LIAISON LYON - TURIN / COLLEGAMENTO TORINO - LIONE

Partie commune franco-italienne Section transfrontalière

Parte comune italo-francese Sezione transfrontaliera

NOUVELLE LIGNE LYON TURIN – NUOVA LINEA TORINO LIONE PARTIE COMMUNE FRANCO-ITALIENNE – PARTE COMUNE ITALO-FRANCESE

REVISION DE L'AVANT-PROJET DE REFERENCE – REVISIONE DEL PROGETTO DEFINITIVO CUP C11J05000030001

APPROFONDIMENTI PROGETTUALI

APPROFONDIMENTI PER OSSERVAZIONI REGIONE PIEMONTE Riscontro Osservazione n. 8 (rif. lettera prot. n. CTVA-2014-0812 del 06/03/2014)

TUNNEL DI INTERCONNESSIONE SUSA-BUSSOLENO GALLERIE DI INTERCONNESSIONE – IMBOCCHI BUSSOLENO

Relazione geologica, idrogeologica, geomorfologica, geotecnica

Indice	Date/ Data		Mc	odifications /	Modifiche		Etabli	par / Conc	cepito da	Vé	rifié par ,	/ Conti	rollato d	la A	Autorisé par / Autorizzato da			
0	23/05/2014	Pro	emière	diffusion /]	Prima emissione		G	. AIROL	DI		A. DE	MAT	TEIS		L. Cl	HANTRO	ON	
-		1					D. Gl	RANDIS	(SEA)	1	V. GR	ISOG	ilio		C. C	GNIBEN	νΕ	
Δ	10/06/2014	Rév	ision s	uite aux cor	mmentaires LTF /	/	G	. AIROL	DI		A. DEMATTEIS				L. CI	HANTRO	ON	
Α	10/00/2014	R	evision	e a seguito	commenti LTF		D. GRANDIS (SEA)				V. GRISOGLIO				C. OGNIBENE			
	35				~					e	EOLOG	REG	SIONE					
					Å	Torn	imor	ot ()	ORDINE	DEM	TONIC	SPIC	ICHO				
A	Techin	ont	ction		Fott ID	g. Fra	Con	struci Magno	ion wij	A RED	AP S	EZ O		5-				
	Dott. Ing garlo	Ognibe	ne		V	hone	Prov.	10 n. 82	231 J	6	PROFE	5510	NAL			+ 1.7 M		
Ordi	né Ingéghér Pro	y Ion	8366	1			Ŭ				and a second distance of the		and the second sec					
		4																
		N.																
								the state of the s	And in case of the local division of the loc	-		-1	parently and a second	1		1		
CODE	P D	2 C		B B	T S	3	2	0	8	0	Α]	A	P	N	0	Т	
CODE DOC	P D Phase / Fase	2 C	C 3 Sigle étue	B B de / Sigla	TS Émetteur / Emi	3 ittente	2	0 Num	8 nero	0	A Indice		A Statut	P / Stato	N	O Type / Tip	T	
CODE DOC	P D Phase / Fase	2 C	Sigle étud	B B de / Sigla	TS Émetteur / Emi	3 ittente	2	0 Num	8 nero	0	A Indice]	A Statut	P / Stato	N	O Type / Tip	T	
CODE DOC	P D Phase / Fase	2 C s C3B	Sigle étua	B B de / Sigla	T S Émetteur / Emi 65 10	3 ittente 94	2	0 Num	8 nero	0	A Indice]	A Statut	P t / Stato	N	O Type / Tip		
CODE DOC ADR INDI	P D Phase / Fase	2 C 5 C3B	Sigle étua	B B de / Sigla //	T S Émetteur / Emi 65 10	3 ittente 94	2	0 Num 01	8 mero	0	A Indice]	A Statut	P t / Stato	N	O Type / Tip LE / SCA		
CODE DOC ADR INDI	P D Phase / Fase	2 C S C3B	Sigle étua	B B de / Sigla	T S Émetteur / Emit 65 10	3 ittente 94	2	0 Num 01	8 nero	0	A Indice]	A Statut	P / Stato	N	O Type / Tip LE / SCA		
CODE DOC ADR INDI	P D Phase / Fase	2 C 5 C3B	E 3 Bigle étua //	B B de / Sigla	T S Émetteur / Emi 65 10	3 ittente 94	2	0 Num	8 nero	0	A Indice]	A Statut	P : / Stato	N	O Type / Tip LE / SCA	T NALA	
CODE DOC ADR INDI	P D Phase / Fase	2 C s C3B	Bigle étua	B B de / Sigla	T S Émetteur / Emi 65	3 ittente 94	2	0 Num	8 nero	0	A Indice]	A Statut	P : / Stato	N	O Type / Tip LE / SCA	T no	
CODE DOC ADR INDI	P D Phase / Fase	2 C 5 C3B	Sigle étua	B B de / Sigla	T S Émetteur / Emi 65 10	3 ittente 94	2	0 Nun 01	8 nero	0	A Indice]	A Statut	P Stato	N	O Type / Tip LE / SCA	T NLA	
CODE DOC	P D Phase / Fase	2 C s	Sigle étua	B B de / Sigla //	T S Émetteur / Emi 65 10	3 ittente 94	10	0 Nun 01	8 nero	0	A Indice]	A Statut	P / Stato	CHEL	O Type / Tip LE / SCA	T NLA	
CODE DOC	P D Phase / Fase	2 C 5 C3B	Sigle étua	B B de / Sigla	T S Émetteur / Emi 65 10	3 ittente 94	2 10	0 Num 01	8 nero	O	A Indice		A Statut	P / Stato	N CHEL	O Type / Tip LE / SCA	T NLA	
	P D Phase / Fase ESSE GED RIZZO GED	2 C s	Bigle étua	B B de / Sigla //	T S Émetteur / Emi 65 10 IO91 Avenue de la Boi Tél. : +33 (0)4. RCS Chambér	3 ittente 94	2 10 80631 - F- 50 - Fax :- 952 - TV.	0 Nun 01	8 nero	O	A Indice	Ceest cofia	A Statut	P / Stato	N CHEL	O Type / Tip LE / SCA -	sto progetto ofinanziato ione europea	

SOMMAIRE / INDICE

RESUME/RIASSUNTO	3
1. INTRODUZIONE	6
2. INQUADRAMENTO GEOLOGICO E GEOMORFOLOGICO GENERALE	9
2.1 Substrato prequaternario	9
2.2 Depositi quaternari	12
2.2.1 Depositi glaciali	13
2.2.2 Depositi anuvionan di fondovane	13
2.2.5 Depositi di conorde	13
2.3 Contatto substrato prequaternario – depositi glaciali	14
3. CARATTERISTICHE GEOTECNICHE DEI TERRENI	15
3.1 Caratterizzazione sismica del sottosuolo	17
4. INQUADRAMENTO IDROGEOLOGICO	20
5. RISCHI NATURALI	20
5.1 Cedimenti in superficie	21
5.2 Attività fluviale-torrentizia	21
5.3 Attività di versante	25
ALLEGATO 1 – SONDAGGI GEOGNOSTICI (L'INSIEME DELLE STRATIGRAFIE RIPORTATO NEL DOCUMENTO PD2 C3B 0019 00-05-05 10-02 – INDAGINI	ÈÈ
ESISTENTI)	27
ALLEGATO 2 – STAZIONI GEOMECCANICHE	28
ALLEGATO 3 – RAPPORTO DI SINTESI DELLE INDAGINI SISMICHE	29

RESUME/RIASSUNTO

Le rapport décrit le Modèle Géologique, Géomorphologique, Hydrogéologique et Géotechnique de la zone du portail de Bussoleno de la gallerie d'interconnexion.

Le tunnel d'interconnexion se développe entièrement dans les calcmicaschistes du Complexe de Meana – Monte Muretto (Massif Dora Maira). La couverture quaternaire constituée des dépôts est glaciaires qui remplissent des spillway channels présents le long du versant, des dépôts du cône du rio Gerardo et des depôts alluviaux du fond du val de la rivière Dora Riparia.

Le creusement du troncon de la tête sera réalisé avec des couvertures réduites (de 5 à 30 mètres) dans un contexte de roche alterée sur une épaisseur de 2-3 mètres. De plus, la présence des dépôts meubles de remplissage des canaux d'érosion glaciaires pourrait déterminer les conditions de creusement avec front de taille mixte (roche / terrain meubles) sur les premiers 200 mètres.

En rive gauche du fl. Dora Riparia, aux endroits du portail, les reconnaissances sismiques (MASW) ont permis de classifier des sous-sols de type B. Par contre, en rive droite du fleuve, les dépôts quaternaires audessus du socle rentrent dans la catégorie E de sous-sol.

Du point de vue géomorphologique, les activités de terrain et l'analyse des données disponibles ont permis d'évaluer les risques naturels de la zone du portail et de la traversée sur la rivière Dora Riparia. Les criticités principales sont liées à l'activité torrentielle de la rivère Dora riparia : le dimentionnement du pont sur la Dora connecté au portail en projet devra assurer le déflux des eaux de plaine extraordinaire. L'activité torrentielle du rio Gerardo, ainsi que l'activité de versant, ne présentent pas de criticités pour la zone du portail.

qui concerne le en ce

La relazione descrive il Modello Geologico, Geomorfologico, Idrogeologico e Geotecnico della zona dell'imbocco Bussoleno della Galleria d'Interconnessione.

La galleria d'interconnessione si sviluppa interamente entro i calcemicascisti del di Meana - Monte Complesso Muretto (Massiccio Dora Maira). La copertura quaternaria è rappresentata dai depositi di origine glaciale e fluvioglaciale all'interno di vallecole (spillway channels) parallele all'asse vallivo principale, dai depositi di conoide del rio Gerardo e dai depositi alluvionali di fondovalle del fiume Dora Riparia.

Lo scavo della tratta d'imbocco avviene con coperture ridotte (da 5 a 30 metri) in un settore in cui l'ammasso roccioso si presenta alterato su almeno i primi 2-3 metri. Inoltre, la presenza di depositi sciolti di riempimento dei canali di erasione glaciale potrebbe determinare condizioni di scavo con fronte misto (roccia / depositi sciolti) sui primi 200 metri.

Sulla sinistra idrografica del fiume Dora Riparia. nelle immediate vicinanze dell'imbocco, le indagini sismiche (MASW) hanno permesso di classificare dei suoli di tipo B, mentre in sinistra idrografica del fiume la coltre quaternaria sopra al substrato sismico è riferita alla categoria di suolo E.

Dal punto di vista geomorfologico, le indagini di terreno e l'analisi delle banche dati disponibili hanno permesso di definire i rischi naturali relativi all'area di imbocco e all' attraversamento del fiume Dora Riparia. Le principali criticità sono da attribuire all'attività fluvio-torrentizia del fiume Dora Riparia: il dimensionamento del ponte sulla Dora connesso all'imbocco in progetto dovrà garantire il deflusso delle acque di piena starordinaria. L'attività torrentizia del rio Gerardo, così come l'attività di versante, non presenta rischi rilevanti per l'area di imbocco.

Aucune criticité importante n'a été reconnue Non sono previste criticità maggiori connesse contexte al contesto idrogeologico. Lungo il fondovalle

hydrogéologique du site. La nappe phréatique della Dora Riparia, a monte del settore des dépôts alluviaux de la Plaine de Suse se d'imbocco, la soggiacenza nei sondaggi situe à une profondeur d'environ 30 mètres de realizzati lungo la SS24 è di 13 metri. Per la surface de la plaine et aucun impact direct n'a été reconnu. En ce qui concerne les nappes des dépôts de surface qui couvrent le l'assenza di sorgenti di rilievo testimonia come massif rocheux du versant, aucune source non vi siano le condizioni per lo sviluppo di importante n'a été observée; ceci temoigne acquiferi importanti. Sono tuttavia previste que les flux qui peuvent être vérifiés le long du versant ne sont pas à l'origine d'aquifères Toutefois. importants. des écoulement souterrains (même si temporaires) peuvent se vérifier à l'interieur des dépôts glaciaires des canaux d'érosion qui pourraient recharger la sviluppa esclusivamente lungo le zone di nappe en roche notamment le long des bandes fratturazione intensa. de fracturation intense. Au-delà, le massif Al di fuori di queste, rocheux se présente avec une perméabilité de l'ordre de 1^E-8 m/s

quanto riguarda le falde ospitate nei depositi superficiali che affiorano lungo il versante, circolazioni idriche, anche con carattere effimero, all'interno dei depositi glaciali di riempimento dei canali di erasione glaciale che potrebbero ricaricare in profondità e localmente l'acquifero in roccia che si

la permeabilità faible dell'ammasso roccioso è di grado basso (1^E-8 m/s).

AVVERTENZA: In rosso sono riportate le modifiche apportate al documento consegnato in fase di progettazione definitiva (PD2_C3B_TS3_0137: Relazione geologica, idrogeologica, geomorfologica e geotecnica), adottate per rispondere all'osservazione n. 8 della Regione Piemonte (rif. lettera prot. n. CTVA-2014-0812 del 06/03/2014):

oss. 8: "La classificazione dei suoli dal punto di vista della risposta sismica deve essere basata sui dati delle prove sismiche alte a determinare direttamente il parametro Vs30, come previsto dal D.M. 14.1.2008, anziché sui dati delle prove penetrometriche standard; per le valutazioni di carattere geotecnico, vista la rilevanza dell'opera, si chiede di prendere in considerazione anche i valori caratteristici, anziché considerare i soli valori nominali desunti dalle prove geotecniche."

In recepimento di tale osservazione, il rapporto originario è stato modificato nel capitolo 3 Caratteristiche geotecniche dei terreni e nei suoi sottoparagrafi, anche mediante l'aggiornamento della Figura 8 e l'aggiunta dell'allegato 3.

1. Introduzione

La relazione descrive il Modello Geologico, Idrogeologico e Geotecnico della zona dell'imbocco verso Bussoleno del Tunnel di Interconnessione (binario pari e binario dispari).

Il modello deriva dai risultati delle indagini geologiche di superficie (rilevamenti di terreno) e sotterranee disponibili; in particolare sono presi in considerazione i sondaggi che derivano dalle campagne geognostighe nell'ambito della realizzazione della linea ferroviaria storica (galleria Tanze), dalla SITAF e quelle riportate nella banca dati Arpa Piemonte. Non sono tuttavia disponibili i risultati delle eventuali prove in foro e in laboratorio eseguite in queste campagne geognostiche.

I parametri geotecnici presentati nel presente documento sono il risultato di estrapolazione di dati ricavati da prove e analisi eseguite in altri settori seppur limitrofi a quello del sito di studio. Essi sono stati quindi stimati sulla base di dati bibliografici e dal confronto con terreni comparabili a quelli osservati in sito. Il grado di affidabilità del modello geologico elaborato, così come le analisi di tipo geomeccanico e idrogeologico, risente della mancanza di dati specificatamente prodotti per la progettazione della galleria d'interconnessione e quindi rimane generalmente basso.

Le criticità emerse in questa fase potranno tuttavia essere superate tramite la realizzazione di indagini dalla superficie che saranno realizzate in fase di Progetto Esecutivo. Inoltre, è prevista la realizzazione sistematica di indagini in corso di scavo che permetteranno di verificare le condizioni dell'ammasso roccioso in avanzamento e di poter scegliere le più adeguate misure di mitigazione qualora si presentassero condizioni di criticità (vedere Piano indagini proposte n° doc. PD2 C3B 0107 00-05-05 10-01).

Per la caratterizzazione geomeccanica dell'ammasso roccioso ci si è quindi riferiti alle esperienze fatte durante lo scavo delle due canne della galleria autostradale Prapontin e soprattutto della galleria ferroviaria Tanze il cui imbocco si trova in posizione adiacente a quella delle due canne della galleria d'interconnessione (Cfr relazione geomeccanica rif. PD2 C3B TS3 0100_00-03-01_10-01). Lo stato di fratturazione dell'ammasso roccioso è stato inoltre definito dai rilievi geomeccanici puntuali di superficie (stazioni geomeccanico-strutturali).

L'assetto tettonostratigrafico della tratta d'imbocco nei primi 300 metri di galleria a basse coperture presenta una incertezza connessa alla mancanza di dati che definiscano in modo univoco il contatto tra il basamento roccioso e i depositi quaternari di riempimento dei canali di erasione glaciale che caratterizzano il settore di studio. È infatti possibile che lo scavo possa avvenire in condizioni di fronte misto roccia / terreni sciolti.

Nella tabella che segue sono elencate le indagini dirette (sondaggi) disponibili per la caratterizzazione dei terreni prospicienti il settore dell'imbocco.

L'ubicazione degli elementi geognostici è indicata nella Figura 1

codice sondaggio	prof. (m)	stratigrafia sintetica						
()		0-1,6 gl						
B4 (55)	19	1,6 - 3,3 bs alt						
		3,3-19 bs						
		0-8,4 ant						
S3A (85)	20,7	8,4-16,5 gl						
		16,5-20,7 bs alt						
C2D (0C)	10.2	0-2 gl						
330 (80)	10,2	2-10,2 bs alt						
		0-3 ant						
S3C (87)	19,5	3-16,3 gl						
		16,3-19,5 bs alt						
		0-0,8 ant						
S3D (88)	8,3	0,8-6,9 gl						
		6,9-8,3 bs alt						
C2E (90)	85	0-6,2 gl						
33E (09)	0,5	6,2-8,5 bs alt						

	LEGENDA										
cd	coltre detritico-colluviale										
ant	depositi antropici										
af	depositi alluvionali di fondovalle, recenti e antichi. Depositi torrentizi										
cg	conglomerato poligenico da poco a moderatamente cementato										
cd	coltre detritico-colluviale										
gl	depositi glaciali										
bs alt	basamento roccioso alterato										
bs	basamento roccioso										

Tabella 1 – Sintesi dei sondaggi utilizzati per la caratterizzazione dell'assetto litostratigrafico del settore prospiciente l'imbocco Bussoleno delle gallerie d'interconnessione

Figura 1 – Ubicazione delle indagini relativamente al settore d'imbocco Bussoleno

Gli elementi geologici descritti in questa relazione sono rappresentati negli elaborati grafici seguenti:

Titolo	scala	codice elaborato
Carta geologica di dettaglio	1:1000	PD2_C3B_0074_65-10-01_30-01
Carta geomorfologica di dettaglio	1:1000	PD2_C3B_0075_65-10-01_30-02
Profilo geologico di dettaglio	1:1000	PD2_C3B_0138_65-10-01_40-02
Sezioni trasversali	1:500	PD2_C3B_0076_65-10-01_40-01

Oltre ai dati prima descritti è stata consultata la seguente documentazione:

- geoportale del sito dell'arpa Piemonte (<u>http://webgis.arpa.piemonte.it</u>);
- cartografia Piano stralcio per l'Assetto Idrogeologico Autorità di Bacino Fiume Po (<u>http://www.adbpo.it</u>).
- Piano Regolatore Generale Comune di Bussoleno;
- Piano Regolatore Generale Comune di Susa.

2. Inquadramento geologico e geomorfologico generale

La galleria d'interconnessione consiste di due canne con tracciato non parallelo che si sviluppano per circa due chilometri tra le località Traduerivi (Comune di Susa) e l'imbocco di valle della galleria ferroviaria Tanze (verso Bussoleno); la geologia dei due tracciati è omogenea e prevede lo scavo nei calcemicascisti dell'unità Dora Maira (Complesso di Meana – Monte Muretto), con copertura ridotta (valori massimi intorno a 165 m).

Oltre l'imbocco verso Bussoleno, il tracciato dell'interconnessione prevede la realizzazione di un ponte sulla Dora Riparia e di un rilevato fino all'attuale stazione ferroviaria di Bussoleno.

Le caratteristiche geologico - strutturali e morfologiche dei due imbocchi sono molto simili in quanto questi sono ubicati lungo lo stesso versante a distanza relativamente ridotta (meno di 2 km) intersecado le stesse strutture geologiche ma con angolo d'incidenza circa ortogonale l'uno rispetto all'altro.

Lo studio di terreno ha messo in evidenza un basamento roccioso caratterizzato da scistosità principale pervasiva con immersione mediamente verso N e inclinazione tra 20 e 60°. L'ammasso roccioso presenta alterazione superficiale ipoteticamente sviluppata su almeno i primi 2-3 metri di profondità per idratazione dei feldspati e fillosilicati che costituiscono i calce micascisti. Durante il rilevamento di terreno è stata osservata la presenza di sporadiche lenti di rocce basiche di dimensioni metriche e plurimetriche. La loro presenza è stata quantificata in circa 1% della massa rocciosa. Tramite analisi al microscopio ottico dei campioni prelevati in affioramento non è stata evidenziata la presenza di minerali amiantiferi.

I sondaggi realizzati nel settore prospiciente l'imbocco (S3B, S3C, S3D e S3E, riportati in allegato 1) indicano la presenza di una coltre di depositi glaciali con spessore variabile tra circa 2 e 16 metri che ricoprono il basamento roccioso alterato su uno spesspre di 2-3 metri.

Dal punto di vista geomorfologico l'area dell'imbocco costituisce un settore roccioso rilevato rispetto al fondovalle di circa 40 m, caratterizzato dalla presenza di rocce montonate. In prossimità dell'area di imbocco è stato osservato un canale irriguo, che si sviluppa per un tratto a cielo aperto a monte della linea della ferrovia storica e fino all'imbocco dell'attuale galleria Tanze della linea ferroviaria, per poi proseguire verso est a tratti in sotterraneo e a tratti a cielo aperto.

Nel settore di fondovalle, in corrispondenza dei ponti ferroviari esistenti l'alveo attivo della Dora Riparia presenta una larghezza di circa 50 m con sponde naturali che raggiungono altezze di 4 m circa e soggette a modesti fenomeni di erosione spondale. Lungo la riva destra, 50 m circa a monte del ponte ferroviario, confluisce nella Dora Riparia il canale di restituzione della centrale idroelettrica di Coldimosso.

2.1 Substrato prequaternario

Le gallerie d'interconnessione si sviluppano entro i calcemicascisti del Dora Maira (Complesso di Meana – Monte Muretto). La scistosità principale in questo settore immerge verso NNW e NNE e ha valori d'inclinazione compresi tra 20° e 60°. L'ammasso roccioso è per lo più massivo e caratterizzato da un sistema di giunti impostato lungo la scistosità principale e due sistemi di fratture, generalmente chiuse e con persistenza e spaziatura comprese tra 1 e 3 metri.

La giacitura media della scistosità principale risulta quindi a franapoggio rispetto al versante e in corrispondenza dei fronti di scavo l'inclinazione apparente della scistosità risulterebbe con

un angolo $<50^{\circ}$. Non si escludono quindi fenomeni di crollo (splaccaggio) in relazione alla direzione di scavo rispetto a quella della scistosità principale e al comportamento elastico dell'ammasso roccioso.

La tratta dell'imbocco verso bussoleno ricade, da un punto di vista geologico-strutturale, in una zona di transizione tra i domini strutturali Mompantero (verso ovest) e Orsiera (verso est). La proiezione dei poli delle superfici di scistosità misurate in questo settore (Figura 2 e Figura 3) mette in evidenza la presenza di due picchi di concentrazione: un picco, principale, relativo a superfici immergenti verso NNW e un picco secondario relativo a superfici immergenti verso W - NW.

Figura 2 – Ubicazione delle stazioni geomeccaniche (in rosso) realizzate nel settore dell'imbocco verso Bussoleno

L'andamento delle superfici di scistosità, coerente con i caratteri generali del Dominio Strutturale Mompantero, potrebbe essere interpretato come dovuto a pieghe di tipo isoclinale (ad esempio di fase $D2^1$) i cui fianchi presentano direzioni di immersione molto simili. Locali dispersioni potrebbero essere invece dovute all'effetto di fasi plicative successive (D3) (*Sue and Tricart*, 1999; *Fügenschuh et al.*, 1999).

Tale interpretazione appare confermata dall'orientazione degli assi di piega di fase D2 (Figura 4), per lo più concentrati secondo la direzione E-W.

¹ Bertrand, J. M., R. T. Pidgeon, J. Leterrier, F. Guillot, D. Gasquet, and M. Gattiglio (2000), SHRIMP and IDTIMS U-Pb zircon ages of the pre-Alpine basement in the Internal Western Alps (Savoy and Piemont), Schweizerische Mineralogische und Petrographische Mitteilungen = Bulletin Suisse de Mineralogie et Petrographie, 80(3), 225-248.

Figura 3 - Proiezione dei poli dei piani di scistosità e cerchio massimo relativo al picco di concentrazione dei poli di scistosità (in senso orario dall'alto a sx SG041, SG042, SG044 e SG037)

Figura 4 - Proiezione degli assi di piega di fase D2 e di fase D3 (reticolo equiarea di Schmidt, emisfero inferiore)

La sovrapposizione di queste due fasi coassiali da origine alla tipica ondulazione della scistosità che in questo settore ha favorito, presumibilmente, l'azione di erasione glaciale con la formazione di canali (spillway channels) con direzione WSW – ENE la cui base potrebbe interferire con lo scavo dei primi 200 metri di galleria, tratto in cui la copertura al di sopra delle due canne è ridotta (circa 10-15 metri).

Nell'area sono stati realizzati alcuni stendimenti strutturali (stazioni strutturali SG037, SG041, SG042 e SG044) mirati a caratterizzare l'ammasso roccioso. I risultati degli stendimenti sono riportati come allegato a fine testo (allegato 2).

L'ammasso è caratterizzato dalla presenza di due sistemi principali di giunti (Figura 3) con persistenza e spaziatura comprese tra <1 e 3 metri. Un primo sistema immerge verso E a medio-alto angolo (direzione N-S, inclinazione media di 70°); un secondo set ha immersione media verso S – SW (direzione E-W) e inclinazioni comprese tra 75° e 50°.

In affioramento si osservano inoltre sistemi di giunti con direzioni NW-SE e NE-SW; anche se generalmente secondari, questi ultimi due sistemi di giunti possono presentarsi localmente come principali. Tutti questi sistemi sono presenti con piani coniugati, indicati con le notazioni 'a' o 'b' negli elaborati ai quali fa riferimento questa relazione (sezione longitudinale alla scala 1:1000: PD2_C3B_0138_65-10-01_40-02; sezioni trasversali alla scala 1:500: PD2_C3B_0076_65-10-01_40-01).

Le condizioni dei giunti nell'ammasso roccioso sono condizionate dal grado di alterazione; in affioramento si può infatti riscontrare la presenza di riempimento di materiale sabbioso e/o roccia fratturata, o anche solo di modeste tracce di ossidazione delle pareti dei giunti. Nel complesso l'ammasso roccioso si presenta da non alterato a moderatamente alterato.

La caratterizzazione geomeccanica dell'ammasso roccioso in corrispondenza dell'imbocco è stata definita sulla base dei parametri delle stazioni geomeccaniche. Sulla base delle misure eseguite sulle superfici delle discontinuità, i valori di UCS (resistenza alla compressione uniassiale) variano tra 50 e 60 MPa. Questo è in linea con quanto verificato durante lo scavo della galleria Tanze per il quale il range di UCS varia tra circa 45 e 120 MPa (Tabella 2).

Unità	Litologia	UCS (MPa)			GSI			Copertura (m)				RQD		RMR			
geomeccanica		med.	min	MAX	med.	min	MAX	med.	min	MAX	med.	min	MAX	med.	min	MAX	
UGD 1	TCS Calcemicascisti	72.4	42.8	117.5	61	52	69	82.4	0	165	-	-	-	60	52	67	

Unità	Litologia	Υ (γ (kN/m ³)		E _i (GPa) *		E _{rm} (GPa) *		C (MPa) *		φ (°) *		s. a e (MPa)	mi *
yeomeccanica		min	MAX	min	MAX	min	MAX	min	MAX	min	MAX	min	MAX	
UGD 1	TCS Calcemic	ascisti 27.6	28.5	10.7	29.4	3.7	21	0.4	3.5	61	50	2.5	16.2	7

Tabella 2 – Parametri geomeccanici attribuiti ai calcemicascisti e i paragneiss del Complesso Meana – M.te Muretto.

2.2 Depositi quaternari

Il settore antistante l'imbocco delle canne della galleria d'interconnessione è caratterizzato dalla presenza di di depositi sciolti di età quaternaria e di origine glaciale e detritico-colluviale

direttamente a contatto con il basamento roccioso come testimoniato dai sondaggi disponibili dell'imbocco Tanze.

Oltre l'immediato intorno dell'area d'imbocco affiorano prevalentemente i depositi alluvionali della Dora Riparia e del lembo occidentale del conoide del rio Gerardo.

Di seguito sono descritti separatamente i depositi quaternari che affiorano in questo settore.

2.2.1 Depositi glaciali

I depositi glaciali sono stati osservati in affioramento un centinaio di metri a SE dell'imbocco. Le osservazioni di terreno condotte, unite all'analisi delle stratigrafie di sondaggi eseguiti nell'area per il collegamento Torino-Bardonecchia (disponibili sul sito Arpa Piemonte) (Figura 1), indicano che i depositi glaciali consistono in sabbie limose e limi sabbiosi con trovanti plurimetrici rappresentati prevalentemente da calcescisti.

2.2.2 Depositi alluvionali di fondovalle

I depositi alluvionali affiorano nel fondovalle del Fiume Dora Riparia. Si tratta di depositi prevalentemente *matrix supported* di colore grigio chiaro, costituiti da ciottoli da centimetrici a pluridecimetrici immersi in una matrice sabbioso-limosa presente in percentuale variabile (Figura 5).

Figura 5 – Depositi alluvionali attuali di fondovalle.

2.2.3 Depositi di conoide

Ad est dell'area di imbocco è presente un apparato conoidale formato dall'attività fluviotorrentizia del rio Gerardo. I depositi di conoide sono costituiti da clasti da sub-arrotondati ad arrotondati di dimensioni variabili, da centimetriche a decimetriche, immersi in una matrice ghiaioso-sabbiosa di colore grigio.

2.2.4 Depositi detritico-colluviali

I depositi detritico-colluviali sono presenti in maniera ubiquitaria lungo il versante dell'area di imbocco. La loro formazione è legata al rimaneggiamento, dovuto all'azione dei processi morfo-climatici, di depositi sciolti preesistenti, quali ad esempio i depositi quaternari, e dalla

disgregazione e alterazione delle rocce del substrato affiorante. Generalmente, in corrispondenza dei depositi eluvio-colluviali attecchisce un folta e rigogliosa vegetazione.

2.3 Contatto substrato prequaternario – depositi glaciali

L'assetto geomorfologico generale dell'area, definito anche attraverso la fotointerpretazione e la distribuzione dei depositi glaciali nelle zone esterne alla galleria in progetto, confermano la presenza di spillway channel parzialmente sepolti da una coltre di depositi glaciali, fluvioglaciali e colluviali (Figura 6).

Lo scavo potrebbe quindi avvenire in condizioni di fronte misto roccia / depositi sciolti , quindi con rischio di cedimenti in superficie (fornelli).

Figura 6 – Profili geologici trasversale all'imbocco verso Bussoleno con evidenza della possibile interazione durante lo scavo con i depositi di riempimento dei canali d'erasione glaciale (estratto da elaborato PD2 C3B 0076 65-10-01 40-01)

La criticità connessa alla possibilità di intercettare durante lo scavo la superficie di contatto tra il basamento roccioso e i sovrastanti depositi sciolti di origine glaciale (o mista glaciale e detritica) è emersa dai soli dati di superficie. Non sono infatti disponibili indagini specifiche che abbiano verificato la potenza dei depositi sciolti in profondità.

In ogni caso, la copertura al di sopra di entrambe le canne della galleria d'interconnessione risulta ridotta (< 5 m) almeno per i primi 50 metri rispetto all'imbocco in galleria naturale. La possibilità che si verifichi un fronte misto resta quindi alta dato che non si dispone di indagini dirette che forniscano indicazioni certe nel tratto di galleria naturale.

Le stratigrafie dei sondaggi realizzati all'imbocco della galleria Tanze (Figura 1) nel settore d'imbocco della galleria Tanze indicano uno spessore dei depositi glaciali variabile tra 2 e 16 metri circa, confermando la presenza di canali sepolti. In particolare, si tratta dei seguenti sondaggi:

codice	profondità contatto basamento / terreni sciolti (m dal piano campagna)
S3A (85)	16.5
S3B (86)	2
S3C (87)	16.9
S3D (88)	6.9
S3E (89)	6.2

Tabella 3 – Potenze dei depositi quaternari misti (detritico-collubviali e glaciali) rilevate nei sondaggi realizzati

nell'area prospiciente l'imbocco

Sulla base della proiezione in profondità dei dati delle osservazioni in superficie e dal fatto che la galleria ferroviaria Tanze, che imbocca nello stesso settore, è stata scavata completamente in roccia, si può presumere che lo scavo avverrà totalmente in roccia una volta che la copertura al di sopra della galleria sia maggiore di 15 metri.

Per quanto riguarda la galleria Tanze, tuttavia si precisa che il suo tracciato è localizzato al di sotto di un costone roccioso che degrada rapidamente verso ovest (Figura 7).

Resta dunque un margine d'incertezza nei tratti in cui la galleria sarà realizzata con coperture comprese tra 0 e 15 metri e in assenza di affioramenti rocciosi in superficie.

Figura 7 – Profili geologici trasversale all'imbocco verso Bussoleno della galleria Tanze e delle canne della galleria d'interconnessione

3. Caratteristiche geotecniche dei terreni

I sondaggi reperiti per il settore d'imbocco permettono di ricostruire il modello stratigrafico. Sono inoltre disponibili i risultati delle prove SPT eseguite su due sondaggi.

Alcuni terreni prima descritti sono stati indagati mediante indagini geognostiche realizzate nel settore della Piana di Susa. Una sintesi dei risultati di tali indagini, nonché la caratterizzazione geotecnica dei terreni investigati e il modello geotecnico di riferimento che ne deriva sono esposti nella relazione geotecnica della Piana di Susa (rif. PD2 C3B TS3 2065_50-01-94_10-01) e in quella del settore Traduerivi (rif. PD2 C3B TS3 2075_65-05-94_10-01).

Al fine di completare la caratterizzazione dei depositi glaciali di riempimento dei canali d'erasione glaciale che caratterizzano il settore d'imbocco, è stato consultato il *database web* dell'ARPA Piemonte² per i dati geotecnici storici disponibili nel settore di studio. Nella tabella che segue sono indicati i valori delle prove SPT con la profondità relativa (Tabella 4).

² http://webgis.arpa.piemonte.it/geoportale/index.php/it/archivio-notizie/5-geologia-e-dissesto/124-banca-dati-geotecnica.html

Codice Perforazione	Profondita` (m)	N1	N2	N3	NSPT
B5 (56)	1.5	2	5	6	11
B5 (56)	3	-999	0	0	-999
B5 (56)	4.5	-999	0	0	-999
Codice Perforazione	Profondita` (m)	N1	N2	N3	NSPT
B6 (57)	1.5	3	7	9	16
B6 (57)	3	4	15	18	33
Codice Perforazione	Profondita` (m)	N1	N2	N3	NSPT
S3A (85)	8.4	3	6	8	14
S3A (85)	11.8	5	4	7	11
S3A (85)	13.5	6	7	5	12

Codice	Profondita`	N1	N/2	N12	NSDT
Perforazione	(m)		INZ.	145	NJET
S3C (87)	7.5	3	4	6	10
S3C (87)	9.5	5	7	9	16
S3C (87)	12.5	7	5	9	14

Tabella 4 – Risultati delle prove SPT realizzate nei sondaggi del settore d'imbocco Bussoleno (fonte database ARPA Piemonte). Il valore -999 indica che la prova è andata a rifiuto.

I valori di N_{SPT} indicano terreni scarsamenti coesivi. L'angolo di attrito per i depositi glaciali di riempimento dei canali di erasione glaciale, ottenuto con il metodo di Demello³, risulta mediamente di 28° considerando un peso di volume pari a 20 kN/m³.

Qui di seguito vengono riportati i valori dei parametri geotecnici proposti per i terreni presenti nella zona d'imbocco a Bussoleno:

- Depositi di origine antropica (Kr) corrispondenti ai depositi indicati come *ant* nel profilo geologico;
- Depositi alluvionali grossolani (Kb1) corrispondenti ai depositi definiti come *af* nel profilo geologico;
- Depositi alluvionali più fini (Kb2) definiti come af nel profilo geologico;
- Depositi di conoide (Kd) indicati come *ac* nel profilo geologico;
- Depositi glaciali (Kg) indicati come gl nel profilo geologico;
- Coltre colluviale-detritica (Kc) indicati come *cd* nel profilo geologico.

³ De Mello V.F.B (1971). *The Standard Penetration Test*. SOA Report, Proc. IV Panamerican Conf. on SMFE, San Juan, Puerto Rico.

In conclusione, nella Tabella 5 sono riportati i valori dei parametri geotecnici proposti per i terreni presenti nella zona dell'imbocco Bussoleno; tali valori sono stati valutati tenendo conto anche dei valori caratteristici, proponendo come valori quelli più prossimi ai valori minimi a favore della sicurezza.

Unità geotecniche	Litotipo		Tenore in acqua (%)			Υ (kN/m ³)			E (GPa)			C' (MPa)			φ' (°)			μ (Poisson)
			min	max	valore proposto	min	max	valore proposto	min	max	valore proposto	min	max	valore proposto	min	max	valore proposto	-
Kb1	depositi alluvionali grossolani	af1, af2, af3	6.9	7.7	7.2	19.2	20.4	19.8	0.1	0.2	0.1	0	0.01	0	31	35	32	0.3*
Kb2	depositi alluvionali fini	af4, af5	ND	ND	ND	-	-	20*	-	-	0.1*	-	-	0*	-	-	30*	0.3*
Кс	Coltre colluviale detritica	cd	ND	ND	ND	-	-	20*	-	-	0.1*	-	-	0*	-	-	30*	0.3*
Kd	depositi di conoide	ас	ND	ND	ND	-	-	20*	0.05	0.2	0.05	I	-	0*	30	30	30	0.3*
Kg	depositi glaciali	gl	ND	ND	ND	-	-	20*	-	-	0.05*	0	0.01	0	27	32	28	0.3*
Kr	Terreno di riporto	ant	ND	ND	ND	-	-	19.4	0.05	0.2	0.1	0	0.01	0	30	30	30	0.3*

Tabella 5 – Parametri geotecnici proposti per i terreni presenti nella zona di imbocco Bussoleno. *parametri stimati sulla base dei dati bibliografici e delle osservazioni di terreno.

3.1 Caratterizzazione sismica del sottosuolo

Durante le campagne di indagini complementari LTF 2011-2012 per i cantieri previsti a Bussoleno nel settore d'imbocco della galleria d'interconnessione con la linea ferroviaria storica, sono state realizzate due indagini geofisiche di tipo MASW. Queste indagini, note come P6 e P6-2, hanno permesso di determinare la velocità di propagazione delle onde di taglio in funzione della profondità sui primi 30 m di profondità (V_{s30}) e dunque la categoria sismica del sottosuolo locale. I risultati delle indagini sono dettagliati nel'Allegato 3. La loro ubicazione rispetto all'imbocco a Bussoleno è riportata nella figura seguente.

Figura 8 – Ubicazione delle indagini MASW P6 e P6-2 rispetto all'imbocco e all'area di cantiere dell'interconnessione. I profili MASW sn indicati in viola. La freccia rossa evidenzia lo stendimento P6-2.

L'indagine sismica P6-2 è stata eseguita sulla destra idrografica del fiume Dora Riparia, in prossimità dell'imbocco delle due canne della galleria d'interconnessione. Essa comprende un profilo V_{S30} ; il valore medio delle V_{S30} per tale profilo è di 425 m/s. La buona omogeneità delle velocità e l'assenza, entro i trenta metri di profondità, del substrato sismico (Vs>800 m/s) hanno permesso di classificare, nelle immediate vicinanze dell'imbocco, dei suoli di tipo "**B**: Depositi di sabbie o ghiaie molto addensate o argille molto consistenti, con spessori di diverse decine di metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V_{S30} compresi tra 360 m/s e 800 m/s (ovvero resistenza penetrometrica N_{SPT} > 50, o coesione non drenata cu>250 kPa)" (Tabella 6).

Sulla sinistra idrografica del fiume Dora, invece, i due profili V_{s30} realizzati per l'indagine P6 hanno restituito dei valori V_{s30} medi di 555 m/s e 562 m/s. Rispetto all'altra sponda del fiume, queste velocità elevate sono associate a uno spessore abbastanza limitato (entro 10 e 15 m) della coltre quaternaria sopra al substrato sismico (Vs>800 m/s) e, di conseguenza,

suggeriscono una classificazione del sottosuolo di fondazione nella categoria di suolo di tipo "E: *Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m*, posti sul substrato di riferimento (con V_S >800 m/s)" (Tabella 6).

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V _{s,30} compresi tra 360 m/s e 800 m/s (ovvero N _{SPT,30} > 50 nei terreni a grana grossa e c _{u,30} > 250 kPa nei terreni a grana fina).
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V _{s,30} compresi tra 180 m/s e 360 m/s (ovvero $15 < N_{SPT,30} < 50$ nei terreni a grana grossa e $70 < c_{u,30} < 250$ kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e c $\infty < 70$ kPa nei terreni a grana fina).
E	<i>Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m,</i> posti sul substrato di riferimento $(\text{con V}_{s} > 800 \text{ m/s}).$
Categoria	Descrizione
\$1	Depositi di terreni caratterizzati da valori di V _{s,30} inferiori a 100 m/s (ovvero $10 < c_{u,30} < 20$ kPa), che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argille altamente organiche.
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

Tabella 6 – Classi sismiche del sottosuolo (estratto delle NTC 2008)

4. Inquadramento idrogeologico

Dal punto di vista idrogeologico le rocce cristalline afferenti alle coperture dell'unità Dora Maira sono caratterizzate da permeabilità di grado generalmente basso (K=1E-8 m/s). Tuttavia è probabile che l'ammasso roccioso nei primi 2-3 metri risulti alterato per effetto dell'idratazione dei feldspati e dei fillosilicati con conseguente creazione di bande con permeabilità maggiore soprattutto in corrispondenza delle zone originariamente più fratturate.

Lungo il versante a monte dell'area di imbocco non sono presenti sorgenti.

La criticità idrogeologica principale è legata agli acquiferi presenti nei depositi glaciali, con permeabilità di grado medio - alto, che colmano gli spillway channels la cui esatta estensione in profondità non è nota. È comunque possibile che queste falde abbiano carattere effimero e che vengano ricaricate solo in occasione dei periodi piovosi. In questo senso, è possibile interpretare l'assenza di falda freatica registrata nei sondaggi S3B, S3C. S3D e S3E (Figura 1 e allegato 1), realizzati in corrispondenza dell'imbocco verso Bussoleno della galleria d'interconnessione e consultati nella banca dati geotecnica dell'ARPA Piemonte. Questi sondaggi attraversano depositi di origine glaciale con potenza variabile tra circa 2 e 17 metri che poggiano su un basamento fratturato e alterato per i restanti 2 metri perforati.

Tali acquiferi porosi, quindi, possono costituire dei corpi di ricarica dell'acquifero fratturato in roccia. La soggiacenza misurata storicamente nel settore d'imbocco, nei sondaggi B5 (56) e B6 (57) (Figura 1) è di circa 3-4 metri all'interfaccia tra i depositi glaciali e detritico-colluviali e il basamento roccioso alterato.

Il fondovalle della Piana di Bussoleno è costituito da depositi alluvionali e torrentizi recenti, non cementati, e da depositi alluvionali di conoide, che presentano un coefficiente di permeabilità mediamente tra 1E-05 e 1E-06 m/s (prove Lefranc nei sondaggi S65 e S67).

La soggiacenza della falda freatica è stata valutata solo sulla base di dati storici (sito web ARPA Piemonte). Lungo il fondovalle della Dora Riparia, quindi, a monte del settore d'imbocco, la soggiacenza nei sondaggi realizzati lungo la SS24 è di 13 metri. Il punto di misura è stato censito per il monitoraggio LTF (punto AST462) ma è attualmente interrato e le misure non sono più possibili.

5. Rischi naturali

I rischi naturali connessi con l'opera in questione sono stati valutati da rilievi di terreno di dettaglio, e dalla consultazione delle banche dati disponibili (PAI - Piano stralcio per l'Assetto Idrogeologico, IFFI/SIFRAP - Sistema Informativo dei fenomeni FRAnosi in Piemonte e RERCOMF – REte Regionale Controllo Movimenti Franosi, SIVA - Sistema Informativo VAlanghe).

I rischi naturali riscontrabili sono riconducibili a:

- Cedimenti in superficie (fornelli);
- Attività fluviale-torrentizia: rio Gerardo, fiume Dora Riparia;
- Attività di versante.

L'analisi dei rischi naturali è stata eseguita in coerenza con le metodologie descritte nei seguenti documenti:

- Fontan D. (2008) - Relazione e cartografie del Piano Regolatore Comunale del Comune di Susa. Sea Consulting s.r.l.

- Fontan D, Stringa S. & Dematteis A. (2004) Alluvial fan hazard: evaluation and zonation. 10° Congresso Interpraevent, Riva del Garda 24-27.05.2004.
- Franchi, S., Novarese, V., Mattirolo, E., Stella, S. (1913) Carta Geologica d'Italia alla scala 1:100.000, F°. 55- Susa. SE.L.CA. Firenze, 1959.
- Marco F., Forlati F. (2002) Pericolosità geologica in conoide: ricerca bibliografica e analisi critica. A cura del Settore Studi e ricerce Geologiche Sistema Informativo Prevenzione Rischi. Regione Piemonte. Collana informativa tecnico-scientifica. Quaderno n. 18, 246 pp.

5.1 Cedimenti in superficie

In asse alle gallerie sono presenti depositi sciolti di origine glaciale, il cui spessore non è determinabile dai rilievi di superficie ma deve essere definito mediante indagini dirette. Lo spessore dei depositi potrebbe risultare critico per lo scavo del primo tratto dell'Interconnessione, che è previsto con coperture molto ridotte, localmente inferiori a 10 m (vedere § 2.1).

Data l'indeterminatezza dello spessore dei depositi non si può escludere che essi si ritrovino anche parzialmente alla quota di scavo. In questo settore d'imbocco, quindi, lo scavo potrebbe avvenire in condizioni di fronte misto, con forte probabilità di cedimenti in superficie (fornelli).

5.2 Attività fluviale-torrentizia

Per quanto riguarda l'imbocco e la tratta d'interconnessione a monte di Bussoleno, le criticità sono connesse alla dinamica fluviale della Dora Riparia: il tracciato dell'opera infatti si sviluppa quasi completamente all'interno delle Fasce Fluviali A, B e C (Figura 9). In particolare, l'imbocco è ubicato in un settore topograficamente rialzato rispetto al fondovalle.

Figura 9 – Stralcio carta delle fasce fluviali del PAI: in verde fascia A, in blu fascia B, in rosso fascia C (Fonte: sito web http://www.adbpo.it/maplab_projects/webgis consultato in settemre 2012). L'ovale rosso indica l'area dell'imbocco e l'attraversamento sul fiume Dora Riparia

Questo settore è stato interessato da fenomeni alluvionali durante gli eventi alluvionali del 1957, del 1977 e del 2000 (Figura 11). Il fiume Dora Riparia ha mobilitato sedimenti su un area più vasta rispetto al suo alveo ordinario, espandendosi specialmente verso N, e danneggiando localmente le strutture viarie e ferroviarie esistenti.

Figura 10 – Stralcio tavola VI el PRGC di Bussoleno: Carta deli eventi alluvionali 1957 e 1977. L'ovale rosso ubica l'area d'imbocco.

Figura 11 – Stralcio carta dell'evento alluvionale del 2000 (fonte: sito web <u>http://webgis.arpa.piemonte.it</u> consultato in agosto 2012): in azzurro aree caratterizzate da intensa mobilizzazione di sedimenti; in blu aree inondate/allagate, in viola/grigio aree interessate da deposito grossolano; linee fucsia e verdi: rete ferroviaria /viaria danneggiata; frecce arancioni: direzione di deflusso durante la piena; i numeri indicano le altezze idrometriche. L'ovale rosso indica l'area dell'imbocco.

In particolare, durante l'evento 2000 la criticità principale è stata determinata dall'esondazione della Dora Riparia presso la confluenza del Rio Rocciamelone, che ha interessato principalmente la sponda sinistra. In corrispondenza dell'argine presente a monte della ferrovia (linea arancione piena in Figura 12), ora non più efficiente, le acque si sono divise in due rami principali (frecce rosse in figura): il primo ha scavalcato l'argine sul lato settentrionale ed è proseguito verso nord interessando l'abitato di Bussoleno; il secondo ha scavalcato l'argine a sud, ed è rientrato nell'alveo della Dora in corrispondenza del ponte della ferrovia. A valle di questo ponte la Dora ha esondato nuovamente da entrambe le sponde ma principalmente sulla sponda sinistra.

A valle di questo evento alluvionale sono stati progettate nuove opere di protezione dell'abitato di Bussoleno, come previsto dall'Autorità di Bacino del Po (argini di progetto lungo il limite dell'attuale Fascia B di progetto, in corso di completamento Si specifica che la sezione del ponte di attraversamento sulla Dora Riparia previsto deve essere tenere conto del nuovo assetto del fondovalle a seguito del completamento degli argini di progetto, considerando anche la presenza dell'argine trasversale, la cui efficacia viene progressivamente ridotta a causa della deposizione di materiale sul lato di monte in occasione di ogni evento alluvionale significativo.

Figura 12 – Stralcio area a monte di Bussoleno, con dinamica semplificata dell'evento 2000. Si veda il testo per la descrizione e la legenda.

Come per la Piana di Susa, l'interazione delle opere con gli eventi di piena determina la necessità per la loro realizzazione di garantire il deflusso delle acque di piena straordinaria. I ponti saranno realizzati con opere di difesa a protezione delle spalle del ponte.

Attualmente la linea ferroviaria attraversa il fiume Dora Riparia per mezzo di due ponti di 50m di lunghezza ciascuno: quello posto più a monte (linea storica) è caratterizzato da tre campate ciascuna di circa 10 m di larghezza e 6 m di altezza; quello posto più a valle è a campata unica di altezza di circa 8 m (Figura 13).

Figura 13 – Ponti ferroviari esistenti sulla Dora Riparia: a campata unica (primo piano) e a tre campate (in secondo piano) (foto da valle verso monte).

Per quanto riguarda l'attività torrentizia, ad est dell'imbocco è presente il rio Gerardo, classificato ad elevata pericolosità nella cartografia del PAI (Ee); il suo apparato conoidale è stato classificato come attivo e non protetto da opere di difesa (Ca) (Figura 14). Durante

l'evento alluvionale del 2000 il conoide del rio Gerardo è stato affetto da deposizione grossolana coinvolgendo un'area posta a 160 m ad E dell'imbocco (Figura 11). Nel 1977 il Rio Gerardo ha causato pressochè gli stessi effetti dell'evento 2000 ma in misura meno estesa (Figura 10).

Figura 14 – Stralcio carta dei dissesti e pericolosità geomorfologica del PAI: in verde il conoide attivo non protetto del rio Gerardo Ca, in blu scuro zone a pericolo molto elevato per inondazione Ee (Fonte: sito web http://www.adbpo.it/maplab_projects/webgis consultato in settembre 2012). Il cerchio rosso indica l'area dell'imbocco e l'attraversamento sul fiume Dora Riparia.

Nella carta geomorfologica redatta in scala 1:1000 e allegata al presente studio (cod elaborato PD2-C3B-TS3-0075) l'estensione del conoide è stata aumentata verso W, coincidendo pressappoco con l'area esondata nel 2000.

L'attività fluvio-torrentizia del rio Gerardo non presenta criticità nei confronti dell'opera in progetto, in quanto esterna al conoide: l'opera è infatti ubicata a circa 160 m ad W del limite del conoide e 600 m ad W dell'alveo attivo, e circa 20 m più in alto. Durante l'evento 2000, a causa di creiticità di deflusso del ponte sulla SS24, le acque dei Rio Gerardo si sono spinte fino all'area di Cascina Armone – S. Petronilla, a circa 200 m ad est dell'area di imbocco.

5.3 Attività di versante

La cartografia del progetto IFFI (Inventario dei Fenomeni Franosi in Italia), consultata sul sito dell'Arpa Piemonte, riporta due colamenti a 500 m di distanza verso SW dall'imboccco. Di questi, il più orientale è stato riperimetrato nella carta geomorfologica, e risulta legato all'evento alluvionale del 2000 (Figura 15). Non sono stati ossevati fenomeni franosi attivi o quiescenti direttamente interessanti l'area dell'imbocco Bussoleno.

Figura 15 – Stralcio cartografia IFFI (Inventario dei Fenomeni Franosi in Italia) (Fonte: sito web <u>http://webgis.arpa.piemonte.it</u> consultato in settembre 2012). Il cerchio rosso indica l'area dell'imbocco e l'attraversamento sul fiume Dora Riparia.).

Il progetto per la realizzazione dell'imbocco prevede lo sbancamento e la realizzazione di tagli parzialmente in roccia e parzialmente in deposito quaternari, di altezza variabile fino a 18 m. I tratti di scarpate in roccia dovranno essere stabilizzati mediante idonee chiodature, la cui spaziatura e profondità dovrà essere determinata sulla base dei risultati dei rilievi strutturali roportati a fine testo, e dalla posa di reti paramassi aderenti. Si ricorda inoltre che la scistosità principale è disposta a franapoggio verso il fondovalle. I tratti di scarpata in depositi quaternari dovranno essere stabilizzati mediante realizzazione di appositi di sistemi di sostegno. Le geometrie delle scarpate, ancorchè temporanee, dovranno essere verificate mediante specifiche verifiche di stabilità. Sono inoltre da prevedere interventi di raccolta delle acque di ruscellamento (canalette superficiali) finalizzate ad allontanare le acque di rucellamento dal ciglio delle scarpate e di limitare l'infiltrazione sul versante a tergo delle scarpate.

Allegato 1 – Sondaggi geognostici (l'insieme delle stratigrafie è riportato nel documento PD2 C3B 0019 00-05-05 10-02 – Indagini esistenti)

1						0.04						က်ရှိသည်။ ကိုးနှင့် ကိုးကေ ကြောင်းကြောင့် ကြောင်းကြောင်းကြောင့်			in the second second							0.002	_	
			SEZIONE IO095 GR Tel (0	I C INDAGIN UGLIASC HI) 780 02	4 GEC 0 - Via 02 (3)	S TECNIC S Paol lines r.a) HE 0 65		COM CAN SON Inizia	IMIT TIERI DAG to il.	TENT E GIO r	E REGIONE PIEMONTE BIISSOLENO 3 A Quot ultimato il	A RIF./1	100	CAPOSALDO IN MT.	erand Regionale								III D enzi
pe	r la	Prote	TOUD	E Am	bia	ISUL	TATO	DEL	SON	DAG	GIO	oterione AnDESCRIZIONE	pe	ß	PRACQUA & A	nbientale	GEO	TEC		Aer 1	a P	rote	zie	ne /
		OUDTA RIF TO IN MT	PROFONDITA IN MT.	POTENZA STRATO IN MT	COESIONE NELLA CAROTA	DEL SONDAGGIO	-TRATIGERANIA	PERCENTUALE DI	CAROTAGGIO	PREL. CAMPIONE IND.	PROF. IN ML. E Nº LABOR. CLASSIFICAZIONE USBR	PEPEROGRAFIA	NATURA GEOLOGICA DEL TERRENO	LIVELLO DELLA FALDA	ATMOSFERE PROVE DI PERMEABILITÀ (lipo LUGEON)	10 20 STANDARD PENETRATION 30 TEST 40 ND	S0	media COMPATIAZIONE	terre CEMENTAZIONE	mean PLASTICITA	POKET PENETR. Kg./cm ²	VANE TEST Kg/cm ² TUBO PIEZOMETRICO	TUBO INCLINOMETRICO	TEA
pe	r la	Prote	Age tion 0.00	rxia F z Am	egi bie	onal				per	la P	Agenzia Regionale otezione Ambientale o. oo = p. ferroviario	pe	ĥ	Agensia Protezione A	Regionale ndientale				xer l	н. 11 (1)	rote	Ag ric	enzi ne I
					- X X							Materiali di riporto di natura sabbiosa-limosa con frammenti di calce-												
pe	r la	Prote	Age	840 zia R z Am	eg bii	onal ntal				per	la P	scisto Agentia Regionale otezione Ambientale	pe	t li	Agenzia Protezione A	Regionale noientale				xer i	a P	rote	Ag tiq	enzi ne J
					2 20	e & 101 h	0.000			C		PIEMONTE												
Re	r la	Prote	p.40 Lion	e Am	29 010					per	la P	Agenzia Regionale otezione Ambientale	pe	li	Agenzia Profezione A	n bientale		T		1		tote	As	enzi ne J

Stratigrafia semplificata

I dati contenuti in questo servizio hanno finalità unicamente divulgativa e pertanto Arpa Piemonte non risponde di utilizzi impropri ad esempio derivanti da errata interpretazione o applicazione scorretta dei dati in ambiti differenti da quelli originali.

Codice perforazione	Profondita`(m)	Descrizione
86	2.00	limo sabbioso
86	10.20	calcescisto con fratture alterate

	1	SEZIONE IDOBS GPR Tol. (0	I C INDAGI UGLIASC 11) 780 02	N 0E 0 - V1	DTECNIC S. Paol Nose r. II) 27HE 10 65 1		CON CAN SON Inizia	ITIEF IDAC ato II	TEN IE IGIO	TE REGIONE PIEMONTE BUSSOLENO n 3 C QUOT ultimato il	A RIE / 1	O CAPO	DSALDO IN MT.			<u>\</u>				
er la	Prote	τους	rsia Ι ε Απ	oj oj	ISUL	TATO	DEL	. SON	IDAC	GIO	totezione Ardescrizione	pe	la P	ACQUA A	Regionale nbientale	GEOT	ECNI	CA	a Pr	ote	Agen: zione
	OUOTA RIF TO IN MT	PROFONDITÀ IN MT.	POTENZA STRATO IN MT.	COESIONE NELLA CAROTA	DEL SONDAGGIO	COLONNA 5722510224FICA	PERCENTUALE DI	CAROTAGGIO	PREL CAMPIONE IND.	PROF. IN ML E Nº LABOR. CLASSIFICAZIONE USBR	PIEMONTIE PETROGRAFIA	NATURA GEOLOGICA DEL TERRENO	LIVELLO DELLA FALDA ATMOSFERE	PROVE DI PERMEABILITÀ (tipo LUGEÓN)	10 20 STANDAHC 20 PENETRATION 30 TEST 40 Np	debore COMPATTAZIONE	Lette CEMENTAZIONE	assenta media PLASTICITÀ torte	POKET PENETR. Kg./cm2	TUBD PIEZOMÉTRICO	TUBO INCLINOMETRICO
ar la	Prote	Agei	izia I : Am	69 61	ional ental				pe	la P	Agenzia Regionale Notezione Ambientale	pe	la P	Agenzia rotezione Ar	Regionale abientale			per	a Pr	ote	Agen
	+1.20	0.00					\prod				0.00 p. Ferroviario								\square		\square
	ļ	E	EMO	17	TE	0	K	И			stituiti da. elementi a spigoli vivi di natura calcescistosa frammisti a sabbia media e orosso-			PIEM			1		2		in the
	1		3.00			0	K	И			lana di colore grigio-					H			Koni		
U į	-1.80	3.00	E	2	•	1.2		4						PΡ		h					
		Age	zia F	29	ona						Agenzia Regionale			Agenzia	Regionale						Agen
ar la	Prote	zion	2.50	bii	into p	allini) Allini		1	pe	la P	bruno.	pei	la P	iotezione Ai	nbientaie	V		U	0.60	ere:	lione
<u>.</u>	4.30	5.50	3.44.C	F	þ			K	1		DISMONTH			PIEM							E
	ł				ð			N								K					
V.			-		2			N					1		KHH	K	÷		1.60	8	
er la	Prote	Age	zia R e Am	29 bio	iona) intal	F		L		i la P	Limo argilloso di colore		AH P	Agenzia otezione Ar	Regionale	K		N	a Pr	ole	Agen Lione
			1870		4			K			rossastro.	5	Á			K	8	11			

Agenzia Regionale suai per la Protez ne. GEOTECNICA ONTE COMPATTAZIONE POKET PENETR Kg./cn CEMENTAZIONE TUBO PIEZOMETRICO INCLINOMETRI PLASTICITÀ STANDARD PENETRATION TEST VANE TEST ÷ Adsenting mecha lorte dethole media torte torte torte 8 8 8 2 CUZI SRC SR 21121 a Protezione / Shour

F

GEOTECNICA NTE TUBO INCLINOMETRICO Kg./cm COMPATTAZIONE POKET PENETR. Kg / cm CEMENTAZIONE TUBO PIEZOMETRICO STANDARD PENETRATION TEST PLASTICITÀ VANE TEST 2 debole media forte forte disente medua forte 3 멷 8 8 \$ enzi. Ô, 518 50

21121

ne l

per la Protezi

Allegato 2 – Stazioni geomeccaniche

RILIEVO GEOMECCANICO SG037 Ubicazione indagine

2 LTF_GEO_ITA
ronilla
'09
ronilla

Planimetria ubicazione del rilievo

RILIEVO GEOMECCANICO SG037 Scheda di rilievo

Committente	LTF
Commessa	08-112 LTF_GEO_ITA
Località	S. Petronilla
Coordinate (x/y)	0352633 - 4998920 (± 10 m)
Quota (m.s.l.m)	518 m
Data	26/03/'09
	S. Petronilla
Area di rilievo geomeccanico	

Condizio	ni generali dell'amma	sso rocc	ioso							The second	- Harde		-			and the second
Giacitura del fronte di misura				[°/°]	N130°	ÈΕ		1 martin				St.	AS Y			
Giacitura generale del pendio				[°/°]	20/40				15 C	a state		1948	S BAL	The state	1 and 1	2 1
Dimensioni dell'area di rilievo geomec	canico		l	[m x m]	16x7					ANT IN THE	an hat	AND AND AND	The Party of the	-	197	
Volume roccioso unitario medio	[dimensioni]		[m x	m x m]	1x0,5x	(0,8										
	[forma]			[-]								A TAY Y		and the		
Resistenza a compressione monoassi Numero di discontinuità per metro cub	ale del materiale roccia 10 d'ammasso - J _v		l	[MPa] [n°/m ³]	8	82 - 10										
Geologic strength index (stimato)						75					Lita		dooorizior			
Grado di alterazione dell'ammasso		non alterato	debolm. alterato	moder. alterato	molto alterato	decom- posto	Calce	escisti apparte	enenti	all'Unità D	ora Main	a a	descrizion	ie geolo	gica g	enerale
		Х				,										
Condizioni di umidità dell'ammasso		asciutto X	umido	bagnato	stillicidio	flusso										
Definizione delle componenti lito logio	he negli ammassi com	olessi:	•		lito1					-			-			-
	<u> </u>				lito2					-			-			-

%di lito 2 sul totale dell'ammasso

Geomet		Schema delle famiglie di frattura individuabili in sito																			
	1	-							1	r											
	lcl. [°]	Imm. [°]	Lungh. [m]						Pers.												
Linea di misura 1				s	et i	inclin.	imm.	spaz.	Lung.						Scle	rometro					
Linea di misura 2				(n°)	(°)	(°)	(m)	(m)	(χ	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
Linea di misura 3																					
Linea di misura 4				5	Sc	35	350			9	0°	40	30								
	-	-	-	•	(2	80	185	0.29	А	9	0°	42	30	40							
				•	(3	85	265	1.17	Α	9	0°	40	30	40	42	38					
				K	3b	82	90	2.27	А												
RILIEVO GEOMECCANICO SG037 Proiezioni stereografiche

Committente	LTF
Commessa	08-112 LTF_GEO_ITA
Località	S. Petronilla
Coordinate (x/y)	0352633 - 4998920 (± 10 m)
Quota (m.s.l.m)	518 m
Data	26/03/'09
	S. Petronilla
Area di rilievo	
geomeccanico	

Proiezioni stereografiche dei poli e delle ciclografiche dei set di discontinuità

τιρο	IMM.	INCL.	DISTANZA	lunghezza	Apertura	scab	scabrezza JRC Riemp		Riempim.	alter	razione
J	(°)	(°)	(cm)	A se<1 m	A se = 0 mm	clas	Jr	Barton	R =rigido,	clas	Ja
Sc				B se 1 - 3	B se < 0.1				granul.		
				C se 3 -10	C se 0.1 -1				P = plast,		
aitro				E se > 20	\mathbf{E} se > 5				coesivo		
	Riga di ese	mpio						-			
	235	32	235	D	7	- I	1	9	R	L	6
_	40	70	0.0.05	٨	_	-	4 5	4.0		•	0.75
J	12	70	0-0,25	A	В	E	1.5	4-0		A	0.75
J	/5	80	0,25-0,45	A	A	E	1.5	6-8		A	0.75
J	20	90	0,45-0,6	A	A	E	1.5	6-8		A	0.75
J	60	86	0,6-0,9	A	A	E	1.5	6-8		A	0.75
Sc	2	12	0.9	В	В	В	3	4-6		Α	0.75
J	272	85	0,9-1,3	A	В	Е	1.5	4-6		Α	0.75
Sc	351	28	1,3-1,6	В	E	В	3	4-6		А	0.75
J	268	88	1,6-2,2	Α		Е	1.5	6-8		А	0.75
J	18	88	2,2-2,6	А	С	В	3	6-8		А	0.75
J	132	80	2,6-2,9	А	A	Е	1.5	4-6		А	0.75
J	218	78	2,9-3,1	А		В	3	6-8		А	0.75
J	100	76	3.1	А	С	Е	1.5	4-6		А	0.75
Sc	40	22	3,1.3,5	А	Α	В	3	4-6		А	0.75
J	287	80	3.5	А	А	ш	1.5	4-6		А	0.75
Sc	40	22	3,5-3,6	А	А	В	3	4-6		А	0.75
J	122	85	3.6	А	С	Е	1.5	4-6		А	0.75
J	190	85	3.6-4.3	Α		Е	1.5	6-8		А	0.75
Sc	24	25	4.3-5.2	D	В	В	3	4-6		Α	0.75
J	45	48	5.2-6	A	A	В	3	6-8		A	0.75
	236	67	6.0	Δ	C C	F	15	4-6		Δ	0.75
	182	64	6-6-3	Δ		-	1.0	4-6		Δ	0.75
	112	81	63	Δ	C		1.5	4-0		<u> </u>	0.75
J	100	65	64645		0	с с	1.5	4-0		^	0.75
J	265	00	6.45	A			1.5	4-0		~	0.75
	200	00	0.45	A			1.5	4-0		A	0.75
J	182	64	6,45-6,6	A		E	1.5	4-6		A	0.75
J	254	80	6,6-7,4	В	A	E	1.5	4-6		A	0.75
J	190	81	7,4-7,5	A		E	1.5	6-8		A	0.75
J	252	80	7.5	В	A	E	1.5	4-6		A	0.75
Sc	352	34	7,5-7,9	D	В	В	3	4-6		A	0.75
J	270	80	7.9	В	D	E	1.5	6-8		A	0.75
J	188	78	7,9-8,6	A		E	1.5	8-10		A	0.75
J	276	85	8.6	В	С	F	1	2-4		В	1
J	176	70	8,6-8,7	Α		Е	1.5	8-10		А	0.75
J	262	81	8.7	В	С	F	1	2-4		В	1
J	195	70	8,7-9	Α		Е	1.5	8-10		А	0.75
J	250	82	9.0	A	D	Е	1.5	2-4		В	1
Sc	358	24	9-9,6	D	Α	В	3	4-6		А	0.75
J	89	79	9.6	В	D	Е	1.5	2-4		В	1
Sc	358	82	9,6-9,7	D	A	В	3	4-6		А	0.75
J	96	85	9,7-9,8	В	E	Е	1.5	4-6		А	0.75
J	258	89	9,8-10,2	А		Е	1.5	6-8		В	1
J	178	78	10,2-10,6	А		Е	1.5	8-10		А	0.75
J	244	87	10,6-10,8	A	С	Е	1.5	4-6		В	1
J	160	65	10,8-11,2	A		Е	1.5	8-10		А	0.75
J	212	76	11.2-12.1	Α	Α	В	3	2-4		А	0.75

τιρο	IMM.	INCL.	DISTANZA	lunghezza	Apertura	scab	rezza	JRC	Riempim.	alter	azione
J	(°)	(°)	(cm)	A se<1 m	A se = 0 mm	clas	Jr	Barton	R =rigido,	clas	Ja
Sc				B se 1 - 3	B se < 0.1				granul.		
				C se 3 -10	C se 0.1 -1				P = plast,		
altro				D se 10-20	D se 1 - 5				coesivo		
				E SE > 20	ESE > 0	_	_				
Sc	34	20	12,1-13	D	A	В	3	4-6		A	0.75
J	238	80	13.0	А	В	Е	1.5	4-6		В	1
J	180	89	13-13,6	А		Е	1.5	6-8		А	0.75
J	256	70	13.6	В	D	Е	1.5	2-4	Vn qtz	В	1
Sc	12	10	13,6-14,3	D	А	В	3	4-6		А	0.75
J	54	75	14,3-14,8	А	А	Е	1.5	2-4		А	0.75
J	102	82	14.8	В	D	Е	1.5	4-6		А	0.75
Sc	148	30	14,8-15,9	D	А	В	3	4-6		А	0.75
J	60	64	15.9	А	В	Е	1.5	4-6		А	0.75
J	160	84	15,9-16,1	А		Е	1.5	4-6		А	0.75
J	54	70	16.1	А	А	Е	1.5	6-8		А	0.75
J	188	88	16,1-16,4	А		Е	1.5	4-6		А	0.75
J	252	76	16,4-16,5	А	A	Е	1.5	4-6		А	0.75
J	188	90	16,5-16,75	A		Е	1.5	4-6		А	0.75
J	256	90	16,75-16,8	A	A	Е	1.5	4-6		А	0.75
Sc	258	28	16,8-17	D	A	В	3	4-6		А	0.75

clas.	Alterazione delle superfici di giunto	Ja
Α	contatto ben saldo tra le superfici di giunto	0.75

	Ā		0.75
ONTATTO	В	pareti del giunto non alterate, superfici ossidate	1
SUPERFICI DI GIUNTO A CO	С	pareti del giunto leggermente alterate, coperte da un sottile strato di minerali non ammorbidenti tipo particelle sabbiose o particelle di roccia fratturata	2
	D	sottile strato con frazione argillosa limitata	3
	Е	strato superficiale di materiali argillosi ammorbidenti o a bassa resistenza attritiva (anche mica, clorite, talco, gesso, grafite, ecc.)	4

) PER	F	riempimento di particelle sabbiose, materiali di disgregazione della roccia privi di particelle argillose	4
NTO A CONTATTO			
	G	riempimento di minerali argillosi non ammorbidenti fortemente sovraconsolidati, con spessori <5 mm	6
GIUI	Н	riempimento di minerali argillosi ammorbidenti, con spessori <5 mm	8
SUPERFICI	I	riempimento di minerali argillosi rigonfianti, con spessori <5 mm (min. se ho poca % rigonfiante e poca acqua, max. se ho molti rigonfianti ed eccesso d'acqua)	8 - 12

Ū	L	zone o bande di roccia disgregata	6
ERF JI			
SUP ITO [Μ	zone o bande di roccia macinata	8
TTO FRA CHE A SE RRIMENT	N	zone o bande di roccia macinata e con argilla (min. se non ammorbidente, max. se rigonfiante)	8 - 12
NTA AN			
	0	zone o fasce di argilla limosa o sabbiosa non ammorbidente	10
ZA E I GIL			
ASSEN D	Р	zone continue e spesse con fasce di argilla (min. se non ammorbidente, max. se rigonfiante)	10 - 20

	clas.	Scabrezza delle superfici di giunto	Jr
6	Α	giunti discontinui	4
ІТАТ			
CON	В	scabri o irregolari, ondulati	3
CM O A			
,0T 10,	С	lisci, ondulati	2
SIME	D	levigati, ondulati	1.5
TO A CORI			
IUN R S(E	Scabri o irregolari, piani	1.5
D II III			
FICI	F	Lisci, piani	1
H.			

56			
R SC	E	Scabri o irregolari, piani	1.5
2	F	Lisci, piani	1
2	G	Levigati, piani	0.5

a di Fra le Anche O di Enti	Н	minerali argillosi di riempimento con spessore sufficiente a prevenire il contatto tra le superfici	1
ENZ TTO CAS RIN			
ASSE CONTAT SUPERFI SUPERFI NEL C SCORI	Ι	zona sabbiosa o brecciata con spessore sufficiente aprevenire il contatto fra le superfici	1

		<i>JRC</i> = 0 - 2
		JRC = 2 - 4
		<i>JRC</i> = 4 - 6
NO		JRC = 6 - 8
DI BART		JRC = 8 - 10
UGOSITA		JRC = 10 - 12
DFILI DI R		JRC = 12 - 14
PRO		<i>JRC</i> = 14 - 16
		JRC = 16 - 18
		JRC = 18 - 20
	0 5 cm 10	

RILIEVO GEOMECCANICO SG041 Ubicazione indagine

Committente	LTF
Commessa	11-124 LTF_C3_PD
Località	Bussoleno
Coordinate [WGS84]	352.641,115 4.999.222,325
Quota (m.s.l.m)	465 ± 3 m
Data	08/03/2012
Area di rilievo geomeccanico	Interconnessione Imbocco E - Galleria Storica

Planimetria ubicazione del rilievo

RILIEVO GEOMECCANICO SG041

Scheda di rilievo

Committente	LTF							
Commessa	11-124 LTF_C3_PD							
Località	Bussoleno							
Coordinate [WGS84]	352.641,115 4.999.222,325							
Quota (m.s.l.m)	465 ± 3 m							
Data	08/03/2012							
Area di rilievo geomeccanico	nterconnessione Imbocco E - Galleria Storica							

Condizioni generali dell'ammasso roc	cioso						
Giacitura del fronte di misura		[°/°]	000	50			
Giacitura generale del pendio	[°/°]	004	25				
Dimensioni dell'area di rilievo geomeccai	[m x m]	18	2.5				
Volume roccioso unitario medio	[dimensioni]			[m x m x m]	1*0.	8*0.8	
	[forma]			[-]			
Resistenza a compressione monoassiale		[MPa]	52		1.05		
Numero di discontinuità per metro cubo c			[n°/m³]	4	1		
Geologic strength index (stimato)			70-90		Litolog		
Grado di alterazione dell'ammasso		non alterato	debolm. alterato	moder. alterato	molto alterato	decom- posto	Calcen
		X					
Condizioni di umidità dell'ammasso		asciutto	umido	bagnato	stillicidio	flusso	NOTE:
			X				
Definizione delle componenti litologiche r	negli ammassi compless	i:		lito1			
				lito2			
				%di lito 2 su	ul totale	dell'am	masso

In alto: affioramento dove è stato eseguito lo stendimento strutturale

A sinistra: dettaglio dell'affioramento; i giunti verticali appartengono alla famiglia J1

strength index (stimato)				70-90									
						Litologia e desc	rizione geologica generale						
alterazione dell'ammasso	moder.	molto	decom-	Calcemicascisti I	Calcamicascisti Dora Maira - affioramento massivo, vene assenti								
	alterato	alterato	alterato	alterato	posto	Calcennicascisti E							
	X												
i di umidità dell'ammasso	asciutto	umido	bagnato	stillicidio	flusso	NOTE: J2 poco p	NOTE: J2 poco pervasivi						
		X											
e delle componenti litologiche negli ammassi complessi:			lito1			-		-					
		lito2		-		-							
			%di lito 2 su	I totale	dell'am	masso 0							

Geometria dell	e linee di mis	sura		Schema delle famiglie di frattura individuabili in sito																	
	Direz.	Lungh. [m]	set	inclin.	imm.	spaz.	Pers.	0.1	1												
Linea di misura 1	N080°E	18				-	Lung.	SC	ierome	etro											
Linea di misura 2			(n°)	(°)	(°)	(m)	(m)		α	R1	R2	R3	R4	R4	R5	R5	R6	R7	R8	R9	R10
	-	-																			
			Sc/J	50	000	0.05 - 0.5	> 3		90	25	15	20	20	30	28	30	20	25	20	22	10
			J1	80	272	1.40	1 - 3		90	38	40	45	40	44	52	40	45	50	48	40	42
			J2	20	170	-	1 - 3		90	30	20	30									

RILIEVO GEOMECCANICO SG041 Proiezioni stereografiche e analisi spaziature

LTF						
11-124 LTF_C3_PD						
Bussoleno						
352.641,115 4.999.222,325						
465 ± 3 m						
08/03/2012						
nterconnessione Imbocco E - Galleria Storica						

Proiezione stereografica dei poli dei set di discontinuità misurati in affioramento e ciclografica della scistosità media

Sc = scistosità	
00 - 3013103114	
L = giunto	
J – giunto	

Direzione media del tunnel N010°E

Interconnessione Imbocco E - Galleria Storica

				1		1						
SPAZIATURA	SET	IMM.	INCL.	DISTANZA	lunghezza	Apertura	Apertura scabrezza		JRC	Riempim.	alter	azione
(cm)	1	(°)	(°)	(cm)	A se<1 m	A se = 0 mm	clas	Jr	Barton	R =rigido.	clas	Ja
	2				B se 1 - 3	B se < 0.1			•	granul.		
					C se 3 -10	C se 0.1 -1	I			P = plast.,		
	altro	l			D se 10-20	D se 1 - 5	ł			coesivo		
					E se > 20	E se > 5	<u>l</u>					
-	Sc/J	358	48	0 - 530	С	А	С	2	8 - 10	-	A-B	0.75 - 1
-	J1	100	60	530	В	А	Е	1.5	2 - 4	-	С	2
22.75	Sc/J	0	50	530 - 650	С	Α	С	2	8 - 10	-	A-B	0.75 - 1
118.10	J1	272	88	650	В	В	F	1 0-2		-	A-B	0.75 - 1
5.15	Sc/J	0	55	650 - 710	С	C A C 2 6-8 -		-	A-B	0.75 - 1		
59.05	J1	70	80	710	В	В	F	1	0 - 2	-	A-B	0.75 - 1
2.58	Sc/J	0	55	710 - 740	С	А	С	2	8 - 10	-	A-B	0.75 - 1
29.53	J1	272	80	740	В	В	F	1	0 - 2	-	A-B	0.75 - 1
1.29	Sc/J	358	50	740 - 840	С	А	С	2	8 - 10	-	A-B	0.75 - 1
98.42	J1	276	80	840	В	В	F	1	0 - 2	-	A-B	0.75 - 1
4.29	Sc/J	358	50	840 - 1070	С	А	С	2	6 - 8	-	A-B	0.75 - 1
226.37	J1	280	80	1070	В	В	F	1	0 - 2	-	A-B	0.75 - 1
-	J2	188	38	1070 - 1100	А	D	В	3	4 - 6	Р	E	4
29.53	J1	280	80	1100	В	В	F	1	0 - 2	-	A-B	0.75 - 1
11.16	Sc/J	3	50	1100 - 1330	С	А	С	2	8 - 10	-	A-B	0.75 - 1
187.00	J1	280	80	1290	В	В	В	3	4 - 6	-	А	0.75
21.03	Sc/J	8	40	1330 - 1410	С	А	С	2	6 - 8	-	A-B	0.75 - 1
3.43	Sc/J	15	50	1410 - 1680	С	А	С	2	8 - 10	-	A-B	0.75 - 1
374.00	J1	300	80	1670 - 1680	В	В	F	1	0 - 2	-	A-B	0.75 - 1
11.59	Sc/J	12	50	1680 -1800	С	A	С	2	8 - 10	-	A-B	0.75 - 1

RILIEVO GEOMECCANICO SG042 Ubicazione indagine

Committente	LTF							
Commessa	1-124 LTF_C3_PD							
Località	Imbocco E - Sopra Ferrovia							
Coordinate [WGS84]	352.368,271 4.999.019,614							
Quota (m.s.l.m)	529 ± 4 m							
Data	08/03/2012							
Area di rilievo geomeccanico	Interconnessione Imbocco E - Sopra Ferrovia							

Planimetria ubicazione del rilievo

RILIEVO GEOMECCANICO SG042

Scheda di rilievo

Committente	LTF								
Commessa	1-124 LTF_C3_PD								
Località	Bussoleno								
Coordinate [WGS84]	352.368,271 4.999.019,614								
Quota (m.s.l.m)	529 ± 4 m								
Data)8/03/2012								
Area di rilievo	ntersonnossions Imbasso E. Sonra Forravia								
geomeccanico	nerconnessione imbocco E - Sopra Ferrovia								

Condizioni generali dell'ammasso roccioso [°/°] 185 50 Giacitura del fronte di misura 270 60 280 20 [°/°] Giacitura generale del pendio 280 30 3 11 Dimensioni dell'area di rilievo geomeccanico [m x m] 3 7 2*1*1.5 Volume roccioso unitario medio [dimensioni] [m x m x m] 1*0.6*0.35 [-] [forma] 42 [MPa] Resistenza a compressione monoassiale del materiale roccia Numero di discontinuità per metro cubo d'ammasso - J $_{v}$ [n°/m³] 3 - 5 1 4 1 Geologic strength index (stimato) 60 - 70 Grado di alterazione dell'amma Condizioni di umidità dell'amm Definizione delle componenti lit

							Litologia e descrizione geologica generale							
asso	non	debolm.	moder.	molto	decom-		Calcemicassisti Dora Maira							
	alterato	alterato	alterato	alterato	posto									
		X					NOTE:							
asso	asciutto	umido	bagnato	stillicidio	flusso									
itologiche negli ammassi complessi:			lito1				· · ·							
lito2							· · · ·							
%di lito 2 sul totale dell'am							0							

Geometria delle linee di misura										
	Direz.	Lungh. [m]								
Linea di misura 1	N080°W	11								
Linea di misura 2	N010°E	7								
	-	-								

set	inclin.	imm.	spaz.	Pers. Lung.
(n°)	(°)	(°)	(m)	(m)

Sc	38	337	0.00	10.00
J1	80	265	0.5 - 2	1 - 3
J2	75	000	0.5 - 5	1 - 3

Schema delle famiglie di frattura individuabili in sito

					S	cleromet	ro					
α	R1	R2	R3	R4	R4	R5	R5	R6	R7	R8	R9	R10

90	25	40	25	25	25	20	20					
90	20	30	20	20	30	20	20	30	30	25	30	
90	25	32	20	35	20	50	25	40	20	20	20	35
				-			-					

RILIEVO GEOMECCANICO SG042 Proiezioni stereografiche e analisi spaziature

Committente	LTF
Commessa	11-124 LTF_C3_PD
Località	Imbocco E - Sopra Ferrovia
Coordinate [WGS84]	352.368,271 4.999.019,614
Quota (m.s.l.m)	529 ± 4 m
Data	08/03/2012
Area di rilievo	Interconnessione Imbocco E - Sopra Ferrovia
geomeccanico	

Proiezione stereografica dei poli dei set di discontinuità misurati in affioramento e ciclografica della scistosità media

Interconnessione Imbocco E - Sopra Ferrovia

SPAZIATURA	SET	IMM.	INCL.	DISTANZA	lunghezza	Apertura	scab	rezza	JRC	Riempim.	altera	zione
(cm)	1	(°)	(°)	(cm)	A se<1 m	A se = 0 mm	clas	Jr	Barton	R =rigido,	clas	Ja
	2				B se 1 - 3	B se < 0.1				granul.		
			C se 0.1 -1				$\mathbf{P} = \text{plast.},$					
	aitio	1			E se > 20	$E_{se} > 5$				COESIVO		
Linea di misura	1											
-	Sc	320	20	0	D	А	В	3	4 - 6	-	В	1
67.89	J1	280	70	60	В	E	В	3	2 - 4	-	В	1
5.05	J2	190	70	60	В	Α	В	3	8 - 10	-	В	1
300.65	J1	280	80	380	В	С	В	3	4 - 6	-	В	1
26.94	J2	0	80	380	В	А	В	3	8 - 10	-	В	1
135.78	J1	260	80	520	В	С	В	3	4 - 6	-	В	1
11.79	J2	348	80	520	В	С	В	3	4 - 6	-	В	1
48.49	J1	266	80	570	В	С	В	3	4 - 6	-	В	1
167.79	Sc	320	30	570	D	В	В	3	4 - 6	-	В	1
21.05	J2	330	80	770	В	D	Е	1.5	8 - 10	-	В	1
-	J2	0	80	770	С	D	Е	1.5	8 - 10	-	В	1
514.02	J1	260	82	1100	В	С	В	3	4 - 6	-	В	1
Linea di misura	2											
-	Sc	0	40	0	D	A	В	3	10 - 12	-	В	1
6.01	J1	78	70	70	А	-	Е	1.5	8 - 10	-	В	1
39.87	Sc	350	50	70	D	А	В	3	4 - 6	-	В	1
193.19	J2	15	75	200	В	E	В	3	2 - 4	-	В	1
74.04	Sc	330	42	200	D	А	В	3	4 - 6	-	В	1
23.17	J1	90	50	340	В	D	В	3	2 - 4	-	В	1
6.01	J1	240	80	410	С	D	В	3	4 - 6	-	В	1
405.69	J2	0	80	620	В	D - E	В	3	2 - 4	-	В	1
239.19	Sc	340	48	620	D	А	В	3	4 - 6	-	В	1
86.93	J2	10	70	710	В	D	В	3	2 - 4	-	В	1

RILIEVO GEOMECCANICO SG044 Ubicazione indagine

Committente	LTF
Commessa	11-124 LTF_C3_PD
Località	Bussoleno
Coordinate [WGS84]	352.705,782 4.999.171,633
Quota (m.s.l.m)	481 ± 4 m
Data	08/03/2012
Area di rilievo geomeccanico	Interconnessione Imbocco E - Casetta

Planimetria ubicazione del rilievo

RILIEVO GEOMECCANICO SG044 Scheda di rilievo

Committente	LTF
Commessa	11-124 LTF_C3_PD
Località	Bussoleno
Coordinate [WGS84]	352.705,782 4.999.171,633
Quota (m.s.l.m)	481 ± 4 m
Data	08/03/2012
Area di rilievo	Interconnessione Imbocco E. Casetta
geomeccanico	

Condizioni generali dell'ammasso roccio	050						
Giacitura del fronte di misura				[°/°]	170	80	
Giacitura generale del pendio				[°/°]			
Dimensioni dell'area di rilievo geomeccanic	0			[m x m]	14	2	and the second s
Volume roccioso unitario medio	[dimensioni]			[m x m x m]	0.7*0	0.7*0.7	and the second
	[forma]			[-]			and the second sec
Resistenza a compressione monoassiale de	el materiale roccia			[MPa]	60		
Numero di discontinuità per metro cubo d'a		[n°/m³]	3	1			
Geologic strength index (stimato)					60	- 70	
							Litologia e descrizione geologica generale
Grado di alterazione dell'ammasso		non	debolm.	moder.	molto	decom-	Calcemicascisti Dora Maira
		alterato	alterato	alterato	alterato	posto	
			X				NOTE:
Condizioni di umidità dell'ammasso		asciutto	umido	bagnato	stillicidio	flusso	
		X					
Definizione delle componenti litologiche neg	ıli ammassi compless	i:		lito1			
				lito2			
				%di lito 2 su	ul totale	dell'amn	nasso

Geometria delle	linee di mis	sura					,	Schema (delle fa	amiglie	e di frat	tura in	dividu	abili in	sito						
	Direz.	Lungh. [m]					Pers.														
Linea di misura 1	N090°E	14	set	inclin.	imm.	spaz.	Lung.							S	clerome	tro					
Linea di misura 2			(n°)	(°)	(°)	(m)	(m)		α	R1	R2	R3	R4	R4	R5	R5	R6	R7	R8	R9	R10
	-	-																			
			Sc/J	27	322	-	14.00		90	30	30										

Sc/J	27	322	-	14.00
J1	73	95	0.2 - 2	1 - 3
J2	73	171	1 - 3	1 - 3

1	90	30	30									
	90	50	30	30	30	30	40	45	40	52		
	90	35	30	40	35	35	35	30	25	30		

RILIEVO GEOMECCANICO SG044 Proiezioni stereografiche e analisi spaziature

Committente	LTF
Commessa	11-124 LTF_C3_PD
Località	Bussoleno
Coordinate [WGS84]	352.705,782 4.999.171,633
Quota (m.s.l.m)	481 ± 4 m
Data	08/03/2012
Area di rilievo	Interconneccione Imbasse E. Casette
geomeccanico	

Proiezione stereografica dei poli dei set di discontinuità misurati in affioramento

Sc = sciste	osità
J = giunto	

Direzione media del tunnel N035°E

Interconnessione Imbocco E - Casetta

SPAZIATURA	SET	ІММ.	INCL.	DISTANZA	lunghezza	Apertura	scabrezza		JRC	Riempim.	altera	zione
(cm)	1	(°)	(°)	(cm)	A se<1 m	A se = 0 mm	clas	Jr	Barton	R =rigido,	clas	Ja
	2				B se 1 - 3	B se < 0.1				granul.		
		-			C se 3 -10	C se 0.1 -1				P = plast.,		
	altro	Į			D se 10-20	D se 1 - 5				COESIVO		
					E 36 - 20	E 3e > 5	L					
-	J2	0	60	0 - 150	В	E	В	3	8 - 10	R - qtz	В	1
88.31	J1	80	60	150	В	D	В	3	8 - 10	R - carb	В	1
29.80	J2	358	80	150 - 260	В	E	В	3	8 - 10	R - qtz	В	1
-	Sc/J	310	20	260 - 310	D	С	В	3	8 - 10	-	В	1
94.20	J1	80	65	310	В	D	В	3	8 - 10	-	В	1
31.79	J2	160	65	310 - 340	В	E	В	3	8 - 10	R - qtz	В	1
23.55	J1	80	65	350	В	D	В	3	8 - 10	R - carb	В	1
7.95	J2	162	80	350 - 550	В	E	В	3	8 - 10	-	В	1
117.75	J1	105	70	550	В	D	В	3	8 - 10	R - carb	В	1
61.81	Sc/J	330	40	550 - 680	D	С	В	3	8 - 10	-	В	1
76.54	J1	260	68	680	В	D	В	3	8 - 10	-	В	1
65.57	J2	180	88	680 - 870	В	Е	В	3	8 - 10	R - qtz	В	1
111.86	J1	280	88	870	В	D	В	3	8 - 10	-	В	1
37.75	J2	180	70	870 - 950	В	E	В	3	8 - 10	R - qtz	В	1
47.10	J1	100	85	950	В	D	В	3	8 - 10	R - carb	В	1
15.90	J2	4	80	950 - 1050	В	E	В	3	8 - 10	R - qtz	В	1
58.88	J1	105	78	1050	В	D	В	3	8 - 10	-	В	1
19.87	J2	220	60	1050 -1220	В	E	В	3	8 - 10	-	В	1
100.09	J1	100	75	1220	В	D	В	3	8 - 10	R - carb	В	1
142.80	Sc/J	325	20	1220 - 1400	D	С	В	3	8 - 10	-	В	1

Relazione geologica, idrogeologica, geomorfologica e geotecnica

Allegato 3 – Rapporto di sintesi delle indagini sismiche

LIAISON LYON - TURIN / COLLEGAMENTO TORINO - LIONE

Partie commune franco-italienne Section transfrontalière

Parte comune italo-francese Sezione transfrontaliera

NOUVELLE LIGNE LYON TURIN – NUOVA LINEA TORINO LIONE PARTIE COMMUNE FRANCO-ITALIENNE – PARTE COMUNE ITALO-FRANCESE

REVISION DE L'AVANT-PROJET DE REFERENCE – REVISIONE DEL PROGETTO DEFINITIVO CUP C11J05000030001

CAMPAGNE DE RECONNAISSANCES PAR MASW/ CAMPAGNA DI INDAGINI GEOGNOSTICHE MASW

CLASSIFICATION SISMIQUE DES TERRAINS PAR LA MASW – SECTEURS A L'AIR LIBRE ITALIE – ZONE P6PONT SUR LA DORA GAUCHE BUSSOLENO

CLASSIFICAZIONE SISMICA DEI TERRENI CON IL METODO MASW – SETTORI ALL'APERTO ITALIA – ZONA P6PONTE SULLA DORA SINISTRA BUSSOLENO

Indice	D	ate/ Data			Moc	lification	s / Modif	che		Т	Etabli	par / Con	cepito da	Ve	erifié par /	Cont	rollato c	la /	Autorisé p	oar / Autor	izzato da
	1	7.12.2012	2		Version preliminaire					RBR-Geo2X											
	2	7.01.2013	5		N	Versione	e italiana	l			R	RBR-Geo	02X					JEI	WNY Ja	00000	
	1	5.03.2013				Version	e finale				V.Mé	étraux –	Geo2X		P.Radog	na –	RBR	GE CH	09X W	GEOS	OFT
											ñ								a	d. G.c	
1	D		-2 1			v			v		0	0	0			[P			
CODE	P	D	2	G	E	X	G	2	X		0	0	0	6	0		A	P	N	0	T
DOC	F	hase / Fase		Sig	le étude	e / Sigla	Éı	netteur /	Emittente	Numero			Indice		Statut	/ Stato		Type / Tip	00		
ADF INDI	RESSE (RIZZO	GED GED	GEX	[//	//	02	00	00		10	06]]	ECHEL	LE / SCA	ALA

LTF sas - 1091 Avenue de la Boisse- BP 80631 - F-73006 CHAMBERY CEDEX (France) Tél.: +33 (0)4.79.68 56.50 - Fax: +33 (0)4.79.68.56.75 RCS Chambéry 439 556 952 - TVA FR 03439556952

Propriété LTF Tousdroitsréservés-Proprietà LTF Tutti i diritti riservati

Ce projet est cofinancé par l'Union européenne (DG-TREN)

CLASSIFICAZIONE SISMICA DEI TERRENI CON IL METODO MASW – SETTORI ALL'APERTO ITALIA – ZONA P6 PONTE SULLA DORA SINISTRA BUSSOLENO

Le società RBR Geophysics GmbH e Geo2X SA, per conto della Lyon-Turin Ferroviaire (LTF), hanno effettuato, nella zona P6 ponte sulla Dora sinistra Bussoleno, l'acquisizione di due profili di tipo Masw in data 28/11/2012.

Attraverso l'analisi ed il processing dei dati è stato ricostruito un grafico, che descrive l'andamento delle velocità (Vs) con la profondità, per ogni tiro di offset effettuato. Tali valori sono stati poi mediati, ed è stato fornito un valore medio di Vs caratterizzante la zona. L'elaborazione del profilo mediante la tecnica CMPCC permette la restituzione di un profilo bidimensionale dell'andamento delle Vs.

Il valore medio delle Vs30 per i profili P6000 e P6100 è rispettivamente di 555 m/s e 562 m/s. La bassa profondità (entro 10 e 15 m) del substrato sismico (Vs>800 m/s) e le velocità della copertura sovrastante suggeriscono una classificazione di tipo E.

CLASSIFICATION SISMIQUE DES TERRAINS PAR LA MASW – SECTEURS A L'AIR LIBRE ITALIE –

ZONE P6 PONT SUR LA DORA GAUCHE BUSSOLENO

La société RBR Géophysique GmbH et Geo2X SA a réalisé pour le compte de Lyon-Turin Ferroviaire (LTF) deux profils de type MASW le 28/11/2012 sur le site P6.

L'analyse et le traitement des données a permis de reconstruire un graphique qui décrit l'évolution de la vitesse (Vs) en fonction de la profondeur et de la distance. Ces valeurs ont ensuite été moyennées, de façon à fournir une valeur de la vitesse Vs caractérisant la zone.

L'application de la technique de CMPCC a permis de proposer un profil bidimensionnel de la tendance de Vs.

La valeur moyenne des Vs30 des profils P6000 et P6100 est de, respectivement, 555 m/s et 562 m/s. La faible profondeur, moins de 10 à 15 mètres du substratum sismique (Vs > 800 m/s) et la vitesse de la structure superficielle font que le terrain reçoit la classification de type E.

ACCORDO-QUADRO ACO12 – LOTTO Nº3 CONTRATTO Nº MS015 Zona P6 – Rapporto Geofisico

Dicembre 2012

Geo2XSA

Rue du Centre 6 CH-1277 Oulens-sous-Echallens Switzerland Phone/Fax +41 21 881 48 00 Mobile +41 76 383 75 72 Email : info@geo2x.com www.geo2x.com

R.B.R. Geophysics GmbH environmental and engineering geophysics

Muehlegasse 18 CH-6340 Baar - Switzerland Phone +41 41 760 62 68 Mobile +41 79 243 92 79 Email : info@rbrgeophysics.ch www.rbrgeophysics.com

Sommario

Somma	ario	1
1. In	troduzione	4
2. De	escrizione del metodo MASW	8
2.1.	Principi	8
2.2.	Acquisizione dei dati	9
2.3.	Trattamento dati	10
3. M	odalità standard per l'acquisizione e l'interpretazione dei dati	11
3.1.	Strumentazioni utilizzate	11
3.2.	parametri di registrazione	14
3.3.	Trattamento dati	15
3.3	3.1. Sondaggio	17
3.3	3.2. Profilo	17
3.4.	Assegnazione della categoria di sottosuolo	19
4. Sit	to di indagine P6	21
4.1.	Profilo P6000	23
4.2.	Profilo P6100	25
5. Co	onclusioni	27
1. Al	legati	28
1.1.	Profilo p6000 – tiri offset	28
1.2.	Profilo p6000 – controllo di qualità della modellizzazione	36
1.3.	Profilo p6000 – sezione 2d	37
1.4.	Profilo p6100 – tiri offset	37
1.5.	Profilo p6100 – controllo di qualità della modellizzazione	46
1.6.	Profilo p6100 – sezione 2d	47
1.7.	Contenuto del supporto digitale	47

Elenco Figure

Figura 1: Situazione generale della zona P6	6
Figura 2: Ubicazione del profilo della zona P6	7
Figura 3: Onde di Rayleigh	8
Figura 4: Fenomeno della dispersione	9
Figura 5: Esempio di picking della curva di dispersione	10
Figura 6: Esempio d'inversione della curva di dispersion (ProfiloVs30)	10
Figura 7: Caduta del peso PEG-40	11
Figura 8: Unità d'acquisizione del sismografo Seistronix	12
Figura 9: Geofono 4.5 Hz	13
Figura 10: Geometria d'acquisizione e nomenclatura dei punti	14
Figura 11: Esempio di tiro raw-offset a 20 metri	15
Figura 12: Analisi spettrale e picking della curva di dispersione	16
Figura 13: Inversione della curva di dispersione e calcolo della Vs30	16
Figura 14: Geometria d'acquisizione; in giallo i geofoni, in blu i tiri	
Figura 15: Common Mid-Point Cross Correlation gathers	
Figura 16: Esempio di sezione Vs 2D interpolata a partire da 24 modelli di velocità profon	dità. I
valori in profondità sono ottimizzati con le informazioni provenienti dai tiri di offset	19
Figura 17: Curve di dispersione dei CMP e controllo di qualità	19
Figura 18 - Categorie di sottosuolo (Tab. 3.2 II - NTC 08)	20
Figura 19 - Categorie aggiuntive di sottosuolo (Tab. 3.2 III - NTC 08) secondo le quali si pres	scrive
l'applicazione di metodi analitici per la definizione della risposta sismica locale	21
Figura 20: Ubicazione dei due profili della zona P6	22
Figura 21: Analisi spettrale e inversione del tiro 6030	23
Figura 22: Profilo MASW 2D ottenuto mediante l'analisi dei 33 tiri	23
Figura 23: Analisi spettrale ed inversione del tiro 6102	25
Figura 24: Profilo MASW 2D ottenuto mediante l'analisi dei 33 tiri	25
Figura 25 - Schema di sintesi delle Vs riscontrate nei punti di acquisizione	27

Elenco Tabelle

Tabella 1: Sintesi delle geometrie e dei quantitativi eseguiti	4
Tabella 2: Posizione dei profili e del sondaggio. Coordinate in UTM 32 N - WGS 84	7
Tabella 3: Caratteristiche del sistema d'acquisizione Seistronic EX-12	12
Tabella 4: Specifiche dei geofoni	14
Tabella 5: Esempio di calcolo delle Vs30 medie	17
Tabella 6: Apici dei profili e sondaggio. Coordinate in UTM 32 N - WGS 84	21
Tabella 7: Progressi della missione	22
Tabella 8: Sintesi delle velocità Vs30 del profilo 6000	24
Tabella 9: Sintesi delle velocità Vs30 del profilo 6100	26

1. Introduzione

La presente relazione propone la sintesi delle indagini eseguite nella zona **P6ponte sulla Dora sinistra Bussoleno (**

Figura 1). Essa si contestualizza nell'ambito degli studi di progettazione della TAV Lione Torino, nell'area di pertinenza italiana, le società**RBR Geophysics GmbH** e**Geo2X SA**, per conto della Lyon-TurinFerroviaire,hanno effettuato una campagna di indagini geofisiche relative all'acquisizione di profili e sondaggi sismici di tipo MASW (onde di superficie).

Il contratto n°MS015 riferito all'accordo quadro AC012, Lotto 3, ha incaricato gli scriventi di eseguire le indagini relativamente a dieci siti per ciascuno dei quali sono state realizzate indagini Multichannel Analysis of SurfaceWaves (MASW). Le indagini MASW sono eseguite con lo scopo di determinare l'andamento, nel sottosuolo, delle velocità delle onde Rayleigh (Vs), come è specificatamente richiesto dalle normative italiane vigenti in merito alla progettazione geotecnica sotto azione sismica (Capitoli 6 e 7 delle NTC 08).

I risultati pertanto forniscono, oltre all'interpretazione dei dati e alla modellazione geofisica in chiave delle Vs, il valore delle Vs30 e la categoria di suolo.

I dati sono stati acquisiti mediante due differenti configurazioni;sondaggio e profilo; il primo ècostituito da un dispositivo a 24 canali posti sul terreno con un metro di intertraccia; il secondo, invece, è stato acquisito con un dispositivo a 48 canali con due metri di distanza intergeofonica. Le due diverse modalità di acquisizione sono state applicate per ottenere una curva profondità-velocità, nel caso del sondaggio; ed una sezione 2D nel caso del profilo.

Nella zona P6 sono state eseguite le seguenti indagini MASW:

• 2 profili (48 canali a 2 metri di intertraccia)

Tipo di dispositivo	Numero di Tracce	Intertraccia	Lunghezza	Numero di Tiri	Quantità
Profilo	48	2 m	94 m	33	2
Totale			188 m	66	2

Tabella 1: Sintesi delle geometrie e dei quantitativi eseguiti

La posizione dei tiri effettuati

• Profili MASW 6000 e MASW 6100 con offset a metri -20, -15, -10, -5, 101, 106, 111, 116;

L'esecuzione delle indagini e la restituzione dei dati ottenuti è stata effettuata in ottemperamento delle vigenti normative italiane nella materia specifica:

CONSIGLIO SUPERIORE DEI LAVORI PUBBLICI (2009) - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008. Supplemento ordinario n. 27 alla GAZZETTA UFFICIALE 26-2-2009 Serie generale - n. 47

DECRETO MINISTERO INFRASTRUTTURE (2008) – Norme Tecniche per le Costruzioni. D.M. 14 gennaio 2008. S.O. n°30 G.U. 4 febbraio 2008, n° 29.

PRESIDENZA DEL CONSIGLIO DEI MINISTRI 2005 - Modifiche ed integrazioni all'ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003. Ordinanza n. 3431 del 5 marzo 2005

PRESIDENZA DEL CONSIGLIO DEI MINISTRI (2003) - Modifiche ed integrazioni all'ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003. Ordinanza n. 3316 del 2 ottobre 2003

PRESIDENZA DEL CONSIGLIO DEI MINISTRI (2003) - Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica. Ordinanza n. 3274 del 20 marzo 2003.

DECRETO MINISTERO DEI LAVORI PUBBLICI 11 Marzo 1988 - Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione. G.U. 1-6-1988, n. 127 suppl.

In

Figura 1 è riportata l'ubicazione e la consistenza delle indagini effettuate, per il posizionamento in coordinate assolute, effettuato con GPS differenziale, si faccia riferimento alla Figura 2.

R.B.R. Geophysics GmbH environmental and engineering geophysics

Figura 1: Situazione generale della zona P6.

Id	X [m]	Y [m]						
6001	352'575.80	4'999'742.90						
6033	352'635.70	4'999'620.80						
6101	352'618.50	4'999'656.70						
6133	352'677.00	4'999'533.70						

Tabella 2: Posizione dei profili e del sondaggio. Coordinate in UTM 32 N - WGS 84

La figura seguente mostra la posizione dei profili e del sondaggio acquisiti sull'immagine aerea.

Figura 2: Ubicazione del profilo della zona P6

2. DescrizionedelmetodoMASW

Come riportato nell'introduzione lo scopo di questo lavoro ha riguardato l'esecuzione di queste due tipologie di indagine geofisica di superficie:

- I sondaggi MASW che restituiscono la curva profondità/velocità nel punto centrale del dispositivo d'acquisizione (1D)
- I profili MASW che restituiscono una sezione profondità/velocità lungo l'estensione del dispositivo d'acquisizione (2D);

Nei seguenti capitoli si sintetizzano, da un punto di vista concettuale e applicativo, le citate tecniche utilizzate descritte.

2.1. PRINCIPI

Il metodo geofisico MASW (Multichannel Analysis of SurfaceWaves) è una tecnica che permette di ricostruire un profilo di velocità delle onde S (Vs), mediante la misura delle onde di superficie (onde di RayleghFigura 3).

Figura 3: Onde di Rayleigh

Le onde di Raylegh sono polarizzate su un piano verticale e si generano sulla superficie libera del mezzo quando questo viene sollecitato meccanicamente, in questo tipo di onde le particelle descrivono un movimento di tipo ellittico in senso retrogrado rispetto alla direzione di propagazione delle onde stesse e l'ampiezza decresce esponenzialmente con la profondità. La velocità delle onde di Raylegh è legata alla rigidezza del terreno attraversato; in un terreno stratificato, tali onde, sono soggette al fenomeno della dispersione geometrica, ovvero, la velocità di fase è funzione della frequenza di propagazione (Figura 4).

Figura 4: Fenomeno della dispersione

Le onde di superficie ad alta frequenza forniscono informazioni sugli strati più superficiali, mentre quelle a più bassa frequenza si propagano a più grande profondità.

2.2. ACQUISIZIONE DEI DATI

L'acquisizione dei dati sul terreno è stata eseguita con il seguente materiale:

- Sismografo Seistronix a 48 canali
- Geofoni verticali frequenza propria 4,5 Hz spaziati minimo di un metro
- Sorgente: caduta del peso accelerato PEG-40, minimo 3 tiri sovrapposti per punto di scoppio.

I parametri d'acquisizione sono i seguenti:

- 2 secondi di registrazione
- Un campione ogni 0.5 millisecondi
- Nessun filtro è stato applicato sui dati, registrati in formato SEG-2

2.3. TRATTAMENTO DATI

Il trattamento dati viene effettuato mediante l'analisi spettrale del segnale sismico registrato (Figura 5). Vengono costruite le curve di dispersione, che legano la velocità di fase delle onde di superficie con la frequenza; tali curve sono alla base dell'inversione del profilo di velocità delle onde di taglio nel sottosuolo (Figura 6).

Figura 5: Esempio di picking della curva di dispersione

In fase di inversione possono essere posti dei vincoli sui risultati della sismica a rifrazione e dei limiti stratigrafici che essa può mettere in evidenza.

Figura 6: Esempio d'inversione della curva di dispersion (ProfiloVs30)

- 10 -

3. Modalità standard per l'acquisizione e l'interpretazione dei dati

3.1. STRUMENTAZIONI UTILIZZATE

Le indagini sono state effettuate con le strumentazioni di seguito riportate.

Sorgente di energizzazione

La caduta del peso accelerato PEG40 è stata utilizzata (Figura 7). Tale sorgente è sufficientemente potente per lavorare in contesti rumorosi (strade, veicoli, pedoni), come la zona circostante Susa, e permette, quindi, di mantenere un ottimo rendimento.

Una perfetta sincronizzazione tra la sorgente e il sismografo è necessaria ed il sistema utilizzato (sistema costituito da un circuito elettrico connesso al sismografo), ha permesso di mantenere una precisione ottimale nell'attivazione della registrazione.

Sismografo

E' stato impiegato come sistema di registrazione, il sistema di acquisizione EX-12 della Seistronix (Figura 8). Esso è composto da diverse unità di 12 tracce che possono essere assemblate per formare una linea fino a 3200 tracce attive. Per queste acquisizioni abbiamo lavorato con 2 unità per i sondaggi e 4 unità per i profili.

I dati sono stati registrati con un tempo di registrazione di 2 secondi ed un campionamento a 0,5 ms; la frequenza di Nyquist (la più alta frequenza registrabile senza il fenomeno dell'aliasing) è di 1000 Hz cosi che risulta essere largamente superiore alle frequenze registrate.

Ciascun file del formato SEG-2 ha un peso di 1Mo.

Figura 7: Caduta del peso PEG-40

Figura 8: Unità d'acquisizione del sismografoSeistronix

Tabella 3: Caratteristiche del sistema d'acquisizione Seistronic EX-12

	GENERAL				
Number of Channels:	12 to 3,200. Can handle up to 600 channels per line in real-time at 2ms sample rate.				
Controller:	Ethernet equipped laptop running Windows Vista/XP				
Sample Intervals:	0.125, 0.25, .5, 1, 2 and 4 ms				
Record Length:	4 ms - 64 sec, 2 ms - 32 sec, 1 ms - 16 sec, .5 ms - 8 sec, .25 ms - 4 sec, .125 ms - 2 sec				
Noise Monitor:	Real-time, viewable between stacks.				
Multiline Operation:	3,200 channels on up to 32 lines				
CDP Operation:	Automatic or manual roll in single line operation, spread controlled by scripts in multiline operation.				
Stacking:	Positive or negative vertical stack with unstack/restack				
Cable:	8 pair, 12 takeout reversible cable				
Max Box Interval:	1450ft				
Max Line Interval:	1450ft, 2,900 feet with one repeater				
Recording Format:	SEG-2, SEG-D 8038, SEG-D 8058				
EX-12 ACQUISITION UNIT					
Channels:	12/box				
A/D Resolution:	24 bits				
Preamp Gain (PG):	12db, 24db, 36db or 48db, remotely selectable				

Geo2XSA Geophysics & Geology

R.B.R. Geophysics GmbH

environmental and engineering geophysics

Frequency Response:	.125ms: 2 - 3200 Hz, .25ms: 2 - 1650 Hz, .5 ms: 2 - 825 Hz, 1 ms: 2 - 412 Hz, 2 ms: 2 - 206 Hz, 4 ms: 2 - 103 Hz
Dynamic Range:	120db @ 2ms PG=12b, 118db @ 2ms PG=24db (typ)
Distortion (THD):	less than .002% at 25Hz, 2ms (typ)
Anti-Alias Filters:	4 ms 103 Hz, 2 ms 206 Hz, 1 ms 412 Hz, .5 ms 825 Hz, 25ms 1650 Hz .125ms 3300Hz
Test Oscillator:	10, 25, 50, 60, 100, 125, 200, 250 Hz or variable in 1Hz increments. Amplitude adjustable in 10 uV steps
Instrument Tests:	Internal digital tests, battery voltage, internal voltage check, crosstalk, amplifier pulse, timing verification, CMR, amplifier noise, dynamic range, gain & phase similarity, communications, and trigger verification
Spread Tests:	Geophone pulse, geophone similarity, geophone resistance, cable leakage
Operating Temp:	-40°C to 70°C

Geofoni

Sono stati impiegati geofoni la cui frequenza di risonanza è di 4,5Hz (Figura 9). Questi geofoni sono stati posizionati con una spaziatura di 2 metri per i profili ed ogni metro per i sondaggi. La maggior parte delle zone d'indagine è situata in aree asfaltate, di conseguenza è stato necessario effettuare dei fori, per assicurare un buon accoppiamento tra geofoni terreno.

Figura 9: Geofono 4.5 Hz

Tabella 4: Specifiche dei geofoni

Frequency	
Natural frequency (fn)	4.5Hz
Tolerance	+/-0.5Hz
Max. tilt angle for specified fn	10°
Typical spurious frequency	>160 Hz
Distortion	
Distortion	<=0.2%
Distortion measurement frequency	12 Hz
Max. tilt angle for distortion specification	Vertical
Coil Resistance	
Standard	395 ohm
Tolerance	+/-5%
	85 m
Sensitivity	
Sensitivity	22.0 V/m/s (0.698 V/in/s)
Tolerance	+/-7.5%
Moving mass	11.2 g (0.395 oz)
Maximum coil excursion p.p.	1.52 mm (0.060 in)
· · · · ·	
Physical Characteristics	
Diameter	25.4 mm (1 in)
Height	33.0 mm (1.26 in)
Weight	86 g (3.03 oz)
Operating temperature range	-45°C to +100°C

Posizionamento GPS

Il posizionamento delle linee è stato effettuato con un GPS TrimbleGeoExplorer 6000 Geo XH con precisione submetrica. Un post trattamento è stato effettuato ed ha permesso di ottenere coordinate con una precisione inferiore a dieci centimetri.

3.2. PARAMETRI DI REGISTRAZIONE

La geometria dei dispositivi e dei tiri varia tra profili e sondaggi. La figura seguente (Figura 10) presenta tali geometrie.

Figura 10: Geometria d'acquisizione e nomenclatura dei punti

Il dispositivo di acquisizione utilizzato per il profilo ha la seguente geometria:

48 tracce spaziate di due metri

23 tiri ogni 2 metri all'interno del dispositivo

10 tiri esterni al dispositivo (a metri -20, -15, -10, -5, -1, 95, 101, 106, 111, 116);

Il dispositivo di acquisizione utilizzato per il sondaggio ha la seguente geometria:

24 tracce spaziate di un metri

8 tiri esterni al dispositivo (-20, -15, -10, -5, 30, 35, 40, 45)

Le registrazioni sono fatte su due secondi ad una frequenza di 2000 Hz. Il tempo zero è calibrato per un tempo di reazione medio inferiore a un millisecondo. Tre colpi per ogni posizione di tiro sono stati sommati.

3.3. TRATTAMENTO DATI

Il trattamento dati è stato effettuato separatamente su ogni tiro di offset disponibile con 24 tracce per i sondaggi e 48 tracce per i profili.

Ciascuno degli otto tiri di offset è stato oggetto della seguente analisi:

• Analisi spettrale e picking della curva di dispersione a partire dal tiro raw (Figura 11, Figura 12)

Figura 11: Esempio di tiro raw-offset a 20 metri

Figura 12: Analisi spettrale e picking della curva di dispersione

• Inversione della curva di dispersione (Figura 13)

Figura 13: Inversione della curva di dispersione e calcolo della Vs30

• Calcolo del valore delle Vs30 (Tabella 5)

Con la modalità di acquisizione sopra descritta si ottengono nello stesso punto posto al centro del dispositivo, tra i il geofono 24 e 25 per i 48 canali e tra il 12 e il 13 in quello a 24 canali, 8 distinti valori di Vs30. Tali valori forniscono un'eccellente procedura per valutare la qualità del dato. Minore è la deviazione standard delle misure maggiore è la coerenza del modello sismico.

Il valore medio della Vs 30 che si fornisce al centro dello stendimento è pertanto pesato su ben 8 valori acquisiti in condizioni differenti (Tabella 5).

Il trattamento dati è stato realizzato con i moduli PickWin e WaveEq (SurfaceWave Analysis) della suite SeisimagerGeometrics. Il modulo Pickwin è stato impiegato per effettuare l'analisi spettrale, che mette in relazione le velocità di fase delle onde di superficie con la frequenza. Lo step successivo è la determinazione della curva di dispersione che vien effettuata con lo stesso modulo (Figura 12). Successivamente, mediante l'utilizzo del modulo WaveEq, si effettua l'inversione dei dati ed il calcolo del profilo di velocità delle Vs30 (Figura 13, Tabella 5).

	P2000										
48 tra	48 tracce, intertraccia 2 metri										
Tiro	Offset [m]	VS30 [m/s]									
2001	-20	579.7									
2002	-15	546.2									
2003	-10	562.0									
2004	-5	546.7									
2030	2030 101 553.2										
2031	106	560.8									
2032	111	550.2									
2033	116	582.4									
l	Media	560.2									

Tabella 5: Esempio di calcolo delle Vs30 medie

3.3.1. Sondaggio

Un sondaggio è semplicemente costituito da 8 tiri di offset. Gli otto valori di Vs30 calcolati sono mediati per calcolare un valore rappresentativo dell'intero sondaggio (Tabella 5). Questo valore è da considerarsi localizzato al centro dello stendimento.

3.3.2. Profilo

L'analisi MASW bidimensionale è stata realizzata sui profili di 48 tracce spaziati di 2 metri. La geometria d'acquisizione comporta 33 tiri ripartiti come segue:

- 10 tiri di offset (di cui 2 end shot)
- 23 tiri nel dispositivo, un tiro ogni 4 metri

Il primo passo del trattamento dati 2D è costruire la geometria. Tale operazione è eseguita con il modulo PickWindellasuiteSeisimager della Geometrics. La Figura 14mostra la geometria di acquisizione. I differenti CMP (Common Mid Point) sono calcolati a partire dalla geometria di acquisizione, il software prende in considerazione differenti combinazioni di geofoni. Da notare che la densità delle misure decresce con la profondità di investigazione (Figura15).

Per ciascuno dei CMP si effettua l'analisi spettrale, il picking della curva di dispersione ed il calcolo di un modello velocità-profondità (Figura 16).

La Figura 17 mostra tutte le curve di dispersione calcolate, a questo punto è possibile effettuare un controllo di qualità dei dati, quindi eliminare i valori anomali e gli artefatti numerici.

Figura 14: Geometria d'acquisizione; in giallo i geofoni, in blu i tiri

Figura15: Common Mid-Point Cross Correlation gathers

3.4. ASSEGNAZIONE DELLA CATEGORIA DI SOTTOSUOLO

La NTC 08, al § 3.2.2, in riferimento alle modalità di definizione dell'azione sismica di progetto, riferisce che "si rende necessario valutare l'effetto della risposta sismica locale mediante specifiche analisi, come indicato nel § 7.11.3. In assenza di tali analisi, per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione di categorie di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III)". Fatta salva la necessità della caratterizzazione geotecnica dei terreni nel volume significativo, ai fini della identificazione della categoria di sottosuolo, la classificazione si effettua in base ai valori della velocità equivalente Vs,30 di propagazione delle onde di taglio (definita successivamente) entro i primi 30 m di profondità.

Nella circolare del 2 febbraio 2009, n. 617, in relazione alle categorie di sottosuolo viene specificato quanto segue. "*Per l'identificazione della categoria di sottosuolo è fortemente raccomandata la misura della velocità di propagazione delle onde di Vs. In particolare, fatta salva la necessità di estendere le indagini geotecniche nel volume significativo di terreno interagente con l'opera, la classificazione si effettua in base ai valori della velocità equivalente Vs,30, definita*

- 19 -

Geo2XSA Geophysics & Geology

R.B.R. Geophysics GmbH environmental and engineering geophysics

mediante l'equazione (3.2.1) delle NTC. La velocità equivalente è ottenuta imponendo l'equivalenza tra i tempi di arrivo delle onde di taglio in un terreno omogeneo equivalente, di spessore pari a 30 m, e nel terreno stratificato in esame, di spessore complessivo ancora pari a 30 m. Essa assume quindi valori differenti da quelli ottenuti dalla media delle velocità dei singoli strati pesata sui relativi spessori, soprattutto in presenza di strati molto deformabili di limitato spessore. Lo scopo della definizione adottata è quello di privilegiare il contributo degli strati più deformabili.

$$V_{S,30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_{S,i}}} \text{ [m/s]}$$
(eq 3.2.1.)

Determinata pertanto la $V_{s,30}$ l'approccio semplificato consente di assegnare la categoria di suolo come riportato in Figura 18 e Figura 19

Categoria	Descrizione del profilo stratigrafico	V _{s,30} (m/s)	N _{SPT,30}	C _{u,30}
А	Ammassi rocciosi affioranti o terreni molto rigidi eventualmente comprendenti in superficie uno strato di alterazione con spessore massimo pari a 3 m.	> 800	-	-
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità.	360 - 800	> 50	> 250
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità.	180 - 360	15 - 50	70 - 250
D	Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fina scarsamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità.	< 180	< 15	< 70
E	<i>Terreni dei sottosuoli di tipo C o D per spessore</i> <i>non superiore ai 20 m,</i> giacenti su un substrato di materiale più rigido (con V _{S,30} > 800 m/s).	Valori simili ai terreni di tipo C o D	Vedi C e/o D	Vedi C e/o D

Figura 18 - Categorie di sottosuolo (Tab. 3.2 II - NTC 08)

R.B.R. Geophysics GmbH

environmental and engineering geophysics

S 1	Depositi di terreni caratterizzati da valori di $V_{S,30}$ > 100 m/s) che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argille altamente organiche.	< 100	-	10 - 20
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti (sono richiesti studi speciali per la definizione dell'azione sismica)	-	-	-

Figura 19 - Categorie aggiuntive di sottosuolo (Tab. 3.2 III - NTC 08) secondo le quali si prescrive l'applicazione di metodi analitici per la definizione della risposta sismica locale

È opinione degli scriventi (e di molti autori in letteratura) che la pedissequa assegnazione della categoria in base al valore della Vs 30 è una procedura che può rappresentare poco oggettivamente la situazione reale senza che sia stato definito, nello specifico, il modello geologico tecnico e sismico.

Nella relazione l'assegnazione della categoria di suolo è effettuata sulla base del modello sismico ricostruito per mezzo dei sondaggi (1D) e profili (2D) delle Vs.

4. Sito di indagineP6

I dispositivi acquisiti sulla zona P6 sono due profili da 48 tracce a due metri di interdistanza (6000 e 6100), i quali formano un profilo MASW di 188 metri.La tabella seguente ricapitola le coordinate di inizio e fine degli stendimenti.

Id	Estremitàstendimenti (m)	(X)	(Y)
PROFILO	0	352585.8	4999725.6
P6000	96	352627.0	4999638.8
PROFILO	0	352626.9	4999638.7
P6100	96	352668.5	4999551.7

Tabella 6: Apici dei profili. Coordinate in UTM 32 N - WGS 84

La figura seguente mostra la posizione dei profili e del sondaggio acquisiti sull'immagine aerea.

Figura 20: Ubicazione dei due profili della zona P6

Il lavoro di terreno, durante la fase di acquisizione dati, si è svolto in condizioni metereologiche ottimali durante il mese di Novembre. Tutte le registrazioni sono state effettuate senza elementi di perturbazione quali vento, pioggia o neve.

Il cantiere si è sviluppato rispettando il cronoporogramma di Tabella7

Tabella7: Progressidellamissione

Data	Realizzazione
28.11.2012, 08:45	Arrivosulsito P6
28.11.2012, 11:00	Termine acquisizioneprofilo 200m
28.11.2012, 11:30	Partenza dalla zona dopo l'acquisizione

Qualità dei dati

La qualità dei dati si è rivelata molto buona. Il funzionamento ottimale della strumentazione, la condizione climatica mite e un basso livello di rumorosità ha reso l'analisi dei dati ottimale.

Topografia

La zona d'interesse presenta una topografia non articolata, di conseguenza si è proceduto al posizionamento dei soli tiri 1, 5, 17, 29, e 33 (Figura 20) per i profili, mentre per i sondaggi i punti misurati sono 1, 5, 6, 7 e 11.

4.1. PROFILO P6000

L'analisi spettrale di ciascuno degli otto tiri così come l'analisi mediante il metodo CMPCC (Common Midpoint Cross Correlation) sono presentati negli allegati1.1 e 1.2. La figura seguente presentail tiro 6030 (offset 5 m).

Figura 21: Analisi spettrale e inversione del tiro 6030

Il profilo bidimensionale ottenuto mediante il metodo CMPCC è presentato nell'immagine seguente e ugualmente nell'allegato 1.3.

Figura 22: Profilo MASW 2D ottenuto mediante l'analisi dei 33 tiri

Questo profilo evidenzia una debole variazione laterale dei valori Vs. L'aumento progressivo e marcato delle velocità con la profondità può essere dovuto alla compattazione dei sedimenti di origine fluviale che riempiono il fondo della valle.

La seguente tabella illustra le Vs30 calcolate per gli 8 tiri e una media considerata come valore medio rappresentativo di questo sondaggio.

P6000										
48 tra	acce, inter-trac	cia 2 metri								
Tir	Offset [m]	VS30 [m/s]								
6001	-20	558.9								
6002	-15	523.9								
6003	-10	544.0								
6004	-5	565.4								
6030	101	563.3								
6031	106	559.4								
6032	111	566.6								
6033	116	565.3								
	Media	559.9								
Deviazi	one standard	14.8								

Tabella 8: Sintesi delle velocità Vs30 del profilo 6000

La bassa deviazione standard delle Vs30 ottenute dai differenti tiri è indicatrice di debole variazione laterale e di un trattamento dei dati coerente. La velocità Vs30 media del profilo P6000 è di 559.9 m/s.

Geo2XSA Geophysics & Geology

4.2. PROFILO P6100

L'analisi spettrale di ciascuno degli otto tiri così come l'analisi mediante il metodo CMPCC (Common Midpoint Cross Correlation) sono presentati negli allegati 1.4 e 1.5. La figura seguente presenta il tiro 6102 (offset 15 m).

Figura 23: Analisi spettrale ed inversione del tiro 6102

Il profilo bidimensionale ottenuto mediante il metodo CMPCC è presentato nell'immagine seguente e ugualmente nell'allegato 1.6.

Questo profilo evidenzia una debole variazione laterale dei valori Vs. L'aumento progressivo e marcato delle velocità con la profondità può essere dovuto alla compattazione dei sedimenti di origine fluviale che riempiono il fondo della valle.

La seguente tabella illustra le Vs30 calcolate per gli 8 tiri e una media considerata come valore medio rappresentativo di questo sondaggio.

P6100									
48 tra	acce, inter-trac	cia 2 metri							
Tir	Offset [m]	VS30 [m/s]							
6101	-20	564.1							
6102	-15	562.8							
6103	-10	556.3							
6104	-5	558.5							
6130	101	557.0							
6131	106	575.5							
6132	111	557.1							
6133	116	564.9							
	Media	562.0							
Deviazi	one standard	6.4							

Tabella 9: Sintesi delle velocità Vs30 del profilo 6100

La bassa deviazione standard delle Vs30 ottenute dai differenti tiri è indicatrice di debole variazione laterale e di un trattamento dei dati coerente. La velocità Vs30 media del profilo P6100 è di 562.0 m/s.

5. Conclusioni

Nella zona P6 sono stati realizzati 2 profili di 94 metri. L'analisi dei dati a permesso di calcolare la Vs ponderata su i primi 30 metri (Vs30) a partire dalla superfice topografica.:

Profilo 6000	555.9 m/s
Profilo 6100	562.0 m/s
Media	558.9 m/s

La bassa profondità del substrato sismico (Vs>800 m/s) e le velocità della copertura sovrastante rendono difficile l'attribuzione del terreno investigato ad una categoria della tabella Tab. 2.2 II NTC 08, tuttavia in modo cautelativo si suggerisce una classificazione di **tipo E** riferito alla quota dell'attuale piano campagna.

I dati sono stati approvati da un nostro geotecnico.

Geo2XSA Geophysics & Geology

R.B.R. Geophysics GmbH environmental and engineering geophysics

1. Allegati

1.1. PROFILO P6000 - TIRI OFFSET

Analisi spettrale e modello di velocità del tiro6001

Analisi spettrale e modello di velocità del tiro6002

Analisi spettrale e modello di velocità del tiro 6003

Analisi spettrale e modello di velocità del tiro 6004

Analisi spettrale e modello di velocità del tiro 6030

Analisi spettrale e modello di velocità del tiro 6031

Analisi spettrale e modello di velocità del tiro 6032

Analisi spettrale e modello di velocità del tiro 6033

1.2. PROFILO P6000 - CONTROLLO DI QUALITÀ DELLA MODELLIZZAZIONE.

Curve di dispersione (curve inferiori) e qualità della modellizzazionedei CMP (in alto).

1.3. PROFILO P6000 – SEZIONE 2D

1.4. PROFILO P6100 - TIRI OFFSET

Geo2XSA Geophysics & Geology

R.B.R. Geophysics GmbH

environmental and engineering geophysics

Analisi spettrale e modello di velocità del tiro 6101

Geo2XSA Geophysics & Geology

Analisi spettrale e modello di velocità del tiro 6102

Analisi spettrale e modello di velocità del tiro 6103

Analisi spettrale e modello di velocità del tiro 6104

Analisi spettrale e modello di velocità del tiro 6130

Analisi spettrale e modello di velocità del tiro 6131

Analisi spettrale e modello di velocità del tiro 6132

Analisi spettrale e modello di velocità del tiro 6133

PROFILO P6100 – CONTROLLO DI QUALITÀ DELLA MODELLIZZAZIONE 1.5.

Curve di dispersione (curve inferiori) e qualità della modellizzazione dei CMP (in alto).

Geo2XSA Geophysics & Geology

1.6. PROFILO P6100 – SEZIONE 2D

352'500

4'999'700 1

LIAISON LYON - TURIN / COLLEGAMENTO TORINO - LIONE

Partie commune franco-italienne Section transfrontalière

Parte comune italo-francese Sezione transfrontaliera

NOUVELLE LIGNE LYON TURIN – NUOVA LINEA TORINO LIONE PARTIE COMMUNE FRANCO-ITALIENNE – PARTE COMUNE ITALO-FRANCESE

REVISION DE L'AVANT-PROJET DE REFERENCE – REVISIONE DEL PROGETTO DEFINITIVO CUP C11J05000030001

CAMPAGNE DE RECONNAISSANCES PAR MASW/ CAMPAGNA DI INDAGINI GEOGNOSTICHE MASW

CLASSIFICATION SISMIQUE DES TERRAINS PAR LA MASW – SECTEURS A L'AIR LIBRE ITALIE – ZONE P6-2PONT SUR LA DORA DROIT BUSSOLENO

CLASSIFICAZIONE SISMICA DEI TERRENI CON IL METODO MASW – SETTORI ALL'APERTO ITALIA – ZONA P6-2PONTE SULLA DORA DESTRA BUSSOLENO

Indice	Date/ Data	Modifications / Modifiche	Etabli par / Concepito da	Vérifié par / Controllato da	Autorisé par / Autorizzato da
	17.12.2012	Version preliminaire	RBR-Geo2X		
	27.01.2013	Versione italiana	RBR-Geo2X		
	15.03.2013	Versione finale	V.Métraux – Geo2X	JE P.Radogna – RBR G	NNY Jacques EO2X W-GEOSOFT H-1377-OULENS
				T	L/FAX+4121/881 48 00

CODE DOC	Р	D	2	G	F		X	Ġ	2	X	0	0	0	7	0	A	P	N	0	Т
		Phase / Fa	se	51	gie etuc	ie / Sigi	a	Emet	teur / En	ittente		Nun	nero		Indice	Stat	at / Stato		Type / Tip	00
ADI INDI	RESSE RIZZO	GED GED	GE	x	//	//	0	2	00	00	10	07]				I	ECHELI	LE / SCA	ALA
Ly			FER	ROV	AR	LTF	sas – 10 Pro	91 Aven Tél RC opriété U	ue de la Bo : +33 (0)- S Chambé IF Tousdr	oisse- BP 8 4.79.68.56 iry 439.556 oitsréservé	80631 – F-1 50- Fax : + 952 – TV s- Propriet	73006 CHAM -33 (0)4.79.6 A FR 03439: à LTF Tutti	MBERY Cl 58.56.75 556952 i diritti rise	EDEX (Fra rvati	ance) e fU	Ce projet ast cofinancé pa Jnion européen (DG-TREN)	ne *	****	Quee ècc dall'Un (sto progetto ofinanziato none europea TEN-T)

CLASSIFICAZIONE SISMICA DEI TERRENI CON IL METODO MASW – SETTORI ALL'APERTO ITALIA – ZONA P6-2 PONTE SULLA DORA DESTRA BUSSOLENO

Le società RBR Geophysics GmbH e Geo2X SA, per conto della Lyon-Turin Ferroviaire (LTF), hanno effettuato, nella zona P6_2 ponte sulla Dora destra Bussoleno, l'acquisizione di un profilo di tipo Masw in data 18/12/2012.

Attraverso l'analisi ed il processing dei dati è stato ricostruito un grafico, che descrive l'andamento delle velocità (Vs) con la profondità, per ogni tiro di offset effettuato. Tali valori sono stati poi mediati, ed è stato fornito un valore medio di Vs caratterizzante la zona. L'elaborazione del profilo mediante la tecnica CMPCC permette la restituzione di un profilo bidimensionale dell'andamento delle Vs.

Il valore medio delle Vs30 per il profilo P6200 è di 425 m/s. La buona omogeneità delle velocità e l'assenza, entro i trenta metri di profondità, del substrato sismico (Vs>800 m/s) suggeriscono una classificazione di tipo B.

CLASSIFICATION SISMIQUE DES TERRAINS PAR LA MASW – SECTEURS A L'AIR LIBRE ITALIE – ZONE P6-2 PONT SUR LA DORA DROIT BUSSOLENO

La société RBR Géophysique GmbH et Geo2X SA a réalisé pour le compte de Lyon-Turin Ferroviaire (LTF) un profil de type MASW le 28/11/2012 sur le site P6-2.

L'analyse et le traitement des données a permis de reconstruire un graphique qui décrit l'évolution de la vitesse (Vs) en fonction de la profondeur et de la distance. Ces valeurs ont ensuite été moyennées, de façon à fournir une valeur de la vitesse Vs caractérisant la zone.

L'application de la technique de CMPCC a permis de proposer un profil bidimensionnel de la tendance de Vs.

La valeur moyenne des Vs30 du profil P6200 est de 425 m/s. L'homogénéité des vitesses sur les trente mètres de profondeur de la section et l'absence de substratum sismique (Vs > 800 m/s) fait que le terrain reçoit la classification de type B.

ACCORDO-QUADRO ACO12 – LOTTO Nº 3 CONTRATTO Nº MSO15 Zona P6_2 – Rapporto Geofisico

Dicembre 2012

Rue du Centre 6 CH-1277 Oulens-sous-Echallens Switzerland Phone/Fax +41 21 881 48 00 Mobile +41 76 383 75 72 Email : info@geo2x.com www.geo2x.com

R.B.R. Geophysics GmbH environmental and engineering geophysics

Muehlegasse 18 CH-6340 Baar - Switzerland Phone +41 41 760 62 68 Mobile +41 79 243 92 79 Email : info@rbrgeophysics.ch www.rbrgeophysics.com

Sommario

Sommario	1
Elenco Figure	2
Elenco Tabelle	2
1. Introduzione	3
2. Descrizione del metodo MASW	7
2.1. Principi	8
2.2. Acquisizione dei dati	9
2.3. Trattamento dati	9
3. Modalità standard per l'acquisizione e l'interpretazione dei dati	10
3.1. Strumentazioni utilizzate	11
3.2. parametri di registrazione	14
3.3. Trattamento dati	15
3.3.1. Sondaggio	17
3.3.2. Profilo	17
3.4. Assegnazione della categoria di sottosuolo	19
4. Sito di indagine P6_2	21
4.1. Profilo P6200	23
5. Conclusioni	25
1. Allegati	26
1.1. Profilo p6200 – tiri offset	26
1.2. Profilo p6200 – controllo di qualità della modellizzazione.	34
1.3. Profilo p6200 – sezione 2d	35
1.4. Contenuto del supporto digitale	35

Elenco Figure

Figura 1: Situazione generale della zona P6_2	6
Figura 2: Ubicazione del profilo della zona P6_2	7
Figura 3: Onde di Rayleigh	8
Figura 4: Fenomeno della dispersione	9
Figura 5: Esempio di picking della curva di dispersione	10
Figura 6: Esempio d'inversione della curva di dispersion (ProfiloVs30)	10
Figura 7: Battuta eseguita con martello da 5kg	11
Figura 8: Unità d'acquisizione del sismografo Seistronix	12
Figura 9: Geofono 4.5 Hz	13
Figura 10: Geometria d'acquisizione e nomenclatura dei punti	14
Figura 11: Esempio di tiro raw-offset a 20 metri	15
Figura 12: Analisi spettrale e picking della curva di dispersione	16
Figura 13: Inversione della curva di dispersione e calcolo della Vs30	16
Figura 14: Geometria d'acquisizione; in giallo i geofoni, in blu i tiri	18
Figura 15: Common Mid-Point Cross Correlation gathers	18
Figura 16: Esempio di sezione Vs 2D interpolata a partire da 24 modelli di velocità profond	ità. I
Valori ili protonulta sono ottimizzati con le informazioni provementi dai tiri di onset	19
Figura 17: Curve di dispersione dei CMP è controllo di qualita	19
Figura 18 - Categorie di sottosuolo (Tab. 3.2 II - NTC 08)	20
Figura 19 - Categorie aggiuntive di sottosuolo (Tab. 3.2 III - NTC 08) secondo le quali si prese l'applicazione di metodi analitici per la definizione della risposta sismica locale	crive 21
Figura 20: Ubicazione dei due profili della zona P6_2	22
Figura 21: Analisi spettrale e inversione del tiro 6230	23
Figura 22: Profilo MASW 2D ottenuto mediante l'analisi dei 33 tiri	23
Figura 23 - Schema di sintesi delle Vs riscontrate nei punti di acquisizione	25

Elenco Tabelle

Tabella 1: Sintesi delle geometrie e dei quantitativi eseguiti	3
Tabella 2: Posizione dei profili e del sondaggio. Coordinate in UTM 32 N - WGS 84	6
Tabella 3: Caratteristiche del sistema d'acquisizione Seistronic EX-12	12
Tabella 4: Specifiche dei geofoni	14
Tabella 5: Esempio di calcolo delle Vs30 medie	17
Tabella 6: Apici dei profili e sondaggio. Coordinate in UTM 32 N - WGS 84	21
Tabella 7: Progressi della missione	22
Tabella 8: Sintesi delle velocità Vs30 del profilo 6200	24

1. Introduzione

 Bis dial
 32780

 Image: State of the state o

La presente relazione propone la sintesi delle indagini eseguite nella zona P6_2 ponte sulla Dora destra

Bussoleno(

Figura 1). Essa si contestualizza nell'ambito degli studi di progettazione della TAV Lione Torino, nell'area di pertinenza italiana, le società**RBR Geophysics GmbH** e**Geo2X SA**, per conto della Lyon-Turin Ferroviaire,hanno effettuato una campagna di indagini geofisiche relative all'acquisizione di profili e sondaggi sismici di tipo MASW (onde di superficie).

Il contratto n°MS015 riferito all'accordo quadro AC012, Lotto 3, ha incaricato gli scriventi di eseguire le indagini relativamente a dieci siti per ciascuno dei quali sono state realizzate indagini Multichannel Analysis of Surface Waves (MASW). Le indagini MASW sono eseguite con lo scopo di determinare l'andamento, nel sottosuolo, delle velocità delle onde Rayleigh (Vs), come è specificatamente richiesto dalle normative italiane vigenti in merito alla progettazione geotecnica sotto azione sismica (Capitoli 6 e 7 delle NTC 08).

I risultati pertanto forniscono, oltre all'interpretazione dei dati e alla modellazione geofisica in chiave delle Vs, il valore delle Vs30 e la categoria di suolo.

I dati sono stati acquisiti mediante due differenti configurazioni;sondaggio e profilo; il primo ècostituito da un dispositivo a 24 canali posti sul terreno con un metro di intertraccia; il secondo, invece, è stato acquisito con un dispositivo a 48 canali con due metri di distanza intergeofonica. Le due diverse modalità di acquisizione sono state applicate per ottenere una curva profondità-velocità, nel caso del sondaggio; ed una sezione 2D nel caso del profilo.

Nella zona P6_2è stata eseguita la seguente indagine MASW:

• 1 profili (48 canali a 2 metri di intertraccia)

Tabella 1: Sintesi delle geometrie e dei quantitativi eseguiti

Geophysics & Geology

Geo2XSA

R.B.R. Geophysics GmbH

environmental and engineering geophysics

Tipo di dispositivo	Numero di Tracce	Intertraccia	Lunghezza	Numero di Tiri	Quantità
Profilo	48	2 m	94 m	33	1
Totale			94 m	33	1

La posizione dei tiri effettuati

• Profilo MASW 6200 con offset a metri -20, -15, -10, -5, 101, 106, 111, 116;

L'esecuzione delle indagini e la restituzione dei dati ottenuti è stata effettuata in ottemperamento delle vigenti normative italiane nella materia specifica:

CONSIGLIO SUPERIORE DEI LAVORI PUBBLICI (2009) - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008. Supplemento ordinario n. 27 alla GAZZETTA UFFICIALE 26-2-2009 Serie generale - n. 47

DECRETO MINISTERO INFRASTRUTTURE (2008) – Norme Tecniche per le Costruzioni. D.M. 14 gennaio 2008. S.O. n°30 G.U. 4 febbraio 2008, n° 29.

PRESIDENZA DEL CONSIGLIO DEI MINISTRI 2005 - Modifiche ed integrazioni all'ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003. Ordinanza n. 3431 del 5 marzo 2005

PRESIDENZA DEL CONSIGLIO DEI MINISTRI (2003) - Modifiche ed integrazioni all'ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003. Ordinanza n. 3316 del 2 ottobre 2003

PRESIDENZA DEL CONSIGLIO DEI MINISTRI (2003) - Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica. Ordinanza n. 3274 del 20 marzo 2003.

DECRETO MINISTERO DEI LAVORI PUBBLICI 11 Marzo 1988 - Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione. G.U. 1-6-1988, n. 127 suppl.

Figura 1 è riportata l'ubicazione e la consistenza delle indagini effettuate, per il posizionamento in coordinate assolute, effettuato con GPS differenziale, si faccia riferimento alla Figura 2.

Figura 1: Situazione generale della zona P6_2.

Tabella 2: Posizione dei profili e del sondaggio. Coordinate in UTM 32 N - WGS 84

Id	X [m]	Y [m]
6201	352700.3	4999385.7
6233	352669.5	4999252.6

La figura seguente mostra la posizione dei profili e del sondaggio acquisiti sull'immagine aerea.

Figura 2: Ubicazione del profilo della zona P6_2

2. Descrizione del metodo MASW

Come riportato nell'introduzione lo scopo di questo lavoro ha riguardato l'esecuzione di queste due tipologie di indagine geofisica di superficie:

- I sondaggi MASW che restituiscono la curva profondità/velocità nel punto centrale del dispositivo d'acquisizione (1D)
- I profili MASW che restituiscono una sezione profondità/velocità lungo l'estensione del dispositivo d'acquisizione (2D);

Nei seguenti capitoli si sintetizzano, da un punto di vista concettuale e applicativo, le citate tecniche utilizzate descritte.

2.1. PRINCIPI

Il metodo geofisico MASW (Multichannel Analysis of Surface Waves) è una tecnica che permette di ricostruire un profilo di velocità delle onde S (Vs), mediante la misura delle onde di superficie (onde di Raylegh Figura 3).

Figura 3: Onde di Rayleigh

Le onde di Raylegh sono polarizzate su un piano verticale e si generano sulla superficie libera del mezzo quando questo viene sollecitato meccanicamente, in questo tipo di onde le particelle descrivono un movimento di tipo ellittico in senso retrogrado rispetto alla direzione di propagazione delle onde stesse e l'ampiezza decresce esponenzialmente con la profondità. La velocità delle onde di Raylegh è legata alla rigidezza del terreno attraversato; in un terreno stratificato, tali onde, sono soggette al fenomeno della dispersione geometrica, ovvero, la velocità di fase è funzione della frequenza di propagazione (Figura 4).

Figura 4: Fenomeno della dispersione

Le onde di superficie ad alta frequenza forniscono informazioni sugli strati più superficiali, mentre quelle a più bassa frequenza si propagano a più grande profondità.

2.2. ACQUISIZIONE DEI DATI

L'acquisizione dei dati sul terreno è stata eseguita con il seguente materiale:

- Sismografo Seistronix a 48 canali
- Geofoni verticali frequenza propria 4,5 Hz spaziati minimo di un metro
- Sorgente: martello dal peso di 5kg.

I parametri d'acquisizione sono i seguenti:

- 2 secondi di registrazione
- Un campione ogni 0.5 millisecondi
- Nessun filtro è stato applicato sui dati, registrati in formato SEG-2

2.3. TRATTAMENTO DATI

Il trattamento dati viene effettuato mediante l'analisi spettrale del segnale sismico registrato (Figura 5). Vengono costruite le curve di dispersione, che legano la velocità di fase delle onde di superficie con la frequenza; tali curve sono alla base dell'inversione del profilo di velocità delle onde di taglio nel sottosuolo (Figura 6).

Figura 5: Esempio di picking della curva di dispersione

In fase di inversione possono essere posti dei vincoli sui risultati della sismica a rifrazione e dei limiti stratigrafici che essa può mettere in evidenza.

Figura 6: Esempio d'inversione della curva di dispersion (ProfiloVs30)

3. Modalità standard per l'acquisizione e l'interpretazione dei dati

3.1. STRUMENTAZIONI UTILIZZATE

Le indagini sono state effettuate con le strumentazioni di seguito riportate.

Sorgente di energizzazione

E' stato utilizzato un martello di 5kg (Figura 7). Tale sorgente è sufficientemente potente per lavorare in contesti rumorosi (strade, veicoli, pedoni), come la zona circostante Susa, e permette, quindi, di mantenere un ottimo rendimento .

Una perfetta sincronizzazione tra la sorgente e il sismografo è necessaria ed il sistema utilizzato (sistema costituito da un circuito elettrico connesso al sismografo), ha permesso di mantenere una precisione ottimale nell'attivazione della registrazione.

Sismografo

E' stato impiegato come sistema di registrazione, il sistema di acquisizione EX-12 della Seistronix (Figura 8). Esso è composto da diverse unità di 12 tracce che possono essere assemblate per formare una linea fino a 3200 tracce attive. Per queste acquisizioni abbiamo lavorato con 2 unità per i sondaggi e 4 unità per i profili.

I dati sono stati registrati con un tempo di registrazione di 2 secondi ed un campionamento a 0,5 ms; la frequenza di Nyquist (la più alta frequenza registrabile senza il fenomeno dell'aliasing) è di 1000 Hz cosi che risulta essere largamente superiore alle frequenze registrate.

Ciascun file del formato SEG-2 ha un peso di 1Mo.

Figura 7: Battuta eseguita con martello da 5kg

Figura 8: Unità d'acquisizione del sismografo Seistronix

Tabella 3: Caratteristiche del sistema d'acquisizione Seistronic EX-12

GENERAL				
Number of Channels:	12 to 3,200. Can handle up to 600 channels per line in real-time at 2ms sample rate.			
Controller:	Ethernet equipped laptop running Windows Vista/XP			
Sample Intervals:	0.125, 0.25, .5, 1, 2 and 4 ms			
Record Length:	4 ms - 64 sec, 2 ms - 32 sec, 1 ms - 16 sec, .5 ms - 8 sec, .25 ms - 4 sec, .125 ms - 2 sec			
Noise Monitor:	Real-time, viewable between stacks.			
Multiline Operation:	3,200 channels on up to 32 lines			
CDP Operation:	Automatic or manual roll in single line operation, spread controlled by scripts in multiline operation.			
Stacking:	Positive or negative vertical stack with unstack/restack			
Cable:	8 pair, 12 takeout reversible cable			
Max Box Interval:	1450ft			
Max Line Interval:	1450ft, 2,900 feet with one repeater			
Recording Format:	SEG-2, SEG-D 8038, SEG-D 8058			
	EX-12 ACQUISITION UNIT			
Channels:	12/box			
A/D Resolution:	24 bits			
Preamp Gain (PG):	12db, 24db, 36db or 48db, remotely selectable			

R.B.R. Geophysics GmbH

environmental and engineering geophysics

Frequency Response:	.125ms: 2 - 3200 Hz, .25ms: 2 - 1650 Hz, .5 ms: 2 - 825 Hz, 1 ms: 2 - 412 Hz, 2 ms: 2 - 206 Hz, 4 ms: 2 - 103 Hz
Dynamic Range:	120db @ 2ms PG=12b, 118db @ 2ms PG=24db (typ)
Distortion (THD):	less than .002% at 25Hz, 2ms (typ)
Anti-Alias Filters:	4 ms 103 Hz, 2 ms 206 Hz, 1 ms 412 Hz, .5 ms 825 Hz,.25ms 1650 Hz .125ms 3300Hz
Test Oscillator:	10, 25, 50, 60, 100, 125, 200, 250 Hz or variable in 1Hz increments. Amplitude adjustable in 10 uV steps
Instrument Tests:	Internal digital tests, battery voltage, internal voltage check, crosstalk, amplifier pulse, timing verification, CMR, amplifier noise, dynamic range, gain & phase similarity, communications, and trigger verification
Spread Tests:	Geophone pulse, geophone similarity, geophone resistance, cable leakage
Operating Temp:	-40°C to 70°C

Geofoni

Sono stati impiegati geofoni la cui frequenza di risonanza è di 4,5Hz (Figura 9). Questi geofoni sono stati posizionati con una spaziatura di 2 metri per i profili ed ogni metro per i sondaggi. La maggior parte delle zone d'indagine è situata in aree asfaltate, di conseguenza è stato necessario effettuare dei fori, per assicurare un buon accoppiamento tra geofoni terreno.

Figura 9: Geofono 4.5 Hz

Tabella 4: Specifiche dei geofoni

Frequency	1. Contract (1. Contract)
Natural frequency (fn)	4.5Hz
Tolerance	+/-0.5Hz
Max. tilt angle for specified fn	10°
Typical spurious frequency	>160 Hz
Distortion	
Distortion	<=0.2%
Distortion measurement frequency	12 Hz
Max. tilt angle for distortion specification	Vertical
Coil Resistance ,	
Standard	395 ohm
Tolerance	+/-5%
Sanaitivity	
Sensitivity	22.0 V/m/s (0.608 V/is/s)
Telesense	22.0 VIIII'S (0.090 VIIII'S)
Noving mass	11.2 a (0.395 oz)
Maximum coil excursion o n	1.52 mm (0.060 in)
	1.52 mm (0.566 m)
Physical Characteristics	
Diameter	25.4 mm (1 in)
Height	33.0 mm (1.26 in)
Weight	86 g (3.03 oz)
Operating temperature range	-45°C to +100°C

Posizionamento GPS

Il posizionamento delle linee è stato effettuato con un GPS Trimble GeoExplorer 6000 Geo XH con precisione submetrica. Un post trattamento è stato effettuato ed ha permesso di ottenere coordinate con una precisione inferiore a dieci centimetri.

3.2. PARAMETRI DI REGISTRAZIONE

La geometria dei dispositivi e dei tiri varia tra profili e sondaggi. La figura seguente (Figura 10) presenta tali geometrie.

Figura 10: Geometria d'acquisizione e nomenclatura dei punti

Il dispositivo di acquisizione utilizzato per il profilo ha la seguente geometria:

48 tracce spaziate di due metri

23 tiri ogni 2 metri all'interno del dispositivo

10 tiri esterni al dispositivo (a metri -20, -15, -10, -5, -1, 95, 101, 106, 111, 116);

Il dispositivo di acquisizione utilizzato per il sondaggio ha la seguente geometria:

24 tracce spaziate di un metri

8 tiri esterni al dispositivo (-20, -15, -10, -5, 30, 35, 40, 45)

Le registrazioni sono fatte su due secondi ad una frequenza di 2000 Hz. Il tempo zero è calibrato per un tempo di reazione medio inferiore a un millisecondo. Tre colpi per ogni posizione di tiro sono stati sommati.

3.3. TRATTAMENTO DATI

Il trattamento dati è stato effettuato separatamente su ogni tiro di offset disponibile con 24 tracce per i sondaggi e 48 tracce per i profili.

Ciascuno degli otto tiri di offset è stato oggetto della seguente analisi:

• Analisi spettrale e picking della curva di dispersione a partire dal tiro raw (Figura 11, Figura 12)

Figura 11: Esempio di tiro raw-offset a 20 metri

Figura 12: Analisi spettrale e picking della curva di dispersione

• Inversione della curva di dispersione (Figura 13)

Figura 13: Inversione della curva di dispersione e calcolo della Vs30

• Calcolo del valore delle Vs30 (Tabella 5)

Con la modalità di acquisizione sopra descritta si ottengono nello stesso punto posto al centro del dispositivo, tra i il geofono 24 e 25 per i 48 canali e tra il 12 e il 13 in quello a 24 canali, 8 distinti valori di Vs30. Tali valori forniscono un'eccellente procedura per valutare la qualità del dato. Minore è la deviazione standard delle misure maggiore è la coerenza del modello sismico.

Il valore medio della Vs 30 che si fornisce al centro dello stendimento è pertanto pesato su ben 8 valori acquisiti in condizioni differenti (Tabella 5).

Il trattamento dati è stato realizzato con i moduli PickWin e WaveEq (Surface Wave Analysis) della suite Seisimager Geometrics. Il modulo Pickwin è stato impiegato per effettuare l'analisi spettrale, che mette in relazione le velocità di fase delle onde di superficie con la frequenza. Lo step successivo è la determinazione della curva di dispersione che vien effettuata con lo stesso modulo (Figura 12). Successivamente, mediante l'utilizzo del modulo WaveEq, si effettua l'inversione dei dati ed il calcolo del profilo di velocità delle Vs30 (Figura 13, Tabella 5).

P2000				
48 tra	48 tracce, intertraccia 2 metri			
Tiro	Offset [m]	VS30 [m/s]		
2001	-20	579.7		
2002	-15	546.2		
2003	-10	562.0		
2004	-5	546.7		
2030	101	553.2		
2031	106	560.8		
2032	111	550.2		
2033	116	582.4		
Media 560.2				

Tabella 5: Esempio di calcolo delle Vs30 medie

3.3.1. Sondaggio

Un sondaggio è semplicemente costituito da 8 tiri di offset. Gli otto valori di Vs30 calcolati sono mediati per calcolare un valore rappresentativo dell'intero sondaggio (Tabella 5). Questo valore è da considerarsi localizzato al centro dello stendimento.

3.3.2. Profilo

L'analisi MASW bidimensionale è stata realizzata sui profili di 48 tracce spaziati di 2 metri. La geometria d'acquisizione comporta 33 tiri ripartiti come segue:

- 10 tiri di offset (di cui 2 end shot)
- 23 tiri nel dispositivo, un tiro ogni 4 metri

Il primo passo del trattamento dati 2D è costruire la geometria. Tale operazione è eseguita con il modulo PickWin dellasuite Seisimager della Geometrics. La Figura 14mostra la geometria di acquisizione. I differenti CMP (Common Mid Point) sono calcolati a partire dalla geometria di acquisizione, il software prende in considerazione differenti combinazioni di geofoni. Da notare che la densità delle misure decresce con la profondità di investigazione (Figura 15).

Per ciascuno dei CMP si effettua l'analisi spettrale, il picking della curva di dispersione ed il calcolo di un modello velocità-profondità (Figura 16).

La Figura 17 mostra tutte le curve di dispersione calcolate, a questo punto è possibile effettuare un controllo di qualità dei dati, quindi eliminare i valori anomali e gli artefatti numerici.

Figura 14: Geometria d'acquisizione; in giallo i geofoni, in blu i tiri

Figura 15: Common Mid-Point Cross Correlation gathers

Figura 17: Curve di dispersione dei CMP e controllo di qualità

3.4. ASSEGNAZIONE DELLA CATEGORIA DI SOTTOSUOLO

La NTC 08, al § 3.2.2, in riferimento alle modalità di definizione dell'azione sismica di progetto, riferisce che "si rende necessario valutare l'effetto della risposta sismica locale mediante specifiche analisi, come indicato nel § 7.11.3. In assenza di tali analisi, per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione di categorie di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III)". Fatta salva la necessità della caratterizzazione geotecnica dei terreni nel volume significativo, ai fini della identificazione della categoria di sottosuolo, la classificazione si effettua in base ai valori della velocità equivalente Vs,30 di propagazione delle onde di taglio (definita successivamente) entro i primi 30 m di profondità.

Nella circolare del 2 febbraio 2009, n. 617, in relazione alle categorie di sottosuolo viene specificato quanto segue. "Per l'identificazione della categoria di sottosuolo è fortemente raccomandata la misura della velocità di propagazione delle onde di Vs. In particolare, fatta salva la necessità di estendere le indagini geotecniche nel volume significativo di terreno interagente con l'opera, la classificazione si effettua in base ai valori della velocità equivalente Vs,30, definita

- 19 -

R.B.R. Geophysics GmbH environmental and engineering geophysics

mediante l'equazione (3.2.1) delle NTC. La velocità equivalente è ottenuta imponendo l'equivalenza tra i tempi di arrivo delle onde di taglio in un terreno omogeneo equivalente, di spessore pari a 30 m, e nel terreno stratificato in esame, di spessore complessivo ancora pari a 30 m. Essa assume quindi valori differenti da quelli ottenuti dalla media delle velocità dei singoli strati pesata sui relativi spessori, soprattutto in presenza di strati molto deformabili di limitato spessore. Lo scopo della definizione adottata è quello di privilegiare il contributo degli strati più deformabili.

$$V_{s,30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_{s,i}}} \text{ [m/s]}$$
(eq 3.2.1.)

Determinata pertanto la $V_{s,30}$ l'approccio semplificato consente di assegnare la categoria di suolo come riportato in Figura 18 e Figura 19

Categoria	Descrizione del profilo stratigrafico	V _{s,30} (m/s)	N _{SPT,30}	C _{u,30}
А	Ammassi rocciosi affioranti o terreni molto rigidi eventualmente comprendenti in superficie uno strato di alterazione con spessore massimo pari a 3 m.	> 800	-	-
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità.	360 - 800	> 50	> 250
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità.	180 - 360	15 - 50	70 - 250
D	Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fina scarsamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità.	< 180	< 15	< 70
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore ai 20 m, giacenti su un substrato di materiale più rigido (con $V_{S,30}$ > 800 m/s).	Valori simili ai terreni di tipo C o D	Vedi C e/o D	Vedi C e/o D

Figura 18 - Categorie di sottosuolo (Tab. 3.2 II - NTC 08)

R.B.R. Geophysics GmbH

environmental and engineering geophysics

S1	Depositi di terreni caratterizzati da valori di $V_{S,30}$ > 100 m/s) che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argille altamente organiche.	< 100	-	10 - 20
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti (sono richiesti studi speciali per la definizione dell'azione sismica)	-	-	-

Figura 19 - Categorie aggiuntive di sottosuolo (Tab. 3.2 III - NTC 08) secondo le quali si prescrive l'applicazione di metodi analitici per la definizione della risposta sismica locale

È opinione degli scriventi (e di molti autori in letteratura) che la pedissequa assegnazione della categoria in base al valore della Vs 30 è una procedura che può rappresentare poco oggettivamente la situazione reale senza che sia stato definito, nello specifico, il modello geologico tecnico e sismico.

Nella relazione l'assegnazione della categoria di suolo è effettuata sulla base del modello sismico ricostruito per mezzo dei sondaggi (1D) e profili (2D) delle Vs.

4. Sito di indagine P6_2

Il dispositivo acquisito sulla zona P6_2 è un profilo da 48 tracce a due metri di interdistanza (6200), il quale forma un profilo MASW di 96 metri.La tabella seguente ricapitola le coordinate di inizio e fine degli stendimenti..

Id	Estremità stendimenti (m)	(X)	(Y)
PROFILO	0	352695.9	4999365.5
P6200	96	352673.8	4999272.1

Tabella 6: Apici dei profili e sondaggio. Coordinate in UTM 32 N - WGS 84

La figura seguente mostra la posizione dei profili e del sondaggio acquisiti sull'immagine aerea.

Figura 20: Ubicazione dei due profili della zona P6_2

Il lavoro di terreno, durante la fase di acquisizione dati, si è svolto in condizioni metereologiche ottimali durante il mese di Dicembre. Tutte le registrazioni sono state effettuate senza elementi di perturbazione quali vento, pioggia o neve.

Il cantiere si è sviluppato rispettando il cronoporogramma di Tabella 7

Data	Realizzazione	
18.12.2012, 08:25	Arrivo sul sito P6_2	
18.12.2012, 10:45	Termine acquisizione profilo	
18.12.2012, 11:10	Partenza dalla zona dopo l'acquisizione	

Qualità dei dati

La qualità dei dati si è rivelata molto buona. Il funzionamento ottimale della strumentazione, la condizione climatica mite e un basso livello di rumorosità ha reso l'analisi dei dati ottimale.

Topografia

La zona d'interesse presenta una topografia non articolata, di conseguenza si è proceduto al posizionamento dei soli tiri 1, 5, 17, 29, e 33 (Figura 20) per i profili, mentre per i sondaggi i punti misurati sono 1, 5, 6, 7 e 11.

4.1. PROFILO P6200

L'analisi spettrale di ciascuno degli otto tiri così come l'analisi mediante il metodo CMPCC (Common Midpoint Cross Correlation) sono presentati negli allegati1.1 e 1.2. La figura seguente presentail tiro 6230 (offset 5 m).

Figura 21: Analisi spettrale e inversione del tiro 6230

Il profilo bidimensionale ottenuto mediante il metodo CMPCC è presentato nell'immagine seguente e ugualmente nell'allegato 1.3.

Figura 22: Profilo MASW 2D ottenuto mediante l'analisi dei 33 tiri

Questo profilo evidenzia una debole variazione laterale dei valori Vs. La seguente tabella illustra le Vs30 calcolate per gli 8 tiri e una media considerata come valore medio rappresentativo di questo sondaggio.

P6200			
48 tracce, inter-traccia 2 metri			
Tir	Offset [m]	VS30 [m/s]	
6201	-20	456.2	
6202	-15	427.2	
6203	-10	439.2	
6204	-5	407.9	
6230	101	425.4	
6231	106	407.9	
6232	111	403.1	
6233	116	434.9	
Media		425.2	
Deviazione standard		17.1	

Tabella 8: Sintesi delle velocità Vs30 del profilo 6200

La bassa deviazione standard delle Vs30 ottenute dai differenti tiri è indicatrice di debole variazione laterale e di un trattamento dei dati coerente. La velocità Vs30 media del profilo P6200 è di 425.2 m/s.

5. Conclusioni

Nella zona P6-2e' stato realizzato 1 profilo di 94 metri. L'analisi dei dati a permesso di calcolare la Vs ponderata su i primi 30 metri (Vs30) a partire dalla superfice topografica.:

Profilo 6200	425.2 m/s
Media	425.2 m/s

La buona omogeneità delle velocità e l'assenza di substrato sismico (Vs>800 m/s) suggeriscono una classificazione di **tipo B** riferito alla quota dell'attuale piano campagna.

Figura 23 - Schema di sintesi delle Vs riscontrate nei punti di acquisizione

I dati sono stati approvati da un nostro geotecnico.

1. Allegati

1.1. PROFILO P6200 – TIRI OFFSET

Analisi spettrale e modello di velocità del tiro6201

Analisi spettrale e modello di velocità del tiro6202

Analisi spettrale e modello di velocità del tiro 6203

Analisi spettrale e modello di velocità del tiro 6204

Analisi spettrale e modello di velocità del tiro 6230

Analisi spettrale e modello di velocità del tiro 6231

Analisi spettrale e modello di velocità del tiro 6232

Analisi spettrale e modello di velocità del tiro 6233

1.2. PROFILO P6200 – CONTROLLO DI QUALITÀ DELLA MODELLIZZAZIONE.

Curve di dispersione (curve inferiori) e qualità della modellizzazionedei CMP (in alto).

1.3. PROFILO P6200 - SEZIONE 2D

1.4. CONTENUTO DEL SUPPORTO DIGITALE

Il DVD allegato al presente rapportocontiene i seguenti dati:

- Dati bruti in formato SEG-2
- Dati trattati in formato JPG (profili e sondaggi)
- Coordinate dei tiri in formato Microsoft Excel
- Planimetrie di riferimento in formato JPG
- Rapporto Geofisico in formato Microsoft Word et PDF

