

Codifica	
P00	06UE001
Rev. 00 del 13/09/2007	Pagina 1 di 12

LINEA ELE	TTRICA A	EREA A	132-150 kV	DOPPIA	TERNA –	TIRO	PIENO
	CONDUT	TORI @	31.5 mm –	EDS 21%	- ZONA "	Α"	

UTILIZZAZIONE DEL SOSTEGNO "E"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	lelle revisioni	
Rev. 00	del 13/09/2007	Prima emissione

Elaborato		Verificato	Approvato	
L. Alario		L. Alario		R. Rendina
ING-ILC-COL		ING-ILC-COL		ING-ILC

P006UE001

Rev. 00

del 13/09/2007

Pagina 2 di 12

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014927 – Rev.0 – Settembre 2007**

Codifica P006UE001 Rev. 00 Pagina 3 di 12 del 13/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia (*)	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	8,4 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

0.4. OADATTEDIOTIONE BRINGIDAN			CONDUTTORE	CORDA DI GUARDIA			
2.1 CARATTERISTICHE PRINCIPALI		RQUT0000C2	LC 23	LC 51	LC 50		
	MA	TERIALE	All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio	
DIAM	ETRO CIRCOSCRITT	O (mm)	31,5	11,5	11,5	17,9	
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (AI + Lega AI)	
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70	
	TOTALE	(mm²)	583,30	78,94	80,65	176,60	
MASS	SA UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820	
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000		
COEFFICIENTE DI DILATAZIONE (1/°C)		19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶		
CARICO DI ROTTURA (daN)		16852	12231	9000	10600		

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA			
	RQUT0000C2	LC 23	LC 51	LC 50	
TIRO ORIZZONTALE T _O (daN)	3540	1296	1161	1643	

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

Corde di guardia diverse da quelle indicate potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda LC50.

P006UE001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 4 di 12

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	ORDA DI GUARDIA (**)		
		RQUT0000C2	LC 23	LC 51	LC 50	
	V (daN/m)	0	0	0	0	
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090 0,5270		0,8044	
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044	
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)	
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)	
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarri

Codifica							
P0	P006UE001						
Rev. 00	Pagina 5 di 12						
del 13/09/2007	Pagina 5 ul 12						

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi MSA.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)					
	RQUT0000C2	ISOLATORI E MORSETTERIA		LC 23	LC 51	51 10:50		LATORI E SETTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)	
MSA	5450	120	170	2120 (2745)	2077 (2711)	2985 (3580)	0	0	

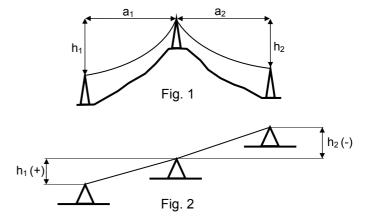
(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 ÷ 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

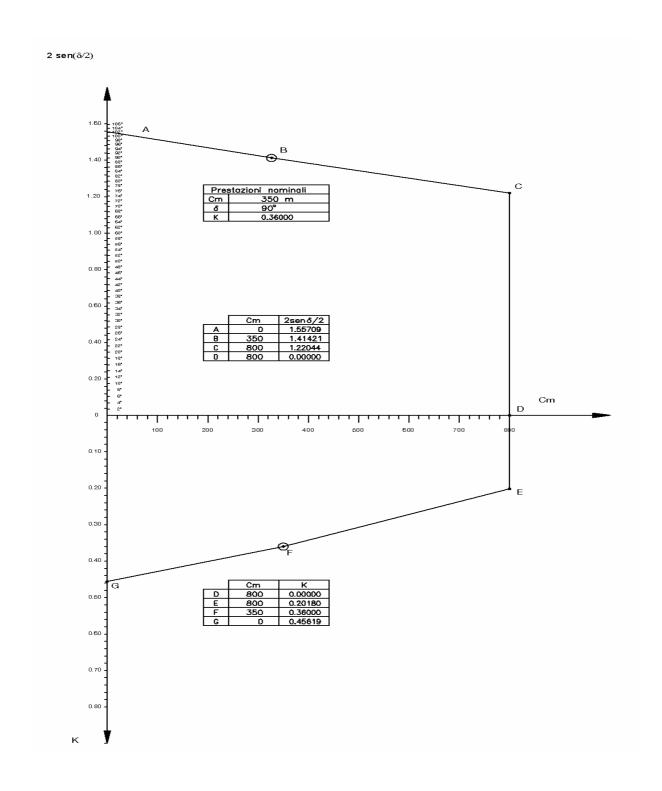

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

 $\begin{array}{lll} \mathsf{Cm} &= \mathsf{campata} \; \mathsf{media} \\ \delta &= \mathsf{angolo} \; \mathsf{di} \; \mathsf{deviazione} \\ \mathsf{K} &= \mathsf{costante} \; \mathsf{altimetrica} \; (*) \end{array}$

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig. 1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P006UE001

Rev. 00
del 13/09/2007

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P006UE001

Rev. 00 del 13/09/2007

Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i , δ_i) è necessario che i punti (Cm_i , δ_i) e (Cm_i , K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

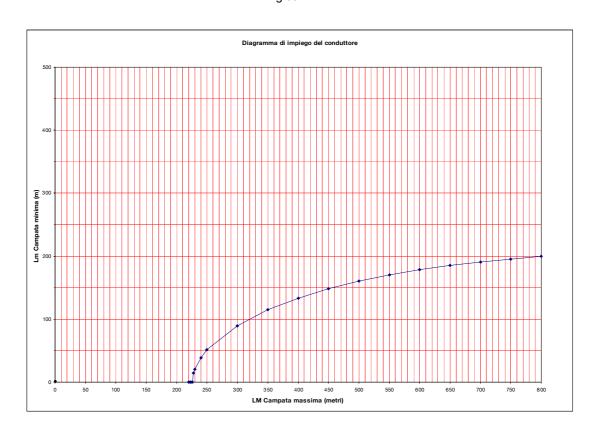
Sono state determinate le azioni esterne per il calcolo del sostegno in condizione MSA, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo guanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

- Azioni longitudinali:

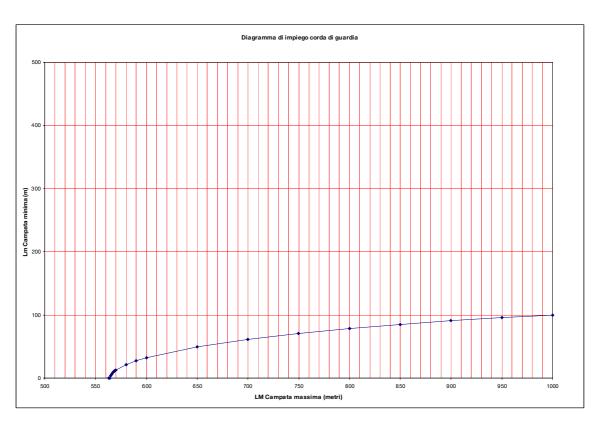

Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro nella condizione MSA, sia minore o eguale dei valori di squilibrio considerato per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a



Codifica P006UE001

Rev. 00 del 13/09/2007

Pagina 8 di 12

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

P006UE001

Rev. 00

Pagina 9 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

STATO DEI CONDUTTORI		C	ONDUTTOR	Е	CORDA DI GUARDIA (*)		
	IPOTESI	R	QUT0000C	2	LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NORMAL 5	8607	2803	220	(5603)	(1634)	(1200)
MCA	NORMALE	8607	0	220	(5603)	(0)	(1200)
MSA	ECCEZIONALE (**)	4364	1487	5450	(2802)	(817)	(3580)
		4364	0	5450	(2802)	(0)	(3580)

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 6 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

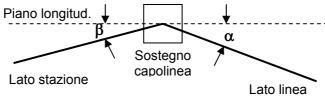
Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

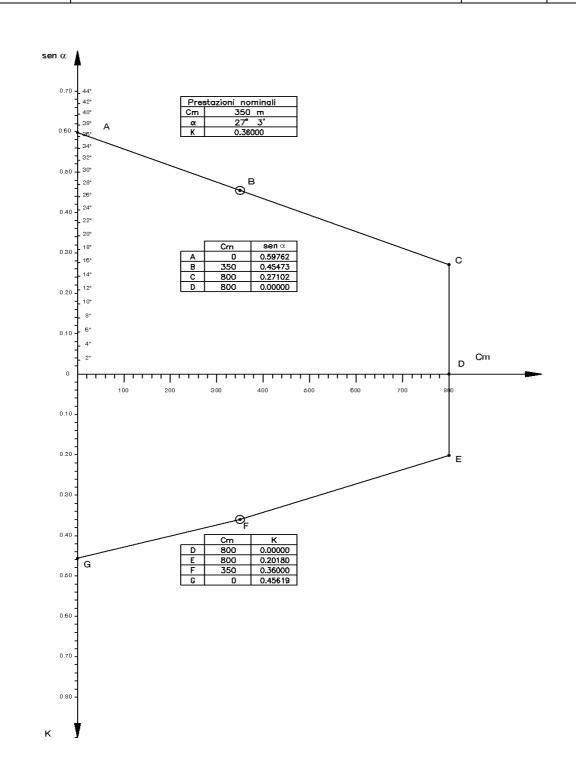
(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno E viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)




Fig. 4

P006UE001

Rev. 00
Pagina 10 di 12

del 13/09/2007

P006UE001

Rev. 00

Pagina 11 di 12

del 13/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

STATO DEI CONDUTTORI		C	ONDUTTOR	E	CORDA DI GUARDIA (*)			
	IPOTESI	R	QUT0000C	2	LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE	3377	2803	5450	(3223)	(1634)	(3580)	
MSA	NORMALE	3377	0	5450	(3223)	(0)	(3580)	
MSA	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)	
		0	0	0	(0)	(0)	(0)	

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle sequenti relazioni:

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

Conduttori
$$\begin{cases} &\text{Azione trasversale} &\text{T = v Cm} + T_0 sen α + T'_0 sen β + t* \\ &\text{Azione longitudinale} &\text{L = T}_0 cos α - T}_0 cos β \end{cases}$$

E quindi la somma T + L non supera il valore del calcolo finche rimanga:

sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

P006UE001

Rev. 00

Pagina 12 di 12

del 13/09/2007

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 6 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nella condizione MSA risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.