

UNIVERSITA' DEGLI STUDI DI SALERNO

LABORATORIO DI INGEGNERIA SANITARIA AMBIENTALE

Dipartimento di Ingegneria Civile Via Giovanni Paolo II, n. 132– 84084 Fisciano (SA)

ESECUZIONE DEI LAVORI DI PROLUNGAMENTO DEL MOLO MANFREDI E CONSOLIDAMENTO DEL CIGLIO BANCHINA DELLA TESTATA DEL MOLO 3 GENNAIO

CONVENZIONE FRA L'UNIVERSITA' DI SALERNO
E LA R.C.M. COSTRUZIONI SRL
PER LE ATTIVITA' RELATIVE AL PIANO DI
MONITORAGGIO OPERATIVO AMBIENTALE
NELL'AMBITO DELLA REALIZZAZIONE DELLE
OPERE A MARE

REPORT N.2

30/08/2013

IL RESPONSABILE SCIENTIFICO

prof. ing. Vincenzo Belgiorno

IL GRUPPO DI LAVORO

ing. Fabiola Filadoro ing. Stefano Giuliani ing. Tiziano Zarra

INDICE GENERALE

IN	DICE	GENERALE	
1	PRE	EMESSA	2
2	PRO	OGRAMMA DELLE ATTIVITA' SVOLTE	4
3	RIS	ULTATI ATTIVITA' DI MONITORAGGIO AMBIENTE MARINO	5
	3.1	Identificazione dei punti di campionamento	5
	3.2	Stato qualitativo	6
4	RIS	ULTATI ATTIVITA' DI MONITORAGGIO ATMOSFERA	10
	4.1	Identificazione dei punti di campionamento	10
	4.2	Monitoraggio della qualità atmosferica	11
5	RIS	ULTATI ATTIVITA' DI MONITORAGGIO RUMORE	21
	5.1	Identificazione dei punti di campionamento	21
	5.2	Clima acustico ambientale	22
6	COI	NCLUSIONI	43
ΑL	LEG	ATI	44

1 PREMESSA

Il presente report illustra le attività di monitoraggio ambientale svolte nell'ambito della convenzione stipulata tra la R.C.M costruzioni S.r.I. e l'Università di Salerno, finalizzate al controllo delle potenziali pressioni ambientali indotte dall'esecuzione dei lavori di prolungamento del molo Manfredi e consolidamento del ciglio banchina della testata del molo 3 gennaio. L'elaborato riporta i risultati analitici dell'attività di monitoraggio condotta nel secondo trimestre Giugno-Agosto 2013, finalizzata alla definizione dello stato qualitativo ambientale. I risultati sono presentati per componente ambientale e tema specifico investigato, definiti nell'ambito del Piano di monitoraggio, allegato alla nota presentata in data 19/02/2013, relativa agli interventi di minimizzazione degli impatti ambientali.

In Tabella 1.1 si riporta il piano di monitoraggio, con i parametri analitici e le frequenze di campionamento per ciascun comparto ambientale investigato, opportunamente integrato sulla base della richiesta di integrazioni trasmesse da ARPAC con nota prot. 0015248 del 20/03/2013. In Figura 1.1 si riporta la localizzazione dei punti scelti per il monitoraggio ambientale.

Tabella 1.1 – Piano di monitoraggio integrato sulla base della richiesta di integrazioni trasmesse

da ARPAC con nota prot. 0015248 del 20/03/2013

	Tema	Attività	Campionamento					
	specifico	Attivita	n° punti	Modalità/strumentazione	Frequenza			
ente	Stato qualitativo	Parametri in situ, Parametri di laboratorio	5	Misura puntuale con sonda multiparametrica	trimestrale			
Ambiente marino	Sedimenti marini	Parametri di laboratorio (comprensivi dei SST, IPA e idrocarburi totali)	5	Metodiche di legge (APAT, CNR, IRSA,)	semestrale			
ïra		Inquinanti atmosferici convenzionali: NOx, NO, NO ₂ , CO		Misure giornaliere continue con determinazione di medie orarie con campionamento con analizzatori in laboratorio mobile				
Atmosfera	Stato qualitativo	Inquinanti atmosferici: benzene, toluene, altri COV	5	Determinazione valore medio su campionamento continuo con canister	trimestrale			
		Polveri PM10	-	Determinazione valore medio				
		Polveri PM2,5	-	su campionamento continuo con campionatore				
		IPA e Metalli		gravimetrico				
Rumore	Clima acustico ambientale	Monitoraggio acustico Leq[A]	9	Determinazione valore medio orario su campionamento continuo di 1 h con fonometro di classe I	mensile			



Figura 1.1 - Localizzazione punti di monitoraggio

2 PROGRAMMA DELLE ATTIVITA' SVOLTE

In Tabella 2.1 si riporta il programma delle attività svolte nel trimestre Giugno – Agosto 2013, relative alla definizione dello stato qualitativo ambientale delle matrici investigate.

Tabella 2.1 - Programma delle attività svolte nel periodo Giugno - Agosto 2013

	Tema	Attività	Postazioni		a campionam	ento	
	specifico	1 1000 1 100					
Ambiente marino	Stato qualitativo	Determinazione dei parametri in situ e di laboratorio	AM01-AM05		24 Giugno - 31 Luglio		
			AM01		21 Giugno		
Atmosfera	Stato qualitativo	Determinazione CO, NO,NOx, vo NO ₂ ,PM10,PM2.5, IPA,COV, metalli	AM02	19 Giugno			
osf			AM03	20 Giugno			
Ę			AM04	18 Giugno			
< <			AM05		17 Giugno		
-		- -	Dootorioni	Campagna			
			Postazioni		II	III	
			R01	19 Giugno	11 Luglio	-	
			R02	19 Giugno	11 Luglio	-	
<u>s</u>	Oliman annualina		R03	20 Giugno	11 Luglio	-	
Rumore	Clima acustico ambientale	Monitoraggio acustico Leq[A]	R04	18 Giugno	9 Luglio	1 Agosto	
3	ambientale	red[√]	R05	20 Giugno	11 Luglio	1 Agosto	
			R06	18 Giugno	9 Luglio	1 Agosto	
		- -	R07	18 Giugno	11 Luglio	1 Agosto	
			R08	18 Giugno	9 Luglio	1 Agosto	
			R09	20 Giugno	9 Luglio	1 Agosto	

Si evidenzia che nel mese di Agosto non è stato effettuato il monitoraggio acustico nei punti R01, R02 e R03 causa sospensione dei lavori di consolidamento del ciglio banchina della testata del molo 3 Gennaio.

3 RISULTATI ATTIVITA' DI MONITORAGGIO AMBIENTE MARINO

3.1 Identificazione dei punti di campionamento

In Figura 3.1 si riporta la rappresentazione dei punti identificati con le sigle AM01-AM05 nella planimetria dei punti di campionamento, oggetto di monitoraggio dell'ambiente marino.

Figura 3.1 - Rappresentazione grafica dei punti di campionamento dell'ambiente marino

In Tabella 3.1 si riporta l'identificazione cartografica dei punti di campionamento, georeferenziati nel sistema UTM WGS84.

Tabella 3.1 – Identificazione cartografica nel sistema UTM WGS84 dei punti di monitoraggio dell'ambiente marino

ID	coordinata Est	coordinata Nord
AM01	14°45'51''	40°40'23''
AM02	14°45'54''	40°40'24''
AM03	14°45'05''	40°40'26''
AM04	14°45'09''	40°40'24''
AM05	14°45'08''	40°40'21''

3.2 Stato qualitativo

Il prelievo e la formazione dei campioni per la caratterizzazione dello stato qualitativo delle acque marine è stato condotto in accordo alla metodologia di riferimento ICRAM-ANPA, definita nell'ambito nel "Programma di monitoraggio dell'ambiente marino-costiero" (2001).

Si evidenzia che l'attività di campionamento è stata condotta in condizioni di mare poco mosso.

Parametri analitici in situ

In Tabella 3.2 si riportano i risultati analitici delle attività di misura dei parametri in situ, mediante utilizzo di sonda multiparametrica, relativi al campionamento svolto in data 24 Giugno 2013.

Tabella 3.2 – Risultati analitici misure in situ in AM01-AM05 del giorno 24 Giugno 2013.

PARAMETRO	UM	METODICA	ID PUNTO				
PARAMETRO	UW		AM01	AM02	AM03	AM04	AM05
рН	-	APAT CNR IRSA 2060 Man 29 2003	8.15	8.17	8.20	8.25	8.24
Temperatura	°C	APAT CNR IRSA 2100 MAN 29/2003	24.3	24.4	25.1	24.9	24.9
Ossigeno disciolto	mgO ₂ /L	APAT CNR IRSA 4120 MAN 29/2003	4.10	4.55	4.96	4.88	3.91
Conduttività	mS/cm	APAT CNR IRSA 2030 MAN 29/2003	54.91	54.51	53.20	54.74	54.53
Torbidità	FNU	APAT CNR IRSA 2110 MAN 29/2003	1.1	1.0	8.0	0.9	8.0

In Figura 3.2 si riporta uno stralcio della principale documentazione fotografica prodotta nell'ambito del campionamento svolto.

Figura 3.2 – Stralcio della documentazione fotografica relativa al campionamento delle acque marine del giorno 24 Giugno 2013

• Parametri analitici di laboratorio

Nella Tabella 3.3 si riportano i risultati analitici dell'attività di campionamento delle acque marine effettuata in data 24 Giugno 2013.

REPORT N.2

Tabella 3.3 – Risultati analitici delle misure di laboratorio in AM01-AM05 del 24 giugno 2013.

		METODICA		AM01-AM05 del 24 giugno 2013. ID PUNTO					
PARAMETRO	UM		AM01	AM02	AM03	AM04	AM05		
Fosforo totale	μg/L	APAT IRSA CNR 4060 Man 29 2003	<1	<1	<1	<1	<1		
Fenoli	mg/L	APAT IRSA CNR 5070 Man 29 2003	<0,005	<0,005	0,005	<0,005	<0,005		
Nitriti	mg/L	APAT IRSA CNR 4040 Man 29 2003	<0,025	<0,025	<0,025	<0,025	<0,025		
Nitrati	mg/L	APAT IRSA CNR 4050 Man 29 2003	0,60	5,20	0,55	2,15	1,40		
Tensioattivi anionici	mg/L	APAT IRSA CNR 5170 Man 29 2003	0,23	0,15	0,26	0,14	0,08		
Idrocarburi totali	mg/L	APAT IRSA CNR 4060 Man 29 2003	8,60	<5	<5	<5	14,12		
Solidi sospesi totali	mg/L	APAT IRSA CNR 4060 Man 29 2003	12,8	14,8	14,2	13,4	15		
Streptococchi fecali	ufc/100mL	APAT IRSA CNR 7040C Man 29 2003 APAT IRSA CNR 7010 Man 29	15	17	4	8	2		
Coliformi totali	ufc/100mL	2003 APAT IRSA CNR 7010 Man 29 APAT IRSA CNR 7020B Man 29	0	4	0	0	1		
Coliformi fecali	ufc/100mL	2003 APAT IRSA CNR 7020B Maii 29 2003 APAT IRSA CNR 7080 Man 29	0	2	0	7	3		
Salmonella IDROCARBURI I	ufc/100mL	2003	3	0	3	3	5		
Naftalene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
Acenaftilene		EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01		<0.01		
	μg/L					<0.01			
Acenaftene Fluorene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01		
Fenantrene	μg/L	EPA 3510 C1996 + EPA 8270 D2007 EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
Antracene	μg/L μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
Fluorantene	μg/L μg/L	EPA 3510 C1990 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
Pirene	μg/L μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
Benzo (a)									
antracene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
Crisene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
Benzo (b) fluorantene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
Benzo (k) fluorantene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.005	<0.005	<0.005	<0.005	<0.005		
Benzo (j) fluorantene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
Benzo (e) pirene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
Benzo (a) pirene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.005	<0.005	<0.005	<0.005	<0.005		
Indeno (1,2,3cd) pirene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
Dibenzo (a,h) antracene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.005	<0.005	<0.005	<0.005	<0.005		
Benzo (g,h,i) perilene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.005	<0.005	<0.005	<0.005	<0.005		
Dibenzo (a,l) pirene Dibenzo (a,e)	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
pirene Dibenzo (a, i)	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
pirene Dibenzo (a,h)	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		
pirene	μg/L	EPA 3510 C1996 + EPA 8270 D2007	<0.01	<0.01	<0.01	<0.01	<0.01		

L'analisi dei risultati evidenzia che i valori rilevati sono pressoché simili nelle cinque postazioni investigate. Si evidenzia, inoltre, pur se scarsamente rappresentative rispetto a valutazioni da operare su periodi e frequenze temporali maggiori, le analisi effettuate mostrano presenza di salmonella.

Nella Tabella 3.4 si riportano, invece, i risultati analitici dell'attività di campionamento delle acque marine relativa ai parametri metalli effettuata in data 31 Luglio 2013.

Tabella 3.4 – Risultati analitici delle misure di laboratorio in AM01-AM05 del 31 luglio 2013.

PARAMETRO	UM METODICA			ID PUNTO			
PARAMETRO	Olvi		AM01	AM02	AM03	AM04	AM05
Zinco (Zn)	μg/L	APAT IRSA CNR 3020 Man 29 2003	10,8	11,1	11,8	5,6	16,1
Rame (Cu)	μg/L	APAT IRSA CNR 3020 Man 29 2003	1,34	2,58	1,32	1,22	2,05
Arsenico (As)	μg/L	APAT IRSA CNR 3020 Man 29 2003	2,02	2,16	2,21	2,09	2,05
Cadmio (Cd)	μg/L	APAT IRSA CNR 3020 Man 29 2003	<1	<1	<1	<1	<1
Cromo totale (Cr)	μg/L	APAT IRSA CNR 3020 Man 29 2003	<1	1,27	<1	<1	<1
Mercurio (Hg)	μg/L	APAT IRSA CNR 3020 Man 29 2003	<0,2	<0,2	<0,2	<0,2	<0,2
Nichel (Ni)	μg/L	APAT IRSA CNR 3020 Man 29 2003	1,76	<1	1,12	<1	<1
Piombo (Pb)	μg/L	APAT IRSA CNR 3020 Man 29 2003	<1	1,10	<1	<1	<1

L'analisi dei risultati evidenzia che i valori di metalli rilevati sono pressoché simili nelle cinque postazioni investigate ed in linea con valori attesi.

4 RISULTATI ATTIVITA' DI MONITORAGGIO ATMOSFERA

4.1 Identificazione dei punti di campionamento

Si riporta in Figura 4.1 la rappresentazione dei punti identificati con le sigle AT01, AT02, AT03, AT04 e AT05 nella planimetria dei punti di campionamento, riferiti al monitoraggio della qualità dell'aria.

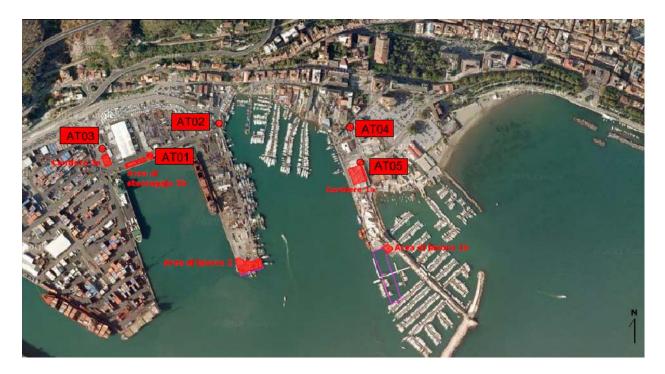


Figura 4.1 - Rappresentazione grafica dei punti di campionamento dell'atmosfera

In Tabella 4.1 si riporta l'identificazione cartografica dei punti di monitoraggio e campionamento, georeferenziati nel sistema UTM WGS84.

Tabella 4.1 – Identificazione cartografica nel sistema UTM WGS84 dei punti di monitoraggio dell'atmosfera.

ID	coordinata Est	coordinata Nord
AT01	14°44'41''	40°40'33''
AT02	14°44'52''	40°40'24''
AT03	14°44'33"	40°40'34''
AT04	14°45'07''	40°40'37''
AT05	14°45'06''	40°40'32''

4.2 Monitoraggio della qualità atmosferica

Di seguito si riportano i risultati analitici dell'attività di monitoraggio della qualità dell'aria, effettuata nei punti identificati dalla sigla AT01-AT05, svolta nel periodo compreso tra il 17 e il 21 Giugno 2013.

La determinazione dei parametri oggetto di monitoraggio è stata effettuata con le strumentazioni ed in accordo alle metodiche di seguito riportate:

- monossido di carbonio: analizzatore in laboratorio mobile, UNI EN 14626:2005;
- ossidi di azoto (NO, NOx, NO₂): analizzatore in laboratorio mobile, UNI EN 14211:2005;
- polveri fini PM10: polverimetro, UNI EN 12341:1999;
- polveri fini PM2.5: polverimetro, UNI EN 14907:2005;
- COV: canister, EPA TO14 TO15/1999;
- IPA: su membrana di prelievo di PM10, EPA8270D 2007;
- Metalli: su membrana di prelievo di PM10, EPA 6020/2007.

Le misure di monitoraggio, per punto di campionamento, sono state effettuate in continuo su un periodo di osservazione pari ad un giorno.

Inquinanti atmosferici convenzionali

Nelle Tabelle 4.2 - 4.6 si riportano, per ciascun punto di monitoraggio, i valori di concentrazione misurati e i valori limite di riferimento, relativi ai parametri atmosferici convenzionali.

Tabella 4.2 – Valori di concentrazione degli inquinanti atmosferici misurati nel punto AT01 in data 21 Giugno 2013

Parametro			Concentrazioni		
monitorato	Periodo di riferimento	UM -	Valori misurati	Limite di riferimento (D.Lgs. 155/2010)	
СО	Max conc. Media mobile giornaliera su 8 ore	mg/m ³	1,22	10	
	Conc. media giornaliera	μ g /m³	6,25	-	
NO	Conc. massima media oraria su base giornaliera	μ g /m³	53,01	-	
	Conc. media giornaliera	μ g /m³	31,41	-	
NOx	Conc. massima media oraria su base giornaliera	μ g /m³	117,90	-	
	Conc. media giornaliera	μ g /m³	25,97		
NO ₂	Conc. massima media oraria su base giornaliera	μg/m³	64,96	200*	

^{*} Limite di riferimento medio orario da non superare più di 18 volte per anno civile

Tabella 4.3 – Valori di concentrazione degli inquinanti atmosferici misurati nel punto AT02 in data 19 Giugno 2013

Parametro			Concentrazioni		
monitorato	Periodo di riferimento	UM -	Valori misurati	Limite di riferimento (D.Lgs. 155/2010)	
СО	Max conc. Media mobile giornaliera su 8 ore	mg/m ³	1,37	10	
	Conc. media giornaliera	μ g /m³	4,68	-	
NO	Conc. massima media oraria su base giornaliera	μg/m³	33,07	-	
	Conc. media giornaliera	μ g /m³	20,01	-	
NOx	Conc. massima media oraria su base giornaliera	μg/m³	72,19	-	
	Conc. media giornaliera	μ g /m³	15,45		
NO ₂	Conc. massima media oraria su base giornaliera	μg/m³	39,12	200*	

^{*} Limite di riferimento medio orario da non superare più di 18 volte per anno civile

Tabella 4.4 – Valori di concentrazione degli inquinanti atmosferici misurati nel punto AT03 in data 20 Giugno 2013

Parametro			Concentrazioni		
monitorato	Periodo di riferimento	UM -	Valori misurati	Limite di riferimento (D.Lgs. 155/2010)	
СО	Max conc. Media mobile giornaliera su 8 ore	mg/m ³	1,41	10	
	Conc. media giornaliera	μ g /m³	30,82	-	
NO	Conc. massima media oraria su base giornaliera	μ g /m³	126,21	-	
	Conc. media giornaliera	μ g /m³	88,41	-	
NOx	Conc. massima media oraria su base giornaliera	μ g /m³	204,96	-	
	Conc. media giornaliera	μ g /m³	58,29		
NO_2	Conc. massima media oraria su base giornaliera	μ g /m³	88,15	200*	

^{*} Limite di riferimento medio orario da non superare più di 18 volte per anno civile

Tabella 4.5 – Valori di concentrazione degli inquinanti atmosferici misurati nel punto AT04 in data 18 Giugno 2013

Parametro			Concentrazioni		
monitorato	Periodo di riferimento	UM -	Valori misurati	Limite di riferimento (D.Lgs. 155/2010)	
СО	Max conc. Media mobile giornaliera su 8 ore	mg/m ³	1,61	10	
	Conc. media giornaliera	μ g /m³	5,09	-	
NO	Conc. massima media oraria su base giornaliera	μ g /m³	28,07	-	
	Conc. media giornaliera	μg/m³	27,52	-	
NOx	Conc. massima media oraria su base giornaliera	μ g /m³	77,87	-	
	Conc. media giornaliera	μ g /m³	22,15		
NO_2	Conc. massima media oraria su base giornaliera			200*	

^{*} Limite di riferimento medio orario da non superare più di 18 volte per anno civile

Tabella 4.6 – Valori di concentrazione degli inquinanti atmosferici misurati nel punto AT05 in data 17 Giugno 2013

Parametro			Concentrazioni		
monitorato	Periodo di riferimento	UM -	Valori misurati	Limite di riferimento (D.Lgs. 155/2010)	
СО	Max conc. Media mobile giornaliera su 8 ore	mg/m ³	1,39	10	
	Conc. media giornaliera	μ g /m³	2,34	-	
NO	Conc. massima media oraria su base giornaliera	μ g /m³	9,03	-	
	Conc. media giornaliera	μ g /m³	20,45	-	
NOx	Conc. massima media oraria su base giornaliera	μg/m³	48,51	-	
	Conc. media giornaliera	μ g /m³	18,01	-	
NO ₂	Conc. massima media oraria su base giornaliera	μg/m³	39,79	200*	

^{*} Limite di riferimento medio orario da non superare più di 18 volte per anno civile

Nelle Figure 4.2 e 4.3 si riporta il confronto tra i risultati ottenuti nei singoli punti di monitoraggio, con riferimento, rispettivamente, ai parametri CO e NO₂, per i quali la normativa vigente impone dei valori limite di riferimento.

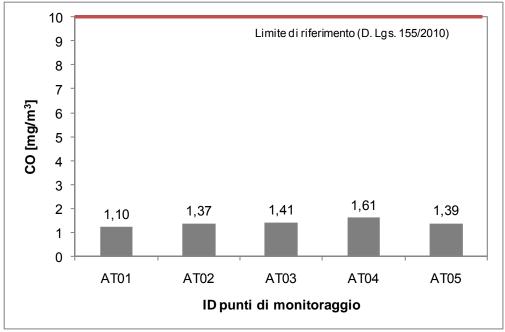


Figura 4.2 – Confronto tra i valori di concentrazione di CO misurati in corrispondenza delle postazioni AT01-AT05

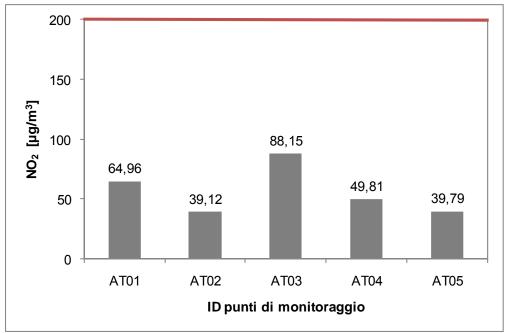


Figura 4.3 – Confronto tra i valori di concentrazione di NO₂ misurati in corrispondenza delle postazioni AT01-AT05

Dall'analisi di confronto dei risultati ottenuti si evince che il valore di concentrazione massimo relativo al parametro CO, è stato riscontrato in corrispondenza del punto di monitoraggio AT04, mentre nel punto AT03 sono stati registrati i valori più alti di concentrazione degli ossidi di azoto. In tutte le postazioni e per entrambi i parametri misurati (CO - NO₂), i valori di concentrazione ottenuti risultano essere inferiori ai limiti di riferimento imposti dal D. Lgs. 155/2010.

In Figura 4.4 si riporta la rappresentazione fotografica degli analizzatori installati all'interno del Laboratorio Mobile del Dipartimento di Ingegneria Civile dell'Università di Salerno, utilizzato per l'attività di monitoraggio degli inquinanti convenzionali atmosferici.

Figura 4.4 – Analizzatori installati all'interno del Laboratorio Mobile del Dipartimento di Ingegneria Civile dell'Università di Salerno

Nelle Figure 4.5-4.9 si riporta, per ciascun punto di monitoraggio, la rappresentazione fotografica relativa alla localizzazione del laboratorio mobile all'interno dell'area oggetto di investigazione.

Figura 4.5 – Localizzazione del laboratorio mobile nel punto AT01

Figura 4.6 – Localizzazione del laboratorio mobile nel punto AT02

Figura 4.7 – Localizzazione del laboratorio mobile nel punto AT03

Figura 4.8 – Localizzazione del laboratorio mobile nel punto AT04

Figura 4.9 – Localizzazione del laboratorio mobile nel punto AT05

Polveri

In Tabella 4.7 si riportano, per ciascun punto di monitoraggio, i valori di concentrazione misurati e i valori limite di riferimento, relativi ai parametri PM10 e PM2.5.

Tabella 4.7 – Valori di concentrazione misurati dei parametri PM10 e PM2.5

					Concenti	azioni	
ID Punto	Data monitoraggio	Parametro monitorato	Periodo di riferimento	UM	Valori misurati	Limite di riferimento* (D.Lgs. 155/2010)	
AT01	21/06/13	PM10			23	50	
	21/00/13	PM2.5	media -		10	25	
ΛT02	AT02 19/06/13	PM10	μĒ		30	50	
ATUZ		PM2.5			11	25	
AT03	00/00/40	20/06/13 PM10	PM10	alie	μ g /m³	35	50
A103	20/00/13	PM2.5	entrazione giornaliera	μg/m	15	25	
AT04	ATO4 40/00/42	PM10	ent gic		39	50	
AT04 18/06/13	PM2.5	Concentrazione giornaliera		18	25		
ATOF 47/00/40	PM10	ပိ		31	50		
AT05	17/06/13	PM2.5	<u> </u>		17	25	

^{*} PM10: Limite di riferimento medio giornaliero da non superare più di 35 volte per anno civile. PM2.5: Valore obiettivo per la salute umana (media annuale)

Nelle Figure 4.10 e 4.11 si riporta il confronto tra i risultati ottenuti nei singoli punti di monitoraggio, con riferimento, rispettivamente, ai parametri PM10 e PM2.5, per i quali la normativa ha imposto dei valori limite di riferimento.

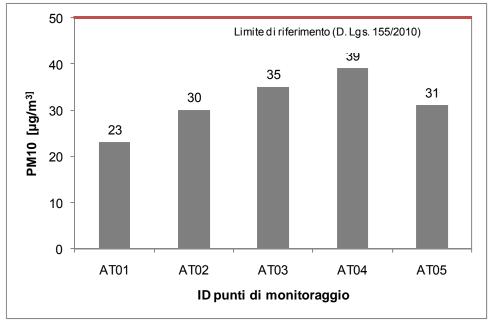


Figura 4.10 – Confronto tra i valori di concentrazione di PM10 misurati in corrispondenza delle postazioni AT01-AT05

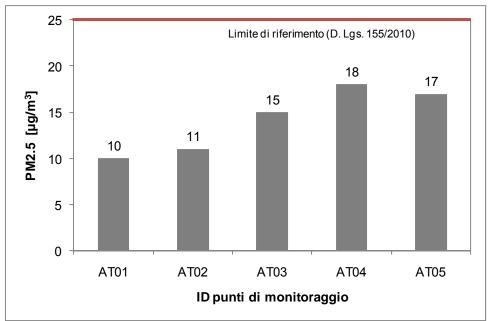


Figura 4.11 – Confronto tra i valori di concentrazione di PM2.5 misurati in corrispondenza delle postazioni AT01-AT05

Dall'analisi di confronto dei risultati ottenuti si evince che il valore di concentrazione massimo relativo sia al parametro PM10 e sia al parametro PM2.5 è stato riscontrato in corrispondenza del punto di monitoraggio AT04. In tutte le postazioni e per tutti i parametri misurati, i valori di concentrazione ottenuti risultano essere inferiori ai limiti di riferimento imposti dal D. Lgs. 155/2010.

• Altri inquinanti atmosferici

In Tabella 4.8 si riportano, per ciascun punto di monitoraggio, i valori di concentrazione misurati relativi ai parametri COV, IPA e metalli.

Tabella 4.8 - Valori di concentrazione misurati relativi a COV, IPA e metalli

		Concentrazioni misu			urare	
Parametri monitorati	UM	AT01			AT04	
COV						
Metanolo	μg/m³	8.2	4.1	34.5	5.0	3.6
Isopropanolo	μg/m ³	3.3	0.7	1.5	1.6	0.6
n-Butanolo	μg/m ³	<0.5	<0.5	<0.5	<0.5	<0.5
Acetaldeide	μg/m ³	10.4	5.7	5.0	12.3	11.7
Acetonitrile	นต/m³	<0.5	<0.5	<0.5	<0.5	<0.5
Metilacetato	μg/m ³	<0.5	<0.5	<0.5	<0.5	1.1
Isobutilacetato	μg/m ³	<0.5	<0.5	<0.5	<0.5	<0.5
AlfaPinene (+)	μg/m ³	1.2	<0.5	1.2	<0.5	<0.5
BetaPinene (+)	μg/m ³	<0.5	<0.5	<0.5	<0.5	<0.5
Limonene	μg/m ³	<0.5	<0.5	<0.5	<0.5	<0.5
COMPOSTI ORGANICI						
Acetone	μ g /m³	14.7	8.0	6.9	9.0	10.4
Benzene	ug/m³	<2.6	<2.6	<2.6	<2.6	<2.6
Benzilcloruro	μ g /m³	<4.3	<4.3	<4.3	<4.3	<4.3
Bromodiclorometano	μg/m³	<5.4	<5.4	<5.4	<5.4	<5.4
Bromometano	μg/m³	<3.0	<3.0	<3.0	<3.0	<3.0
1,3butadiene	μg/m³	<1.8	<1.8	<1.8	<1.8	<1.8
Solfuro di carbonio	μg/m³	<2.6	<2.6	<2.6	<2.6	<2.6
Tetraclorometano	μg/m³	<5.1	<5.1	<5.1	<5.1	<5.1
Metiletilchetone	μg/m³	<2.4	<2.4	<2.4	<2.4	13.6
Clorobenzene	μ g /m³	<3.7	<3.7	<3.7	<3.7	<3.7
Cloroformio	น a /m³	<3.9	<3.9	<3.9	<3.9	<3.9
Cis1,3dicloropropene	μg/m ³	<3.7	<3.7	<3.7	<3.7	<3.7
Cis1,2dicloroetilene	μg/m [~]	<3.2	<3.2	<3.2	<3.2	<3.2
Cicloesano	μg/m³	66	<2.9	<2.9	<2.9	<2.9
Dibromoclorometano	μg/m³	<6.7	<6.7	<6.7	<6.7	<6.7
1,2dibromoetano	μg/m³	<5.8	<5.8	<5.8	<5.8	<5.8
1,2diclorobenzene	μg/m³	<4.9	<4.9	<4.9	<4.9	<4.9
1,3diclorobenzene	μg/m³	<4.9	<4.9	<4.9	<4.9	<4.9
1,4diclorobenzene	μg/m³	<4.9	<4.9	<4.9	<4.9	<4.9
Diclorodifluorometano	μg/m³	<4.1	<4.1	<4.1	<4.1	<4.1
1,1dicloroetano	µg/m³	<3.3	<3.3	<3.3	<3.3	<3.3
1,2dicloroetano	μ g /m³	<3.3	<3.3	<3.3	<3.3	<3.3
1,2dicloropropano	μ g /m³	<3.7	<3.7	<3.7	<3.7	<3.7
1,1dicloroetilene	μg/m³	<3.2	<3.2	<3.2	<3.2	<3.2
1,2dicloro1,1,2,2tetrafluoroetano	μg/m ³	<5.7	<5.7	<5.7	<5.7	<5.7
1,4diossano	μg/m ³	<2.9	<2.9	<2.9	<2.9	<2.9
Etanolo	μg/m ³	9.3	2.63	2.13	1.61	<1.6
4etiltoluene	μg/m³	<4.0	<4.0	<4.0	<4.0	<4.0
Etilacetato	μ g /m³	<2.7	<2.7	<2.7	<2.7	<2.7
M-xilene	μg/m³	<3.5	<3.5	<3.5	<3.5	<3.5
(m+p) Xileni	μg/m³	<7.0	<7.0	<7.0	<7.0	<7.0
P-xilene	μg/m³	<3.5	<3.5	<3.5	<3.5	<3.5
Xileni	μg/m³	<3.6	<3.6	<3.6	<3.6	<3.6
Acroleina	μg/m³	<1.8	<1.8	<1.8	<1.8	<1.8

Bromuro di vinile	μg/m ³	<3.6	<3.6	<3.6	<3.6	<3.6
N-butano	μg/m ³	11.4	3.28	2.45	3.93	2.46
3-cloro-1-propene	μg/m ³	<2.4	<2.4	<2.4	<2.4	<2.4
2-clorotoluene	μg/m ³	<4.2	<4.2	<4.2	<4.2	<4.2
Isoottano	μg/m ³	<3.8	<3.8	<3.8	<3.8	<3.8
Etilbenzene	μg/m ³	8.2	<2.8	<2.8	<2.8	<2.8
Cloroetano	μg/m ³	<2.0	<2.0	<2.0	<2.0	<2.0
Trans-1,2-dicloroetilene	μg/m ³	<3.2	<3.2	<3.2	<3.2	<3.2
N-eptano	μg/m ³	19.8	<3.3	<3.3	<3.3	<3.3
Esaclorobutadiene	μg/m ³	<8.2	<8.2	<8.2	<8.2	<8.2
1,2,4-trimetilbenzene	μg/m ³	<4.0	<4.0	<4.0	<4.0	<4.0
N-esano	μg/m ³	68	<2.7	<2.7	<2.7	<2.7
Isopropanolo	μg/m ³	2.16	<2.1	<2.1	<2.1	<2.1
Metilisobutilchetone	μg/m ³	<3.3	<3.3	<3.3	<3.3	<3.3
Metil-n-butilchetone	μg/m ³	<3.2	<3.2	<3.2	<3.2	<3.2
Diclorometano	μg/m ³	<2.8	<2.8	<2.8	<2.8	<2.8
Propilene	μg/m ³	2.54	4.65	1.73	2.16	3.65
Stirene	μg/m ³	18.6	<3.5	<3.5	<3.5	<3.5
Metil-ter-butiletere	μg/m ³	<3.0	<3.0	<3.0	<3.0	<3.0
1,1,2,2-tetracloroetano	μg/III	<5.3	<5.3	<5.3	<5.3	<5.3
Tetracloroetilene	μg/m ³	<5.5	<5.5	<5.5	<5.5	<5.5
Tetraidrofurano	μg/m ³	<2.2	<2.2	<2.2	<2.2	<2.2
	$\mu g/m^3$	14.1	3.52	4.64	3.38	3.19
Toluene Trans-1,3-dicloropropene	μ g/m ³	<3.7	<3.7	<3.7	<3.7	<3.7
	μg/m ³	<8.6	<8.6	<8.6	<8.6	<8.6
Tribromometano	μg/m ³	<4.4	<4.4	<4.4	<4.4	<4.4
1,1,1-tricloroetano	μg/m ³	<4.4	<4.4	<4.4	<4.4	<4.4
1,1,2-tricloroetano	μ g /m ³	<4.3	<4.4	<4.3	<4.3	
Tricloroetilene	μg/m ³	<5.8				<4.3
1,2,4-triclorobenzene	μg/m ³	<4.3	<5.8 <4.3	<5.8 <4.3	<5.8 <4.3	<5.8 <4.3
Triclorofluorometano	μg/m ³					
1,1,2-tricloro1,2,2-trifluoroetano	μ g /m ³	<6.1	<6.1	<6.1	<6.1	<6.1
1,3,5-trimetilbenzene	μg/m ³	<4.1	<4.1	<4.1	<4.1	<4.1
Acetato di vinile	μg/m ³	<2.8	<2.8	<2.8	<2.8	<2.8
Cloruro di vinile	μg/m ³	<2.1	<2.1	<2.1	<2.1	<2.1
Clorometano	μg/m ³	<1.7	<1.7	<1.7	<1.7	<1.7
Isopropilbenzene	μg/m ³	<4.0	<4.0	<4.0	<4.0	<4.0
Metilmetacrilato	μg/m°	<3.3	<3.3	<3.3	<3.3	<3.3
O-xilene	μg/m ³	<3.6	<3.6	<3.6	<3.6	<3.6
N-nonano	μg/m ³	<4.2	<4.2	<4.2	<4.2	<4.2
N-pentano	μg/m ³	45.3	5.8	<2.3	<2.3	2.46
N-propil benzene	μ g /m ³	<4.0	<4.0	<4.0	<4.0	<4.0
N-butilmercaptano	μ g /m ³	<2.8	<2.8	<2.8	<2.8	<2.8
Dietil solfuro	μg/m³	<2.7	<2.7	<2.7	<2.7	<2.7
Dimetilsolfuro	μg/m³	<1.9	<1.9	<1.9	<1.9	<1.9
Etilmercaptano	μg/m³	<1.9	<1.9	<1.9	<1.9	<1.9
Isobutil mercaptano	μg/m ³	<2.8	<2.8	<2.8	<2.8	<2.8
Isopropilmercaptano	μ g /m³	<2.3	<2.3	<2.3	<2.3	<2.3
Metil etil solfuro	μg/m³	<2.3	<2.3	<2.3	<2.3	<2.3
Metilmercaptano	μg/m³	<1.5	<1.5	<1.5	<1.5	<1.5
1-propantiolo	μg/m³	<2.3	<2.3	<2.3	<2.3	<2.3
Sec-butilmercaptano	μ g /m³	<2.7	<2.7	<2.7	<2.7	<2.7
Ter-butilmercaptano	μg/m ³	<2.7	<2.7	<2.7	<2.7	<2.7
Tiofene	μ g /m³	<2.5	<2.5	<2.5	<2.5	<2.5
Solfuro di carbonile	μ g /m³	<1.9	<1.9	<1.9	<1.9	<1.9
IPA						
· · · · · · · · · · · · · · · · · · ·						

Naftalene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Acetaftilene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaftene	ng/m ³	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Fenantrene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Antracene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorantene	ng/m³	<0.01	0.32	<0.01	<0.01	<0.01
Pirene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)antracene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Crisene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
5-metilcrisene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoroantene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(k)fluoroantene	ng/m³	<0.01	0.23	<0.01	<0.01	<0.01
Benzo(j)fluoroantene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pirene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo (a,h) antracene	ng/m ³	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(g,h,i)perilene	ng/m ³	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,l)pirene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,e)pirene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,h)pirene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,i)pirene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzofurano	ng/m ³	<0.01	<0.01	<0.01	<0.01	<0.01
2-metilnaftalene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno (1,2,3-cd) pirene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,j) acridina	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenzo(a,h) acridina	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
2,6-dimetilnafatalene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
2,3,5-trimetilnaftalene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
1-metilnaftalene	ng/m ³	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(e) pirene	ng/m³	<0.01	<0.01	<0.01	<0.01	<0.01
METALLI						
Arsenico	μ g /m³	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmio	μg/m³	<0.01	<0.01	<0.01	<0.01	<0.01
Nichel	μg/m ³	0.015	0.011	0.013	0.018	0.013
Piombo	μg/m ³	0.016	<0.01	<0.01	0.014	0.012
	٠٠٠٠ ت					

L'analisi dei risultati, relativi ai parametri COV, IPA e metalli ha evidenziato valori di concentrazioni in media con quelli riscontrabili in letteratura presso le aree urbane ed industriali. In particolare, si evidenzia che tra i COV il valore di benzene rilevato in tutte e 5 le postazioni di monitoraggio risulta inferiore al valore limite di 5 μ g/m³ previsto dal D.Lgs. 155/2010 mentre tra gli IPA il parametro benzo(a)pirene in tutte e 5 le postazioni risulta ampiamente inferiore al valore obiettivo pari a 1 ng/m³, calcolato su media su un anno civile, imposto dal D.Lgs. 155/2010. Tra i metalli, invece, si evidenzia che il valore di piombo rilevato in tutte e 5 le postazioni di monitoraggio risulta inferiore al valore limite calcolato sulla media annuale di 0.5 μ g/m³, calcolato su media su un anno civile, previsto dal D.Lgs. 155/2010.

5 RISULTATI ATTIVITA' DI MONITORAGGIO RUMORE

5.1 Identificazione dei punti di campionamento

In Figura 5.1 si riporta la rappresentazione grafica dei punti identificati con le sigle R01 – R09, oggetto di monitoraggio del rumore.

Figura 5.1 – Rappresentazione grafica dei punti di monitoraggio del rumore.

In Tabella 5.1 si riporta l'identificazione cartografica dei punti di monitoraggio, georeferenziati nel sistema UTM WGS84.

Tabella 5.1 – Identificazione cartografica nel sistema UTM WGS84 dei punti di monitoraggio del rumore.

ID	coordinata Est	coordinata Nord
R01	14°44'52''	40°40'24''
R02	14°74'33''	40°67'57''
R03	14°44'49''	40°41'36''
R04	14°44'42''	40°40'39''
R05	14°44'42''	40°40'38''
R06	14°45'07''	40°40'37''
R07	14°45'10''	40°40'25''
R08	14°45'04''	40°40'40''
R09	14°45'16"	40°40'41''

5.2 Clima acustico ambientale

Di seguito si riportano i risultati analitici delle tre campagne di monitoraggio della qualità acustica ambientale nei punti R01-R09, effettuate con frequenza mensile nel periodo Giugno-Agosto 2013.

Per la stima dei livelli sonori si è scelto, come tempo di riferimento, il periodo diurno (06.00-22.00), nel quale le misure, eseguite in continuo, sono state effettuate, in ciascun punto di monitoraggio, su un tempo di osservazione pari ad 1 ora.

Per l'effettuazione delle misurazioni è stata impiegata una catena microfonica costituita da:

Fonometro Classe 1:

Marca: Larson Davis Modello: 831 Matricola: 2099

Preamplificatore:

Marca: Larson Davis Modello: PRM831 Matricola: 015352

Microfono:

Marca: PCB Piezoelecronics Modello: 377B02 Matricola: 113894

Calibratore:

Marca: Larson Davis Modello: CAL200 Matricola: 7274

I sistemi di misura con cui sono stati rilevati i livelli equivalenti soddisfano le specifiche di cui alla classe 1 delle norme EN 60651/1994 e EN 60804/1994.

I filtri e i microfoni utilizzati per le misure sono conformi, rispettivamente, alle norme EN 61260/1995 (IEC 1260) e EN 61094-1/1994, EN 61094-2/1993, EN 61094-3/ 1995, EN 61094-4/1995, mentre i calibratori acustici rispettavano quanto indicato dalle norme CEI 29-4. Si allegano certificati di taratura della strumentazione utilizzata (Allegato 2).

La strumentazione, prima e dopo ogni ciclo di misura, è stata controllata con il calibratore di classe 1, secondo la norma IEC 942/1988, verificando che le stesse non differissero di un valore superiore ai 0,5 dB.

Le misure sono state eseguite in assenza di precipitazioni atmosferiche, nebbia e/o neve, e velocità del vento inferiore a 5 m/s, posizionando il microfono, provvisto di cuffia antivento, su apposito supporto ad una altezza di circa 1.5 m dal piano di calpestio ed ad una distanza di almeno 1 m da elementi riflettenti (schermi, facciate edifici ecc.), secondo quanto riportato nell'allegato B del D.M. 16/03/1998 "Tecniche di rilevamento e di misurazione dell'inquinamento acustico".

In corrispondenza di ciascun punto di monitoraggio i valori limite di immissione¹ misurati, sono stati espressi in termini di livello continuo equivalente di pressione sonora ponderata in curva «A», relativo all'intervallo del tempo di osservazione To rappresentativo.

¹La Legge quadro sull'inquinamento acustico del 26/10/1995 N.447 definisce il valore limite di immissione come il valore massimo di rumore che può essere immesso da una o più sorgenti sonore nell'ambiente abitativo o nell'ambiente esterno, misurato in prossimità dei ricettori.

Per un'esaustiva descrizione del clima acustico, oltre al livello equivalente di pressione sonora ponderato in curva A (LeqA), richiesto dalla vigente normativa, sono stati rilevati i seguenti parametri acustici:

- livelli percentili², calcolati sull'insieme dei dati rilevati: (L90, L50, L10, L5);
- livelli Lmax e Lmin relativi agli intervalli temporali di osservazione.

I valori dei livelli equivalenti misurati sono stati confrontati con i limiti di legge previsti. In base al Piano di zonizzazione acustica del territorio comunale di Salerno, di cui in Figura 5.2 se ne riporta uno stralcio cartografico, l'area portuale ricade all'interno della zona acustica omogenea corrispondente alla classe V, di cui al D.P.C.M. 14 novembre 1997, alla quale vengono attribuiti i valori limite di emissione e di immissione riportati in Tabella 5.2.

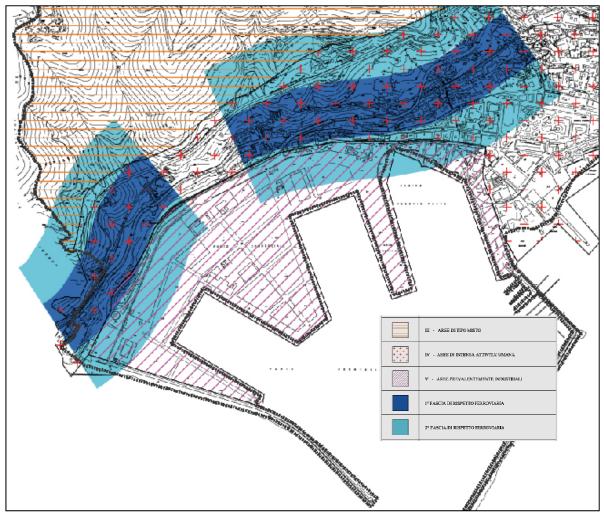


Figura 5.2 - Stralcio del piano di zonizzazione acustica di Salerno

² Il livello percentile Lx rappresenta il livello acustico superato per l'x% del tempo di osservazione.

Tabella 5.2 – Valori limite assoluti periodo diurno (06.00 – 22.00) (D.P.C.M. 14 novembre 1997)

Zona acustica omogenea	Valore limite di emissione [dB(A)]	Valore limite di immissione [dB(A)]
Classe III	55	60
Classe IV	60	65
Classe V	65	70

I punti di monitoraggio identificati con le sigle R01, R02, R03, R06, R07 ricadono nella classe acustica omogenea V, mentre i punti di monitoraggio identificati con le sigle R04, R05, R08 e R09 nella classe IV.

• Risultati Campagna di monitoraggio del mese di Giugno

Punto R01

Dati caratteristici della misura

DATA E ORA DI MISURA	19/06/2013 – 14.00
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
59.0	45.3	90.9

L₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
61.6	61.4	54.2	45.9

Stralcio principale documentazione fotografica

Figura 5.3 – Posizionamento della strumentazione impiegata nel punto R01 (campagna di giugno)

Punto R02

Dati caratteristici della misura

DATA E ORA DI MISURA	19/06/2013 – 15.05
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
60.5	45.5	97.9

L₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
58.4	56.4	52.9	44.6

Stralcio principale documentazione fotografica

Figura 5.4 – Posizionamento della strumentazione impiegata nel punto R02 (campagna di giugno)

Punto R03

Dati caratteristici della misura

DATA E ORA DI MISURA	20/06/2013 – 15.00
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
65.5	54.8	86.9

L ₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
70.5	68.1	63.2	59.6

Stralcio principale documentazione fotografica

Figura 5.5 – Posizionamento della strumentazione impiegata nel punto R03 (campagna di giugno)

Punto R04

Dati caratteristici della misura

DATA E ORA DI MISURA	18/06/2013 – 17.00
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
64.0	46.0	80.5

L ₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
69.3	67.8	62.0	55.8

Stralcio principale documentazione fotografica

Figura 5.6 - Posizionamento della strumentazione impiegata nel punto R04 (campagna di giugno)

Punto R05

Dati caratteristici della misura

DATA E ORA DI MISURA	20/06/2013 – 12.10
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
60.5	54.5	80.9

L₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
62.5	61.3	57.8	56.1

Stralcio principale documentazione fotografica

Figura 5.7 – Posizionamento della strumentazione impiegata nel punto R05 (campagna di giugno)

Punto R06

Dati caratteristici della misura

DATA E ORA DI MISURA	18/06/2013 – 14.00
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]		
58.0	46.5	76.9		

L₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
62.2	60.5	55.7	52.1

Stralcio principale documentazione fotografica

Figura 5.8 – Posizionamento della strumentazione impiegata nel punto R06 (campagna di giugno)

Punto R07

Dati caratteristici della misura

DATA E ORA DI MISURA	18/06/2013 – 18.00
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]		
61.0	46.9	85.6		

L ₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]	
65.3	62.6	55.5	50.3	

Stralcio principale documentazione fotografica

Figura 5.9 – Posizionamento della strumentazione impiegata nel punto R07 (campagna di giugno)

Punto R08

Dati caratteristici della misura

DATA E ORA DI MISURA	18/06/2013 – 16.00
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
65.5	47.9	86.4

L₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]	
70.5	68.2	60.0	54.7	

Stralcio principale documentazione fotografica

Figura 5.10 – Posizionamento della strumentazione impiegata nel punto R08 (campagna di giugno)

Punto R09

Dati caratteristici della misura

DATA E ORA DI MISURA	20/06/2013 – 11.00
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
67.0	45.8	89.1

L ₅ [dB(A)] L ₁₀ [dB(A)]		L ₅₀ [dB(A)]	L ₉₀ [dB(A)]	
71.7	69.6	63.5	57.2	

Stralcio principale documentazione fotografica

Figura 5.11 – Posizionamento della strumentazione impiegata nel punto R09 (campagna di giugno)

In tabella 5.3 si riassumono, per ciascun punto di indagine, i risultati analitici dei parametri caratteristici della qualità del clima acustico ambientale, misurati durante la campagna di monitoraggio del mese di Giugno.

Tabella 5.3 – Valori di immissione misurati nei punti di monitoraggio R01-R09 (campagna di giugno)

Parametri caratteristici	Valori di immissione misurati [dB(A)]								
	R01	R02	R03	R04	R05	R06	R07	R08	R09
L _{AEQ}	59.0	60.5	65.5	64.0	60.5	58.0	61.0	65.5	67.0
L ₅	61.6	58.4	70.5	69.3	62.5	62.2	65.3	70.5	71.7
L ₁₀	61.4	56.4	68.1	67.8	61.3	60.5	62.6	68.2	69.6
L ₅₀	54.2	52.9	63.2	62.0	57.8	55.7	55.5	60.0	63.5
L ₉₀	45.9	44.6	59.6	55.8	56.1	52.1	50.3	54.7	57.2
Valori limite assoluti di immissione (DPCM 14/11/97) Classe di PdZ	70.0	70.0	70.0	65.0	65.0	70.0	70.0	65.0	65.0

Dall'analisi dei risultati ottenuti si evince che i valori dei livelli equivalenti misurati in tale campagna risultano inferiori ai limiti di immissione, ad eccezione dei valori misurati in R08 e R09.

In tali punti il lieve superamento del relativo limite di immissione (65 dB[A]) è correlabile al significativo traffico veicolare in transito lungo l'arteria stradale adiacente il punto di misura.

• Risultati Campagna di monitoraggio del mese di Luglio

Punto R01

Dati caratteristici della misura

DATA E ORA DI MISURA	11/07/2013 - 10.00
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
58.0	48.6	94.0

L ₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
55.4	53.9	51.4	50.3

Stralcio principale documentazione fotografica

Figura 5.12 – Posizionamento della strumentazione impiegata nel punto R01 (campagna di luglio)

Punto R02

Dati caratteristici della misura

DATA E ORA DI MISURA	11/07/2013 – 11.05
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
57.0	48.4	77.9

L ₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
60.8	57.2	51.4	50.0

Stralcio principale documentazione fotografica

Figura 5.13 – Posizionamento della strumentazione impiegata nel punto R02 (campagna di luglio)

Punto R03

Dati caratteristici della misura

DATA E ORA DI MISURA	11/07/2013 – 12.10
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
69.0	60.0	94.4

L₅[dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
72.5	70.0	66.1	62.9

Stralcio principale documentazione fotografica

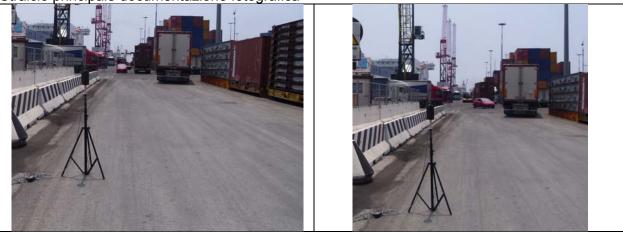


Figura 5.14 – Posizionamento della strumentazione impiegata nel punto R03 (campagna di luglio)

Punto R04

Dati caratteristici della misura

DATA E ORA DI MISURA	09/07/2013 – 12.30
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
61.0	46.1	86.7

L ₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
64.9	63.1	58.3	55.5

Stralcio principale documentazione fotografica

Figura 5.15 - Posizionamento della strumentazione impiegata nel punto R04 (campagna di luglio)

Punto R05

Dati caratteristici della misura

DATA E ORA DI MISURA	11/07/2013 – 14.30
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
54.0	47.2	75.4

L₅[dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
61.6	58.7	55.1	51.1

Stralcio principale documentazione fotografica

Figura 5.16 – Posizionamento della strumentazione impiegata nel punto R05 (campagna di luglio)

Punto R06

Dati caratteristici della misura

DATA E ORA DI MISURA	09/05/2013 – 10.10
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
58.0	44.8	87.0

L ₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
63.5	61.4	50.3	47.6

Stralcio principale documentazione fotografica

Figura 5.17 – Posizionamento della strumentazione impiegata nel punto R06 (campagna di luglio)

Punto R07

Dati caratteristici della misura

DATA E ORA DI MISURA	11/07/2013 – 13.20
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
63.0	44.7	88.2

L₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
67.8	64.7	56.4	51.1

Stralcio principale documentazione fotografica

Figura 5.18 – Posizionamento della strumentazione impiegata nel punto R07 (campagna di luglio)

Punto R08

Dati caratteristici della misura

DATA E ORA DI MISURA	09/07/2013 – 11.20
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
66.0	46.1	88.0

L ₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
72.0	69.4	62.2	53.5

Stralcio principale documentazione fotografica

Figura 5.19 – Posizionamento della strumentazione impiegata nel punto R08 (campagna di luglio)

Punto R09

Dati caratteristici della misura

DATA E ORA DI MISURA	09/07/2013 – 13.40
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
66.5	47.0	83.8

L₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
71.5	69.2	63.2	56.0

Stralcio principale documentazione fotografica

Figura 5.20 – Posizionamento della strumentazione impiegata nel punto R09 (campagna di luglio)

In tabella 5.4 si riassumono, per ciascun punto di indagine, i risultati analitici dei parametri caratteristici della qualità del clima acustico ambientale, misurati durante la campagna di monitoraggio di Luglio.

Tabella 5.4 – Valori di immissione misurati nei punti di monitoraggio R01-R09 (campagna di Luglio)

Parametri caratteristici	Valori di immissione misurati [dB(A)]								
	R01	R02	R03	R04	R05	R06	R07	R08	R09
L _{AEQ}	58.0	57.0	69.0	61.0	54.0	58.0	63.0	66.0	66.5
L ₅	55.4	60.8	72.5	64.9	61.6	63.5	67.8	72.0	71.5
L ₁₀	53.9	57.2	70.0	63.1	58.7	61.4	64.7	69.4	69.2
L ₅₀	51.4	51.4	66.1	58.3	55.1	50.3	56.4	62.2	63.2
L ₉₀	50.3	50.0	62.9	55.5	51.1	47.6	51.1	53.5	56.0
Valori limite assoluti di immissione (DPCM 14/11/97) Classe di PdZ	70.0	70.0	70.0	65.0	65.0	70.0	70.0	65.0	65.0

Dall'analisi dei risultati ottenuti si evince che i valori dei livelli equivalenti misurati in tale campagna risultano inferiori ai limiti di immissione, ad eccezione dei valori misurati in R08 e R09. In tali punti il lieve superamento del relativo limite di immissione (65 dB[A]) è correlabile al significativo traffico veicolare in transito lungo l'arteria stradale adiacente il punto di misura.

Risultati Campagna di monitoraggio del mese di Agosto

Punto R04

Dati caratteristici della misura

Dati caratteristici della misura	
DATA E ORA DI MISURA	01/08/2013 – 10.00
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
64.5	58.3	78.6

L ₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
68.9	67.3	63.9	61.6

Stralcio principale documentazione fotografica

Figura 5.24 - Posizionamento della strumentazione impiegata nel punto R04 (campagna di agosto)

Punto R05

Dati caratteristici della misura

DATA E ORA DI MISURA	01/08/2013 – 15.20
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
60.0	41.7	81.2

L ₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
63.8	61.9	57.8	54.0

Stralcio principale documentazione fotografica

Figura 5.25 – Posizionamento della strumentazione impiegata nel punto R05 (campagna di agosto)

Punto R06

Dati caratteristici della misura

DATA E ORA DI MISURA	01/08/2013 – 14.15
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
59.0	47.1	79.6

L ₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
63.9	61.8	56.3	50.8

Stralcio principale documentazione fotografica



Figura 5.26 – Posizionamento della strumentazione impiegata nel punto R06 (campagna di agosto)

Punto R07

Dati caratteristici della misura

DATA E ORA DI MISURA	01/08/2013 – 12.05
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
59.5	44.5	92.8

L₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
60.9	56.6	51.0	44.2

Stralcio principale documentazione fotografica

Figura 5.27 – Posizionamento della strumentazione impiegata nel punto R07 (campagna di agosto)

Punto R08

Dati caratteristici della misura

DATA E ORA DI MISURA	01/08/2013 – 11.00
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
66.5	51.6	90.8

L₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
71.9	69.4	63.1	57.9

Stralcio principale documentazione fotografica

Figura 5.28 – Posizionamento della strumentazione impiegata nel punto R08 (campagna di agosto)

Punto R09

Dati caratteristici della misura

DATA E ORA DI MISURA	01/08/2013 – 13.10
TEMPO DI RIFERIMENTO (T _R)	06.00 – 22.00 (DIURNO)
TEMPO DI MISURA (T _M)	1 h
ALTEZZA MICROFONO	1.5 m

Risultati

L AEQ [dB(A)]	L MIN [dB(A)]	L MAX [dB(A)]
64.5	49.3	80.9

L ₅ [dB(A)]	L ₁₀ [dB(A)]	L ₅₀ [dB(A)]	L ₉₀ [dB(A)]
69.9	67.8	62.0	55.3

Stralcio principale documentazione fotografica

Figura 5.29 – Posizionamento della strumentazione impiegata nel punto R09 (campagna di agosto)

In tabella 5.5 si riassumono, per ciascun punto di indagine, i risultati analitici dei parametri caratteristici della qualità del clima acustico ambientale, misurati durante la campagna di monitoraggio di Agosto.

Tabella 5.5 – Valori di immissione misurati nei punti di monitoraggio R01-R09 (campagna di agosto)

Parametri caratteristici	Va	Valori di immissione misurati [dB(A)]				
	R04	R05	R06	R07	R08	R09
L _{AEQ}	64.5	60.0	59.0	59.5	66.5	64.5
L ₅	68.9	63.8	63.9	60.9	71.9	69.9
L ₁₀	67.3	61.9	61.8	56.6	69.4	67.8
L ₅₀	63.9	57.8	56.3	51.0	63.0	62.0
L ₉₀	61.6	54.0	50.8	44.2	57.9	55.3
Valori limite assoluti di immissione (DPCM 14/11/97) Classe di PdZ	65.0	65.0	70.0	70.0	65.0	65.0

REPORT N.2

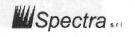
Dall'analisi dei risultati ottenuti si evince che i valori dei livelli equivalenti misurati in tale campagna risultano inferiori ai limiti di immissione, ad eccezione dei valori misurati in R08. In tale punto il lieve superamento del relativo limite di immissione (65 dB[A]) è correlabile al significativo traffico veicolare in transito lungo l'arteria stradale adiacente il punto di misura.

6 CONCLUSIONI

Il presente documento riporta i risultati delle attività di monitoraggio ambientale svolte nel secondo trimestre Giugno-Agosto 2013 nell'ambito della convenzione stipulata tra la R.C.M costruzioni S.r.l. e l'Università di Salerno, finalizzata al controllo delle potenziali pressioni ambientali indotte dall'esecuzione dei lavori di prolungamento del molo Manfredi e consolidamento del ciglio banchina della testata del molo 3 gennaio.

In merito al comparto ambiente marino, l'analisi delle determinazioni analitiche, relative ai campionamenti effettuati nei mesi di Giugno e Luglio 2013, evidenzia come le attività svolte nell'ambito dei lavori di prolungamento del molo Manfredi e consolidamento del ciglio banchina della testata del molo 3 gennaio non hanno alterato significativamente la qualità dell'ambiente marino.

In merito al comparto atmosfera, l'analisi complessiva delle determinazioni analitiche svolte nel periodo 17 – 21 Giugno 2013, evidenzia un generale rispetto dei parametri di inquinamento atmosferici investigati in confronto ai valori indicati dal D.Lgs. 155/2010.


In merito al comparto rumore, l'analisi complessiva delle misure eseguite, con frequenza mensile, evidenzia un clima acustico ambientale dell'area investigata tipico delle aree urbane per effetto delle condizioni di traffico veicolare proprie dell'area e scarsamente influenzato dalle attività di cantiere. Tale osservazione è chiaramente rappresentata dai rilievi fonometrici riportati nel Capitolo 5 in cui si evidenzia che i valori dei livelli equivalenti misurati nelle 3 campagne di monitoraggio risultano inferiori ai limiti di immissione, ad eccezione di lievi superamenti riscontrati nei punti esterni all'area portuale ed in particolare nei punti identificati con la sigla R08 e R09, dovuti al significativo traffico veicolare, indipendente dall'attività di cantiere, in transito lungo l'arteria stradale adiacente i due punti di misura.

ALLEGATI

Allegato 1 - Certificato taratura strumentazione utilizzata per le misure acustiche.

Allegato 1

Certificato taratura strumentazione utilizzata per le misure acustiche

CENTRO DI TARATURA LAT Nº 163

Calibration Centre

Laboratorio Accreditato di Taratura

LAT Nº163

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8329

Certificate of Calibration

Pagina l' di 12 Page 1 of 12

- Data di Emissione:

2012/06/11

Fax-039 6133235

date of Issue

Spectra Srl

Arcore (MB) Tel-039 613321

Area Laboratori Via Belvedere, 42

- destinatario

Università di Salerno Via Ponte Don Melillo

Fisciano (SA)

- richiesta

addressee

Off.066/12 application

- in data

2012/01/30

date

- Si riferisce a:

Referring to

- oggetto

Fonometro

Item

 costruttore LARS ON DAVIS

manufacturer

- modello model

L&D 831

2099

- matricola

serial number

- data delle misure

2012/06/11

date of measurements

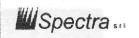
- registro di laboratorio 285/12

laboratory reference

Il presente certificato di taratura è emesso in base all'accreditamento LAT N. 163 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali ed internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del

This certificate of calibration is issued in compliance with the accreditation LAT No. 163 granted according to decrees connected with Italian Law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI). This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.


I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati anche i campioni di prima linea da cui inizia la catena di riferibilità del Centro ed i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente

The mesurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente al livello di fiducia di circa il 95%. Normalmente tale fattore vale 2.

The mesurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

> Il Responsabile del Centro Head of the Centre

Area Laboratori Via Belvedere, 42

Arcore (MB)
Tel-039 613321

CENTRO DI TARATURA LAT N° 163

Calibration Centre

Laboratorio Accreditato di Taratura

LAT Nº163

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8329

Certificate of Calibration

Pagina 2 di 12 Page 2 of 12

Di seguito vengono riportate le seguenti informazioni:

Website-www.spectra.it spectra@spectra.it

- la descrizione dell'oggetto in taratura (se necessaria);
- -l'identificazione delle procedure in base alle quali sono state eseguite le tarature;
- i campioni di prima linea da cui ha inizio la catena della riferibilità del Centro:

Fax-039 6133235

- gli estremi dei certificati di taratura di tali campioni e l'Ente che li ha emessi:
- -luogo di taratura (se effettuata fuori dal laboratorio);
- condizioni ambientali e di taratura:

In the following information is reported about:

- description of the item to be calibrated (if necessary);
- techincal procedures used for calibration performed;
- refernce standards from which traceability chain is originated in the Centre;
- the relavant calibration certificates of those standards with the issuing Body;
- site of calibration (if different from the Laboratory);
- calibration and environmental conditions:

Strumenti sottoposti a verifica

Instrumentation under test

Strumento	Costruttore	Modello		Serie/Matricola	Classe
Fonometro	LARSON DAVIS	L&D 831		2099	Classe 1
M icrofono	PCB Piezotronics	PCB 377B02		113894	WS2F
Preamp lificatore	LARSON DAVIS	L&D PRM 831	VA	015352	-

Normative e prove utilizzate

Standards and used tests

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure: Fonometri 61672 - PR 2 - Rev. 2007/04

The measurement result reported in this Certificate were obtained following the Procedures:

Il gruppo di strumenti analizzato è stato verificato seguendo le normative: IEC 61672 - IEC 61672 - The devices under test was calibrated following the Standards:

Catena di Riferibilità e Campioni di Prima Linea - Strumentazione utilizzata per la taratura

Traceability and First Line Standards - Instrumentation used for the measurements

Strumento	Linea	Marca e modello	N. Serie	Certificato N.	Data Emiss.	Ente validante
Microfono Campione	10	GRAS 40AU	81136	12-0042-02	12/01/24	INRIM
Pistonofono Campione	10	GRAS 42A	149333	12-0042-01	12/01/19	INRIM
M ultimetro	10	Agilent 34401A	SM Y41014993	29840	11/10/05	Aviatronik Spa
Barometro	1°	Druck	1614002	1197P 11	11/10/14	Emit Las
Generatore	2°	Stanford Research DS360	61012	20	12/01/23	Spectra
Attenuatore	2°	A SIC 1000	0100	20	12/01/23	Spectra
A nalizzato re FFT	2°	NI6052	777746-01	20	12/01/23	Spectra
Attuatore Elettrostatico	2°	Gras 14AA	23991	20	12/01/23	Spectra
Preamplificaore Insert Voltage	2°	Gras 26AG	21157	20	12/01/23	Spectra
A limentatore Microfonico	2°	Gras 12AA	25434	20	12/01/23	Spectra

Capacità metrologiche ed incertezze del Centro

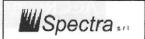
Metrological abilities and uncertainties of the Centre

Grandezze	Strumento	Gamme Livelli	Gamme Frequenze	Incertezze
Livello di Pressione Sonora	Calibratori A custici M ultifunzione	94114 dB	31.5-16k Hz	0.15 dB
Livello di Pressione Sonora	Calibratori A custici	94114 dB	250 e 1k Hz	0.12 dB
Livello di Pressione Sonora	Pistonofoni	124 dB	250 Hz	0.15 dB
Livello di Pressione Sonora	Filtri Bande 1/10ttava		31.5-8k Hz	0.1-0.2 dB
Livello di Pressione Sonora	Filtri Bande 1/3 Ottava		20-20k Hz	0.1-0.2 dB
Livello di Pressione Sonora	Fonometri	25-140 dB	31.5-16k Hz	0.15 dB
M isura della distorsione THD	Calibratori	94-114 dB	250-1k Hz	0.12 %
M isura della distorsione THD	Pistonofoni	124 dB	250 Hz	0.1%
Sensibilità assoluta alla pressione acustica	Capsule Microfoniche WS	25-114 dB	31.5-16k Hz	0.58-1.16 dB

Condizioni ambientali durante la misura

Environmental parameters during measurements

Pressione Atmosferica 980,2 hPa ± 0,5 hPa (rif. 1013.3 hPa ± 120.5 hPa)


Temperatura 23,5 °C ± 1,0 °C (rif. 23,0 °C ± 3.0 °C)

Umidità Relativa 39,5 UR% ± 3 UR% (rif. 47,5 UR% ± 22.5 UR%)

L'Operatore

Federico Armani

Il Responsabile del Centro

Spectra Srl

Arcore (MB) Tel-039 613321

Area Laboratori Via Belvedere, 42

CENTRO DI TARATURA LAT Nº 163

Calibration Centre

Laboratorio Accreditato di Taratura

LAT Nº16

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8329

Certificate of Calibration

Pagina 3 di 12 Page 3 of 12

Modalità di esecuzione delle Prove

Website-www.spectra.it spectra@spectra.it

Fax-039 6133235

Directions for the testings

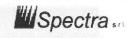
Sugli elementi sotto verifica vengono eseguite misure acustiche ed elettriche. Le prove acustiche vengono effettuate tenendo conto delle condizioni fisiche al contorno e dopo un adeguato tempo di acclimatamento e preriscaldamento degli strumenti. Le prove elettriche vengono invece eseguite utilizzando adattatori capacitivi di adeguata impedenza. Le unità di misura "dB" utilizzate nel presente certificato sono valori di pressione assoluta riferiti a 20 microPa.

Elenco delle Prove effettuate

Test List

Nelle pagine successive sono descritte le singole prove nei loro dettagli esecutivi e vengono indicati i parametri di prova utilizzati, i risultati ottenuti, le deviazioni riscontrate, gli scostamenti e le tolleranze ammesse dalla normativa considerata.

Codice	Denominazione	Revisione	Categoria	Complesso	Incertezza	Esito
PR 1	Ispezione Preliminare	2010-08	Generale			Superata
PR 2	Rilevamento Ambiente di Misura	2010-08	Generale		200632	Superata
PR 1A-1	Indicazione alla Frequenza di Verifica della Taratura	2007-04	Acustica	FPM	0,10 dB	Superata
PR 1A-2	Rumore Autogenerato	2007-04	Acustica	FPM	6,0 dB	Superata
PR 1-2	Risposta Acustica in Frequenza AE	2001-07	Acustica	FPM	0,591,16 dB	Classe 1
PR 1A-3	Ponderazione di Frequenza con segnali Acustici AE	2007-04	Acustica	FPM	0,220,50 dB	Classe 1
PR 1A-5	Rumore Autogenerato	2001-07	Elettrica	FP	6,0 dB	Superata
PR 1A-6	Ponderazione di Frequenza con segnali Elettrici	2007-04	Elettrica	FP	0,120,12 dB	Classe 1
PR 1A-7	Ponderazione di Frequenza e Temporali a 1 kHz	2007-04	Elettrica	FP	0,120,12 dB	Classe 1
PR 1A-8	Linearità di livello nel campo di misura di Riferimento	2007-04	Elettrica	FP	0,12 dB	Classe 1
PR 1A-9	Linearità di livello comprendente il selettore del campo di	2007-04	Elettrica	FP	0,12 dB	Classe 1
PR 1A-10	Risposta ai treni d'Onda	2007-04	Elettrica	FP	0,120,12 dB	Classe 1
PR 1A-11	Livello Sonoro Picco C	2007-04	Elettrica	FP	0,120,12 dB	Classe 1
PR 1A-12	Indicazione di Sovraccarico	2007-04	Elettrica	FP	0,12 dB	Classe 1


Dichiarazioni Specifiche per la Norma 61672-3:2006

- Per l'esecuzione della verifica periodica sono state utilizzate le procedure della Norma IEC 61672-3:2006.
- Dati Tecnici: Livello di Riferimento: 114,0 dB Frequenza di Verifica: 1000 Hz Campo di Riferimento: 24,0-140,0 dB Versione Sw: 2.101
- Il Manuale di Istruzioni, dal titolo "Model 831 Technical Reference" (24/7/2008 rev.18 eng), è stato fornito con il fonometro.
- Il fonometro ha superato con esito positivo le prove di valutazione di Modello applicabili della IEC 61672-2:2003. Le prove sono state effettuate dall'Ente EU PTB Germany e sono pubblicamente disponibili nel documento Cert. 998877/AA 17/5/08 rev.5.
- I dati di correzione per la prova 11.7 della Norma IEC 61672-3 sono stati ottenuti da: Manuale Microfono ().
- Il fonometro sottoposto alle prove ha superato con esito positivo le prove periodiche della Classe 1 della IEC 61672-3:2006, per le condizioni ambientali nelle quali esse sono state eseguite. Poichè esiste la prova pubblica, da parte di un'organizzazione di prova indipendente responsabile dell'approvazione dei risultati delle prove di valutazione del modello eseguite secondo la IEC 61672-2:2003, per dimostrare che il modello di fonometro è risultato completamente conforme alle prescrizioni della FEC 61672-1:2002, il fonometro sottoposto alle prove è conforme alle prescrizioni della Classe 1 delle IEC 61672-1:2002.

L'Operatore

Federico Armani

Il Responsabile del Centro

Spectra Srl

Area Laboratori Via Belvedere, 42

Arcore (MB) Tel-039 613321

CENTRO DI TARATURA LAT N° 163

Calibration Centre

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8329

Certificate of Calibration

Pagina 4 di 12 Page, 4 of 12

PR 1 - Ispezione Preliminare

Website-www.spectra.it spectra@spectra.it

Verifica della integrità e della funzionalità del DUT.

Fax-039 6133235

Descrizione Ispezione visiva e meccanica.

Impostazioni Effettuazione del preriscaldamento del DUT come prescritto dalla casa costruttrice.

Osservazione dei dettagli e verifica della conformità e del rispetto delle specifiche costruttive. Letture

Note

Controlli Effettuati	Risultato
Ispezione Visiva	superato
Integrità meccanica	superato
Integrità funzionale (comandi, indicatore)	superato
Stato delle batterie, sorgente alimentazione	superato
Stabilizzazione termica	superato
Integrità Accessori	superato
Marcatura (min. marca, modello, s/n)	superato
Manuale Istruzioni	superato
Stato Strumento	Condizioni Buone

PR 2 - Rilevamento Ambiente di Misura

Rilevamento dei parametri fisici dell'ambiente di misura.

Letture dei valori di Pressione Atmosferica Locale, Temperatura ed Umidità Relativa del laboratorio Descrizione

Impostazioni Attivazione degli strumenti strumenti necessari per le misure.

Letture effettuate direttamente sugli strumenti (barometro, termometro ed igrometro). Letture

Note

Riferimenti:Limiti: Patm=1013,25±120,5hpa - T aria=23,0±3,0°C - UR=47,5±22,5%

Grandezza	Condizioni Iniziali	Condizioni Fina
Pressione Atmosferica	980,2 hpa	980,2 hpa
Temperatura	23,5 °C	23,5 °C
Umidità Relativa	39,5 UR%	39,8 UR%

PR 1A-1 - Indicazione alla Frequenza di Verifica della Taratura

Scopo

Verifica dell'indicazione del livello alla frequenza prescritta, ed eventuale regolazione della sensibilità acustica dell'insieme fonometro-microfono, con lo scopo di predisporre

lo strumento per le prove successive.

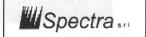
La proya viene effettuata applicando il calibratore sonoro alla frequenza ed al livello prescritti dal costruttore dello strumento (per es. 1kHz @ 94 dB). Se l'utente non fornisce il Descrizione

calibratore od esso non va tarato congiuntamente al fonometro presso il laboratorio, si raccomanda l'uso del campione di Prima Linea, pistonofono di classe 0

Ponderazione Lin (se disponibile, altrimenti ponderazione A), costante di tempo Fast (se disponibile altrimenti Slow), campo di misura principale (di riferimento) che Impostazioni

comprende il livello di calibrazione, Indicazione Lp e Leq. Lettura dell'indicazione del fonometro. Nel caso di taratura con il pistonofono con frequenza del segnale di calibrazione di 250 Hz e di impostazione della ponderazione *A*, occorre sommare alla lettura 8.6 dB.

Letture


Calibratore: LD CAL200, s/n 7274 tarato da Spectra Srl con certif. 8328 del 2012/06/11

Livello Lettura Parametri Valore 114,0 dB Frequenza Calibratore 1000.00 Hz Prima della Calibrazione 114,0 dB Atteso Corretto 113,96 dB Liv. Nominale del Calibratore 114,0 dB Finale di Calibrazione

L'Operatore

Il Responsabile del Centro

Federico Armani

CENTRO DI TARATURA LAT Nº 163

Calibration Centre

Area Laboratori Via Belvedere, 42 Arcore (MB)

Tel-039 613321

Fax-039 6133235 Website-www.spectra.it spectra@spectra.it Laboratorio Accreditato di Taratura

LAT Nº163

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8329

Certificate of Calibration

Pagina 5 di 1,2 Page 5 of 12

PR 1A-2 - Rumore Autogenerato

E' la misura del rumore autogenerato dalla linea di misura completa, composta da fonometro, preamplificatore e microfono. Scopo

Descrizione Il sistema di misura viene isolato dall'ambiente inserendolo in un'apposita camera fonoisolata ed a tenuta stagna. Se il microfono ed il preamplificatore sono smontabili, solo

essi vengono inseriti nella camera e vengono collegati al fonometro tramite un cavo di prolunga.

Ponderazione A, media temporale (Leq) oppure ponderazione temporale S se disponibile, altrimenti F, campo di massima sensibilità, indicazione Lp e Leq. Impostazioni

Letture Si legge l'indicazione relativa al rumore autogenerato sul display del fonometro.

Note

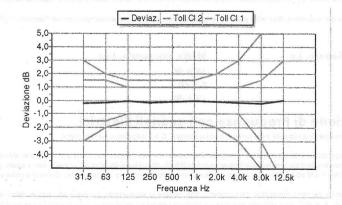
Rumore Massimo Lp(A): 17,0 dB Metodo:

> Grandezza Misura Livello Sonoro, Lp 16.6 dB(A) Media Temporale, Leq 16,6 dB(A)

PR 1-2 - Risposta Acustica in Frequenza AE

Verifica della risposta in frequenza del fonometro da 31.5Hz a 12.5kHz con il M etodo dell'Attuatore Elettrostatico. Scopo

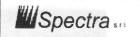
Descrizione Invio di segnali acustici sinusoidali di frequenza variabile in passi di ottava da 3 1.5 Hz a 12.5kHz tramite l'Attuatore Elettrostatico.


Impostazioni Ponderazione Lin (in alternativa A). Indicazione Lp (in alternativa Leg). Costante di tempo Fast (in alternativa Slow), Campo Principale.

Letture Letture del livello generato sul display del fonometro con le dovute correzioni.

Note

Metodo: Attuatore Elettrostatico - Curva di Ponderazione: Z - Freq. Normalizzazione: 1 kHz


Freq.	Lett.	Pond.	FF-AE	Access.	Deviaz.	Toll.Cl1	To II.C 12
315 Hz	93,9 dB	0,0 dB	0,0 dB	0,0 dB	-0,2 dB	±1,5 dB	±3,0 dB
63 Hz	94,0 dB	0,0 dB	0,0 dB	0,0 dB	-0,1dB	±1,5 dB	±2,0 dB
125 Hz	94,1dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	±1,0 dB	±1,5 dB
250 Hz	94,0 dB	0,0 dB	0,0 dB	0,0 dB	-0,1dB	±1,0 dB	±1,5 dB
500 Hz	94,0 dB	0,0 dB	0,0 dB	0,0 dB	-0,1dB	±1,0 dB	±1,5 dB
1k Hz	94,0 dB	0,0 dB	0,1dB	0,0 dB	0,0 dB	±1,0 dB	±1,5 dB
2.0k Hz	93,7 dB	0,0 dB	0,3 dB	0,0 dB	-0,1dB	±1,0 dB	±2,0 dB
4.0k Hz	93,0 dB	0,0 dB	1,0 dB	0,0 dB	-0,1dB	±1,0 dB	±3,0 dB
8.0k Hz	90,5 dB	0,0 dB	3,4 dB	0,0 dB	-0,2 dB	-3,0+1,5 dB	±5,0 dB
12.5k Hz	87,4 dB	0,0 dB	6,8 dB	0,0 dB	0,0 dB	-6,0+3,0 dB	-INF+5,0 dB

L'Operatore

Federico Armani

Il Responsabile del Centro

Fax-039 6133235

Area Laboratori Via Belvedere 42

Tel-039 613321

Arcore (MB)

CENTRO DI TARATURA LAT Nº 163

Calibration Centre

Laboratorio Accreditato di Taratura

LAT Nº163

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8329

Certificate of Calibration

Pagina 6 di 12 Page 6 of 12

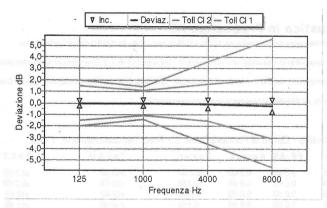
PR 1A-3 - Ponderazione di Frequenza con segnali Acustici AE

Si verifica la risposta acustica del complesso fonometro-preamplificatore-microfono per la ponderazione C o per la ponderazione A. Scopo

Descrizione La prova viene effettuata inviando al microfono segnali acustici sinusoidali tramite Attuatore Elettrostatico. Si inviano al microfono segnali sinusoidali. I segnali sono tali da produrre un livello equivalente a 94dB e frequenze corrispondenti ai centri banda di ottava a 125, 1k, 4k ed 8 kHz.

Impostazioni

Ponderazione C (se disponibile) o Ponderazione A, Ponderazione temporale F (se disponibile), altrimenti ponderazione temporale S o M edia Temporale, Campo di M isura Principale, Indicazione Lp e Leg.


Website-www.spectra.it spectra@spectra.it

Lettura dell'indicazione del livello sul fonometro nell'impostazione selezionata, per ognuna delle frequenze stabilite. Letture

Note

Metodo: Attuatore Elettrostatico - Curva di Ponderazione: C - Freg. Normalizzazione: 63Hz

Freq.	Lett. 1	Lett. 2	M edia	Pond.	FF-AE	Access.	Deviaz.	Toll.Cl1	Toll.Cl2	Incert.
125 Hz	93,9 dB	93,9 dB	93,9 dB	-0,2 dB	0,0 dB	0,0 dB	0,0 dB	±1.5 dB	±2.0 dB	0.22 dB
1000 Hz	94,0 dB	94,0 dB	94,0 dB	0,0 dB	0,1dB	0,0 dB	0,0 dB	±1,1 dB	±1.4 dB	0.22 dB
4000 Hz	92,2 dB	92,2 dB	92,2 dB	-0,8 dB	1,0 dB	0,0 dB	-0,1dB	±1,6 dB	±3.6 dB	0.36 dB
8000 Hz	87,5 dB	87,5 dB	87,5 dB	-3,0 dB	3,4 dB	0,0 dB	-0,2 dB	-3,1+2,1dB	±5,6 dB	0,50 dB

PR 1A-5 - Rumore Autogenerato

M isura del livello di rumore elettrico autogenerato dal fonometro.

Descrizione Si cortocircuita l'ingresso del fonometro con l'ooprtuno adattatore capacitivo montato sul preamplificatore microfonico. La capacità deve essere paragonabile a quella del

Impostazioni Ponderazione A (in alternativa Lin), Indicazione Leq (in alternativa Lp), Costante di tempo Slow, Campo di massima sensibilità.

Letture Lettura dell'indicatore del fonometro. Non sono previste tolleranze. Il valore letto deve essere riportato nel Rapporto di Prova

Note

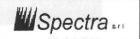
Ponderazione Livello Sonoro, Lp Media Temporale, Leq Curva Z 18,9 dB 8.5 dB Curva A 8 5 dB Curva C 13.1 dB 13,1 dB

PR 1A-6 - Ponderazione di Frequenza con segnali Elettrici

Viene verificata elettricamente la risposta delle curve di ponderazione A, C e Z disponibili sul fonometro.

Descrizione Si effettua prima la regolazione a 1kHz generando un segnale sinusoidale continuo in modo da ottenere un livello pari al fondo scala del campo principale -45 dB sul fonometro.

Sigenera poi un segnale sinuscidale continuo alle frequenze di 63-125-50-500-2 k-4 k-8 k-16 Hz ad un livello pari a quello generato ad 1 kHz corretto inversamente rispetto alla Impostazioni Ponderazione Temporale F e Media Temporale, campo di misurazione principale (campo di riferimento), Curve di ponderazione A, C e Z, Indicazione Lp e Leq.


Letture Si registrano le deviazioni dei valori visualizzati dal fonometro, che indicano lo scostamento dal livello ad 1 kHz. Ai valori letti si sottrae il livello registrato ad 1 kHz, ottenendo lo scostamento relativo. A questi valori vengono aggiunte le correzioni relative all'uniformità di risposta in funzione della frequenza tipica del microfono e dell'effetto

Note Metodo: Livello Ponderazione F

Il Responsabile del Centro

Federico Armani

L'Operatore

Fax-039 6133235

Area Laboratori

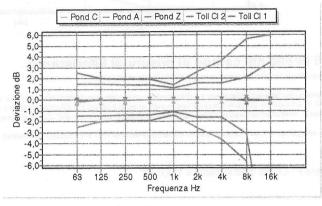
Via Belvedere, 42 Arcore (MB) Tel-039 613321

CENTRO DI TARATURA LAT N° 163

Calibration Centre

Laboratorio Accreditato di Taratura

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC


Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8329

Certificate of Calibration

Pagina 7 di 12 Page 7 of 12

Frequenza	Dev. Z	Dev. Curva A	Dev. Curva C	Toll.C11	Toll.C12	Incert.
63 Hz	-0,1 dB	-0,1 dB	-0,2 dB	±1,5 dB	±2,5 dB	0,12 dB
125 Hz	-0,1 dB	-0,1 dB	-0,1 dB	±1,5 dB	±2,0 dB	0,12 dB
250 Hz	0,0 dB	0,0 dB	-0,1 dB	±1,4 dB	±1,9 dB	0,12 dB
500 Hz	0,0 dB	0,0 dB	0,0 dB	±1,4 dB	±1,9 dB	0,12 dB
1000 Hz	0,0 dB	0,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
2000 Hz	0,0 dB	0,0 dB	0,0 dB	±1,6 dB	±2,6 dB	0,12 dB
4000 Hz	0,0 dB	0,0 dB	0,0 dB	±1,6 dB	±3,6 dB	0,12 dB
8000 Hz	-0,1 dB	-0,1 dB	0,1 dB	-3,1+2,1 dB	±5,6 dB	0,12 dB
16000 Hz	-0,1 dB	-0.1 dB	0,0 dB	-17,0+3,5 dB	-INF+6,0 dB	0,12 dB

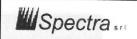
PR 1A-7 - Ponderazione di Frequenza e Temporali a 1 kHz

Verifica delle Ponderazioni in Frequenza e Temporali a 1 kHz. Scopo

Descrizione E' una prova duplice, atta a verificare al livello di calibrazione ed alla frequenza di 1kHz la coerenza di indicazione 1) delle ponderazioni in frequenza C, Z e Flat rispetto alla ponderazione S.

Impostazioni Campo di misura di Riferimento, 1) Ponderazione in Frequenza A ed a seguire C, Z e Flat con ponderazione temporale S; 2) Ponderazione Temporale S ed a seguire F e M edia temporale con ponderazione in frequenza A.

Si annotano le indicazioni visualizzate dal fonometro e si calcolano gli scostamenti tra: 1) l'indicazione LA,S e LC,S - LZ,S - LFI,S 2) l'indicazione LA,S e LA,F - LeqA. Letture


Metodo: Livello di Riferimento = 114,0 dB

Ponderazioni	Lettura	Deviazione	Toll.C11	1	Toll.Cl2	Incert.
C	114,0 dB	0,0 dB	±0,4 dB		±0,4 dB	0,12 dB
. Z	114,0 dB	0,0 dB	±0,4 dB		±0,4 dB	0,12 dB
Flat	₩.				-	-
Slow	114,0 dB	0,0 dB	±0,3 dB		±0,3 dB	0,12 dB
Leq	114,0 dB	0,0 dB	±0,3 dB		±0,3 dB	0,12 dB

L'Operatore

Federico Armani

Il Responsabile del Centro

Fax-039 6133235

Spectra Srl

Arcore (MB)

Area Laboratori Via Belvedere, 42

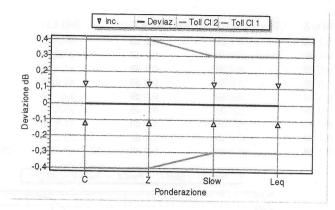
Tel-039 613321

CENTRO DI TARATURA LAT N° 163

Calibration Centre

Laboratorio Accreditato di Taratura

LAT Nº163


Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8329

Certificate of Calibration

Pagina 8 di 12 Page 8 of 12

PR 1A-8 - Linearità di livello nel campo di misura di Riferimento Scopo

E' la verifica della caratteristica di linearità del campo di misura di Riferimento del fonometro.

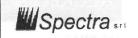
Descrizione Si effettua preventivamente la regolazione di Riferimento a 8 kHz generando un segnale sinusoidale continuo in modo da ottenere il livello desiderato sul fonometro (da reperire sul M anuale di Istruzioni). Si procede poi alla generazione dei livelli a passi prima di 5 dB poi di 1 dB incrementando o decrementando il livello a seconda della fase di misura.

Impostazioni Ponderazione in frequenza A, Ponderazione temporale F (se disponibile, altrimenti M edia Temporale), Campo di misura di Riferimento.

Si registra il livello letto ad ogni nuovo livello generato, ponendo attenzione nelle fasi finali alle indicazioni di overload od under-range. La deviazione deve rientrare nelle

Letture

Metodo:


Note

Livello Ponderazione F - Livello di Riferimento = 114,0 dB

L'Operatore

Federico Armani

Il Responsabile del Centro

Spectra Srl

Area Laboratori

Via Belvedere, 42 Arcore (MB)

Tel-039 613321

CENTRO DI TARATURA LAT N° 163

Calibration Centre

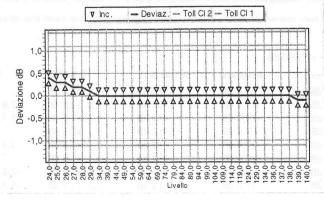
Laboratorio Accreditato di Taratura

LAT Nº163

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

....


Fax-039 6133235

CERTIFICATO DI TARATURA LAT 163/8329

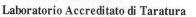
Certificate of Calibration

Pagina 9 di 12 Page 9 of 12


Livello	Lettura	Deviazione	Toll.C11	Toll.C12	In ce rt.
24.0 dB	24,4 dB	0.4 dB	±1,1 dB	±1,4 dB	0,12 dB
25,0 dB	25,3 dB	0,3 dB	±1,1 dB	±1.4 dB	0,12 dB
26,0 dB	26,3 dB	0,3 dB	±1,1 dB	±1,4 dB	0,12 dB
27,0 dB	27,2 dB	0,2 dB	±1,1 dB	±1,4 dB	0,12 dB
28.0 dB	28,2 dB	0,2 dB	±1,1 dB	±1,4 dB	0,12 dB
29,0 dB	29,1 dB	0,1 dB	±1,1 dB	±1,4 dB	0,12 dB
34,0 dB	34,0 dB	0,0 dB	±1,1 dB.	±1,4 dB	0,12 dB
39,0 dB	39,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
44,0 dB	44,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
49.0 dB	49,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
54,0 dB	54,0 dB	0.0 dB	±1,1 dB	±1,4 dB	0,12 dB
59.0 dB	59.0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
64,0 dB	64,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
69,0 dB	69,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
74,0 dB	74,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
79,0 dB	79,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
84,0 dB	84,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
89,0 dB	89,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
94,0 dB	94,0 dB	0.0 dB	±1,1 dB	±1,4 dB	0,12 dB
99,0 dB	99,0 dB	0.0 dB	±1,1 dB	±1.4 dB	0,12 dB
104,0 dB	104,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
109,0 dB	109,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
114,0 dB	114,0 dB	0,0 dB	±1,1 dB	±1.4 dB	0,12 dB
119,0 dB	119,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
124,0 dB	124,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
129,0 dB	129,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
134,0 dB	134,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
136,0 dB	136,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
137.0 dB	137,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
138,0 dB	138,0 dB	0,0 dB	±1,1 dB	±1.4 dB	0,12 dB
139,0 dB	138.9 dB	-0,1 dB	±1,1 dB	±1,4 dB	0,12 dB
140,0 dB	139,9 dB	-0,1 dB	±1,1 dB	±1,4 dB	0,12 dB

L'Operatore

Federico Armani


Il Responsabile del Centro

Fax-039 6133235

CENTRO DI TARATURA LAT N° 163

Calibration Centre

LAT Nº163

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8329

Pagina 10 di 12 Page 10 of 12

Certificate of Calibration

PR 1A-9 - Linearità di livello comprendente il selettore del campo di misura

Scopo

E' la verifica della caratteristica di linearità del selettore dei campi di misura, e quindi dei range secondari disponibili sul fonometro

Spectra Srl

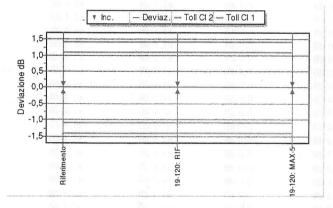
Area Laboratori Via Belvedere, 42

Tel-039 613321

Arcore (MB)

Descrizione Si invia un segnale sinusoidale a 1kHz e: 1) si effettua la selezione dei campi secondari mantenendo il livello originario e registrando le indicazioni del fonometro 2) si imposta il generatore in modo che il livello atteso sia 5 dB inferiore al limite superiore del campo di riferimento, e si registrano i livelli indicati ad ogni selezione di un range disponibile.

Impostazioni Ponderazione in frequenza A, Ponderazione temporale F (se disponibile, altrimenti M edia Temporale), Campo di misura di Riferimento) e successivamente Range Secondari.


Letture

Si annotano i livelli visualizzati dal fonometro. Si calcolano gli scostamenti tra i livelli indicati dal fonometro e quelli attesi,

Note

Metodo: Livello Ponderazione F

Campo	Atteso	Lettura	Deviazione	Toll.C11	Toll.C12	Incert.
Riferimento	94,0 dB	94,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
19-120: RIF	94,0 dB	94,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB
19-120: MAX-5	115,0 dB	115,0 dB	0,0 dB	±1,1 dB	±1,4 dB	0,12 dB

PR 1A-10 - Risposta ai treni d'Onda

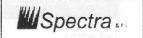
Viene verificata la risposta del fonometro a segnali di breve durata (treni d'onda). Scopo

Descrizione Si inviano treni d'onda a 4 kHz (tali che le sinusoidi inizino e terminino esattamente allo zero crossing) con diverse durate (differenti a seconda della costante di tempo

Impostazioni Campo di misura di Riferimento, Ponderazione in frequenza A, Ponderazioni temporali S, F, Esposizione sonora o Media Temporale, indicazione Livello Massimo

Letture Viene letta l'indicazione del livello massimo sul fonometro e valutato lo scostamento tra i livelli indicati e quelli attesi calcolati (teorici).

Note


Metodo: Livello di Riferimento = 138,0 dB

	A DA T TO COME CONTRACTOR					
Tipi Treni d'Onda	Lettura	Risposta	Deviazione	Toll.C11	Toll.C12	Incert.
FAST 200ms	136,9 dB	-1,0 dB	-0,1 dB	±0,8 dB	±1,3 dB	0,12 dB
FAST 2 ms	119,8 dB	-18,0 dB	-0,2 dB	-1,8+1,3 dB	-2,8+1,3 dB	0,12 dB
FAST 0,25 ms	110,8 dB	-27,0 dB	-0,2 dB	-3,3+1,3 dB	-5,3+1,8 dB	0,12 dB
SLOW 200 ms	130,4 dB	-7,4 dB	-0,2 dB	±0,8 dB	±1,3 dB	0,12 dB
SLOW 2 ms	110,8 dB	-27,0 dB	-0,2 dB	-3,3+1,3 dB	-5,3+1,3 dB	0,12 dB
SEL 200ms	131,0 dB	-7,0 dB	0,0 dB	±0,8 dB	±1,3 dB	0,12 dB
SEL 2 ms	110,9 dB	-27,0 dB	-0,1 dB	-1,8+1,3 dB	-2,8+1,3 dB	0,12 dB
, SEL 0,25 ms	10.1,8. dB	-36,0 dB	-0,2 dB	-3,3+1,3 dB	-5,3+1,8 dB	0,12 dB

L'Operatore

Federico Armani

Il Responsabile del Centro

Fax-039 6133235

Spectra Srl

Arcore (MB) Tel-039 613321

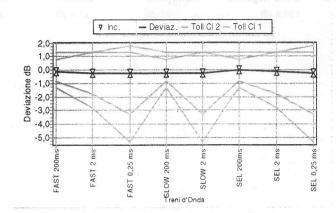
Area Laboratori Via Belvedere, 42

CENTRO DI TARATURA LAT Nº 163

Calibration Centre

Laboratorio Accreditato di Taratura

LAT Nº163


Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8329

Certificate of Calibration

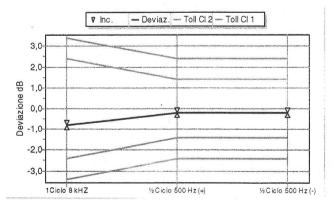
Pagina 11 di 12 Page 11 of 12

PR 1A-11 - Livello Sonoro Picco C

E' la verifica del circuito rilevatore di segnali di picco con pesatatura C e della sua linearità ai segnali impulsivi. Scopo

Descrizione Si iniettano in due fasi distinte della prova i segnali che consistono in una sinusoide completa ad 8 kHz e mezzi cicli (positivi e negativi) di una sinusoide a 500 Hz.

Impostazioni Ponderazione in frequenza C, Ponderazione temporale F (se disponibile o Media Temporale), indicazione Leg


Letture Si annotano le indicazioni visualizzate dal fonometro nelle impostazioni consigliate. Viene calcolato lo scostamento tra la lettura effettuata e l'indicazione prodotta con il

segnale stazionario

Note

Metodo: Livello Ponderazione F - Livello di Riferimento= 135,0 dB

Segnali	Lettura	Risposta	Deviazione	Toll.C11	Toll.C12	Incert.
1 Ciclo 8 kHZ	137,6 dB	3,4 dB	-0,8 dB	±2,4 dB	±3,4 dB	0,12 dB
½ Ciclo 500 Hz (+)	137,2 dB	2,4 dB	-0,2 dB	±1,4 dB	±2,4 dB	0,12 dB
½ Ciclo 500 Hz (-)	137,2 dB-	2,4 dB	-0,2 dB	±1.4 dB	±2,4 dB	0,12 dB

PR 1A-12 - Indicazione di Sovraccarico

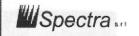
Scopo Verifica del corretto funzionamento dell'indicatore del sovraccarico.

Si inviano in due fasi distinte mezzi cicli positivi e negativi a 4kHz il cui livello deve essere incrementato (per passi di 0,5 dB) fino alla prima indicazione di sovraccarico (esclusa). Si procede poi per incrementi più fini, cioè a passo di 0,1 dB fino alla successiva indicazione di sovraccarico. Descrizione

Ponderazione in frequenza A, M edia Temporale, indicazione Leq. campo di minor sensibilità. Vengono registrati i primi valori di livello del segnale che hanno fornito l'indicazione di overload, con la precisione di 0,1dB. Impostazioni

Letture

La differenza tra i livelli dei segnali positivi e negativi che hanno provocato la prima indicazione di sovraccarico non deve superare le tolleranze indicate.


Note

L'Operatore

Il Responsabile del Centro

Emilio Caglio

Federico Armani

CENTRO DI TARATURA LAT N° 163

Calibration Centre Laboratorio Accreditato di Taratura

LAT Nº163

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

Spectra Srl Area Laboratori Via Belvedere, 42 Arcore (MB)

Tel-039 613321

Fax-039 6133235

Website-www.spectra.it spectra@spectra.it

CERTIFICATO DI TARATURA LAT 163/8329

Certificate of Calibration

Pagina 12 di 12

Page 12 of 12

Liv. riferimento

Ciclo Positivo

Ciclo Negativo

Deviazione

Toll.C11

Toll.C12

Incert.

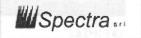
145,6 dB

139,8 dB

139,8 dB

0,0 dB

±1,8 dB


±1,8 dB

0,12 dB

L'Operatore

Federico Armani

Il Responsabile del Centro

CENTRO DI TARATURA LAT N° 163

Calibration Centre

Laboratorio Accreditato di Taratura

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8328

Certificate of Calibration

Pagina 1 di 5 Page 1 of 5

- Data di Emissione:

2012/06/11

date of Issue

Area Laboratori

Arcore (MB) Tel-039 613321

Via Belvedere, 42

Fax-039 6133235

- destinatario

Università di Salerno

addressee

Via Ponte Don Melillo Fisciano (SA)

- richiesta

Off.066/12

application

- in data date

2012/01/30

- Si riferisce a:

Referring to

- oggetto

Calibratore

Item

- costruttore

manufacturer

- modello

L&D CAL 200

2012/06/11

285/12

7274

LARS ON DAVIS

model

- matricola

serial number

- data delle misure

date of measurements

- registro di laboratorio

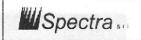
laboratory reference

Il presente certificato di taratura è emesso in base all'accreditamento LAT N. 163 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali ed internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT No. 163 granted according to decrees connected with Italian Law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.


I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati anche i campioni di prima linea da cui inizia la catena di riferibilità del Centro ed i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente

The mesurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente al livello di fiducia di circa il 95%. Normalmente tale fattore vale 2.

The mesurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

> Il Responsabile del Centro Head of the Centre

Spectra Srl

Arcore (MB) Tel-039 613321

Area Laboratori Via Belvedere, 42

CENTRO DI TARATURA LAT Nº 163

Calibration Centre

Laboratorio Accreditato di Taratura

LAT Nº163

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8328

Certificate of Calibration

Pagina 2 di 5 Page 2 of 5

Di seguito vengono riportate le seguenti informazioni:

Fax-039 6133235

- la descrizione dell'oggetto in taratura (se necessaria);

Website-www.spectra.it spectra@spectra.it

- l'identificazione delle procedure in base alle quali sono state eseguite le tarature;
- i campioni di prima linea da cui ha inizio la catena della riferibilità del Centro;
- gli estremi dei certificati di taratura di tali campioni e l'Ente che li ha emessi;
- luogo di taratura (se effettuata fuori dal laboratorio);
- condizioni ambientali e di taratura;

In the following information is reported about:

- description of the item to be calibrated (if necessary);
- techincal procedures used for calibration performed;
- refernce standards from which traceability chain is originated in the Centre;
- the relevant calibration certificates of those standards with the issuing Body;
- site of calibration (if different from the Laboratory);
- calibration and environmental conditions;

Strumenti sottoposti a verifica

Instrumentation under test

Strumento

Costruttore

Modello

Serie/Matricola 7274

Classe Classe 1

Calibratore

LARSON DAVIS

L&D CAL 200

Normative e prove utilizzate

Standards and used tests

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure : Calibratori - PR 4 - Rev. 2004/03 The measurement result reported in this Certificate were obtained following the Procedures:

Il gruppo di strumenti analizzato è stato verificato seguendo le normative: IEC 60942 - IEC 660942 -

The devices under test was calibrated following the Standards:

Catena di Riferibilità e Campioni di Prima Linea - Strumentazione utilizzata per la taratura

Traceability and First Line Standards - Instrumentation used for the measurements

Strumento	Linea	Marca e modello	N. Serie	Certificato N.	Data Emiss.	Ente validante
Microfono Campione	1°	GRAS 40AU	81136	12-0042-02	12/01/24	INRIM
Pistonofono Campione	1°	GRAS 42A	149333	12-0042-01	12/01/19	INRIM
M ultimetro	1°	A gilent 34401A	SM Y41014993	29840	11/10/05	Aviatronik Spa
Barometro	1°	Druck	1614002	1197P 11	11/10/14	Emit Las
Generatore	2°	Stanford Research DS360	61012	20	12/01/23	Spectra
Attenuatore	2°	A SIC 1000	0100	20	12/01/23	Spectra
A nalizzato re FFT	2°	NI6052	777746-01	20	12/01/23	Spectra
Attuatore Elettrostatico	2°	Gras 14AA	23991	20	12/01/23	Spectra
Preamplificaore Insert Voltage	2°	Gras 26AG	21157	20	12/01/23	Spectra
A limentatore Microfonico	2°	Gras 12AA	25434	20	12/01/23	Spectra

Capacità metrologiche ed incertezze del Centro

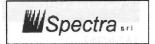
Metrological abilities and uncertainties of the Centre

Grandezze	Strumento	Gamme Livelli	Gamme Frequenze	Incertezze
Livello di Pressione Sonora	Calibratori A custici M ultifunzione	94114 dB	31.5-16k Hz	0.15 dB
Livello di Pressione Sonora	Calibratori A custici	94114 dB	250 e 1k Hz	0.12 dB
Livello di Pressione Sonora	Pistonofoni	124 dB	250 Hz	0.15 dB
Livello di Pressione Sonora	Filtri Bande 1/10ttava		31.5-8k Hz	0.1-0.2 dB
Livelio di Pressione Sonora	Filtri Bande 1/3 Ottava		20-20k Hz	0.1-0.2 dB
La ello di Pressione Sonora	Fonometri	25-140 dB	31.5-16k Hz	0.15 dB
Misura della distorsione THD	Calibratori	94-114 dB	250-1k Hz	0.12 %
₩ sura della distorsione THD	Pistonofoni	124 dB	250 Hz	0.1%
Sens crista assoluta alla pressione acustica	Capsule Microfoniche WS	25-114 dB	31.5-16k Hz	0.58-1.16 dB

andizioni ambientali durante la misura

Extra estal parameters during measurements

more Autorience $980.2 \text{ hPa} \pm 0.5 \text{ hPa}$ 23.3°C ± 1.0°C


 $(rif. 1013,3 hPa \pm 120,5 hPa)$ (rif. 23.0 °C ± 3.0 °C)

margan a francisco y

40.6 UR% ± 3 UR%

(rif. 47,5 UR% ± 22.5 UR%)

Il Responsabile del Centro

Area Laboratori

Arcore (MB)

Via Belvedere, 42

Tel-039 613321

CENTRO DI TARATURA LAT N° 163

Calibration Centre

Laboratorio Accreditato di Taratura

LAT Nº163

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8328

Certificate of Calibration

Pagina 3 di 5 Page 3 of 5

Modalità di esecuzione delle Prove

Website-www.spectra.it spectra@spectra.it

Fax-039 6133235

Directions for the testings

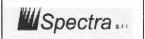
Sugli elementi sotto verifica vengono eseguite misure acustiche ed elettriche. Le prove acustiche vengono effettuate tenendo conto delle condizioni fisiche al contorno e dopo un adeguato tempo di acclimatamento e preriscaldamento degli strumenti. Le prove elettriche vengono invece eseguite utilizzando adattatori capacitivi di adeguata impedenza. Le unità di misura "dB" utilizzate nel presente certificato sono valori di pressione assoluta riferiti a 20 microPa.

Elenco delle Prove effettuate

Test List

Nelle pagine successive sono descritte le singole prove nei loro dettagli esecutivi e vengono indicati i parametri di prova utilizzati, i risultati ottenuti, le deviazioni riscontrate, gli scostamenti e le tolleranze ammesse dalla normativa considerata.

Codice	Denominazione	Revisione	Categoria	Complesso	Incertezza	Esito
PR 1	Ispezione Preliminare	2010-08	Generale		rol aureand	Superata
PR 2	Rilevamento Ambiente di Misura	2010-08	Generale			Superata
PR 5-2	Verifica della Frequenza Generata 1/1	2004-03	Acustica	C	0,010,02 %	Classe 1
PR 45	Pressione Acustica Generata	2004-03	Acustica	C	0,110,11 dB	Classe 1
PR 5-3	Distorsione del Segnale Generato (THD+N)	2004-03	Acustica	С	0,120,12 %	Classe 1


Dichiarazioni Specifiche per la Norma 60942:2003

- Per l'esecuzione della verifica periodica sono state utilizzate le procedure della Norma IEC 60942:2004-03.
- Non esiste documentazione pubblica comprovante che il fonometro ha superato le prove di valutazione di Modello applicabili della IEC 60942:2003 Annex A.
- Il calibratore acustico ha dimostrato la conformità con le prescrizioni della Classe 1 per le prove periodiche descritte nell'Allegato B della IEC 60942:2003 per il/i livelli di pressione acustica e la/le frequenze indicate alle condizioni ambientali in cui sono state effettuate le prove. Tuttavia, non essendo disponibile una dichiarazione ufficiale di un organismo responsabile dell'approvazione del modello, per dimostrarne la conformità alle prescrizioni dell'Allegato A della IEC 60942:2003, non è possibile fare alcuna dichiarazione o trarre conclusioni relativamente alle prescrizioni della IEC 60942:2003.

L'Operatore

1

Il Responsabile del Centro

CENTRO DI TARATURA LAT Nº 163

Calibration Centre

Spectra Srl Area Laboratori

Via Belvedere, 42 Arcore (MB)

Tel-039 613321 Website-www.spectra.it spectra@spectra.it

Fax-039 6133235

Laboratorio Accreditato di Taratura

LAT Nº163

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA. IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8328

Certificate of Calibration

Pagina 4 di 5 Page 4 of 5

PR 1 - Ispezione Preliminare

Verifica della integrità e della funzionalità del DUT

Ispezione visiva e meccanica. Descrizione

Impostazioni Effettuazione del preriscaldamento del DUT come prescritto dalla casa costruttrice

Letture Osservazione dei dettagli e verifica della conformità e del rispetto delle specifiche costruttive

Note

Controlli Effettuati	Risultato
Ispezione Visiva	superato
Integrità meccanica	superato
Integrità funzionale (comandi, indicatore)	superato
Stato delle batterie, sorgente alimentazione	superato
Stabilizzazione termica	superato
Integrità Accessori	superato
Marcatura (min. marca, modello, s/n)	superato
Manuale Istruzioni	superato
Stato Strumento	Condizioni Buone

PR 2 - Rilevamento Ambiente di Misura

Rilevamento dei parametri fisici dell'ambiente di misura. Scopo

Descrizione Letture dei valori di Pressione Atmosferica Locale, Temperatura ed Umidità Relativa del laboratorio

Impostazioni Attivazione degli strumenti strumenti necessari per le misure.

Letture effettuate direttamente sugli strumenti (barometro, termometro ed igrometro). Letture

Note

Riferimenti:Limiti: Patm=1013,25±120,5hpa - T aria=23,0±3,0°C - UR=47,5±22,5%

Condizioni Finali Condizioni Iniziali Grandezza 980,2 hpa Pressione Atmosferica 980,2 hpa 23,3 °C 23.6 °C Temperatura 40,6 UR% 40,5 UR% Umidità Relativa

PR 5-2 - Verifica della Frequenza Generata 1/1

Verifica della frequenza al livello di pressione acustica generato dal calibratore. Scopo

Descrizione Misurazione della frequenza del segnale proveniente dal microfono campione tramite il multimetro.

Impostazioni Collegamento della linea Microfono campione/preamplificatore/alimentatore microfonico al multimetro digitale.

Lettura diretta del valore della frequenza sul multimetro Letture

Note

Metodo: Frequenze Nominali

Toll. Cl1 Toll. Cl2 Frequenza F@94dB Deviaz. F@114dB Deviaz.

0,0..+1,0% 0,0..+2,0% 0.01% 0,03 % 1000,31Hz 0,03 %

PR 45 - Pressione Acustica Generata

Scopo

Descrizione

Impostazioni

Letture

Note

L'Operatore

Il Responsabile del Centro

Incert.

Emilio Caglio

Federico Armani

CENTRO DI TARATURA LAT N° 163

Calibration Centre

Spectra Srl Area Laboratori Via Belvedere, 42 Arcore (MB)

Tel-039 613321

Fax-039 6133235 Website-www.spectra.it spectra@spectra.it Laboratorio Accreditato di Taratura

LAT Nº163

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 163/8328

Certificate of Calibration

Pagina 5 di 5 Page 5 of 5

Metodo: Insert Voltage - Correzione Totale: -0,260 dB

F Nomin. F Esatta Spi 94dB

Deviaz. Spl 114dB 0,10 dB 114,08 dB

To II.C I1

Toll.C12

Incert.

1k Hz

1000.34 Hz 94,10 dB

0,08 dB

1000,31Hz

0.00..+0,40 dB

0.00..+0.60 dB

0,11 dB

PR 5-3 - Distorsione del Segnale Generato (THD+N)

Determinazione della Distorsione Armonica Totale (THD+N) al livello di pressione acustica generato dal calibratore.

Tramite analizzatore di spettro si verifica che il rapporto tra la somma dei livelli delle bande laterali e delle armoniche con il livello del segnale principale sia inferiore alla

tolleranza stabilita.

Impostazioni Selezione del livello e della frequenza sul calibratore. Collegamento della linea Microfono campione/preamplificatore/alimentatore all'analizzatore FFT.

Letture

Campionamento degli spettri con l'analizzatore FFT e calcolo della THD.

Note

Metodo:

Frequenze Nominali

THD @ 94dB THD @ 114dB Toll, Cl1

Toll. C12

Incert.

Frequenza 1 k Hz

0.99 %

0.32 %

0,0..+4,0 %

0,0..+4,5 %

0.12 %

L'Operatore

Federico Armani

Il Responsabile del Centro