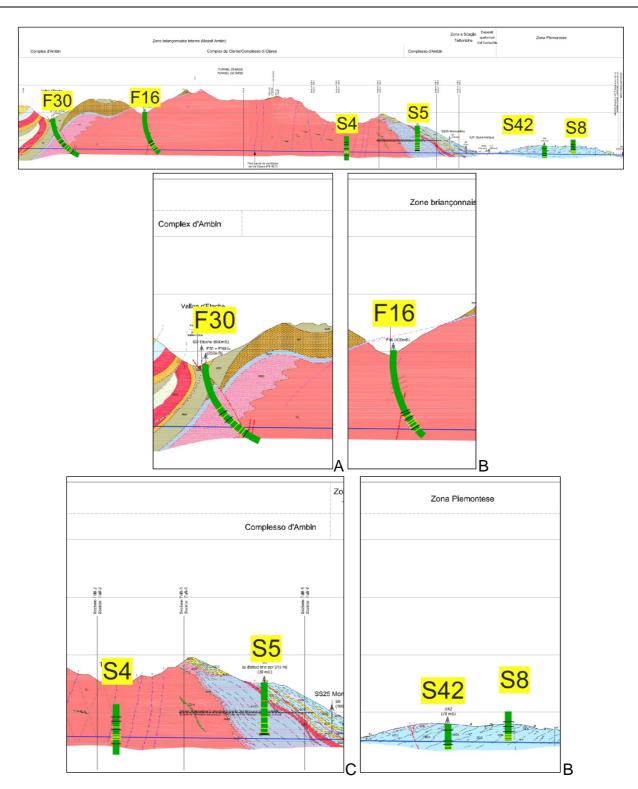


Figura 7 – Proiezione dei sondaggi considerati per il prelievo dei campioni sul profilo geologico del Tunnel di Base (barre verdi). (A) Dettaglio relativo al sondaggio F30bis; (B) dettaglio relativo al sondaggio F16; (C) dettaglio relativo ai sondaggi S4 e S5; (D) dettaglio relativo ai sondaggi S42 e S8. I tratti orizzontali lungo i sondaggi indicano gli intervalli di campionamento: i tratti in giallo corrispondono agli intervalli per i quali sono stati rilevati campioni con tenori dei metalli rispetto alle concentrazioni soglia di contaminazione (CSC) (rif. PD2C3BTS32009).

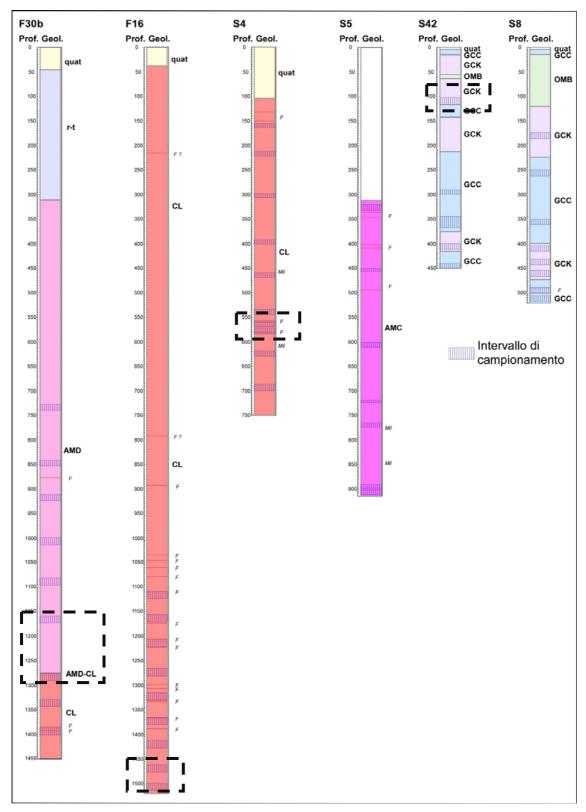


Figura 8 – Stratigrafie dei sondaggi considerati per il prelievo dei campioni. Quat: depositi quaternari; COMPLESSO DI AMBIN – r-t: quarziti micacee e conglomerati quarzitici; AMC: gneiss leucocratici; AMD: micascisti quarzosi ± conglomeratici; COMPLESSO DI CLAREA – CL: micascisti e gneiss minuti a glaucofane ± albitizzati con locali lenti di metabasiti anfibolitiche; ZONA PIEMONTESE – GCC: scisti filladici-carbonatici; GCK: gneiss albitici (Gneiss di Charbonnel auct.); OMB: prasiniti, metabasiti; F: faglie. Il rettangolo tratteggiato nero lungo i sondaggi indica il settore entro quale ricade la proiezione della quota di scavo del Tunnel di Base.

Il sondaggio F30bis è rappresentato per i primi 45m circa da depositi quaternari, a cui seguono le formazioni del Complesso di Ambin rappresentate da quarziti conglomeratiche e conglomerarti quarzitici (AMD) (da 45 m a 310 m c.a. di profondità) e micascisti quarzosi ± conglomeratici (da 310 m a 1275 m c.a. di profondità). La porzione rimanente del sondaggio è costituita da micascisti e gneiss minuti (Micascisti di Clarea - CL).

Il sondaggio S4 è rappresentato per i primi 100 m c.a. da depositi quaternari a cui seguono i micascisti e gneiss minuti (Micascisti di Clarea) del Complesso di Clarea (da 35 m a 750 m c.a).

Il sondaggio S5, a partire da 310 m c.a. di profondità (inizio tratto a carotaggio continuo), presenta gli gneiss leucocrati (*gneiss aplitici*) (AMC) del Complesso di Ambin.

Il sondaggio S8, è rappresentato per i primi 10 m c.a. da depositi quaternari, a cui segue un'alternanza di scisti carbonatici filadici (GCC) (da 5 a 15 m c.a. e da 220 m a 400 m c.a, da 470 m c.a. fino a fine sondaggio), gneiss albitici (GCK) (da 120 m a 140 m c.a., da 220 m c.a., da 400 ma 470 m c.a.) e metabasiti (OMB) (da 15 m a 120 m c.a.).

Il sondaggio S42, è anch'esso rappresentato per i primi 10 m c.a. da depositi quaternari, a cui segue un'alternanza di scisti carbonatici filadici (GCC) (da 5 a 15 m c.a., da 120 m a 140 m c.a., da 210 m c.a a 375 m c.a e da 415 m c.a. a fine sondaggio), gneiss albitici (GCK) (da 15 m a 55 m c.a., da 65 m a 120 m c.a., da 140 m a 210 m c.a. e da 375 m a 415 m c.a.) e metabasiti (OMB) (da 55 m a 65 m c.a.).

4.1.1.2 Prelievo dei campioni

Gli intervalli di campionamento sono stati definiti sulla base dell'esame visivo dei tratti di carota indicati nella tabella Tabella 3. Da questi intervalli sono stati prelevati i campioni da inviare ai laboratori di analisi (rif. PD2C3BTS32010 allegato 1).

4.1.1.3 Risultati delle analisi

I risultati delle analisi eseguite sono riportati in . I rapporti di prova delle analisi sono riportati in Allegato 2.

Codice	Descrizione Campione	238U (Bq/kg) ^(*)	232Th (Bq/kg) ^(**)	⁴⁰ K (Bq/kg)
S4_C1	Susa – Sondaggio S4 – Campione C1 – Cassetta 34 – Intervallo Campione da m 156.15 a m 156.34 – Micascisti	$25,0 \pm 1,2$	33 ± 2	730 ± 30
S4_C2	Susa – Sondaggio S4 – Campione C2 – Cassetta 56 – Intervallo Campione da m 216.60 a m 216.67 – Micascisti	$28,2 \pm 1,2$	35 ± 2	800 ± 30
S4_C3	Susa – Sondaggio S4 – Campione C3 – Cassetta 86 – Intervallo Campione da m 298.79 a m 298.91 – Micascisti	$26,6 \pm 1,2$	31 ± 2	700 ± 30
S4_C4	Susa – Sondaggio S4 – Campione C4 – Cassetta 122 – Intervallo Campione da m 397.85 a m 398.00 – Micascisti	$32,4 \pm 1,3$	40 ± 3	1080 ± 40
S4_C5	Susa – Sondaggio S4 – Campione C5 – Cassetta 144 – Intervallo Campione da m 460.40 a m 460.52 – Micascisti	$26,8 \pm 1,3$	33 ± 3	810 ± 30
S4_C6	Susa – Sondaggio S4 – Campione C6 – Cassetta 164 – Intervallo Campione da m 533.40 a m 533.53 – Micascisti	$23,8 \pm 1,1$	28 ± 2	660 ± 30
S4_C7	Susa – Sondaggio S4 – Campione C7 – Cassetta 170 – Intervallo Campione da m 557.36 a m 557.57 – Micascisti	$27,9 \pm 1,2$	34 ± 2	640 ± 30
S4_C8	Susa – Sondaggio S4 – Campione C8 – Cassetta 174 – Intervallo Campione da m 572.35 a m 572.47 – Micascisti	$25,8 \pm 1,2$	32 ± 2	710 ± 30

Codice	Descrizione Campione	238U (Bq/kg) ^(*)	232Th (Bq/kg) ^(**)	⁴⁰ K (Bq/kg)
S4_C9	Susa – Sondaggio S4 – Campione C9 – Cassetta 186 – Intervallo Campione da m 617.80 a m 618.02 – Micascisti±	$35,7 \pm 1,4$	44 ± 3	910 ± 30
S4_C10	Susa – Sondaggio S4 – Campione C10 – Cassetta 204 – Intervallo Campione da m 686.85 a m 686.99 – Micascisti	$24,2 \pm 1,1$	33 ± 1,4	680 ± 30
S5_C1	Susa – Sondaggio S5 – Campione C1 – Cassetta 3 – Intervallo Campione da m 323.40 a m 323.58 – Gneiss Aplitici	195 ± 3	43 ± 3	1320 ± 40
S5_C2	Susa – Sondaggio S5 – Campione C2 – Cassetta 50 – Intervallo Campione da m 454.07 a m 454.17 – Facies intermedia tra gneiss aplitici e gneiss s.s.	$38,7 \pm 1,4$	56 ± 3	950 ± 30
S5_C3	Susa – Sondaggio S5 – Campione C3 – Cassetta 94 – Intervallo Campione da m 606.65 a m 606.86 – Gneiss Aplitici	33,4 ± 1,4	47 ± 3	1050 ± 40
S5_C4	Susa – Sondaggio S5 – Campione C4 – Cassetta 123 – Intervallo Campione da m 719.20 a m 719.32 – Facies gneissica	$35,1 \pm 1,4$	54 ± 3	1190 ± 40
S5_C5	Susa – Sondaggio S5 – Campione C5 – Cassetta 136 – Intervallo Campione da m 773.69 a m 773.85 – Facies intermedia tra gneiss aplitici e gneiss s.s. Con livelli milonitici	30,0 ± 1,2	52 ± 3	430 ± 20
S5_C6	Susa – Sondaggio S5 – Campione C6 – Cassetta 146 – Intervallo Campione da m 809.95 a m 810.13 – Gneiss Aplitici più ricchi in mica	$32,0 \pm 1,2$	41 ± 2	790 ± 30
S5_C7	Susa – Sondaggio S5 – Campione C7 – Cassetta 156 – Intervallo Campione da m 858.35 a m 858.49 – Micascisti	$39,7 \pm 1,3$	51 ± 3	750 ± 30
S5_C8	Susa – Sondaggio S5 – Campione C8 – Cassetta 163 – Intervallo Campione da m 893.27 a m 893.45 – Facies intermedia tra gneiss aplitici e gneiss s.s.	35,1 ± 1,4	44 ± 3	1080 ± 40
S5_C9	Susa – Sondaggio S5 – Campione C9 – Cassetta 166 – Intervallo Campione da m 907.75 a m 907.95 – Facies intermedia tra gneiss aplitici e gneiss s.s.	28,9 ± 1,2	46 ± 3	800 ± 30
S8_C1	Susa – Sondaggio S8 – Campione C1 – Cassetta 37 – Intervallo Campione da m 180.00 a m 180.18 – Micascisti/gneiss albitici	$27,8 \pm 1,0$	32,3 ± 1,9	690 ± 20
S8_C2	Susa – Sondaggio S8 – Campione C2 – Cassetta 50 – Intervallo Campione da m 250.30 a m 250.52 – Calcescisti	$18,7 \pm 1,1$	35 ± 3	540 ± 30
S8_C3	Susa – Sondaggio S8 – Campione C3 – Cassetta 68 – Intervallo Campione da m 350.10 a m 350.28 – Calcescisti	$20,5 \pm 1,1$	38 ± 3	600 ± 30
S8_C4	Susa – Sondaggio S8 – Campione C4 – Cassetta 78 – Intervallo Campione da m 404.90 a m 405.02 – Micascisti	$48,6 \pm 1,6$	73 ± 3	790 ± 30
S8_C5	Susa – Sondaggio S8 – Campione C5 – Cassetta 84 – Intervallo Campione da m 437.90 a m 438.00 – Calcescisti	$16,7 \pm 0,9$	$18,7 \pm 1,8$	340 ± 19
S8_C6	Susa – Sondaggio S8 – Campione C6 – Cassetta 88 – Intervallo Campione da m 460.60 a m 460.73 – Micascisti cloritici	$35,4 \pm 1,3$	41 ± 3	304 ± 18
S8_C7	Susa – Sondaggio S8 – Campione C7 – Cassetta 93 – Intervallo Campione da m 489.00 a m 489.20 – Calcescisti	$7,6 \pm 0,7$	13,9 ± 1,6	205 ± 16
S8_C8	Susa – Sondaggio S8 – Campione C8 – Cassetta 96 – Intervallo Campione da m 506.00 a m 506.16 – Calcescisti	$13,7 \pm 0,9$	25 ± 2	410 ± 20
S42_C1	Susa – Sondaggio S42 – Campione C1 – Cassetta 19 – Intervallo Campione da m 96.00 a m 96.13 – Gneiss quarzitici	$6,7 \pm 0,7$	<3	319 ± 19
S42_C2	Susa – Sondaggio S42 – Campione C2 – Cassetta 46 – Intervallo Campione da m 288.00 a m 288.18 – Calcescisti	$8,4 \pm 0,9$	$13,2 \pm 1,8$	280 ± 20
S42_C3	Susa – Sondaggio S42 – Campione C3 – Cassetta 54 – Intervallo Campione da m 352.00 a m 352.13 – Calcescistii	$12,3 \pm 0,9$	$18,4 \pm 1,8$	329 ± 19
S42_C4	Susa – Sondaggio S42 – Campione C4 – Cassetta 60 – Intervallo Campione da m 400.00 a m 400.16 – Micascisti	41.8 ± 1.5	43 ± 3	780 ± 30
S42_C5	Susa – Sondaggio S42 – Campione C5 – Cassetta 65 – Intervallo Campione da m 440.00 a m 440.23 – Calcescisti	$40,9 \pm 1,4$	47 ± 3	580 ± 20

Codice	Descrizione Campione	238U (Bq/kg) ^(*)	232Th (Bq/kg) ^(**)	⁴⁰ K (Bq/kg)
F16_C1	Modane – Sondaggio F16 – Campione C1 – Cassetta 20 – Intervallo Campione da m 1118.95 a m 1119.19 – Micascisti listati con pieghe	$30,8 \pm 1,0$	29 ± 1,8	590 ± 20
F16_C2	Modane – Sondaggio F16 – Campione C2 – Cassetta 28 – Intervallo Campione da m 1157.75 a m 1158.04 – Micascisti listati	$28,1 \pm 1,2$	36 ± 2	680 ± 30
F16_C3	Modane – Sondaggio F16 – Campione C3 – Cassetta 40 – Intervallo Campione da m 1217.25 a m 1217.53 – Micascisti listati	$22,9 \pm 1,0$	21,8 ± 1,9	660 ± 30
F16_C4	Modane – Sondaggio F16 – Campione C4 – Cassetta 52 – Intervallo Campione da m 1275.50 a m 1275.74 – Micascisti listati	$23,2 \pm 1,1$	28 ± 2	670 ± 30
F16_C5	Modane – Sondaggio F16 – Campione C5 – Cassetta 62 – Intervallo Campione da m 1325.15 a m 1325.36 – Micascisti listati con pieghe	$29,6 \pm 1,3$	37 ± 3	860 ± 30
F16_C6	Modane – Sondaggio F16 – Campione C6 – Cassetta 72 – Intervallo Campione da m 1375.20 a m 1375.46 – Micascisti listati	$27,3 \pm 1,2$	28 ± 2	690 ± 30
F16_C7	Modane – Sondaggio F16 – Campione C7 – Cassetta 81 – Intervallo Campione da m 1418.40 a m 1418.64 – Micascisti listati	$26,8 \pm 1,1$	34 ± 2	700 ± 30
F16_C8	Modane – Sondaggio F16 – Campione C8 – Cassetta 90 – Intervallo Campione da m 1462.85 a m 1463.07 – Micascisti listati	$27,2 \pm 1,2$	37 ± 3	840 ± 30
F16_C9	Modane – Sondaggio F16 – Campione C9 – Cassetta 99 – Intervallo Campione da m 1506.90 a m 1507.20 – Micascisti listati leggermente grafitici	29,1 ± 1,2	32 ± 2	640 ± 30
F30bis_C1	Modane – Sondaggio F30bis – Campione C1 – Cassetta 149 – Intervallo Campione da m 727.90 a m 728.12 – Micascisti quarzosi	$19,3 \pm 1,1$	35 ± 3	830 ± 30
F30bis_C2	Modane – Sondaggio F30bis – Campione C2 – Cassetta 179 – Intervallo Campione da m 843.30 a m 843.47 – Micascisti quarzosi	$26,6 \pm 1,2$	46 ± 3	930 ± 30
F30bis_C3	Modane – Sondaggio F30bis – Campione C3 – Cassetta 197 – Intervallo Campione da m 912.60 a m 912.76 – Micascisti quarzosi	$21,6 \pm 0,9$	39 ± 2	760 ± 20
F30bis_C4	Modane – Sondaggio F30bis – Campione C4 – Cassetta 219 – Intervallo Campione da m 999.90 a m 1000.09 – Micascisti quarzosi a clorite	$16,0 \pm 1,0$	44 ± 3	1010 ± 30
F30bis_C5	Modane – Sondaggio F30bis – Campione C5 – Cassetta 236 – Intervallo Campione da m 1085.60 a m 1082.90 – Micascisti quarzosi a clorite	$21,2 \pm 1,2$	40 ± 3	630 ± 30
F30bis_C6	Modane – Sondaggio F30bis – Campione C6 – Cassetta 252 – Intervallo Campione da m 1159.40 a m 1159.76 – Micascisti a quarzo e clorite	$17,4 \pm 1,0$	35 ± 3	690 ± 30
F30bis_C7	Modane – Sondaggio F30bis – Campione C7 – Cassetta 275 – Intervallo Campione da m 1269.75 a m 1269.97 – Micascisti a quarzo e clorite con talco	$31,7 \pm 1,3$	31 ± 2	530 ± 30
F30bis_C8	Modane – Sondaggio F30bis – Campione C8 – Cassetta 287 – Intervallo Campione da m 1328.20 a m 1328.38 – Micascisti a quarzo e clorite	92 ± 2	39 ± 3	770 ± 30
F30bis_C9	Modane – Sondaggio F30bis – Campione C9 – Cassetta 299 – Intervallo Campione da m 1386.45 a m 1386.58 – Quarzomicascisti (CLR)	$30,5 \pm 1,2$	35 ± 2	780 ± 30

Tabella 4 – Attività specifica degli isotopi di ²³⁸U, ²³²Th e ⁴⁰K rilevati per i campioni di roccia prelevati dalle carote di sondaggio. (*) ²²⁶Ra è preso come indice della concentrazione di ²³⁸U poiché è stato verificato l'equilibrio secolare;(**) ²²⁸Ra è preso come indice della concentrazione di ²³²Th poiché è stato verificato l'equilibrio secolare.

In Figura 9 sono riportati i dati relativi all'attività specifica dei differenti isotopi considerati in funzione della distribuzione lungo i sondaggi esaminati. I valori medi dell'attività specifica calcolata sul numero totale dei campioni è riportata in Tabella 5.

²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴⁰ K (Bq/kg)
31,29	36,10	710,14

Tabella 5 – Valori medi dell'attività specifica degli isotopi naturali presenti nelle rocce analizzate.

In Tabella 6 sono riportati i valori medi, la deviazione standard ed i valori massimo e minino per l'attività specifica riferita ai campioni, distinti per unità litologica.

L'esame di valori medi permette di osservare come nella maggior parte dei casi l'attività specifica rilevata sia confrontabile con i valori medi misurati per la crosta terrestre.

I valori più elevati, riscontrati per i campioni della formazione AMC (Complesso di Ambin – gneiss aplitici) possono essere messi in relazione con la genesi del litotipo, che rappresenta il prodotto di processi metamorfici a carico di rocce granitiche (Gattiglio & Sacchi, 2006).

Formazione	Paramtero	238U (Bq/kg)	232Th (Bq/kg)	40K (Bq/kg)		
	Media	51,99	48,22	928,89		
	Dev.st	53,75	5,24	268,30		
AMC	Min	28,90	41,00	430,00		
	Max	195,00	56,00	1320,00		
	N campioni		9			
	Media	20,35	39,83	808,33		
	Dev.st	3,74	4,54	144,28		
AMD	Min	16,00	35,00	630,00		
	Max	26,60	46,00	1010,00		
	N campioni	6				
	Media	30,71	33,22	733,18		
	Dev.st	14,05	4,79	118,94		
CL	Min	22,90	21,80	530,00		
	Max	92,00	44,00	1080,00		
	N campioni		22			
	Media	13,53	23,92	394,00		
	Dev.st	5,26	10,66	152,94		
GCC	Min	7,60	13,20	205,00		
	Max	20,50	38,00	600,00		
	N campioni		6			
	Media	31,13	36,86	543,29		
	Dev.st	14,99	22,21	219,34		
GCK	Min	6,70	3,00	304,00		
	Max	48,60	73,00	790,00		
	N campioni		7			
Mediana UNSCEAR 2000		35	35	400		
Valori medi per ammassi rocciosi		33*	34*	850**		

Tabella 6 – Sintesi dei valori di attività specifica rilevati per i campioni esaminati distinti per unità litologica. *(Righi, et al., 2000); **(Hunter-Smith, 2012).

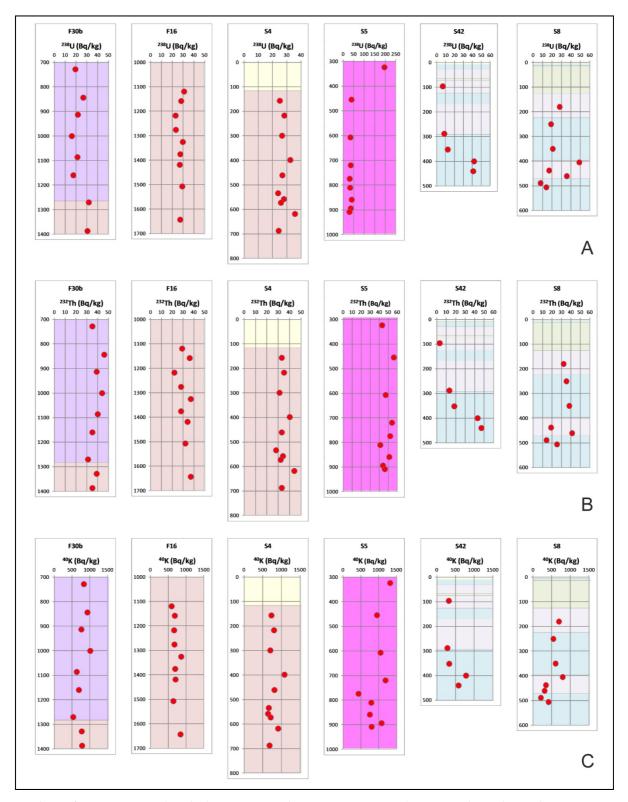


Figura 9 – Attività specifica degli isotopi considerati (punti in rosso) lungo i sondaggi dai quali sono stati prelevati i campioni. I colori dei grafici riflettono la litologia delle formazioni descritte al par. 4.1.1.1. In ascissa è indicata la profondità del sondaggio in metri. In ordinata è indicata l'attività specifica espressa in Bq/kg.

L'attività specifica del ²³⁸U risulta generalmente inferiore a 50 Bq/kg, con valori compresi tra 6,7±0,7 Bq/kg (campione S42_C1, formazione GCK) e 48,6±0,6 Bq/kg (campione S8_C4, formazione GCK). Sono presenti due campioni per cui l'attività specifica dell'²³⁸U risulta

essere rispettivamente pari a 92±2 Bq/kg (campione F30bis_C8, formazione CL) e pari a 195±3 Bq/kg (campione S5 C1, formazione AMC).

L'attività specifica del ²³²Th risulta generalmente inferiore a 60 Bq/kg, con valori compresi tra 3 c.a. Bq/kg (campione S42_C1, formazione GCK) e 56±3 Bq/kg (campione S5_C2, formazione AMC). E' presente un campione per cui l'attività specifica dell'²³²Th risulta essere pari a 73±3 Bq/kg (campione S8_C4, formazione GCK).

L'attività specifica del ⁴⁰K risulta generalmente inferiore a 1000 Bq/kg, con valori compresi tra 205±16 Bq/kg (campione S8_C7, formazione GCC) e 930±30 Bq/kg (campione F30bis_C2, formazione AMD). I campioni che presentano un'attività specifica del ⁴⁰K superiore a 1000 Bq/kg sono i seguenti: S4_C4 (1090 ± 40 Bq/kg, formazone CL), S5_C1 (1320 ± 40 Bq/kg, formazione AMC), S5_C3 (1050 ± 40 Bq/kg, formazione AMC), S5_C4 (1190 ± 40 Bq/kg, formazione AMC), S5_C8 (1080 ± 40 Bq/kg, formazione AMC) e F30bis_C4 (1010 ± 30 Bq/kg, formazione AMC). Il numero di campioni del sondaggio S5 con valori dell'attività specifica del ⁴⁰K è probabilmente associato all'abbondanza di feldspato negli gneiss aplitici.

I dati rilevati indicano tenori in ²³⁸U, ²³²Th e ⁴⁰K confrontabili con l'attività specifica media di materiali da costruzione e materiali lapidei simili a quelli esaminati nel corso della presente campagna indagini (Risica, et al., 1999; Ahmed, et al., 2006).

4.1.1.4 Confronto dei dati della campagna 2012 con i risultati della campagna di caratterizzazione radiometrica realizzata dal Politecnico di Torino

Nel corso degli anni 2003, 2004 e 2005 sono stati condotti studi su campioni prelevati da sondaggi di proprietà di LTF e realizzati in corrispondenza delle aree di progetto della NLTL (Patrucco, et al., 2005). Gli studi erano volti alla caratterizzazione radiometrica dei materiali di scavo nel corso delle precedenti fasi progettuali. I risultati delle analisi condotte sono riportati in Tabella 7.

Tabella A2.3	: attività sp	ecifi	che ri	iscont	rate n	ei di	versi lit	otipi a	naliz	zzati															
			²³⁸ U				²²⁶ Ra				23	32Th						$^{40}\mathrm{K}$							
Sigla campione	Litotipi		[Bq/k	(g)		[pp	m]	[]	Bq/k	g]		[ppn	n]	[]	Bq/k	g]	[i	ppm]	[1	Bq/k	g]		[ppm	1]
S11/4 x15		15	_	6	1.2	±		18	±	2	1.40	±	0.16	20	±	3	4.9	±	0.7	280	±	30		±	
S4/8 x16		26		4	2.1	<u>+</u>		26	±	4	2.1	±	0.3	29	±	6	7.1	±	1.4	600	±	70	1.82 10 ⁵	±	2.12 104
S11/10 x10	-70.004 1000	31	_	13	2.52	_		20	±	5	1.6	±	0.4	21	±	1.7	5.1	±	0.4	320	±	40	9.7 104	±	1.2 104
S11/10 x11	Depositi	20		4	1.6			20	±	4	1.6	±	0.3	21.7	±	1.8	5.3	±	0.4	360	±	40	1.1 104	±	1.2 104
S4/13 x17		6.8	_	1.7	0.55	_		6.8	±	1.7		_	0.14	4.4	±	0.7	1.08	±	0.17	133	±	19	4.03 104	±	5.76 10 ³
S4/14 x18		13	_	6	1.1	_		13	±	6	1.1	±	0.4	12	±	3	2.9	±	0.7	560	±	70	1.70 105	±	2.12 104
S4/15 x19		30	_	5	2.4			30	±	5	2.4	±	0.4	31	±	3	7.6	±	0.7	520	±	70	1.58 105	±	2.12 104
S11/65 x4 S11/121 x5	Calcescisti	25	< 40	13	2.10	< 3.		8.0	±	1.7	0.8	±	0.3	4	±	3	0.9	±	0.4	160	±	20	4.8 10 ⁴ 5.2 10 ⁴	±	$6.1 10^3$ $6.1 10^3$
S11/121 x5 S11/144 x6	Calcescisti	6	±	3	0.5		_	8.4	±	1.9		_	0.14	8.72	±	0.14	2.15	±	0.7	26	±	4	7.9 10 ³	±	1.2 10 ³
S8/2 x36		60	±	30	4.8	±		35	±	4	2.8	±	0.13	50	±	3	12.3	±	0.03	890	±	110	2.7 10	±	3.3 104
S8/26 x37		33	±	17	2.6	+ ±		17	±	2	1.38		0.16	28	±	2	6.9	±	0.7	390	±	50	1.18 105	±	15 10 ⁴
S8/42 x38		70		40	5.7	+ ±	_	58	±	4	4.7	±	0.10	76	±	6	18.7	±	1.4	1040	±	120	3.15 10	±	3.6 10 ⁴
S9/27 x34		34	±	12	2.7	+ ±		55	±	7	4.4	±	0.5	85	±	6	20.9	±	1.4	630	±	50	1.91 105	±	1.5 104
S9/36 x35	Gneiss	25		8	2.0	†±		23	±	3	1.8	±	0.2	26	±	3	6.4	±	0.7	550	±	50	1.67 10	±	1.5 104
S12/54 x29		40	±	30	3.2	±	_	19	±	4	1.5	±	0.3	34	±	5	8.3	±	1.2	1080	±	130	3.27 10 ⁵	±	3.9 10 ⁴
S12/71 x30		15		6	1.2	±		16.2	±	1.5	1.32		0.12	7	±	1.7	1.7	±	0.4	210	±	20	6.36 10 ⁴	±	6.1 10 ³
S12/81 x31		20	±	7	1.6	±		21	±	4	1.7	±	0.3	12.9	±	0.8	3.1	±	0.2	430	±	40	1.3 105	±	1.2 104
S5/64 x43		50	±	8	4.1	±	0.6	50	±	8	4.1	±	0.6	50	±	2	12.3	±	0.4	1280	±	150	3.88 10 ⁵	±	4.5 104
S11/73 x12		9	±	4	0.7	±		11	±	2	0.89		0.16		< 1.4			0.34			< 9			2.73	
S11/81 x13	Marmo		< 4			< 0.	_	5.4	±	0.9		-	0.10		< 1.4	_		0.34		38	±	6	1.1510^4		$1.8 \ 10^3$
S11/105 x14		12	_	5	0.9	±		14	±	3	1.1	±	0.2	1.1	±	0.2	0.27	±	0.05		< 9			2.73	
S12/65 x32		32	±	9	2.6	±	0.7	33	±	3	2.6	±	0.2	28.8	±	0.9	7.1	±	0.2	188	±	18	5.7 10 ⁴	±	5.5 10 ³
T. 1. 11. 42.	Tabella A2.3: segue																								
Tabella A2	s: segue				238T						²²⁶ Ra			Т		23	³² Th						$^{40}\mathrm{K}$		
Sigla		\dashv			Т			+	-		100			<u> </u>											
campione	Litotipi		ĺΒ	q/kg]		l	pm]		[Bq/	kg		[ppr	n]	[Bq/k	g]	[ppm	J	[]	Bq/k	gj	[P	pm]	
S12/103 x33			9	±	5 0	.7	± 0.	4 16	4	± 1	6 1.33	±	0.13	5	±	2	1.2	±	0.4	168	±	16	5.1 104	± 4	$.8 \ 10^3$
S25/28 x27	Marmo		5		2 0.	41	± 0.1	_	_	± 1	_	_	0.08	1.1	±	0.4		±	0.12	24	±	4			$.2 \ 10^3$
S25/42 x28		_		< 50			4.07	48	_	± 8		±	0.6	2.4	±	0.7		±	0.17	13	±	4			.2 103
S4/24 x20	1		26	_		.1	± 0.	_	_	± :	_	±	0.4	30	±	5	_	±	1.2	820	±	100			$03\ 10^4$
S4/41 x25	1	-	17			.3	± 0.		_	± 4	_	±	0.3	27	±	2		±	0.4	710	±	60			82 10 ⁴
S4/43 x26 S4/64 x21	Micascis		29	-	_	.8	± 0. ± 0.		_	± 4		_	0.3	36	±	2	_	±	0.4	910 720	±	110 60			33 10 ⁴
S4/04 x21 S4/74 x24	Micascist	u	34			.8	± 0. ± 0.		_	± 4		±	0.3	40	±	2		±	0.4	760	±	60			$82\ 10^4$ $82\ 10^4$
S4/74 x24 S4/75 x23	†	ŀ	30			.4	± 0.		_	\pm 0			0.07	34	±	2	_	± ±	0.4	660	±	50			52 10 ⁴
S4/152 x22	†	-	31			.5	± 0.			± 0			0.07	34	±	6		± +	1.4	980	±	120			$\frac{52 \cdot 10^4}{64 \cdot 10^4}$
S11/15 x3		\dashv		< 17	<u> </u>		1.38	- 3.			2.0	< 0.5		2.4	±	0.7		±	0.17	210	±	30			110^{3}
S11/15 x2	Prasinit	i ŀ		< 7	+		0.57	5	_	<u>+</u> 1 2	0.4	_	0.16	3	±	2		÷	0.4	117	±	13			.9 103
S11/16 x1	1			< 7			0.57	3.	_	± 1			0.11	1.6	±	0.4		±	0.13	300	±	20			1.110^{3}
S8/79 x39	0	\Box	90	±	50 7	.3	± 4.	_	_	± 1		_	1.06	87	±	12	_	±	2.9	460	±	60			.8 10 ⁴
S23/25 x44	Quarzite	e	21			.7	± 0.	4 23		± 1	3 1.9	±	0.11	33	±	6		±	1.4	970	±	80			.4 104
S8/16 x40			50	±	30 4	.1	± 2.		_	± ′		±	0.5	34	±	1.5		±	0.3	760	±	90			.7 104
S8/17 x41	Scistoclori	tici		< 30			2.44	7.		± 1		_	0.11	10.8	±	1.2	_	±	0.3	61	±	11		_	.3 10 ³
S8/25 x42		[40		19 3	.2	± 1.	5 23		± 2	1.8		0.16	26.8	±	1.3		±	0.3	790	±	90			.7 104
S11/22 x7		[< 30			2.44		<			< 0.4			< 4			0.99		10	±	5	3.03 103		
S11/24 x8	Serpentin	iti		rileva			rilevato	_	<			< 0.2		-	< 3			0.74			rile		Non r		
S11/27 x9	0	\rightarrow		rileva	_	_	rilevate	_	<		1.5	< 0.1	_	20	< 0.0			0.15			rile		Non i		
S30b/14 x45	Quarzo		19	±	7 1	.5	± 0.	6 2	1	± :	1.7	±	0.4	28	±	1.5	6.9	±	0.3	33	±	8	1 104	± 2	$.4\ 10^3$

Tabella 7 – Risultati delle attività di caratterizzazione radiometrica dei materiali di scavo dei lavori di realizzazione della NLTL, condotte su campioni prelevati da sondaggi di LTF (Patrucco, et al., 2005).

I sondaggi considerati sono riferiti alle seguenti unità strutturali:

- S12: Zona a Scaglie (destra idrografica della Valle Cenischia)
- S8, S9, S11: Zona Piemontese a nord della Piana di Susa;
- S23: Complesso di Ambin
- S25: Unità di Copertura del Dora-Maira.
- S4: Complesso di Clarea

In riferimento all'attività specifica, i valori medi per ciascuno degli isotopi considerati sono riportati in **Tabella 8**.

²³⁸ U	²²⁶ Ra	²³² Th	⁴⁰ K
[Bq/kg]	[Bq/kg]	[Bq/kg]	[Bq/kg]
26,26	22.37	23.11	

Tabella 8 - Valori medi dell'attività specifica degli isotopi naturali presenti nelle rocce analizzate dal Politecnico di Torino (Patrucco, et al., 2005).

Prendendo in considerazione i valori medi, riferiti alle differenti litologie, emerge il quadro riportato in **Tabella 9**. L'esame dei valori della tabella permette di osservare come l'attività specifica media degli isotopi considerati sia maggiore nelle quarziti (sondaggi S8, S23 e S30bis), negli scistocloritici (sondaggio S8), negli gneiss (in prevalenza prelevati dai sondaggi S8 e S12) e nei micascisti (sondaggio S4). I valori più bassi caratterizzano le serpentiniti e i marmi. In generale i valori medi dell'attività specifica rilevati nei campioni esaminati sono confrontabili con i valori medi misurati per la crosta terrestre.

	²³⁸ U [Bq/kg]	²²⁶ Ra [Bq/kg]	²³² Th [Bq/kg]	⁴⁰ K [Bq/kg]
Calcescisti	23,67	8,80	7,24	118,67
Gneiss	38,56	32,69	40,99	722,22
Marmi	17,29	19,21	5,89	64,14
Micascisti	27,14	28,53	33,57	794,29
Prasiniti	10,33	5,20	2,33	209,00
Quarziti	43,33	43,80	6,43	487,67
Scistocloritici	40,00	20,37	23,87	537,00
Serpentiniti	10,00	3,33	2,53	3,33
Mediana UNSCEAR 2000	35	35	35	400
Valori medi per ammassi rocciosi	33*	-	34*	850**

Tabella 9 – Valori medi dell'attività specifica distinti in funzione dei litotipi (Patrucco, et al., 2005). *(Righi, et al., 2000); **(Hunter-Smith, 2012).

In **Figura 10**, **Figura 11** e **Figura 12** sono riportati i grafici dell'attività specifica degli isotopi di ²³⁸U, ²³²Th e ⁴⁰K, rilevata per i campioni prelevati nel corso della presente campagna indagini, e l'attività specifica degli stessi isotopi come illustrato nei risultati della campagna indagini condotta dal Politecnico di Torino. L'esame dei grafici permette di rilevare una sostanziale omogeneità dei valori misurati nel corso delle due campagne condotte per l'area di progetto.

4.1.1.5 Indice di attività (RP112) e Sum Index (RP122)

Al fine di verificare la rilevanza radiologica dei materiali degli ammassi rocciosi considerati, sono presi in considerazione i valori di due indici di riferimento:

- Indice di attività (I);
- Sum Index (SI).

Il primo corrisponde all'indice di attività, proposto dalla Comunità Europea (UE, 1999) al fine di valutare la possibilità di riutilizzo dei materiali di scavo come materiali per costruzione. L'indice è calcolato in base alla seguente formula:

$$I = \frac{C_{Ra} (Bq/kg)}{300 (Bq/kg)} + \frac{C_{Th} (Bq/kg)}{200 (Bq/kg)} + \frac{C_K (Bq/kg)}{3000 (Bq/kg)}$$
(eq. 1)

dove C_{Ra} è l'attività specifica del Radio espressa in Bq/kg, C_{Th} è l'attività specifica del Torio espressa in Bq/kg e C_K è l'attività specifica del Potassio espressa in Bq/kg.

Il valore dell'indice è utilizzato in funzione del criterio di dose alla popolazione. In funzione del valore dell'indice è infatti possibile valutare l'incremento della dose annuale per la popolazione in presenza dei materiali analizzati. Per valori dell'indice $\leq 0,5$ si ha in corrispondente incremento $\leq 0,3$ mSv/anno. Per valori dell'indice ≤ 1 , l'incremento della dose annuale, rispetto al fondo naturale è ≤ 1 mSv/anno (Esposito, 2002; UE, 1999).

Il Sum Index è definito dalla Commissione Europea (UE, 2001) al fine di permettere una valutazione della variazione indotta sul livello di radioattività naturale di un materiale contenente isotopi radioattivi naturali (NORM: *naturally occurring radioactive material*). L'indice è definito in modo tale da permettere di valutare se la variazione dei livelli di radioattività risulta essere superiore a 0,3 mSv/anno. Tale condizione si verifica se il valore di SI è superiore a 1.

L'indice è calcolato secondo la seguente formula:

$$\sum_{i=1}^{n} \frac{c_i}{cL_i} \le 1.0 \text{ (eq. 2)}$$

dove c_i è l'attività specifica dell'isotipo i-esimo, CL_i è il clearance level per l'isotopo *i*-esimo, n è il numero di isotopi considerati. Per il calcolo è stata considerata l'attività specifica degli isotopi 238 U, 232 Th e 40 K.

La Radiation Protection 122 fornisce per i differenti isotopi rinvenibili nel materiale considerato i corrispondenti clearance levels (CL).

Nuclides*	All materials	Wet sludges from oil and gas industry
U 238sec incl. U 235 sec**	0.5	5
U nat**	5	100
Th 230	10	100
Ra 226+	0.5	5
Pb 210+	5	100
Po 210	5	100
U 235sec ***	1	10
U 235+ ***	5	50
Pa 231	5	50
Ac 227+	1	10
Th 232sec	0.5	5
Th 232	5	100
Ra 228+	1	10
Th 228+	0.5	5
K-40	5	100

Tabella 10 – Clearance levels (Bq/g) definiti per i radioisotopi considerati dalla RP 122 Part 2 Sulla base delle CL per gli isotopi considerati, il Sum Index è calcolato come segue:

$$SI = \frac{C_{^{238}U}}{0.5} + \frac{C_{^{232}Th}}{0.5} + \frac{C_{^{40}K}}{5} \text{ (eq. 3)}$$

dove $C_{^{238}U}$, $C_{^{232}Th}$ e $C_{^{40}K}$ corrispondono alle attività specifiche dei radioisotopi analizzati nei campioni, espresse in Bq/g.

I valori dell'indice di attività calcolato per i campioni esaminati con la campagna del 2012 sono rappresentati in **Figura 13**. Nella stessa figura sono riportati i valori dello stesso indice calcolati nello studio del Politecnico di Torino (Patrucco, et al., 2005).

Tutti i campioni esaminati dal Politecnico di Torino presentano valori dell'indice di attività inferiori a 1. Per i campioni esaminati nel 2012, solo un campione, su 95 considerati, presenta un valori dell'indice I di poco superiore a 1: campione S5_C1 – I=1,31. Il campione S5_C1 appartiene alla formazione AMC (gneiss aplitici del Complesso di Ambin) ed è caratterizzato da attività specifiche del ⁴⁰K e dell'²³⁸U che risultano essere le più elevate tra tutti i campioni della stessa formazione (**Tabella 7** e **Tabella 8**). La concentrazione ⁴⁰K potrebbe essere probabilmente connessa all'elevato contenuto in mica (30%) rispetto alla media riscontrata nei campioni della stessa formazione (10%) (rif. PD2TS3C3B2010), mentre la concentrazione di ²³⁸U potrebbe essere associata ad una maggiore presenza in ossidi (8%) rispetto a quanto rilevato al tenore medio dei campioni della stessa formazione (~2%) (rif. PD2C3BTS32010).

Il campione è stato prelevato ad una profondità del sondaggio compresa tra 323,40 m e 323,58 m, rispetto alla quota di scavo prevista a 552 m dal piano campagna. I valori rilevati possono essere messi in relazione alla natura della formazione a cui appartiene il campione (gneiss aplitici dell'Ambin) che costituiscono un prodotto metamorfico di rocce granitiche (Gattiglio & Sacchi, 2006).

I valori del Sum Index calcolati per i campioni della campagna 2012 sono rappresentati in **Figura 14**. Nella stessa figura sono riportati i valori dello stesso indice definiti dal Politecnico di Torino (Patrucco, et al., 2005). Tutti i campioni esaminati presentano valori dell'indice inferiori a 1.

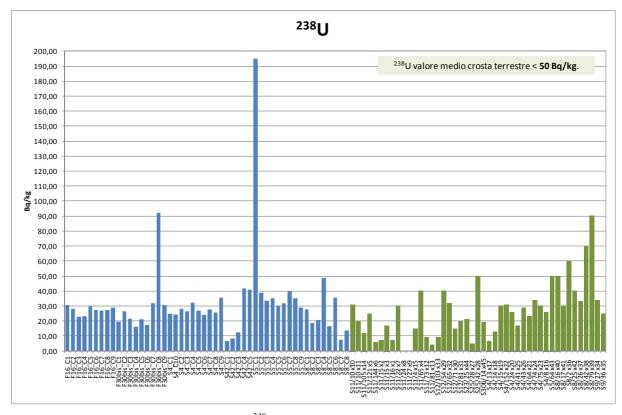


Figura 10 – Attività specifica (Bq/kg) per l'²³⁸U rilevata nei campioni analizzati nella campagna 2012 (barre blu), e nei campioni considerati nello studio del Politecnico di Torino (barre verdi).

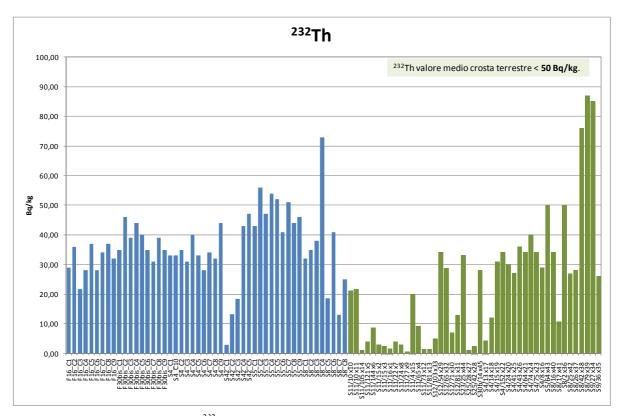
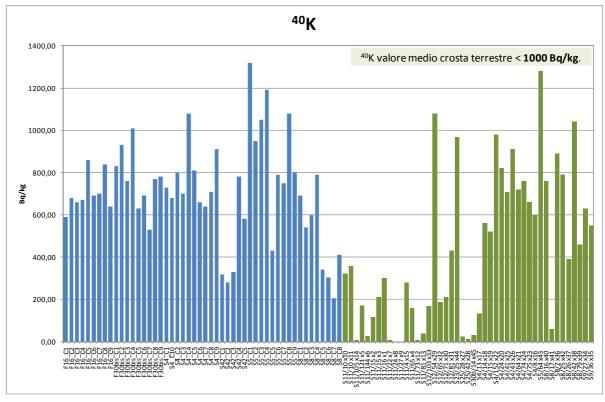



Figura 11 – Attività specifica per l'²³²Th rilevata nei campioni analizzati nella campagna 2012 (barre blu), e nei campioni considerati nello studio del Politecnico di Torino (barre verdi).

Figura 12 – Attività specifica per l'⁴⁰K rilevata nei campioni analizzati nella campagna 2012 (barre blu), e nei campioni considerati nello studio del Politecnico di Torino (barre verdi).

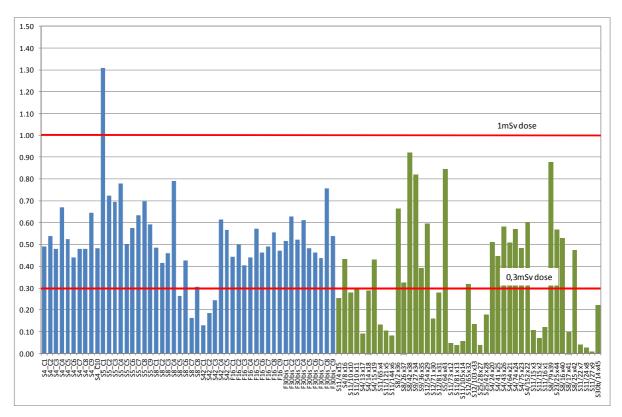


Figura 13 – Indice di attività calcolato per i campioni analizzati nella campagna 2012 (barre blu), e nei campioni considerati nello studio del Politecnico di Torino (barre verdi).

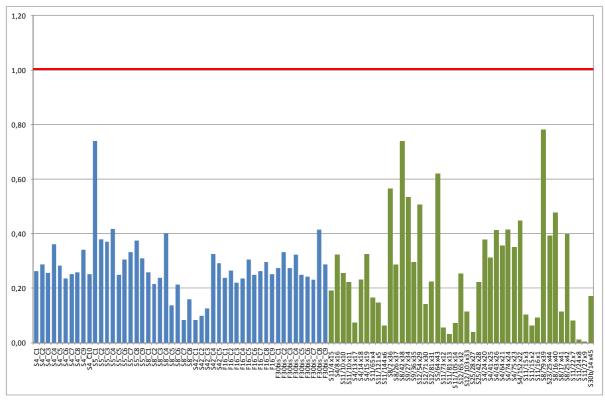


Figura 14 – Sum Index (SI) calcolato per i campioni analizzati nella campagna 2012 (barre blu), e nei campioni considerati nello studio del Politecnico di Torino (barre verdi). La linea rossa indica il limite di rilevanza radiologica, posto dalla RP 122 pari a 1.

4.1.1.6 Caratterizzazione della possibilità di rilevazione di attività specifica superiore ai tenori medi terrestri per gli isotopi naturali radioattivi

Sulla base dei risultati ottenuti, per gli ammassi rocciosi considerati, sono stati rilevati valori dell'attività specifica degli isotopi ²³⁸U, ²³²Th e ⁴⁰K confrontabili con i valori medi riportati in letteratura per i materiali naturali della crosta terrestre.

Per i campioni analizzati nel corso della campagna indagini del 2012 e per quelli considerati dallo studio del Politecnico di Torino (Patrucco, et al., 2005) i valori del Sum Index (SI) sono sempre inferiori al limite di rilevanza radiologica. I materiali prossimi o posti alla quota di scavo ed esaminati nel presente studio mostrano valori dell'indice di attività inferiori a 1 (limite per l'idoneità all'impiego come materiali da costruzione). Più in generale, su 95 campioni analizzati (di cui 50 nel presente studio e 45 nello studio del Politecnico di Torino), solo un campione, prelevato ad una profondità non corrispondente alla quota di scavo, risulta caratterizzato da un valore dell'indice superiore a 1 (campione S5_C1 I=1,31).

Sulla base di queste considerazioni viene ora definita una caratterizzazione del rischio connesso alla possibilità che le attività di scavo possano interessare porzioni di ammassi rocciosi con livelli di attività specifica del ²³⁸U, ²³²Th e ⁴⁰K superiori ai tenori medi riscontrati con le analisi condotte.

Settore	Pk da Pk a Lunghezza (m)		Lunghezza (m)	Possibilità (attività specifica > att. spec. media crosta terrestre)
	44+120	53+400	12200	Bassa
Tunnel di Base	53+400	54+830	1430	Media
	54+830	61+080	6248	Bassa
Piana di Susa*	61+080	63+870	2790	Molto bassa
Tunnel di Interconnessione	63+870	0+035	165	Bassa
1 unner di Interconnessione	0+035	1+900	1865	Bassa

Tabella 11 – Caratterizzazione del tracciato in termini di rischio di scavo in rocce con attività specifica degli isotopi naturali superiore ai valori medi dell'ammasso roccioso.* per la Piana di Susa non sono previste opere in sotterraneo.

- Pk44+120 pk53+400: lungo questo tratto sono intercettate formazioni che in base ai risultati delle analisi condotte per il presente studio e in base a quelle condotte dal Politecnico di Torino, indicano un'attività specifica degli isotopi radioattivi caratterizzata da valori confrontabili con quelli medi della crosta terrestre;
- pk53+400 pk54+830: il tratto in esame attraversa le rocce della formazione degli gneiss aplitici (AMC) del Complesso di Ambin. Sebbene su 9 campioni esaminati, solo uno risulta caratterizzato da tenori in ²³⁸U e ⁴⁰K superiori alla rispettiva attività specifica media rilevata per la formazione, per l'intero tratto di scavo si considera una possibilità media di incontrare rocce con attività specifica degli isotopi superiore a quella media rilevata per la crosta terrestre;
- pk54+830 pk61+080: lungo questo tratto sono intercettate formazioni che in base ai risultati delle analisi condotte per il presente studio e in base a quelle condotte dal Politecnico di Torino, indicano un'attività specifica degli isotopi radioattivi caratterizzata da valori confrontabili con quelli medi della crosta terrestre;
- pk61+080 pk63+870: il tracciato lungo questo tratto è all'aperto;

• pk63+870– pk1+900: lungo questo tratto sono previsti i calcemicascisti facenti parte delle coperture dell'Unità Dora Maira. Per queste formazioni la possibilità di riscontrare attività specifiche superiori alla media della crosta terrestre è considerata bassa.

4.1.2 Identificazione dei potenziali ricettori

In fase di scavo all'eventuale attraversamento di rocce con SI>1 o indice di attività>1 si accompagna la possibilità di interferenza con le seguenti matrici ambientali:

- atmosfera
- suolo
- ambiente idrico
- salute pubblica

In questo senso il modello concettuale seguito è così articolato secondo lo schema seguente.

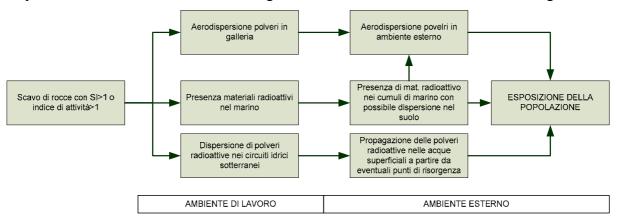


Figura 15 – Modello concettuale seguito per la definizione delle relazioni tra sorgenti e ricettori

Il modello seguito prevede che in caso di scavo in rocce contenenti minerali radioattivi debbano essere valutati i possibili impatti nell'ambiente di lavoro in sotterraneo, in assenza di misure preventive e/o mitigative. Questi impatti sono: (a) la dispersione di polveri radioattive in atmosfera, (b) la dispersione delle polveri radioattive liberate dal marino nei circuiti idrici sotterranei e (c) la presenza di marino caratterizzato da un livello di radioattività significativo. Sempre in assenza di misure preventive e/o mitigative, gli impatti individuati hanno delle ripercussioni per l'ambiente esterno: (a) propagazione delle polveri radioattive dagli ambienti di lavoro a quello esterno, (b) presenza di cumuli di marino costituito da materiale radioattivo, da cui si generano polveri radioattive che si possono liberare nell'aria o nel suolo, (c) propagazione delle polveri radioattive dai circuiti sotterranei a quelli superficiali a partire dai punti di risorgenza. Per questi ultimi impatti sono evidenti le possibili ricadute per la popolazione relativamente all'aspetto della salute pubblica.

Sulla base di queste relazioni sono definite nei paragrafi seguenti le misure di prevenzione della dispersione di polveri e materiali eventualmente risultati radiologicamente rilevanti, quindi dell'esposizione della popolazione.

4.1.3 Misure di mitigazione del rischio

Di seguito sono illustrate le misure da attivare in fase di avanzamento lavori per la mitigazione del rischio.

4.1.3.1 Presidi per la valutazione del livello di radioattività del materiale di scavo

Il livello di radioattività naturale del materiale di scavo verrà monitorato in fase di avanzamento predisponendo i seguenti presidi di rilevamento:

- **controllo preliminare allo scavo** controllo con sondaggi in avanzamento a ricoprimento totale ed esecuzione di gamma ray logging;
- **controllo al fronte di scavo** sistemi di misurazione in continuo della radioattività al fronte con contatore geiger e lampade a fluorescenza. I dati verranno giornalmente registrati per valutare eventuali scostamenti dal fondo ambientale stabilito in 0,2 microGy/h. Si prevede in tal caso l'effettuazione di più misure al giorno, della durata di 15 minuti. La soglia di allarme che genera la sospensione dei lavori ed il conseguente intervento degli organi di vigilanza è previsto tra 0,6-0,7 microGy/h, in tal caso si provvederà ad applicare gli ulteriori adempimenti previsti dalla normativa e riassunti nelle procedure di gestione della sicurezza del cantiere;
- **controllo del materiale di scavo** caratterizzazione radiometrica in spettroscopia gamma (uranio, radio, torio) con rivelatore al germanio iperpuro (HPGe) o in alternativa allo ioduro di sodio;

4.1.3.2 Presidi per il rilevamento delle variazioni del livello di radioattività ambientali per l'ambiente esterno

Il monitoraggio del livello di radioattività naturale per le differenti matrici ambientali (atmosfera e ambiente idrico) sarà monitorato predisponendo i presidi di rilevamento indicati nella tabella seguente.

Oggetto/Settore di monitoraggio	Determinazione analitica	Periodo di campionamento
Acque sotterranee	Caratterizzazione radiometrica in spettrometrica gamma particella alfa e beta totali (in funzione del superamento del limite (0,1 Bq/l per alfa totale e 1 Bq/l per beta totale) sarà eseguita la determinazione dei seguenti parametri : Radio, Uranio, Radon disciolti.	Corso d'opera Post - operam
Acque superficiali	Caratterizzazione radiometrica in spettrometrica gamma particella alfa e beta totali (in funzione del superamento del limite (0,1 Bq/l per alfa totale e 1 Bq/l per beta totale) sarà eseguita la determinazione dei seguenti parametri: Radio, Uranio, Radon disciolti.	Corso d'opera Post - operam
Recettori individuati da traffico dei mezzi di trasporto interno al cantiere	Caratterizzazione radiometrica in spettrometria gamma e conteggio delle particelle alfa sul PTS	Corso d'opera Post - operam
Deposito temporaneo del materiale presso il cantiere	Verifica periodica sul materiale con caratterizzazione radiometrica in spettroscopia gamma sul PTS e rilevazioni con contatore geiger sul materiale prima dell'avvio del materiale al deposito definitivo	Corso d'opera Post - operam
Deposito definitivo	Caratterizzazione radiometrica in spettrometrica gamma sul PTS	Corso d'opera Post - operam

Tabella 12 – Misure di monitoraggio per la valutazione del rischio radiologico

4.1.3.3 Gestione del materiale di scavo avente indice di attività superiore ai limiti dei documenti RP122 e RP112.

In presenza di rilevazioni relative al monitoraggio ambientale che segnalino il riscontro di livelli di radioattività anomali o di attività specifica degli isotopi naturali tali da determinare valori del Sum Index >1 o dell'indice di attività >1, si opererà come segue:

- confinamento del fronte mediante barriere ad acqua al fine di prevenire la dispersione di polveri eventualmente radioattive;
- il materiale di scavo sarà essere opportunamente sigillato al fronte e trasferito in discarica secondo le modalità di gestione previste per la sicurezza dei lavoratori e della popolazione.

4.2 Gestione del rischio radon

Il Radon (²²²Rn) è un gas radioattivo di origine naturale, proveniente dal decadimento del radioisotopo ²²⁶Ra (radio) che si origina, per decadimenti successivi, dal capostipite ²³⁸U. Il Radon è presente ubiquitariamente sulla Terra, sia pure in concentrazioni variabili in funzione della conformazione geologica, in quanto originato dall'uranio, a sua volta diffusamente presente in tutte le rocce che formano la crosta terrestre. La sua radioattività consiste nell'emissione di particelle α, costituite da 2 protoni e 2 neutroni, a seguito della quale l'atomo di Radon si trasforma in un altro elemento, a sua volta radioattivo. Come ogni elemento radioattivo, è caratterizzato da un tempo di dimezzamento (o emivita): per il Radon esso risulta essere pari a 3,82 giorni. Benché la sua emivita sia piuttosto breve, la produzione continua di Radon all'interno delle rocce e dei suoli che contengono Uranio, unitamente a condizioni particolari di scarsa ventilazione, possono far sì che raggiunga, in alcuni luoghi chiusi (miniere, gallerie, seminterrati, abitazioni), concentrazioni potenzialmente dannose per la salute umana. L'unità di misura della concentrazione del Radon in aria è il Becquerel al metro cubo (Bq/m³), dove il Bq corrisponde ad una disintegrazione al secondo (numero di nuclei radioattivi che decade in 1 s).

Il Radon emergente dal suolo o portato in superficie dalle acque terrestri si diffonde rapidamente nell'atmosfera, venendo a produrre concentrazioni molto basse nell'aria che respiriamo nei luoghi aperti (valutata mediamente pari a 8 Bq/m³ nelle aree continentali). Diversa è la situazione dei luoghi chiusi o sotterranei penetrati dal gas, nei quali il Radon trova ostacolo alla successiva diffusione nell'atmosfera e possono venire a formarsi concentrazioni anche molto elevate.

Il Radon è un gas non reattivo che, una volta inalato, non si deposita nei polmoni, ma viene rapidamente espulso. Gli effetti dannosi sono prodotti dai suoi discendenti radioattivi α-emittenti (²¹⁸Po e ²¹⁴Po) che, una volta inalati, si attaccano alle pareti interne dell'apparato bronchiale e qui decadono emettendo radiazioni ionizzanti che producono danni alle cellule bronco-polmonari, che nel tempo possono evolvere in neoplasie polmonari o provocare mutazioni genetiche. Sono i prodotti di decadimento del Radon i principali responsabili del rischio radiologico: tuttavia si parla, genericamente, di 'rischio Radon'. L'evidenza del rischio di tumore polmonare è un fatto scientificamente assodato: l'Agenzia Internazionale per la Ricerca sul Cancro dell'OMS ha infatti classificato il Radon e i suoi prodotti di decadimento tra le sostanze cancerogene di Gruppo 1 ("evidenza sufficiente di cancerogenicità per l'uomo") e l'esposizione al Radon è ormai riconosciuta, a livello scientifico, come una delle principali cause di tumore al polmone, dopo il fumo di sigaretta. Permangono tuttavia grosse incertezze sulle stime quantitative del rischio: allo stato attuale non esiste una soglia di sicurezza sotto la quale è dimostrato che l'esposizione non produca effetti. L'EPA (Agenzia per la Protezione Ambientale Americana) stima che la quota di tumori al polmone attribuibili

all'esposizione al Radon si aggiri intorno al 9% del totale. Per questi motivi, in molti Paesi industrializzati si è posto il problema di come affrontare questa fonte di rischio, varando norme e regolamenti.

4.2.1 Riferimenti Normativi

L'ambito della radioattività naturale è stato disciplinato per la prima volta da una norma di legge nel 2000, con l'emanazione del Decreto Legislativo n. 241 del 26 maggio 2000 (pubblicato sulla Gazzetta Ufficiale del 31/08/2000), che recepisce la Direttiva 96/29/Euratom del 13 maggio 1996 in materia di protezione sanitaria della popolazione e dei lavoratori contro i rischi derivanti dalle radiazioni ionizzanti, e costituisce un'integrazione del precedente Decreto Legislativo n. 230 del 17 marzo 1995, in materia di radiazioni ionizzanti. In tale norma, dedicata all'esposizione derivante da attività lavorative, il Radon viene trattato come la principale e più diffusa causa di esposizione alla radioattività naturale. Tale decreto richiede il controllo ed il contenimento della concentrazione di attività del Radon nell'aria nei luoghi nei quali si svolgono attività lavorative che possono esporre i lavoratori o le persone del pubblico al gas, e comprendono:

- tunnel, sottovie, catacombe, grotte, locali sotterranei o interrati;
- ogni altro ambiente di lavoro situato in zone individuate dalle Regioni come esposte ad alta attività di Radon;
- stabilimenti termali.

In particolare, in tale decreto viene fissato per i luoghi di lavoro un Livello di Azione (valore di concentrazione di attività di Radon in aria, il cui superamento richiede l'adozione di azioni di rimedio tali da ridurre la concentrazione a livelli inferiori) pari a 500 Bq/m3 medi in un anno. L'attenzione del legislatore si è rivolta anzitutto ai luoghi di lavoro interrati, dove è imposto l'obbligo di legge della misura della concentrazione media annua di Radon.

Gli ambienti confinati interrati sono quelli maggiormente soggetti al problema perché direttamente a contatto con la principale fonte di Radon, che è il suolo. Non esiste infatti un suolo privo di Radon: anche in aree in cui la concentrazione di minerali di Uranio è minima, resta elevata la presenza del Radon nei gas del suolo (tipicamente 10.000-20.000 Bq/m³). Vi sono d'altra parte particolari zone nelle quali la presenza di rocce contenenti Uranio in quantitativi superiori alla media e/o altri fattori geologici, quali ad esempio la presenza di fratture o di faglie, può causare un aumento della concentrazione nel suolo, anche in maniera considerevole. Per questo motivo, il D. Lgs. 241/2000 ha istituito l'obbligo da parte delle Regioni di individuare tali aree, caratterizzate appunto da una più elevata probabilità di avere alte concentrazioni di Radon.

L'attuale legislazione italiana non contempla le esposizioni al Radon nella abitazioni. La Comunità Europea ha indicato, attraverso una raccomandazione (90/143/EURATOM del 21/2/90), dei livelli di riferimento di concentrazione di gas radon nelle abitazioni: 400 Bq/m³ in abitazioni esistenti e 200 Bq/m³ per le nuove abitazioni.

Sulla base delle disposizioni del D.Lgs. 241/2000 "Attuazione della direttiva 96/29/EURATOM in materia di protezione sanitaria della popolazione e dei lavoratori contro i rischi derivanti dalle radiazioni ionizzanti" si prevede l'esecuzione di misure della concentrazione di gas radon nell'aria.

- Se la misura è inferiore all' 80% del livello di azione (i.e. 400 Bq/m³) l'obbligo è risolto e bisognerà ripetere la misura solo se variano le condizioni di lavoro.
- Se la misura è tra l'80% ed il 100% del livello di azione (i.e. 400 500 Bq/m³) l'obbligo si risolve con la ripetizione della misura annualmente.

- Se la misura supera il livello di azione (i.e. > 500 Bq/m³) si dovrà:
 - o Spedire agli Organi di controllo la relazione di misura.
 - o Incaricare un Esperto Qualificato per la valutazione della dose efficace assorbita dai singoli lavoratori.
 - Verifica della dose efficace.
- Se la dose efficace è inferiore a 3mSv/anno l'obbligo si risolve con la ripetizione della misura annualmente.
- Se la dose efficace è superiore o uguale a 3mSv/anno si dovrà:
 - o L'Esperto Qualificato fa la valutazione del rischio
 - o L'esercente predispone le azioni di rimedio e al termine ripete la misura.
 - o Se anche la nuova misura fornisce valori superiori a 3 mSv/anno l'esercente incarica:

Esperto Qualificato per la sorveglianza fisica.

Medico per la sorveglianza medica dei lavoratori.

Predispone ulteriori azioni di rimedio e ripete la misura.

4.2.2 Valori delle concentrazioni di gas radon in ambienti civili per la bassa Valle Susa

Il problema Radon è stato affrontato per la prima volta in modo sistematico in Piemonte all'inizio degli anni '90, quando venne eseguito un esteso programma di monitoraggio (Campagna Nazionale Radon). Ulteriori campagne di misure, ricerche e studi sono stati realizzati fino ad oggi da Arpa Piemonte, giungendo così a disporre di una vasta base dati che riguarda in particolar modo le abitazioni e le scuole, all'interno delle quali è stato calcolato il valore medio della concentrazione di Radon, mediante dosimetri passivi a tracce. L'Arpa Piemonte ha realizzato uno studio finalizzato alla realizzazione della prima mappatura delle aree piemontesi a rischio Radon (Magnoni, et al., 2009). Per la definizione di una "mappa Radon" completa per il Piemonte, partendo dalle misure sperimentali disponibili, è stato previsto un modello di correlazione tra la geolitologia e il Radon. È stato così possibile calcolare una "media litologica" (concentrazione media di Radon corrispondente ad una determinata classe litologica) per ogni generica classe, arrivando a stimare la presenza di Radon in ciascun Comune sulla base della caratterizzazione del suo territorio in classi geolitologiche. Gli indicatori scelti per la rappresentazione cartografica del Radon, che sono stati calcolati per tutti i Comuni, sono:

- il valore medio M delle concentrazioni (al piano terra), espresso in Bq/m³;
- la percentuale P_{%LR} di abitazioni eccedenti un dato livello di riferimento LR (400 Bq/m³).

Per la rappresentazione dei valori medi comunali M sono stati definiti 5 intervalli di concentrazioni, a cui corrispondono diverse soglie cromatiche:

- $M < 40 \text{ Bq/ m}^3$
- $40 \text{ Bq/m}^3 \le M < 80 \text{ Bq/m}^3$
- $80 \text{ Bq/m}^3 \le M < 120 \text{ Bq/m}^3$
- $120 \text{ Bq/m}^3 \le M < 200 \text{ Bq/m}^3$
- $M \ge 200 \text{ Bq/m}^3$

Rappresentando in maggior dettaglio i risultati regionali, sono state realizzate le mappe delle Province piemontesi relative all'indicatore M. In Figura 16 viene riportata la Carta dei valori medi comunali di Radon per la Provincia di Torino.

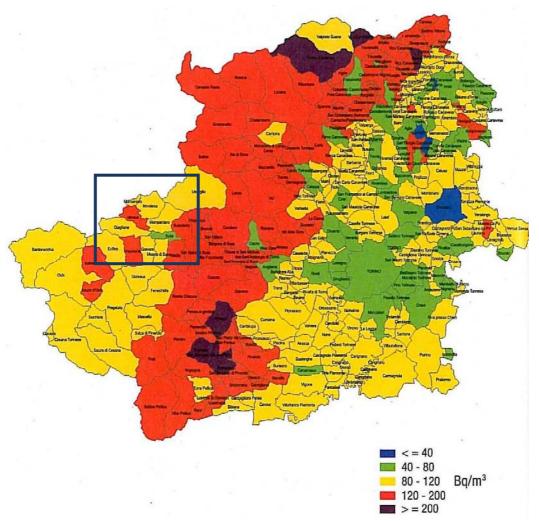


Figura 16 – Carta dei valori medi comunali della concentrazione di Radon per i comuni della Provincia di Torino. Il rettangolo indica il settore entro cui si colloca l'area di progetto.

In **Tabella 13** si riportano le medie comunali della concentrazione di Radon (M: valore medio comunale al piano terra; Mc: stima della concentrazione media per un generico locale residenziale, indipendentemente dal piano abitato) per i Comuni appartenenti all'area di studio.

Comune	M (Bq/m ³)	Mc (Bq/m³)
Bussoleno	132	112
Chiomonte	128	108
Giaglione	83	70
Gravere	120	102
Mattie	128	109
Meana di Susa	111	94
Mompantero	114	96
Susa	47	40

Comune	M (Bq/m³)	Mc (Bq/m³)
Venaus	128	108

Tabella 13 – Medie comunali della concentrazione di Radon

Alla luce di quanto stabilito dai decreti 230/95 e 241/2000, particolare attenzione va posta nei confronti della possibile dose cui incorrono i lavoratori; va garantito il rispetto dei Limiti d'Azione, che sono posti a:

- 500 Bq/m³ (concentrazione di Radon in aria in ambiente di lavoro);
- 3 mSv/y (dose da radiazione per i lavoratori addetti).

Simulazioni della fase di esercizio dell'opera (in una configurazione precedente a quella proposta in questa fase progettuale), che hanno permesso la modellizzazione della concentrazione di Radon in galleria (Zucchetti & Bonivago, 2005), indicano il superamento dei limiti previsti dalla normativa anche in presenza di basse concentrazioni di uranio nelle rocce di galleria. Le concentrazioni di uranio nell'ammasso roccioso considerate per la modellizzazione fanno riferimento a valori di campioni prelevati in superficie con concentrazione massima pari a 26,5 Bq/kg.

In riferimento alla componente in esame gli elementi di incertezza della modellizzazione proposta sono rappresentati dalla magnitudo delle sorgente emissiva (tenore in uranio delle rocce) e dalla dinamica della circolazione idrica sotterranea.

In ogni caso, lo studio evidenzia come anche in presenza di basse concentrazioni di uranio nelle rocce degli ammassi attraversati, il ricambio di aria dei tunnel (considerata la loro lunghezza ed in particolar modo il Tunnel di Base), rivesta un ruolo rilevante, in quanto una ventilazione non adeguata può determinare concentrazioni di Radon nell'aria con valori superiori ai limiti della normativa.

4.2.3 Il contesto geologico della bassa Valle Susa in relazione al rischio radon

Il tracciato delle opere in progetto, per la bassa Valle Susa, intercetta le formazioni del Complesso di Ambin, del Complesso di Clarea, della Zona a Scaglie, i depositi quaternari della valle Cenischia e le formazioni dell'Unità Piemontese.

Nel corso della campagna di caratterizzazione radiometrica degli ammassi rocciosi interessati dallo scavo del tunnel di base, oltre alla determinazione dell'attività specifica degli isotopi ²³⁸U, ²³²Th e ⁴⁰K, per i campioni analizzati è stato misurato il rateo di esalazione radon (RER). Per consentire una valutazione del tasso di emissione di gas radon del marino è stato considerato il valore misurato per il materiale frantumato espresso in Bq/kg/h. Per i campioni dei sondaggi prelevati ad una profondità confrontabile con la quota di scavo in progetto, il rateo di esalazione radon è stato misurato con riferimento al materiale intatto, espresso come Bq/m²/h.

I risultati delle analisi sono indicati nella tabella seguente.

Codice	Descrizione Campione	RER (Bq·m ⁻² ·h ⁻¹)	RER (Bq·kg ⁻¹ ·h ⁻¹)
S4_C1	Susa – Sondaggio S4 – Campione C1 – Cassetta 34 – Intervallo Campione da m 156.15 a m 156.34 – Micascisti		$0,36 \pm 0,14$
S4_C2	Susa – Sondaggio S4 – Campione C2 – Cassetta 56 – Intervallo Campione da m 216.60 a m 216.67 – Micascisti		<0,017

Codice	Descrizione Campione	RER (Bq·m ⁻² ·h ⁻¹)	RER (Bq·kg ⁻¹ ·h ⁻¹)
S4_C3	Susa – Sondaggio S4 – Campione C3 – Cassetta 86 – Intervallo Campione da m 298.79 a m 298.91 – Micascisti		$0,04 \pm 0,03$
S4_C4	Susa – Sondaggio S4 – Campione C4 – Cassetta 122 – Intervallo Campione da m 397.85 a m 398.00 – Micascisti		$0,04 \pm 0,03$
S4_C5	Susa – Sondaggio S4 – Campione C5 – Cassetta 144 – Intervallo Campione da m 460.40 a m 460.52 – Micascisti		$0,07 \pm 0,04$
S4_C6	Susa – Sondaggio S4 – Campione C6 – Cassetta 164 – Intervallo Campione da m 533.40 a m 533.53 – Micascisti		<0,019
S4_C7	Susa – Sondaggio S4 – Campione C7 – Cassetta 170 – Intervallo Campione da m 557.36 a m 557.57 – Micascisti	$0,34 \pm 0,24$	<0,009(***)
S4_C8	Susa – Sondaggio S4 – Campione C8 – Cassetta 174 – Intervallo Campione da m 572.35 a m 572.47 – Micascisti		$0,05 \pm 0,03$
S4_C9	Susa – Sondaggio S4 – Campione C9 – Cassetta 186 – Intervallo Campione da m 617.80 a m 618.02 – Micascisti±		$0,09 \pm 0,05$
S4_C10	Susa – Sondaggio S4 – Campione C10 – Cassetta 204 – Intervallo Campione da m 686.85 a m 686.99 – Micascisti		<0,016
S5_C1	Susa – Sondaggio S5 – Campione C1 – Cassetta 3 – Intervallo Campione da m 323.40 a m 323.58 – Gneiss Aplitici		$0,08 \pm 0,03$
S5_C2	Susa – Sondaggio S5 – Campione C2 – Cassetta 50 – Intervallo Campione da m 454.07 a m 454.17 – Facies intermedia tra gneiss aplitici e gneiss s.s.		<0,013
S5_C3	Susa – Sondaggio S5 – Campione C3 – Cassetta 94 – Intervallo Campione da m 606.65 a m 606.86 – Gneiss Aplitici		<0,02
S5_C4	Susa – Sondaggio S5 – Campione C4 – Cassetta 123 – Intervallo Campione da m 719.20 a m 719.32 – Facies gneissica		<0,06
S5_C5	Susa – Sondaggio S5 – Campione C5 – Cassetta 136 – Intervallo Campione da m 773.69 a m 773.85 – Facies intermedia tra gneiss aplitici e gneiss s.s. Con livelli milonitici		0.08 ± 0.03
S5_C6	Susa – Sondaggio S5 – Campione C6 – Cassetta 146 – Intervallo Campione da m 809.95 a m 810.13 – Gneiss Aplitici più ricchi in mica		0.04 ± 0.03
S5_C7	Susa – Sondaggio S5 – Campione C7 – Cassetta 156 – Intervallo Campione da m 858.35 a m 858.49 – Micascisti		<0,014
S5_C8	Susa – Sondaggio S5 – Campione C8 – Cassetta 163 – Intervallo Campione da m 893.27 a m 893.45 – Facies intermedia tra gneiss aplitici e gneiss s.s.	$0,28 \pm 0,12$	0,004(***)
S5_C9	Susa – Sondaggio S5 – Campione C9 – Cassetta 166 – Intervallo Campione da m 907.75 a m 907.95 – Facies intermedia tra gneiss aplitici e gneiss s.s.		<0,008
S8_C1	Susa – Sondaggio S8 – Campione C1 – Cassetta 37 – Intervallo Campione da m 180.00 a m 180.18 – Micascisti/gneiss albitici		0.06 ± 0.03
S8_C2	Susa – Sondaggio S8 – Campione C2 – Cassetta 50 – Intervallo Campione da m 250.30 a m 250.52 – Calcescisti	$0,20 \pm 0,14$	0,006(***)
S8_C3	Susa – Sondaggio S8 – Campione C3 – Cassetta 68 – Intervallo Campione da m 350.10 a m 350.28 – Calcescisti		$0,014 \pm 0,007$
S8_C4	Susa – Sondaggio S8 – Campione C4 – Cassetta 78 – Intervallo Campione da m 404.90 a m 405.02 – Micascisti		$0,07 \pm 0,04$
S8_C5	Susa – Sondaggio S8 – Campione C5 – Cassetta 84 – Intervallo Campione da m 437.90 a m 438.00 – Calcescisti		$0,05 \pm 0,03$
S8_C6	Susa – Sondaggio S8 – Campione C6 – Cassetta 88 – Intervallo Campione da m 460.60 a m 460.73 – Micascisti cloritici		0.04 ± 0.02

Codice	Descrizione Campione	RER (Bq·m ⁻² ·h ⁻¹)	RER (Bq·kg ⁻¹ ·h ⁻¹)
S8_C7	Susa – Sondaggio S8 – Campione C7 – Cassetta 93 – Intervallo Campione da m 489.00 a m 489.20 – Calcescisti		$0,10 \pm 0,04$
S8_C8	Susa – Sondaggio S8 – Campione C8 – Cassetta 96 – Intervallo Campione da m 506.00 a m 506.16 – Calcescisti		$0,06 \pm 0,03$
S42_C1	Susa – Sondaggio S42 – Campione C1 – Cassetta 19 – Intervallo Campione da m 96.00 a m 96.13 – Gneiss quarzitici		0.03 ± 0.02
S42_C2	Susa – Sondaggio S42 – Campione C2 – Cassetta 46 – Intervallo Campione da m 288.00 a m 288.18 – Calcescisti	0.9 ± 0.4	0,02(***)
S42_C3	Susa – Sondaggio S42 – Campione C3 – Cassetta 54 – Intervallo Campione da m 352.00 a m 352.13 – Calcescistii		0.05 ± 0.03
S42_C4	Susa – Sondaggio S42 – Campione C4 – Cassetta 60 – Intervallo Campione da m 400.00 a m 400.16 – Micascisti		$0,015 \pm 0,008$
S42_C5	Susa – Sondaggio S42 – Campione C5 – Cassetta 65 – Intervallo Campione da m 440.00 a m 440.23 – Calcescisti		$0,04 \pm 0,02$
F16_C1	Modane – Sondaggio F16 – Campione C1 – Cassetta 20 – Intervallo Campione da m 1118.95 a m 1119.19 – Micascisti listati con pieghe		$0,17 \pm 0,07$
F16_C2	Modane – Sondaggio F16 – Campione C2 – Cassetta 28 – Intervallo Campione da m 1157.75 a m 1158.04 – Micascisti listati		$0,32 \pm 0,18$
F16_C3	Modane – Sondaggio F16 – Campione C3 – Cassetta 40 – Intervallo Campione da m 1217.25 a m 1217.53 – Micascisti listati		$0,04 \pm 0,02$
F16_C4	Modane – Sondaggio F16 – Campione C4 – Cassetta 52 – Intervallo Campione da m 1275.50 a m 1275.74 – Micascisti listati		<0,05
F16_C5	Modane – Sondaggio F16 – Campione C5 – Cassetta 62 – Intervallo Campione da m 1325.15 a m 1325.36 – Micascisti listati con pieghe		<0,04
F16_C6	Modane – Sondaggio F16 – Campione C6 – Cassetta 72 – Intervallo Campione da m 1375.20 a m 1375.46 – Micascisti listati		<0,03
F16_C7	Modane – Sondaggio F16 – Campione C7 – Cassetta 81 – Intervallo Campione da m 1418.40 a m 1418.64 – Micascisti listati		$0,15 \pm 0,09$
F16_C8	Modane – Sondaggio F16 – Campione C8 – Cassetta 90 – Intervallo Campione da m 1462.85 a m 1463.07 – Micascisti listati	<0,2	<0,006(***)
F16_C9	Modane – Sondaggio F16 – Campione C9 – Cassetta 99 – Intervallo Campione da m 1506.90 a m 1507.20 – Micascisti listati leggermente grafitici		$0,04 \pm 0,02$
F30bis_C1	Modane – Sondaggio F30bis – Campione C1 – Cassetta 149 – Intervallo Campione da m 727.90 a m 728.12 – Micascisti quarzosi		$0,018 \pm 0,010$
F30bis_C2	Modane – Sondaggio F30bis – Campione C2 – Cassetta 179 – Intervallo Campione da m 843.30 a m 843.47 – Micascisti quarzosi		$0,021 \pm 0,009$
F30bis_C3	Modane – Sondaggio F30bis – Campione C3 – Cassetta 197 – Intervallo Campione da m 912.60 a m 912.76 – Micascisti quarzosi		$0,17 \pm 0,06$
F30bis_C4	Modane – Sondaggio F30bis – Campione C4 – Cassetta 219 – Intervallo Campione da m 999.90 a m 1000.09 – Micascisti quarzosi a clorite		0.08 ± 0.05
F30bis_C5	Modane – Sondaggio F30bis – Campione C5 – Cassetta 236 – Intervallo Campione da m 1085.60 a m 1082.90 – Micascisti quarzosi a clorite		$0,15 \pm 0,06$
F30bis_C6	Modane – Sondaggio F30bis – Campione C6 – Cassetta 252 – Intervallo Campione da m 1159.40 a m 1159.76 – Micascisti a quarzo e clorite		0.06 ± 0.03
F30bis_C7	Modane – Sondaggio F30bis – Campione C7 – Cassetta 275 – Intervallo Campione da m 1269.75 a m 1269.97 – Micascisti a quarzo e clorite con talco		$0,008 \pm 0,003$

Codice	Descrizione Campione	RER (Bq·m ⁻² ·h ⁻¹)	RER (Bq·kg ⁻¹ ·h ⁻¹)
F30bis_C8	Modane – Sondaggio F30bis – Campione C8 – Cassetta 287 – Intervallo Campione da m 1328.20 a m 1328.38 – Micascisti a quarzo e clorite	4± 4	0,06(***)
F30bis_C9	Modane – Sondaggio F30bis – Campione C9 – Cassetta 299 – Intervallo Campione da m 1386.45 a m 1386.58 – Quarzomicascisti (CLR)		$0,06 \pm 0,04$

Tabella 14 - Valori del Rateo di esalazione radon per i campioni considerati nella campagna di indagini del 2012. (***) RER indicativo. Per l'ubicazione dei sondaggi si faccia riferimento alle figure del par. 4.1.1.1.

Nella tabella successiva sono riportati i valori medi, la deviazione standard ed i valori massimo e minino per il RER (sul materiale frantumato) riferita ai campioni distinti per unità litologica.

Formazione	Paramtero	RER (Bq/kg/h)
	Media	0,035
	Dev.st	0,031
AMC	Min	0,004
	Max	0,080
	N campioni	9
	Media	0,083
	Dev.st	0,064
AMD	Min	0,018
	Max	0,170
	N campioni	6
	Media	0,077
	Dev.st	0,095
CL	Min	0,006
	Max	0,360
	N campioni	22
	Media	0,042
	Dev.st	0,036
GCC	Min	0,006
	Max	0,100
	N campioni	6
	Media	0,044
	Dev.st	0,018
GCK	Min	0,015
	Max	0,070
	N campioni	7

Tabella 15 - Sintesi dei valori del rateo di esalazione radon rilevati per i campioni esaminati distinti per unità litologica.

Con riferimento ai litotipi intercettati dal tracciato del Tunnel di Base, sono rilevati valori di RER maggiori per le rocce del Complesso di Clarea (CL), di parte del Complesso di Ambin (AMD); per li gneiss aplitici (AMC) del Complesso di Ambin e per le rocce (GCC e GCK) dell'Unità Piemontese e di buona parte della Zona a Scaglie, il tasso di emissione è inferiore. Con riferimento al primo gruppo di rocce è da osservare come il valore medio del RER risulti essere circa 0,08 Bq/kg/h (rispettivamente 0,08 Bq/kg/h per la formazione CL e 0,07 Bq/kg/h per la formazione AMD), mentre il secondo gruppo si caratterizza per un valore medio di

circa 0,004 Bq/kg/h. In tutti i gruppi si osserva un grado di variazione ampio, con deviazione standard dei gruppi considerati spesso di poco inferiore al valore della media.

Indipendentemente dall'attività specifica dei radioisotopi (par. 4.1), 1'88% dei campioni analizzati si caratterizza per un valore del RER inferiore a 0,1 Bq/kg/h. Solo 6 campioni delle formazioni AMD (sondaggio F30bis lato Francia) e CL (sondaggio F16 lato Francia) presentano un valore compreso tra 0,1 Bq/kg/h e 0,36 Bq/kg/h (**Figura 17**).

Per confronto, nella figura seguente, sono riportati i risultati della misurazione del RER per alcuni materiali lapidei naturali (Righi, et al., 2006), per i quali sono stati rilevati valori compresi tra 0,007 Bq/kg/h e 0,65 Bq/kg/h. Tali valori sono confrontabili con quelli registrati per i campioni analizzati nel presente studio (valori compresi tra 0,004 Bq/kg/h e 0,36 Bq/kg/h).

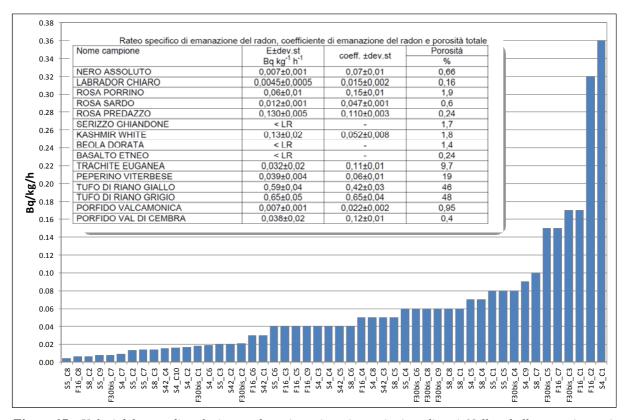


Figura 17 – Valori del rateo di esalazione radon misurati per i campioni analizzati. Nella tabella sono riportati i valori del RER per alcuni materiali lapidei naturali (Righi, et al., 2006).

Nella tabella seguente sono riportati i valori di RER riferiti ai campioni analizzati senza preliminare frantumazione. I valori misurati son confrontabili con misure effettuate su materiali lapidei quali i graniti impiegati come pietre ornamentali (Walley El-Dine, et al., 2001; Anjos, et al., 2011).

Formazione	Campione	Bq·m ⁻² ·h ⁻¹	Formazione	Campione	Bq·m ⁻² ·h ⁻¹
CL	S4_C7	0.34 ± 0.24	GCC	S42_C2	0.9 ± 0.4
AMC	S5_C8	0.28 ± 0.12	CL	F16_C8	< 0.2
GCC	S8 C2	0.20 ± 0.14	CL	F30bis C8	4± 4

Tabella 16 – Rateo di esalazione radon per i campioni analizzati senza preliminare frantumazione (Bq/m²/h) e relativo indice di attività calcolato secondo quanto previsto dalla RP 112 (UE, 1999).

4.2.3.1 I dati del monitoraggio delle gallerie dell'impianto idroelettrico di Pont Ventoux

L'attività di monitoraggio dei livelli di radon in galleria nel corso dell'avanzamento dei lavori di realizzazione dell'Impianto Idroelettrico di Pont Ventoux (comune di Oulx) è stata realizzata nel corso degli anni compresi tra il 1998 ed il 1999 (Verdelocco, et al., 2000).

L'impianto è composto da una traversa ed un'opera di presa realizzata lungo la sponda in sinistra idrografica del fiume Dora Riparia, a Pont Ventoux. Le acque derivate passano attraverso una condotta a pelo libero in sotterraneo che collega l'opera di presa con il bacino serbatoio in Val Clarea. Da qui, attraverso un sistema di condotte forzate in sotterraneo, l'acqua arriva alle turbine della centrale in caverna di Venaus, per poi essere restituita al fiume Dora Maira all'altezza di Susa, per mezzo di un ultimo tratto di condotta in sotterraneo. Nel tratto a monte della centrale, le eventuali sovrappressioni sono compensate grazie alla presenza di un pozzo piezometrico. La condotta a pelo libero è stata realizzata a partire da una finestra di accesso all'altezza della frazione Deveys, nel comune di Exilles (finestra F2). La condotta in pressione tra il serbatoio in Val Clarea e la centrale è stata realizzata a partire da un'altra finestra di accesso (finestra F4). L'accesso al canale derivatore a valle del pozzo piezometrico è garantito da un'ultima finestra di accesso (finestra F5) (**Figura 18**).

Lo scavo della condotta di derivazione e della finestra F2 è avvenuto prevalentemente nelle rocce del Complesso di Ambin e di Clarea. Lo scavo della condotta forzata ha interessato le rocce del Complesso di Ambin, di Clarea e della Zona a Scaglie. La centrale e la condotta di restituzione sono state realizzate all'interno della Zona a Scaglie.

Nel 1998, nella fase di corso d'opera, l'Arpa Piemonte ha condotto un'attività di monitoraggio finalizzata a verificare le concentrazioni di gas radon in galleria e nelle acque di venuta, procedendo al contempo alla caratterizzazione radiometrica di alcuni tratti degli ammassi rocciosi.

Le ispezioni hanno interessato le gallerie del sito di realizzazione della centrale elettrica, la finestra F4, la finestra F2 e la condotta forzata tra il serbatoio in Val Clarea.

Nel corso di questa prima campagna è stato rilevato un rateo di dose giornaliero con valori entro i limiti di legge. Per le rocce esaminate, l'attività specifica per la serie dell'Uranio è risultata compresa tra 17,5 Bq/kg e 26,5 Bq/kg, per la serie del Torio sono stati rilevati valori compresi tra 23,9 Bq/kg e 31,9 Bq/kg e per il ⁴⁰K, valori compresi tra 611 Bq/kg e 836 Bq/kg. Per l'acqua l'attività specifica per la serie dell'Uranio è risultata compresa tra 2,6 Bq/l e 21 Bq/l, per la serie del Torio sono stati rilevati valori compresi tra 0,39 Bq/l e 0,5 Bq/l e per il ⁴⁰K, valori compresi tra 10,5 Bq/l e 12,4 Bq/l. Le misure della concentrazione di radon hanno indicato livelli compresi tra 50 Bq/m³ (galleria Val Clarea) e 675 Bq/m³ (galleria di accesso alla centrale). In un caso, a sistema di ventilazione spento, la concentrazione di radon è risultata pari a 3565 Bq/m³ (finestra 2).

Sempre nel 1998 le misure effettuate dal servizio di fisica sanitaria dell'azienda Asl 9 di Ivrea presso la finestra 4, la finestra 2 e la galleria di accesso alla centrale in caverna hanno fornito valori di concentrazione del radon, dell'attività specifica degli ammassi rocciosi e dell'acqua. L'attività specifica del ²¹⁴Pb è risultata pari a 29,2 Bq/kg e quella del ²¹⁴Bi pari a 22,9 Bq/kg (finestra 2). Per l'acqua l'attività dei due isotopi è risultata rispettivamente pari a 14,1÷20,5 Bq/l e 14÷20,3 Bq/l. Per la finestra 4 i valori per l'acqua sono stati di 25,2 Bq/l, per il ²¹⁴Pb, e di 22 Bq/l per il ²¹⁴Bi. Le concentrazioni di gas radon rilevate lungo la finestra 2 sono risultate comprese tra 6361 Bq/m³ e 2934 Bq/m³, lungo la finestra 4 sono state rilevate concentrazioni comprese tra 375 Bq/m³ e 88 Bq/m³. Nella galleria di fuga dalla centrale in caverna, i valori

sono risultati compresi tra 618 Bq/m³ e 367 Bq/m³. Nella galleria di accesso alla centrale in caverna in valori sono risultati sempre <18 Bq/m³.

A seguito di queste rilevazioni è stato predisposto un sistema di monitoraggio della radiazione γ per le gallerie in fase di realizzazione. Per quest'attività sono definiti due livelli di allarme: livello di preallarme L1 $(0.6\mu Gy/h)$ che comporta l'adozione di particolari precauzioni per il personale e la gestione del materiale di scavo; livello di allarme L2 $(3.7~\mu Gy/h)$, che corrisponde all'interruzione dei lavori, la chiusura delle gallerie con allertamento delle autorità di controllo.

In fase di avanzamento lavori è stata condotta una terza attività di monitoraggio che ha permesso la rilevazione dei seguenti valori medi di concentrazione del radon ottenute dalle misure istantanee (per maggiori dettagli sulle misurazioni si rimanda al rapporto del monitoraggio citato):

• Giugno 1998

- 1. Galleria di accesso alla centrale: prima misura 11687 Bq/m³ (misura al fronte di scavo, pk815, a lavori sospesi per la presenza di una venuta d'acqua di 300l/s e con ventilazione spenta. I valori sono diminuiti spostandosi nel cunicolo di calotta della centrale in caverna e alla pk540); seconda misura 980 Bq/m³, (in prossimità del fronte di scavo pk815) e 434 Bq/m³ (alla pk540 e con ventilazione attiva);
- 2. Condotta di restituzione in Val Clarea: 177 Bq/m³ (pk165, misura a 13 m dal fronte di scavo con ventilazione spenta);
- 3. Finestra F4: 160 Bq/m³ (pk4531, misura a 40 m dal fronte di scavo con ventilazione accesa);
- 4. Finestra F2: 984 Bq/m³ (misure a 7 m dal fronte di scavo posto alla pk2715, pk1900, pk950 con ventilazione accesa).

• Luglio 1998

- 1. Galleria di accesso alla centrale: 736 Bq/m³, (misure al fronte di scavo pk815, pk540 e nel cunicolo di calotta caverna a ventilazione attiva);
- 2. Galleria di accesso alla centrale: 485 Bq/m³ (misura alla pk540 e misura al cunicolo di calotta della centrale in caverna);
- 3. Condotta di restituzione in Val Clarea: 195 Bq/m³ (misura alla pk165);
- 4. Finestra F4: 656 Bq/m³ (misura al fronte di scavo);
- 5. Finestra F2: prima misura 6346 Bq/m³ (misura a 7 m dal fronte di scavo, posto alla pk2715, a ventilazione spenta); seconda misura 98 Bq/m³ (misura a 7 m dal fronte di scavo, posto alla pk2715, a ventilazione attiva);

• settembre 1998

- 1. Galleria di accesso alla centrale: 1076 Bq/m³ (misure al fronte di scavo pk847), 715 Bq/m³ (misure alla pk540), 368 Bq/m³ (misure nel cunicolo di calotta caverna);
- 2. Condotta di restituzione in Val Clarea: 128 Bq/m³ (fronte di scavo a ventilazione attiva);
- 3. Finestra F2: 210 Bq/m³ (misura a 7 m dal fronte di scavo, posto alla pk2715, a ventilazione attiva).

• novembre 1998

- 1. Galleria di accesso alla centrale: 1465 Bq/m³ (misure al fronte di scavo, pk857), 1598 Bq/m³ (misure alla pk540), 376 Bq/m³ (misure nel cunicolo di calotta caverna);
- 2. Condotta di restituzione in Val Clarea: 52 Bg/m³ (misura alla pk1923);
- 3. Finestra F2: 108 Bg/m³ (misura a 15 m dal fronte di scavo, a ventilazione attiva);
- 4. Finestra F5: 31 Bq/m³ (misura alla pk212);

• gennaio 1999

- 1. Galleria di accesso alla centrale: 105 Bq/m³ (misure al fronte di scavo), 42 Bq/m³ (misure nel cunicolo di calotta caverna);
- 2. Condotta di restituzione in Val Clarea: 43 Bq/m³ (fronte di scavo);
- 3. Finestra F2: 97 Bq/m³ (misura a 15 m dal fronte di scavo);
- 4. Finestra F5: 35 Bq/m³ (misura ai fronti di scavo);
- 5. Galleria fondo diga di Susa: 60 Bq/m³ (misura al fronte di scavo, pk60).

• febbraio 1999

- 4. Galleria di accesso alla centrale: 25 Bq/m³ (misure al fronte di scavo), 25 Bq/m³ (misure nel cunicolo di calotta caverna);
- 5. Condotta di restituzione in Val Clarea: 21 Bg/m³ (fronte di scavo);
- 6. Finestra F2: 132 Bq/m³ (misura a 15 m dal fronte di scavo);
- 7. Finestra F5: 40 Bg/m³ (misura ai fronti di scavo);
- 1. Galleria fondo diga di Susa: 71 Bq/m³ (misura al fronte di scavo, pk60).
- 2. Pozzo piezometrico di monte: 26 Bq/m³ (misura a fondo pozzo, 30 m di profondità).

maggio 1999

- 3. Galleria di accesso alla centrale: 84 Bq/m³ (misure al fronte di scavo, pk 1179), 126 Bq/m³ (misure nel cunicolo di calotta caverna);
- 4. Condotta di restituzione in Val Clarea: 32 Bq/m³ (fronte di scavo);
- 5. Finestra F2: 91 Bq/m³ (misura a 15 m dal fronte di scavo);
- 6. Finestra F5: 18 Bq/m³ (misura al fronte di scavo, pk280);
- 7. Pozzo piezometrico di monte: 45 Bq/m³ (misura a fondo pozzo, 30 m di profondità).

• luglio 1999

- 1. Galleria di accesso alla centrale: 811 Bq/m3 (misura con dosimetro passivo posto al fronte di scavo e valutata per un periodo di esposizione di 10 settimane, pk 1179), 196 Bq/m3 (misura con dosimetro passivo posto nel cunicolo di calotta caverna e valutata per un periodo di esposizione di 10 settimane);
- 2. Condotta di restituzione in Val Clarea: 389 Bq/m3 (misura con dosimetro passivo posto al fronte di scavo e valutata per un periodo di esposizione di 10 settimane);
- 3. Finestra F2: 212 Bg/m3 (misura a 15 m dal fronte di scavo);

- 4. Finestra F5: 192 Bq/m3 (misura con dosimetro passivo posto al fronte di scavo e valutata per un periodo di esposizione di 10 settimane);
- 5. Pozzo piezometrico di monte: 322 Bq/m3 (misura a fondo pozzo, 50 m di profondità);
- 6. Centrale in caverna: 135 Bq/m3;
- 7. Galleria di restituzione Susa: 15 Bq/m3 (misura al fronte di scavo, pk250);
- 8. Galleria di adduzione Nodo Clarea: 218 Bq/m³ (misura al fronte di scavo).
- febbraio 2000
- 1. Finestra F2: 107 Bq/m³ (misura nel by-pass);
- 2. Centrale in caverna: 73 Bq/m³;
- 3. Galleria di restituzione Susa: 97 Bq/m³ (misura al fronte di scavo, pk250);
- 4. Galleria di restituzione Venaus: 61 Bq/m³ (misura al fronte di scavo, pk485);
- 5. Galleria di adduzione Nodo Clarea: 33 Bq/m³ (misura al fronte di scavo);
- 6. Condotta di derivazione a pelo libero: 279 Bq/m³ (misura alla pk279).

Le conclusioni del rapporto di monitoraggio sottolineano l'importanza del corretto funzionamento dei sistemi di ventilazione in galleria, poiché in presenza di ventilazione attiva i livelli di concentrazione sono stati rilevati sempre al di sotto dei limiti di legge, mentre in caso di assenza di ventilazione, le misure effettuate per la galleria di accesso alla centrale e lungo la finestra F2 hanno fornito valori di concentrazione rispettivamente superiori a 10000 Bq/m³ e 6000 Bq/m³. Le misurazione delle radiazioni γ non sono risultate direttamente correlabili alla concentrazione di gas radon, la cui sorgente è costituita dagli ammassi rocciosi. Dalle analisi condotte l'attività specifica degli isotopi ²³⁸U e ²³²Th non è risultata difforme dai valori medi della crosta terrestre (le analisi condotte hanno fornito i seguenti intervalli: ²³⁸U 26,8÷47 Bq/kg e ²³²Th 20÷43 Bq/kg). La coincidenza del rilevamento di alte concentrazioni di radon con la presenza di importanti venute d'acqua è indice, secondo gli autori del rapporto, di una correlazione tra i meccanismi di trasporto del gas e la circolazione idrica sotterranea associata alle discontinuità degli ammassi rocciosi.

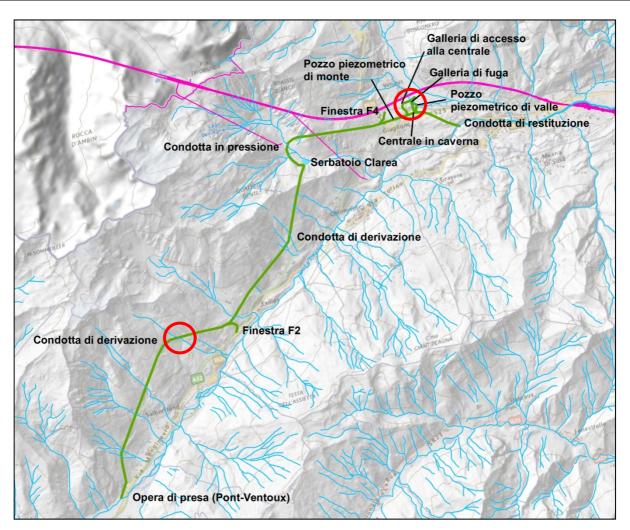


Figura 18 – Tracciato delle opere in sotterraneo dell'impianto di idroelettrico di Pont-Ventoux (linee in verde). In fucsia è rappresentato il tracciato delle opere in progetto per la NLTL (figura non in scala). I cerchi in rosso indicano i settori per i quali i dati del monitoraggio hanno evidenziato, in condizioni di ventilazione spenta, i valori maggiori di concentrazione del gas radon.

4.2.3.2 Caratterizzazione della suscettibilità all'emissione di gas radon lungo il tracciato

Sulla base dei dati sperimentali ottenuti dalle analisi di laboratorio eseguite, unitamente ai dati pregressi, relativi alle attività di monitoraggio durante i lavori di realizzazione dell'impianto di Pont-Ventoux, viene presentata una caratterizzazione del tracciato per i tratti in sotterraneo. Per ciascuna tratta omogenea è definita la propensione alla generazione di elevate concentrazioni di gas radon in galleria.

I criteri adottati per la definizione delle tratte sono i seguenti:

1) natura degli ammassi rocciosi attraversati: il rateo di esalazione radon sul materiale frantumato permette, a livello qualitativo, una distinzione delle formazioni analizzate in gruppi più o meno emissivi. In base a questo parametro sono stati rilevati valori del RER più alti (rispetto al totale del materiale analizzato) per alcuni campioni prelevati dai sondaggi F16 ed F30bis. Mediamente i campioni delle formazioni CL e AMD presentano un valore medio del RER più elevato delle altre formazioni. Le rocce ultrabasiche e i paragniess del tratto del Tunnel di Interconnessione sono considerati come caratterizzati da un rateo di esalazione radon basso in considerazione del tenore in isotopi radioattivi (Magnoni, et al., 2009; Patrucco, et al., 2005);

- 2) condizioni di fratturazione attese per l'ammasso roccioso: il grado di fratturazione dell'ammasso roccioso ne condiziona la permeabilità e quindi la possibilità di diffusione del gas radon in ambiente sotterraneo. All'aumentare di questo parametro, aumenta di conseguenza la possibilità che in fase di scavo, l'intercettazione di faglie o porzioni molto fratturate possa coincidere con l'accumulo di gas radon nella galleria con concentrazioni rilevanti;
- 3) Grado di permeabilità: considerata come permeabilità primaria per porosità o secondaria per fratturazione;
- 4) Probabilità di occorrenza di venute d'acqua rilevanti: le acque di falda possono essere caratterizzate da elevati livelli di concentrazione di radon disciolto e pertanto la presenza di venute significative può anch'essa determinare un aumento della concentrazione del radon in galleria.

La parametrizzazione dei criteri definiti è stata condotta sulla base della caratterizzazione geologica – idrogeologica del tracciato (rif. PD2TS3C3B0110, PD2TS3C3B0126) Sulla base dei criteri definiti viene proposta la seguente tabella di valutazione della suscettibilità di emissione di gas radon in fase di avanzamento dello scavo.

Settore	Pk da	Pk a	Lunghezza (m)	Suscettibilità Emissione Radon (SER)
	41+120	41+520	400	Media
	41+520	44+070	2550	Bassa
	44+070	44+120	50	Media
	44+120	47+100	2980	Bassa
	47+100	50+100	3000	Alta
	50+100	51+200	1100	Alta
	51+200	52+040	840	Media
T	52+040	53+550	1510	Bassa
Tunnel di Base	53+550	54+950	1400	Bassa
	54+950	56+300	1350	Alta
	56+300	57+100	800	Media
	57+100	57+760	660	Bassa
	57+760	57+820	60	Media
	57+820	60+580	2760	Bassa
	60+580	60+620	40	Alta
	60+620	61+080	460	Bassa
Piana di Susa*	61+080	63+870	2790	Molto bassa
m 11'T /	63+870	0+240	370	Bassa
Tunnel di Interconnessione	0+240	1+900	1900	Media

Tabella 17 –Livelli di suscettibilità all'emissione di gas radon per le differenti tratte del tracciato in progetto. .* per la Piana di Susa non sono previste opere in sotterraneo.

Di seguito sono indicate le caratteristiche proprie di ciascuna tratta:

• pk41+120 - pk41+520: il grado di permeabilità dell'ammasso roccioso è mediamente basso; la presenza di zone di faglia determina un incremento del livello di

- fratturazione a cui è associata anche la possibilità di venute d'acqua con probabilità media (SER = media);
- pk41+520 pk44+070: rispetto al precedente, per questo tratto, caratterizzato da permeabilità molto bassa, è atteso anche un minor livello di fratturazione, con conseguente riduzione della permeabilità e della possibilità di venute d'acqua (SER = bassa);
- pk44+070-pk44+120: in un contesto di bassa permeabilità dell'ammasso roccioso, la presenza di zone di faglia determina un incremento del livello di fratturazione. La possibilità di venute d'acqua è comunque bassa (SER = media);
- pk44+120-pk47+100: l'ammasso roccioso è caratterizzato da un grado di permeabilità molto basso, così come il possibile incremento della stessa per aumento del grado di fratturazione. La possibilità di venute d'acqua è indicata come bassa (SER = bassa);
- pk47+100-pk50+100: rispetto al precedente, per questo tratto è atteso un incremento della permeabilità accompagnato dal possibile aumento della fratturazione a cui si associa la possibilità alta di venute d'acqua (SER = alta);
- pk50+100-pk51+200: le condizioni di permeabilità e la possibilità di incremento della stessa per fratturazione sono simili a quelle del tratto precedente. Anche per questa sezione la possibilità di venute d'acqua è alta (SER = alta);
- pk51+200-pk52+040: rispetto al precedente, per questo tratto si registra un minor grado di permeabilità così come sono minori le possibilità di incremento della stessa per un aumento del grado di fratturazione. Per questo tratto, nel caso di condizioni di maggior fratturazione e permeabilità, la possibilità di venute d'acqua è comunque alta (SER = media);
- pk52+040-pk53+550: le condizioni di permeabilità e fratturazione dell'ammasso roccioso sono simili a quelle attese per il tratto precedente. Lungo il tratto in esame la possibilità di venute d'acqua è però bassa (SR = bassa);
- pk53+550-pk54+950: le condizioni geomeccaniche e idrogeologiche di questo tratto sono simili a quelle del tratto precedente. Inoltre le formazioni interessate dallo scavo in sotterraneo sono potenzialmente meno emissive delle precedenti (SER = bassa);
- pk54+950-pk56+300: il grado di permeabilità e la possibilità del suo incremento per un aumento della fratturazione della roccia sono decisamente maggiori in questo tratto, per il quale, la possibilità di venute d'acqua è alta, anche in ragione di un elevato grado di connessione con i sistemi di circolazione più superficiali (SER = alta);
- pk56+300-pk57+100: questo tratto è scavato nei sedimenti alluvionali della Valle Cenischia, al di sotto del livello della falda. Il grado di permeabilità è alto, accompagnato però da un livello potenziale di esalazione radon dei sedimenti basso (SER = media);
- pk57+100-pk57+760: per questo tratto è atteso un grado di permeabilità basso, con ridotta possibilità di incremento dello stesso per fratturazione. La possibilità di venute d'acqua è bassa (SER = bassa);
- pk57+760-pk57+820: in un contesto di bassa permeabilità dell'ammasso roccioso, la presenza di zone di faglia determina un incremento del livello di fratturazione. La possibilità di venute d'acqua è considerata media (SER = media);
- pk57+820-pk60+580: per questo tratto è atteso un grado di permeabilità basso, con ridotta possibilità di incremento dello stesso per fratturazione. La possibilità di venute d'acqua è bassa (SER = bassa);

- pk60+580-pk60+620: la presenza del contatto tettonico tra le rocce ultrabasiche e i calcescisti della Zona Piemontese determina un incremento del livello di fratturazione e della permeabilità. La possibilità di venute d'acqua è alta (SER = alta);
- pk60+620-pk61+080: per questo tratto è atteso un grado di permeabilità basso, generalmente con ridotta possibilità di incremento dello stesso per fratturazione. La possibilità di venute d'acqua è prevalentemente bassa (SER = bassa);
- pk61+080-pk63+870: il tracciato lungo questo tratto è all'aperto;
- pk63+870-pk64+240: a partire dall'imbocco W, un primo tratto del Tunnel di Interconnessione si caratterizza per un grado di permeabilità basso, per il quale la possibilità di incremento per fratturazione è considerata bassa o nulla. Anche la possibilità di venute d'acqua è bassa (SER = bassa);
- pk64+240-pk1+900: a differenza del tratto precedente, per questa sezione del Tunnel di Interconnessione, a parità di grado di permeabilità è attesa una possibilità di incremento dello stesso maggiore. Anche per questo tratto la possibilità di venute d'acqua è bassa (SER = media).

4.2.4 Identificazione dei potenziali ricettori

In fase di scavo all'eventuale attraversamento di tratte suscettibili di emissione di gas radon si associa la possibilità di dispersione del gas che può interessare le seguenti matrici ambientali:

- atmosfera
- ambiente idrico
- salute pubblica

In questo senso il modello concettuale seguito è così articolato secondo lo schema seguente.

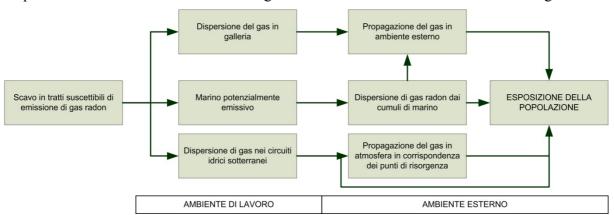


Figura 19 – Modello concettuale seguito per la definizione delle relazioni tra sorgenti e ricettori

Il modello seguito prevede che in caso di scavo in rocce o settori suscettibili di determinare significative emissioni di gas radon debbano essere valutati i possibili impatti nell'ambiente di lavoro in sotterraneo, in assenza di misure preventive e/o mitigative. Questi impatti sono: (a) la dispersione del gas in galleria, (b) la dispersione del gas radon nei circuiti idrici sotterranei e (c) la presenza di marino potenzialmente emissivo. Sempre in assenza di misure preventive e/o mitigative, gli impatti individuati hanno delle ripercussioni per l'ambiente esterno: (a) propagazione del gas dalla galleria all'ambiente esterno, (b) presenza di cumuli di marino potenzialmente emissivi, (c) propagazione del gas dai circuiti sotterranei in atmosfera a partire dai punti di risorgenza, (d) esposizione della popolazione ad acque di sorgente arricchite in gas radon disciolto. Per questi ultimi impatti sono evidenti le possibili ricadute per la popolazione relativamente all'aspetto della salute pubblica.

Sulla base di queste relazioni sono definite nei paragrafi seguenti le misure di prevenzione delle dispersioni di gas radon e quindi dell'esposizione della popolazione.

4.2.5 Misure di mitigazione del rischio radon

La caratterizzazione radiometrica del marino (par. 4.1) costituisce il primo presidio per il tempestivo rilevamento di potenziali sorgenti di gas radon. In ambiente di lavoro la formazione di accumuli di gas radon è prevenuta dalla presenza di un corretto sistema di ventilazione. A questo si accompagnano le misure specifiche previste dal Piano di Monitoraggio Ambientale del SIA del progetto (rif. PD2C3C2060), con l'analisi sulle seguenti matrici:

- acque di superficie e acque sotterranee in relazione ai tenori in Uranio, Radio e Radon disciolti al fine di permettere l'individuazione di incrementi delle concentrazioni che potrebbero avere conseguenze per le popolazioni e gli ecosistemi locali;
- concentrazioni di radon in atmosfera nelle aree più prossime ai cantieri, presso i punti di cui alla tabella seguente.

Identificativo	Comune - frazione	AO	СО	PO	Durata
ATR-CHM-01	Chiomonte - Regione Seigneur	1 anno	12 anni	1 anno	Continuo
ATR-SUS-01	Susa – Borgata Braide	1 anno	12 anni	1 anno	Continuo
ATR-SUS-02	Susa – Frazione S. Giuliano	1 anno	12 anni	1 anno	Continuo
ATR-SUS-03	Susa – Traduerivi	1 anno	12 anni	1 anno	Continuo
ATR-SUS-04	Susa – Coldimosso	1 anno	36 mesi (dal mese -15 al mese 21)	-	Continuo
ATR-SUS-05	Susa - Villa Cora	1 anno	61 mesi (dal mese 12 al mese 72)	-	Continuo
ATR-CAP-01	Caprie	1 anno	12 anni	1 anno	Continuo
ATR-TOR-01	Torrazza Piemonte	1 anno	12 anni	1 anno	Continuo

Tabella 18 – Punti di misura delle concentrazioni di radon in aria

Sulla base dell'esperienza maturata nel corso dei lavori di realizzazione dell'impianto idroelettrico di Pont Ventoux è previsto un adeguato sistema di ventilazione che prevenga l'accumulo di gas radon sia in fase costruttiva che in fase di esercizio.

5. Bibliografia

- Ahmed, N. K. et al., 2006. Comparative study of the natural radioactivity of some selected rocks from Egypt and Germany. *Indian Journa of Pure and Applies Sciences*, Volume 44, pp. 209-215.
- Anjos, R. M. et al., 2011. External gamma-ray dose rate and radon concentration in indoor environments covered with Brazilian granites. *Journal of Environmental Radioactivity*, Volume 102, pp. 1055-1061.
- Anjos, R. M. et al., 2005. Natural radionuclide distribution in Brazilian commercial granites. *Radiation Measurements*, Volume 39, pp. 245-253.
- Compagnoni, R. et al., 2003. The abundance of 47 elements and petrovolumetric models of the crust in the Susa Valley, Western Alps (Site 1). *Accad. Naz. Sci. detta dei XL*, Volume 32, pp. 69-96.
- De Capitani, L., Fumagalli, M. & Carnevale, M., 2007. Gamma-ray spectroscopy determination of radioactive elements in late- Hercynian plutonic rocks of Val Biandino and Val Trompia (Lombardy, Italy). *Periodico di mineralogia*, 76(1), pp. 25-39.
- Esposito, M., 2002. Radioattività e materiali da costruzione. *Costruire in laterizio*, Volume 89, pp. 76-81.
- Gattiglio, M. & Sacchi, R., 2006. Lineamenti geologici della Val di Susa lungo il tracciato del progetto TAV Torino-Lione. *Rend. Soc. Geol. It.*, Volume Nuova Serie, pp. 13-19.
- Harb, S. et al., 2008. Concentration of U-238, U-235, Ra-226, Ra-228, Th-232 and K-40 for some igneous rock samples in eastern desert of Egypt. Aswan, s.n.
- Hunter-Smith, L., 2012. Levels of Naturally Occurring Radioactive Material in Bottled Natural Mineral Water, Guildford: University of Surrey.
- Magnoni, M. et al., 2009. *La mappatrua del Radon in Piemonte*, Torino: Arpa Piemonte.
- Malczewski, D. & Zaba, J., 2012. Natural Radioactivity in rocks of rhe Modane-Aussois region (SE France). *J Radioanal Nucl Chem,* Volume 292, pp. 123-130.
- Patrucco, M., De Salve, M. & Gozzelino, P., 2005. Approfondimento sulla presenza di amianto, minerali radioattivi e radon nei luoghi interessati dalle opere per il collegamento ferroviario Torino-Lione, tratta comune St. Jean de Maurienne-Bussoleno, Torino: Politecnico di Torino DITAG.
- Perello, P. & Venturini, G., 2006. Scavo di gallerie in ammassi rocciosi contenenti minerali asbestiformi.. *Gallerie a grandi opere sotterranee*, Volume 78, pp. 58-62.
- Righi, S. et al., 2000. Monitoring of natural radioactivity in working places. *Microchemical journal*, 67(1-3), pp. 119-126.
- Righi, S., Coatti, F. B. G. M., Verità, S. & Bruzzi, L., 2006. *Emanazione di radon da materiali lapidei naturali*. Torino, Gamma Servizi.
- Risica, S., Bolzan, C. & Nuccetelli, C., 1999. Radioactivity in building materials: experimental methods, calculations and an obserview of the Italian situation. *Science of the toal environment*, 272(1-3), pp. 119-126.
- Tositti, L., 2007. *La radioattività nelle rocce della regione Emilia-Romagna*. Bologna, Arpa Emilia-Romagna.
- Trotti, 2007. Il controllo della radioattività di origine naturale. *ARPA Rivista*, Volume 3, pp. 3-5.

- UE, 1999. Radiation Protection 112 Radiological protection principles concerning the natural radioactivity of building materials, Bruxelles: European Commission.
- UE, 2001. Radiation Protection 122 part 2, Bruxelles: Commissione Europea.
- UNSCEAR, 2000. Sources and Effects of Ionizing Radiation, New York: UN.
- Verdelocco, S., Wlaker, D., Turkowsky, P. & Osimani, C., 2000. *Misure di radon-222 e radioattività ambientale nell'impianto idroelettrico di Pont Ventoux-Susa, Piemonte. EUR 19656IT*, Isrpa (VA): Comunità Europee.
- Walley El-Dine, N., El Asherabi, A., Ahmed, F. & S., A.-H. A., 2001. Measurement of radioactivity and radon exhalation rate in different kinds of marbles and granites. *Applied Radiation and Isotopes*, Volume 55, pp. 853-860.
- Zucchetti, M. & Bonivago, L., 2005. *Tav in Valle di Susa. Problemi di radioprotezione e impatto ambientale per la presenza di Uranio e Radon Seconda relazione: modelli di esposizione al Radon.* [Online] Available at: http://staff.polito.it/massimo.zucchetti/Seconda Relazione.pdf

Allegato 1: certificati delle prove di laboratorio per la caratterizzazione radiometrica dei materiali

Bologna, 1 Luglio 2012

Spett. Lyon Turin Ferroviaire Sas Piazza Nizza, 46

10126 Torino

OGGETTO: Caratterizzazione ambientale e radiometrica dei materiali di scavo.

Con riferimento al contratto 307/EO/66/M/12 "Consultation Simplifiée N.CS89 – Caractérisation environnementale et radiométrique des matériaux d'excavation côté italien-C12085" vogliate gentilmente trovare allegata alla presente la tabella contenente i risultati relativi alle misure di radioattività effettuate nei modi e nei termini previsti.

Informazioni più dettagliate sono contenute all'interno delle tabelle e dei rapporti di prova allegati.

Le misurazioni condotte sono finalizzate a caratterizzare dal punto di vista ambientale e radiometrico il materiale che verrà scavato nell'ambito del tracciato del Tunnel di Base e delle Gallerie di interconnessione di Bussoleno in sede di revisione del Progetto Definitivo in corso.

Il campionamento è stato effettuato presso la caroteca di Susa in data 11.06.2012 e presso la caroteca di Modane in data 12.06.2012.

La caratterizzazione ambientale è stata condotta secondo i seguenti metodi:

- EPA 9014 1996 (cianuri)
- EPA 9056A 2007 (Fluoruri)
- EPA 3052 1996 + EPA 6020A 2007 (Antimonio, Argento, Arsenico, Bario, Berillio, Cadmio, Cobalto, Cromo, Mercurio, Nichel, Piombo, Rame, Selenio, Stagno, Tallio, Vanadio, Zinco)

EPA 7196A 1992 (Cromo VI)

La caratterizzazione radiometrica è stata condotta secondo i seguenti metodi:

UNI 10797:1999 (²³⁸U, ²²⁶Ra, ²³²Th, ⁴⁰K)

• ISO 11665-7:2012 (rateo specifico di emanazione di radon E)

Con riferimento alle prove di caratterizzazione radiometrica si specifica inoltre che:

1) E' stato verificato l'equilibrio secolare fra ²³⁸U e ²²⁶Ra

2) E' stato indicato, nella tabella riepilogativa allegata, l'Indice di Radioattività di ciascun campione per la valutazione dell'idoneità al reimpiego del marino come materiale per costruzioni. In assenza di indicazioni specifiche è stato adottato l'indice descritto nella

Radiation Protection 112

3) E' stato indicato, nella tabella riepilogativa allegata, l'attività totale di ciascun campione. In assenza di indicazioni specifiche l'attività totale è stata considerata pari alla somma delle attività specifiche di 238 U, 232 Th e 40 K.

Ing. Massimo Esposito

Esperto Qualificato - N. 572 d'iscrizione

	Concentrazione di radioattività					Rateo Esalazione Radon	
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴ºK (Bq/kg)	I _{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m ⁻² ·h ⁻¹	Bq∙kg⁻¹∙h⁻¹
Susa – Sondaggio S4 – Campione C1 – Cassetta 34 – Intervallo Campione da m 156.15 a m 156.34 – Micascisti	25,0 ± 1,2	33 ± 2	730 ± 30	0,490 ± 0,016	788		0,36 ± 0,14
Susa – Sondaggio S4 – Campione C2 – Cassetta 56 – Intervallo Campione da m 216.60 a m 216.67 – Micascisti	28,2 ± 1,2	35 ± 2	800 ± 30	0,538 ± 0,016	863		<0,017
Susa – Sondaggio S4 – Campione C3 – Cassetta 86 – Intervallo Campione da m 298.79 a m 298.91 – Micascisti	26,6 ± 1,2	31 ± 2	700 ± 30	0,478 ± 0,015	758		0,04 ± 0,03
Susa – Sondaggio S4 – Campione C4 – Cassetta 122 – Intervallo Campione da m 397.85 a m 398.00 – Micascisti	32,4 ± 1,3	40 ± 3	1080 ± 40	0,670 ± 0,018	1152		0,04 ± 0,03

		Co	Rateo Esalazione Radon				
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴⁰ K (Bq/kg)	I _{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m ⁻² ·h ⁻¹	Bq∙kg⁻¹∙h⁻¹
Susa – Sondaggio S4 – Campione C5 – Cassetta 144 – Intervallo Campione da m 460.40 a m 460.52 – Micascisti	26,8 ± 1,3	33 ± 3	810 ± 30	0,523 ± 0,017	870		0,07 ± 0,04
Susa – Sondaggio S4 – Campione C6 – Cassetta 164 – Intervallo Campione da m 533.40 a m 533.53 – Micascisti	23,8 ± 1,1	28 ± 2	660 ± 30	0,439 ± 0,014	712		<0,019
Susa – Sondaggio S4 – Campione C7 – Cassetta 170 – Intervallo Campione da m 557.36 a m 557.57 – Micascisti	27,9 ± 1,2	34 ± 2	640 ± 30	0,478 ± 0,016	702	0,34 ± 0,24	<0,009(***)
Susa – Sondaggio S4 – Campione C8 – Cassetta 174 – Intervallo Campione da m 572.35 a m 572.47 – Micascisti	25,8 ± 1,2	32 ± 2	710 ± 30	0,480 ± 0,015	768		0,05 ± 0,03

	Concentrazione di radioattività						Rateo Esalazione Radon	
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴⁰ K (Bq/kg)	I _{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m ⁻² ·h ⁻¹	Bq·kg ⁻¹ ·h ⁻¹	
Susa – Sondaggio S4 – Campione C9 – Cassetta 186 – Intervallo Campione da m 617.80 a m 618.02 – Micascisti±	35,7 ± 1,4	44 ± 3	910 ± 30	0,644 ± 0,018	990		0,09 ± 0,05	
Susa – Sondaggio S4 – Campione C10 – Cassetta 204 – Intervallo Campione da m 686.85 a m 686.99 – Micascisti	24,2 ± 1,1	33 ± 1,4	680 ± 30	0,482 ± 0,015	739		<0,016	
Susa – Sondaggio S5 – Campione C1 – Cassetta 3 – Intervallo Campione da m 323.40 a m 323.58 – Gneiss Aplitici	195 ± 3	43 ± 3	1320 ± 40	1,310 ± 0,020	1558		0,08 ± 0,03	
Susa – Sondaggio S5 – Campione C2 – Cassetta 50 – Intervallo Campione da m 454.07 a m 454.17 – Facies intermedia tra gneiss aplitici e gneiss s.s.	38,7 ± 1,4	56 ± 3	950 ± 30	0,724 ± 0,019	1045		<0,013	

	Concentrazione di radioattività						Rateo Esalazione Radon	
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴⁰K (Bq/kg)	I _{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m ⁻² ·h ⁻¹	Bq·kg ⁻¹ ·h ⁻¹	
Susa – Sondaggio S5 – Campione C3 – Cassetta 94 – Intervallo Campione da m 606.65 a m 606.86 – Gneiss Aplitici	33,4 ± 1,4	47 ± 3	1050 ± 40	0,694 ± 0,019	1130		<0,02	
Susa – Sondaggio S5 – Campione C4 – Cassetta 123 – Intervallo Campione da m 719.20 a m 719.32 – Facies gneissica	35,1 ± 1,4	54 ± 3	1190 ± 40	0,780 ± 0,020	1279		<0,06	
Susa – Sondaggio S5 – Campione C5 – Cassetta 136 – Intervallo Campione da m 773.69 a m 773.85 – Facies intermedia tra gneiss aplitici e gneiss s.s. Con livelli milonitici	30,0 ± 1,2	52 ± 3	430 ± 20	0,503 ± 0,016	512		0,08 ± 0,03	
Susa – Sondaggio S5 – Campione C6 – Cassetta 146 – Intervallo Campione da m 809.95 a m 810.13 – Gneiss Aplitici più ricchi in mica	32,0 ± 1,2	41 ± 2	790 ± 30	0,574 ± 0,016	863		0,04 ± 0,03	

	Concentrazione di radioattività						Rateo Esalazione Radon	
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴⁰ K (Bq/kg)	\mathbf{I}_{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m ⁻² ·h ⁻¹	Bq∙kg ⁻¹ ∙h ⁻¹	
Susa – Sondaggio S5 – Campione C7 – Cassetta 156 – Intervallo Campione da m 858.35 a m 858.49 – Micascisti	39,7 ± 1,3	51 ± 3	750 ± 30	0,634 ± 0,017	841		<0,014	
Susa – Sondaggio S5 – Campione C8 – Cassetta 163 – Intervallo Campione da m 893.27 a m 893.45 – Facies intermediatra gneiss aplitici e gneiss s.s.	35,1 ± 1,4	44 ± 3	1080 ± 40	0,697 ± 0,019	1159	0,28 ± 0,12	0,004(***)	
Susa – Sondaggio S5 – Campione C9 – Cassetta 166 – Intervallo Campione da m 907.75 a m 907.95 – Facies intermediatra gneiss aplitici e gneiss s.s.	28,9 ± 1,2	46 ± 3	800 ± 30	0,592 ± 0,017	875		<0,008	
Susa – Sondaggio S8 – Campione C1 – Cassetta 37 – Intervallo Campione da m 180.00 a m 180.18 – Micascisti/gneiss albitici	27,8 ± 1,0	32,3 ± 1,9	690 ± 20	0,484 ± 0,012	750		0,06 ± 0,03	

		Rateo Esalazione Radon					
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴⁰ K (Bq/kg)	I _{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m ⁻² ·h ⁻¹	Bq∙kg⁻¹∙h⁻¹
Susa – Sondaggio S8 – Campione C2 – Cassetta 50 – Intervallo Campione da m 250.30 a m 250.52 – Calcescisti	18,7 ± 1,1	35 ± 3	540 ± 30	0,414 ± 0,016	594	0,20 ± 0,14	0,006(***)
Susa – Sondaggio S8 – Campione C3 – Cassetta 68 – Intervallo Campione da m 350.10 a m 350.28 – Calcescisti	20,5 ± 1,1	38 ± 3	600 ± 30	0,460 ± 0,016	659		0,014 ± 0,007
Susa – Sondaggio S8 – Campione C4 – Cassetta 78 – Intervallo Campione da m 404.90 a m 405.02 – Micascisti	48,6 ± 1,6	73 ± 3	790 ± 30	0,790 ± 0,020	912		0,07 ± 0,04
Susa – Sondaggio S8 – Campione C5 – Cassetta 84 – Intervallo Campione da m 437.90 a m 438.00 – Calcescisti	16,7 ± 0,9	18,7 ± 1,8	340 ± 19	0,263 ± 0,011	375		0,05 ± 0,03

		Rateo Esalazione Radon					
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴⁰ K (Bq/kg)	I _{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m ⁻² ·h ⁻¹	Bq∙kg⁻¹∙h⁻¹
Susa – Sondaggio S8 – Campione C6 – Cassetta 88 – Intervallo Campione da m 460.60 a m 460.73 – Micascisti cloritici	35,4 ± 1,3	41 ± 3	304 ± 18	0,426 ± 0,015	380		0,04 ± 0,02
Susa – Sondaggio S8 – Campione C7 – Cassetta 93 – Intervallo Campione da m 489.00 a m 489.20 – Calcescisti	7,6 ± 0,7	13,9 ± 1,6	205 ± 16	0,163 ± 0,010	227		0,10 ± 0,04
Susa – Sondaggio S8 – Campione C8 – Cassetta 96 – Intervallo Campione da m 506.00 a m 506.16 – Calcescisti		25 ± 2	410 ± 20	0,306 ± 0,013	449		0,06 ± 0,03
Susa – Sondaggio S42 – Campione C1 – Cassetta 19 – Intervallo Campione da m 96.00 a m 96.13 – Gneiss quarzitici	6,7 ± 0,7	<3	319 ± 19	0,129 ± 0,007	326		0,03 ± 0,02

		Rateo Esalazione Radon					
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴⁰ K (Bq/kg)	I _{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m ⁻² ·h ⁻¹	Bq∙kg⁻¹∙h⁻¹
Susa – Sondaggio S42 – Campione C2 – Cassetta 46 – Intervallo Campione da m 288.00 a m 288.18 – Calcescisti	8,4 ± 0,9	13,2 ± 1,8	280 ± 20	0,186 ± 0,012	302	0,9 ± 0,4	0,02(***)
Susa – Sondaggio S42 – Campione C3 – Cassetta 54 – Intervallo Campione da m 352.00 a m 352.13 – Calcescistii	12,3 ± 0,9	18,4 ± 1,8	329 ± 19	0,243 ± 0,012	360		0,05 ± 0,03
Susa – Sondaggio S42 – Campione C4 – Cassetta 60 – Intervallo Campione da m 400.00 a m 400.16 – Micascisti	41,8 ± 1,5	43 ± 3	780 ± 30	0,613 ± 0,018	865		0,015 ± 0,008
Susa – Sondaggio S42 – Campione C5 – Cassetta 65 – Intervallo Campione da m 440.00 a m 440.23 – Calcescisti	40,9 ± 1,4	47 ± 3	580 ± 20	0,566 ± 0,016	668		0,04 ± 0,02

		Rateo Esalazione Radon					
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴⁰K (Bq/kg)	I _{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m⁻²·h⁻¹	Bq∙kg ⁻¹ ∙h ⁻¹
Modane – Sondaggio F16 – Campione C1 – Cassetta 20 – Intervallo Campione da m 1118.95 a m 1119.19 – Micascisti listati con pieghe	30,8 ± 1,0	29 ± 1,8	590 ± 20	0,443 ± 0,012	650		0,17 ± 0,07
Modane – Sondaggio F16 – Campione C2 – Cassetta 28 – Intervallo Campione da m 1157.75 a m 1158.04 – Micascisti listati	28,1 ± 1,2	36 ± 2	680 ± 30	0,500 ± 0,015	744		0,32 ± 0,18
Modane – Sondaggio F16 – Campione C3 – Cassetta 40 – Intervallo Campione da m 1217.25 a m 1217.53 – Micascisti listati	22,9 ± 1,0	21,8 ± 1,9	660 ± 30	0,404 ± 0,013	705		0,04 ± 0,02
Modane – Sondaggio F16 – Campione C4 – Cassetta 52 – Intervallo Campione da m 1275.50 a m 1275.74 – Micascisti listati	23,2 ± 1,1	28 ± 2	670 ± 30	0,440 ± 0,014	721		<0,05

	Concentrazione di radioattività						Rateo Esalazione Radon	
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴⁰ K (Bq/kg)	I _{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m ⁻² ·h ⁻¹	Bq·kg ⁻¹ ·h ⁻¹	
Modane – Sondaggio F16 – Campione C5 – Cassetta 62 – Intervallo Campione da m 1325.15 a m 1325.36 – Micascisti listati con pieghe	29,6 ± 1,3	37 ± 3	860 ± 30	0,573 ± 0,017	927		<0,04	
Modane – Sondaggio F16 – Campione C6 – Cassetta 72 – Intervallo Campione da m 1375.20 a m 1375.46 – Micascisti listati	27,3 ± 1,2	28 ± 2	690 ± 30	0,463 ± 0,015	745		<0,03	
Modane – Sondaggio F16 – Campione C7 – Cassetta 81 – Intervallo Campione da m 1418.40 a m 1418.64 – Micascisti listati	26,8 ± 1,1	34 ± 2	700 ± 30	0,491 ± 0,015	761		0,15 ± 0,09	
Modane – Sondaggio F16 – Campione C8 – Cassetta 90 – Intervallo Campione da m 1462.85 a m 1463.07 – Micascisti listati		37 ± 3	840 ± 30	0,554 ± 0,017	904	<0,2	<0,006(***)	

		Rateo Esalazione Radon					
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴ºK (Bq/kg)	I _{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m ⁻² ·h ⁻¹	Bq∙kg⁻¹∙h⁻¹
Modane – Sondaggio F16 – Campione C9 – Cassetta 99 – Intervallo Campione da m 1506.90 a m 1507.20 – Micascisti listati leggermente grafitici	29,1 ± 1,2	32 ± 2	640 ± 30	0,470 ± 0,015	701		0,04 ± 0,02
Modane – Sondaggio F30bis – Campione C1 – Cassetta 149 – Intervallo Campione da m 727.90 a m 728.12 – Micascisti quarzosi	19,3 ± 1,1	35 ± 3	830 ± 30	0,515 ± 0,017	884		0,018 ± 0,010
Modane – Sondaggio F30bis – Campione C2 – Cassetta 179 – Intervallo Campione da m 843.30 a m 843.47 – Micascisti quarzosi	26,6 ± 1,2	46 ± 3	930 ± 30	0,628 ± 0,018	1003		0,021 ± 0,009
Modane – Sondaggio F30bis – Campione C3 – Cassetta 197 – Intervallo Campione da m 912.60 a m 912.76 – Micascisti quarzosi	21,6 ± 0,9	39 ± 2	760 ± 20	0,521 ± 0,013	821		0,17 ± 0,06

		Rateo Esalazione Radon					
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴⁰K (Bq/kg)	I _{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m ⁻² ·h ⁻¹	Bq·kg ⁻¹ ·h ⁻¹
Modane – Sondaggio F30bis – Campione C4 – Cassetta 219 – Intervallo Campione da m 999.90 a m 1000.09 – Micascisti quarzosi a clorite	16,0 ± 1,0	44 ± 3	1010 ± 30	0,610 ± 0,018	1070		0,08 ± 0,05
Modane – Sondaggio F30bis – Campione C5 – Cassetta 236 – Intervallo Campione da m 1085.60 a m 1082.90 – Micascisti quarzosi a clorite	21,2 ± 1,2	40 ± 3	630 ± 30	0,482 ± 0,017	691		0,15 ± 0,06
Modane – Sondaggio F30bis – Campione C6 – Cassetta 252 – Intervallo Campione da m 1159.40 a m 1159.76 – Micascisti a quarzo e clorite	17,4 ± 1,0	35 ± 3	690 ± 30	0,463 ± 0,016	742		0,06 ± 0,03
Modane – Sondaggio F30bis – Campione C7 – Cassetta 275 – Intervallo Campione da m 1269.75 a m 1269.97 – Micascisti a quarzo e clorite con talco	31,7 ± 1,3	31 ± 2	530 ± 30	0,438 ± 0,015	593		0,008 ± 0,003

	Concentrazione di radioattività						Rateo Esalazione Radon	
Descrizione Campione	²³⁸ U (Bq/kg) ^(*)	²³² Th (Bq/kg) ^(**)	⁴⁰K (Bq/kg)	I _{RP112}	A _{tot} (Bq/kg) (U+Th+K)	Bq·m ⁻² ·h ⁻¹	Bq·kg ⁻¹ ·h ⁻¹	
Modane – Sondaggio F30bis – Campione C8 – Cassetta 287 – Intervallo Campione da m 1328.20 a m 1328.38 – Micascisti a quarzo e clorite	92 ± 2	39 ± 3	770 ± 30	0,757 ± 0,018	901	4± 4	0,06(***)	
Modane – Sondaggio F30bis – Campione C9 – Cassetta 299 – Intervallo Campione da m 1386.45 a m 1386.58 – Quarzomicascisti (CLR)	30,5 ± 1,2	35 ± 2	780 ± 30	0,538 ± 0,016	846		0,06 ± 0,04	

^{(*) &}lt;sup>226</sup>Ra è preso come indice della concentrazione di ²³⁸U poiché è stato verificato l'equilibrio secolare; (**) ²²⁸Ra è preso come indice della concentrazione di ²³²Th poiché è stato verificato l'equilibrio secolare.

^(***) Rateo di esalazione Radon indicativo

Sondaggio S4

C	CAMPIONE CASSETTA		O CAMPIONE	N
CAMPIONE	Cassetta	da m	a m	. N оте
C1	34	156.15	156.34	Micascisti
Foto 1	Prima del prelievo		Foto 2.	Dopo il prelievo

CAMPIONE CASSETTA	6	Intervallo campione		N оте
	da m	a m		
C2	56	216.60	216.67	Micascisti ¹
	Office of the state of the stat			

	THE PERSON NAMED IN	ATMOSPHER		
Foto	3.	Prima	del	prelievo

C	C		O CAMPIONE	N
CAMPIONE	CAMPIONE CASSETTA	da m	a m	N оте
C3	86	298.79	298.91	Micascisti
	Prima del prelievo	N 0 2 10	G G G G G G G G G G G G G G G G G G G	Dopo il prelievo

¹ Micascisti a marcata fratturazione

	6		O CAMPIONE	N
CAMPIONE		da m	a m	- N оте
C4	122	397.85	398.00	Micascisti ²
Foto 6	Prima del prelievo		distant	Oopo il prelievo

CAMPIONE CASSETTA		Interval	LO CAMPIONE	N оте
CAMPIONE	CASSETTA	da m	a m	MOLE
C5	144	460.40	460.52	Micascisti
Foto 8	Prima del prelievo	TA ALL AS STORM	Foto 9. D	Dopo il prelievo

C	G		O CAMPIONE	N
CAMPIONE	Cassetta	da m	a m	N оте
C6	164	533.40	533.53	Micascisti
Foto 1	0. Prima del prelievo			Dopo il prelievo

C	CAMPIONE CASSETTA	Intervallo campione		N
CAMPIONE		da m	a m	N оте
C7	170	557.36	557.57	Micascisti
	2000 A COLORES		SA COLICA I	

Foto 12. Prima del prelievo

Foto 13. Dopo il prelievo

CAMPIONE CASSETTA		Intervall	O CAMPIONE	N оте
CAMPIONE		da m	a m	NOTE
C8	174	572.35	572.47	Micascisti
Carlot St.	4. Prima del prelievo	The state of the s	Foto 15.	Dopo il prelievo

C	C		O CAMPIONE	N
CAMPIONE	Cassetta	da m	a m	N оте
C9	186	617.80	618.02	Micascisti
54 1166	6. Prima del prelievo			Dopo il prelievo

CAMPIONE CASSETTA	Intervall	O CAMPIONE	Note	
	CASSETTA	da m	a m	NOIE
C10	204	686.85	686.99	Micascisti

Foto 18. Prima del prelievo

Foto 19. Dopo il prelievo

SONDAGGIO **S5**

CAMPIONE CASSETTA		O CAMPIONE	Nоте
CASSETTA	da m	a m	MOLE
3	323.40	323.58	Gneiss aplitici ¹
	Cassetta 3	Cassetta da m	da m a m

Foto 1. Prima del prelievo

Foto 2. Dopo il prelievo

C	C	Intervall	O CAMPIONE	Note
CAMPIONE CASSETTA	da m	a m	NOTE	
C2	50	454.07	454.17	Facies intermedia tra gneiss aplitici e gneiss s.s.

Foto 3. Prima del prelievo

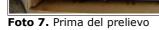


Foto 4. Dopo il prelievo

C	C	Intervallo campione		N оте
CAMPIONE CASSETTA		da m	a m	NOTE
C3	94	606.65	606.86	Gneiss aplitici ¹
Foto 5	SS CASANTA 94 O-		Societies.	Dopo il prelievo

¹ Gneiss aplitici (abbondante qz e flds e con rari livelli di opachi a segnare la scistosità)

C	C	Intervallo campione		N оте
CAMPIONE CASSETTA		da m	a m	NOTE
C4	123	719.20	719.32	Facies gneissica
NIJI.				CA CALCATA A23 OF A

Foto 8. Dopo il prelievo

		Intervalle		
CAMPIONE CASSETTA		da m	a m	N оте
C5	136	773.69	773.85	Facies intermedia tra gneiss aplitici e gneiss s.s. con livelli milonitici
55 0	SSETA ASC MOS-ORG			55 CONTA AN THE COMMENT

Foto 9. Prima del prelievo	Foto 10. Dopo il prelievo
1 oto 5: 1 mila dei prenevo	Toto 10: Dopo ii piciicvo

CAMPIONE	Cassetta		O CAMPIONE	N оте
CAMPIONE	da m	a m	Note	
C6	146	809.95	810.13	Gneiss aplitici più ricchi in mica
	Foto 11. Prima del prelievo			Dopo il prelievo

6	C	Intervallo campione		
CAMPIONE	CASSETTA	da m	a m	N оте
C7	156	858.35	858.49	Micascisti
	55 CASSOTA A56 D-			ST CASSETA ASO 0 - 13 STUTING FOR ALWEST FACE ALLESS CONTROL OF ASSET ASSET ALLESS CONTROL OF ASSET ASSET ALLESS CONTROL OF ASSET ASSET ASSET ALLESS CONTROL OF ASSET ASS

Foto 13. Prima del prelievo

		Intervallo campione		
CAMPIONE	Cassetta	da m	a m	N оте
C8	163	893.27	893.45	Facies intermedia tra gneiss aplitici e gneiss s.s.
WHILE FAX LOW WITH PAX LOW WHILE				SS ABBOTA ACS ST PASSA

Foto 15. Prima del prelievo	Foto 16. Dopo il preliev

CAMPIONE	C	Intervallo campione		
	Cassetta	da m	a m	- N оте
C9	166	907.75	907.95	Facies intermedia tra gneiss aplitici e gneiss s.s.
Foto 17. Prima del prelievo			53 charette	CQ (44, A) (40, A) (40

SONDAGGIO **S8**

Compression	C	Intervall	O CAMPIONE	Nоте
CAMPIONE	CASSETTA	da m	a m	Note
C1	37	180.00	180.18	Micascisti/gneiss albitici ¹

Foto 1. Prima del prelievo

Foto 2. Dopo il prelievo

Campania	Casserra	Intervall	O CAMPIONE	Note
CAMPIONE CASSETTA	CASSETTA	da m	a m	NOTE
C2	50	250.30	250.52	Calcescisti

Foto 3. Prima del prelievo

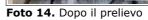
Foto 4. Dopo il prelievo

Comme		Intervall	O CAMPIONE	. N оте
CAMPIONE CAS	CASSETTA	da m	a m	NOTE
C3	68	350.10	350.28	Calcescisti

Foto 5. Prima del prelievo

Foto 6. Dopo il prelievo

¹ Tessitura gneissica talora marcatamente micacea


C	CAMPIONE CASSETTA		O CAMPIONE	N
CAMPIONE			a m	N оте
C4	78	404.90	405.02	Micascisti
Foto 7	2. Prima del prelievo		WIIII	Popo il prelievo

		Intervallo campione		
CAMPIONE	CAMPIONE CASSETTA		a m	. N оте
C5	84	437.9	438.00	Calcescisti
Foto 9	Prima del prelievo	man-pa		Dopo il prelievo

C	CAMPIONE CASSETTA		O CAMPIONE	
CAMPIONE			a m	. N оте
C6	88	460.60	460.73	Micascisti cloritici
Foto 1	1. Prima del prelievo			Dopo il prelievo

6		Intervallo campione		
CAMPIONE	CAMPIONE CASSETTA	da m	a m	N оте
C7	93	489.00	489.20	Calcescisti
	THE PAR LOWER AND A STATE OF WHILE PAR		Secretaria de la constante de	

Foto 13. Prima del preliev	F	oto	13.	Prima	del	preliev
----------------------------	---	-----	-----	-------	-----	---------

6	Intervallo campione			
CAMPIONE	Cassetta	da m	a m	N оте
C8 96 506.00		506.16	Calcescisti	
WITH TAK WHILL-PAK W		2003 100 100	La winning A. San William	

Foto 15. Prima del prelievo

Foto 16. Dopo il prelievo

SONDAGGIO **S42**

Comme		INTERVALLO CAMPIONE		- Nоте
CAMPIONE	CASSETTA	da m	a m	NOTE
C1	19	96.00	96.13	Gneiss quarzitici ¹
				34.00

Foto 1. Prima del prelievo

Foto 2. Dopo il prelievo

Courseur	CASSETTA	Intervallo campione		N оте
CAMPIONE CASSETTA	da m	a m	NOTE	
C2	46	288.00	288.18	Calcescisti

Foto 3. Prima del prelievo

Foto 4. Dopo il prelievo

CAMPIONE CASSETTA	INTERVALLO CAMPIONE		. N оте	
	CASSETTA	da m	a m	NOTE
C3	54	352.00	352.13	Calcescisti

Foto 5. Prima del prelievo

Foto 6. Dopo il prelievo

C	6		O CAMPIONE	N
CAMPIONE	Cassetta	da m	a m	N оте
C4	60	400.00	400.16	Micascisti
		The second second		Popo il prelievo

C			O CAMPIONE		
CAMPIONE	Cassetta	da m	a m	N оте	
C5	65	440.00	440.23	Calcescisti ²	
	Prima del prelievo	75.45 75.45		Dopo il prelievo	

Data di rilascio: 23 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S4 – Campione C1 – Cassetta 34 – Intervallo Campione da m 156.15 a m 156.34 – Micascisti

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	23 giugno 2012	Codice misura: VC1-S4		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каатописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	24	3	3
²¹⁴ Pb	351,99	24,7	1,8	1,6
²¹⁴ Bi	609,32	26	2	1,8
²¹⁴ Bi	1120,28	25	6	5
²¹⁴ Bi	1764,51	25	5	5
²²⁶ Ra		25,0	1,2	1,6
²²⁸ Ac	338,40	31	5	5
²²⁸ Ac	911,07	35	3	3
²²⁸ Ac	968,90	32	4	4
²²⁸ Ra		33	2	3
²³² Th		33	2	3
²¹² Pb	238,63	32,4	1,7	1,2
²⁰⁸ T1	583,1	29	3	2
²²⁸ Th		31,5	1,4	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
$^{40}\mathrm{K}$	1460,75	730	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 27 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S4 – Campione C2 – Cassetta 56 – Intervallo Campione da m 216.60 a m 216.67 – Micascisti

Produttore:

--- --

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	27 giugno 2012	Codice misura: VC2-S4		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionaciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	30	3	3
²¹⁴ Pb	351,99	28,9	1,9	1,7
²¹⁴ Bi	609,32	26	2	1,8
²¹⁴ Bi	1120,28	27	6	5
²¹⁴ Bi	1764,51	31	5	5
²²⁶ Ra		28,2	1,2	1,7
²²⁸ Ac	338,40	37	5	5
²²⁸ Ac	911,07	35	4	3
²²⁸ Ac	968,90	34	5	4
²²⁸ Ra		35	2	3
²³² Th		35	2	3
²¹² Pb	238,63	37,1	1,8	1,2
²⁰⁸ Tl	583,1	32	3	3
²²⁸ Th		35,7	1,5	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	800	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 22 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S4 – Campione C3 – Cassetta 86 – Intervallo Campione da m 298.79 a m 298.91 – Micascisti

Produttore:

--- --

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	22 giugno 2012	Codice misura: VC3-S4		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каатописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	25	3	3
²¹⁴ Pb	351,99	26,9	1,8	1,6
²¹⁴ Bi	609,32	27	2	1,8
²¹⁴ Bi	1120,28	24	5	5
$^{214}\mathrm{Bi}$	1764,51	28	5	5
²²⁶ Ra		26,6	1,2	1,6
²²⁸ Ac	338,40	30	5	5
²²⁸ Ac	911,07	33	3	3
²²⁸ Ac	968,90	29	4	4
²²⁸ Ra		31	2	3
²³² Th		31	2	3
²¹² Pb	238,63	34,1	1,7	1,2
²⁰⁸ T1	583,1	29	3	2
²²⁸ Th		32,8	1,5	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	700	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinole Seid'

U-Series Srl - Via Ferrarese 131 - 40128 Bologna Tel. 051 6312418 - Fax. 051 4158173

Data di rilascio: 23 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S4 – Campione C4 – Cassetta 122 – Intervallo Campione da m 397.85 a m 398.00 – Micascisti

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	23 giugno 2012	Codice misura: VC4-S4		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каатописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	33	3	3
²¹⁴ Pb	351,99	31	2	1,7
²¹⁴ Bi	609,32	35	2	1,9
²¹⁴ Bi	1120,28	30	6	5
²¹⁴ Bi	1764,51	33	6	5
²²⁶ Ra		32,4	1,3	1,7
²²⁸ Ac	338,40	36	5	5
²²⁸ Ac	911,07	41	4	3
²²⁸ Ac	968,90	43	5	4
²²⁸ Ra		40	3	3
²³² Th		40	3	3
²¹² Pb	238,63	42	2	1,2
²⁰⁸ T1	583,1	38	3	3
²²⁸ Th		40,5	1,7	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	1080	40	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 24 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S4 – Campione C5 – Cassetta 144 – Intervallo Campione da m 460.40 a m 460.52 – Micascisti

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	24 giugno 2012	Codice misura: VC5-S4		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Кааюниснае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	26	3	3
²¹⁴ Pb	351,99	25,6	1,9	1,9
²¹⁴ Bi	609,32	28	2	2
²¹⁴ Bi	1120,28	28	7	6
$^{214}\mathrm{Bi}$	1764,51	29	5	5
²²⁶ Ra		26,8	1,3	1,9
²²⁸ Ac	338,40	30	5	6
²²⁸ Ac	911,07	32	4	3
²²⁸ Ac	968,90	38	5	4
²²⁸ Ra		33	3	3
²³² Th		33	3	3
²¹² Pb	238,63	34,0	1,8	1,3
²⁰⁸ Tl	583,1	32	3	3
²²⁸ Th		33,4	1,6	1,3
¹³⁷ Cs	661,62	<0,9	0	0,9
⁴⁰ K	1460,75	810	30	11

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 24 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S4 – Campione C6 – Cassetta 164 – Intervallo Campione da m 533.40 a m 533.53 – Micascisti

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	24 giugno 2012	Codice misura: VC6-S4		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Кааюниснае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	24	3	3
²¹⁴ Pb	351,99	23,6	1,7	1,6
²¹⁴ Bi	609,32	23,7	1,9	1,7
²¹⁴ Bi	1120,28	27	5	5
²¹⁴ Bi	1764,51	23	4	4
²²⁶ Ra		23,8	1,1	1,6
²²⁸ Ac	338,40	27	5	5
²²⁸ Ac	911,07	27	3	3
²²⁸ Ac	968,90	29	4	4
²²⁸ Ra		28	2	3
²³² Th		28	2	3
²¹² Pb	238,63	28,4	1,5	1,1
²⁰⁸ T1	583,1	28	3	2
²²⁸ Th		28,2	1,3	1,1
¹³⁷ Cs	661,62	<0,7	0	0,7
40 K	1460,75	660	30	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sivole Seidi

Data di rilascio: 28 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S4 – Campione C7 – Cassetta 170 – Intervallo Campione da m 557.36 a m 557.57 – Micascisti

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	28 giugno 2012	Codice misura: VC7-S4		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionaciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	30	3	3
²¹⁴ Pb	351,99	30	2	1,7
²¹⁴ Bi	609,32	25	2	1,9
²¹⁴ Bi	1120,28	29	6	6
²¹⁴ Bi	1764,51	24	5	5
²²⁶ Ra		27,9	1,2	1,7
²²⁸ Ac	338,40	35	5	5
²²⁸ Ac	911,07	34	4	3
²²⁸ Ac	968,90	34	5	4
²²⁸ Ra		34	2	3
²³² Th		34	2	3
²¹² Pb	238,63	31,7	1,8	1,3
²⁰⁸ Tl	583,1	32	3	3
²²⁸ Th		31,9	1,5	1,3
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	640	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 22 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S4 – Campione C8 – Cassetta 174 – Intervallo Campione da m 572.35 a m 572.47 – Micascisti

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	22 giugno 2012	Codice misura: VC8-S4		
Dadiomolido	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Radionuclide	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	22	3	3
²¹⁴ Pb	351,99	25,8	1,2	1,6
²¹⁴ Bi	609,32	29	2	1,8
²¹⁴ Bi	1120,28	24	5	5
²¹⁴ Bi	1764,51	24	5	5
²²⁶ Ra		25,8	1,2	1,6
²²⁸ Ac	338,40	30	5	5
²²⁸ Ac	911,07	31	3	3
²²⁸ Ac	968,90	34	4	4
²²⁸ Ra		32	2	3
²³² Th		32	2	3
²¹² Pb	238,63	31,8	1,7	1,2
²⁰⁸ T1	583,1	29	3	2
²²⁸ Th		31,1	1,4	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	710	30	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 24 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S4 – Campione C9 – Cassetta 186 – Intervallo Campione da m 617.80 a m 618.02 – Micascisti

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	24 giugno 2012 Codice misura: VC9-5			VC9-S4
D 1: 1: 1 -	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Radionuclide	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	32	3	3
²¹⁴ Pb	351,99	36	2	1,8
$^{214}\mathrm{Bi}$	609,32	38	3	1,9
$^{214}\mathrm{Bi}$	1120,28	39	7	6
$^{214}\mathrm{Bi}$	1764,51	38	6	5
²²⁶ Ra		35,7	1,4	1,8
228 Ac	338,40	45	5	5
228 Ac	911,07	43	4	3
^{228}Ac	968,90	46	5	4
²²⁸ Ra		44	3	3
²³² Th		44	3	3
²¹² Pb	238,63	43	2	1,3
²⁰⁸ Tl	583,1	38	3	3
²²⁸ Th		41,5	1,7	1,3
¹³⁷ Cs	661,62	<0,8	0	0,8
$^{40}\mathrm{K}$	1460,75	910	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sivole Seidi

Data di rilascio: 27 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S4 – Campione C10 – Cassetta 204 – Intervallo Campione da m 686.85 a m 686.99 – Micascisti

Produttore:

--- --

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	27 giugno 2012	Codice misura: VC10-S4		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каатопистае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	23	3	3
²¹⁴ Pb	351,99	23,1	1,7	1,6
²¹⁴ Bi	609,32	26	2	1,7
²¹⁴ Bi	1120,28	21	6	5
²¹⁴ Bi	1764,51	27	5	4
²²⁶ Ra		24,2	1,1	1,6
²²⁸ Ac	338,40	35	5	5
²²⁸ Ac	911,07	36	3	3
²²⁸ Ac	968,90	33	4	4
²²⁸ Ra		35	2	3
²³² Th		35	2	3
²¹² Pb	238,63	32,5	1,7	1,1
²⁰⁸ Tl	583,1	34	3	2
²²⁸ Th		33,0	1,4	1,1
¹³⁷ Cs	661,62	<0,7	0	0,7
⁴⁰ K	1460,75	680	30	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 26 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S5 – Campione C1 – Cassetta 3 – Intervallo Campione da m 323.40 a m 323.58 – Gneiss Aplitici

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	26 giugno 2012	Codice misura: VC1-S5		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Кааюниснае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	197	6	3
²¹⁴ Pb	351,99	196	5	1,5
²¹⁴ Bi	609,32	195	5	1,6
²¹⁴ Bi	1120,28	183	11	5
$^{214}\mathrm{Bi}$	1764,51	205	12	4
²²⁶ Ra		195	3	1,5
²²⁸ Ac	338,40	39	7	4
²²⁸ Ac	911,07	42	4	3
²²⁸ Ac	968,90	49	6	4
²²⁸ Ra		43	3	3
²³² Th		43	3	3
²¹² Pb	238,63	46,3	1,9	1,1
²⁰⁸ T1	583,1	47	3	2
²²⁸ Th		46,5	1,7	1,1
¹³⁷ Cs	661,62	<0,7	0	0,7
40 K	1460,75	1320	40	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 25 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S5 – Campione C2 – Cassetta 50 – Intervallo Campione da m 454.07 a m 454.17 – Facies intermedia tra gneiss aplitici e gneiss s.s.

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	25 giugno 2012	Codice misura: VC2-S5		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	37	3	3
²¹⁴ Pb	351,99	41	2	1,6
²¹⁴ Bi	609,32	37	2	1,8
²¹⁴ Bi	1120,28	38	6	5
²¹⁴ Bi	1764,51	43	6	5
²²⁶ Ra		38,7	1,4	1,6
²²⁸ Ac	338,40	53	5	5
²²⁸ Ac	911,07	57	4	3
²²⁸ Ac	968,90	55	6	4
²²⁸ Ra		56	3	3
²³² Th		56	3	3
²¹² Pb	238,63	53	2	1,2
²⁰⁸ Tl	583,1	51	4	2
²²⁸ Th		52,3	1,8	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	950	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinole Seid'

martha

Data di rilascio: 23 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S5 – Campione C3 – Cassetta 94 – Intervallo Campione da m 606.65 a m 606.86 – Gneiss Aplitici

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	23 giugno 2012	Codice misura: VC3-S5		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionuciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	36	3	3
²¹⁴ Pb	351,99	33	2	1,8
²¹⁴ Bi	609,32	33	2	2
²¹⁴ Bi	1120,28	27	7	6
²¹⁴ Bi	1764,51	36	6	5
²²⁶ Ra		33,4	1,4	1,8
²²⁸ Ac	338,40	44	6	5
²²⁸ Ac	911,07	47	4	3
²²⁸ Ac	968,90	49	6	4
²²⁸ Ra		47	3	3
²³² Th		47	3	3
²¹² Pb	238,63	46	2	1,3
²⁰⁸ T1	583,1	42	3	3
²²⁸ Th		45,1	1,8	1,3
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	1050	40	11

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Liste Seid

mfefts

Data di rilascio: 23 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S5 – Campione C4 – Cassetta 123 – Intervallo Campione da m 719.20 a m 719.32 – Facies gneissica

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	23 giugno 2012		Codice misura:	VC4-S5
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каанописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	37	3	3
²¹⁴ Pb	351,99	33	2	1,8
²¹⁴ Bi	609,32	36	3	2
²¹⁴ Bi	1120,28	39	7	6
²¹⁴ Bi	1764,51	39	6	5
²²⁶ Ra		35,1	1,4	1,8
²²⁸ Ac	338,40	60	6	5
²²⁸ Ac	911,07	50	4	3
²²⁸ Ac	968,90	56	6	4
²²⁸ Ra		54	3	3
²³² Th		54	3	3
²¹² Pb	238,63	55	2	1,3
²⁰⁸ Tl	583,1	57	4	3
²²⁸ Th		56	2	1,3
¹³⁷ Cs	661,62	<0,9	0	0,9
⁴⁰ K	1460,75	1190	40	11

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinol Seid'

myette

Data di rilascio: 21 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S5 – Campione C5 – Cassetta 136 – Intervallo Campione da m 773.69 a m 773.85 – Facies intermedia tra gneiss aplitici e gneiss s.s. Con livelli milonitici

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	21 giugno 2012	Codice misura: VC5-S5		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каанописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	30	3	3
²¹⁴ Pb	351,99	29,6	1,9	1,6
²¹⁴ Bi	609,32	30	2	1,8
²¹⁴ Bi	1120,28	29	5	5
²¹⁴ Bi	1764,51	35	6	5
²²⁶ Ra		30,0	1,2	1,6
²²⁸ Ac	338,40	48	5	5
²²⁸ Ac	911,07	56	4	3
²²⁸ Ac	968,90	50	5	4
²²⁸ Ra		52	3	3
²³² Th		52	3	3
²¹² Pb	238,63	52	2	1,2
²⁰⁸ Tl	583,1	47	3	2
²²⁸ Th		50,6	1,8	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	430	20	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Liste Seid

marthe

Data di rilascio: 26 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S5 – Campione C6 – Cassetta 146 – Intervallo Campione da m 809.95 a m 810.13 – Gneiss Aplitici più ricchi in mica

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	26 giugno 2012		Codice misura:	VC6-S5
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каатописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	32	3	2
²¹⁴ Pb	351,99	32,0	1,9	1,5
²¹⁴ Bi	609,32	32	2	1,6
²¹⁴ Bi	1120,28	32	6	5
²¹⁴ Bi	1764,51	30	5	4
²²⁶ Ra		32,0	1,2	1,5
²²⁸ Ac	338,40	42	5	4
²²⁸ Ac	911,07	41	4	3
²²⁸ Ac	968,90	40	5	4
²²⁸ Ra		41	2	3
²³² Th		41	2	3
²¹² Pb	238,63	39,2	1,8	1,1
²⁰⁸ Tl	583,1	37	3	2
²²⁸ Th		38,7	1,5	1,1
¹³⁷ Cs	661,62	<0,7	0	0,7
⁴⁰ K	1460,75	790	30	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Liste Seid

Data di rilascio: 27 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S5 – Campione C7 – Cassetta 156 – Intervallo Campione da m 858.35 a m 858.49 – Micascisti

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	27 giugno 2012	Codice misura: VC7-S5		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionaciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	39	3	2
²¹⁴ Pb	351,99	40	2	1,4
²¹⁴ Bi	609,32	40	2	1,6
²¹⁴ Bi	1120,28	39	5	5
²¹⁴ Bi	1764,51	38	5	4
²²⁶ Ra		39,7	1,3	1,4
²²⁸ Ac	338,40	47	5	4
²²⁸ Ac	911,07	53	4	3
²²⁸ Ac	968,90	50	5	4
²²⁸ Ra		51	3	3
²³² Th		51	3	3
²¹² Pb	238,63	51	2	1,0
²⁰⁸ T1	583,1	50	3	2
²²⁸ Th		50,9	1,7	1,0
¹³⁷ Cs	661,62	<0,7	0	0,7
⁴⁰ K	1460,75	750	30	8

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sinol Seid

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 28 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S5 – Campione C8 – Cassetta 163 – Intervallo Campione da m 893.27 a m 893.45 – Facies intermediatra gneiss aplitici e gneiss s.s.

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	28 giugno 2012	Codice misura: VC8-S5		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionaciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	38	3	3
²¹⁴ Pb	351,99	33	2	1,7
²¹⁴ Bi	609,32	35	2	1,8
²¹⁴ Bi	1120,28	32	7	5
²¹⁴ Bi	1764,51	38	6	5
²²⁶ Ra		35,1	1,4	1,7
²²⁸ Ac	338,40	40	6	5
²²⁸ Ac	911,07	46	4	3
²²⁸ Ac	968,90	46	5	4
²²⁸ Ra		44	3	3
²³² Th		44	3	3
²¹² Pb	238,63	50	2	1,2
²⁰⁸ T1	583,1	45	3	3
²²⁸ Th		48,8	1,8	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	1080	40	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Linola Seid

marthe

Data di rilascio: 23 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S5 – Campione C9 – Cassetta 166 – Intervallo Campione da m 907.75 a m 907.95 – Facies intermediatra gneiss aplitici e gneiss s.s.

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	23 giugno 2012	Codice misura: VC9-S5		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionaciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	29	3	3
²¹⁴ Pb	351,99	30	2	1,7
²¹⁴ Bi	609,32	29	2	1,9
²¹⁴ Bi	1120,28	22	6	5
²¹⁴ Bi	1764,51	27	5	5
²²⁶ Ra		28,9	1,2	1,7
²²⁸ Ac	338,40	47	5	5
²²⁸ Ac	911,07	44	4	3
²²⁸ Ac	968,90	49	5	4
²²⁸ Ra		46	3	3
²³² Th		46	3	3
²¹² Pb	238,63	45	2	1,2
²⁰⁸ T1	583,1	47	3	3
²²⁸ Th		45,8	1,7	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	800	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Livola Seidi

Data di rilascio: 19 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S8 – Campione C1 – Cassetta 37 – Intervallo Campione da m 180.00 a m 180.18 – Micascisti/gneiss albitici

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	19 giugno 2012	Codice misura: VC1-S8		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionaciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	32	2	2
²¹⁴ Pb	351,99	26,0	1,5	1,5
²¹⁴ Bi	609,32	27,7	1,7	1,6
²¹⁴ Bi	1120,28	25	5	5
²¹⁴ Bi	1764,51	31	4	4
²²⁶ Ra		27,8	1,0	1,5
²²⁸ Ac	338,40	32	4	4
²²⁸ Ac	911,07	35	3	3
²²⁸ Ac	968,90	29	3	4
²²⁸ Ra		32,3	1,9	3,0
²³² Th		32,3	1,9	3,0
²¹² Pb	238,63	32,5	1,4	1,0
²⁰⁸ T1	583,1	29	2	2
²²⁸ Th		31,7	1,2	1,0
¹³⁷ Cs	661,62	<0,7	0	0,7
⁴⁰ K	1460,75	690	20	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Lind Seid

Data di rilascio: 29 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S8 – Campione C2 – Cassetta 50 – Intervallo Campione da m 250.30 a m 250.52 – Calcescisti

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	29 giugno 2012	Codice misura: VC2-S8		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionaciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	21	3	3
²¹⁴ Pb	351,99	17,8	1,7	1,8
²¹⁴ Bi	609,32	19	2	2
²¹⁴ Bi	1120,28	15	6	6
²¹⁴ Bi	1764,51	21	5	5
²²⁶ Ra		18,7	1,1	1,8
²²⁸ Ac	338,40	33	5	5
²²⁸ Ac	911,07	35	4	3
²²⁸ Ac	968,90	37	5	4
²²⁸ Ra		35	3	3
²³² Th		35	3	3
²¹² Pb	238,63	32,8	1,9	1,3
²⁰⁸ T1	583,1	35	3	3
²²⁸ Th		33,2	1,6	1,3
¹³⁷ Cs	661,62	<0,9	0	0,9
⁴⁰ K	1460,75	540	30	11

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sinol Seid

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 26 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S8 – Campione C3 – Cassetta 68 – Intervallo Campione da m 350.10 a m 350.28 – Calcescisti

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	26 giugno 2012	Codice misura: VC3-S8		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionaciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	20	3	3
²¹⁴ Pb	351,99	19,8	1,6	1,7
²¹⁴ Bi	609,32	21,2	1,9	1,8
²¹⁴ Bi	1120,28	20	5	5
²¹⁴ Bi	1764,51	26	5	5
²²⁶ Ra		20,5	1,1	1,7
²²⁸ Ac	338,40	35	5	5
²²⁸ Ac	911,07	40	4	3
²²⁸ Ac	968,90	38	5	4
²²⁸ Ra		38	3	3
²³² Th		38	3	3
²¹² Pb	238,63	40,1	1,9	1,2
²⁰⁸ T1	583,1	39	3	3
²²⁸ Th		39,8	1,6	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	600	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Liste Seid

Data di rilascio: 27 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S8 – Campione C4 – Cassetta 78 – Intervallo Campione da m 404.90 a m 405.02 – Micascisti

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	27 giugno 2012	Codice misura: VC4-S8		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionaciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	44	4	3
²¹⁴ Pb	351,99	51	3	1,8
²¹⁴ Bi	609,32	50	3	2
²¹⁴ Bi	1120,28	44	7	6
²¹⁴ Bi	1764,51	48	7	5
²²⁶ Ra		48,6	1,6	1,8
²²⁸ Ac	338,40	73	6	5
²²⁸ Ac	911,07	73	5	3
²²⁸ Ac	968,90	75	7	4
²²⁸ Ra		73	3	3
²³² Th		73	3	3
²¹² Pb	238,63	75	3	1,3
²⁰⁸ Tl	583,1	75	4	3
²²⁸ Th		75	2	1,3
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	790	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sinol Seid

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

U-Series Srl - Via Ferrarese 131 - 40128 Bologna

marthe

Data di rilascio: 27 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S8 – Campione C5 – Cassetta 84 – Intervallo Campione da m 437.90 a m 438.00 – Calcescisti

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	27 giugno 2012	Codice misura: VC5-S8		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionuciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	18	2	3
²¹⁴ Pb	351,99	16,6	1,4	1,6
²¹⁴ Bi	609,32	16	2	2
²¹⁴ Bi	1120,28	16	4	5
²¹⁴ Bi	1764,51	19	4	4
²²⁶ Ra		16,7	0,9	1,6
²²⁸ Ac	338,40	20	4	5
²²⁸ Ac	911,07	17	2	3
²²⁸ Ac	968,90	22	4	4
²²⁸ Ra		18,7	1,8	3,0
²³² Th		18,7	1,8	3,0
²¹² Pb	238,63	20,4	1,3	1,1
²⁰⁸ T1	583,1	21	2	2
²²⁸ Th		20,5	1,1	1,1
¹³⁷ Cs	661,62	<0,7	0	0,7
⁴⁰ K	1460,75	340	19	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

List Seidi

Data di rilascio: 25 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S8 – Campione C6 – Cassetta 88 – Intervallo Campione da m 460.60 a m 460.73 – Micascisti cloritici

Produttore:

--- ---

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	25 giugno 2012	Codice misura: VC6-S8		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каатопистае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	33	3	3
²¹⁴ Pb	351,99	35	2	1,6
²¹⁴ Bi	609,32	38	2	1,8
²¹⁴ Bi	1120,28	37	5	5
²¹⁴ Bi	1764,51	35	5	5
²²⁶ Ra		35,4	1,3	1,6
²²⁸ Ac	338,40	39	5	5
²²⁸ Ac	911,07	43	4	3
²²⁸ Ac	968,90	40	5	4
²²⁸ Ra		41	3	3
²³² Th		41	3	3
²¹² Pb	238,63	39,2	1,8	1,2
²⁰⁸ T1	583,1	40	3	2
²²⁸ Th		39,5	1,6	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	304	18	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Livola Seidi

Data di rilascio: 28 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S8 – Campione C7 – Cassetta 93 – Intervallo Campione da m 489.00 a m 489.20 – Calcescisti

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	28 giugno 2012	Codice misura: VC7-S8		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Кааюниснае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	10	2	3
²¹⁴ Pb	351,99	7,4	1,1	1,7
²¹⁴ Bi	609,32	7,1	1,2	1,9
²¹⁴ Bi	1120,28	7	4	5
²¹⁴ Bi	1764,51	7	3	5
²²⁶ Ra		7,6	0,7	1,7
²²⁸ Ac	338,40	15	3	5
²²⁸ Ac	911,07	14	2	3
²²⁸ Ac	968,90	14	3	4
²²⁸ Ra		14,0	1,6	3,0
²³² Th		14,0	1,6	3,0
²¹² Pb	238,63	12,3	1,1	1,2
²⁰⁸ Tl	583,1	11,9	1,9	2,6
²²⁸ Th		12,2	1,0	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	205	16	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinola Seidi

Data di rilascio: 26 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S8 – Campione C8 – Cassetta 96 – Intervallo Campione da m 506.00 a m 506.16 – Calcescisti

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	26 giugno 2012	Codice misura: VC8-S8		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionuciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	14	2	3
²¹⁴ Pb	351,99	12,9	1,3	1,6
²¹⁴ Bi	609,32	14,4	1,6	1,7
²¹⁴ Bi	1120,28	13	5	5
²¹⁴ Bi	1764,51	15	4	4
²²⁶ Ra		13,7	0,9	1,6
²²⁸ Ac	338,40	23	4	5
²²⁸ Ac	911,07	25	3	3
²²⁸ Ac	968,90	26	4	4
²²⁸ Ra		25	2	3
²³² Th		25	2	3
²¹² Pb	238,63	25,7	1,5	1,1
²⁰⁸ T1	583,1	25	2	2
²²⁸ Th		25,5	1,3	1,2
¹³⁷ Cs	661,62	<0,7	0	0,7
⁴⁰ K	1460,75	410	20	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinola Seidi

martha

Data di rilascio: 22 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S42 – Campione C1 – Cassetta 19 – Intervallo Campione da m 96.00 a m 96.13 – Gneiss quarzitici

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	22 giugno 2012	Codice misura: VC1-S42		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каанописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	6,5	1,9	2,8
²¹⁴ Pb	351,99	7,3	1,1	1,7
²¹⁴ Bi	609,32	5,9	1,1	1,8
²¹⁴ Bi	1120,28	8	4	5
²¹⁴ Bi	1764,51	8	3	5
²²⁶ Ra		6,7	0,7	1,7
²²⁸ Ac	338,40	<5	0	5
²²⁸ Ac	911,07	<3	0	3
²²⁸ Ac	968,90	<4	0	4
²²⁸ Ra		<3	0	3
²³² Th		<3	0	3
²¹² Pb	238,63	2,6	0,8	1,2
²⁰⁸ T1	583,1	4,1	1,7	2,5
²²⁸ Th		2,9	0,7	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	319	19	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

List Seid

Data di rilascio: 29 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S42 – Campione C2 – Cassetta 46 – Intervallo Campione da m 288.00 a m 288.18 – Calcescisti

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	29 giugno 2012	Codice misura: VC2-S42		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каанописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	10	2	3
²¹⁴ Pb	351,99	8,0	1,3	2,0
²¹⁴ Bi	609,32	8,0	1,4	2,2
²¹⁴ Bi	1120,28	11	5	6
²¹⁴ Bi	1764,51	8	3	6
²²⁶ Ra		8,4	0,9	2,0
²²⁸ Ac	338,40	13	4	6
²²⁸ Ac	911,07	12	2	4
²²⁸ Ac	968,90	17	4	5
²²⁸ Ra		13,2	1,8	4,0
²³² Th		13,2	1,8	4,0
²¹² Pb	238,63	11,5	1,2	1,4
²⁰⁸ Tl	583,1	12	2	3
²²⁸ Th		11,6	1,0	1,4
¹³⁷ Cs	661,62	<0,9	0	0,9
⁴⁰ K	1460,75	280	20	12

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinol Seid

martha

Data di rilascio: 26 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S42 – Campione C3 – Cassetta 54 – Intervallo Campione da m 352.00 a m 352.13 – Calcescistii

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	26 giugno 2012	Codice misura: VC3-S42		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каанописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	12	2	3
²¹⁴ Pb	351,99	12,1	1,3	1,6
²¹⁴ Bi	609,32	13,3	1,5	1,8
²¹⁴ Bi	1120,28	10	4	5
²¹⁴ Bi	1764,51	12	4	5
²²⁶ Ra		12,3	0,9	1,6
²²⁸ Ac	338,40	16	4	5
²²⁸ Ac	911,07	19	3	3
²²⁸ Ac	968,90	19	3	4
²²⁸ Ra		18,4	1,8	3,0
²³² Th		18,4	1,8	3,0
²¹² Pb	238,63	18,3	1,3	1,2
²⁰⁸ Tl	583,1	18	2	2
²²⁸ Th		18,2	1,1	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	329	19	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sino Seidi

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

U-Series Srl - Via Ferrarese 131 - 40128 Bologna Tel. 051 6312418 - Fax. 051 4158173 E-mail info@u-series.com - http://www.u-series.com

Data di rilascio: 22 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S42 – Campione C4 – Cassetta 60 – Intervallo Campione da m 400.00 a m 400.16 – Micascisti

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

ata misura:	22 giugno 2012	Codice misura: VC4-S42		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Кааюписнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	40	3	3
²¹⁴ Pb	351,99	41	2	1,8
$^{214}\mathrm{Bi}$	609,32	44	3	2
$^{214}\mathrm{Bi}$	1120,28	38	7	6
$^{214}\mathrm{Bi}$	1764,51	42	6	5
²²⁶ Ra		41,8	1,5	1,8
²²⁸ Ac	338,40	38	6	5
²²⁸ Ac	911,07	44	4	3
²²⁸ Ac	968,90	44	5	4
²²⁸ Ra		43	3	3
²³² Th		43	3	3
²¹² Pb	238,63	46	2	1,3
²⁰⁸ Tl	583,1	44	3	3
²²⁸ Th		45,6	1,8	1,3
¹³⁷ Cs	661,62	<0,9	0	0,9
$^{40}\mathrm{K}$	1460,75	780	30	11

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sinol Seidi

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 27 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Susa – Sondaggio S42 – Campione C5 – Cassetta 65 – Intervallo Campione da m 440.00 a m 440.23 – Calcescisti

Produttore:

Prelievo del campione:

Prelievo: 11 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	27 giugno 2012	Codice misura: VC5-S42		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Raaionuciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	39	3	3
²¹⁴ Pb	351,99	41	2	1,5
²¹⁴ Bi	609,32	43	3	1,7
²¹⁴ Bi	1120,28	36	5	5
²¹⁴ Bi	1764,51	47	6	4
²²⁶ Ra		40,9	1,4	1,5
²²⁸ Ac	338,40	44	5	5
²²⁸ Ac	911,07	49	4	3
²²⁸ Ac	968,90	47	5	4
²²⁸ Ra		47	3	3
²³² Th		47	3	3
²¹² Pb	238,63	46,1	1,9	1,1
²⁰⁸ Tl	583,1	44	3	2
²²⁸ Th		45,5	1,7	1,1
¹³⁷ Cs	661,62	<0,7	0	0,7
40 K	1460,75	580	20	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sinol Seidi

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 19 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F16 – Campione C1 – Cassetta 20 – Intervallo Campione da m 1118.95 a m 1119.19 – Micascisti listati con pieghe

Produttore:

--- ---

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	19 giugno 2012	Codice misura: VC1-F16		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каанописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	29	2	2
²¹⁴ Pb	351,99	31,2	1,6	1,4
²¹⁴ Bi	609,32	31,2	1,8	1,5
²¹⁴ Bi	1120,28	33	4	4
²¹⁴ Bi	1764,51	32	4	4
²²⁶ Ra		30,8	1,0	1,4
²²⁸ Ac	338,40	28	4	4
²²⁸ Ac	911,07	30	3	2
²²⁸ Ac	968,90	27	3	3
²²⁸ Ra		29,0	1,8	2,0
²³² Th		29,0	1,8	2,0
²¹² Pb	238,63	30,8	1,3	1,0
²⁰⁸ T1	583,1	29	2	2
²²⁸ Th		30,3	1,1	1,0
¹³⁷ Cs	661,62	<0,6	0	0,6
⁴⁰ K	1460,75	590	20	8

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sino Seidi

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

U-Series Srl - Via Ferrarese 131 - 40128 Bologna Tel. 051 6312418 - Fax. 051 4158173 E-mail info@u-series.com - http://www.u-series.com

Data di rilascio: 22 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F16 – Campione C2 – Cassetta 28 – Intervallo Campione da m 1157.75 a m 1158.04 – Micascisti listati

Produttore:

--- ---

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	22 giugno 2012	Codice misura: VC2-F16		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Кааюниснае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	28	3	3
²¹⁴ Pb	351,99	27,9	1,8	1,5
²¹⁴ Bi	609,32	28	2	1,7
²¹⁴ Bi	1120,28	29	5	5
²¹⁴ Bi	1764,51	28	5	4
²²⁶ Ra		28,1	1,2	1,5
²²⁸ Ac	338,40	40	5	5
²²⁸ Ac	911,07	34	3	3
²²⁸ Ac	968,90	36	4	4
²²⁸ Ra		36	2	3
²³² Th		36	2	3
²¹² Pb	238,63	33,2	1,7	1,1
²⁰⁸ Tl	583,1	33	3	2
²²⁸ Th		33,1	1,4	1,1
¹³⁷ Cs	661,62	<0,7	0	0,7
⁴⁰ K	1460,75	680	30	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sino Seidi

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 25 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F16 – Campione C3 – Cassetta 40 – Intervallo Campione da m 1217.25 a m 1217.53 – Micascisti listati

iistati

Produttore:

--- ---

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	25 giugno 2012	Codice misura: VC3-F16		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каатописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	23	2	2
²¹⁴ Pb	351,99	23,1	1,6	1,4
²¹⁴ Bi	609,32	22,6	1,8	1,6
²¹⁴ Bi	1120,28	18	5	5
²¹⁴ Bi	1764,51	25	5	4
²²⁶ Ra		22,9	1,0	1,4
²²⁸ Ac	338,40	15	4	4
²²⁸ Ac	911,07	25	3	3
²²⁸ Ac	968,90	22	3	3
²²⁸ Ra		21,8	1,9	3,0
²³² Th		21,8	1,9	3,0
²¹² Pb	238,63	24,1	1,4	1,0
²⁰⁸ T1	583,1	22	2	2
²²⁸ Th		23,6	1,2	1,0
¹³⁷ Cs	661,62	<0,7	0	0,7
⁴⁰ K	1460,75	660	30	8

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinol Seidi

Data di rilascio: 27 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F16 – Campione C4 – Cassetta 52 – Intervallo Campione da m 1275.50 a m 1275.74 – Micascisti listati

Produttore:

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	27 giugno 2012	Codice misura: VC4-F16		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каанописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	22	3	2
²¹⁴ Pb	351,99	23,8	1,7	1,5
²¹⁴ Bi	609,32	23,0	1,9	1,6
²¹⁴ Bi	1120,28	22	5	5
²¹⁴ Bi	1764,51	25	5	4
²²⁶ Ra		23,2	1,1	1,5
²²⁸ Ac	338,40	27	4	4
²²⁸ Ac	911,07	26	3	3
²²⁸ Ac	968,90	32	4	4
²²⁸ Ra		28	2	3
²³² Th		28	2	3
²¹² Pb	238,63	28,5	1,5	1,1
²⁰⁸ T1	583,1	30	3	2
²²⁸ Th		28,9	1,3	1,1
¹³⁷ Cs	661,62	<0,7	0	0,7
⁴⁰ K	1460,75	670	30	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinola Seidi

Data di rilascio: 24 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F16 – Campione C5 – Cassetta 62 – Intervallo Campione da m 1325.15 a m 1325.36 – Micascisti listati con pieghe

Produttore:

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	24 giugno 2012	Codice misura: VC5-F16		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каанописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	26	3	3
²¹⁴ Pb	351,99	30	2	1,8
²¹⁴ Bi	609,32	31	2	1,9
²¹⁴ Bi	1120,28	30	6	6
²¹⁴ Bi	1764,51	29	5	5
²²⁶ Ra		29,6	1,3	1,8
²²⁸ Ac	338,40	35	5	5
²²⁸ Ac	911,07	37	4	3
²²⁸ Ac	968,90	39	5	4
²²⁸ Ra		37	3	3
²³² Th		37	3	3
²¹² Pb	238,63	37,4	1,9	1,3
²⁰⁸ Tl	583,1	35	3	3
²²⁸ Th		36,8	1,6	1,3
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	860	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sino Seidi

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 26 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F16 – Campione C6 – Cassetta 72 – Intervallo Campione da m 1375.20 a m 1375.46 – Micascisti listati

Produttore:

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	26 giugno 2012	Codice misura: VC6-F16		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Кааюниснае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	26	3	3
²¹⁴ Pb	351,99	27,1	1,8	1,5
²¹⁴ Bi	609,32	27	2	1,7
²¹⁴ Bi	1120,28	28	6	5
²¹⁴ Bi	1764,51	36	5	4
²²⁶ Ra		27,3	1,2	1,5
²²⁸ Ac	338,40	27	5	5
²²⁸ Ac	911,07	28	3	3
²²⁸ Ac	968,90	30	4	4
²²⁸ Ra		28	2	3
²³² Th		28	2	3
²¹² Pb	238,63	32,7	1,6	1,1
²⁰⁸ Tl	583,1	29	3	2
²²⁸ Th		31,8	1,4	1,1
¹³⁷ Cs	661,62	<0,7	0	0,7
⁴⁰ K	1460,75	690	30	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sino Seidi

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

U-Series Srl - Via Ferrarese 131 - 40128 Bologna

malt

Data di rilascio: 26 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F16 – Campione C7 – Cassetta 81 – Intervallo Campione da m 1418.40 a m 1418.64 – Micascisti listati

Produttore:

--- ---

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

ata misura:	26 giugno 2012	Codice misura: VC7-F16		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
кааюниснае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	26	3	3
²¹⁴ Pb	351,99	27,6	1,8	1,5
$^{214}\mathrm{Bi}$	609,32	27	2	1,7
$^{214}\mathrm{Bi}$	1120,28	20	6	5
$^{214}\mathrm{Bi}$	1764,51	28	5	4
²²⁶ Ra		26,8	1,1	1,5
²²⁸ Ac	338,40	29	5	5
228 Ac	911,07	35	3	3
²²⁸ Ac	968,90	36	4	4
²²⁸ Ra		34	2	3
²³² Th		34	2	3
²¹² Pb	238,63	32,4	1,6	1,1
²⁰⁸ Tl	583,1	32	3	2
²²⁸ Th		32,4	1,4	1,1
¹³⁷ Cs	661,62	<0,7	0	0,7
$^{40}\mathrm{K}$	1460,75	700	30	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Livola Seidi

Data di rilascio: 28 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F16 – Campione C8 – Cassetta 90 – Intervallo Campione da m 1462.85 a m 1463.07 – Micascisti listati

Produttore:

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	28 giugno 2012	Codice misura: VC8-F16		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Kaaionaciiae	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	29	3	3
²¹⁴ Pb	351,99	28	2	1,7
²¹⁴ Bi	609,32	25	2	1,9
²¹⁴ Bi	1120,28	26	6	6
²¹⁴ Bi	1764,51	28	5	5
²²⁶ Ra		27,2	1,2	1,7
²²⁸ Ac	338,40	39	5	5
²²⁸ Ac	911,07	36	4	3
²²⁸ Ac	968,90	35	5	4
²²⁸ Ra		37	3	3
²³² Th		37	3	3
²¹² Pb	238,63	31,8	1,8	1,3
²⁰⁸ Tl	583,1	35	5	5
²²⁸ Th		32,6	1,5	1,3
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	840	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sino Seidi

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 24 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F16 – Campione C9 – Cassetta 99 – Intervallo Campione da m 1506.90 a m 1507.20 – Micascisti listati leggermente grafitici

Produttore:

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

ata misura:	24 giugno 2012	Codice misura: VC9-F16		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
кааюниснае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	30	3	3
²¹⁴ Pb	351,99	27,9	1,9	1,6
$^{214}\mathrm{Bi}$	609,32	31	2	1,7
$^{214}\mathrm{Bi}$	1120,28	28	5	5
$^{214}\mathrm{Bi}$	1764,51	29	5	4
²²⁶ Ra		29,1	1,2	1,6
²²⁸ Ac	338,40	31	4	5
²²⁸ Ac	911,07	30	4	4
²²⁸ Ac	968,90	30	4	4
²²⁸ Ra		32	2	3
²³² Th		32	2	3
²¹² Pb	238,63	33,6	1,7	1,2
²⁰⁸ Tl	583,1	33	3	2
²²⁸ Th		33,5	1,5	1,2
¹³⁷ Cs	661,62	<0,7	0	0,7
$^{40}\mathrm{K}$	1460,75	640	30	9

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinol Seid

Data di rilascio: 24 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F30bis – Campione C1 – Cassetta 149 – Intervallo Campione da m 727.90 a m 728.12 – Micascisti quarzosi

Produttore:

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	24 giugno 2012	Codice misura: VC1-F30 bis		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Кааюниснае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	21	3	3
²¹⁴ Pb	351,99	18,7	1,6	1,8
²¹⁴ Bi	609,32	19,2	1,9	2,0
²¹⁴ Bi	1120,28	20	6	6
²¹⁴ Bi	1764,51	20	5	5
²²⁶ Ra		19,3	1,1	1,8
²²⁸ Ac	338,40	36	5	5
²²⁸ Ac	911,07	34	4	3
²²⁸ Ac	968,90	35	5	4
²²⁸ Ra		35	3	3
²³² Th		35	3	3
²¹² Pb	238,63	36,0	1,9	1,3
²⁰⁸ Tl	583,1	37	3	3
²²⁸ Th		36,3	1,6	1,3
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	830	30	11

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinol Seid'

mayet

Data di rilascio: 23 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F30bis – Campione C2 – Cassetta 179 – Intervallo Campione da m 843.30 a m 843.47 – Micascisti quarzosi

Produttore:

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	23 giugno 2012	Codice misura: VC2-F30 bis		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Кааюниснае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	24	3	3
²¹⁴ Pb	351,99	26,9	1,8	1,6
²¹⁴ Bi	609,32	27	2	1,8
²¹⁴ Bi	1120,28	32	6	5
²¹⁴ Bi	1764,51	26	5	5
²²⁶ Ra		26,6	1,2	1,6
²²⁸ Ac	338,40	42	5	5
²²⁸ Ac	911,07	46	4	3
²²⁸ Ac	968,90	50	5	4
²²⁸ Ra		46	3	3
²³² Th		46	3	3
²¹² Pb	238,63	45	2	1,2
²⁰⁸ Tl	583,1	42	3	2
²²⁸ Th		44,3	1,7	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	930	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Lius Leidi

Data di rilascio: 18 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F30bis – Campione C3 – Cassetta 197 – Intervallo Campione da m 912.60 a m 912.76 – Micascisti quarzosi

Produttore:

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	18 giugno 2012	Codice misura: VC3-F30 bis		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каагописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	21	2	2
²¹⁴ Pb	351,99	21,3	1,3	1,4
²¹⁴ Bi	609,32	21,6	1,5	1,5
²¹⁴ Bi	1120,28	23	5	4
²¹⁴ Bi	1764,51	26	4	4
²²⁶ Ra		21,6	0,9	1,4
²²⁸ Ac	338,40	40	4	4
²²⁸ Ac	911,07	38	3	2
²²⁸ Ac	968,90	40	4	3
²²⁸ Ra		39	2	2
²³² Th		39	2	2
²¹² Pb	238,63	38,6	1,4	1,0
²⁰⁸ Tl	583,1	38	2	2
²²⁸ Th		38,3	1,2	1,0
¹³⁷ Cs	661,62	<0,6	0	0,6
⁴⁰ K	1460,75	760	20	8

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinol Seid'

mayle

Data di rilascio: 23 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F30bis – Campione C4 – Cassetta 219 – Intervallo Campione da m 999.90 a m 1000.09 – Micascisti quarzosi a clorite

Produttore:

--- ---

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	23 giugno 2012	Codice misura: VC4-F30 bis		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Кааюниснае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	18	3	3
²¹⁴ Pb	351,99	16,5	1,6	1,8
²¹⁴ Bi	609,32	14,1	1,8	1,9
²¹⁴ Bi	1120,28	12	7	6
²¹⁴ Bi	1764,51	21	5	5
²²⁶ Ra		16,0	1,0	1,8
²²⁸ Ac	338,40	47	5	5
²²⁸ Ac	911,07	41	4	3
²²⁸ Ac	968,90	45	5	4
²²⁸ Ra		44	3	3
²³² Th		44	3	3
²¹² Pb	238,63	47	2	1,3
²⁰⁸ Tl	583,1	44	3	3
²²⁸ Th		46,0	1,8	1,3
¹³⁷ Cs	661,62	<0,8	0	0,8
⁴⁰ K	1460,75	1010	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sino Seidi

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Data di rilascio: 21 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F30bis – Campione C5 – Cassetta 236 – Intervallo Campione da m 1085.60 a m 1082.90 – Micascisti quarzosi a clorite

Produttore:

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	21 giugno 2012	Codice misura: VC5-F30 bis		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каанописнае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	22	3	3
²¹⁴ Pb	351,99	20,2	1,8	2,0
²¹⁴ Bi	609,32	21	2	2
²¹⁴ Bi	1120,28	25	6	6
²¹⁴ Bi	1764,51	24	5	6
²²⁶ Ra		21,2	1,2	2,0
²²⁸ Ac	338,40	43	5	6
²²⁸ Ac	911,07	38	4	4
²²⁸ Ac	968,90	42	5	5
²²⁸ Ra		40	3	6
²³² Th		40	3	6
²¹² Pb	238,63	42	2	1,4
²⁰⁸ T1	583,1	43	4	3
²²⁸ Th		42,6	1,8	1,4
¹³⁷ Cs	661,62	<0,9	0	0,9
⁴⁰ K	1460,75	630	30	12

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinola Seidi

Data di rilascio: 22 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F30bis – Campione C6 – Cassetta 252 – Intervallo Campione da m 1159.40 a m 1159.76 – Micascisti a quarzo e clorite

Produttore:

--- ---

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	22 giugno 2012	Codice misura: VC6-F30 bis		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каатопистае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	18	3	3
²¹⁴ Pb	351,99	18,3	1,6	1,8
²¹⁴ Bi	609,32	15,5	1,7	2,0
²¹⁴ Bi	1120,28	15	6	6
²¹⁴ Bi	1764,51	24	5	5
²²⁶ Ra		17,4	1,0	1,8
²²⁸ Ac	338,40	37	5	5
²²⁸ Ac	911,07	36	4	3
²²⁸ Ac	968,90	32	5	4
²²⁸ Ra		35	3	3
²³² Th		35	3	3
²¹² Pb	238,63	39,2	1,9	1,3
²⁰⁸ Tl	583,1	37	3	3
²²⁸ Th		38,5	1,7	1,3
¹³⁷ Cs	661,62	<0,8	0	0,8
$^{40}\mathrm{K}$	1460,75	690	30	11

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinole Seid

myette

Data di rilascio: 25 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F30bis – Campione C7 – Cassetta 275 – Intervallo Campione da m 1269.75 a m 1269.97 – Micascisti a quarzo e clorite con talco

Produttore:

--- ---

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	25 giugno 2012	Codice misura: VC7-F30 bis		
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каатопистае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	32	3	3
²¹⁴ Pb	351,99	33	2	1,8
$^{214}\mathrm{Bi}$	609,32	31	2	1,9
$^{214}\mathrm{Bi}$	1120,28	30	6	6
$^{214}\mathrm{Bi}$	1764,51	30	5	5
²²⁶ Ra		31,7	1,3	1,8
²²⁸ Ac	338,40	35	5	5
²²⁸ Ac	911,07	28	3	3
²²⁸ Ac	968,90	34	5	4
²²⁸ Ra		31	2	3
²³² Th		31	2	3
²¹² Pb	238,63	31,3	1,7	1,3
²⁰⁸ T1	583,1	31	3	3
²²⁸ Th		31,2	1,5	1,3
¹³⁷ Cs	661,62	<0,8	0	0,8
$^{40}\mathrm{K}$	1460,75	530	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinol Seid

mayle

MISURAZIONE DELLA CONCENTRAZIONE DI RADIOATTIVITA' RAPPORTO DI PROVA N. 4519

Data di rilascio: 28 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F30bis – Campione C8 – Cassetta 287 – Intervallo Campione da m 1328.20 a m 1328.38 – Micascisti a quarzo e clorite

Produttore:

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	28 giugno 2012		Codice misura:	VC8-F30 bis
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Кааюнаснае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	92	5	3
²¹⁴ Pb	351,99	91	3	1,7
$^{214}\mathrm{Bi}$	609,32	92	4	1,8
$^{214}\mathrm{Bi}$	1120,28	98	9	5
²¹⁴ Bi	1764,51	95	9	5
²²⁶ Ra		92	2	1,7
²²⁸ Ac	338,40	35	6	5
²²⁸ Ac	911,07	39	4	3
228 Ac	968,90	41	5	4
²²⁸ Ra		39	3	3
²³² Th		39	3	3
²¹² Pb	238,63	37,1	1,9	1,2
²⁰⁸ T1	583,1	38	3	3
²²⁸ Th		37,2	1,6	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
$^{40}\mathrm{K}$	1460,75	770	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Sino Seidi

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

U-Series Srl - Via Ferrarese 131 - 40128 Bologna Tel. 051 6312418 - Fax. 051 4158173

MISURAZIONE DELLA CONCENTRAZIONE DI RADIOATTIVITA' RAPPORTO DI PROVA N. 4520

Data di rilascio: 28 giugno 2012

Committente:

Lyon Turin Ferroviaire Sas

Piazza Nizza, 46 10126 Torino

Descrizione campione:

Modane – Sondaggio F30bis – Campione C9 – Cassetta 299 – Intervallo Campione da m 1386.45 a m 1386.58 – Quarzomicascisti (CLR)

Produttore:

Prelievo del campione:

Prelievo: 12 giugno 2012 Modalità di prelievo: Prelievo in situ Consegna: 11 giugno 2012 Modalità di consegna: Consegna in situ

Norme di riferimento:

UNI 10797:1999 - "Radionuclidi naturali nei materiali da costruzione – Determinazione mediante spettrometria gamma ad alta risoluzione"

Risultati:

Data misura:	28 giugno 2012		Codice misura:	VC9-F30 bis
Radionuclide	Energia	Concentrazione	Errore statistico	Limite di rivelabilità
Каатопистае	(keV)	(Bq/kg)	(Bq/kg)	(Bq/kg)
²¹⁴ Pb	295,22	32	3	3
²¹⁴ Pb	351,99	28,4	1,9	1,6
$^{214}\mathrm{Bi}$	609,32	32	2	1,8
$^{214}\mathrm{Bi}$	1120,28	28	6	5
²¹⁴ Bi	1764,51	34	6	5
²²⁶ Ra		30,5	1,2	1,6
²²⁸ Ac	338,40	35	5	5
²²⁸ Ac	911,07	36	4	3
$^{228}\mathrm{Ac}$	968,90	35	5	4
²²⁸ Ra		35	2	3
²³² Th		35	2	3
²¹² Pb	238,63	38,3	1,8	1,2
²⁰⁸ T1	583,1	40	3	3
²²⁸ Th		38,9	1,6	1,2
¹³⁷ Cs	661,62	<0,8	0	0,8
$^{40}\mathrm{K}$	1460,75	780	30	10

Note:

Modifica par. 5.4.3 norma UNI 10797:1999

Il Tecnico di Laboratorio Dr. Dino Giuliano Ferioli Il Responsabile di Laboratorio Ing. Massimo Esposito

Esperto Qualificato di III Grado - N. 572 d'iscrizione

Sinol Seid

martha

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-1						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S4 – Campiono	e C1 – Cassetta 34 – I	Intervallo Campione da m 156.15 a m 156.34 – N	Micascisti			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
Norma di riferimento: ISO/FDIS Accumulation method for estima		Measurement of radioactivity in the environment on rate	– Air: radon-222- Part 7:			
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30			
Umidità relativa ambientale (%)	44	Pressione ambientale (mbar)	992			
Risultati:						
Data misura:	22 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(1,0\pm0,4)$ E-04				
Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).						

Matter 8

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

2,2E-05

1	MISURAZIONE DI RA	ATEO DI ESALAZIONE ²²² Rn	
	RAPPORTO DI I	PROVA N. E-2	
Data di rilascio:	10	luglio 2012	
Committente:			
Lyon Turin Ferroviaire Sas			
P.zza Nizza, 46		10126 Torino	
Descrizione campione:			
Susa – Sondaggio S4 – Campione	C2 – Cassetta 56 – Interv	allo Campione da m 216.60 a m 216.67	– Micascisti
Prelievo del campione:			
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ
Data consegna:	11 giugno 2012	Modalità consegna:	In situ
Norme di riferimento:			
		rement of radioactivity in the environment	ent – Air: radon-222- Part 7:
Accumulation method for estimat	ing surface exhalation rate	r	
Condizioni di misura:			
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°	C) 29
Umidità relativa ambientale (%)	39	Pressione ambientale (mba	er) 997
Risultati:			
Data misura:	3 luglio 2012		
Rateo di esalazione Rade	on (Bq kg ⁻¹ s ⁻¹)	<mar< td=""><td></td></mar<>	
Le incerte	zze sono calcolate a du	e deviazioni standard (95% di proba	bilità).
MAR (Bq kg ⁻¹	s ⁻¹)	6,9E-06	

Matter 8

Nessuna

Note:

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-3						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S4 – Campion	e C3 – Cassetta 86 –	Intervallo Campione da m 298.79 a m $298.91-M$	Micascisti			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
		Measurement of radioactivity in the environment	 Air: radon-222- Part 7: 			
Accumulation method for estima	ting surface exhalation	on rate				
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	31			
Umidità relativa ambientale (%)	43	Pressione ambientale (mbar)	993			
Risultati:						
Data misura:	26 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(1,2\pm0,7)$ E-05				
Le incerte	ezze sono calcolate	e a due deviazioni standard (95% di probabilit	à).			

Matter 8

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

6,6E-06

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-4						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S4 – Campione	e C4 – Cassetta 122 – I	intervallo Campione da m 397.85 a m 398.00 –	Micascisti			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
Norma di riferimento: ISO/FDIS Accumulation method for estimat		easurement of radioactivity in the environment rate	– Air: radon-222- Part 7:			
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	34			
Umidità relativa ambientale (%)	39	Pressione ambientale (mbar)	990			
Risultati:						
Data misura:	25 giugno 2012					
Rateo di esalazione Rade	on (Bq kg ⁻¹ s ⁻¹)	$(1,0\pm0,7)$ E-05				
Le incerte	zze sono calcolate a	n due deviazioni standard (95% di probabili	tà).			

Matter 8

MAR (Bq kg^{-1} s^{-1})

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

6,9E-06

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-5						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S4 – Campion	e C5 – Cassetta 144 –	- Intervallo Campione da m 460.40 a m 460.52 –	Micascisti			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
		Measurement of radioactivity in the environment	- Air: radon-222- Part 7:			
Accumulation method for estima	ting surface exhalation	on rate				
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30			
Umidità relativa ambientale (%)	44	Pressione ambientale (mbar)	995			
Risultati:						
Data misura:	26 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(2,0\pm1,0)$ E-05				
Le incerte	ezze sono calcolate	a due deviazioni standard (95% di probabilit	tà).			

Matter 8

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

7,8E-06

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-6						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S4 – Campion	e C6 – Cassetta 164 –	Intervallo Campione da m 533.40 a m 533.53 –	Micascisti			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
Norma di riferimento: ISO/FDIS Accumulation method for estima	` ,	easurement of radioactivity in the environment	– Air: radon-222- Part 7:			
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	35			
Umidità relativa ambientale (%)	44	Pressione ambientale (mbar)	991			
Risultati:						
Data misura:	26 giugno 2012					
Rateo di esalazione Radon (Bq kg ⁻¹ s ⁻¹) <mar< td=""></mar<>						
Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).						

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

7,6E-06

	MISURAZIONE DI R	RATEO DI	ESALAZIONE 222Rn	
	RAPPORTO DI	PROVA N	I. E-7	
Data di rilascio:	10	luglio 2012		
Committente:				
Lyon Turin Ferroviaire Sas				
P.zza Nizza, 46	10	0126	Torino	
Descrizione campione:				
Susa – Sondaggio S4 – Campion	e C7 – Cassetta 170 – Inte	ervallo Camp	sione da m 557.36 a m 557.57 –	- Micascisti
Prelievo del campione:				
Data prelievo:	11 giugno 2012		Modalità prelievo:	In situ
Data consegna:	11 giugno 2012		Modalità consegna:	In situ
Norme di riferimento:				
Norma di riferimento: ISO/FDIS	` /		adioactivity in the environment	t – Air: radon-222- Part '
Accumulation method for estima	iting surface exhalation rat	te		
Condizioni di misura:				
Volume effettivo (m³)	1,3E-03		Temperatura ambientale (°C)	29
Umidità relativa ambientale (%)	50		Pressione ambientale (mbar)	996
Risultati:				
Data misura:	19 giugno 2012			
Rateo di esalazione Rad	lon (Bg m ⁻² s ⁻¹)		(10±7)E-05	

Le incertezze sono calcolate a due deviazioni standard (95% di probabilità)

Il rateo indicativo di esalazione radon è pari a 2,6E-06 Bq kg⁻¹ s⁻¹

Il Tecnico di Laboratorio Dr. Mattia Taroni

Malka &

MAR (Bq m^{-2} s^{-1})

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

6,2E-05

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-8						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S4 – Campion	e C8 – Cassetta 174 –	Intervallo Campione da m 572.35 a m 572.47 –	Micascisti			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
		feasurement of radioactivity in the environment	- Air: radon-222- Part 7:			
Accumulation method for estima	ting surface exhalatio	n rate				
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30			
Umidità relativa ambientale (%)	43	Pressione ambientale (mbar)	995			
Risultati:						
Data misura:	26 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(1,3\pm0,8)$ E-05				
Le incerte	ezze sono calcolate	a due deviazioni standard (95% di probabili	tà).			

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

7,9E-06

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-9						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S4 – Campion	e C9 – Cassetta 186 –	Intervallo Campione da m 617.80 a m 618.02 –	Micascisti			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
Norma di riferimento: ISO/FDIS Accumulation method for estima		easurement of radioactivity in the environment a rate	– Air: radon-222- Part 7:			
Condizioni di misura:	-					
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30			
Umidità relativa ambientale (%)	46	Pressione ambientale (mbar)	991			
Risultati:						
Data misura:	22 giugno 2012					
Rateo di esalazione Rad	on (Bq $kg^{-1} s^{-1}$)	$(2,4\pm1,4)E-05$				
Le incerte	ezze sono calcolate a	a due deviazioni standard (95% di probabilit	tà).			

Matter 8

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

1,4E-05

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-10						
Data di rilascio:	10	luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S4 – Campione	e C10 – Cassetta 204 – Int	ervallo Campione da m 686.85 a m 686.99	– Micascisti			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
		rement of radioactivity in the environmen	t – Air: radon-222- Part 7:			
Accumulation method for estimat	ing surface exhalation rate	e				
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)) 29			
Umidità relativa ambientale (%)	39	Pressione ambientale (mbar)	995			
Risultati:						
Data misura:	3 luglio 2012					
Rateo di esalazione Rade	Rateo di esalazione Radon (Bq kg ⁻¹ s ⁻¹) <mar< td=""></mar<>					
Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).						
MAR (Bq kg ⁻¹ s ⁻¹) 6,7E-06						

Matter 8

Nessuna

Note:

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-11						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S5 – Campion	e C1 – Cassetta 3 – Int	tervallo Campione da m 323.40 a m 323.58 – Gr	neiss Aplitici			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
Norma di riferimento: ISO/FDIS Accumulation method for estima		leasurement of radioactivity in the environment n rate	– Air: radon-222- Part 7:			
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	31			
Umidità relativa ambientale (%)	42	Pressione ambientale (mbar)	995			
Risultati:						
Data misura:	29 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(2,2\pm0,9)$ E-05				
Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).						

Matter 8

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

8,0E-06

MISURAZIONE DI RATEO DI ESALAZIONE 222Rn							
	RAPPORTO DI PROVA N. E-12						
Data di rilascio:	Data di rilascio: 10 luglio 2012						
Committente:							
Lyon Turin Ferroviaire Sas							
P.zza Nizza, 46		10126 Torino					
Descrizione campione:							
	e C2 – Cassetta 50 – I	ntervallo Campione da m 454.07 a m 454.17 – I	Facies intermedia tra				
gneiss aplitici e gneiss s.s.							
Prelievo del campione:							
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ				
Data consegna:	11 giugno 2012	Modalità consegna:	In situ				
Norme di riferimento:							
Norma di riferimento: ISO/FDIS	11665-7:2012(E) "M	leasurement of radioactivity in the environment	- Air: radon-222- Part 7:				
Accumulation method for estima	ting surface exhalation	n rate					
Condizioni di misura:							
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	32				
Umidità relativa ambientale (%)	37	Pressione ambientale (mbar)	995				
Risultati:							
Data misura:	2 luglio 2012						
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	<mar< td=""><td></td></mar<>					
Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).							

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

5,1E-06

	MISURAZIONE	DI RATEO DI ESALAZIONE ²²² Rn	
	RAPPORT	O DI PROVA N. E-13	
Data di rilascio:		10 luglio 2012	
Committente:			
Lyon Turin Ferroviaire Sas			
P.zza Nizza, 46		10126 Torino	
Descrizione campione:			
Susa – Sondaggio S5 – Campion	e C3 – Cassetta 94 -	– Intervallo Campione da m 606.65 a m 606.86 – G	Gneiss Aplitici
Prelievo del campione:			
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ
Data consegna:	11 giugno 2012	Modalità consegna:	In situ
Norme di riferimento:			
Norma di riferimento: ISO/FDIS Accumulation method for estima	` '	'Measurement of radioactivity in the environment ion rate	t – Air: radon-222- Part 7:
Condizioni di misura:			
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	32
Umidità relativa ambientale (%)	42	Pressione ambientale (mbar)	996
Risultati:			
Data misura:	26 giugno 2012		
Rateo di esalazione Rac	lon (Bq kg ⁻¹ s ⁻¹)	<mar< td=""><td></td></mar<>	
Le incerte	ezze sono calcolat	te a due deviazioni standard (95% di probabili	ità).

Matter 8

MAR (Bq $kg^{-1} s^{-1}$)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

9,0E-06

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-14						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S5 – Campiono	e C4 – Cassetta 123 –	Intervallo Campione da m 719.20 a m 719.32 –	Facies gneissica			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
		leasurement of radioactivity in the environment	- Air: radon-222- Part 7:			
Accumulation method for estima	ting surface exhalation	n rate				
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	34			
Umidità relativa ambientale (%)	41	Pressione ambientale (mbar)	987			
Risultati:						
Data misura:	25 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	<mar< td=""><td></td></mar<>				
Le incerte	ezze sono calcolate	a due deviazioni standard (95% di probabili	tà).			
MAR (Bq kg	s ⁻¹)	1,8E-05				
Note:	Nessuna					

Matter 8

	MISURAZIONE I	DI RATEO DI ESALAZIONE ²²² Rn				
RAPPORTO DI PROVA N. E-15						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S5 – Campion gneiss aplitici e gneiss s.s. Con l		– Intervallo Campione da m 773.69 a m 773.85 –	Facies intermedia tra			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
Norma di riferimento: ISO/FDIS Accumulation method for estima	` '	Measurement of radioactivity in the environment on rate	– Air: radon-222- Part 7:			
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	29			
Umidità relativa ambientale (%)	43	Pressione ambientale (mbar)	991			
Risultati:						
Data misura:	22 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(2,2\pm0,9)$ E-05				
Le incerte	ezze sono calcolate	e a due deviazioni standard (95% di probabili	tà).			

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

8,0E-06

	MISURAZIONE	DI RATEO DI ESALAZIONE ²²² Rn				
RAPPORTO DI PROVA N. E-16						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
	e C6 – Cassetta 146	- Intervallo Campione da m 809.95 a m 810.13 -	Gneiss Aplitici più ricchi			
in mica						
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
Norma di riferimento: ISO/FDIS	11665-7:2012(E) "I	Measurement of radioactivity in the environment	- Air: radon-222- Part 7:			
Accumulation method for estima	ting surface exhalati	on rate				
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30			
Umidità relativa ambientale (%)	40	Pressione ambientale (mbar)	987			
Risultati:						
Data misura:	27 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(1,3\pm0,7)E-05$				
Le incerte	ezze sono calcolate	e a due deviazioni standard (95% di probabili	tà).			

Matter 8

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

1,2E-05

MISURAZIONE DI RATEO DI ESALAZIONE 222Rn						
RAPPORTO DI PROVA N. E-17						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S5 – Campion	e C7 – Cassetta 156	5 – Intervallo Campione da m 858.35 a m 858.49 –	Micascisti			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
Norma di riferimento: ISO/FDIS Accumulation method for estima	` '	"Measurement of radioactivity in the environment tion rate	– Air: radon-222- Part 7			
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	29			
Umidità relativa ambientale (%)	43	Pressione ambientale (mbar)	990			
Risultati:						
Data misura:	27 giugno 2012					
Rateo di esalazione Rad	lon (Bq kg ⁻¹ s ⁻¹)	<mar< td=""><td></td></mar<>				
Le incerte	ezze sono calcolat	te a due deviazioni standard (95% di probabili	tà).			

Matter 8

MAR (Bq $kg^{-1} s^{-1}$)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

4,4E-06

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-18						
Data di rilascio:		10 luglio 20	012			
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126	Torino			
Descrizione campione:						
	e C8 – Cassetta 163 -	– Intervallo Ca	mpione da m 893.27 a m 893.45 -	- Facies intermediatra		
gneiss aplitici e gneiss s.s.						
Prelievo del campione:						
Data prelievo:	12 giugno 2012		Modalità prelievo:	In situ		
Data consegna:	12 giugno 2012		Modalità consegna:	In situ		
Norme di riferimento:						
			of radioactivity in the environment	t – Air: radon-222- Part 7		
Accumulation method for estima	ting surface exhalation	on rate				
Condizioni di misura:						
Volume effettivo (m³)	1,3E-03		Temperatura ambientale (°C)	28		
Umidità relativa ambientale (%)	43		Pressione ambientale (mbar)	1001		
Risultati:						
Data misura:	18 giugno 2012					
Rateo di esalazione Rad	on (Bq m ⁻² s ⁻¹)		(7±3)E-05			
Le inc	ertezze sono calcolat	e a due deviaz	ioni standard (95% di probabilità)			
MAR (Bq m ⁻²	² s ⁻¹)		5,4E-05			

Il rateo indicativo di esalazione radon è pari a 1,0E-06 Bq kg⁻¹ s⁻¹

Il Tecnico di Laboratorio Dr. Mattia Taroni

Malka &

Note:

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-19						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:	G0 G 166		T			
gneiss aplitici e gneiss s.s.	e C9 – Cassetta 166 –	- Intervallo Campione da m 907.75 a m 907.95 –	Facies intermediatra			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
Norma di riferimento: ISO/FDIS Accumulation method for estima	` '	Measurement of radioactivity in the environment on rate	– Air: radon-222- Part 7:			
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30			
Umidità relativa ambientale (%)	46	Pressione ambientale (mbar)	991			
Risultati:						
Data misura:	22 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	<mar< td=""><td></td></mar<>				
Le incerte	ezze sono calcolate	a due deviazioni standard (95% di probabili	tà).			

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

2,5E-06

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn							
	RAPPORTO DI PROVA N. E-20						
Data di rilascio:		10 luglio 2012					
Committente:							
Lyon Turin Ferroviaire Sas							
P.zza Nizza, 46		10126 Torino					
Descrizione campione:							
Susa – Sondaggio S8 – Campion	e C1 – Cassetta 37 –	Intervallo Campione da m 180.00 a m 180.18 – N	Micascisti/gneiss albitici				
Prelievo del campione:							
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ				
Data consegna:	11 giugno 2012	Modalità consegna:	In situ				
Norme di riferimento:							
Norma di riferimento: ISO/FDIS Accumulation method for estima		Measurement of radioactivity in the environment	– Air: radon-222- Part 7:				
Condizioni di misura:	ung surrace eminian	on race					
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30				
Umidità relativa ambientale (%)	44	Pressione ambientale (mbar)	987				
Risultati:							
Data misura:	21 giugno 2012						
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(1,7\pm0,9)$ E-05					
Le incerte	ezze sono calcolate	e a due deviazioni standard (95% di probabili	tà).				

Matter 8

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

1,0E-05

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
RAPPORTO DI PROVA N. E-21						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126	Torino			
Descrizione campione:						
Susa – Sondaggio S8 – Campion	e C2 – Cassetta 50 – In	tervallo Campi	one da m 250.30 a m 250.52 – 0	Calcescisti		
Prelievo del campione:						
Data prelievo:	11 giugno 2012		Modalità prelievo:	In situ		
Data consegna:	11 giugno 2012		Modalità consegna:	In situ		
Norme di riferimento: Norma di riferimento: ISO/FDIS Accumulation method for estima			adioactivity in the environment	: – Air: radon-222- Part 7:		
Condizioni di misura:						
Volume effettivo (m³)	1,3E-03		Temperatura ambientale (°C)	29		
Umidità relativa ambientale (%)	55		Pressione ambientale (mbar)	999		
Risultati:						
Data misura:	19 giugno 2012					
Rateo di esalazione Rad	on (Bq m ⁻² s ⁻¹)		(6±4)E-05			
Le inc	ertezze sono calcolate a	a due deviazion	i standard (95% di probabilità)			
MAR (Bq m ⁻²	² s ⁻¹)		3,8E-05			
Note:	Il rateo indicativo di e	salazione rado	n è pari a 1,7E-06 Bq kg ⁻¹ s ⁻¹			

Matton &

	MISURAZIONE	DI RATEO DI ESALAZIONE ²²² Rn				
RAPPORTO DI PROVA N. E-22						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Susa – Sondaggio S8 – Campion	e C3 – Cassetta 68 –	Intervallo Campione da m 350.10 a m 350.28 – C	Calcescisti			
Prelievo del campione:						
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	11 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
		Measurement of radioactivity in the environment	 Air: radon-222- Part 7: 			
Accumulation method for estima	ting surface exhalation	on rate				
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	32			
Umidità relativa ambientale (%)	42	Pressione ambientale (mbar)	993			
Risultati:						
Data misura:	28 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(4,0\pm2,0)$ E-06				
Le incerte	ezze sono calcolate	e a due deviazioni standard (95% di probabilit	'à).			

Matter &

MAR (Bq kg^{-1} s^{-1})

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

3,2E-06

	MISURAZIONE	DI RATEO DI ESALAZIONE ²²² Rn	
	RAPPORT	O DI PROVA N. E-23	
Data di rilascio:		10 luglio 2012	
Committente:			
Lyon Turin Ferroviaire Sas			
P.zza Nizza, 46		10126 Torino	
Descrizione campione:			
Susa – Sondaggio S8 – Campion	e C4 – Cassetta 78 –	Intervallo Campione da m 404.90 a m 405.02 – I	Micascisti
Prelievo del campione:			
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ
Data consegna:	11 giugno 2012	Modalità consegna:	In situ
Norme di riferimento:			
Norma di riferimento: ISO/FDIS Accumulation method for estima		Measurement of radioactivity in the environment on rate	t – Air: radon-222- Part 7:
Condizioni di misura:	-		
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	35
Umidità relativa ambientale (%)	38	Pressione ambientale (mbar)	996
Risultati:			
Data misura:	2 luglio 2012		
Rateo di esalazione Rac	lon (Bq kg ⁻¹ s ⁻¹)	$(2,0\pm1,0)$ E-05	
Le incert	ezze sono calcolat	e a due deviazioni standard (95% di probabilı	ità).
MAR (Bq kg	·1 s-1)	1,2E-05	
Note:	Nessuna		

Matter 8

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn			
	RAPPORTO D	I PROVA N. E-24	
Data di rilascio:	1	0 luglio 2012	
Committente:			
Lyon Turin Ferroviaire Sas			
P.zza Nizza, 46		10126 Torino	
Descrizione campione:			
Susa – Sondaggio S8 – Campione	: C5 – Cassetta 84 – Inte	ervallo Campione da m 437.90 a m 438.00 –	Calcescisti
Prelievo del campione:			
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ
Data consegna:	11 giugno 2012	Modalità consegna:	In situ
Norme di riferimento:			
		surement of radioactivity in the environment	t – Air: radon-222- Part 7:
Accumulation method for estimat	ing surface exhalation ra	ate	
Condizioni di misura:			
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	29
Umidità relativa ambientale (%)	40	Pressione ambientale (mbar)	996
Risultati:			
Data misura:	4 luglio 2012		
Rateo di esalazione Rade	on (Bq kg ⁻¹ s ⁻¹)	$(1,4\pm0,7)$ E-05	
Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).			
MAR (Bq kg ⁻¹ s ⁻¹) 5,5E-06			

Matter &

Nessuna

Note:

	MISURAZIONE D	DI RATEO DI ESALAZIONE ²²² Rn	
	RAPPORTO	DI PROVA N. E-25	
Data di rilascio:		10 luglio 2012	
Committente:			
Lyon Turin Ferroviaire Sas			
P.zza Nizza, 46		10126 Torino	
Descrizione campione:			
Susa – Sondaggio S8 – Campion	e C6 – Cassetta 88 – I	ntervallo Campione da m 460.60 a m 460.73 –	Micascisti cloritici
Prelievo del campione:			
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ
Data consegna:	11 giugno 2012	Modalità consegna:	In situ
Norme di riferimento:			
Norma di riferimento: ISO/FDIS Accumulation method for estima		leasurement of radioactivity in the environmer n rate	nt – Air: radon-222- Part 7
Condizioni di misura:			
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C) 29
Umidità relativa ambientale (%)	43	Pressione ambientale (mbar)	991
Risultati:			
Data misura:	27 giugno 2012		
Rateo di esalazione Rac	on (Bq kg ⁻¹ s ⁻¹)	$(1,1\pm0,6)$ E-05	
Le incerte	ezze sono calcolate	a due deviazioni standard (95% di probabi	ilità).

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

5,7E-06

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn				
RAPPORTO DI PROVA N. E-26				
Data di rilascio:		10 luglio 2012		
Committente:				
Lyon Turin Ferroviaire Sas				
P.zza Nizza, 46		10126 Torino		
Descrizione campione:				
Susa – Sondaggio S8 – Campion	e C7 – Cassetta 93 – I	ntervallo Campione da m 489.00 a m 489.20 – C	alcescisti	
Prelievo del campione:				
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ	
Data consegna:	11 giugno 2012	Modalità consegna:	In situ	
Norme di riferimento:				
Norma di riferimento: ISO/FDIS Accumulation method for estima		leasurement of radioactivity in the environment n rate	– Air: radon-222- Part 7:	
Condizioni di misura:	-			
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30	
Umidità relativa ambientale (%)	44	Pressione ambientale (mbar)	993	
Risultati:				
Data misura:	29 giugno 2012			
Rateo di esalazione Rad	lon (Bq kg ⁻¹ s ⁻¹)	$(2,8\pm1,1)$ E-05		
Le incerte	ezze sono calcolate	a due deviazioni standard (95% di probabilit	à).	

Matter 8

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

8,0E-06

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn					
RAPPORTO DI PROVA N. E-27					
10 1	luglio 2012				
	10126 Torino				
C8 – Cassetta 96 – Interva	allo Campione da m 506.00 a m 506.16	– Calcescisti			
11 giugno 2012	Modalità prelievo:	In situ			
11 giugno 2012	Modalità consegna:	In situ			
		ent – Air: radon-222- Part 7:			
ing surface exhalation rate					
1,34E-03	Temperatura ambientale (°C	C) 31			
39	Pressione ambientale (mbar	r) 996			
2 luglio 2012					
on (Bq kg ⁻¹ s ⁻¹)	(1,6±0,7)E-05				
Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).					
s ⁻¹)	1,2E-05				
	RAPPORTO DI I 10 1 10 1 10 1 10 1 10 1 11 giugno 2012 11 giugno 2012 11665-7:2012(E) "Measuring surface exhalation rate 1,34E-03 39 2 luglio 2012 on (Bq kg ⁻¹ s ⁻¹)	RAPPORTO DI PROVA N. E-27 10 luglio 2012 10126 Torino C8 – Cassetta 96 – Intervallo Campione da m 506.00 a m 506.16 11 giugno 2012 Modalità prelievo: Modalità consegna: 11665-7:2012(E) "Measurement of radioactivity in the environment in surface exhalation rate 1,34E-03 Temperatura ambientale (°0 39 39 Pressione ambientale (mbar 2012) 2 luglio 2012 in (Bq kg ⁻¹ s ⁻¹) (1,6±0,7)E-05 izze sono calcolate a due deviazioni standard (95% di probali			

Matter &

Nessuna

Note:

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn					
RAPPORTO DI PROVA N. E-28					
Data di rilascio:		10 luglio 2012			
Committente:					
Lyon Turin Ferroviaire Sas					
P.zza Nizza, 46		10126 Torino			
Descrizione campione:					
Susa – Sondaggio S42 – Campio	ne C1 – Cassetta 19 –	Intervallo Campione da m 96.00 a m 96.13 – Gr	neiss quarzitici		
Prelievo del campione:			<u> </u>		
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ		
Data consegna:	11 giugno 2012	Modalità consegna:	In situ		
Norme di riferimento:					
Norma di riferimento: ISO/FDIS Accumulation method for estima		easurement of radioactivity in the environment	– Air: radon-222- Part 7:		
Condizioni di misura:					
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	32		
Umidità relativa ambientale (%)	39	Pressione ambientale (mbar)	993		
Risultati:					
Data misura:	4 luglio 2012				
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	(8±5)E-06			
Le incerte	zze sono calcolate a	a due deviazioni standard (95% di probabilit	à).		

Matter 8

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

5,2E-06

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn				
RAPPORTO DI PROVA N. E-29				
Data di rilascio:		10 luglio 20	12	
Committente:				
Lyon Turin Ferroviaire Sas				
P.zza Nizza, 46		10126	Torino	
Descrizione campione:				
Susa – Sondaggio S42 – Campio	ne C2 – Cassetta 46 -	– Intervallo Car	mpione da m 288.00 a m 288.18 –	Calcescisti
Prelievo del campione:				
Data prelievo:	11 giugno 2012		Modalità prelievo:	In situ
Data consegna:	11 giugno 2012		Modalità consegna:	In situ
Accumulation method for estima			f radioactivity in the environment	– Air: radon-222- Part 7:
Condizioni di misura:				
Volume effettivo (m³)	1,3E-03		Temperatura ambientale (°C)	28
Umidità relativa ambientale (%)	43		Pressione ambientale (mbar)	998
Risultati:				
Data misura:	18 giugno 2012			
Rateo di esalazione Rad	on (Bq m ⁻² s ⁻¹)		(2,3±1,2)E-04	
Le inc	ertezze sono calcolat	e a due deviazi	oni standard (95% di probabilità)	
MAR (Bq m ⁻²	² s ⁻¹)		8,5E-05	
Note:	Il rateo indicativo d	i esalazione ra	don è pari a 6,3E-06 Bq kg ⁻¹ s ⁻¹	

Matter &

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn				
RAPPORTO DI PROVA N. E-30				
Data di rilascio:	10	0 luglio 2012		
Committente:				
Lyon Turin Ferroviaire Sas				
P.zza Nizza, 46		10126 Torino		
Descrizione campione:				
Susa – Sondaggio S42 – Campior	ne C3 – Cassetta 54 – Inte	ervallo Campione da m 352.00 a m 352.13 -	- Calcescistii	
Prelievo del campione:				
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ	
Data consegna:	11 giugno 2012	Modalità consegna:	In situ	
Norme di riferimento:				
		urement of radioactivity in the environmen	t – Air: radon-222- Part 7:	
Accumulation method for estimat	ing surface exhalation ra	te		
Condizioni di misura:				
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	28	
Umidità relativa ambientale (%)	40	Pressione ambientale (mbar)	997	
Risultati:				
Data misura:	3 luglio 2012			
Rateo di esalazione Rade	on (Bq kg ⁻¹ s ⁻¹)	$(1,3\pm0,8)E-05$		
Le incerte	zze sono calcolate a d	ue deviazioni standard (95% di probabil	lità).	
MAR (Bq kg ⁻¹	s ⁻¹)	6,6E-06		

Matter 8

Nessuna

Note:

1	MISURAZIONE DI RA	ATEO DI ESALAZIONE ²²² Rn		
RAPPORTO DI PROVA N. E-31				
Data di rilascio:	10	luglio 2012		
Committente:				
Lyon Turin Ferroviaire Sas				
P.zza Nizza, 46		10126 Torino		
Descrizione campione:				
Susa – Sondaggio S42 – Campior	ne C4 – Cassetta 60 – Inter	vallo Campione da m 400.00 a m 400.16 -	- Micascisti	
Prelievo del campione:				
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ	
Data consegna:	11 giugno 2012	Modalità consegna:	In situ	
Norme di riferimento:				
		rement of radioactivity in the environmen	t – Air: radon-222- Part 7:	
Accumulation method for estimat	ing surface exhalation rate	;		
Condizioni di misura:				
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	31	
Umidità relativa ambientale (%)	38	Pressione ambientale (mbar)	997	
Risultati:				
Data misura:	3 luglio 2012			
Rateo di esalazione Rade	on (Bq kg ⁻¹ s ⁻¹)	(4,2±2,1)E-06		
Le incerte	zze sono calcolate a du	e deviazioni standard (95% di probabil	lità).	
MAR (Bq kg ⁻¹	s ⁻¹)	3,7E-06		

Matter 8

Nessuna

Note:

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn					
RAPPORTO DI PROVA N. E-32					
Data di rilascio:		10 luglio 2012			
Committente:					
Lyon Turin Ferroviaire Sas					
P.zza Nizza, 46		10126 Torino			
Descrizione campione:					
Susa – Sondaggio S42 – Campio	one C5 – Cassetta 65 –	Intervallo Campione da m 440.00 a m 440.23 –	Calcescisti		
Prelievo del campione:					
Data prelievo:	11 giugno 2012	Modalità prelievo:	In situ		
Data consegna:	11 giugno 2012	Modalità consegna:	In situ		
Norme di riferimento:					
Norma di riferimento: ISO/FDIS Accumulation method for estima	. ,	easurement of radioactivity in the environment	: – Air: radon-222- Part 7		
Condizioni di misura:	-				
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	29		
Umidità relativa ambientale (%)	41	Pressione ambientale (mbar)	996		
Risultati:					
Data misura:	4 luglio 2012				
Rateo di esalazione Rad	lon (Bq kg ⁻¹ s ⁻¹)	$(1,1\pm0,6)E-05$			
Le incerte	ezze sono calcolate a	a due deviazioni standard (95% di probabili	tà).		

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

6,2E-06

	MISURAZIONE DI	RATEO DI ESALAZIONE ***RN	
	RAPPORTO I	DI PROVA N. E-33	
Data di rilascio:		10 luglio 2012	
Committente:			
Lyon Turin Ferroviaire Sas			
P.zza Nizza, 46		10126 Torino	
Descrizione campione:			
	pione C1 – Cassetta 20	- Intervallo Campione da m 1118.95 a m 111	9.19 – Micascisti listati
con pieghe			
Prelievo del campione:			
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ
Data consegna:	12 giugno 2012	Modalità consegna:	In situ
Norme di riferimento:			
Norma di riferimento: ISO/FDIS Accumulation method for estima	` ,	asurement of radioactivity in the environment rate	: – Air: radon-222- Part 7:
Condizioni di misura:			
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30
Umidità relativa ambientale (%)	47	Pressione ambientale (mbar)	990
Risultati:			

Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).

MISURAZIONE DI PATEO DI ESALAZIONE 222 Pm

Il Tecnico di Laboratorio Dr. Mattia Taroni

Matter 8

Rateo di esalazione Radon (Bq kg⁻¹ s⁻¹)

MAR (Bq kg⁻¹ s⁻¹)

Data misura:

Note:

20 giugno 2012

Nessuna

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

(4,8±1,9)E-05

1,8E-05

	MISURAZIONE	DI RATEO DI ESALAZIONE ²²² Rn	
	RAPPORT	O DI PROVA N. E-34	
Data di rilascio:		10 luglio 2012	
Committente:			
Lyon Turin Ferroviaire Sas			
P.zza Nizza, 46		10126 Torino	
Descrizione campione:			
Modane – Sondaggio F16 – Cam	npione C2 – Cassetta	a 28 – Intervallo Campione da m 1157.75 a m 115	8.04 – Micascisti listati
Prelievo del campione:			
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ
Data consegna:	12 giugno 2012	Modalità consegna:	In situ
Norme di riferimento:			
Norma di riferimento: ISO/FDIS Accumulation method for estima	` '	Measurement of radioactivity in the environmen ion rate	t – Air: radon-222- Part 7:
Condizioni di misura:			
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30
Umidità relativa ambientale (%)	38	Pressione ambientale (mbar)	986
Risultati:			
Data misura:	21 giugno 2012		
Rateo di esalazione Rac	lon (Bq kg ⁻¹ s ⁻¹)	$(9\pm5)E-05$	

Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).

Il Tecnico di Laboratorio Dr. Mattia Taroni

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

4,8E-05

	MISURAZIONE	DI RATEO DI ESALAZIONE ²²² Rn					
	RAPPORTO DI PROVA N. E-35						
Data di rilascio:		10 luglio 2012					
Committente:							
Lyon Turin Ferroviaire Sas							
P.zza Nizza, 46		10126 Torino					
Descrizione campione:							
Modane – Sondaggio F16 – Cam	pione C3 – Cassetta	40 – Intervallo Campione da m 1217.25 a m 121	7.53 – Micascisti listati				
Prelievo del campione:							
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ				
Data consegna:	12 giugno 2012	Modalità consegna:	In situ				
Norme di riferimento:							
Norma di riferimento: ISO/FDIS Accumulation method for estima		Measurement of radioactivity in the environment ion rate	t – Air: radon-222- Part 7:				
Condizioni di misura:							
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30				
Umidità relativa ambientale (%)	41	Pressione ambientale (mbar)	992				
Risultati:							
Data misura:	27 giugno 2012						
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(10\pm6)E-06$					

Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).

Il Tecnico di Laboratorio Dr. Mattia Taroni

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

5,7E-06

	MISURAZIONE	DI RATEO DI ESALAZIONE ²²² Rn				
RAPPORTO DI PROVA N. E-36						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Modane – Sondaggio F16 – Cam	pione C4 – Cassetta	52 – Intervallo Campione da m 1275.50 a m 1275	5.74 – Micascisti listati			
Prelievo del campione:						
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	12 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
		Measurement of radioactivity in the environment	 Air: radon-222- Part 7: 			
Accumulation method for estima	ting surface exhalati	on rate				
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	28			
Umidità relativa ambientale (%)	41	Pressione ambientale (mbar)	996			
Risultati:						
Data misura:	28 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	<mar< td=""><td></td></mar<>				
Le incerte	ezze sono calcolate	e a due deviazioni standard (95% di probabilit	'à).			

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

1,7E-05

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn							
	RAPPORTO DI PROVA N. E-37						
Data di rilascio:	Data di rilascio: 10 luglio 2012						
Committente:							
Lyon Turin Ferroviaire Sas							
P.zza Nizza, 46		10126 Torino					
Descrizione campione: Modane – Sondaggio F16 – Cam con pieghe	pione C5 – Cassetta 6	2 – Intervallo Campione da m 1325.15 a m 1325	5.36 – Micascisti listati				
Prelievo del campione:							
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ				
Data consegna:	12 giugno 2012	Modalità consegna:	In situ				
Norme di riferimento: Norma di riferimento: ISO/FDIS Accumulation method for estima		leasurement of radioactivity in the environment	– Air: radon-222- Part 7:				
Condizioni di misura:							
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	29				
Umidità relativa ambientale (%)	44	Pressione ambientale (mbar)	992				
Risultati:							
Data misura:	29 giugno 2012						
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	<mar< td=""><td></td></mar<>					
Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).							

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn							
	RAPPORTO DI PROVA N. E-38						
Data di rilascio:		10 luglio 2012					
Committente:							
Lyon Turin Ferroviaire Sas							
P.zza Nizza, 46		10126 Torino					
Descrizione campione:							
Modane – Sondaggio F16 – Cam	pione C6 – Cassetta	72 – Intervallo Campione da m 1375.20 a m 1375	.46 – Micascisti listati				
Prelievo del campione:							
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ				
Data consegna:	12 giugno 2012	Modalità consegna:	In situ				
Norme di riferimento:							
		Measurement of radioactivity in the environment	 Air: radon-222- Part 7: 				
Accumulation method for estima	ting surface exhalation	on rate					
Condizioni di misura:							
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	31				
Umidità relativa ambientale (%)	42	Pressione ambientale (mbar)	995				
Risultati:							
Data misura:	28 giugno 2012						
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	<mar< td=""><td></td></mar<>					
Le incerte	ezze sono calcolate	e a due deviazioni standard (95% di probabilit	à).				

Matter 8

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

	MISURAZIONE	DI RATEO DI ESALAZIONE ²²² Rn				
RAPPORTO DI PROVA N. E-39						
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione:						
Modane – Sondaggio F16 – Cam	pione C7 – Cassetta	81 – Intervallo Campione da m 1418.40 a m 1418	3.64 – Micascisti listati			
Prelievo del campione:						
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	12 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento:						
Norma di riferimento: ISO/FDIS Accumulation method for estima		Measurement of radioactivity in the environment	– Air: radon-222- Part 7:			
Condizioni di misura:	mg sarrace extratact	on rate				
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	29			
Umidità relativa ambientale (%)	38	Pressione ambientale (mbar)	987			
Risultati:						
Data misura:	28 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(4,1\pm2,4)E-05$				
Le incerte	ezze sono calcolate	e a due deviazioni standard (95% di probabilit	à).			

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn							
	RAPPORTO DI PROVA N. E-40						
Data di rilascio:	10 lu	glio 2012					
Committente:							
Lyon Turin Ferroviaire Sas							
P.zza Nizza, 46	1012	6	Torino				
Descrizione campione:							
Modane – Sondaggio F16 – Cam	pione C8 – Cassetta 90 – Inte	ervallo Ca	mpione da m 1462.85 a m 146	3.07 – Micascisti listati			
Prelievo del campione:							
Data prelievo:	12 giugno 2012		Modalità prelievo:	In situ			
Data consegna:	12 giugno 2012		Modalità consegna:	In situ			
Norme di riferimento:							
Norma di riferimento: ISO/FDIS		ment of ra	idioactivity in the environment	t – Air: radon-222- Part 7			
Accumulation method for estima	ting surface exhalation rate						
Condizioni di misura:							
Volume effettivo (m³)	1,3E-03		Temperatura ambientale (°C)	31			
Umidità relativa ambientale (%)	37		Pressione ambientale (mbar)	997			
Risultati:							
Data misura:	18 giugno 2012						

Le incertezze sono calcolate a due deviazioni standard (95% di probabilità)

Il rateo indicativo di esalazione radon è < MAR, che risulta pari a 2,3E-06 Bq kg⁻¹ s⁻¹

Il Tecnico di Laboratorio Dr. Mattia Taroni

Matka "

Rateo di esalazione Radon (Bq m⁻² s⁻¹)

MAR (Bq m^{-2} s^{-1})

Note:

II Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

<MAR

8,4E-05

MISURAZIONE DI RATEO DI ESALAZIONE 222Rn					
RAPPORTO DI PROVA N. E-41					
Data di rilascio:	1	0 luglio 2012			
Committente:					
Lyon Turin Ferroviaire Sas					
P.zza Nizza, 46		10126 Torino			
leggermente grafitici	npione C9 – Cassetta 99 -	- Intervallo Campione da m 1506.90 a m 150	7.20 – Micascisti listati		
Prelievo del campione:	10 : 2010	N. 1.1 11.3	w		
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ		
Data consegna:	12 giugno 2012	Modalità consegna:	In situ		
Norme di riferimento:					
Norma di riferimento: ISO/FDIS Accumulation method for estima	` /	surement of radioactivity in the environment ate	: – Air: radon-222- Part 7:		
Condizioni di misura:					
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	29		
Umidità relativa ambientale (%)	49	Pressione ambientale (mbar)	992		
Risultati:					
Data misura:	27 giugno 2012				
Rateo di esalazione Rad	lon (Bq kg ⁻¹ s ⁻¹)	$(1,1\pm0,7)E-05$			

Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).

Il Tecnico di Laboratorio Dr. Mattia Taroni

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn				
	RAPPORTO	DI PROVA N. E-42		
Data di rilascio:		10 luglio 2012		
Committente:				
Lyon Turin Ferroviaire Sas				
P.zza Nizza, 46		10126 Torino		
Descrizione campione: Modane – Sondaggio F30bis – C	amnione C1 – Cassetts	a 149 – Intervallo Campione da m 727.90 a m 72	28.12 – Micascisti	
quarzosi	umpione C1 Cussetti	a 149 Intervano Campione da in 727.70 a in 72	20.12 Wildscisti	
Prelievo del campione:				
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ	
Data consegna:	12 giugno 2012	Modalità consegna:	In situ	
Norme di riferimento:				
Norma di riferimento: ISO/FDIS Accumulation method for estima		easurement of radioactivity in the environment a rate	– Air: radon-222- Part 7:	
Condizioni di misura:				
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	34	
Umidità relativa ambientale (%)	40	Pressione ambientale (mbar)	998	
Risultati:				
Data misura:	25 giugno 2012			
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(5\pm 3)E-06$		
Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).				

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

4,5E-06

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
	RAPPORTO	DI PROVA N.	E-43			
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126	Torino			
Modane – Sondaggio F30bis – C quarzosi	Descrizione campione: Modane – Sondaggio F30bis – Campione C2 – Cassetta 179 – Intervallo Campione da m 843.30 a m 843.47 – Micascisti quarzosi					
Prelievo del campione:						
Data prelievo:	12 giugno 2012		Modalità prelievo:	In situ		
Data consegna:	12 giugno 2012		Modalità consegna:	In situ		
Norme di riferimento: Norma di riferimento: ISO/FDIS Accumulation method for estima			dioactivity in the envir	ronment – Air: 1	radon-222- Part 7:	
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03		Temperatura ambienta	ale (°C)	31	
Umidità relativa ambientale (%)	40		Pressione ambientale	(mbar)	991	
Risultati:						
Data misura:	21 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)		(6±2)E-	-06		
Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).						

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn						
	RAPPORTO DI PROVA N. E-44					
Data di rilascio:		10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione: Modane – Sondaggio F30bis – C quarzosi	ampione C3 – Casse	etta 197 – Intervallo Campione da m 912.60 a m 91	12.76 – Micascisti			
Prelievo del campione:						
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	12 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento: Norma di riferimento: ISO/FDIS Accumulation method for estima		Measurement of radioactivity in the environment on rate	– Air: radon-222- Part 7:			
Condizioni di misura:						
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30			
Umidità relativa ambientale (%)	47	Pressione ambientale (mbar)	988			
Risultati:						
Data misura:	20 giugno 2012					
Rateo di esalazione Rad	lon (Bq kg ⁻¹ s ⁻¹)	$(4,8\pm1,7)$ E-05				
Le incerte	ezze sono calcolate	e a due deviazioni standard (95% di probabilit	rà).			

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

2,3E-05

	MISURAZIONE DI	RATEO DI ESALAZIONE ²²² Rn				
RAPPORTO DI PROVA N. E-45						
Data di rilascio:	1	10 luglio 2012				
Committente:						
Lyon Turin Ferroviaire Sas						
P.zza Nizza, 46		10126 Torino				
Descrizione campione: Modane – Sondaggio F30bis – C quarzosi a clorite	ampione C4 – Cassetta 2	219 – Intervallo Campione da m 999.90 a n	1 1000.09 – Micascisti			
Prelievo del campione:						
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ			
Data consegna:	12 giugno 2012	Modalità consegna:	In situ			
Norme di riferimento: Norma di riferimento: ISO/FDIS Accumulation method for estima		surement of radioactivity in the environment	ent – Air: radon-222- Part 7:			
Condizioni di misura:	<u> </u>					
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C	C) 33			
Umidità relativa ambientale (%)	41	Pressione ambientale (mbar	r) 987			
Risultati:						
Data misura:	25 giugno 2012					
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(2,2\pm1,3)E-05$				
Le incerte	zze sono calcolate a d	due deviazioni standard (95% di probal	bilità).			

Matter 8

MAR (Bq kg^{-1} s^{-1})

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

8,9E-06

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn							
	RAPPORTO DI PROVA N. E-46						
Data di rilascio:		10 luglio 2012					
Committente:							
Lyon Turin Ferroviaire Sas							
P.zza Nizza, 46		10126 Torino					
Descrizione campione: Modane – Sondaggio F30bis – C quarzosi a clorite	ampione C5 – Casset	ta 236 – Intervallo Campione da m 1085.60 a m	1082.90 – Micascisti				
Prelievo del campione:							
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ				
Data consegna:	12 giugno 2012	Modalità consegna:	In situ				
Norme di riferimento: Norma di riferimento: ISO/FDIS Accumulation method for estima		Measurement of radioactivity in the environment on rate	– Air: radon-222- Part 7:				
Condizioni di misura:							
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	30				
Umidità relativa ambientale (%)	42	Pressione ambientale (mbar)	992				
Risultati:							
Data misura:	22 giugno 2012						
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(4,1\pm1,7)E-05$					
Le incerte	ezze sono calcolate	a due deviazioni standard (95% di probabilit	à).				

Matter 8

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn							
RAPPORTO DI PROVA N. E-47							
Data di rilascio: 10 luglio 2012							
Committente:							
Lyon Turin Ferroviaire Sas							
P.zza Nizza, 46	10126 Torino						
Descrizione campione:							
Modane – Sondaggio F30bis – C quarzo e clorite	ampione C6 – Cassetta	a 252 – Intervallo Campione da m 1159.40 a m	1159.76 – Micascisti a				
Prelievo del campione:							
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ				
Data consegna:	12 giugno 2012	Modalità consegna:	In situ				
Norme di riferimento:							
Norma di riferimento: ISO/FDIS Accumulation method for estima		easurement of radioactivity in the environment a rate	– Air: radon-222- Part 7:				
Condizioni di misura:							
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	31				
Umidità relativa ambientale (%)	42	Pressione ambientale (mbar)	995				
Risultati:							
Data misura:	26 giugno 2012						
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	$(1,6\pm0,9)$ E-05					
Le incertezze sono calcolate a due deviazioni standard (95% di probabilità).							

Matter &

MAR (Bq kg⁻¹ s⁻¹)

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

	MISURAZIONE	DI RATEO DI ESALAZIONE ²²² Rn			
	RAPPORTO	O DI PROVA N. E-48			
Data di rilascio:	10 luglio 2012				
Committente:					
Lyon Turin Ferroviaire Sas					
P.zza Nizza, 46	10126 Torino				
Descrizione campione:					
Modane – Sondaggio F30bis – C quarzo e clorite con talco	ampione C7 – Casse	etta 275 – Intervallo Campione da m 1269.75 a m	1269.97 – Micascisti a		
Prelievo del campione:					
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ		
Data consegna:	12 giugno 2012	Modalità consegna:	In situ		
Norme di riferimento:					
Norma di riferimento: ISO/FDIS Accumulation method for estima		Measurement of radioactivity in the environment on rate	: – Air: radon-222- Part 7:		
Condizioni di misura:	-				
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C)	35		
Umidità relativa ambientale (%)	39	Pressione ambientale (mbar)	995		
Risultati:					
Data misura:	29 giugno 2012				
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	(2,4±0,9)E-06			
Le incerte	ezze sono calcolate	e a due deviazioni standard (95% di probabili	tà).		
MAR (Bq kg	¹ s ⁻¹)	2,1E-06			
Note:	Nessuna				

Matter 8

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn								
RAPPORTO DI PROVA N. E-49								
ata di rilascio: 10 luglio 2012								
Committente:								
Lyon Turin Ferroviaire Sas								
P.zza Nizza, 46		10126	Torino					
Descrizione campione:								
Modane – Sondaggio F30bis – C quarzo e clorite	Campione C8 – Cassett	ta 287 – Interval	lo Campione da m 1328.20 a m	1328.38 – Micascisti a				
Prelievo del campione:								
Data prelievo:	12 giugno 2012		Modalità prelievo:	In situ				
Data consegna:	12 giugno 2012		Modalità consegna:	In situ				
Norme di riferimento:								
Norma di riferimento: ISO/FDIS 11665-7:2012(E) "Measurement of radioactivity in the environment – Air: radon-222- Part 7: Accumulation method for estimating surface exhalation rate								
Condizioni di misura:								
Volume effettivo (m³)	1,3E-03		Temperatura ambientale (°C)	29				
Umidità relativa ambientale (%)	44		Pressione ambientale (mbar)	996				
Risultati:								
Data misura:	18 giugno 2012							
Rateo di esalazione Radon (Bq m ⁻² s ⁻¹)			(1,3±1,3)E-03					

Le incertezze sono calcolate a due deviazioni standard (95% di probabilità)

Il rateo indicativo di esalazione radon è pari a 1,7E-05 Bq kg⁻¹ s⁻¹

Il Tecnico di Laboratorio Dr. Mattia Taroni

Malka &

MAR (Bq m^{-2} s^{-1})

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione

MISURAZIONE DI RATEO DI ESALAZIONE ²²² Rn							
RAPPORTO DI PROVA N. E-50							
Data di rilascio:	10) luglio 2012					
Committente:							
Lyon Turin Ferroviaire Sas							
P.zza Nizza, 46	10126 Torino						
Descrizione campione:							
	ampione C9 – Cassetta 29	99 – Intervallo Campione da m 1386.45 a n	n 1386.58 –				
Quarzomicascisti (CLR)							
Prelievo del campione:							
Data prelievo:	12 giugno 2012	Modalità prelievo:	In situ				
Data consegna:	12 giugno 2012	Modalità consegna:	In situ				
Norme di riferimento:							
Norma di riferimento: ISO/FDIS	11665-7:2012(E) "Measi	urement of radioactivity in the environmer	nt - Air: radon-222- Part 7				
Accumulation method for estima	ting surface exhalation rat	te					
Condizioni di misura:							
Volume effettivo (m³)	1,34E-03	Temperatura ambientale (°C) 33				
Umidità relativa ambientale (%)	37	Pressione ambientale (mbar)	995				
Risultati:							
Data misura:	2 luglio 2012						
Rateo di esalazione Rad	on (Bq kg ⁻¹ s ⁻¹)	(1,7±1,2)E-05					
Le incerte	ezze sono calcolate a di	ue deviazioni standard (95% di probabi	ilità).				
MAR (Bq kg ⁻	s-1)	1,3E-05					

Matter 8

Nessuna

Note:

Il Responsabile di Laboratorio Ing. Massimo Esposito Esperto Qualificato III Grado – N.572 d'Iscrizione