

PERMESSO "SANTA MARIA GORETTI"

Programma geologico e di perforazione del pozzo "Il Cancello 1 dir"

San Donato Milanese, gennaio 2015

L'amministratore Delegato Dott. Luca Madeddu

Sommario

1	INFOF	RMAZIONI GENERALI	4
	1.1 DA	TI GENERALI	4
		CAZIONE DEL PERMESSO	
		PO DEL SONDAGGIO	
		RATTERISTICHE GENERALI DELL'IMPIANTO	
		TÀ DI MISURA UTILIZZATE NEL RAPPORTO.	
2	PROG	RAMMA GEOLOGICO	10
	2.1 INO	UADRAMENTO GEOLOGICO	10
	2.1.1	Schema strutturale regionale	
	2.1.2	Schema tettonico - stratigrafico	
	2.1.3	Stratigrafia	
	2.2 INT	ERPRETAZIONE SISMICA	
		ETTIVI DEL POZZO	
		FONDITA' TOTALE	
	2.5 SIST	TEMA PETROLIFERO	21
	2.5.1	Reservoir	21
	2.5.2	Rocce madri	22
	2.5.3	Coperture	22
	2.5.4	Trappole	22
	2.6 PRC	OFILO LITOSTRATIGRAFICO PREVISTO	
	2.7 RIS	CHI IN FASE DI PERFORAZIONE	23
	2.8 POZ	ZI DI RIFERIMENTO	24
	2.9 GEO	DLOGIA OPERATIVA	25
	2.9.1	INTRODUZIONE	25
	2.9.2	OBIETTIVI	
	2.9.3	SERVIZI DI MONITORAGGIO GEOLOGICO	
	2.9.4	SURFACE LOGGING	
	2.9.4		
	2.9.4		
	2.9.4	·- · · · · · · · · · · · · · · · · · ·	
	2.9.4 2.9.4		
	2.9.4		
	2.9.4		
	2.9.4		
	2.9.4	· · · · · · · · · · · · · · · · · · ·	
	2.9.5	BOTTOM HOLE CORING	
	2.9.5		
		.2 Determinazione del coring point	
	2.9.5		
	2.9.5 2.9.5	1	
	2.9.5		
	2.9.5	66	
	2.9.5	.8 Manipolazione del carotiere e della carota in superficie	34
	2.9.5		
	2.9.6	LOGGING WHILE DRILLING	
	2.9.7	WIRELINE LOGGING	
	2.9.7		
	2.9.7		
	2.9.7	ϵ	
	2.9.8 2.9.9	LISTA DEI CONTATTI	
	2.9.9	Acquisition Master Plan	
		Previsione e Programmi	
3	INGEO	GNERIA DI POZZO	45
	3.1 RIA	SSUNTO DEL PROGETTO DEL CASING	45

	3.2 SCHEMA DEL POZZO	
	3.3 Previsione Gradienti di Pressione	
	3.4 PROGETTO DEL CASING.	
	3.5 PROGRAMMA FANGHI E FLUIDI DI PERFORAZIONE	
	3.6 DENSITÀ DEL FLUIDO DI PERFORAZIONE	
	3.7 PROBLEMI DI PERFORAZIONE ATTESI	
	3.8 Temperature	
	3.10 SOLFURO DI IDROGENO.	
_	3.11 ATTREZZATURE DEI BOP E TEST.	
_	3.12 CALCOLI DI RESISTENZA DEL POZZO E TOLLERANZA AD UN KICK	
_	3.13 GANASCE TRANCIANTI	
1	PROCEDURE OPERATIVE	
	4.1 RIASSUNTO DELLE OPERAZIONI	
	4.2 VELOCITÀ DI AVANZAMENTO	
	4.3 COMMENTI GENERALI.	
	4.4 VERIFICHE PRIMA DELLA PERFORAZIONE	
	4.5 Tubo Guida 20" (pre-posizionato)	
	4.5.1 Descrizione Schematica	
4	4.6 SEZIONE FORO 16"	
	4.6.1 Descrizione Schematica	67
	4.6.2 Preparazione	
	4.6.3 Esecuzione Foro 16"	
	4.6.4 Discesa Casing 13 %"	
	4.6.5 Cementazione Casing 13-3/8"	
	4.6.6 Installazione Testa Pozzo e BOP	
2	4.7 SEZIONE FORO 12 ¼"	
	4.7.1 Descrizione Schematica	
	4.7.3 Esecuzione Foro 12- ¹ / ₄ "	
	4.7.4 Discesa Casing 9-5%"	
	4.7.5 Cementazione Casing 9 %"	
	4.7.6 Installazione del Casing Hanger e Montaggio BOP	
4	4.8 SEZIONE FORO 8-1/2"	80
	4.8.1 Descrizione Schematica	
	4.8.2 Preparazione	
	4.8.3 Esecuzione Foro 8-½"	
	4.8.4 Log Elettrici nel Foro 8 ½"	
	4.8.5 Esecuzione dei Log	
	4.8.6 Discesa Liner 7"	
,	4.9 Sezione Foro 6"	
_	4.9.1 Descrizione Schematica	
	4.9.2 Preparazione	
	4.9.3 Esecuzione Foro 6"	
	4.9.4 Logs	
4	4.10 COMPLETAMENTO	89
4	4.11 Prove di Produzione	90
4	4.12 CHIUSURA MINERARIA	
4	4.13 PROGRAMMA DI DEVIAZIONE	
	4.13.1 Studio di Anticollision	
	4.14 BATTERIE DI PERFORAZIONE	
	4.15 IDRAULICA	
	4.16 Scalpelli	
	4.17 TABELLA CEMENTAZIONI	
	T. 10 ATTREALATURE DI SICUREALA E DUI	104

Pozzo II Cancello 1 Dir

5	ELENCO DELLE FIGURE	109
6	ELENCO DEGLI ALLEGATI	109

Impianto:

Programma Geologico e di Perforazione

Pozzo Il Cancello 1 Dir

1 INFORMAZIONI GENERALI

1.1 DATI GENERALI

Permesso:	Santa Maria Goretti	
Titolarità:	Apennine Energy S.p.A. (100% Operatore)	
Pozzo:	II Cancello 1	Dir
Classificazione:	Esplorativo	
Provincia:	Ascoli Piceno	
Regione:	Marche	
Comune:	Ripatransone	•
Coordinate geografiche di superficie:	LONG.	1° 18' 45,813"
(Sferoide: Int. 1924; Datum: Roma 1940)	LAT.	43° 00' 26,249
Coordinate geografiche di superficie:	Χ	2419348,73 mE
(Gauss-Boaga; Datum: Roma 1940)	Υ	4762450,6 mN
Coordinate geografiche di fondo pozzo:	LONG.	1° 19' 2,114"
(Sferoide: Int. 1924; Datum: Roma 1940)	LAT.	43° 00' 49,979"
Coordinate geografiche di fondo pozzo:	Χ	2419728.5 mE
(Gauss-Boaga; Datum: Roma 1940)	Υ	4763176.8 mN
Quota Piano Campagna:	375m slm	
Quota Tavola Rotary:	384 m slm	
Obiettivo:	Pliocene inf.	
Profondità finale:	3744 mTVDS	SS / 4128 mTVD / 4240 mMD

Bentec 450

1.2 UBICAZIONE DEL PERMESSO

Il cantiere è ubicato nel Permesso di Santa Maria Goretti, in zona agricola nel Comune di Ripatransone, a circa 2 Km dal centro urbano in Provincia di Ascoli Piceno, Regione Marche

Figura 1.1: Ubicazione geografica del sondaggio

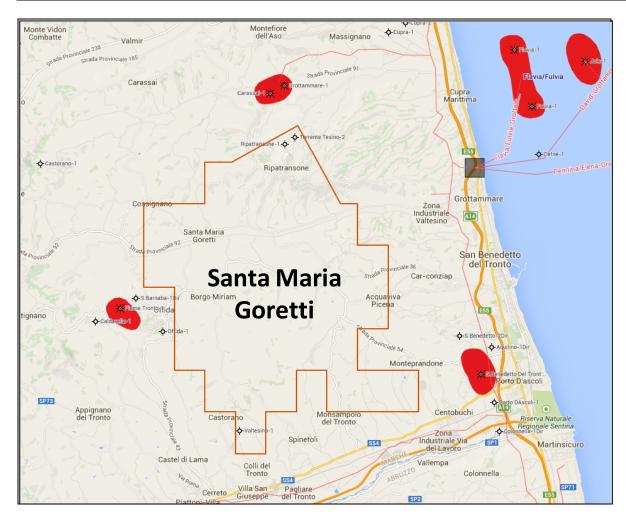


Figura 1.2: Permesso Santa Maria Goretti

1.3 SCOPO DEL SONDAGGIO

Il sondaggio Il Cancello 1 Dir ha lo scopo di investigare la parte meridionale della struttura ad anticlinale che contiene i campi di Grottammare e Carassai; obiettivo principale del sondaggio è rappresentato dalla sequenza di livelli sottili (*Thin Beds*) del Pliocene Inferiore; questi hanno avuto abbondanti manifestazioni gassose durante la perforazione dei pozzi Torrente Tesino 1 e 2 e Ripatransone 1.

Obiettivo secondario è indagare il potenziale del Livello I (A+B) del Pliocene Inferiore; stesso livello già in produzione nel campo di Grottammare.

Il sondaggio si fermerà alla profondità di 3744 mTVDSS / 4128 mTVD / 4240 mMD.

1.4 CARATTERISTICHE GENERALI DELL'IMPIANTO

Drilling Rig BENTEC 450

Mast	
Type:	MVL-1000-143,7-33,5
System:	Vertical lift
Total height incl. substructure:	52,3 m (171,5 ft)
Mast height:	43,3 m (142 ft)
Mast base:	10,20 x 5,65 m (33,50 x 18,54 ft)
Hookload capacity at 10 lines:	450 mt (1.000.000 lbs)
Racking capacity:	cca 6.200 m (23.600 ft)

Substructure	
Type:	SSB-1000-575-29,5
System:	Box-on-Box
Height of drillfl oor:	9 m (29,5 ft)
Height underneath rotary table:	7,4 m (24,3 ft)
Casing load:	450 mt (1.000.000 lbs)
Sothack load may:	260 mt (572 000 lbs)

Drawworks		
Туре:	Bentec E-2000-AC-1-3/8	
Drive capacity:	1.470 kW (2.000 HP)	
Drill line diameter:	35 mm (1 3/8")	
Max, line pull, 1st gear:	420 kN (42.9 mt)	

Power Generation	Power Generation		
Engine type:	Four (4) x Cummins KTA50-DR-1750		
Engine rating:	1.305 bkW @ 1.500 1/min		
Generator type:	Four (4) Cummins AVK-DSG 86 K1/4		
Emergency generator engine:	One (1) CAT C-15		
VFD container:	Bentec		

Top Drive	
Type:	Bentec TD-500-HT
Load rating:	454 mt (1.000.000 lbs)
Output Torque (continuous):	63 kNm (46.500 ft lb)
Tool Torque (intermittent and stall):	100 kNm (73.760 ft lb)

Rotary Table	Rotary Table			
Type:	Kerui RDF-375-850			
Rotary Table Drive:	850 kW AC			

Mud Pumps	
Туре:	Bentec T-1600-AC-7 1/2"x12"
Number of:	Three (3)
Electric Motors:	1.200 kW AC (1.600HP)
Max pressure:	345 bar (5.000 psi)

Mud Tank System		
Туре	Rectangular tanks	
Active mud volume:	220 m³ (incl. mix compartments)	
Reserve mud tank:	140 m³	

Solids Removal Syst	em
Shale shaker type:	Three (3) PT Mongoose
Desander:	3 x 10" cones
Desilter:	20 x 4" cones
Drilling Mud Degasser:	Bentec DMD-250-H
Mud Gas Separator:	Poor boy 48"

Iron Roughneck	
Туре	NOV ST120
Make-up Torque	135,6 kNm (100.000 ft-lb)
Break-out Torque	162,7 kNm (120.000 ft-lb)

Additional Features		
Mast	Vertical errection (bootstrap system)	
Drawworks	4-quadrant drivig system	
	Disc Brake	
	Eddy current brake	
Colour Camera System	At fingerboard, shale shakers, mud	
	pumps and drawworks	
Safety Systems	InfoDrill, Information system,	
	Anticollision system,	
	Soft torque system, FeedOff Control,	
	Gas Detection system etc.	
Another options	Skidding system for rig move	
	with full setback for up to 20 m	
	Transformer Unit 2 x 2,5 MW for	
	rig connection to public grid.	

1.5 UNITÀ DI MISURA utilizzate nel rapporto

Le unità di misura utilizzate per la compilazione del programma, qualora non specificato diversamente sono le seguenti:

GRANDEZZA	UNITÁ DI MISURA
Profondità	m
Pressioni	bar oppure psi
Gradienti di pressione	kg/cm²/10m
Temperature	°C
Pesi specifici	kg/l oppure g/l
Lunghezze	m
Pesi	tons oppure ql
Volumi	m³ oppure I
Diametri bit & casing	Inches
Peso materiale tubolare	lb/ft oppure Kg/m
Volume di gas	Smc
Plastic viscosity	Centipoise
Yeld & gel	g/100cm ²
Salinità	ppm oppure g/l di NaCl Equivalente
Profondità misurata (Measured Depth) da Tavola Rotary	mMD
Profondità Verticale Vera (True Vertical Depth) da Tavola Rotary	mTVD
Profondità Verticale Vera sotto il livello del mare (True Vertical Depth Subsea)	mTVDSS

2 PROGRAMMA GEOLOGICO

2.1 INQUADRAMENTO GEOLOGICO

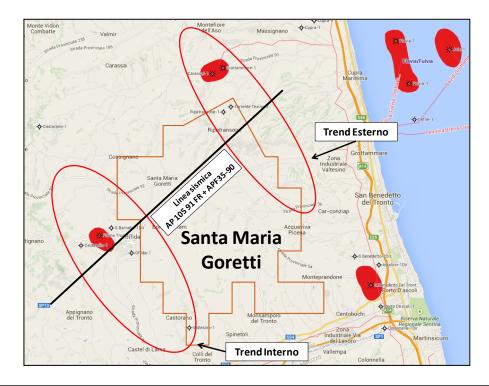
2.1.1 Schema strutturale regionale

L'area, oggetto dell'istanza di permesso Santa Maria Goretti, è situata nella parte centrale della Avanfossa pliocenica "Marchigiano-Abruzzese".

Il processo evolutivo che ha portato alla strutturazione di questo dominio geologico ha inizio a partire dal Liassico inf. con l'instaurarsi di una fase tettonica estensionale, collegata all'apertura dell'oceano Ligure-Piemontese, che ha provocato la disarticolazione del fondale marino in horst e graben.

Nei settori ribassati, come quello dell'area in esame, si sono deposti, sopra il Calcare Massiccio, successioni di tipo bacinale protrattesi fino al Pleistocene.

L'inizio dell'orogenesi appenninica (Oligocene-Miocene) provocherà una serie di accavallamenti lungo piani di sovrascorrimento con vergenza NE, riattivando in senso compressivo le precedenti faglie distensive.


L'avanfossa pliocenica "Marchigiano-Abruzzese" attiva durante tutto il Plio-Quaternario, ha dato luogo all'accumulo di enormi quantità di materiale detritico (fino a 7000m. nel bacino di Pescara).

Ad Ovest del permesso in superfice si evidenziano importanti strutture tettoniche, ad andamento meridiano (Montagna dei Fiori, Montagnone e Acquasanta), che, dall'analisi dei dati sismici, risultano presenti con le medesime direttrici anche nel sottosuolo dell'area in esame.

Da un punto di vista minerario, la parte occidentale del permesso S. M. Goretti è rappresentata da una struttura ad andamento NNW-SSE, denominata Trend Interno (**Fig.2.1**), con una serie torbiditica pliocenica alquanto traslata e complessa; su tale struttura, ad Ovest del permesso, si ha la presenza dei campi Fiume Tronto e Torretta.

Il pozzo Il Cancello 1 Dir, indagherà, nella parte nord-orientale del permesso, l'estremità meridionale della struttura ad anticlinale, orientata in senso NNW-SSE ed indicata come Trend Esterno (**Fig.2.1**). A Nord del permesso, su tale struttura, sono localizzati i campi di Grottammare e Carassai.

Pozzo II Cancello 1 Dir

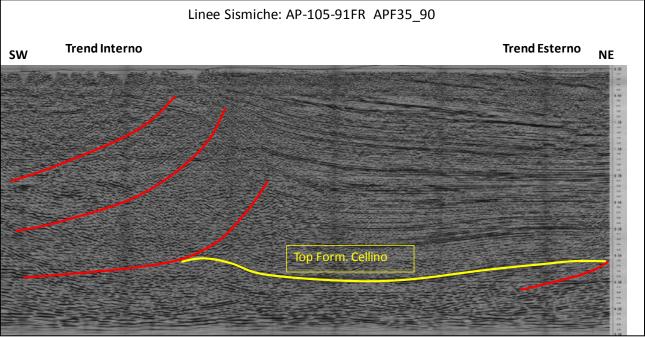


Figura 2.1: Interpretazione sismica del trend interno (occidentale) e del trend esterno (orientale)

2.1.2 Schema tettonico - stratigrafico

La successione sedimentaria affiorante in questo settore dell'Appennino marchigiano è rappresentata dalle unità della serie umbro-marchigiana, pressoché continua dal Trias superiore al Neogene, che nell'area più orientale è ricoperta in discordanza da sedimenti ancora marini depostisi tra il Pliocene medio e il Pleistocene inferiore.

Le successioni si sono sviluppate su una parte del margine continentale africano in continua evoluzione dal Triassico al Pleistocene; la tettonica sinsedimentaria ha condizionato in maniera determinante gli ambienti di sedimentazione, motivo per cui sono presenti importanti variazioni di facies e di spessori. La sedimentazione che caratterizza pressoché tutto l'intervallo Triassico- Eocene è essenzialmente carbonatica, e diviene di tipo prevalentemente terrigeno a partire dall' Oligocene.

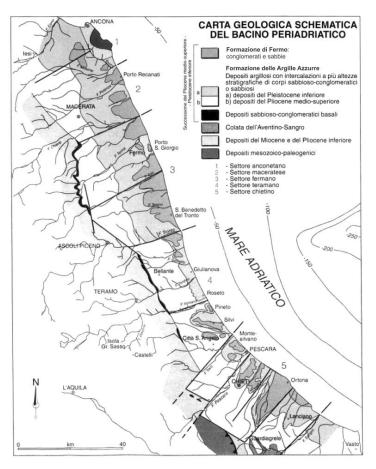


Figura 2.2

Durante il Miocene il bacino umbro-marchigiano è raggiunto dalle fasi di

compressione che migrando da ovest verso est modificano continuamente la morfologia del fondale (*sistema catena-avanfossa-avampaese*). Il bacino quindi assume progressivamente il carattere di avanfossa torbiditica, migrante verso est a spese dell'avampaese (*bacino umbro*, *bacino marchigiano interno* e *bacino marchigiano esterno*) e ubicata sul fronte della catena appenninica in evoluzione. Le torbiditi che colmano le avanfosse poggiano su sedimenti emipelagici di età sempre più recente verso l'esterno e segnano la progressiva migrazione della deformazione compressiva.

Il bacino marchigiano esterno, ove ricade l'area in esame, durante il Messiniano assume i caratteri di avanfossa torbiditica colmata dalla potente successione silicoclastica della *Formazione della Laga*, mentre al passaggio Messiniano-Pliocene è coinvolto nella strutturazione del sistema a *thrust* appenninico.

La sedimentazione marina continua con la deposizione delle *Argille Azzurre* (Pliocene-Pleistocene inferiore), in ambiente che varia da scarpata e a piattaforma continentale, ed è suturata dai depositi litorali della *Formazione di Fermo* (Pleistocene inferiore). Questa successione poggia con evidente *unconformity* su un substrato piegato ed eroso costituito dalla *Formazione della Laga* e, localmente, dalla *Formazione a colombacci*.

Durante il Pliocene-Pleistocene inferiore, l'attività tettonica ha condizionato l'assetto morfologico del *bacino marchigiano esterno* che, pur mantenendo una sua unitarietà d'insieme, si è articolato in cinque settori principali caratterizzati da una diversa evoluzione. Questi da nord a sud sono: *settore anconetano*, *settore maceratese*, *settore fermano*, *settore teramano* e *settore chietino*.

Nel settore anconetano (quello più rialzato) si avevano in generale minori tassi di sedimentazione con lacune sedimentarie assi estese nel tempo e marcate discordanze angolari tra i vari termini della successione, depositatasi in un generale ambiente di piattaforma. In questo settore si realizzava anche l'emersione di una porzione di dorsale sottomarina rappresentata dall'attuale rilievo del Monte Conero.

Il settore fermano (quello più depresso), era caratterizzato invece da una successione pelitica più continua e di maggior spessore (circa 3.000m), di ambiente generalmente batiale. Sul bordo esterno del settore, in corrispondenza

della dorsale di Porto S. Giorgio, dove si realizzava anche l'emersione di una porzione della dorsale, gli spessori sono più ridotti e l'ambiente meno profondo (neritico).

I settori maceratese, teramano e chietino, posti a livelli intermedi rispetto ai due precedenti, erano caratterizzati da un generale ambiente di piattaforma relativamente poco profondo e a prevalente sedimentazione argillosa nella quale si intercalavano tempestiti e depositi grossolani, talora rimaneggiati dal moto ondoso. Con la fine del Pleistocene inferiore tutta la fascia periadriatica marchigiano-abruzzese è emersa per effetto del sollevamento generalizzato che ha interessato l'Italia centrale con valori massimi fino a oltre 1000m e i depositi marini plio-pleistocenici hanno assunto il loro caratteristico assetto monoclinalico con immersione verso est.

Nell'area del pozzo affiorano terreni appartenenti alla *Formazione di Fermo*, del Siciliano (pleistocene inferiore) che poggia sopra le Argille Azzurre. Quest'ultima formazione corrisponde alle *Argille azzurre Auctorum*, riferibili a gran parte dei depositi del *ciclo sedimentario plio-pleistocenico*. La successione delle Argille Azzurre è delimitata alla base e al tetto da due superfici di discontinuità a carattere regionale: l'inferiore, ubicata alla base del Pliocene, la separa dalle sottostanti formazioni messiniane, quella di tetto costituisce il limite con la soprastante *Formazione di Fermo*. Nel suo insieme si tratta di una successione, prevalentemente pelitica, il cui spessore non supera i 3.000 m, in cui si intercalano, a varie altezze stratigrafiche, depositi clastici anche grossolani che costituiscono corpi composti, il cui spessore può raggiungere i 500 m.

Pozzo II Cancello 1 Dir

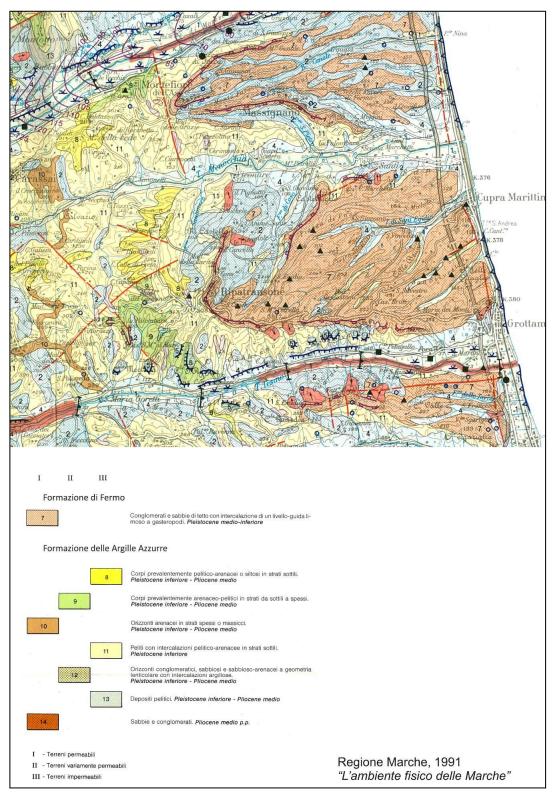


Figura 2.3

Pozzo Il Cancello 1 Dir

2.1.3 Stratigrafia

La successione stratigrafica nell'area del permesso, indagata dal sondaggio Il Cancello 1 Dir, sarà costituita dalle seguenti formazioni:

- Form. Del Cellino (Pliocene Inferiore) con alternanze di argille marnosesiltose e spesse bancate sabbiose prevalentemente quarzose;
- Form. Mutignano (Pliocene Medio e Superiore) è principalmente una sequenza argillosa ed argillosa-marnosa con modesti livelli sabbiosi, mentre al tetto di tale formazione si hanno delle intercalazioni di lenti conglomeratiche.
- Il Quaternario è rappresentato da argille più o meno sabbiose con la parte più superficiale caratterizzata da sabbie e ciottoli.

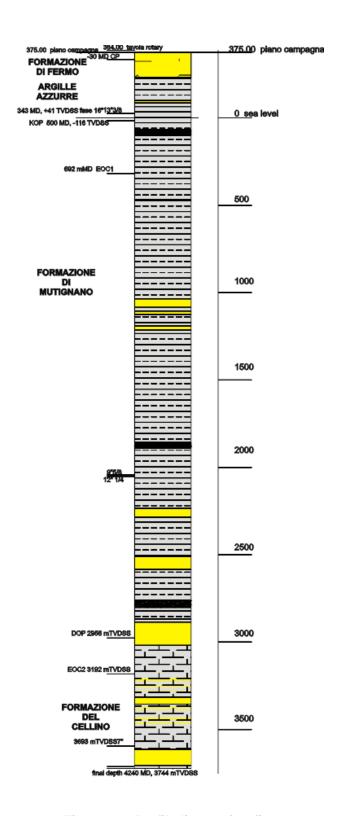


Figura 2.4: Profilo litostratigrafico

2.2 INTERPRETAZIONE SISMICA

L'interpretazione sismica della struttura all'interno del permesso S. M. Goretti è stata effettuata digitalizzando due linee sismiche pubbliche, la 6MC-3A (direzione NNW - SSE) e la 6MC-27-TER (direzione WSW - ENE).

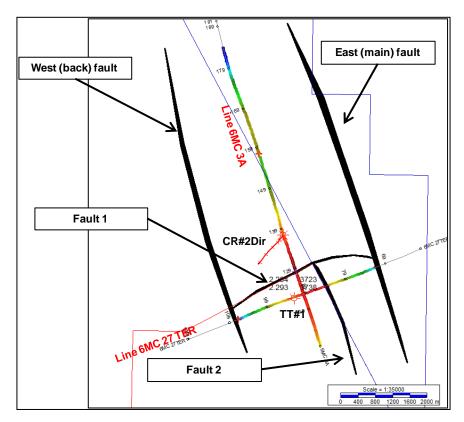


Figura 2.5

All'interno della Formazione Cellino sono stati interpretati i seguenti livelli: Top Thin Beds, Bottom Thin Beds, Top Livello I B e Top Livello IV. Tali livelli sono stati correlati ai tagli formazionali riscontrati nei pozzi Torrente Tesino 1 e 2 e Ripatransone 1.

La struttura è stata delimitate da due faglie principali ad E e ad W.

Inoltre sono state individuate due faglie a sud della struttura che separano un blocco all'interno del permesso SMG (fig. 2.5, Fault 1 e Fault 2).

Pozzo II Cancello 1 Dir

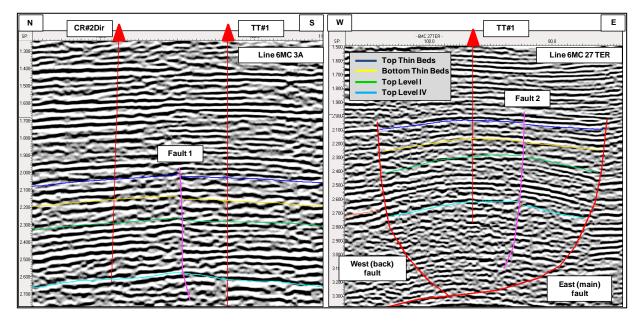


Figura 2.6: orizzonti e faglie interpretate

Il risultato delle varie interpretazioni ha portato alla definizione di tre superfici (fig.

2.7): Top Thin Beds, Bottom Thin Beds e Top Livello I B.

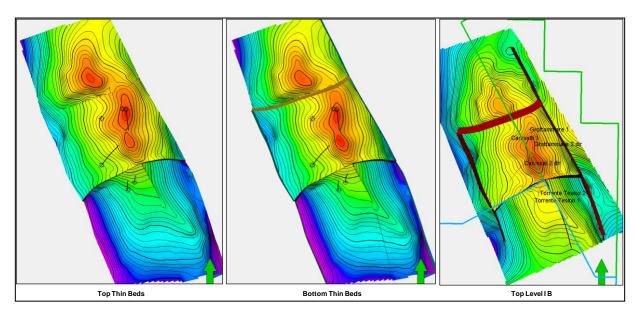


Figura 2.7: superfici ricavate dagli orizzonti interpretati

2.3 OBIETTIVI DEL POZZO

Il sondaggio Il Cancello 1 Dir ha lo scopo di investigare la parte sud della struttura anticlinalica fagliata che contiene i campi di Grottammare e Carassai; in particolar modo l'obiettivo è indagare il potenziale della sequenza Thin Beds che durante la perforazione del pozzo Torrente Tesino 2 ha mostrato importanti manifestazioni di gas (fig. 2.8)

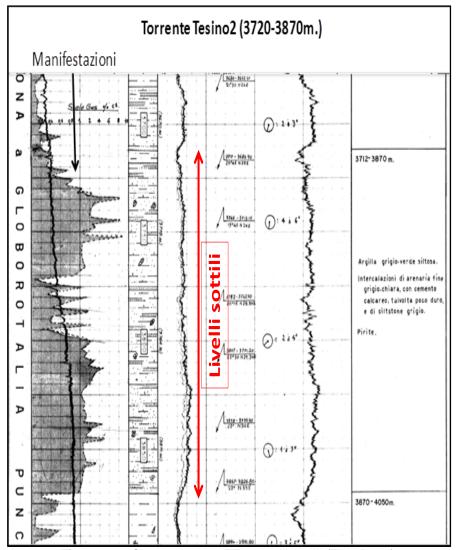


Figura 2.8: Composite Log TT 2, livelli sottili (Thin Beds)

Scopo secondario del sondaggio è rappresentato dal Livello I (A+B) del Pliocene Inferiore che è in produzione nel campo di Grottammare (**fig. 2.9**).

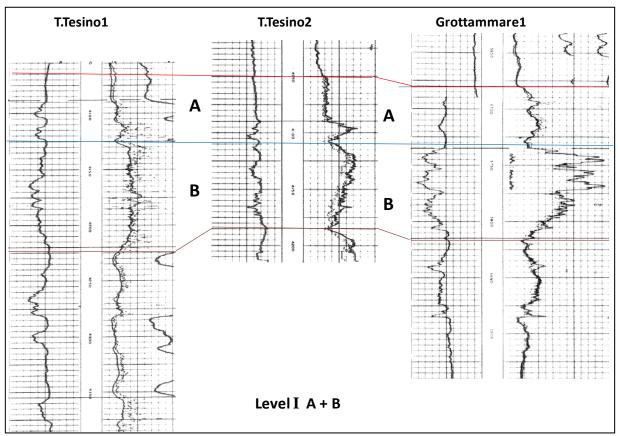


Figura 2.9: correlazione livello I su TT#1, TT#2 e Grottammare 1

2.4 PROFONDITA' TOTALE

Il sondaggio si fermerà alla profondità di 4240 m MD ossia alla profondità di 4128 m TVD – 3744 m TVDSS.

2.5 SISTEMA PETROLIFERO

2.5.1 Reservoir

I reservoir dell'area del permesso sono:

- I livelli sottili del Pliocene Inferiore individuati nei pozzi di TT ed indiziati a gas dall'analisi dei log
- Il Livello I (A+B+C) della Formazione Cellino (Pliocene Inf.) presente in tutti i pozzi dell'area.

2.5.2 Rocce madri

Il gas rinvenuto nei pozzi Grottammare 1 e 2dir, Carassai 1 e 2 dir è di origine biogenica generato nei livelli argillosi delle formazioni mioceniche e plioceniche.

2.5.3 Coperture

La copertura dei reservoir è costituita dall'ampia presenza di argille intercalate ai livelli sabbiosi pliocenici.

2.5.4 Trappole

Le trappole previste nell'area sono prevalentemente strutturali.

2.6 PROFILO LITOSTRATIGRAFICO PREVISTO

Il profilo litostratigrafico previsto per il pozzo Il Cancello 1dir e gli spessori delle diverse formazioni sono stati desunti sulla base dei dati dei pozzi presenti nell'area ed in particolare il pozzo Torrente Tesino 2.

Le profondità verticali espresse in metri sono riferite al livello P.C. = + 375,0 m slm.

Le profondità dei top formazionali hanno una tolleranza verticale di ± 10/15 m.

PC (m)	MD (m)	TVD (m)	TVDSS (m)	Età - Descrizione litologica
0	9	9	+375	Quaternario e Pliocene superiore . Argille più o meno sabbiose, con delle intercalazioni sabbiose,
2387	2396	2328	1944	e conglomerati nella parte del tetto
2387	2396	2328	1944	Pliocene medio . Intercalazioni di argille e sabbie
3290	3299	3198	2814	Thocene medio. Intercarazioni di argine è sabble
3290	3299	3198	2814	Pliocene inferiore . Alternanze di argille marnose e di sabbie. All'interno di questa serie c'è il
4231	4240	4128	3744	reservoir.

2.7 RISCHI IN FASE DI PERFORAZIONE

Dall'interpretazione sismica la traiettoria del pozzo non interseca faglie rilevanti.

Non esistono rischi legati alla composizione litologica delle successioni attraversate.

Durante l'eventuale perforazione del livello I si potrebbero riscontrare pressioni inferiore alle attese nel caso di continuità con il campo di Grottammare.

II Cancello 1 Dir	mMD	mTVD	mTVDSS	INCL (deg)	DLS (deg/30m)
Tavola Rotary	0	0	+384	0	0
Piano Campagna	9	9	+375	0	0
20" Tubo Guida	30	30	+354	0	0
Livello Mare	384	384	0	0	0
Colonna 13-3/8"	425	425	41	0	0
Fase 16"	435	435	51	0	0
КОР	500	500	116	0	0
EOC 1	692	689	306	16	2.5
TOL	2400	2331	1947	16	0
Colonna 9-5/8"	2500	2427	2043	16	0
Fase 12-1/4"	2510	2437	2053	16	0
DOP	3449	3340	2956	16	0
EOC 2	3689	3576	3192	0	2
Inizio Possibile Anomalia di Pressione fino a TD	4132	4019	3635	0	0
Liner 7"	4196	4084	3700	0	0
Profondità Finale	4240	4128	3744	0	0

MD: Measured Depth: profondità misurata da tavola rotary

TVD True Vertical Depth: profondità verticalizzata da tavola rotary

TVDSS True Vertical Depth Subsea: profondità verticalizzata da livello mare

2.8 POZZI DI RIFERIMENTO

Tutti i pozzi perforati nell'area presentano una stratigrafia correlabile; per il pozzo Il Cancello 1 Dir, il principale riferimento è il pozzo Torrente Tesino 2 ubicato a sud-ovest del sondaggio, all'interno del permesso Santa Maria Goretti.

POZZI PERFORATI NELL'AREA				
Pozzo	Anno	Profondità	Esito	
Torrente Tesino 1	1970	4233 m	Dry	
Carassai 1	1972	4600 m	Gas	
Grottammare 1	1973	4476 m	Gas	
Torrente Tesino 2	1974	4210 m	Dry	
Carassai 2	1975	4539 m	Gas	
Ripatransone 1	1983	4936 m	Dry	
Grottammare 2	1983	3863 m	Gas	

2.9 GEOLOGIA OPERATIVA

2.9.1 INTRODUZIONE

Il pozzo appraisal Il Cancello 1 Dir sarà perforato per indagare il potenziale minerario dei livelli sottili e del Livello I (unità A e B) del Pliocene Inferiore, il profilo pozzo è stato progettato ad S con un angolo massimo di 15,54° N26,46° a 586mMD e penetrare così verticalmente i due obiettivi in culminazione strutturale.

Il pozzo di riferimento per i livelli sottili è Torrente Tesino 2 (Elf-1973); mentre per il Livello I i pozzi di riferimento sono Grottammare 1 (Elf-1973), Torrente Tesino 1 (Fina-1969) e Torrente Tesino 2 (Elf-1973).

2.9.2 OBIETTIVI

Gli obiettivi del Programma di Geologia Operativa sono:

- assicurare che tutte le operazioni inerenti alla Geologia Operativa contemplino e rispettino le norme di sicurezza stabilite dalla Committente;
- supportare l'Unità di Perforazione durante tutte le operazioni di perforazione del pozzo;
- Controllare l'efficienza dei servizi: Surface Logging, Bottom Hole Coring, Logging While Drilling e Wireline Logging;
- Controllare la qualità (QC) dei dati prodotti
- Evidenziare la presenza di idrocarburi e la saturazione negli intervalli serbatoio;
- determinare la natura e l'età della sezione perforata;
- monitorare i parametri essenziali per il funzionamento in sicurezza del pozzo, specificamente le pressioni della formazione (pressione dei pori);
- determinare il legame tra i dati sismici e i dati del pozzo.

2.9.3 SERVIZI DI MONITORAGGIO GEOLOGICO

Un geologo della Committente sarà presente in loco nei punti critici del pozzo, quali:

- la definizione del settaggio delle colonne;
- il monitoraggio delle fasi obiettivo con controllo costante del campionamento, delle manifestazioni di gas e della spedizione puntuale della documentazione di pozzo via posta elettronica alle parti interessate.
- la definizione del coring point; l'assistenza delle fasi di carotaggio, estrazione, descrizione, preservazione e spedizione della carota;
- la definizione della profondità totale del pozzo;
- l'assistenza alla registrazione dei log wireline finali, con particolare attenzione all'acquisizione delle misure di pressione, se richieste.

Durante tutte le altri fasi della perforazione del pozzo, lo stesso geologo redigerà un Rapporto Geologico Sommario Giornaliero che invierà secondo una lista di distribuzione stabilita dalla Committente. Sarà anche responsabile della raccolta, convalidazione e distribuzione di tutti i dati di surface logging, deviazione e quant'altro venga prodotto in cantiere e non distribuito dall'Unità di Perforazione. Vedere anche Figura 2.10 (Acquisition Master Plan).

2.9.4 SURFACE LOGGING

Una unità di mud logging sarà operativa con due data engineer e due mud logger nelle sole fasi di perforazione del pozzo, dalla superficie (fase 16in) sino alla profondità totale (fase 8-½"). Nelle restanti fasi di discesa e cementazione colonne, log e completamento, il servizio sarà ridotto ed eseguito dai due data engineer.

Il servizio di surface logging comporterà:

- di prelevare, preparare e confezionare i ditch cutting secondo il programma di campionamento stabilito dalla Committente;
- di monitorare e raccogliere campioni del fango di perforazione;
- di monitorare e riportare i parametri di perforazione;
- di rilevare e valutare la pressione dei pori;
- di acquisire ed interpretare i dati di perforazione in tempo reale;

Pozzo Il Cancello 1 Dir

- di ottimizzare la fase di perforazione, limitandone i problemi (riducendo i costi ed aumentando la sicurezza);
- di individuare e caratterizzare la presenza di idrocarburi e valutare le proprietà di giacimento.

2.9.4.1 Programma di campionamento

Campione umido (2 set)

- Ogni 20m, da 30m a 3299m (base Pliocene Medio).
- Ogni 5m, da 3299m a 4240m (profondità totale).

Campione secco (2 set)

- Ogni 20m, da 30m a 3299m (base Pliocene Medio).
- Ogni 5m, da 3299m a 4240m (profondità totale).

La frequenza di campionamento, durante tutte le fasi, potrà essere temporaneamente aumentata in seguito a manifestazioni di idrocarburi significative, a discrezione del geologo della Committente.

Inoltre, durante la fase 8-½", un infittimento a 3m comincerà 15m sopra i top degli obiettivi previsti.

2.9.4.2 Confezionamento dei campioni

- Il campione umido, nella quantità di 250g, dovrà essere confezionato in sacchetti di stoffa o polietilene.
- Il campione secco, nella quantità di 100g, dovrà essere confezionato in buste di carta/cartoncino o sacchetti di polietilene.

2.9.4.3 Etichettatura dei campioni

Tutti i campioni dovranno essere etichettati con un'etichetta resistente all'acqua e pennarelli neri, come segue:

 Committente APN (acronimo di Apennine Energy S.p.A.).

Nome del pozzo
 LCN1D (acronimo di Il Cancello 1 Dir).

Intervallo di profondità
 0000 – 0000 mMD.

Pozzo Il Cancello 1 Dir

Data

GG / MM / AAAA.

2.9.4.4 Spedizione dei campioni

A fine pozzo, tutti i campioni dovranno essere adeguatamente imballati ed inviati al seguente indirizzo:

Apennine Energy S.p.A. / Via Angelo Moro, 109 / 20097 San Donato Milanese – MI

Ovvero, un set completo di:

- campione umido in casse di legno o contenitori di plastica.
- campione secco in scatole di cartone plastificate o contenitori di plastica.

Un elenco dettagliato dei campioni dovrà essere allegato alla spedizione ed una copia dovrà essere inviata al Dipartimento Esplorazione, attenzione Dr. Cesare Introzzi, in San Donato Milanese a mezzo geologo della Committente.

Le casse / scatole dovranno essere etichettate nella loro parte superiore e laterale, come segue:

• Committente APN (acronimo di Apennine Energy S.p.A.).

Nome del pozzo
 LCN1D (acronimo di Il Cancello 1 Dir).

• Tipo di campione Umido o secco

Intervallo di profondità
 Data
 GG / MM / AAAA.

2.9.4.5 Preparazione e descrizione dei campioni

Prima della descrizione, i campioni dovranno essere accuratamente lavati. È necessario fornire una descrizione dettagliata della litologia e delle manifestazioni degli idrocarburi. Dovrà essere utilizzata la nomenclatura standard della Committente.

Litologia:

descrizione generale e cioè tipo di roccia, di colore, ecc;

Pozzo Il Cancello 1 Dir

- mineralogia;
- porosità visiva.

Manifestazioni:

- grado e colore dell'olio;
- grado e colore della fluorescenza diretta;
- fluorescenza indiretta;
- gas totale, cromatografia / composizione del gas.

Se vengono prelevate carote di fondo e/o carotine di parete, dovrà essere redatto un rapportino dedicato come da standard della Committente ed evidenziare quanto segue:

- intervallo di profondità;
- percentuale (%) del recupero o dimensione;
- descrizione litologica;
- fluorescenza diretta;
- fluorescenza indiretta.

2.9.4.6 Campionamento del fango di perforazione

Il campione di fango di perforazione sarà prelevato dal Possum Belly in contenitori di plastica ed etichettati con pennarelli indelebili come segue:

 Committente APN (acronimo di Apennine Energy S.p.A.).

Nome del pozzo
 LCN1D (acronimo di Il Cancello 1 Dir).

Intervallo di profondità 0000 – 0000 mMD.
 Data GG / MM / AAAA.

2.9.4.7 Calibrazione e controllo dell'attrezzatura

- Calibrare il total gas detector ed il gas cromatografo ogni 48 ore, utilizzando il gas test standard.
- Rilasciare quotidianamente del carburo in pozzo per verificare il lag time.
- Calibrare regolarmente i sensori.

Pozzo Il Cancello 1 Dir

Eseguire quotidianamente il backup del database.

2.9.4.8 Documentazione cartacea e dati digitali

Il personale di surface logging fornirà quotidianamente, prima delle ore 07:00 a mezzo geologo della Committente, quanto segue:

- copia cartacea del Master Log in scala 1:1000MD/TVD ed in formato PDF;
- copia cartacea del Gas Ratio Log in scala 1:1000MD/TVD ed in formato PDF;
- copia cartacea del Drilling Log in scala 1:1000MD ed in formato PDF;
- copia cartacea del Daily Geological Report ed in formato XLS;
- data depth in formato XLS;
- data time in formato XLS;
- Copia cartacea delle calibrazioni eseguite.

2.9.4.9 Etichettatura dei dati digitali

L'etichettatura dei dati digitali dovrà essere strutturata come segue:

- LCN1D_DGR_00_AAAAMMDD;
- LCN1D_MasterLog_0000-0000m_1000MD;
- LCN1D_MasterLog_0000-0000m_1000TVD;
- LCN1D_GasRatioLog_0000-0000m_1000MD;
- LCN1D_GasRatioLog_0000-0000m_1000TVD;
- LCN1D_DrillingLog_0000-0000m_1000MD;
- LCN1D_DataDepth_0000-0000m;
- LCN1D_DataTime_YYYYMMDD.

Dove:

LCN1D è l'acronimo del pozzo Il Cancello 1 Dir;

• **DGR** è l'abbreviazione del rapporto geologico giornaliero;

00 è il numero progressivo del DGR;

 YYYYMMDD è rispettivamente l'anno, il mese ed il giorno di riferimento;

Pozzo II Cancello 1 Dir

0000-0000 è l'intervallo registrato in metri (senza decimali);

• **1000MD** è la scala profondità misurata;

• 1000TVD è la scala profondità verticalizzata;

Ad operazioni concluse, un rapporto di fine pozzo (End of Well Report) dovrà essere prodotto dalla Contrattista ed essere spedito alla Committente in un tempo ragionevole, ma comunque non oltre le due settimane di tempo.

2.9.5 BOTTOM HOLE CORING

2.9.5.1 Objettivi

Caratterizzazione petrografica e petrofisica dei livelli sottili del Pliocene Inferiore.

Gli obiettivi del carotaggio sono quelli di prelevare una carota indisturbata per sottoporla ad analisi di laboratorio SCAL, per determinare le facies deposizionali e per eseguire studi di stratigrafia.

Le procedure di carotaggio vengono qui riportate per tentare di ottenere carote rappresentative evitando danni meccanici ed alterazioni chimiche sia nella fase di prelievo che in quella di manipolazione della carota stessa.

La Perforazione potrà, a suo giudizio, modificare e/o migliorare tali procedure in virtù di nuove metodologie di prelievo ed inserire dettagli tecnici sull'attrezzatura.

2.9.5.2 Determinazione del coring point

La carota di fondo verrà prelevata in presenza di manifestazioni di gas nella sequenza dei livelli sottili (Thin Beds) del Pliocene Inferiore.

Il coring point, o inizio carotaggio, sarà deciso dopo l'attraversamento della parte sommitale dell'obiettivo primario ad una distanza di circa 110m dal proprio top e cioè da ± 3900m a ± 3927m nei sottolivelli TB4 e TB5. La lunghezza della carota sarà di 27m (carotiere triplo).

Il prelievo di un'ulteriore carota di fondo potrebbe essere richiesta dalla Committente in caso di importanti e significative manifestazioni di gas nel reservoir.

Il programma di carotaggio potrà essere ridotto ad una singola carota di 9m nel caso in cui le manifestazioni di gas siano inferiori a quelle del pozzo di riferimento Torrente Tesino 2.

2.9.5.3 Requisiti generali

- Superficie esterna della carota liscia, non degradata, con pannello molto sottile e facilmente rimovibile.
- Carota indisturbata.
- Carota il meno possibile invasa.
- Carota con nessuna modifica mineralogica e/o chimica: in particolare l'ossidazione e/o disidratazione delle argille.
- Corretta profondità della carota sui log wireline.
- Possibilità di stabilizzare la carota, mediante resina (o schiuma o gesso).
- Analisi della carota effettuata il più rapidamente possibile.
- Caratterizzazione dei componenti del fluido di perforazione ed additivi.
- Trasporto della carota in condizioni controllate.
- Lunghezza della carota: 27 metri.
- Dimensione della carota: 4 pollici.
- Curve dei parametri di carotaggio in formato XLS.

2.9.5.4 Requisiti tecnici

- Il sistema di carotaggio deve poter conservare inalterate le proprietà petrofisiche della carota. Siccome sono previste arenarie fini parzialmente friabili intercalate con argille siltose e siltiti, è necessario utilizzare un sistema di carotaggio a chiusura completa.
- La scarpetta di carotaggio PDC (Polycrystalline Diamond Compacts) da 8-½" dovrà essere a bassa invasione in modo da ottenere il minimo contatto fra fango di perforazione e carota, dovrà evitare il degrado della parte esterna della carota stessa e prevenire inceppamenti.
- Il tubo interno (inner tube) del carotiere da 4-3/4" x 4-1/4" dovrà essere in alluminio, più rigido e non inquinante (per inalazione) del fiberglass.

Dovrà inoltre predisporre di almeno una valvola di sovrappressione per evitare il danneggiamento della carota per l'espansione del gas durante l'estrazione in superficie del carotiere.

2.9.5.5 Parametri di carotaggio

- Spezzonare adeguatamente la batteria di perforazione in modo da non dovere fare un'aggiunta asta/lunghezza durante il carotaggio.
- Circolare il bottom up per circa 30 minuti prima di iniziare il carotaggio.
- Mantenere costanti i parametri di bassa invasione durante tutta la fase di carotaggio.
- Mantenere bassa la portata delle pompe ad un regime di 80-100 GPM per non "lavare" la sabbia.
- Mantenere moderata la rotazione ad un regime di 80-90 RPM per minimizzare il movimento di oscillazione.
- Mantenere costante il peso sullo scalpello e la torsione in modo da facilitare l'inserimento della carota nel carotiere.
- Vigilare costantemente i parametri di perforazione, perché una variazione della torsione, della pressione delle pompe o del peso sullo scalpello possono indicare un inceppamento della carota nel carotiere.
- Non circolare il bottom up una volta terminato il carotaggio.
- Non ruotare il carotiere con il top drive durante la manovra di estrazione.

2.9.5.6 Velocità di estrazione della batteria di carotaggio

Una velocità controllata di estrazione del carotiere è essenziale per non alterare la qualità strutturale della carota e facilitare l'espansione lenta del gas, minimizzando così il suo danneggiamento.

La velocità di estrazione può essere verificata come dalla tabella sottostante:

Prime 5 lunghezze	Lenta	: 5-7minuti per lunghezza	± 275m/hr
Estrazione generale	Più lenta del normale	: ± 3 minuti per lunghezza	< 610m/hr
Da 600m a 150m	Lenta	: 5-7 minuti per lunghezza	± 275m/hr
Da 150m a piano sonda	Molto lenta	: 15 minuti per lunghezza	± 140m/hr

Urti verticali improvvisi alla batteria di carotaggio possono provocare danni consistenti alla carota. Evitare di ruotare il carotiere durante la disconnessione delle lunghezze.

2.9.5.7 Osservazioni

- Debbono essere riportati i dati di avanzamento e gli eventuali problemi riscontrati durante il carotaggio. La Contrattista deve presentare un listato dei parametri di carotaggio per ogni carota prelevata, includendo commenti su eventuali difficoltà incontrate durante l'operazione.
- I campioni di fango di perforazione debbono essere prelevati dal pozzo di aspirazione immediatamente prima del carotaggio e circa 45 minuti dopo l'inizio del carotaggio. Tali campioni debbono essere inviati al laboratorio di analisi insieme alle carote. Per le quantità da prelevare, attenersi alla tabella sottostante:

Fango non circolato	1 – 2 litri	in contenitori di plastica
Fango circolato	1 – 2 litri	in contenitori di plastica
Additivi solidi	50 grammi	in contenitori di plastica
Additivi liquidi	0,1 litri	in bottiglie di vetro

Un elenco completo dei componenti del sistema fango di perforazione ed additivi con le loro composizioni chimiche, deve essere inviata assieme ai campioni di fango ai laboratori.

2.9.5.8 Manipolazione del carotiere e della carota in superficie

Dovranno essere attuate particolari procedure di manipolazione del carotiere e della carota in superficie per evitare danni meccanici alla stessa.

 Rimuovere sul piano sonda il tubo interno di 27m dal carotiere ed adagiarlo orizzontalmente sulla passerella mediante un supporto rigido tipo slitta ed una gru, evitando così piegamenti del tubo interno e

ruotandolo di 180° in modo da poter analizzare la carota dalla parte superiore a quella inferiore.

- Pulire con un panno asciutto l'intero tubo interno e marcarlo da cima a fondo con pennarelli rossi e neri (rosso a destra, guardando dal basso verso l'alto). Tale operazione verrà svolta dal mud logger.
- Individuare il top della carota e tagliare in quel punto il tubo interno con una sega circolare ad aria per evitare qualsiasi contaminazione della carota da fluidi.
- Misurare e marcare ogni metro del tubo interno, cominciando dalla sua parte superiore. Tale operazione verrà svolta dal mud logger.
- Etichettare ogni metro con la profondità appropriata nella parte superiore ed inferiore e contrassegnare ogni sezione con il nome del pozzo, il numero della carota e il numero della sezione. Tale operazione verrà svolta dal mud logger.
- Passare su tutta la lunghezza del tubo interno lo strumento Gamma Ray per un immediato riconoscimento litologico ed una successiva messa in profondità della carota sui log wireline.
- Tagliare con una sega circolare ad aria e lama diamantata le sezioni metriche precedentemente marcate.
- Prelevare dei campioni di carota da ogni sezione tagliata e descriverla come da procedure della Committente.
- Coprire la sezione inferiore di ogni sezione con un cappuccio di gomma forata e fissarlo temporaneamente con del nastro adesivo al tubo interno in modo da lasciare drenare il fluido di perforazione sul piano inclinato (circa 10°) della resinazione.
- Resinare ogni sezione metrica del tubo interno attraverso il foro del cappuccio di gomma ed attendere l'essicazione della stessa (circa 15 minuti).
- Sostituire il cappuccio di gomma forata con un tappo senza foro e fissarlo con una fascetta e del nastro adesivo al tubo interno.
- Eseguire la stessa operazione per la parte opposta della sezione.

 Riporre gli spezzoni del tubo interno così resinati nelle apposite casse di legno adibite al trasporto ed etichettarle con il nome della Committente ed il nome del pozzo. Alcune Contrattiste mettono a disposizione dei minicontainer in plastica (capacità 18m di carota) con delle sagome di polistirolo modellate appositamente per ricevere il pezzo di un metro del tubo interno di alluminio.

2.9.5.9 Documentazione di cantiere

- Sul rapporto giornaliero di perforazione devono essere riportati i seguenti dati: numero della carota prelevata, metri carotati, spiegazione della fine del carotaggio e metri recuperati. Una descrizione dettagliata della carota e i parametri di carotaggio saranno distribuiti via posta elettronica a tutte le parti interessate.
- Il mud logger dovrà fornire al geologo della Committente quanto segue: dettagli dei campioni di fango di perforazione prelevati con ordine progressivo, orario e profondità del prelievo, nonché il rapporto giornaliero del mud engineer (daily mud report).

Si rimanda al Protocollo di Carotaggio della Contrattista per i particolari tecnici della batteria di carotaggio e sulla preservazione della carota per la successiva spedizione della stessa al laboratorio di analisi.

2.9.6 LOGGING WHILE DRILLING

Il servizio è in fase di assegnazione.

Durante la perforazione della fase 8-1/2", sarà acquisito un gamma ray in realtime.

Raggiunta la profondità finale ed estratta la batteria di perforazione, i dati memory dovranno essere recuperati e messi a disposizione della Committente nel più breve tempo possibile.

Lo scopo del servizio è quello di un monitoraggio while drilling dell'intera sezione obiettivo ed in particolare la sequenza dei livelli sottili per la determinazione del coring point.

Pozzo Il Cancello 1 Dir

Il sensore GR dovrà essere posto il più vicino possibile allo scalpello (near-to-the-bit).

2.9.7 WIRELINE LOGGING

Il servizio è in fase di assegnazione.

Per meglio definire le suite di log, è stato qui scelto l'uso di mnemonica Weatherford.

• Diametro del foro 8-1/2"

• Intervallo di registrazione 3300,0 – 4240,0 m MD

Lunghezza dall'intervallo di registrazione
 940 m MD

Tipo del fango di perforazione
 FW-KC-GL-SIL

Densità del fango di perforazione
 1,20 – 1,30 kg/l

Temperatura di fondo pozzo 79°C

Età Pliocene Medio – Inferiore

Litologia Argille e sabbie/arenarie

Obiettivo primario Livelli sottili

Obiettivo secondario
 Livello I – Unità A

Suite 1 – Run 1 – Discesa 1	Combina	Combinazione dell'attrezzatura con relative lunghezze e distanza dei sensori dallo zero della combinazione							
	HFS:	Compact Hole Finder	0,24m	RILD:	Deep Induction	0,79m			
	MAI:	Compact Induction	3,83m	RILM:	Medium Induction	0,79m			
	MFE:	Compact Focussed Electric	5,68m	VEC0:	Shallow Induction	0,79m			
	MSS:	Compact Sonic	9,50m	FEFC:	Shallow FE	4,18m			
Quad Combo Array	SKJ:	Compact Knuckle Joint	10,16m	DT35:	Compensated Sonic	5,79m			
MAI/MFE/MSS/MPD/MDN/MCG	MPD:	Compact Density/Caliper	13,08m	PDPE:	PE	10,33m			
Max OD: 62mm	MDN:	Compact Neutron	14,61m	DEN:	Compensated Density	10,35m			
	MCG:	Compact Comms Gamma	17,26m	CLDC:	Density Caliper	10,94m			
	SHA:	Compact Swivel Head Adaptor	17,96m	NPRL:	Neutron Porosity	13,15m			
	MTA:	Compact Tool Adaptor	18,43m	CGXT:	External Temperature	14,23m			
	MCC:	Tension Cablehead	19,16m	GRGC:	Gamma Ray	15,12m			

- MAI è l'attrezzo array induction che produce cinque profondità di investigazione a 20in, 30in, 40in, 60in e 85in.
- > MFE è l'attrezzo shallow-focused electric che fornisce misure di resistività ad alta risoluzione verticale e bassa profondità di investigazione.
- > MSS è l'attrezzo Sonic che misura il ritardo compressionale della formazione a cinque spaziature con 1ft e 2ft di risoluzione verticale.
- MDP è l'attrezzo photodensity che fornisce massa volumetrica, diametro del foro e fattore fotoelettrico (Pe) per determinare la litologia e la porosità.
- > MDN è l'attrezzo dual neutron che fornisce la porosità.
- ▶ MCG è l'attrezzo gamma ray che combina gamma ray, temperatura e casing-collar locator (CCL).

La temperatura massima di fondo pozzo è prevista essere di 79°C (vedi Figura 2.11, Log di Temperatura del pozzo Torrente Tesino 1).

La repeat section dovrà essere eseguita dal fondo pozzo in risalita, prima del main pass (condizioni di foro permettendo).

La repeat section dovrà essere di 60m (200ft) almeno per tutte le curve in registrazione.

La messa in profondità deve essere eseguita con la colonna 9-% in.

La presentazione sui log deve seguire lo standard Weatherford/Apennine Energy.

Suite 1 - Run 1 - Discesa 2

Combinazione dell'attrezzatura con relative lunghezze e distanza dei sensori dallo zero della combinazione

Pozzo Il Cancello 1 Dir

	HFS:	Pressure Bung + Hole Finder	0,28m	GRGC:	Gamma Ray	7,92m
	MIE:	Compact Electrode Section	4,53m			
	MIM:	Compact Memory Section	5,95m			
CMI/GR	MIS:	Compact Inline Bowspring sub	7,69m			
(Max OD: 104mm)	MCG:	Compact Comms Gamma	10,34m			
	SHA:	Compact Swivel Head Adaptor	11,04m			
	MTA:	Compact Tool Adaptor	11,51m			
	MCC:	Tension Cablehead	12,24m			

> CMI è l'attrezzo micro imager che acquisisce l'immagine elettrica della formazione.

L'attrezzo dispone di 8 pattini: 4 superiori e 4 inferiori indipendenti.

Nota: la discesa di questo attrezzo è condizionata ad indicazioni positive (Thin Beds) e all'esigenza di un'analisi per livelli sottili (TLA).

Suite 1 – Run 1 – Discesa 3	Combina	Combinazione dell'attrezzatura con relative lunghezze e distanza dei sensori dallo zero della combinazione							
	HFS:	Compact Hole Finder	0,24m	GR:	Gamma Ray	2,48m			
	MFT:	Compact Repeat Formation Tester	4,41m	CGXT:	External Temperature	2,48m			
MFT/GR	MCG:	Compact Comms Gamma	7,06m						
(Max OD: 89mm)	SHA:	Compact Swivel Head Adaptor	7,76m						
	MTA:	Compact Tool Adaptor	8,23m						
	MCC:	Tension Cablehead	8,96m						

> MFT è l'attrezzo formation pressure tester che acquisisce misure di pressione della formazione.

L'acquisizione delle misure di pressione avverrà in discesa.

Il numero e la profondità delle stazioni sarà fornita subito dopo l'acquisizione e la valutazione mineraria del log Quad Combo Array.

Nota: questa discesa è contingente all'esito minerario del pozzo ed alla valutazione della permeabilità dei livelli IA e IB.

Suite 1 – Run 1 – Discesa 4	Combinazione dell'attrezzatura con relative lunghezze e distanza dei sensori dallo zero della combinazione						
	BUL:	Bul Plug	0,05m	AM3F:	Amplitude 3ft	2,49m	
	CEN:	Roller Centralizer	1,42m	TM3:	Travel Time 3ft	2,49m	
	HBB:	Compensated Sonic	6,04m	XY5:	XY Signature 5ft	2,79m	
	CEN:	Roller Centralizer	7,41m	GR:	Gamma Ray	9,46m	
HBC-UGR-CCL	FTP:	Flexible Joint	8,46m	CCL:	Collar Locator	11,93m	
	UGR:	Gamma Ray	9,86m				
(Max OD: 86mm)	WCC:	Communication Cartridge	11,26m				
	CCL:	Casing Collar Locator	12,18m				
	SWH:	Swivel Head	13,01m				
	XOV:	Crossover	13,32m				
	CBH:	Cablehead	14,05m				

> HBC è l'attrezzo high-resolution borehole compensated sonic che misura la velocità acustica del cemento per una valutazione della cementazione.

La discesa viene effettuata per valutare la cementazione eseguita alle spalle della colonna da 9-%in.

La registrazione cesserà dopo 100m dal top del cemento (TOC), mentre il gamma ray proseguirà la registrazione sino a superficie.

Nota: lo stesso attrezzo sarà disceso, in caso di successo minerario del pozzo, per valutare la cementazione del liner da 7in.

Suite 1, Run 1, Discesa 5	Combinazione dell'attrezzatura con relative lunghezze e distanza dei sensori dallo zero della combinazione				
VSP Check Shot					

> GR è l'attrezzo gamma ray ed è usato per correlazione.

> GR è l'attrezzo gamma ray ed è usato per correlazione.

> UGR è l'attrezzo universal gamma ray che misura la radioattività naturale in pozzo ed è usato per correlazione.

> CCL è l'attrezzo casing collar locator.

Pozzo Il Cancello 1 Dir

Il servizio sismica di pozzo sarà eseguito registrando stazioni da fondo pozzo ogni 80m sino alla più superficiale stazione attendibile, con geofono ASR-1 (advanced seismic receiver) in pozzo e vibratore in superficie posto a ± 50m da centro pozzo e con azimuth da valutare in fase di acquisizione.

Nota: questa discesa è contingente all'esito minerario del pozzo

2.9.7.1 Copie cartacee

Deve essere rilasciata in cantiere una copia cartacea a colori di ciascun log registrato ed alle scale di 1:200 (MD / TVD) e 1:1000 (MD / TVD). Le rimanenti due copie dovranno essere direttamente spedite da Weatherford al Dipartimento Esplorazione, attenzione Dr. Cesare Introzzi, presso la sede della Committente in San Donato Milanese.

Su richiesta della Committente, dovranno essere disponibili copie cartacee addizionali, alle condizioni previste dal contratto.

2.9.7.2 Dati digitali

Un file in formato LIS/DLIS o LAS con tutte le curve presentate nelle copie finali, dovrà essere preparato in loco e consegnato al geologo della Committente per poi essere trasmesso via posta elettronica alle parti interessate.

È inoltre richiesto un CD-Rom in formato LIS/DLIS per ciascuna discesa registrata. Il CD-Rom dovrà essere organizzato per file, in cui ciascuno di essi sarà correlato ad un differente servizio (nel caso di combinazioni di attrezzi nella stessa discesa). Ciascun file sarà organizzato poi per sub-file da correlarsi agli attrezzi discesi. L'etichettatura dei file dovrà includere il nome del pozzo, la data di registrazione, l'intervallo registrato ed il nome del servizio eseguito (vedere prossimo paragrafo per le modalità di etichettatura). Il CD-Rom dovrà essere corredato dalle presentazioni cartacee finali.

Pozzo Il Cancello 1 Dir

2.9.7.3 Etichettatura dei dati digitali

L'etichettatura dei dati digitali dovrà essere strutturata come segue:

- LCN1D_08.50inHole_MAI/MFE/MSS/MPD/MDN/MCG_LogData_0000-0000m.
- LCN1D_08.50inHole_MAI/MFE/MSS/MPD/MDN/MCG_LogPlot_0000-0000m_200MD.
- LCN1D_08.50inHole_MAI/MFE/MSS/MPD/MDN/MCG_LogPlot_0000-0000m_200TVD.
- LCN1D_08.50inHole_MAI/MFE/MSS/MPD/MDN/MCG_LogPlot_0000-0000m_1000MD.
- LCN1D_08.50inHole_MAI/MFE/MSS/MPD/MDN/MCG_LogPlot_0000-0000m_1000TVD.

Dove:

•	LCN1D	è l'acronimo del pozzo II Cancello 1
	Dir.	
•	08.50inHole	è la sezione di foro registrata.
•	MAI/MFE/MSS/MPD/MDN/MCG	è l'acronimo dei log registrati.
•	Log Data / Log Plot	è il tipo di dato registrato.
•	0000-0000m	è l'intervallo registrato.
•	200MD / 1000MD	è la scala profondità misurata.
•	200TVD / 1000TVD	è la scala profondità verticalizzata.

Pozzo II Cancello 1 Dir

2.9.8 LISTA DEI CONTATTI

Nominativo	Posizione	Cellulare	Indirizzo di Posta Elettronica
Luca Madeddu	uca Madeddu Presidente Amministratore Delegato		luca.madeddu@apn-energy.com
Leonardo Spicci	Direttore Tecnico	+ 39 3883032075	leonardo.spicci@apn-energy.com
Francesco Beraldi	Perforazione	+ 39 3458668785	francesco.beraldi@apn-energy.com
Emilio Guadagnini	Geologia Operativa	+ 39 3391712864	emilio.guadagnini@yahoo.com
Francesca Barreca	Geologia / Liaison	+ 39 3474361959	fb@apn-energy.com
Cesare Introzzi	Esplorazione	+ 39 3460096729	cesare.introzzi@apn-energy.com
Stefano Rossi	Geologia / Ambiente	+ 39 3356644376 + 39 3459945333	rossigeo@tin.it stefano.rossi@apn-energy.com
Daniele Tripone	Geofisica	+ 39 3458931446	daniele.tripone@apn-energy.com

LA SICUREZZA DEVE ESSERE SEMPRE PRIORITARIA.

LA COMUNICAZIONE FRA CONTRATTISTI E COMMITTENTE DEVE ESSERE

COSTANTE E COSTRUTTIVA.

2.9.9 Acquisition Master Plan

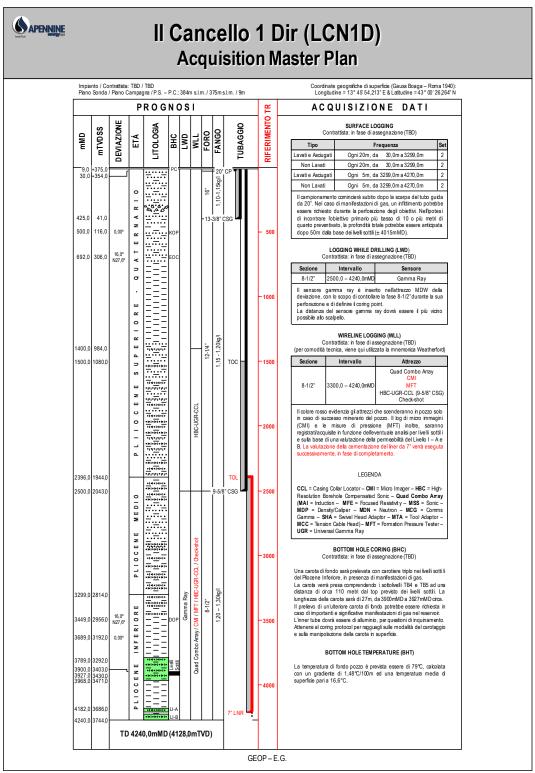


Figura 2.10

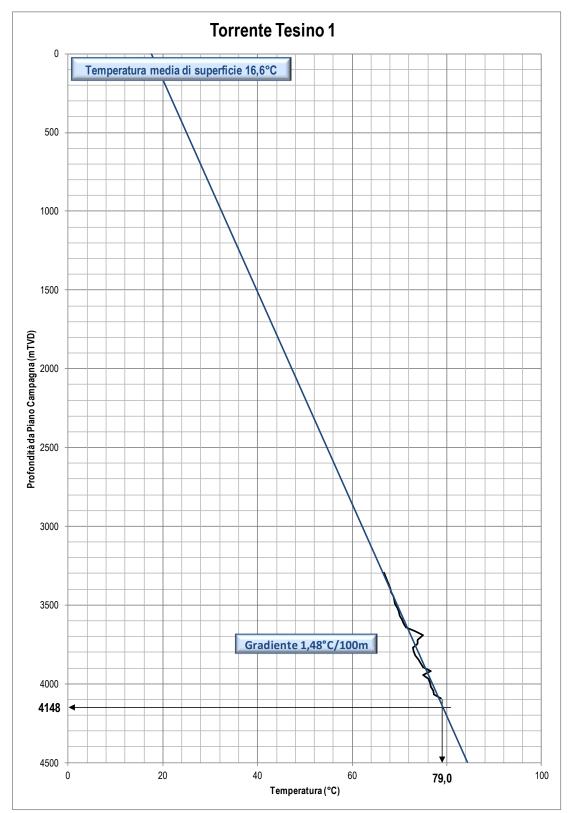


Figura 2.11

2.9.10 Previsione e Programmi

Il sondaggio Il Cancello 1 Dir arriverà fino al Livello I B e lo attraverserà per 40 m , raggiungendo la profondità totale di 4240 m MD.

Il Cancello 1 Dir Data Depth						
	MD	TVD	TVDSS			
Tavola Rotary	0	0	+384			
Piano Campagna	9	9	+375			
20" Tubo Guida	30	30	+354			
Livello Mare	384	384	0			
Colonna 13-3/8"	425	425	41			
Fase 16"	435	435	51			
КОР	500	500	116			
EOC 1	692	689	306			
TOL	2400	2331	1947			
Colonna 9-5/8"	2500	2427	2043			
Fase 12-1/4"	2510	2437	2053			
DOP	3449	3340	2956			
EOC 2	3689	3576	3192			
Top Thin Beds	3789	3676	3292			
Top TB2	3844	3732	3348			
Тор ТВ3	3872	3759	3375			
Тор ТВ4	3900	3788	3404			
Тор ТВ5	3921	3809	3425			
Тор ТВ6	3947	3835	3451			
Bottom Thin Beds	3968	3855	3471			
Top Livello I	4132	4019	3635			
Top Livello I A	4182	4070	3686			
Liner 7"	4196	4084	3700			
Top Livello I B	4198	4086	3702			
Profondità Finale	4240	4128	3744			

MD: Measured Depth: profondità misurata da tavola rotary

TVD True Vertical Depth: profondità verticalizzata da tavola rotary

TVDSS True Vertical Depth Subsea: profondità verticalizzata da livello mare

Tuttavia la profondità finale del sondaggio potrà essere modificata e ridotta al solo attraversamento del primo obiettivo (thin beds) in base ai risultati minerari riscontrati.

3 INGEGNERIA DI POZZO

3.1 Riassunto del Progetto del Casing

Conductor pipe da 20" fino a ± 35 mMD

Il conductor pipe (tubo guida) da 20" verrà disceso fino a 35 m dal piano campagna oppure fino a rifiuto pari a 1-2 mm per colpo. Lo scopo del conductor pipe è quello di fornire un supporto alla formazione e per evitare frane in caso di assorbimenti e proteggere le formazioni superficiali dall'invasione dei fluidi di perforazione.

Casing da 13-\%" fino a ± 425 mMD

Lo scopo di tale casing è quello di isolare strati superficiali non consolidati, isolare acquiferi superficiali e raggiungere una profondità tale da garantire un'integrità sufficiente per le fasi successive.

Il casing verrà cementato a giorno.

Casing da 9-%" fino a ± 2500 mMD / ± 2428 mTVD

Lo scopo di questo casing è quello di isolare formazioni intermedie e di raggiungere una formazione con integrità sufficiente per garantire la perforazione delle formazioni del Miocene nella fase da 8-½" con potenziali leggere sovrappressioni.

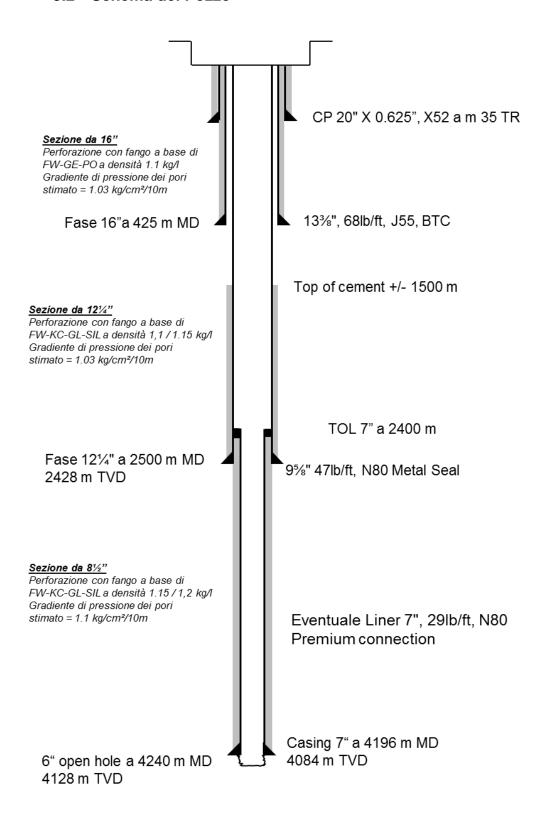
Prima di iniziare la perforazione della fase 12 ¼" sarà effettuato un FIT sotto la scarpa del casing 13 3/8".

Idealmente la scarpa del casing dovrà essere discesa alla quota di ± 2500 mMD / ± 2428 mTVD. Posizionando il casing a tale profondità si permetterà l'investigazione dell'intera sezione Del Cellino (Pliocene Inferiore), che ha mostrato manifestazioni di gas nei pozzo limitrofi.

Liner 7" fino a ± 4196 mMD / ± 4088 mTVD

Prima di iniziare la perforazione della fase 8 ½" sarà effettuato un FIT sotto la scarpa del casing 9 5/8".

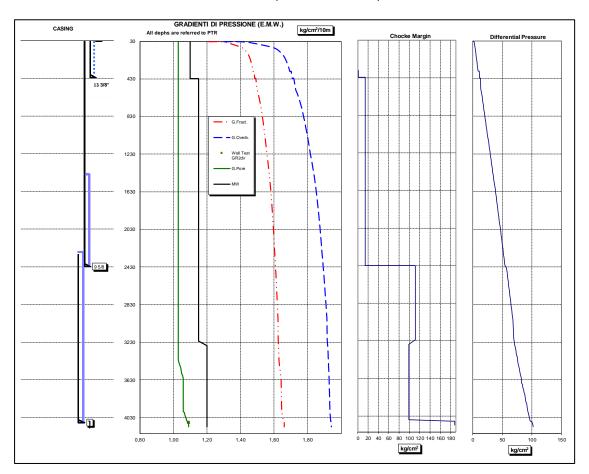
Il foro da 8-1/2" intersecherà tutti gli obiettivi del pozzo verticalmente e raggiungerà la profondità finale stimata a 4196 m MD / 4088 m TVD.


La discesa del casing da 7" sarà connessa ai risultati dei log elettrici. Il casing verrà disceso solamente qualora si evidenziasse interesse ad eseguire delle prove di produzione in un qualsiasi orizzonte produttivo individuato nella sezione da 8-½".

La scarpa del liner 7" sarà fissata nel livello argilloso che separa i livelli 1° e 1B a circa 4196 m con risalita della cementazione fino a testa liner.

Il livello 1B al di sotto della scarpa da 7" sarà perforato successivamente in fase da 6" per 30-40 m, in funzione al risultato minerario si deciderà se completare o chiudere minerariamente con tappo di cemento.

3.2 Schema del Pozzo



Previsione Gradienti di Pressione

Per quel che riguarda la stima del gradiente interstiziale, in base ai numerosi dati dei pozzi di riferimento, si prevede di avere un gradiente normale fino a circa 3300 m. Da tale quota è previsto uno sviluppo di gradiente che potrebbe raggiungere, nell'intervallo 3400 - 4240 m circa, un valore massimo intorno a 1,15 Kg/cm²/10m.

Il gradiente dei pori è stato tarato con la pressione attesa nel liv.1 basandosi sui dati di well test del pozzo Grottammare 1 Dir.

Gli altri gradienti sono stati calcolati (G-fratturazione) o estrapolati da un'analisi conservativa di valori medi dell'area (G-overburden).

Durante la perforazione la previsione gradienti dovrà essere aggiornata sulla base dei risultati di FIT previsti prima di perforare le fasi 12 1/4" e 8 1/2".

Fase	VD m	G.Pore	G.Mud kg/l	G.Overb	G.Fracture	Chocke	Diff. Press.
газе	m Copy VD	Copy Pore	kg/i	kg/cm / fom	Copy Fract	Margin kg/cm²	kg/cm²
1	35,00	1,030	1,100	1,300	1,211	0,00	0,00
2	35,01	1,030	1,100	1,400	1,278	0,62	0,00
2	50,00	1,030	1,100	1,474	1,328	0,62	0,25
2	100,00	1,030	1,100	1,598	1,411	0,62	0,33
2	150,00	1,030	1,100	1,640	1,439	0,62	1,05
2	200,00	1,030	1,100	1,662	1,459	0,62	1,03
2							
	250,00	1,030	1,100	1,675	1,462	0,62	1,75
2	300,00	1,030	1,100	1,686	1,470	0,62	2,10
2	349,98	1,030	1,100	1,694	1,475	0,62	2,45
2	350,00	1,030	1,100	1,700	1,479	0,62	2,45
2	350,01	1,030	1,100	1,703	1,481	0,62	2,45
2	425,00	1,030	1,100	1,709	1,485	0,62	2,98
3	425,01	1,030	1,150	1,717	1,491	14,48	5,10
3	540,17	1,030	1,150	1,729	1,498	14,48	6,48
3	584,30	1,030	1,150	1,738	1,505	14,48	7,01
3	628,26	1,030	1,150	1,747	1,510	14,48	7,54
3	672,21	1,030	1,150	1,755	1,515	14,48	8,07
3	716,14	1,030	1,150	1,761	1,520	14,48	8,59
3	760,01	1,030	1,150	1,768	1,525	14,48	9,12
3	803,92	1,030	1,150	1,773	1,528	14,48	9,65
3	847,86	1,030	1,150	1,778	1,531	14,48	10,17
3	891,80	1,030	1,150	1,784	1,535	14,48	10,70
3	935,75	1,030	1,150	1,788	1,538	14,48	11,23
3	979,74	1,030	1,150	1,793	1,541	14,48	11,76
3	1023,80	1,030	1,150	1,798	1,544	14,48	12,29
3	1067,92	1,030	1,150	1,802	1,547	14,48	12,82
3	1112,12	1,030	1,150	1,807	1,550	14,48	13,35
3	1156,42	1,030	1,150	1,810	1,553	14,48	13,88
3	1200,77	1,030	1,150	1,814	1,556	14,48	14,41
3	1245,13	1,030	1,150	1,819	1,558	14,48	14,94
3	1289,47	1,030	1,150	1,824	1,562	14,48	15,47
3	1333,73	1,030	1,150	1,828	1,565	14,48	16,00
3	1377,90	1,030	1,150	1,832	1,567	14,48	16,53
3	1422,09	1,030	1,150	1,836	1,570	14,48	17,07
3	1466,37	1,030	1,150	1,840	1,573	14,48	17,60
3	1510,84	1,030	1,150	1,844	1,575	14,48	18,13
3	1555,99	1,030	1,150	1,847	1,577	14,48	18,67
3	1602,14	1,030	1,150	1,850	1,580	14,48	19,23
3	1649,17	1,030	1,150	1,853	1,582	14,48	19,79
3	1696,83	1,030	1,150	1,856	1,584	14,48	20,36
3	1744,89	1,030	1,150	1,859	1,586	14,48	20,94
3	1793,31	1,030	1,150	1,862	1,588	14,48	21,52
3	1842,15	1,030	1,150	1,865	1,590	14,48	22,11
3	1891,29	1,030	1,150	1,868	1,591	14,48	22,70
3	1940,65	1,030	1,150	1,871	1,593	14,48	23,29
3	1990,17	1,030	1,150	1,873	1,595	14,48	23,88
3	2039,77	1,030	1,150	1,876	1,597	14,48	24,48
3	2089,41	1,030	1,150	1,878	1,598	14,48	25,07
3	2139,13	1,030	1,150	1,880	1,600	14,48	25,67
3	2188,90	1,030	1,150	1,883	1,601	14,48	26,27

Pozzo II Cancello 1 Dir

3	2238,69	1,030	1,150	1,885	1,603	14,48	26,86
3	2288,53	1,030	1,150	1,887	1,604	14,48	27,46
3	2338,39	1,030	1,150	1,890	1,606	14,48	28,06
3	2388,29	1,030	1,150	1,892	1,607	14,48	28,66
3	2428,00	1,030	1,150	1,893	1,608	14,48	29,14
4	2428,01	1,030	1,150	1,893	1,608	111,25	41,28
4	2438,19	1,030	1,150	1,894	1,609	111,25	41,45
4	2488,10	1,030	1,150	1,896	1,610	111,25	42,30
4	2538,01	1,030	1,150	1,899	1,612	111,25	43,15
4	2587,91	1,030	1,150	1,900	1,613	111,25	43,99
4	2637,83	1,030	1,150	1,903	1,615	111,25	44,84
4	2687,75	1,030	1,150	1,904	1,616	111,25	45,69
4	2737,68	1,030	1,150	1,906	1,617	111,25	46,54
4	2787,61	1,030	1,150	1,908	1,619	111,25	47,39
4	2837,54	1,030	1,150	1,911	1,620	111,25	48,24
4	2887,46	1,030	1,150	1,912	1,621	111,25	49,09
4	2937,37	1,030	1,150	1,914	1,622	111,25	49,94
4	2987,27	1,030	1,150	1,914	1,623	111,25	50,78
4	3180,00	1,030	1,150	1,917	1,624	111,25	54,06
						· · · · · · · · · · · · · · · · · · ·	
4 4	3217,15	1,030	1,150	1,918	1,625	111,25	54,69
	3267,02	1,030	1,200	1,920	1,626	99,11	55,54
4	3280,00	1,030	1,200	1,921	1,627	99,11	55,76
4	3316,89	1,030	1,200	1,922	1,628	99,11	56,39
4	3366,75	1,030	1,200	1,923	1,628	99,11	57,23
4	3380,00	1,030	1,200	1,923	1,628	99,11	57,46
4	3416,61	1,030	1,200	1,924	1,629	99,11	58,08
4	3466,46	1,035	1,200	1,925	1,632	99,11	57,20
4	3480,00	1,040	1,200	1,925	1,633	99,11	55,68
4	3516,31	1,045	1,200	1,926	1,636	99,11	54,50
4	3566,15	1,050	1,200	1,928	1,638	99,11	53,49
4	3580,00	1,055	1,200	1,928	1,640	99,11	51,91
4	3616,00	1,060	1,200	1,928	1,642	99,11	50,62
4	3665,87	1,060	1,200	1,929	1,643	99,11	51,32
4	3680,00	1,060	1,200	1,929	1,642	99,11	51,52
4	3715,74	1,060	1,200	1,930	1,643	99,11	52,02
4	3730,00	1,060	1,200	1,930	1,643	99,11	52,22
4	3765,62	1,060	1,200	1,931	1,644	99,11	52,72
4	3780,00	1,060	1,200	1,931	1,644	99,11	52,92
4	3815,50	1,060	1,200	1,932	1,644	99,11	53,42
4	3865,38	1,060	1,200	1,932	1,645	99,11	54,12
4	3880,00	1,060	1,200	1,932	1,644	99,11	54,32
4	3915,26	1,060	1,200	1,933	1,645	99,11	54,81
4	3965,15	1,060	1,200	1,934	1,645	99,11	55,51
4	3980,00	1,065	1,200	1,934	1,647	99,11	53,73
4	4015,04	1,070	1,200	1,936	1,650	99,11	52,20
4	4030,00	1,075	1,200	1,936	1,652	99,11	50,38
4	4064,94	1,080	1,200	1,938	1,655	99,11	48,78
4	4070,00	1,085	1,200	1,938	1,657	99,11	46,81
4	4070,00	1,085	1,200	1,940	1,658	99,11	46,81
5	4070,00	1,090	1,200	1,940	1,660	188,15	44,95
	1	1,090	T				
5	4086,00		1,200	1,942	1,661	188,15	44,95
5	4128,00	1,090	1,200	1,942	1,661	188,15	45,41

3.4 Progetto del Casing.

I parametri di progetto utilizzati sono la combinazione di raccomandazioni API per i fattori di Squarciamento e Collasso, oltre a numerose altre raccomandazioni da parte di autori vari ed aziende operative in materia di Tensione. Tali valori sono allineati anche ai valori standard di Apennine.

Fattori di Sicurezza del Progetto						
Resistenza allo Schiacciamento	1.10					
Resistenza ai Giunti	1.60					
Resistenza allo Snervamento	1.60					
Resistenza allo Snervamento Interno (Squarciamento)	1.10					

Casing	Modalità dell'Anomalia	Proprietà Meccaniche		
40.3/2 00.0% JEE DTO	Squarciamento	23,8 Mpa	242 Kg/cm ²	
13-¾", 68#/ft, J55, BTC 425 m MD / 425 m TVD	Schiacciamento	13.4 Mpa	136 Kg/cm ²	
420 III WD / 420 III 1 VD	Tensione	476.000 daN	476 ton	
0.5/3 47/// 200 24 4 10	Squarciamento	47,3 Mpa	482 Kg/cm ²	
9-5/8", 47#/ft, N80, Metal Seal 2500 m MD/2428 m TVD	Schiacciamento	32,8 Mpa	334 Kg/cm ²	
2300 III WD/2420 III 1 VD	Tensione	483.000 daN	492 ton	
7" Liner, 29#ft, N80, Metal	Squarciamento	56,3 Mpa	573 Kg/cm ²	
seal	Schiacciamento	48,4 Mpa	493 Kg/cm ²	
4196 m MD / 4084 m TVD	Tensione	301.000 daN	307 ton	

Squarciamento

I calcoli relativi allo squarciamento presuppongono, come pressione interna la pressione di fratturazione in corrispondenza della scarpa del casing e con la colonna piena di fluido di formazione avente gradiente 0,23 Kg/cm²/10m e come pressione esterna nell'intercapedine quella prodotta dalla colonna d'acqua.

Per il casing superficiale è stato in aggiunta considerato a testa pozzo il valore conservativo di 140 Kg/cm².

Per il Liner 7" di produzione i calcoli sono stati eseguiti considerandoli il caso estremo di perdita idraulica del tubino di produzione.

Schiacciamento

I calcoli relativi allo schiacciamento/collasso presuppongono una colonna piena di fango nell'intercapedine e parziale/totale svuotamento dei casing con d'aria fino a:

Casing 13 3/8" 425 m (svuotamento totale)

Casing 9 5/8" 2.000mLiner 7" 3.200 m

Trazione

I calcoli relativi alla tensione presuppongono il peso totale in sospensione del casing sul giunto superiore in aria, carico da colpo e pressione di prova tenuta.

I risultati della verifica di resistenza dei casings sono riportati nella tabella seguente.

Pozzo : Il Cancello 1 Dir

TABELLA RIASSUNTIVA CASING

	DA	TI CASIN	IG		SQUARCIAMENTO)	SCHIACCIAMENTO			TRAZIONE				
Diametro	Grado	Peso	da	а	Sollecit.	Yield csg	S.F.	S.F.	Sollecit.	Yield csg	S.F.	S.F.	Sollecit.	Yield csg	S.F.	S.F.
inch		lb/ft	m VD	m VD	Kg/cm2	Kg/cm2		richiesto	Kg/cm2	Kg/cm2	Biax.stres.	richiesto	ton	ton		richiesto
13 3/8	J 55	68	0	425	140,0	242,0	1,73	1,10	38,5	136,0	3,53	1,10	37,0	476,0	12,87	1,60
9 5/8	N 80	47	0	2428	230,2	482,0	2,09	1,10	239,3	334,0	1,40	1,10	197,1	492,0	2,50	1,60
7	N80	29	2331	4084	451,9	573,0	1,27	1,10	424,8	493,0	1,13	1,10	92,1	307,0	3,33	1,60

3.5 Programma Fanghi e Fluidi di Perforazione

Per la fase superficiale da 16" si utilizzerà un fango ad acqua bentonitico, mentre per le altre fasi un fango inibitore a base acqua con polimeri e KCl, in quanto presenta i seguenti vantaggi in rapporto ad altri fanghi a base d'acqua:

- Proprietà inibitorie migliori in argille molto reattive
- La copertura di glicole dell'acciaio previene l'imballamento dello scalpello
- Più elevate performance con scalpelli PDC
- Migliore stabilità del foro
- Migliore potere lubrificante

Il programma fanghi completo è riportato in allegato.

Si prevede l'utilizzo di sistemi non dispersi, che saranno formulati per essere dal punto di vista ambientale compatibili ed idonei a garantire lubricità, pulizia e stabilità del foro.

Fase da 16" a 425 mMD per Casing da 13 %"

Per la perforazione di questa fase verrà utilizzato un fango bentonitico FW-GE-PO a densità massima di 1,1 kg/l.

Prima di iniziare la perforazione si confezioneranno 25 m³ di Kill Mud a densità 1,40 kg/l.

Fase da 12-1/4" a 2500 mMD / 2428 per Casing da 9 5/8"

Per la perforazione di questa fase sarà utilizzato un fluido di perforazione a base acqua di tipo inibente, FW-KC-GL-SIL a densità 1,10-1,15 kg/l.

Pozzo Il Cancello 1 Dir

Fase da 8-1/2" a 4196 mMD / 4084 mTVD per Liner da 7"

Per la perforazione di questa fase, che prevede il raggiungimento degli obiettivi primari nella formazione Del Cellino (Pliocene Inferiore), sarà utilizzato un fluido di perforazione a base acqua di tipo inibente, FW-KC-GL-SIL a densità 1,15-1,2 kg/l. Il peso del fango potrà variare in funzione delle pressioni rilevate durante la perforazione.

Fase da 6" a 4240 mMD / 4128 mTVD

Si perfora circa 30-40 sotto la scarpa per verificare l'obiettivo secondario Liv. 1B, sarà utilizzato un fluido di perforazione a base acqua di tipo inibente, FW-KC-GL-SIL a densità 1,15-1,2 kg/l. Il peso del fango potrà variare in funzione delle pressioni rilevate durante la perforazione.

Completamento

Per il completamento, necessario per l'esecuzione delle prove di produzione, verrà utilizzato un brine CaCl2 a densità 1,20 kg/lt il quale verrà trattato in ultima circolazione con anticorrosivo.

Caratteristiche previste:

Fase:	Foro da 16"
Fluido utilizzato:	FW-GE-PO
Motivazione dell'utilizzo del fluido:	Facile gestione, pulizia foro ed economico
Prodotti chiave:	Carbonato di Sodio, Bentonite, Visco XC 84
Fase:	Foro da 12-1/4"
Fluido utilizzato:	FW-KC-GL-SIL
Motivazione dell'utilizzo del fluido:	Sistema fango di tipo inibitivo
Prodotti chiave:	Potassium Chloride, Avapolysil, Avaglyco (glicole)
Fase:	Foro da 8-1/2"
Fluido utilizzato:	FW-KC-GL-SIL
Motivazione dell'utilizzo del fluido:	Buona capacità inibente
Prodotti chiave:	Potassium Chloride, Avapolysil, Avaglyco (glicole)
Fase:	Foro da 6"
Fluido utilizzato:	FW-KC-GL-SIL
Motivazione dell'utilizzo del fluido:	Buona capacità inibente
Prodotti chiave:	Potassium Chloride, Avapolysil, Avaglyco (glicole)
Fase:	Completamento
Fluido utilizzato:	CaCl2 Brine + inibitore di corrosione
Motivazione dell'utilizzo del fluido:	Economico, facile gestione
Prodotti chiave:	INCORR

Profindità (mMD)	Foro (Inch)	Densità (kg/l)	Viscosità (sec/l)	Filtrato (API)	YP (gr/100cm)	Sistema
425	16"	1,05-1,10	50-60	< 10	10-12	FW-GE-PO
2500	12-1/4"	1,10-1,15	50-60	< 5	12-16	FW-KC-GL- SIL
4196	8-1/2"	1,15-1,20	50-60	< 5	10-14	FW-KC-GL- SIL
4240	6"	1,15-1,20	50-60	< 5	10-14	FW-KC-GL- SIL
4240	Completamento	1,20	N/A	N/A	N/A	CaCl2 brine

3.6 Densità del fluido di perforazione

La minima densità del fluido di perforazione viene calcolata applicando una formula definita:

MARGINE DI MANOVRA

Essa ci permette di calcolare il margine di manovra necessario, anche in base allo yeld point del fango, a controbilanciare la pressione di formazione durante l'estrazione, che è una delle operazioni che necessita più attenzione.

Il calcolo è anche presente in numerose pubblicazioni inerenti la perforazione. A titolo esemplificativo si cita il "PRACTICAL WELL PLANNING AND DRILLING MANUAL" di STEVE DEVEREUX.

21 x YIELD POINT
La formula è la seguente: MARGINE DI MANOVRA=

D-D1

dove: YIELD POINT è una caratteristica del fango espressa in g/cm2, D e D1sono rispettivamente il diametro del foro e il diametro delle DP espressi in pollici mentre il margine di manovra risultante è espresso in gr/l.

A titolo esemplificativo si riportano i valori teorici da applicare all'inizio e alla fine di ogni singola fase di perforazione:

Fase superficiale da 16" da m 50 a m 425 VD = $(21 \times 11)/(16-5)$ = 21 gr/l quindi teoricamente sarebbe sufficiente una densità fango a d=1030+21= 1051 gr/l.

Fase intermedia da 12"1/4 da m 425 a m 2428 VD = $(21 \times 14)/(12.25-5)$ = 40 gr/l quindi teoricamente sarebbe sufficiente una densità fango a d=1030+40= 1070 gr/l.

Fase da 8"1/2 da m 2428 a m 4084 VD = $(21 \times 11)/(8.5-5)$ = 66 gr/l quindi teoricamente sarebbe sufficiente una densità fango a d=1085+66= 1141 gr/l.

Fase da 6" da m 4084 a m 4128 VD = $(21 \times 10)/(6-3.5)$ = 84 gr/l quindi teoricamente sarebbe sufficiente una densità fango a d=1090+84= 1174 gr/l.

E' evidente quanto sia importante il valore di yield point del fango; più si riesce a mantenerlo basso e minore sarà il margine da applicare e minori saranno le perdite di carico del circuito idraulico.

3.7 Problemi di Perforazione Attesi

Non sono previsti particolari problemi di perforazione; possibili perdite parziali nella fase da 16" che sarà da perforare con avanzamento controllato.

Si consiglia di tenere l'avanzamento controllato nella fase 12¼" (intorno ai 15/20 m/ora) per evitare un incremento del carico idrostatico dovuto ai cutting.

Possibilità di depletamento del livello 1B (vedi capitolo 2.7. Rischi).

3.8 Temperature

Il gradiente termico sul pozzo Il Cancello 1 Dir è stato calcolato a 1.48 °C / 100m.

La temperatura SBHT calcolata sul pozzo Torrente Tesino 1, a 4240 MD 4128 TVD m, è di 79° C.

(SBHT=Static Bottom Hole Temperature - Temperatura statica di fondo pozzo)

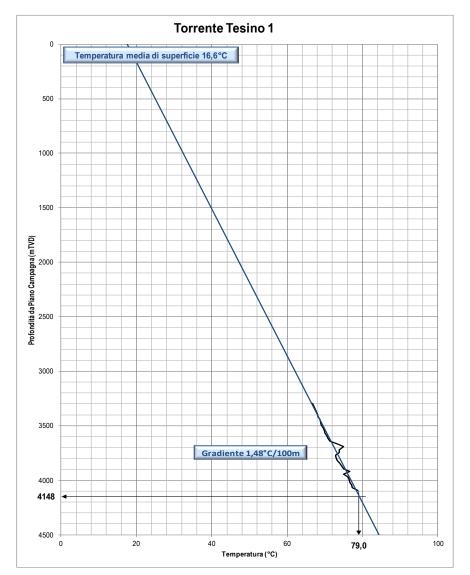


Figura 3.1: Andamento della temperatura in funzione della profondità

3.9 Anidride Carbonica

Non si prevede la presenza di CO₂.

3.10 Solfuro di Idrogeno.

Non si prevede la presenza di H2S.

3.11 Attrezzature dei BOP e Test.

Uno schema dello stack dei BOP è riportato alle pagine 95 e 97.

Il sistema di BOP verrà ricollaudato (test di pressione e funzionamento) nelle seguenti situazioni:

- Dopo l'installazione della testa pozzo e del sistema BOP dopo la discesa del casing prima di perforare fuori scarpa.
- Ogni 14 giorni.
- Prima di perforare in zone in cui ci si attende presenza di idrocarburi e di sovrappressioni.
- Prima delle prove di produzione in cui i BOP restano in posizione sopra la testa pozzo.
- In qualsiasi momento in cui si valuta possibile una compromissione dell'integrità dello stack (es. a seguito di riparazioni, ecc.).

Il sistema BOP include le seguenti attrezzature di controllo pozzo:

VOCE	DESCRIZIONE
Diverter (type)	Cameron
Diverter (size & working pressure)	21- ¹ / ₄ " – 2000 psi
B.O.P. (type)	Annular - Cameron
B.O.P. (size & working pressure)	13-⁵⁄8" – 5000 psi
B.O.P. (type)	Doppio Ram - Cameron
B.O.P. (size & working pressure)	13-⁵⁄8" – 10000 psi
B.O.P. (type)	Singolo Ram
B.O.P. (size & working pressure)	13-⁵⁄8" – 10.000 psi
Choke Manifold (size & working pressure)	2 X 3"- ¹ / ₁₆ " - 10000 psi
Kill Lines (size & working pressure)	2 X 2 1/16" - 10000 psi
Choke Lines (size & working pressure)	2 X 3 1/16" - 10000 psi
Pannello Controllo B.O.P. n. 1	Ubicato sull'accumulatore: KOOMEY
Pannello Controllo B.O.P. n. 2	Ubicato sul piano sonda & lungo vie di fuga
Inside B.O.P. (type)	Upper & Lower Kelly Cocks 10000 psi W.P.
Inside B.O.P. (ubicazione)	Installati su asta motrice/Top Drive
Inside B.O.P. (type)	Drop-in Valve & Sede
Inside B.O.P. (ubicazione)	Piano sonda & BHA
Inside B.O.P. (type)	Testina di circolazione
Inside B.O.P. (ubicazione)	Piano sonda
Inside B.O.P. (type)	Gray valve
Inside B.O.P. (ubicazione)	Piano sonda
Inside B.O.P. (type)	Drill Pipe Float Valve
Inside B.O.P. (ubicazione)	ВНА

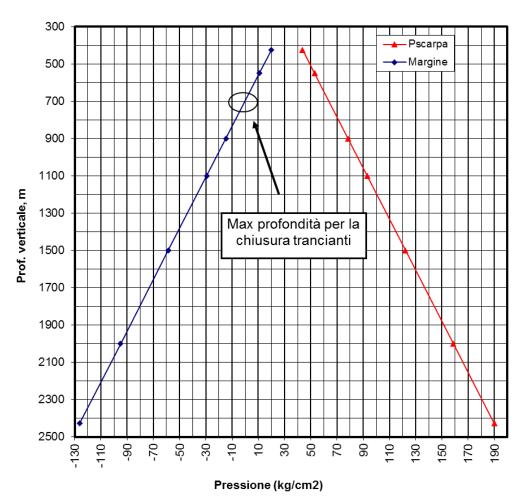
3.12 Calcoli Di Resistenza Del Pozzo e Tolleranza ad un Kick

Controllo del Pozzo in Caso di Kick alla Quota della Scarpa da 13-¾" del Casing con Entrata Improvvisa di Gas.

			Well Name :	Il Cancello 1 Dir
KICK	TOLERANCE WOI	RKSHEET	Report No :	
			Date :	06/11/2014
WEAK POINT	(present casing shoe depth	SOLUTION		
TVD WP	1394 ft / 425 m	Height of Influx (HOI)	1478	ft
Leak off (EQM)	12,9 ppg / 1,55 Kg/l	Volume of Influx @ BHL	47,6	bbl
Leak off (gradient)	0,669 psi/ft			
Leak off (pressure)	933 psi	Volume of Influx @ Weak Point	47,6	bbl
Safety margin	0 psi	Vol. of Influx at BHL conditions	12,3	bbl
Pmax (EQM)	12,9 ppg			
Pmax (gradient)	0,669 psi/ft	Max Kick Tolerance:	12,3	bbl
Pmax (pressure)	933 psi		2,0	m3
GENERAL	(next casing / OH depth)	Gfr min= 1,55	Pore s.q.	K.T. m3
TVD BHL	7966 ft / 2428 m		1,01	2,5
Mud weight	9,6 ppg / 1,15 Kg/l	1	1,05	2
Mud weight (gradient)	0,497 psi/ft		1,1	1,3
Mud Hydrostatic	3956 psi		1,15	0,7
BHL (pressure)	3610 psi		,	,
BHL (EQM)	8,7 ppg / 1,05 Kg/l	Gfr max= 1,75	Pore s.g.	K.T. m3
BHL (gradient)	0,453 psi/ft	Í	1,01	3,2
Gradient of Influx (GOI)	0,100 psi/ft		1,05	2,6
Casing ID	8,54 in		1,1	1,9
Hole ID	8,50 in		1,15	1,2
DC OD	6,25 in	3,5		
DC Length	590 ft	3		
DC - Open hole capacity	0,0322 bbl/ft	3		Min Frac Grad
DP OD	5 in	_2,5		
DP Length below WP	5982 ft	m33]		
DP - Open hole capacity	0,0322 bbl/ft	<u>x</u> 2		
1 ,	,	[Em] 2 vilution 2 vilu		
		\S		
COMMENTS		1		
<u> </u>		0,5		
		1 1,02 1,04	1,06 1,08	1,1 1,12 1,14 1,:
		1 1,02 1,04	Pore pressure	

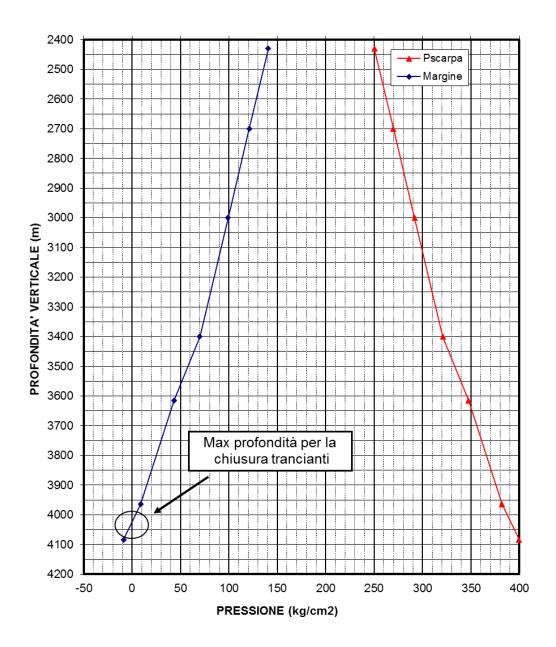
Controllo del Pozzo in Caso di Kick alla Scarpa 95/8" del Casing con Entrata Improvvisa di Gas.

			Well Name :	Il Cancello 1 Dir
KICK	TOLERANCE WOR	RKSHEET	Report No :	
			Date :	06/11/2014
WEAK POINT	(present casing shoe depth	SOLUTION		
TVD WP	7966 ft / 2428 m	Height of Influx (HOI)	3455	ft
Leak off (EQM)	13,4 ppg / 1,62 Kg/l	Volume of Influx @ BHL	111,3	bbl
Leak off (gradient)	0,699 psi/ft			
Leak off (pressure)	5570 psi	Volume of Influx @ Weak Point	111,3	bbl
Safety margin	0 psi	Vol. of Influx at BHL conditions	86,7	bbl
Pmax (EQM)	13,4 ppg			
Pmax (gradient)	0,699 psi/ft	Max Kick Tolerance:	86,7	bbl
Pmax (pressure)	5570 psi		13,8	m3
 GENERAL	(next casing / OH depth)	Gfr min= 1,62	Pore s.g.	K.T. m3
TVD BHL	13803 ft / 2428 m		1,1	21,2
Mud weight	10,0 ppg / 1,2 Kg/l		1,2	13,8
Mud weight (gradient)	0,518 psi/ft		1,3	7,5
Mud Hydrostatic	7149 psi		1,35	5,9
BHL (pressure)	7149 psi			
BHL (EQM)	10,0 ppg / 1,2 Kg/l	Gfr max= 1,75	Pore s.g.	K.T. m3
BHL (gradient)	0,518 psi/ft	,	1,1	28
Gradient of Influx (GOI)	0,100 psi/ft		1,2	19,5
Casing ID	8,54 in		1,3	12,3
Hole ID	8,50 in		1,35	10,4
DC OD	6,25 in	30		-
DC Length	590 ft			
DC - Open hole capacity	0,0322 bbl/ft	25		Min Frac Grad
DP OD	5 in			
DP Length below WP	5247 ft	E20 M Nnl15 UI XEW W10		
DP - Open hole capacity	0,0322 bbl/ft	×n ₁₅		
	1 2/22-2 22-/	i fi		
		\tilde{\		
COMMENTS				
		5		
		1 1,05 1,1	1,15 1,2	1,25 1,3 1,35
			Pore pressure	e Gradient


3.13 Ganasce Trancianti

I grafici allegati mostrano le profondità massime di utilizzo delle ganasce trancianti durante la perforazione delle fasi 12"1/4 e 8 1/2".

Tale limite (estremo) è stato calcolato ipotizzando il pozzo pieno di gas alla pressione di formazione della profondità raggiunta, prima di superare la pressione di fratturazione alla scarpa della colonna precedente ed avere così un'eruzione o fratturazione sotto scarpa o alle spalle del casing.


Naturalmente, al di sotto delle profondità critiche, potranno essere sempre eseguite, in caso di necessità, le altre chiusure previste sul pozzo, regolando l'apertura della choke in modo da non superare le massime pressioni ammissibili (MAASP).

FASE 8"1/2

4 PROCEDURE OPERATIVE

4.1 Riassunto delle Operazioni

Il Cancello 1 Dir stima tempo					
Pozzo	Brancuna 1 Dir	Terra	Expl/Appr		
Data:	03-nov-14				
Preparato da:	Tripone M.	Bentec			
		'			
Pozzo					
TD (mMDRT)		4320			
TD (mTVDRT)		4207			
PROFONDITA' CASING					
Conductor Pipe		30			
13 3/8"		425			
9 5/8"		2500			
7" liner		4196			
Avanzamento presunto					
Foro 16" avanzamento (m/hr)	Media	7,0			
Foro 12 1/4" avanzamento (m/hr)	Media	11,0			
Foro 8 1/2" avanzamento (m/hr)	Media	8,0			
Foro 6" avanzamento (m/hr)	Media				
STIMA TEMPI			media Cum. Giorni	Profondità	
Rig Move			15	0	15 Rig Move
PERFORAZIONE					
R/U to Spud		1,00	1,00	0	
P/U 16" bit, Perforare fino a 425 m, Circ., POOH		2,72	3,72	425	
Disceso 13 3/8" casing, ultimo giunto in circolazione	e. Set shoe & circ.	0,52	4,24	425	
Cementato 13 3/8 " casing, montato testa pozzo e B		3,53	7,78	425	7,8 Fase 16"
Disceso bit 12 1/4" perforato cmt e 5 m in formazion	ne eseguito FIT	0,47	8,25	430	
Perforato foro 12 1/4" fino a 2500 m		10,93	19,18	2500	
Wiper Trip/Short Trip		1,62	20,80	2500	
Circolazione e POOH		0,86	21,66	2500	
Disceso casing 9 5/8" ultimo giunto in circolazione,		2,05	23,71	2500	47.4 5 40.4/**
Cementato 9 5/8 " casing, montato testa pozzo e tes		1,51	25,22	2500	17,4 Fase 12 1/4"
Disceso bit 8 1/2" perf. Cemento e 5 m di formazion		1,76	26,98	2505	
Perforato foro 8 1/2" verticale a 3780m MD 3670m Estratto disceso carotiere carotato estratto disceso la		8,82 3,92	35,80 39,73	3780 3807	
Perforato foro verticale 8 1/2" fino a 4196m MD 408		3,92 2,28	39,73 42,00	4196	16,8 Fase 8 1/2"
Circolato e survey	עי וווד	0,19	42,00 42,20	4196	10,0 1 000 0 1/2
POOH and perform logging		3,39	45,58	4196	
Wiper trip e disceso casing 7"		4,77	50,35	4196	
Cementazione liner 7"		0,63	50,98	4196	9,0 Logs + Liner
M/U new 3"1/2 string + RIH/ Clean out cement/ Drill	6" hole + POOH	4,07	55,05	4240	0,0 2090 1 211101
Disceo scraper 7" circolato spiazzato brine e sdopp		2,20	57,26	4240	
CBL VDL liner 7"		0,72	57,98	4240	7,0 Fase 6"+ Scrap
1		58,0	Metri/Giorno	73,13	
Stima tempi "Dry Hole"					
Stima tempi "Dry Hole" Spari completatamento in singolo, spurgo/ Rig Relea	ise	7,1			
	ise	7,1 7,1			

4.2 Velocità di avanzamento

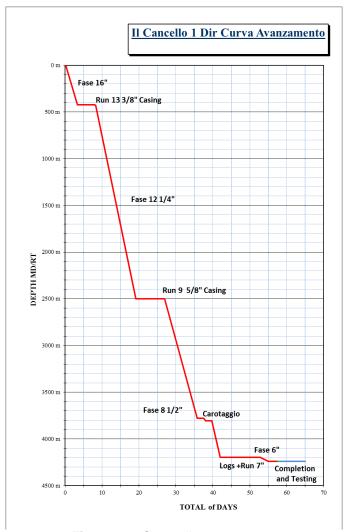


Figura 4.1: Curva di avanzamento

4.3 Commenti Generali

- 1. Prima dell'inizio della perforazione, alla presenza di tutti i contrattisti, verrà tenuto un incontro per trattare i seguenti argomenti:
 - (i) Verifica e discussione dettagliata del programma;
 - (ii) Salute e sicurezza e altri argomenti specifici del sito;
 - (iii) Punti sensibili per quanto riguarda sicurezza e questione ambientale.
- Dopo il montaggio, il Responsabile della Perforazione, il Supervisore alla Perforazione, entrambi di Apennine-Energy insieme al Responsabile della Perforazione della Società Contrattista ispezioneranno fisicamente il sito per assicurarsi che tutti gli aspetti legati a sicurezza e ambiente siano stati trattati

- adeguatamente. Le operazioni non inizieranno fino a quando tale ispezione non sarà stata eseguita.
- Il Supervisore alla Perforazione terrà regolarmente un incontro giornaliero con tutti i Responsabili delle varie società impiegate al fine di verificare e discutere delle operazioni programmate per le 24 ore successive.
- 4. Il tiro massimo consentito sulla batteria di perforazione sarà limitato all'80% della resistenza allo snervamento della batteria in uso. In nessun caso tali limiti devono essere superati senza l'approvazione del Responsabile della Perforazione.
- 5. La conformità con le pratiche raccomandate dal protocollo API 53 è obbligatoria. I rapporti dei test BOP devono mostrare tutti i risultati (alte e basse pressioni) e devono essere accompagnati da un grafico pressione tempi. Tutti i test BOP devono essere condotti con acqua dolce pulita per evitare situazioni in cui particelle di fango possano ostruire piccole perdite. Il test in alta pressione sarà condotto per 10 minuti. Entrambi devono essere etichettati correttamente e firmati da:
 - (i) Supervisore alla Perforazione;
 - (ii) Toolpusher del Contrattista;
 - (iii) Operatore della Pompa.
- 6. Le ore di rotazione dei jar non dovranno eccedere il valore di 200.
- 7. Le batterie di perforazione saranno dotate di adeguate valvole di non ritorno, ove richiesto.
- 8. In tutte le flange della testa pozzo saranno utilizzate guarnizioni ad anello nuove in acciaio inossidabile.
- 9. Annotare le dimensioni di tutti gli utensili e tubolari prima che gli oggetti entrino nel pozzo. Devono essere redatti diagrammi di pescaggio per tutte le batterie di perforazione (BHA).
- 10. La velocità di avanzamento non deve mai eccedere un valore per cui tutti i detriti di perforazione possano essere eliminati in modo efficiente dal foro.

4.4 Verifiche Prima della Perforazione

Prima di iniziare la perforazione il Supervisore della Perforazione, come da lista di controllo di Apennine Energy, condurrà un'ispezione dell'impianto. Quando avrà firmato l'accettazione dell'impianto di perforazione, le operazioni potranno cominciare. L'ispezione dell'impianto deve includere quanto segue:

- 1. Tutte le apparecchiature di controllo eruzioni BOP (diverter 21-¼" e BOP 13-5/8"), adattatori di testa, raccordi a campana ecc. devono essere calibrati con gli appositi manicotti di protezione dall'usura.
- Tutto l'equipaggiamento di comando del pozzo compresi stack BOP, Unità Koomey, valvola HCR, choke manifold, pannello per il comando in remoto, ecc.
- 3. Sistema fanghi in alta pressione, compresi collettore colonna montante, rotary hose (tubo flessibile tra collettore di sonda e testa d'iniezione) e tutte le relative valvole.
- 4. Sistema fanghi di superficie, compreso il sistema miscelatore del fango, apparecchiature di controllo fango e tutte le valvole.
- Tutte le apparecchiature in noleggio devono essere consegnate complete di certificati di controllo. Il Supervisore alla Perforazione deve controllare i certificati di controllo di tutte le apparecchiature.
- Le apparecchiature di terzi devono essere controllate e confermate con riferimento agli elenchi di carico. La funzionalità di tutte le apparecchiature deve essere controllata.
- 7. Assicurarsi che i sensori gas del contrattista di perforazione e della Mud Logging (se applicabile) siano installati correttamente nelle posizioni concordate, e che ogni sistema sia stato calibrato e testato funzionalmente.

4.5 Tubo Guida 20" (pre-posizionato)

4.5.1 Descrizione Schematica

- Un conductor pipe da 20" con pareti di spessore 0.635" sarà battuto prima a
 ± 35 mMD o fino al rifiuto di 1-2 mm per colpo.
- 2. Saldare una flangia 21 1/4"
- 3. Montare drilling spool dotato di uscita 10" verso il diverter e di ingresso 2 1/16" dalla linea di iniezione fango (kill line).
- 4. Connettere il Diverter 21¼" x 2000 psi (138 bar) e controllare e registrare i tempi di apertura e di chiusura.
- 5. Installare la linea da 10" del Diverter e linea di iniezione fango, eseguire un test funzionale.
- Sottoporre a test di pressione tutte le condutture di superficie, valvole dell'asta motrice e linee di iniezione del fango a 2000 psi (138 bar) per 10 minuti e registrare il test su un grafico pressione - tempi.

4.6 Sezione Foro 16"

4.6.1 Descrizione Schematica

L'obiettivo è posizionare un casing 13 %" ad una profondità sufficiente da fornire un controllo adeguato del pozzo nella sezione foro 12 1/4".

- 1. La profondità totale TD della sezione è programmata a 425 mMD.
- 2. La sezione sarà perforata verticalmente fino a TD fase e non si prevede la presenza di gas superficiale.
- 3. La sezione sarà perforata con un sistema di fanghi a base d'acqua (si veda il **Programma Fluidi di Perforazione** per i dettagli).
- 4. Il casing 13 %" sarà cementato alla superficie per fornire supporto strutturale a testa pozzo e BOP. Se si dovessero verificare perdite, sarà eseguito il riempimento dall'alto con cemento (Top Job).

4.6.2 Preparazione

- 1. Pre-miscelare 25 m³ di fango per controllo pozzo (1,40 kg/l).
- Assicurarsi che una valvola di sicurezza (per ogni tipo di collegamento da inserire nel foro) sia disponibile, in ogni momento, nell'impianto di perforazione.
- 3. Controllare fisicamente che tutte le apparecchiature dettagliate in un elenco siano presenti in loco, in buone condizioni e perfettamente funzionanti.
- 4. Controllare che il casing 13 %", presente in loco, sia sufficiente.
- Pulire ed effettuare il controllo visivo di tutti i filetti. Tutto il casing deve essere liberato da detriti interni, calibrato, controllato per verificare eventuali danni strutturali ed etichettato. Le misurazioni devono essere controllate in modo indipendente.
- 6. Installare anelli di arresto sul casing come da programma dei centralizzatori. Il casing da 13 ¾" sarà equipaggiato con scarpa di cementazione di tipo "sting-in", e con tutti i centralizzatori (come numero e come tipo) ritenuti necessari alla fine della perforazione della fase da 16".
- 7. I primi tre giunti di casing saranno bloccati utilizzando un composto tipo Thread-lock sui filetti prima del serraggio.
- 8. Assicurarsi che sia disponibile una serie di tubi da 1,9" per eventuale cementazione dell'intercapedine 13 %" x 20" dall'alto, qualora non si verifichi il ritorno di cemento a giorno.
- Assicurarsi che in loco siano disponibili quantità sufficienti di cemento e di additivi per cemento, anche nel caso in cui si dovessero rendere necessari eventuali riempimenti dall'alto.
- Preparare composti ad alta viscosità adatti, per aiutare nella pulizia del foro, se necessario.
- 11. Essere pronti a pompare miscele colmatanti (LCM) se si verificano perdite.

12. Assicurarsi che il sistema di monitoraggio del gas e del flusso del fango siano perfettamente funzionanti. Il personale del contrattista di Mud Logging dovrà controllare tali sensori ogni ora durante la perforazione.

4.6.3 Esecuzione Foro 16"

Per ciò che concerne scalpelli, parametri, batterie di perforazione, idraulica, fango e modalità di cementazione, si rimanda ai paragrafi specifici.

- 1. Assemblare bit 16" e batteria rotary per la perforazione della fase da 16".
- 2. Una valvola di non ritorno **deve** essere inserita nella batteria nel raccordo dello scalpello.
- 3. Con scalpello da 16" ripulire l'interno del conductor pipe fino alla scarpa dello stesso.
- 4. Mantenere peso sullo scalpello, portate di fango e giri della batteria bassi per i primi 20 m sotto la scarpa da 20", per minimizzare il rischio di dilavamento della formazione. In seguito aumentare gradualmente le portate.
- 5. Perforare un foro 16" a ± 425 mMD. Pompare fluido ad alta viscosità se necessario per mantenere la pulizia del foro.
- 6. Se si incontrano formazioni a rapida perforazione, controllare la velocità di avanzamento ROP per impedire l'accumulo di detriti nell'intercapedine. Se necessario, sollevare la batteria dal fondo pozzo e circolare per pulire il foro.
- 7. Alla profondità totale prevista per la sezione, circolare abbondantemente il volume del foro.
- 8. Estrarre batteria registrando misure di verticalità con Electromagnetic shot o Gyro.

4.6.4 Discesa Casing 13 %"

Dimensione	Tipo	Intervallo mMD	Coppia di serraggio da N.m		
	68 lb/ft J55 BTC	Superficie – 425 mMD	Vedere nota sottostante		
13 ¾"	Tipo centralizzatore	Centralizzatori			
	A molle elicoidali	2 per giunto sui primi 3	3 + 1 ogni due fino a 60 m		
	Rigido	1 a 3	30 mMD		
	Rigido	a 3 m sotto la testa pozzo			

- 1. Il casing BTC deve essere serrato fino alla base del triangolo. Per migliorare le prestazioni durante la discesa, la coppia di serraggio media deve essere osservata durante la posa dei primi dieci giunti del casing serrati correttamente alla base del triangolo (escludere i giunti serrati con composto sigillante Thread-lock). Questa coppia di serraggio media può poi essere utilizzata per la discesa della restante parte del casing.
- Se necessario una cravatta di sicurezza deve essere utilizzata sul casing fino a che non viene esercitato un peso sufficiente sui cunei di tenuta per garantire la presa corretta.
- 3. Registrare il peso ogni 5 giunti durante la discesa in pozzo.
- 4. Una riunione del personale coinvolto nelle seguenti attività sarà tenuta per pianificare le operazioni e discutere della sicurezza e delle procedure.
- 5. Preparare le attrezzature per la discesa del casing da 13 %". Controllare che una testa di circolazione sia disponibile sul piano sonda e pronta all'uso nel caso in cui sia necessario circolare durante la discesa del casing.
- 6. Equipaggiare la scarpa con due centralizzatori tra gli anelli di arresto. Controllare la valvola di non ritorno.
- 7. Eseguire discesa casing da 13 %" come segue:
 - (i) 1 giunto con due centralizzatori installati tra gli anelli di arresto.
 - (ii) 2 giunti con due centralizzatori installati tra gli anelli di arresto.
 - (iii) Bloccare i primi tre giunti con composto Thread-lock. Ciò è essenziale per prevenire potenziali svitature durante la successiva fresatura della scarpa.
 - (iv) Discendere tanti giunti di casing 13 ¾" quanti sono necessari per raggiungere la profondità di posa richiesta installando i centralizzatori come da programma.
 - (v) Durante la discesa riempire il casing con fango dopo ogni giunto.
 - (vi) Installare un centralizzatore rigido alla base del CP 20" ± 30m e 3m sotto il fondo della cantina.
 - (vii) Posizionare il casing in assetto finale, montare testa di circolazione.Circolare il volume dell'intercapedine + 20%.
 - (viii) Smontare la testa di circolazione.

Pozzo Il Cancello 1 Dir

- (ix) Discendere nel pozzo con stinger e centralizzatore 13 3/8" x 5" 1,5m.
- (x) Provare circolazione attraverso lo stinger

4.6.5 Cementazione Casing 13-3/8"

Dimensione	Tipo		Intervallo mMD		Eccesso Foro Scoperto	
	68 lb/ft J55	втс	Superf	ficie – 425 mMD 100%		
	Malta	Volume	SG	Com	posizione	
	Primo cuscino	11,0 m³	1,0	Acq	ua pulita	
13 %"	Cemento	19,0 m³	1,5	API Classe G + gel preidratato 3		
	Cemento	8,0 m³	1,9	Pura Al	PI Classe G	
	Spiazzamento	3,5 m³	1,0	Acq	ua pulita	

- 1. Montare testa di cementazione sull'asta di perforazione.
- 2. Montare le linee del cemento.
- 3. Sottoporre a test di pressione le condotte del cemento a 500 psi (34 bar) x 10 min e 2000 psi (138 bar) x 10 min. Iniziare la circolazione.
- 4. Circolare il fondo del foro a giorno. Controllare i ritorni e verificare eventuali perdite. Stabilire la portata ottimale.
- 5. Pompare 11 m³ di acqua dolce come primo cuscino.
- 6. Miscelare e pompare la malta di cemento secondo il Programma di Cementazione.
- 7. Monitorare il ritorno dei fluidi durante lo spiazzamento. Se in superficie si vede il ritorno del cuscino d'acqua dopo 5 m³ cominciare a pompare la malta tal quale, è possibile ridurre il solo volume della malta di testa. Registrare eventuali perdite.
- 8. Spiazzare il cemento con 3 m³ di acqua dolce.
- 9. Registrare la pressione di pompaggio finale (utilizzare questa per stimare il TOC se non c'è ritorno di cemento a giorno).
- 10. Rilasciare la pressione. Verificare eventuale ritorno.
- 11. Sollevare e attendere che l'eventuale eccesso di malta cada dall'asta.

- 12. Circolare per pulire lo stinger e la batteria. Estrarre batteria di cementazione.
- 13. Durante l'attesa presa cemento (campioni di superficie siano induriti) preparare per il taglio delle colonne.
- 14. Tagliare il conductor pipe 20" e il casing 13 %" ad altezza giusta per installare la sezione "A" della testa pozzo, smontare il sistema diverter

Riempimento dall'alto di cemento (top job)

Se non si e' verificato il ritorno della malta a giorno, sarà necessario procedere al riempimento dall'alto. È importante eseguire un buon riempimento dall'alto per fornire supporto strutturale alla testa pozzo e conseguentemente alle colonne del casing. Il riempimento dall'alto sarà eseguito nell'intercapedine 20" x 13-3/8" a cuscini di malta, fino quando ci sarà cemento a giorno. Sarà utilizzata una malta a presa rapida come da Programma di Cementazione.

4.6.6 Installazione Testa Pozzo e BOP

- 1. Installare la sezione A della testa pozzo secondo la procedura descritta nel documento Wellhead Running Procedure.
- 2. Chiudere l'intercapedine 20" x 13-¾" tramite saldatura di due semicorone, di cui una equipaggiata con un connettore da ½" che permetta l'installazione di manometro e di una valvola.
- 3. Montare stack BOP 13 %" x 10000 psi come da disegno allegato con inserite le *ganasce trancianti,* le linee choke e kill, provare le funzionalità.
- 4. Installare il tappo di prova (test plug) aprendo la valvola laterale della sezione "A" della testa pozzo (utilizzare il cup-tester se non c'è il test plug).
- 5. Provare il preventer anulare a 250 psi per 5 minuti e a 1400 psi per 10 minuti, pipe rams a 250 psi per 5 minuti e a 2000 psi per 10 minuti. Nota: la massima pressione applicabile al casing 13 %" è di 3451 psi.
- Eseguire test di tutte le linee di superficie, della Kelly cocks, delle linee choke e kill a 250 psi per 5 minuti e a 2000 psi per 10 minuti (1500 psi se si usa il cup tester).

- 7. Estrarre il tappo di prova.
- 8. Provare Shear Rams a 250 psi e 600 psi avendo la sicurezza che una parte del cemento sia rimasto nel casing sopra la scarpa, Registrare i volumi e le pressioni per confronto con il successivo test FIT (Test di Integrità della Formazione).
- 9. Tutti i test vanno registrati su relativo grafico e sul modulo di Prova BOP.

4.7 Sezione Foro 12 1/4"

4.7.1 Descrizione Schematica

L'obiettivo è posizionare il casing 9-%" ad una profondità sufficiente da fornire un controllo adeguato del pozzo nella perforazione della sezione finale del foro.

- La profondità totale TD della sezione è programmata a 2500 mMD / 2427 mTVD.
- 2. La sezione sarà perforata con un foro da 12-¼" verticale fino alla profondità di 500 m MD quota KOP dove inizia la deviazione con un incremento dell'angolo 2,5° x 30 m (DLS) fino a raggiungere un angolo massimo di 16° alla profondità di 692 m MD/ 690 m VD. Da tale profondità l'inclinazione sarà mantenuto costante per tutta la sezione prevista fino a 2500 mMD/ 2427mVD
- 3. La sezione sarà perforata con scalpelli ad inserti PDC (Polycrystalline Diamond Compact) o con triconi ad inserti tipo IADC codice 434.

Durante la perforazioni si effettuerà il monitoraggio in continuo (anticollision) della distanza dai pozzi TT1, TT2 e Ripatransone 1 in da garantire un'adeguata distanza di sicurezza dai pozzi menzionati.

4.7.2 Preparazione

 Assicurarsi che una valvola di sicurezza per ogni tipo di connessione da utilizzare nel foro sia disponibile in ogni momento sull'impianto di perforazione.

Pozzo Il Cancello 1 Dir

- Controllare fisicamente che tutte le attrezzature/apparecchiature dettagliate nell'elenco delle apparecchiature siano presenti in loco, in buone condizioni e perfettamente funzionanti.
- 3. Controllare che il casing 9 5/8" in loco sia sufficiente.
- 4. Pulire ed effettuare il controllo visivo di tutti i filetti. Tutto il casing deve essere liberato da detriti interni, calibrato, controllato per verificare eventuali danni strutturali ed etichettato. Le misurazioni devono essere controllate in modo indipendente.
- 5. Installare anelli di arresto sul casing come da programma centralizzatori.
- 6. Installare la scarpa del casing con doppia valvola di non ritorno. Sigillare i giunti al serraggio utilizzando composto Thread-lock sui primi due giunti da scendere in pozzo.
- 7. Assicurarsi che la testa di cementazione sia controllata e verificata.
- 8. Assicurarsi che in loco siano disponibili quantità sufficienti di cemento e di additivi per cemento.
- 9. Preparare cuscini ad alta viscosità in quantità adeguata da circolare per aiutare nella pulizia del foro, se necessario.

4.7.3 Esecuzione Foro 12-1/4"

Per ciò che concerne scalpelli, parametri, batterie di perforazione, idraulica, fango e modalità di cementazione, si rimanda ai paragrafi specifici.

1. Per la perforazione della fase da 12 ¼" fino a 500 m la batteria sarà composta come nelle seguente tabella.

BHA 121/4"	Connessione
Scalpello da 12 ¼"	6-%" Reg Pin
Near Bit Stabilizzatore dia ext 12 ¹ / ₈ " con ring Totco	6-5/4" Reg Box x 6-5/4" Box
1 x asta pesante 8"	6-%" Reg Pin x Box
1 x Stabilizzatore dia ext 12 ¹ / ₈ "	6-%" Reg Pin x Box
2 x aste pesanti 8"	6-%" Reg Pin x Box
1 x Stabilizzatore dia ext 12 ¹ / ₈ "	6-%" Reg Pin x Box
5 x asta pesante 8"	6-%" Reg Pin x Box
Jar idraulico 8"	6-%" Reg Pin x Box
1 x asta pesante 8"	6-%" Reg Pin x Box
X-over sub	6-%" Reg Pin x 4½" IF Box
9 HWDP 5"	4-1/2" IF Pin x Box
Aste di perforazione 5" – 19,5 lb/ft	4-½" IF Pin x Box

- 2. Scendere in foro e fare attenzione nel toccare il top del cemento.
- 3. Fresare il cemento la scarpa da 13 ¾", pulire il foro da 16" sotto la scarpa e perforare almeno 5 m di nuovo foro.
- 4. Circolare e condizionare il fango. Continuare a circolare fino a che il fango avrà densità costante.
- 5. Ritirare lo scalpello nel casing da 13 %".
 - Eseguire il Test di Integrità della Formazione (FIT). Pompare a incrementi di 0,5 bbls. Registrare e plottare la pressione stabilizzata dopo ogni incremento. Comunicare il gradiente di Leak Off (se raggiunto) al Responsabile della Perforazione.
- 6. Il gradiente calcolato deve essere segnalato sul Rapporto Giornaliero di perforazione. Deve essere preparato un rapporto dettagliato sul test FIT, che includa dettagli di profondità foro, dimensioni, pressioni, volumi pompati, ecc. ed il grafico di pressione superficiale - volume pompato.
- 7. Ricalcolare la tolleranza al kick.
- 8. Perforare il foro da 12 1/4" verticalmente fino alla profondità di 500 m.
- 9. Circolare ed estrarre lo scalpello utilizzato per perforare la scarpa.

- 10. Discendere lo scalpello PDC con la batteria di deviazione ed iniziare la perforazione direzionata da 500 m incrementando l'angolo con DLS di 2.5°x30 m fino al valore massimo di 16° che si prevede di raggiungere a m 692 come previsto nel profilo di deviazione.
- 11. Monitorare distanza con i pozzi limitrofi e se necessario apportare correzioni di deviazione per ottenere un'adeguata distanza di sicurezza.
- 12. Continuare la perforazione con un angolo costante fino a 2500 mMD / 2428 mTVD.
- 13. Alla profondità totale TD della sezione, circolare 2 volte il volume del foro ed eseguire una manovra corta (5 lunghezze) per verificare la presenza di eventuali detriti a fondo foro, di sovratiri e assorbimenti.
- 14. Discendere a fondo pozzo. Annotare eventuali assorbimenti. Circolare.
- 15. Estrarre batteria di perforazione misurando ciascuna lunghezza per riferimento.
- 16. Eseguire, se necessario e come da programma, i log WLL.

4.7.4 Discesa Casing 9-5/8"

Dimensione	Tipo Intervallo mMD		Coppia di serraggio daN.m	
	47 lb/ft N80 Metal Seal	0-2500 mMD		
9 5/8"	Tipo centralizzatore	Centralizzatori		
	A molle elicoidali Rigido	Un calcolo di stand-off verrà eseguito per decidere il numero di centralizzatori necessari		

- Per migliorare le prestazioni durante la discesa, la coppia di serraggio media deve essere osservata durante la posa dei primi dieci giunti del casing serrati correttamente (escludere i giunti serrati con composto sigillante).
- Una cravatta di sicurezza deve essere utilizzata sul casing fino a che non viene esercitato un peso sufficiente sui cunei di tenuta per garantire la presa corretta.
- 3. Registrare il peso ogni 5 giunti durante la discesa in pozzo.
- 4. Una riunione del personale coinvolto nelle seguenti attività sarà tenuta per pianificare le operazioni e discutere la sicurezza delle procedure.

- 5. Preparare una testina di sicurezza prima di eseguire l'operazione.
- 6. Montare l'attrezzatura per la discesa del casing 9 %".
- 7. Discendere il giunto con la scarpa. Assicurarsi che la scarpa sia funzionante e che sia possibile la circolazione attraverso la stessa. Installare un centralizzatore tra gli anelli di arresto.
- 8. Sigillare i primi 3 giunti con composto Thread-lock. Installare i centralizzatori tra gli anelli di arresto come da schema precedente, montare il float collar.
- 9. Eseguire un test di circolazione dopo 5 giunti a 3 diverse portate per verificare il flusso e la relativa caduta di pressione dovuti alla valvola di non ritorno e alla scarpa.
- 10. Continuare la discesa del casing 9 %", riempire ogni giunto durante la discesa. Installare i centralizzatori come da schema sovrastante.
- 11. Installare il giunto finale (landing joint).
- 12. Circolare durante il posizionamento finale del casing se le condizioni del foro lo richiedono.
- 13. Eseguire circolazione completa dei volumi dell'intercapedine più il 20%. Muovere leggermente il casing verticalmente durante la circolazione fin quando non si vi sono sovratiri.
- 14. Ripetere il test di circolazione con le stesse portate usate in precedenza e calcolare la caduta di pressione nell'intercapedine che sarà applicata alla formazione durante lo spiazzamento del cemento. Confrontare le pressioni di spiazzamento con il gradiente di fratturazione.
- 15. Condizionare il fango in preparazione della cementazione.

4.7.5 Cementazione Casing 9 5/8"

Dimensione	Tipo		I	ntervallo mMD	Eccesso Foro Scoperto
	47 lb/ft N80 Me	etal seal	2500	– 1500 mMD	25%
	Malta	Volume	SG	Com	posizione
	Cuscino	10m³	1,00	Acqua pulita o cuscino di pulizia	
9 5/8"	Cemento	36,5m³	1,50	Cemento leggero ad alta resister	
	Cemento	emento 5,0m³ 1,90 Pura API Classe		PI Classe G	
	Cuscino	3,5m³	1,15	Come da proposta Contrattista	
	Spiazzamento	95,4m³	,4m³ 1,15 Fanghi		- anghi

- 1. Montare la testa di cementazione con i tappi superiore e inferiore installati.
- 2. Montare le linee del cemento.
- 3. Sottoporre a test di pressione le linee del cemento a 500 psi (34 bar) x 10 min e 3000 psi (207 bar) x 10 min. Iniziare la circolazione.
- 4. Circolare il fondo a giorno, controllare il flusso di ritorno e verificare eventuali assorbimenti. Stabilire la portata ottimale.
- 5. Pompare 10 m³ di cuscino di acqua pulita. Rilasciare il tappo di cementazione inferiore.
- 6. Pompare malta di cemento secondo il Programma di Cementazione.
- 7. Monitorare il ritorno durante la cementazione. Registrare eventuali assorbimenti. Se si osservano assorbimenti durante la fase di spiazzamento ridurre le portate.
- 8. Rilasciare il tappo di cementazione superiore e spiazzare il cemento con secondo cuscino di 3.5 m³ e il restante volume di 95,4 m³ di fango.
- 9. Registrare la pressione finale di pompaggio (da usare per stimare la posizione del top del cemento).
- Ridurre la portata di spiazzamento a 0,5 bbl/min prima di avere il contatto tappi. Eseguire contatto tappi. Aumentare la pressione a 2500 psi. Mantenerla per 10 minuti.

Pozzo Il Cancello 1 Dir

- 11. Rilasciare lentamente la pressione e verificare il flusso di ritorno per controllare la tenuta delle valvole.
- 12. Attesa presa cemento per 4 6 ore dopo il contatto tappi o finché i campioni di superficie non si siano induriti.

4.7.6 Installazione del Casing Hanger e Montaggio BOP

- 1. Scollegare e sollevare lo stack BOP, monitorare l'intercapedine.
- 2. Posizionare i cunei di tenuta del casing 9-5/4" e procedere al suo taglio.
- Installare la sezione B (Tubing Spool) come procedura di installazione testa pozzo, si veda il documento Wellhead Running Procedure. Testare la guarnizione a 1000 psi.
- 4. Rimontare lo stack BOP 13-%"x 5000/10000 psi, completo di linee choke e kill ed eseguire test funzionale.
- 5. Installare il tappo di prova (test plug) aprendo la valvola laterale della sezione "B" della testa pozzo (utilizzare il cup-tester se non c'è il test plug).
- 6. Eseguire test di pressione delle pipe rams e BOP anulare a 250 psi per 5 minuti e a 3000 psi per 10 minuti. Nota: la massima pressione applicabile al casing 9-5%" è di 6870 psi.
- 7. Eseguire test di tutte le linee di superficie, della Kelly cocks, delle linee choke e kill a 250 psi per 5 minuti e a 3000 psi per 10 minuti.
- 8. Estrarre il tappo di prova.
- 9. Testare le shear rams a 250 psi per 5 minuti e a 2000 psi per 10 minuti.
- Tutti i test devono essere registrati su un grafico e riportati su un modulo di test BOP.

4.8 Sezione Foro 8-1/2"

4.8.1 Descrizione Schematica.

- L'obiettivo è di investigare la parte meridionale della struttura ad anticlinale che contiene i campi di Grottammare e Carassai; obiettivo principale del sondaggio è rappresentato dalla sequenza di livelli sottili (*Thin Beds*) del Pliocene Inferiore.
- Il foro sarà perforato con inclinazione costante di 16° fino a circa 3449 mMD / 3340 mTVD, a tale quota comincerà il rientro in verticale con 2° x 30 fino alla quota di 3689 mMD 3577 mVD.
- 3. La perforazione proseguirà fino a quota di carotaggio da ± 3896m a ± 3923m nei sottolivelli TB4 e TB5 come previsto nella parte di Geologia Operativa.

Nota: La quota e la lunghezza del carotiere potrà variare in base all'entità delle manifestazioni di gas, e all'analisi dei cuttings ecc.

- 4. Estrarre lo scalpello e discendere il carotiere 6"3/4 x 4" con 3 tubi pari a 27 m di carota.
- Carotare secondo le raccomandazioni della geologia operativa e della Contrattista del carotaggio.
- 6. Estrarre il carotiere seguendo le raccomandazioni della Contrattista, recuperare la carota, e discendere uno scalpello nuovo se quello estratto non è in buone condizioni.
- 7. Riprendere la perforazione in verticale del pozzo attraversando l'obiettivo primario del pozzo.

Nota: La profondità finale del pozzo come indicato nel programma di geologia operativa potrà variare in funzione delle manifestazioni di gas e dei gradienti di pressioni riscontrati durante la perforazione.

- Perforare fino alla massima profondità finale stimata di 4196MD 4084 mVD.
 (Top Liv.1B)
- 9. Questa sezione sarà perforata con uno o più scalpelli ad inserti PDC.

Pozzo II Cancello 1 Dir

- 10. Sarà utilizzato un fluido di perforazione con caratteristiche adeguate per minimizzare l'invasione di formazioni potenzialmente produttive in modo da ridurre il danneggiamento.
- 11. I log elettrici ed un Checkshot Survey saranno registrati una volta raggiunta la profondità finale.

4.8.2 Preparazione

- 1. Assicurarsi che una valvola di sicurezza, adeguata ad ogni tipo di connessione, sia disponibile in ogni momento sull'impianto di perforazione.
- 2. Controllare fisicamente che tutte le apparecchiature dettagliate in un elenco siano presenti in loco, in buone condizioni e perfettamente funzionanti.
- 3. Assicurarsi che i vibrovagli siano dotati delle reti corrette.
- 4. Controllare che il Casing 7" in loco sia sufficiente.
- 5. Pulire ed effettuare il controllo visivo di tutti i filetti. Tutti i giunti di casing devono essere puliti da detriti, calibrati e controllati per eventuali danni strutturali ed ai filetti e registrati. Le misurazioni devono essere controllate in maniera indipendente.
- 6. Il casing va equipaggiato con scarpa, collare e i vari centralizzatori programmati.
- 7. Installare float shoe e float collar. Utilizzare un composto Thread-lock per sigillare i filetti dei primi tre giunti da scendere in pozzo.
- 8. Assicurarsi che la testina di cementazione sia disponibile e funzionante.
- 9. Assicurarsi che in loco siano disponibili quantità sufficienti di cemento e di additivi per cemento.
- 10. Preparare composti ad alta viscosità utili se necessario a pulire il foro.

Pozzo Il Cancello 1 Dir

4.8.3 Esecuzione Foro 8-1/2"

Per ciò che concerne scalpelli, parametri, batterie di perforazione, idraulica, fango e modalità di cementazione, si rimanda ai paragrafi specifici.

- 1. Per la perforazione della fase da 8 ½" fino a TD 4196 m la batteria sarà composta come da proposta della compagnia di deviazione.
- 2. Scendere in pozzo la batteria di perforazione con aste da 5", registrare la profondità del top del cemento.
- 3. Fresare collare, cemento e scarpa, pulire il foro da 12 ¼" sotto la scarpa e perforare circa 5m di nuovo foro.
- 4. Circolare e condizionare fango fino a che la densità sia uniforme.
- 5. Ritirare lo scalpello dentro la scarpa da 9 %".
- 6. Eseguire il Test di Integrità della Formazione (FIT). Pompare a incrementi di 0.5 bbls. Registrare e plottare la pressione stabilizzata dopo ogni incremento.
 - Il gradiente definito con il test deve essere segnalato sul Rapporto Giornaliero di Perforazione. Deve essere preparato un rapporto dettagliato sul test FIT che includa dettagli di profondità foro, dimensioni, pressioni, volumi pompati, ecc. e il grafico di pressione superficiale volume pompato.
- 7. Perforare con inclinazione costante di 16° fino a circa 3449 mMD / 3340 mTVD, a tale quota comincerà il rientro in verticale con 2° x 30 fino alla quota di 3689 mMD 3577 mVD.
- 8. Continuare perforazione in verticale fino alla profondità di circa 3790 mMD / 3670 mTVD probabile quota di carotaggio (la quota esatta sarà definita in fase di perforazione in base alle indicazioni fornite dalla Geologia Operativa).
- 9. Estrarre scalpello.
- 10. Discendere carotiere con inner tube in alluminio.
- 11. Carotare seguendo le raccomandazioni riportate nella parte di Geologia Operativa e della società Contrattista.
- 12. Estrarre carotiere e recuperare carota seguendo le indicazioni della Geologia Operativa e del Contrattista.

Pozzo Il Cancello 1 Dir

13. Discendere lo scalpello da 8"1/2 fare attenzione nel ripassare il tratto di foro carotato

Proseguire la perforazione in verticale fino alla profondità stimata di circa 4196 m MD / 4084 mTVD (quota Argilla tra liv. 1A-1B).

La profondità finale della fase potrebbe essere ridotta in funzione dei risultati geologici e delle manifestazioni gas allo scopo di isolare preventivamente l'obbiettivo primario con il liner 7".

- 14. Alla profondità totale della sezione, circolare 2 volte il volume del foro e eseguire uno short trip di 5 lunghezze controllando eventuali riempimenti, sovratiri e assorbimenti.
- 15. Circolare per pulire il foro, pompare al fondo un cuscino di fango ad alta viscosità.
- 16. Estrarre batteria di perforazione misurando ciascuna lunghezza.

4.8.4 Log Elettrici nel Foro 8 1/2"

- I dettagli operativi del programma di acquisizione log dipendono dalle manifestazioni incontrate durante la perforazione. In ogni caso si procederà come segue:
- Assicurarsi che il contrattista per la registrazione dei log abbia a disposizione le attrezzature di pescaggio adatte a tutti gli strumenti da scendere in foro.
- Una manovra di pulizia dovrà essere effettuata tra le varie registrazioni se le condizioni del foro lo richiederanno.

4.8.5 Esecuzione dei Log

- 1. Montare le attrezzature di superficie ed eseguire i log come da programma.
- 2. Terminati i log eseguire discesa con scalpello da 8"-½ senza dusi per controllo foro. Circolare e condizionare fango.
- 3. Estrarre batteria.

4.8.6 Discesa Liner 7"

Dimensione	Tipo	Intervallo mMD	Coppia di Serraggio da Nm	
	29 lb/ft P110 Metal seal	4196 - 2400 mMD		
7"	Tipo centralizzatore	Cen	tralizzatori	
,	A molle elicoidali		i primi 2 giunti posati	
	A molle elicoidali/Rigido	1 su ogni giunto		
	Rigido	1 all'inter	no della scarpa 9-%"	

- Il casing metal seal deve essere serrato alla coppia raccomandata dal tipo di filettatura.
- Una cravatta di sicurezza deve essere utilizzata sul casing fino a che non viene esercitato un peso sufficiente sui cunei di tenuta per garantire la presa corretta.
- > Registrare il peso ogni 5 giunti nel discendere nel pozzo.
- 1. Una riunione del personale coinvolto nelle attività sarà tenuta per pianificare le operazioni e discutere la sicurezza delle procedure.
- 2. Tenere sul piano sonda una valvola di sicurezza sempre pronta per eventuale circolazione.
- 3. Montare l'attrezzatura per la discesa del liner 7".
- 4. Preparare il giunto di scarpa. Assicurarsi che la valvola di non ritorno sia funzionante e che la circolazione attraverso la scarpa sia possibile. Installare i centralizzatori tra gli anelli di arresto come da schema sovrastante.
- 5. Discendere il liner come segue:
 - Float shoe.
 - > 3 giunti di casings 7".
 - Landing collar.
 - Giunti di casings 7" sufficienti a posizionare il liner hanger ± 100 m all'interno della scarpa del casing 9-5/8".
 - liner hanger completo di packer integrale.

Pozzo Il Cancello 1 Dir

- 6. Sigillare i filetti delle prime tre connessioni con composto Therad-lock. Installare i centralizzatori tra gli anelli di arresto.
- 7. Eseguire un test di circolazione dopo 5 giunti a 3 diverse portate per verificare la circolazione e le corrispondenti pressioni.
- 8. Continuare la discesa del Liner 7", riempiendo ogni giunto durante la discesa stessa. Installare i centralizzatori come indicato nello schema sovrastante.
- 9. Montare il liner hanger, il packer del liner e la batteria di installazione del liner.
- 10. Eseguire Test di circolazione al termine dell'assemblaggio Hanger e prima di uscire dalla scarpa 9 5/8".
- 11. Continuare discesa del liner con aste da 5", fino a fondo pozzo, controllando che l'interno delle aste sia libero con un calibro.
- 12. Circolare durante la discesa dell'ultimo giunto secondo le condizioni del foro.
- 13. Circolare il volume interno del liner 7" + 20%. Muovere verticalmente il liner durante la circolazione fino a che non ci siano più sovrattiri.
- 14. Ripetere il test di circolazione alle stesse portate usate in precedenza e calcolare la caduta di pressione nell'intercapedine, che sarà esercitata sulle formazioni durante lo spiazzamento del cemento. Confrontare le pressioni di spiazzamento con il gradiente di fratturazione.
- 15. Fissare Liner Hanger seguendo le procedure della Contrattista che fornirà il LH e relativo servizio d'installazione.
- 16. Verificare avvenuto fissaggio hanger
- 17. Svincolare Setting tool.
- 18. Condizionare il fango in preparazione per la cementazione.

Pozzo Il Cancello 1 Dir

4.8.7 Cementazione Liner 7"

Dimensione	Tipo	Ir	ntervallo mmD	Eccesso foro Scoperto		
	29 lb/ft N80 Meta	4196	i-2400 mMD	20% del risultato del caliper		
	Malta	Volume	SG		Composizione	
	Cuscino	6,0 m³	1,50	Acqua pulita + mud flush API Classe G + gasblock +antischiuma disperdente + ritardante		
7"	Cemento	25 m³	1,6			
	Cemento	2,0 m ³	1,90	Pura API Classe G		
	Cuscino	2,0 m³ 1,50			Mud push	
	Spiazzamento Csg	21,7 m³	1,20 Fanghi			

I volumi e il tipo di malta definitivi verranno calcolati e definiti dopo i log elettrici.

- 1. Montare la testa di cementazione con i tappi superiore e inferiore installati.
- 2. Montare le linee del cemento.
- 3. Sottoporre a test di pressione le linee del cemento a 500 psi (34 bar) x 10 min e 3000 psi (207 bar) x 10 min. Iniziare la circolazione.
- 4. Circolare il fondo a giorno, controllare il flusso di ritorno e verificare eventuali assorbimenti. Stabilire la portata ottimale.
- 5. Pompare 6 m³ di cuscino di acqua pulita + mud flush a 1.5 sg. Rilasciare il tappo di cementazione inferiore.
- 6. Pompare malta di cemento secondo il Programma di Cementazione.
- 7. Monitorare il ritorno durante la cementazione. Registrare eventuali assorbimenti. Se si osservano assorbimenti durante la fase di spiazzamento ridurre le portate.
- 8. Rilasciare il tappo di cementazione superiore e spiazzare il cemento con secondo cuscino mud push di 2 m³ a 1.5 sg e il restante volume di 21.7 m³ di fango.
- 9. Registrare la pressione finale di pompaggio (da usare per confermare la posizione del top del cemento).

Pozzo Il Cancello 1 Dir

- 10. Ridurre la portata di spiazzamento a 0,5 bbl/min prima di avere il contatto tappi. Eseguire contatto tappi. Aumentare la pressione a 2500 psi. Mantenerla per 10 minuti.
- 11. Rilasciare lentamente la pressione e verificare il flusso di ritorno per controllare la tenuta delle valvole.
- 12. Estrarre Setting tool in superficie sdoppiando aste da 5" in eccesso.

Nota: Circolare bottom up a top liner 7" per pulire l'eventuale eccesso di cemento.

13. Attesa presa cemento per 4 – 6 ore dopo il contatto tappi o finché i campioni di superficie non si siano induriti.

4.9 Sezione Foro 6"

4.9.1 Descrizione Schematica.

Il foro 6" verrà perforato solo se la serie stratigrafica prevista sarà individuata in quota.

Si prevede di perforare 30-40 m di foro in verticale fino a circa 4240 mMD / 4128 mTVD allo scopo di verificare la mineralizzazione dell'obiettivo secondario Liv. 1 B.

4.9.2 Preparazione

- 11. Assicurarsi che una valvola di sicurezza, adeguata ad ogni tipo di connessione, sia disponibile in ogni momento sull'impianto di perforazione.
- 12. Controllare fisicamente che tutte le apparecchiature dettagliate in un elenco siano presenti in loco, in buone condizioni e perfettamente funzionanti.
- 13. Preparare composti ad alta viscosità utili se necessario a pulire il foro.
- 14. Preparare composti e materiali intasanti per contrastare i possibili assorbimenti.

Pozzo Il Cancello 1 Dir

4.9.3 Esecuzione Foro 6"

Per ciò che concerne scalpelli, parametri, batterie di perforazione, idraulica, fango e modalità di cementazione, si rimanda ai paragrafi specifici.

- 1. Per la perforazione della fase da 6" fino a TD 4240 m si utilizzerà una batteria
- 2. Scendere in pozzo la batteria di perforazione mista con aste da 3 ½" e 5", registrare la profondità del top del cemento.
- 3. Fresare collare, cemento e scarpa, pulire il foro da 8 ½" sotto la scarpa e perforare circa 40 m di nuovo foro fino a circa 4240 m MD/4128 m TVD. (la quota esatta verrà decisa in fase di perforazione in base alle indicazioni fornite dalla Geologia Operativa).
- 4. Estrarre scalpello.
- 5. Circolare per pulire il foro, pompare al fondo un cuscino di fango ad alta viscosità.
- 6. Estrarre batteria di perforazione.

Nota: Se il Liv. 1 B non sarà ritenuto interessante verrà chiuso minerariamente mediante tappo di cemento.

4.9.4 Logs

- 1. Discendere bit + Scrapper con DP da 3 ½" e discendere fino a fondo pozzo.
- 2. Circolare per sostituire fango con brine fino ad avere ritorno in superficie.
- 3. Estrarre scrapper sdoppiando le aste 3 ½".
- 4. Montare le attrezzature di superficie ed eseguire i log.
- 5. Eseguire il log di controllo cementazione
- 6. Terminati i log estrarre i tool.

4.10 Completamento

Qualora il pozzo sia positivo si procederà al completamento, con una stringa singola selettiva, fino ad un massimo di 4 completamenti selettivi, al fine di assicurare la corretta gestione della vita produttiva dei livelli. Al termine del completamento sarà eseguito un primo spurgo come da programma clean-up e prova descritto nel prossimo capitolo.

Il Programma di Completamento definitivo, elaborato al termine della valutazione dei log, sarà in ogni caso sottoposto ad UNMIG.

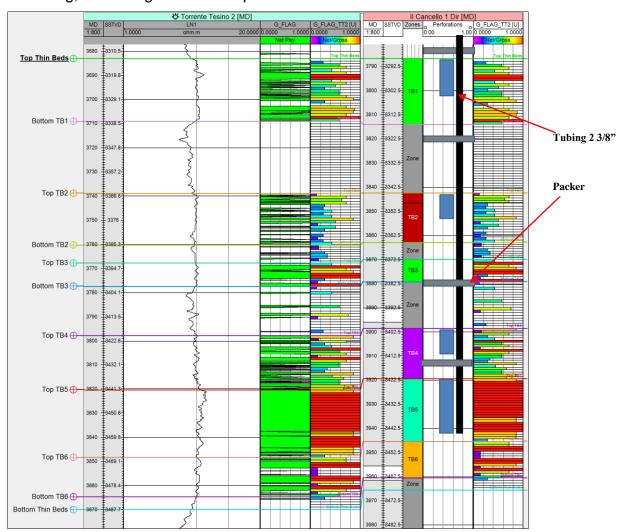


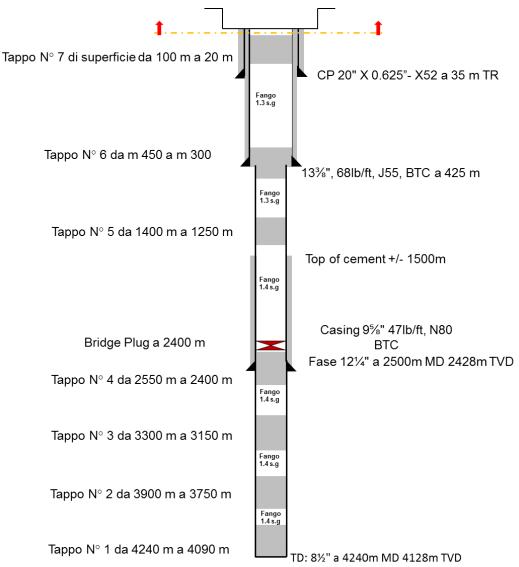
Figura 4.2: Schema concettuale di completamento.

4.11 Prove di Produzione

A conclusione dell'inserimento in pozzo del completamento definitivo, si procederà ad una prima fase di clean-up con le valvole di circolazione aperte, fino a registrare condizioni erogative anidre, installando le necessarie attrezzature (separatore, misuratori, serbatoio per il brine di completamento recuperato, manifold) nell'area di cantiere.

La fase di clean-up continuerà andando a chiudere dall'alto verso il basso in maniera progressiva le valvole di circolazione e ripetendo dopo ogni chiusura una erogazione fino al raggiungimento dei parametri erogativi costanti. Questo permetterà di individuare già in fase di spurgo quale dei livelli completati è il più promettente in termini di erogabilità per semplice differenza dei contributi erogativi dai diversi assetti di aperture selettive.

Una volta individuato il completamento migliore si procederà ad eseguire, sempre con l'impianto in sito, una prova di produzione completa secondo le seguenti fasi indicative: con il pozzo chiuso in testa installazione dei memory gauge a fondo ed apertura valvola di circolazione; registrazione risalita per la durata prevista di circa 7 ore. Apertura del pozzo ed esecuzione di almeno 2 erogazioni isocrone a portata crescente di circa 7 ore ciascuna, con campionamento finale del gas. A seguire una build up finale di almeno 16 ore. Verrà mantenuto un tandem di memory gauge al fondo pozzo per il rilievo di pressione e temperatura in continuo.


Prove di produzione del tutto simili in termini di durata e programma saranno effettuate per le altre selettive del completamento finale in un secondo momento dopo aver rilasciato il rig, con un impianto di prova di produzione dedicato.

La decisione se effettuare o meno un lavaggio dei fori per eliminare l'eventuale skin dovuto al brine di completamento e a residui di fluido di perforazione, nonché il programma dettagliato (dusi, durata delle fasi, volumi erogabili ecc.) della prova di produzione saranno sottoposti per tempo all'ufficio UNMIG in base ai dati misurati durante lo spurgo.

4.12 Chiusura Mineraria

In caso di esito negativo delle prove si procederà alla chiusura mineraria del pozzo. Indicativamente saranno ricostituiti gli orizzonti impermeabili tra i vari livelli mediante l'iniezione dei tappi di cemento, e il volume tra un tappo e l'altro sarà riempito di fango a densità appropriata (vedi **fig. 4.3**). La parte terminale del casing sarà tagliata e si procederà al tappo di cemento terminale e alla ricostituzione degli orizzonti superficiali.

Il progetto di chiusura mineraria dovrà essere presentato ad UNMIG e sottoposto ad approvazione definitiva.

Nota

Il numero di tappi di cemento in foro scoperto potrà variare in funzione dei livelli permeabili attraversati. Si prevedono 2 o 3 più tappi di Cemento di circa 100-150 m.

Figura 4.3: Schema di chiusura mineraria

Pozzo II Cancello 1 Dir

4.13 Programma di Deviazione

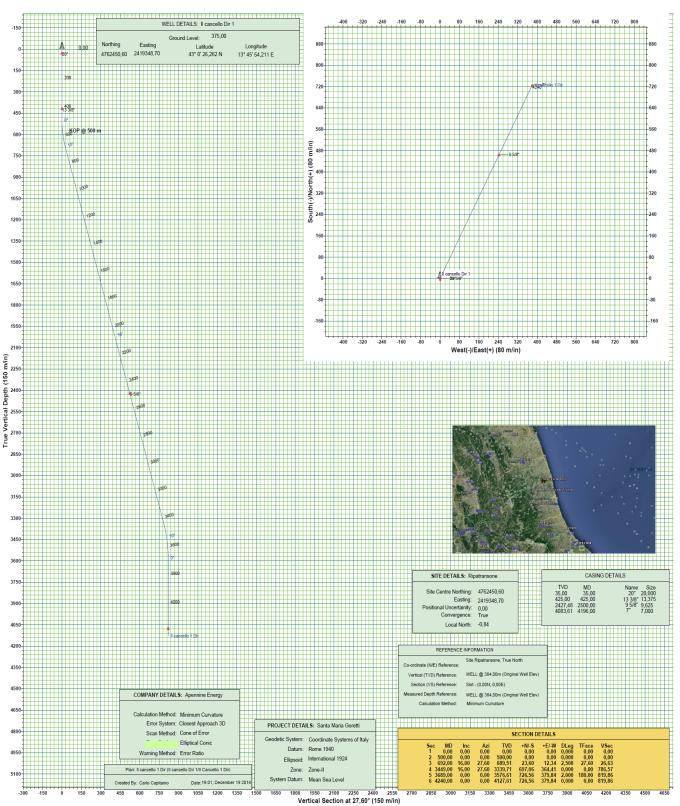


Figura 4.4: Profilo di deviazione del pozzo

Pozzo Il Cancello 1 Dir

Survey Report - Geographic

Company:	Apennine Energy	Local Co-ordinate Reference:	Well II Cancello 1 Dir
Project:	Santa Maria Goretti	TVD Reference:	WELL @ 384,00m (Original Well Elev)
Site:	Ripatransone	MD Reference:	WELL @ 384,00m (Original Well Elev)
Well:	Il Cancello 1 Dir	North Reference:	Grid
Wellbore:	Il Cancello 1 Dir	Survey Calculation Method:	Minimum Curvature
Design:	Il Cancello 1 Dir	Database:	EDM 2003.21 Single User Db

Project Santa Maria Goretti, Block: Santa Maria Goretti

Map System: Coordinate Systems of Italy System Datum: Mean Sea Level

Geo Datum: Rome 1940 Map Zone: Zone-II

Site Ripatransone 4.762.450,65_m Northing: Site Position: Latitude: 43° 0' 26,264 N 13° 45' 54,213 E 2.419.348,73 m Easting: Longitude: 0,00 m **Position Uncertainty:** Slot Radius: in **Grid Convergence:** -0,84 °

Well Il Cancello 1 Dir Well Position +N/-S 0,00 m 4.762.450,65 m Latitude: 43° 0' 26,264 N Northing: 2.419.348,73 m 13° 45' 54,213 E +E/-W 0,00 m Longitude: Easting: **Position Uncertainty** 0,00 m Wellhead Elevation: 9,00 m Ground Level: 375,00 m

 Wellbore
 Il Cancello 1 Dir

 Magnetics
 Model Name
 Sample Date (°) (°) (°) (nT)
 Dip Angle (°) (°) (nT)
 Field Strength (nT)

 IGRF200510
 31/12/2009
 2,44
 59,40
 46.703

Design II Cancello 1 Dir

Audit Notes:

PLAN 0,00 Tie On Depth: Version: Phase: Vertical Section: +N/-S +E/-W Depth From (TVD) Direction (m) (m) (m) (°) 0,00 0,00 0,00 27,60

anned Surv	ey								
Measured Depth (m)	Inclination (°)	Azimuth (°)	Vertical Depth (m)	+N/-S (m)	+E/-W (m)	Map Northing (m)	Map Easting (m)	Latitude	Longitude
0,00	0,00	0,00	0,00	0,00	0,00	4.762.450,65	2.419.348,73	43° 0' 26,264 N	
500.00	0.00	0.00	500.00	0.00	0.00	4.762.450.65	2.419.348.73	43° 0' 26,264 N	
692.00	16.00	27.60	689.51	23,60	12.34	4.762.474,25	2.419.361.07	43° 0' 27.035 N	
3.449,00	16,00	27,60	3.339,71	697,06	364,41	4.763.147,71	2.419.713,14	43° 0' 49,029 N	
3.689,00	0,00	0,00	3.576,61	726,56	379,84	4.763.177,21	2.419.728,57	43° 0' 49,992 N	
4.240.00	0,00	0.00	4.127,61	726,56	379,84	4.763.177.21	2.419.728.57	43° 0' 49,992 N	

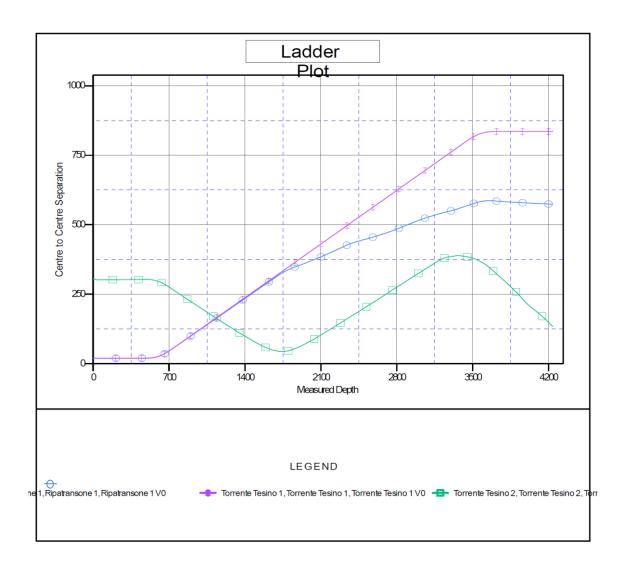
Survey Report - Geographic

Apennine Energy Santa Maria Goretti Local Co-ordinate Reference: TVD Reference: Company: Well II Cancello 1 Dir WELL @ 384,00m (Original Well Elev) Project: Ripatransone Il Cancello 1 Dir WELL @ 384,00m (Original Well Elev) Site: MD Reference: Well: Wellbore: North Reference: Grid Minimum Curvature EDM 2003.21 Single User Db Il Cancello 1 Dir Survey Calculation Method: Design: Il Cancello 1 Dir Database:

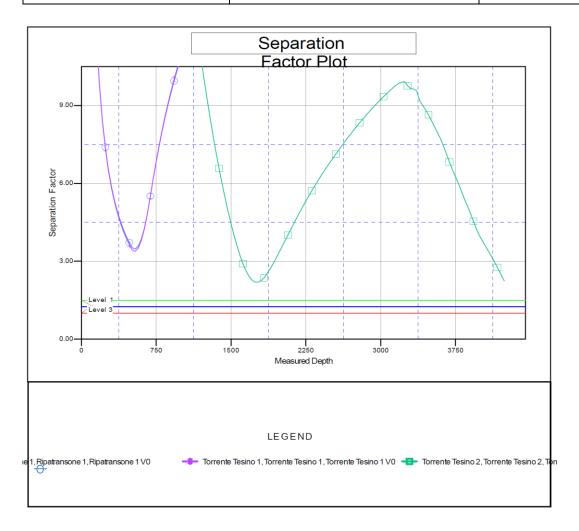
Casing Points							
	Measured Depth (m)	Vertical Depth (m)		Name	Casing Diameter (in)	Hole Diameter (in)	
	425,00	425,00	13 3/8"		13,375	17,500	
	4.196,00	4.083,61	7"		7,000	8,500	
	30,00	30,00	20" Conductor Pipe		20,000	26,000	
	2.500,00	2.427,48	9 5/8"		9,625	12,250	

Formations						
	Measured Depth (m)	Vertical Depth (m)	Name	Lithology	Dip (°)	Dip Direction (°)
	3.788,39	3.676,00	Top Thin Beds (Top TB1)		0,00	
	3.844,39	3.732,00	Top TB2		0,00	
	3.871,39	3.759,00	Top TB3		0,00	
	3.900,39	3.788,00	Top TB4		0,00	
	3.921,39	3.809,00	Top TB5		0,00	
	3.947,39	3.835,00	Top TB6		0,00	
	3.967,39	3.855,00	Bottom Thin Beds		0,00	
	4.131,39	4.019,00	Top Level I		0,00	
	4.182,39	4.070,00	Top Level I A		0,00	
	4.198,39	4.086,00	Top Level I B		0,00	
		4.149,00	Top Level I C		0,00	

Plan Annotations				
Measured	Vertical	Local Coord	dinates	
Depth	Depth	+N/-S	+E/-W	
(m)	(m)	(m)	(m)	Comment
4.196,00	4.083,61	726,56	379,84	7" liner shoe

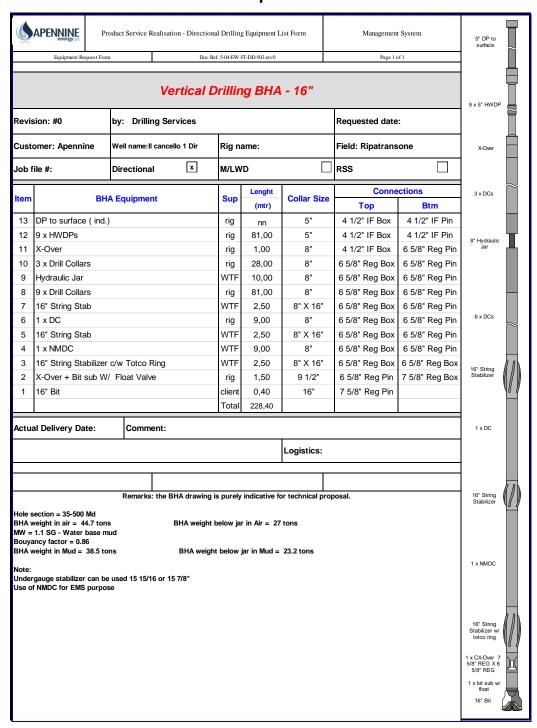


4.13.1 Studio di Anticollision

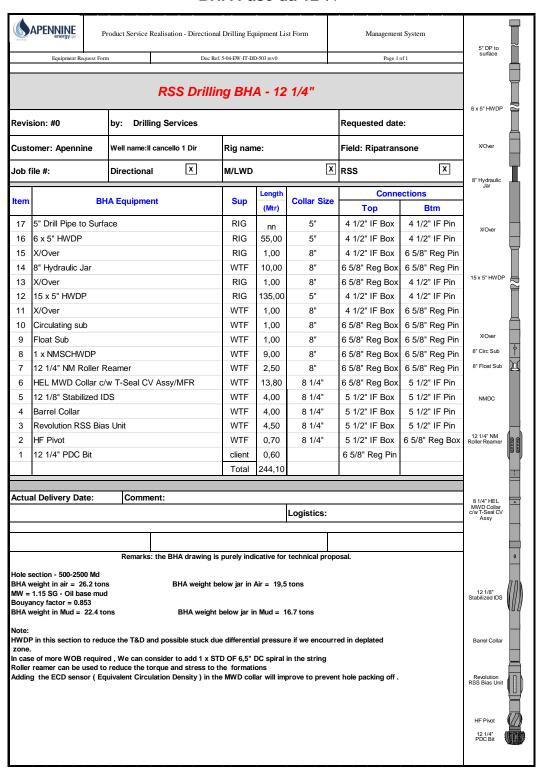

Il Cancello 1 dir è ubicato nella stessa postazione utilizzata per i pozzi Torrente Tesino 1 e Ripatransone 1 perforati in passato e abbandonati.

In base ai dati di deviazione disponibili e alla traiettoria proposta non si evidenziano rischi di collisione sia con i due pozzi perforati dalla stessa location che con il pozzo TT2. La minima distanza Centre to Centre calcolata dai pozzi TT1 e Rip. 1 risulta essere Cc=20.8 m, mentre dal pozzo TT2 è di Cc= 44.30 m a 1740 m MD. Il separation factor risulta maggiore del valore soglia di rischio collisione MinSF=2.2>1.5.

Durante la perforazione della fase 12 ¼" sarà verificata e monitorata la distanza rispetto ai pozzi limitrofi con sistema di anticollision.

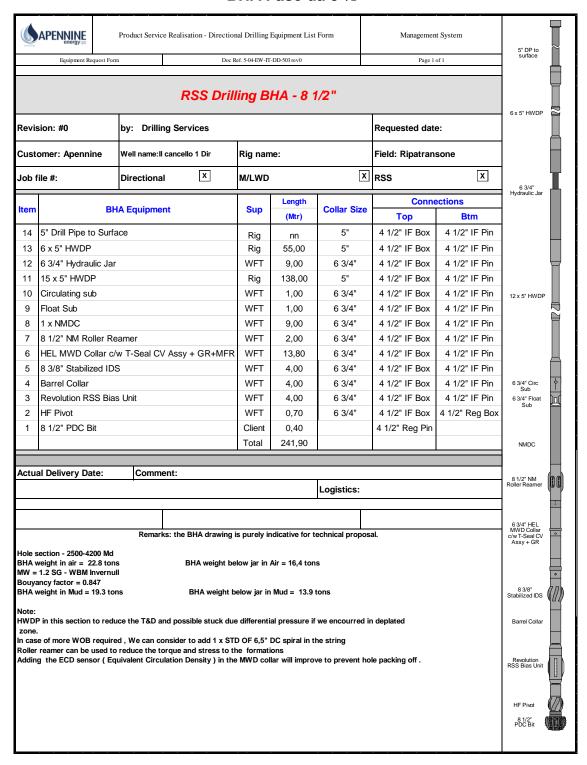


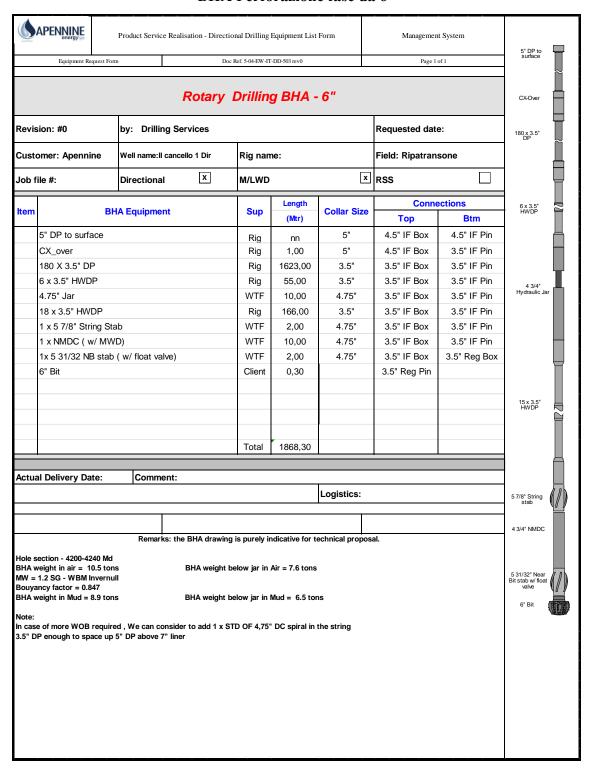
Summary						
Site Name Offset Well - Wellbore - Design	Reference Measured Depth (m)	Offset Measured Depth (m)	Dista Between Centres (m)	nce Between Ellipses (m)	Separation Factor	Warning
Ripatransone 1						
Ripatransone 1 - Ripatransone 1 - Ripatransone 1 Ripatransone 1 - Ripatransone 1 - Ripatransone 1 Ripatransone 1 - Ripatransone 1 - Ripatransone 1	30.00 510.00 540.00	27.00 506.96 536.94	20.08 20.61 21.49	19.78 14.76 15.29	67.674 CC 3.524 ES 3.468 SF	
Torrente Tesino 1						
Torrente Tesino 1 - Torrente Tesino 1 - Torrente Tesino 1 Torrente Tesino 1 - Torrente Tesino 1 - Torrente Tesino 1 Torrente Tesino 1 - Torrente Tesino 1 - Torrente Tesino 1	500.00 510.00 540.00	497.00 507.00 536.98	20.08 20.13 21.00	14.33 14.27 14.79	3.495 CC 3.435 ES 3.382 SF	
Torrente Tesino 2						
Torrente Tesino 2 - Torrente Tesino 2 - Torrente Tesino 2 Torrente Tesino 2 - Torrente Tesino 2 - Torrente Tesino 2	1,740.54 1,770.00	1,654.97 1,683.42	44.30 44.97	24.16 24.47	2.200 CC, E 2.194 SF	S


4.14 Batterie di Perforazione

BHA Fase Superficiale da 16"

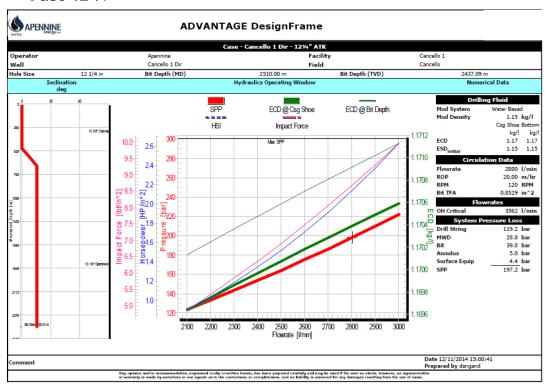
BHA Fase da 12 1/4"




Pozzo II Cancello 1 Dir

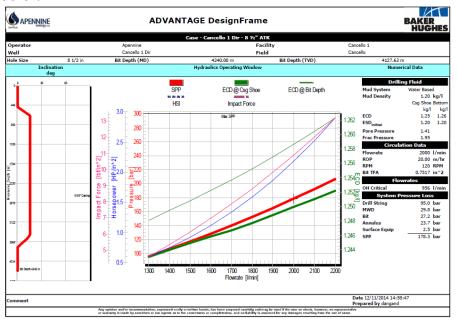
BHA Fase da 8 1/2"

BHA Perforazione fase da 6"



4.15 Idraulica

Fase 16"


Pump Rate	3,000.0 L/min	Stand Pipe Pressure	207.4969 bar
Bit Pressure Loss	108.8672 bar	Percent Power at Bit	52.47 %
Bit Hydraulic Power / Area (HSI)	3.6 hp/in²	Bit Nozzle Velocity	133.66 m/s
Bit Hydraulic Power	729.97 hp	Bit Impact Force	749.61 kgf
Surface Equip. Pressure Loss	6.8948 bar	Total Bit Flow Area	

Fase 12 1/4"

Fase 8 1/2"

Fase 6"

Pump Rate	1,000.0 L/min	Stand Pipe Pressure	168.9810 bar
Bit Pressure Loss	20.9500 bar	Percent Power at Bit	12.40 %
Bit Hydraulic Power / Area (HSI)	1.7 hp/in²	Bit Nozzle Velocity	56.14 m/s
Bit Hydraulic Power	46.82 hp	Bit Impact Force	114.49 kgf
Surface Equip. Pressure Loss	6.8948 bar	Total Bit Flow Area	

4.16 Scalpelli

Per la scelta degli scalpelli si applicheranno le ultime tecnologie di scalpelli disponibili tenendo in considerazione le buone caratteristiche di perforabilità delle formazioni.

Il programma scalpelli verrà definito in fase operativa indicativamente si prevedono:

 Per la fase da 16" fino l'utilizzo di uno scalpello tricono con IADC 117 con i seguenti parametri di perforazione.

W.O.B.= 1 - 3 ton R.P.M. = 100-130 giri

 Per le altre fasi 12 ¼", 8 ½" e 6" prevalentemente scalpelli PDC applicando i seguenti parametri

W.O.B.= 5 - 10 ton R.P.M. = 120-160 giri

Pozzo II Cancello 1 Dir

4.17 Tabella Cementazioni

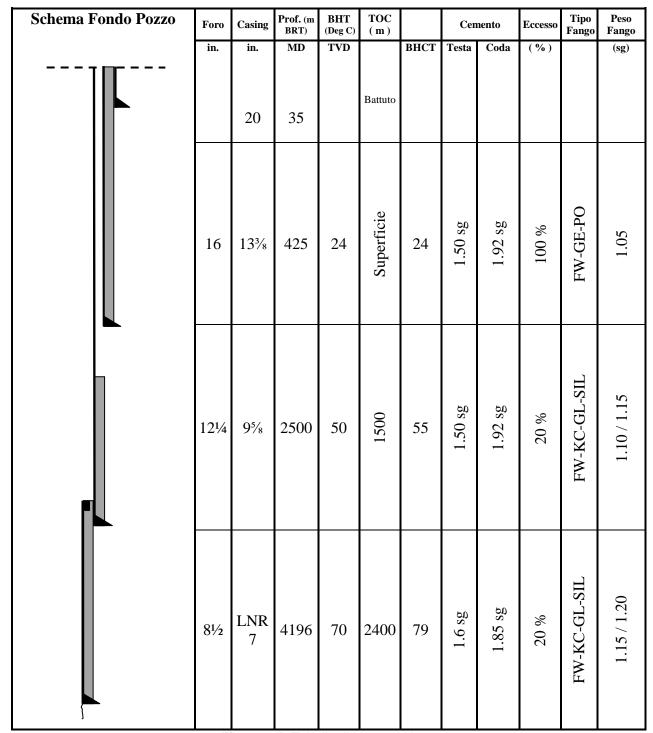



Figura 4.5: Tabella di cementazione

4.18 Attrezzature di Sicurezza e BOP

TEST CHOKE MANIFOLD (Through Choke Line)				
Test N°	Valves Closed & Tested	Valves Opened	Pressure	Comment
0	All valves in Open Position	Flush Lines and Fill Choke	manifold to Valve 17 or 16	
1	1		500 & 5000 psi	Test Line
2	3.6.4.15	1	500 & 5000 psi	
3	2.7.10.5.16.17	1.15.3.6.4	500 & 5000 psi	
4	8.9.11	1.15.3.6.4.16.17	500 & 3000 psi	Choke Open
5	12.13.14	1.15.3.6.4.16.17.8.9.11	500 & 3000 psi	

TEST CHOKE MANIFOLD (With Test Pump Unit)				
Test N°	Valves Closed & Tested	Valves Opened	Pressure	Comment
0	All valves in Open Position	Flush Lines and Fill Cho	oke manifold to Valve 16	
1	17		500 & 5000 psi	Test Line
2	16.15	17.15	500 & 5000 psi	
3	16.1.3.4.6	17.15	500 & 5000 psi	
4	16.1.2.7.10.5	17.15.3.4.6	500 & 5000 psi	
5	8.9.11.12.13.14	17.15.3.4.6.2.7.5	500 & 3000 psi	Choke Open
		l	1	

Figura 4.6: Choke manifold

Pozzo II Cancello 1 Dir

Diverter System per fase 16"

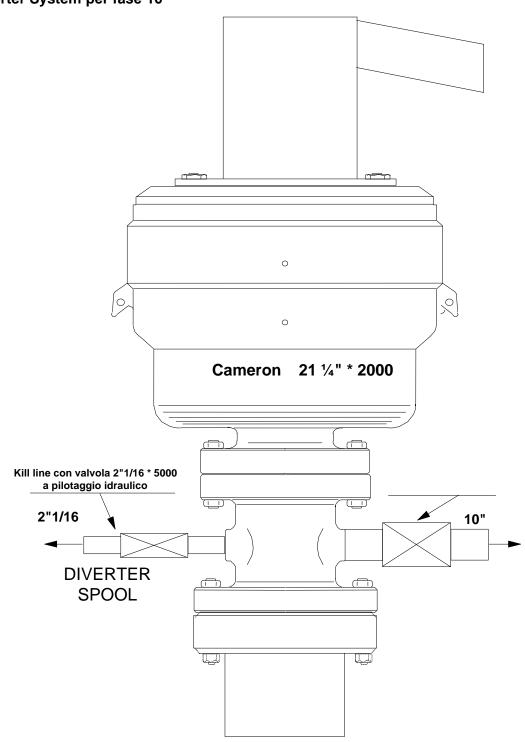


Figura 4.7: Schema Diverter

Pozzo II Cancello 1 Dir

BOP Stack 13 $^{5}/_{8}$ " x 10000 psi per fase 12.25" e 8.5"

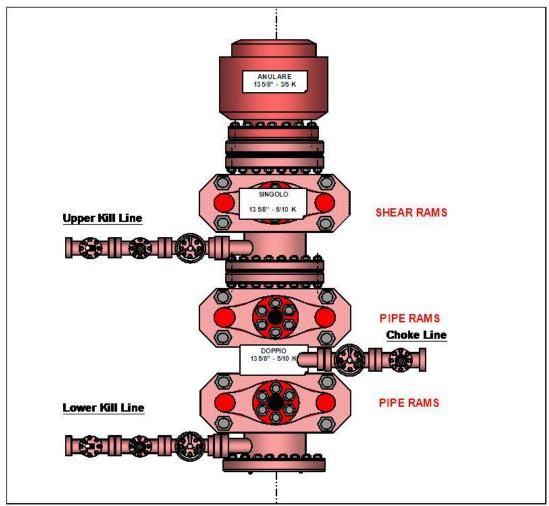


Figura 4.8: Schema dei B.O.P.

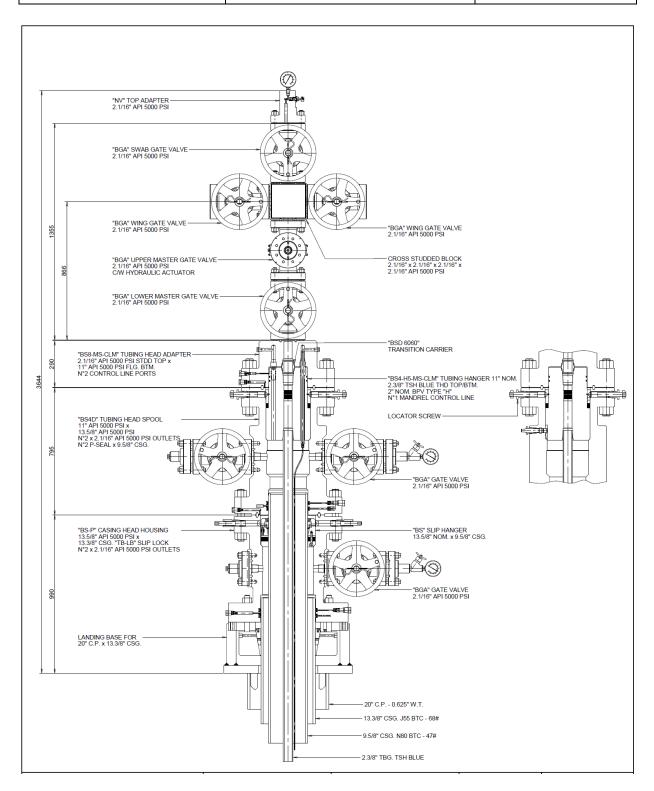


Figura 4.9: Schema Testa Pozzo

Pozzo II Cancello 1 Dir

FIELD: SMG WELLNAME: II Cancello 1 Dir ESTMATOR: Beraldi/Tripone								
•				AFE by	AFE by PHASE -			
AFE Number:	15,0 Days	0,0 Days	7,5 Days	17,5 Days	17,0 Days	16,0 Days	7,0 Days	80,0 Days
RIG: 2000 CV	PRE-SPID + 20"			DRILLING			% NOILE I I I I I	TOTAL ESTIMATED
DETAIL OF CONTRACT SERVICES/EQUIPMENT PROVIDED	drived to 30m		16 " HOLE 13 3/8" Csg	12 1/4" HOLE 9 5/8" Csg	8 1/2" HOLE	Final LOGS 7" Casing	CLEAN UP	TO COMPLETE (all phases)
TOTAL COST MOBILISATION	900.000,00							900.000,00
TOTAL RIG DAYRATE	•		187.500,00	437.500,00	425.000,00	400.000,00	175.000,00	1.625.000,00
TOTAL COST MUD LOGGING	12.200,00		13.762,50	32.112,50	31.195,00	29.360,00	12.845,00	131.475,00
TOTAL COST CEMENTING SERVICES	2.080,00		79.221.80	18.200,00	00,080.71	35 235 40	00'086'/	70.380,00
COMMUNICATIONS AND DATA - DMS	750,00		375,00	875,00	850,00	800,00	350,00	4.000,00
TOTAL SOLID CONTROL	10.000,00		2.250,00	5.250,00	5.100,00	4.800,00		27.400,00
TOTAL COST WATER SUPPLY	5.250,00		6.750,00	13.125,00	7.650,00	6.000,00		38.775,00
TOTAL COST DRILLING BASE	. 00 007 0		1 250 00	. 2450.00	. 00 090 6		1 280 00	. 440000
TOTAL COST ARCRAFT	00,001.2		on incert	0,150,00	00,000.0	2.000,00	00,002.1	00,004.41
TOTAL COST RIG SUPERVISION	34.125,00		34.875,00	98.875,00	96.050,00	90.400,00	32.550,00	386.875,00
TOTAL COST DIRECTIONAL DRILLING	•			222.367,30	202.612,80			424.980,10
TOTAL COST CUSTOM AND TRANSIT AGENCY								•
TOTAL COST WASTE MANAGEMENT			75.603,25	213.707,00	132.482,00	27.750,00	14.800,00	464.342,25
TOTAL COST TEMP: WAREHOUSE AND STORAGE	836.560,00							836.560,00
TOTAL COST LEMF, WAREHOUSE AND STORAGE	50.000.00							50.000.00
TOTAL COST TESTING SERVICES	•						136.700,00	136.700,00
TOTAL COST HSE SERVICES	20.000,00							20.000,00
TOTAL COST DRILLING MANAGEMENT								
TOTAL COST BITS			15.000,00	61.640,00	64.720,00	2.484,00	- 00000	143.844,00
TOTAL COST MOD & CHEMICALS	. 8 8 75 M		41.250.00	96.250.00	93 500 00	00 000 88	38 500 00	354.375.00
TOTAL COST CASING, TUBING AND ACCESSORIES	9.591,00		57.411,70	351.132,40		392.278,00	118.208,00	928.621,10
TOTAL COST CEMENT & ADDITIVES			16.400,00	35.000,00		00'000'09		111.400,00
IOIAL COST WELLHEAD & AMAS I REE TOTAL COST OTHER MATERIALS			00,000:8	00,000.cr	00,000,62		00,000:17	00,000,021
	•						111.262.81	111.262.81
TOTAL COST ELECTRIC LOGGING SERVICES	•		•			416.760,00	196.500,00	613.260,00
TOTAL COST RUNNING CASING & TUBING			25.000,00	37.654,13		34.344,42	32.009,98	129.008,53
TOTAL COST INSPECTION & REFURBISHMENT			. 8 AEO OO	- 8 AEO OO	. A50.00	. 8 AEO OO	- 8 AE0 00	- A2 250 00
TOTAL COST DOWNHOLE RENTAL TOOLS	•		25.000.00	Doingt-in	Dior.	1.330.00	- Control	26.330.00
TOTAL COST FISHING SERVICES & EQUIPMENT	•		•	•		-	•	•
TOTAL COST ABANDON PLUGS	•							
	43.700,00		3.277,00					46.977,00
TOTAL COST ENGINEERING SERVICES				•				
TOTAL COST CONING		250 000 00	.].		00,000,00		30 000 00	280.000.00
		an in a second					and an article and article article and article article and article article and article article article and article art	
Total by Phase	1.933.831,00	250.000,00	574.776,25	1.836.349,43	1.328.381,80	1.617.511,82	1.027.915,79	8.568.766,06
15% Contingency	290.074,65	37.500,00	86.216,44	275.452,41	199.257,27	242.626,77	154.187,37	1.285.314,91
Total Cumulative	2.223.905,65	287.500,00	660.992,69	2.111.801,85	1.527.639,07	1.860.138,59	1.182.103,16	9.854.081,01

Figura 4.10: AFE Authorization for Expenditure

5 Elenco delle figure

Figura 1.1: Ubicazione geografica del sondaggio	5
Figura 1.2: Permesso Santa Maria Goretti	6
Figura 2.1: Interpretazione sismica del trend interno (occidentale) e del trend este	rno
(orientale)	11
Figura 2.2	12
Figura 2.3	15
Figura 2.4: Profilo litostratigrafico	17
Figura 2.5	18
Figura 2.6: orizzonti e faglie interpretate	19
Figura 2.7: superfici ricavate dagli orizzonti interpretati	19
Figura 2.8: Composite Log TT 2, livelli sottili (Thin Beds)	20
Figura 2.9: correlazione livello I su TT#1, TT#2 e Grottammare 1	21
Figura 2.10	42
Figura 2.11	43
Figura 3.1: Andamento della temperatura in funzione della profondità	57
Figura 4.1: Curva di avanzamento	64
Figura 4.2: Schema concettuale di completamento.	89
Figura 4.3: Schema di chiusura mineraria	91
Figura 4.4: Profilo di deviazione del pozzo	92
Figura 4.5: Tabella di cementazione	103
Figura 4.6: Choke manifold	
Figura 4.7: Schema Diverter	105
Figura 4.8: Schema dei B.O.P.	
Figura 4.9: Schema Testa Pozzo	
Figura 4.10: AFE Authorization for Expenditure	108

6 Elenco degli allegati

Programma Fanghi
Piano di Gestione dei rifiuti di estrazione
Piano Operativo di Emergenza
Layout Generale Impianto – scala 1:500
Layout Cementi – scala 1:500
Sezione scala 1:500
Raggio di caduta del Mast – Aree Pericolose scala 1:500