Direzione Generale

DG 48/04

MACROLOTTO N°2 - AUTOSTRADA SALERNO-REGGIO CALABRIA

LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1/A DELLE NORME C.N.R./80 DEL TRATTO
DAL KM. 108+000 AL KM. 139+000 COMPOSTO DAI SEGUENTI LOTTI UNIFICATI: 1-2-3-4-5
CODICE UNICO PROGETTO: F11 B0400210000

CONTRAENTE GENERALE:

SIS S.c.p.a. Via Invorio, 24/A - 10146 Torino Consorzio Stabile fra le Imprese:

Progettazione	Direttore Tecnico	Geologo
SIPAL		
Sipal S.p.A. Direttore Tecnico Dott. Ing. Adriano TURSO Ordine degli Ingegneri Provincia di Taranto N° 1400	SIS S.c.p.a. Dott. Ing. Massimiliano COLUCCI	Dott. Geol. Carlo ALESSIO Ordine dei Geologi del Piemonte N° 255
Arch. Eduardo BRUNO Ordine degli Architetti P.P.C. Firenze N° 3487		Direttore Lavori Consulting INGEGNERIA SPM S.r.I. Dott. Ing. Stefano PEROTTI

PROGETTO COSTRUTTIVO

Titolo Elaborato:

OPERE DI MITIGAZIONE AMBIENTALE VIADOTTO CERRITELLO RELAZIONE IDRAULICA

D	G	4	8	0	4	Р	С	0	1	П	Π	0	0	0	1	0	6	0	1	R	0	Scala:

		1					
REV.	DESCRIZIONE	REDATTO	DATA	VERIFICATO	DATA	APPROVATO	DATA
0	Prima emissione – Proposta di modifica progettuale ai sensi dell'art. 7 quater (modifiche nel 5%)	D.De Bartolo	07/05/2014	E. Bruno	08/05/2014	A Turso	09/05/2014

RESPONSABILE DEL PROCEDIMENTO

Visto Dott. Ing. Francesco RUOCCO

Viadotto Cerritello – Relazione idraulica

ANAS S.P.A.

DG 48/04 MACROLOTTO N° 2 AUTOSTRADA SALERNO – REGGIO CALABRIA

LAVORI DI AMMODERNAMENTO ED ADEGUAMENTO AL TIPO 1/A
DELLE NORME C.N.R./80 DEL TRATTO DAL KM. 108+000 AL KM. 139+000
COMPOSTO DAI SEGUENTI LOTTI UNIFICATI: 1-2-3-4-5

PROGETTO COSTRUTTIVO

IDROLOGIA E IDRAULICA

VIADOTTO CERRITELLO RELAZIONE IDRAULICA

SIS S.c.p.a. Pag. 1 di 26

DG4804-PC-01-II-00-0106-01-R-0

INDICE

1_	P	REMESSA	<u>. 3</u>
2_	R	IFERIMENTI	. 4
	2.1	Riferimenti Progettuali	
	2.2	Riferimenti Cartografici	4
	2.3	Determinazione delle portate di piena di progetto e criteri di dimensionamento delle oper	re4
	2.4	Schema di calcolo idraulico	5
	2.5	Parametri di Scabrezza	6
	2.6	Franchi di sicurezza	7
3_	A	NALISI IDROLOGICA	. 8
	3.1	Caratterizzazione del bacino	
	3.2	Descrizione del contesto idrogeologico	9
4_	V	ERIFICHE IDRAULICHE	10
	4.1	Profili di moto permanente	
	4.2	Sezione di calcolo e profilo longitudinale	16
	4.3	Risultati delle simulazioni in moto permanente	16
	4.4	Risultati modellazione idraulica	18
	4.5	Sezioni trasversali di Progetto	.19
5_	V	'ERIFICA DEL FRANCO SOTTO TRAVE2	23
	5.1	Modellazione Hec-Ras	

Viadotto Cerritello - Relazione idraulica

1 PREMESSA

Oggetto della presente relazione è l'analisi idrologico-idraulica dell'intersezione tra la linea di impluvio naturale e il viadotto Cerritello, previsto nell'ambito dei lavori per l'ammodernamento del tratto di strada dal km 108+000 al km 139+000 dell'autostrada Salerno Reggio-Calabria allo scopo di verificare la compatibilità idraulica.

SIS S.c.p.a. Pag. 3 di 26

Viadotto Cerritello - Relazione idraulica

2 RIFERIMENTI

2.1 RIFERIMENTI PROGETTUALI

Il presente studio idrologico, viene redatto in ottemperanza al DEC/VIA n° 7558 del 26/08/2002 ed in conformità al progetto esecutivo (da qui in avanti chiamato PE) ed in particolare in conformità agli elaborati (DG 4804-PE00-II-00-0002-01-R0; DG 4804-PE00-II-00-0001-01-D0; DG 4804-PE00-II-00-0001-02-D0).

Progetto Costruttivo

Elaborati ganarali

Opere di mitigazione ambientale

Elaborati generali	
DG4804-PC-00-GI-00-1000-01-R-0	Relazione tecnico illustrativa
DG4804-PC-00-GI-00-1000-02-R-0	Relazione di inquadramento geologico geotecnico
DG4804-PC-00-GI-00-0002-08-D-0	Carta geologica Tav.1/2
DG4804-PC-00-GI-00-0002-09-D-0	Carta geologica Tav.2/2
DG4804-PC-00-GI-00-0003-08-D-0	Carta geomorfologica Tav.1/2
DG4804-PC-00-GI-00-0003-09-D-0	Carta geomorfologica Tav.2/2
DG4804-PC-00-GI-00-0004-08-D-0	Carta idrogeologica Tav.1/2
DG4804-PC-00-GI-00-0004-09-D-0	Carta idrogeologica Tav.2/2
Ripristino idraulico	
DG4804-PC-01-II-00-0106-01-D-0	Planimetria di inquadramento e sezioni carreggiate
DG4804-PC-01-II-00-0106-02-D-0	Quaderno delle sezioni

2.2 RIFERIMENTI CARTOGRAFICI

Nell'elaborazione del presente lavoro è stato necessario avvalersi di carte topografiche, tecniche e tematiche di proprietà delle amministrazione comunali e di altri Enti extracomunali (Regione, Provincia, Autorità di Bacino).

In particolare, è stata utilizzata la seguente cartografia:

- Foglio n.210 della Carta Geologica d'Italia 1:100.000, "Lauria";
- Cartografia e i rilievi realizzati durante il PE ed il PC.

Si è tenuto conto, inoltre, degli allegati cartografici del Piano Stralcio di Assetto Idrogeologico della Basilicata.

2.3 DETERMINAZIONE DELLE PORTATE DI PIENA DI PROGETTO E CRITERI DI DIMENSIONAMENTO DELLE OPERE

Per tutti i corsi d'acqua superficiali interferenti con gli interventi in progetto è stato individuato il corrispondente bacino imbrifero in conformità agli elaborati:

SIS S.c.p.a. Pag. 4 di 26

Viadotto Cerritello - Relazione idraulica

Codice	Descrizione
DG4804-PC-00-II-00-0001-01-D-0:	COROGRAFIA DEI BACINI - TAV. 1
DG4804-PC-00-II-00-0001-02-D-0:	COROGRAFIA DEI BACINI - TAV. 2
DG4804-PC-00-II-00-0001-03-D-0:	COROGRAFIA DEI BACINI - TAV. 3
DG4804-PC-00-II-00-0001-04-D-0:	COROGRAFIA DEI BACINI - TAV. 4

Le caratteristiche del bacino imbrifero sono state desunte da:

Codice	Descrizione
DG4804-PC-00-II-00-0002-01-R-0:	RELAZIONE IDROLOGICA GENERALE

Come portata di piena di progetto per il dimensionamento delle opere si è assunta quella con tempo di ritorno T=100 anni.

La verifica del franco rispetto al sottotrave è stata eseguita effettuando delle simulazioni in moto permanente con le portate valutate secondo la metodologia VAPI Basilicata ipotizzando un tempo di ritorno T=200 anni.

2.4 SCHEMA DI CALCOLO IDRAULICO

Le analisi idrauliche delle opere in progetto sono state condotte applicando schemi di calcolo in moto permanente; visto il comportamento torrentizio dei corsi d'acqua interferenti, la schematizzazione risulta cautelativa dal punto di vista idraulico escludendo fenomeni di cappio di piena in quanto le portate ed i livelli si propagano lungo l'asta fasati temporalmente (cioè coincidenti lungo l'asse tempo).

Le analisi idrauliche sono state condotte mediante la messa a punto ed applicazione di modelli idraulici monodimensionali basati sul codice di calcolo HEC RAS.

SIS S.c.p.a. Pag. 5 di 26

Viadotto Cerritello - Relazione idraulica

2.5 PARAMETRI DI SCABREZZA

Nella scelta dei parametri di scabrezza utilizzati nelle verifiche idrauliche si è fatto riferimento in generale alle seguenti tabelle:

Tipo di superficie	Minimo	Normale	Massimo
ALVEI DIPIANURA			
non vegetati, rettilinei, corrente regolare	0.025	0.030	0.033
come sopra ma con pietre e alghe	0.030	0.035	0.040
non vegetati, tortuosi con mollenti e rapide	0.033	0.040	0.045
come sopra ma con pietre e alghe	0.035	0.045	0.050
come sopra, in magra	0.040	0.048	0.055
non vegetati, tortuosi, pietre, mollenti e rapide	0.045	0.050	0.060
molto irregolari e alghe molto fitte	0.075	0.100	0.150
ALVEI DIMONTAGNA(SPONDE CON ALBERI E CES	PUGLI)		
sul fondo: ghiaia, ciotoli e massi radi	0.030	0.040	0.050
sul fondo: ciotoli e grandi massi	0.040	0.050	0.070
GOLENE EPIANEINONDABILI			
prato senza cespugli, erba bassa	0.025	0.030	0.035
prato senza cespugli, erba alta	0.030	0.035	0.050
campi incolti	0.020	0.030	0.040
coltivazioni a filari	0.025	0.035	0.045
colture di cereali in pieno sviluppo	0.030	0.040	0.050
aree con cespugli sparsi e erba alta	0.035	0.050	0.070
aree con cespugli bassi e alberi, in inverno	0.035	0.050	0.060
aree con cespugli bassi e alberi, in estate	0.040	0.060	0.080
cespugli fitti, in inverno	0.045	0.070	0.110
cespugli fitti, in estate	0.070	0.100	0.160

TABELLA 1 - VALORI DEL COEFFICIENTE DI RESISTENZA DI MANNING: n (s/m1/3) DA [CHOW V. T.,1959] CORSI D'ACQUA MINORI (LARGHEZZA A PIENE RIVE < 30 m)

Ai fini del dimensionamento come coefficienti di Gauckler-Strickler si sono assunti i seguenti:

- tubazioni in lamiera $Ks = 28 \text{ m}^3/\text{s};$
- canale prefabbricato $Ks = 70 \text{ m}^3/\text{s}$;
- canale in terra rivestito $Ks = 55 \text{ m}^3/\text{s}$;
- lack tubazioni in PVC Ks = $90 \text{ m}^3/\text{s}$;
- canali in cls $Ks = 60 \text{ m}^3/\text{s}$;

DG4804-PC-01-II-00-0106-01-R-0

SIS S.c.p.a. Pag. 6 di 26

Viadotto Cerritello - Relazione idraulica

2.6 Franchi di sicurezza

Per la valutazione dell'adeguatezza idraulica delle opere in progetto si è fatto riferimento secondo normativa vigente ai seguenti franchi idraulici:

Franco idraulico non inferiore a 0.5 volte l'altezza cinetica della corrente e comunque non inferiore a un 1.00 m.

- a) il carico cinetico della corrente V2/2g dove V è la velocità media della corrente (m/s) e g è l'accelerazione di gravità (m2/s);
- b) i valori per categorie di opere di seguito indicati:
 - argini e difese spondali cm. 50/100;
 - ponti e similari fino a larghezze di m.10 cm. 100/150;
 - operture, ponti e similari oltre m.10 cm. 150/200.

SIS S.c.p.a. Pag. 7 di 26

DG4804-PC-01-II-00-0106-01-R-0

Viadotto Cerritello – Relazione idraulica

3 ANALISI IDROLOGICA

Il Viadotto Cerritello ricade all'interno del tronco compreso tra km 0+000 e km 13+000. Per quel che riguarda le opere idrauliche comprese nel tratto del macrolotto che va dalla progressiva 0+000 m alla progressiva 13+000 m, ricadenti nella zona di confine tra Regione Campania (provincia di Salerno) e Regione Basilicata si è fatto riferimento per l'individuazione dei bacini idrografici alla cartografia in scala 1:25.000 I.G.M., al rilievo in scala 1:1.000 eseguito per la progettazione esecutiva e alle ortofoto (AIMA) della zona in scala 1:10.000;

Per lo studio puntuale dei deflussi delle aste fluviali che intercettano il tratto autostradale si è partiti dalla determinazione delle curve di possibilità pluviometrica elaborando i dati pluviometrici dell' area.

Nello specifico, da un'osservazione dettagliata sugli annali ideologici delle stazioni, prossime al tratto autostradale, di Casalbuono e Montesano Terme.

Per la determinazione della curva di probabilità climatica, ai dati delle stazioni pluviometriche di Casalbuono e Montesano Terme:

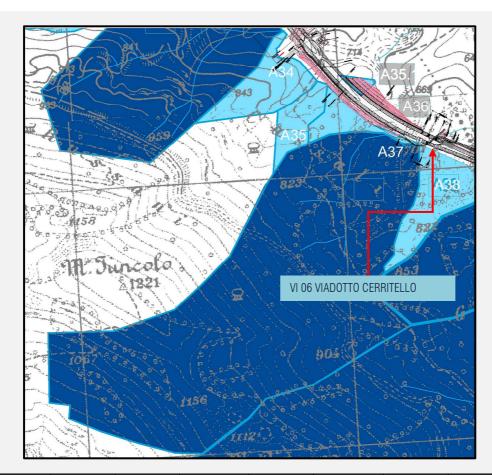

Equazione di possibilità climatica	Staz. CASALBUONO	Staz. MONTESANO TERME
Tempo di ritorno Tr = 20 anni	h=55,508 ·t 0.4842	h=41,402 ·t 0.3978
Tempo di ritorno Tr = 50 anni	h=63,643 ·t 0.4863	$h=65,581 \cdot t^{0.4051}$
Tempo di ritorno Tr = 100 anni	h=69,739 ·t 0.4876	h=74,749 ·t 0.407

TABELLA 2 - EQUAZIONI PLUVIOMETRICHE - STAZIONI DI CASALBUONO E MONTESANO TERME

SIS S.c.p.a. Pag. 8 di 26

Viadotto Cerritello – Relazione idraulica

3.1 CARATTERIZZAZIONE DEL BACINO

Bacino	Area (Km²)	L. Asta (Km)	l (%)	Z Sez. Chiusura (m slm)	H max (m slm)	Altitudine media (m slm)	τ _c (ore)	ф	Q100 (m³/s)		
A37	0.882	1.56	17.95	625.00	905.00	765.00	0.18	0.4	11.24		
Legenda: I=p	Legenda: I=pendenza; τ_c =tempo di corrivazione; ϕ = coefficiente di afflusso; Q100 = portata di colmo con tempo di ritorno 100 anni										

3.2 DESCRIZIONE DEL CONTESTO IDROGEOLOGICO

L'area in cui ricade il Viadotto Cerritello attraversa la porzione calcarea del complesso carbonatico. Questo presenta permeabilità da media a elevata in relazione al grado di fratturazione e al carsismo.

Le condizioni di fratturazione degli ammassi rocciosi sono generalmente elevate e conferiscono all'ammasso un coefficiente di permeabilità medio-alto, che localmente può risultare molto elevato per la presenza di condotti carsici.

Sulla base di queste caratteristiche i complessi carbonatici presentano le caratteristiche ottimali per la formazione di un acquifero.

Dalla consultazione dei dati del PE, nelle aree di compluvio, la falda si rinviene risulta intorno ai 20 m.

DG4804-PC-01-II-00-0106-01-R-0

SIS S.c.p.a. Pag. 9 di 26

Viadotto Cerritello - Relazione idraulica

4 VERIFICHE IDRAULICHE

Il tracciamento dei profili di corrente, per quanto riguarda i corsi d'acqua principali, è stato condotto utilizzando il codice di calcolo HEC-RAS versione 4.1.0, sviluppato dall'Hydrologic Engineering Center dell'U.S. Army Corps of Engineers.

HEC-RAS è l'abbreviazione di Hydrologic Engineering Center's River Analysis System. Questo software consente la simulazione di flussi idrici, nell'ipotesi di monodimensionalità della corrente, sia in moto permanente che in moto vario.

Possono essere analizzate condizioni di moto in corrente lenta, condizioni di moto critiche e condizioni di regime misto.

Il codice di calcolo permette di descrivere in maniera dettagliata la geometria delle singole sezioni idrauliche, tenendo conto di scabrezze differenti non solo in diversi tratti del corso d'acqua ma anche all'interno della stessa sezione ad esempio per differenziare le zone golenali e il canale principale. Esso consente inoltre di modellizzare l'andamento meandriforme di un corso d'acqua sia in ambito monodimensionale che quasi-2D indicando differenti lunghezze del tratto che separa due sezioni adiacenti per la golena in sponda sinistra la golena in sponda destra ed il canale principale.

Le ipotesi di base che caratterizzano il codice di calcolo sono:

- il moto della corrente è permanente e gradualmente variato;
- il deflusso della corrente è monodimensionale: le componenti della velocità nelle direzioni diverse da quella
- principale della corrente non vengono considerate; le equazioni utilizzate assumono che il carico totale è lo
- stesso per tutti i punti appartenenti ad una generica sezione;
- la pendenza del fondo alveo è limitata (inferiore a 1:10);
- la cadente è assunta costante tra due sezioni adiacenti;
- la geometria delle sezioni idrauliche è fissa.

Il programma di calcolo opera integrando le equazioni generali del moto secondo il metodo denominato nella letteratura anglosassone "Standard Step Method". Il processo di calcolo si sviluppa, a seconda delle caratteristiche della corrente, lenta o veloce, dalla sezione estrema di valle o dalla sezione estrema di monte dove vengono assegnate dall'utente le condizioni al contorno e procede verso l'altro estremo.

In corrispondenza dei ponti o di eventuali canali a sezione chiusa, dove i meccanismi caratterizzanti il fenomeno sono più complessi, vengono utilizzati metodi di calcolo specifici.

L'equazione differenziale fondamentale del moto permanente viene risolta nella seguente forma:

DG4804-PC-01-II-00-0106-01-R-0

SIS S.c.p.a. Pag. 10 di 26

Viadotto Cerritello - Relazione idraulica

$$H_2 + \frac{\alpha_2 V_2^2}{2g} = H_1 + \frac{\alpha_1 V_1^2}{2g} + \Delta E$$
 (1)

dove:

- H1. H2 : quote assolute della superficie della corrente alle sezioni 1 e 2;
- v1. v2 : velocità medie della corrente (portata totale/area totale bagnata);
- α 1. α 2 : coefficienti di ragguaglio della potenza cinetica (coefficienti di Coriolis);
- ΔE : perdita di carico tra le sezioni 2 e 1.

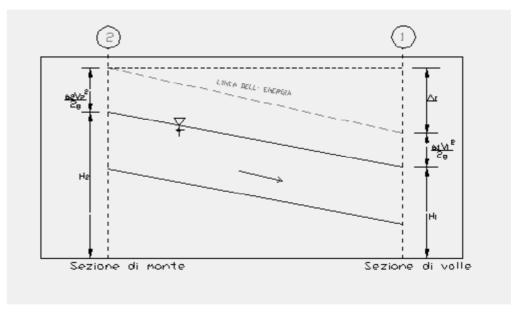


FIGURA 1 - GRANDEZZE PRESENTI NELL'EQUAZIONE DELL'ENERGIA.

La perdita di carico tra due sezioni è data dalla somma delle perdite distribuite lungo il tratto d'alveo compreso tra le due sezioni e le eventuali perdite dovute alla contrazione o alla espansione della corrente. L'espressione che permette il calcolo della perdita di carico risulta:

$$\Delta E = L \cdot J + C \cdot \left| \frac{\alpha_2 v_2^2}{2g} - \frac{\alpha_1 v_1^2}{2g} \right|$$
 (2)

dove:

- L: lunghezza del tratto d'alveo in esame;
- J : cadente piezometrica;
- C : coefficiente che tiene conto dei fenomeni di contrazione ed espansione della corrente.

DG4804-PC-01-II-00-0106-01-R-0

SIS S.c.p.a. Pag. 11 di 26

Viadotto Cerritello - Relazione idraulica

La distanza L tra due successive sezioni viene valutata con la seguente espressione:

$$L = \frac{L_{gs}Q_{qs} + L_{c}Q_{c} + L_{gd}Q_{qd}}{Q_{qs} + Q_{c} + Q_{od}}$$
(3)

dove:

- L_{gs}. L_{gd}. L_c: distanza percorsa dalla corrente rispettivamente in golena sinistra, destra e nel canale
- principale;
- Q_{gs}. Q_{gd}. Q_c: portate rispettivamente defluite alla sezione terminale in golena sinistra, destra e nel canale principale.

La cadente piezometrica può essere ricavata attraverso la seguente espressione:

$$J = \left(\frac{Q_1 + Q_2}{k_1 + k_2}\right)^2 \tag{4}$$

essendo:

- Q_1 . Q_2 : portata transitata rispettivamente alla sezione 1 e alla sezione 2;
- k_1 . k_2 : capacità di deflusso (conveyance) totale rispettivamente associata alla sezione 1 e alla sezione 2.

La capacità di deflusso è calcolabile attraverso la seguente espressione:

$$k = \frac{1}{n}AR^{2/3} \tag{5}$$

essendo:

- n : coefficiente di Manning;
- A : area bagnata;
- R : raggio idraulico.

La capacità di deflusso complessiva di una determinata sezione è data dalla somma delle capacità di deflusso delle due golene e del canale principale. Ciascuna parte con cui si è idealmente suddivisa la sezione idraulica è infatti caratterizzata, una volta noto o ipotizzato il tirante idrico, da una determinata area bagnata e raggio idraulico; da qui la possibilità di applicare la (5) per calcolare la capacità di deflusso per la golena in sponda destra, sinistra e per il canale principale.

Il coefficiente di ragguaglio della potenza cinetica (coefficiente di Coriolis) viene calcolato attraverso la seguente espressione:

DG4804-PC-01-II-00-0106-01-R-0

SIS S.c.p.a. Pag. 12 di 26

Viadotto Cerritello - Relazione idraulica

$$\alpha = \left(\frac{k_{gs}^{3}}{A_{gs}^{2}} + \frac{k_{c}^{3}}{A_{c}^{2}} + \frac{k_{gd}^{3}}{A_{gd}^{2}}\right) \frac{A_{t}^{2}}{k_{t}^{3}}$$
(6)

dove:

- A_t. A_{gs}. A_{gd}. A_c: rispettivamente area totale bagnata della sezione, area bagnata in golena destra, in golena sinistra e nel canale principale;
- k_t. k_{gs}. k_{gd}. k_c: rispettivamente capacità di deflusso della sezione nel suo complesso, per la golena sinistra, la golena destra e per il canale principale.

Il coefficiente C viene introdotto per tenere in conto delle perdite energetiche dovute ai fenomeni di espansione o di contrazione della corrente. Esso viene definito dall'utente, sezione per sezione, in funzione delle caratteristiche del fenomeno di transizione. I valori tipici di tale coefficiente vengono indicati nella tabella:

DESCRIZIONE	COEFFICIENTE DI CONTRAZIONE	COEFFICIENTE DI ESPANSIONE
Nessuna perdita di contrazione o espansione	0.0	0.0
Transizione graduale	0.1	0.3
Ponti	0.3	0.5
Transizioni molto brusche	0.6	0.8

TABELLA 3 - VALORI TIPICI DEL COEFFICIENTE C.

La risoluzione delle equazioni (1) e (2) attraverso un procedimento iterativo permette di determinare l'andamento del profilo idrico in moto permanente una volta assegnate le caratteristiche geometriche e fisiche dell'alveo e le condizioni ai limiti del problema.

Il processo di risoluzione è volto essenzialmente ad individuare quel tirante idrico (nella sezione in cui esso non risulta già noto o calcolato in precedenza) che permette di verificare il bilancio energetico, espresso dalla (1), a meno di una tolleranza prefissata e ritenuta soddisfacente dall'utente. Per i dettagli di calcolo si rinvia alla documentazione del codice di calcolo.

Nei casi in cui si verifica il passaggio attraverso lo stato critico, l'equazione dell'energia (1) non può essere applicata in quanto la transizione tra moto in corrente lenta e moto in corrente veloce e viceversa non rispetta le ipotesi di moto gradualmente variato. Ciò può, ad esempio, verificarsi in seguito a elevati cambi di pendenza o alla presenza di forti restringimenti della sezione idraulica. In questi casi il codice di calcolo permette di risolvere il problema utilizzando o delle formule empiriche oppure l'equazione del momento.

In particolare l'equazione del momento può essere applicata, nel codice di calcolo HEC-RAS in tre differenti situazioni:

presenza di un risalto idraulico;

DG4804-PC-01-II-00-0106-01-R-0

SIS S.c.p.a. Pag. 13 di 26

Viadotto Cerritello - Relazione idraulica

• condizioni di deflusso attraverso un ponte senza che si generi un processo di moto in pressione;

• immissione di una corrente in un'altra corrente.

Senza entrare nei particolari, per i quali si rimanda alla letteratura specializzata ed al manuale scientifico del codice di calcolo, è qui il caso solo di riportare l'equazione del momento applicata ad una determinata massa d'acqua compresa tra due sezioni distinte 1 e 2:

$$P_1 - P_2 + W_x - F_f = Q \cdot \rho \cdot \Delta V_x \tag{7}$$

dove (vedi figura 2):

- Pi : forza legata alla pressione idrostatica agente sulle sezioni 1 e 2;
- Wx : forza peso proiettata nella direzione del moto;
- Ff: forza legata agli attriti;
- Q : portata;
- ρ : densità dell'acqua;
- ΔVx : variazione di velocità nella direzione del moto.

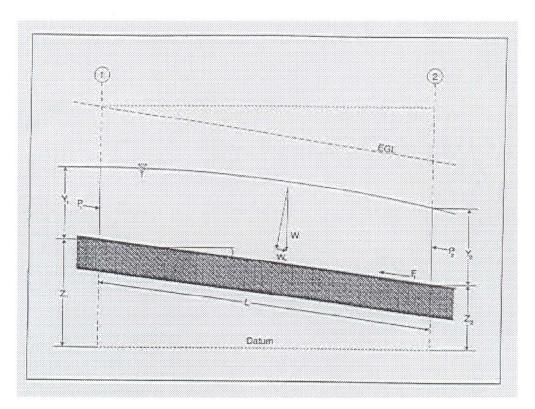


FIGURA 2 - ELEMENTI CARATTERISTICI DELL'EQUAZIONE DEL MOMENTO

SIS S.c.p.a. Pag. 14 di 26

DG4804-PC-01-II-00-0106-01-R-0

Viadotto Cerritello - Relazione idraulica

In corrispondenza dei ponti, dove i meccanismi caratterizzanti il fenomeno sono più complessi, vengono utilizzati metodi di calcolo specifici. Il codice di calcolo permette di considerare l'intera gamma di condizioni che possono generarsi in un processo di deflusso attraverso un ponte. Tali condizioni sono di seguito riportate:

la corrente non viene in contatto con l'intradosso del ponte (Low flow);

- la corrente viene in contatto con l'intradosso del ponte (Pressure/Weir flow).
- La prima condizione a sua volta prevede i seguenti casi:
- la corrente si mantiene lenta durante l'attraversamento del ponte (Class A low flow);
- la corrente transita attraverso la profondità critica (Class B low flow);
- la corrente si mantiene veloce durante l'attraversamento del ponte (Class C low flow).

La seconda condizione prevede a sua volta i seguenti casi:

- il ponte risulta in pressione (Pressure flow);
- il ponte viene sormontato (Pressure and Weir flow).

Le perdite energetiche caratteristiche del deflusso attraverso la struttura comprendono:

- le perdite che si sviluppano nei tratti immediatamente a monte e a valle del manufatto; tali perdite sono dovute essenzialmente ai processi di contrazione ed espansione della corrente;
- le perdite che si generano proprio nel processo di deflusso attraverso la struttura.

In funzione delle condizione di deflusso che vengono a crearsi, si applicano metodi di calcolo differenti per valutare le perdite di carico e quindi l'andamento del profilo idraulico nell'intorno della struttura.

Il codice di calcolo permette di risolvere i problemi relativi al deflusso di portata anche attraverso i tombini. La risoluzione di tali problemi si fonda sull'approccio teorico proposto nella letteratura specializzata (cfr. "Open Channel Hydraulics". V.T.Chow).

Il tipo di deflusso attraverso un tombino può essere catalogato come deflusso con sezione di controllo presso l'imbocco (in seguito "inlet control") o con sezione di controllo presso l'uscita ("outlet control").

Nel caso di "inlet control" la capacità del tombino dipende dal carico idraulico alla sezione di approccio, dalla geometria della sezione di ingresso, dal tipo di imbocco. La scabrezza del tombino, la sua lunghezza e pendenza, le condizioni idrauliche del ricettore di valle non sono elementi determinanti in grado di influenzare la capacità di deflusso.

Nel caso di "outlet control" gli elementi determinanti per fissare la capacità idraulica del tombino sono, oltre a quelli caratteristici del caso precedente, la lunghezza, la pendenza e la scabrezza del tombino e le caratteristiche idrauliche del ricettore di valle.

SIS S.c.p.a. Pag. 15 di 26

DG4804-PC-01-II-00-0106-01-R-0

Viadotto Cerritello - Relazione idraulica

Il codice di calcolo risolve generalmente il problema calcolando, per la portata fissata dall'utente, il tirante idrico nella sezione di approccio al tombino utilizzando sia le equazioni adatte ai casi di "inlet control" sia quelle per i casi di "outlet control". Si assume quindi che la soluzione sia quella cui è associato il massimo tirante idrico.

Nei casi di "inlet control" il tirante idrico a monte del tombino viene calcolato schematizzando il moto della corrente come quello che si genera sotto una paratoia a battente. Nei casi di "outlet control" il tirante idrico a monte del tombino viene calcolato a partire dal tirante idrico alla sezione di sbocco del tombino e considerando le perdite energetiche concentrate e distribuite che si determinano nel processo di deflusso.

4.1 Profili di moto permanente

Le simulazioni sono state condotte utilizzando valori di portata massimi lungo il percorso delle aste fluviali, ossia i valori di portata che si ottengono in corrispondenza delle sezioni di chiusura di ciascun bacino idrografico analizzato.

4.2 SEZIONE DI CALCOLO E PROFILO LONGITUDINALE

La valutazione dei profili in condizione di moto permanente è stata effettuata a partire dalla base topografica del luogo. Pertanto sulla base delle informazioni plano altimetriche determinate è stato ricavato il modello geometrico, base di input per il software HEC-RAS.

4.3 RISULTATI DELLE SIMULAZIONI IN MOTO PERMANENTE

Nel seguito, si riportano e si commentano i risultati dello studio idraulico, effettuato in condizioni di moto permanente.

Tali verifiche hanno consentito, grazie all'ausilio del software HEC-RAS, di definire le caratteristiche proprie del deflusso e, in particolare, il massimo livello idrico raggiunto in ogni sezione, oltre che la pendenza della linea dell'energia, la velocità media della corrente, la larghezza del pelo libero, il numero di Froude della corrente, ecc..

Tutte queste informazioni sono indicate sotto forma numerica nelle tabelle riassuntive seguenti, nelle quali, al variare del tempo di ritorno e per ognuna delle sezioni, sono riportati i dati relativi ai principali parametri idraulici desunti dal calcolo al passaggio dell'onda di piena.

Il calcolo è stato svolto in condizioni di moto permanente utilizzando il valore della portata di piena, corrispondente al tempo di ritorno pari a 100 anni del bacino di interesse

In particolare

Le sigle riportate sono relative a:

a) Q total = Portata totale espressa in m3/s;

DG4804-PC-01-II-00-0106-01-R-0

SIS S.c.p.a. Pag. 16 di 26

Viadotto Cerritello - Relazione idraulica

b) Min Ch El = Quote del fondo dell'alveo;

c) W.S. Elev = Quota del pelo libero;

d) Crit W.S. = Quota critica del pelo libero;

e) E.G. Elev = Quota della linea dell'energia;

f) E.G. Slope = Pendenza della linea dell'energia;

g) Vel Chnl = Velocità media della corrente nell'alveo;

h) Flow area = Area totale della sezione liquida effettiva;

i) Top Width = Larghezza superficiale della sezione liquida;

j) Froude = Numero di Froude dell'alveo.

I risultati ottenuti sono riportati nei paragrafi seguenti.

SIS S.c.p.a. Pag. 17 di 26

DG4804-PC-01-II-00-0106-01-R-0

Viadotto Cerritello – Relazione idraulica

4.4 RISULTATI MODELLAZIONE IDRAULICA

L'impluvio naturale che insiste sul Viadotto Cerritello in seguito alla costruzione dell'opera, non ha subito sostanziali variazioni rispetto alla sua condizione originaria, perciò non sono state previste opere di rimodellazione.

La verifica dell'officiosità idraulica è stata condotta sulla attuale topografica del luogo.

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
Cerritello	170	PF 1	11.24	636.15	636.40	636.65	637.77	0.178839	5.09	2.17	12.70	3.98
Cerritello	160.0001	PF 1	11.24	634.70	635.39	635.66	636.51	0.084905	4.62	2.40	9.18	2.93
Cerritello	150	PF 1	11.24	633.62	634.15	634.43	635.46	0.126533	5.07	2.22	10.31	3.47
Cerritello	140.0001	PF 1	11.24	632.46	633.13	633.41	634.29	0.099869	4.77	2.36	10.01	3.13
Cerritello	129.9999	PF 1	11.24	631.47	632.24	632.52	633.37	0.081388	4.73	2.39	8.74	2.89
Cerritello	119.9999	PF 1	11.24	630.55	631.28	631.58	632.50	0.088864	4.88	2.30	8.51	2.99
Cerritello	109.9999	PF 1	11.24	629.63	630.03	630.32	631.42	0.129929	5.21	2.16	9.82	3.55
Cerritello	99.99989	PF 1	11.24	627.40	627.95	628.35	630.00	0.139757	6.36	1.77	6.46	3.82
Cerritello	89.99978	PF 1	11.24	624.97	625.47	625.90	628.24	0.210692	7.37	1.52	5.88	4.62
Cerritello	70		Bridge									
Cerritello	69.99989	PF 1	11.24	623.55	624.29	624.01	624.33	0.001444	0.89	12.66	28.08	0.42
Cerritello	50		Bridge									
Cerritello	49.9999	PF 1	11.24	623.00	624.27	623.44	624.29	0.000207	0.60	18.78	16.96	0.18
Cerritello	39.99981	PF 1	11.24	622.94	624.27	623.40	624.29	0.000135	0.51	22.52	20.21	0.15
Cerritello	29.99997	PF 1	11.24	623.10	624.25		624.28	0.000480	0.77	14.63	19.15	0.27
Cerritello	19.99984	PF 1	11.24	623.06	624.25		624.28	0.000405	0.76	14.96	16.81	0.25
Cerritello	9.999969	PF 1	11.24	623.33	624.10	624.07	624.26	0.006006	1.79	6.64	18.45	0.86

TABELLA 4 - TABELLA DATI

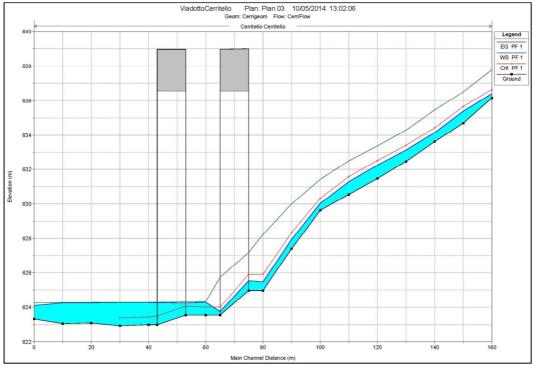
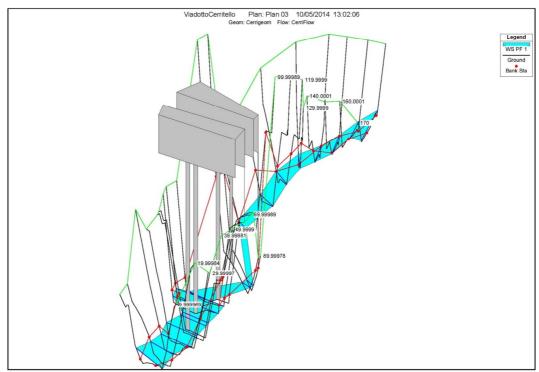
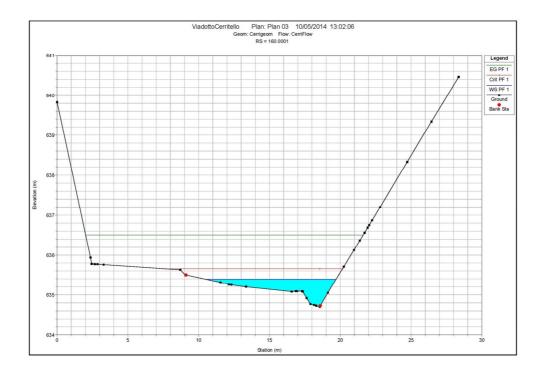
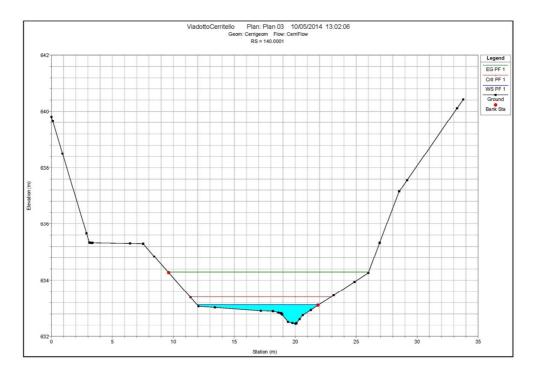


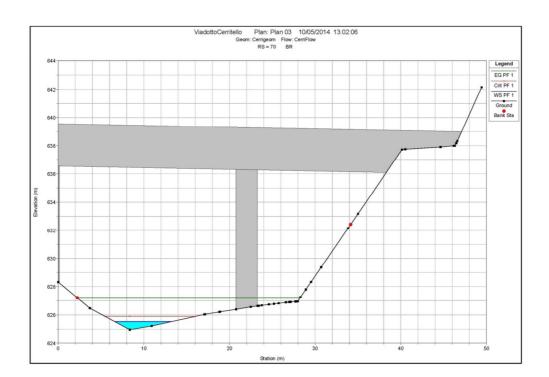
FIGURA 3 - PROFILO Q100

SIS S.c.p.a. Pag. 18 di 26

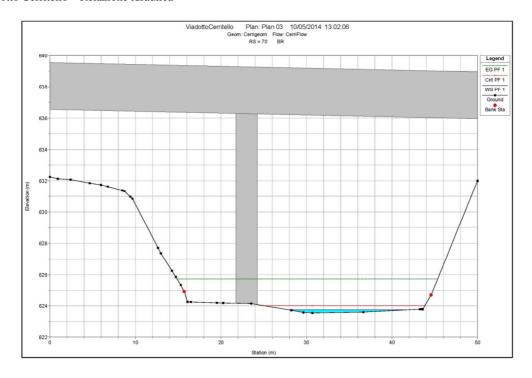
Viadotto Cerritello - Relazione idraulica

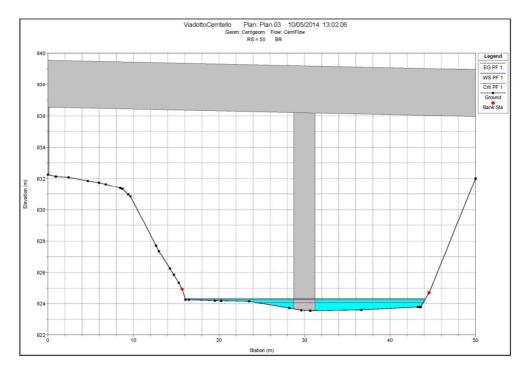




FIGURA 4 - VISTA 3D DEL MODELLO IDRAULICO CORRISPONDENZA DELL'ATTRAVERSAMENTO

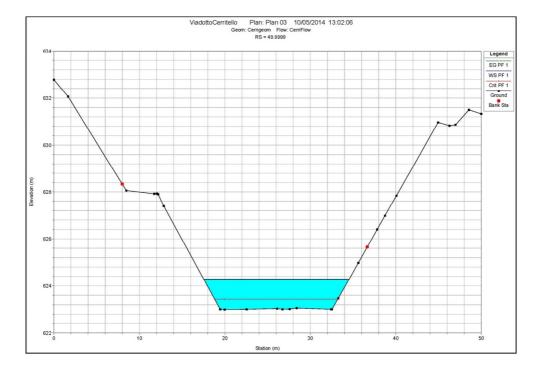

4.5 SEZIONI TRASVERSALI DI PROGETTO

SIS S.c.p.a. Pag. 19 di 26


Viadotto Cerritello – Relazione idraulica



SIS S.c.p.a. Pag. 20 di 26


Viadotto Cerritello - Relazione idraulica

SIS S.c.p.a. Pag. 21 di 26

Viadotto Cerritello – Relazione idraulica

SIS S.c.p.a. Pag. 22 di 26

Viadotto Cerritello - Relazione idraulica

5 VERIFICA DEL FRANCO SOTTO TRAVE

Al fine di verificare che i franchi di sicurezza rispetto alle portata di massima piena rientrino nel range di valori accettabili si sono studiati tutti i punti di intersezione. La metodologia seguita si è basata sulla applicazione della procedura messa a punto con il VAPI Basilicata, metodologia che consente di pervenire alla stima della distribuzione di probabilità delle portate in una generica sezione fluviale.

Una volta giunti al secondo livello di regionalizzazione l'unico parametro che rimane da ricavare è la piena indice x , quantità fortemente influenzata dall'area del bacino. La ricerca di una relazione empirica tra la piena indice x e l'area del bacino è sempre il primo passo che si fa nell'ambito del III livello di regionalizzazione e di solito risulta ben specificata da una legge del tipo

$$x = \beta A^{\alpha}$$
.

Poiché i corsi d'acqua oggetto di studio ricadono nell'ambito del bacino idrografico del fiume Noce che, a sua volta, ricade nell'area omogenea 2, il valore assunto dalla relazione precedente è

$$x = 5.19 A^{0.645}$$

Il calcolo della portata al colmo è dato da

$$Q_{max} = K_T x$$

dove K_T è il fattore probabilistico di crescita che può essere ricavato direttamente in funzione del tempo di ritorno T attraverso la relazione

$$K_T = a + b \ln T$$

da cui

$$a = \frac{(\Theta_* \ln \Lambda_* + \ln \Lambda_1)}{\eta}$$
; $b = \frac{\Theta_*}{\eta}$

con

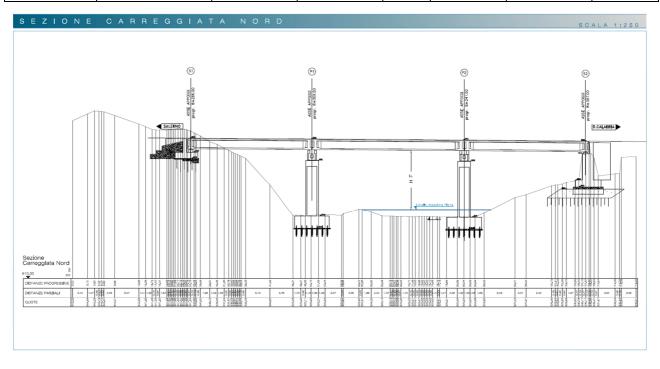
$$\eta = \ln \Lambda_1 + 0.5772 - T_0$$

e

$$T_0 = \sum_{i=1}^{\infty} \frac{\left(-1\right)^i \Lambda_*^i}{i!} \Gamma\!\!\left(\frac{i}{\Theta_*}\right)$$

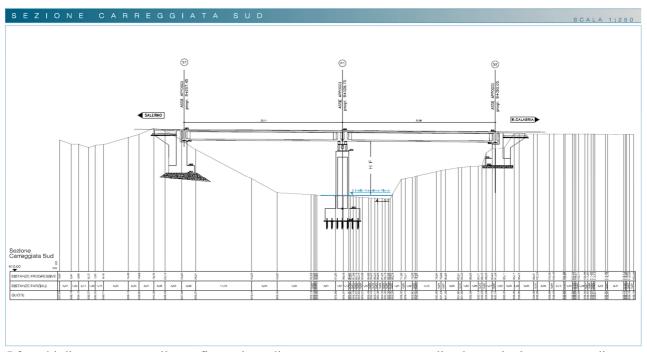
DG4804-PC-01-II-00-0106-01-R-0

SIS S.c.p.a. Pag. 23 di 26


Viadotto Cerritello - Relazione idraulica

La verifica del franco rispetto al sottotrave è stata eseguita effettuando delle simulazioni in moto permanente con le portate valutate secondo la metodologia VAPI Basilicata ipotizzando un tempo di ritorno T=200 anni.

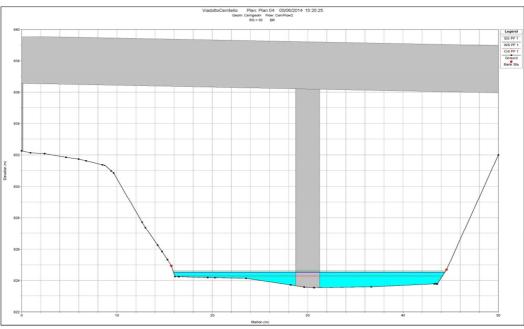
In sostanza una volta calcolata la piena indice e stabilito il tempo di ritorno secondi cui condurre la valutazione della portata non resta che individuare l'area del bacino scolante chiuso in corrispondenza della singola opera per giungere alla portata di piena relativa.


Nel caso in esame si è valutata la portata di piena per ogni sezione di chiusura ed attraverso l'ipotesi di moto uniforme nell'ultimo tratto di alveo interferente con l'opera ed in base alla pendenza del tratto medesimo, si è giunti alla valutazione della scala di deflusso in ogni sezione considerata.

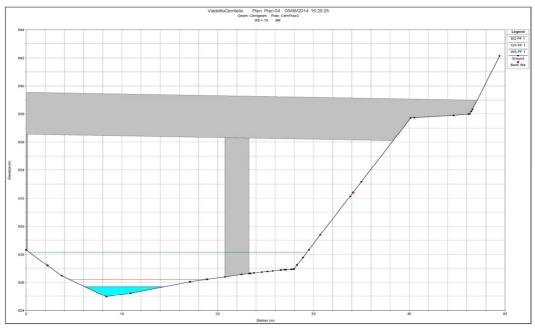
Viadotto		Progressiva	Area (Km²)	Bacino	Kt	Qt ₂₀₀ (m³/s)	Franco (m)	
Cer	ritello	8+300.00	0.88	A37	3.91	21.6	Carr. Nord Carr. sud	12.53 11.35

SIS S.c.p.a. Pag. 24 di 26

Viadotto Cerritello - Relazione idraulica



I franchi di sotto-trave, nella configurazione di progetto con una portato di colmo calcolata a tempo di ritorno 200 anni, risultano verificati rispetto ai limiti precedentemente descritti nel paragrafo 2.6


SIS S.c.p.a. Pag. 25 di 26

Viadotto Cerritello – Relazione idraulica

5.1 MODELLAZIONE HEC-RAS

Carreggiata Nord

Carreggiata Sud

SIS S.c.p.a. Pag. 26 di 26