

COLLEGAMENTO AUTOSTRADALE ASTI - CUNEO

TRONCO II A21 (ASTI EST) - A6 (MARENE) LOTTO 6 RODDI - DIGA ENEL

PROGETTO ESECUTIVO PROGETTO DELL'INFRASTRUTTURA

OPERE PER LA REGIMAZIONE ACQUE SUPERFICIALI IMPIANTI DI TRATTAMENTO ACQUE DI PRIMA PIOGGIA SIFONI

RELAZIONE DESCRITTIVA E DI CALCOLO

Aggiornato:	Data :	Descrizione:	Redatto:	Controllato:	Approvato:	Codifica:	
00	Apr. 2013	EMISSIONE	ing. Dutto	ing. Ossesia	ing. Ghislandi	2.6	E - r C.4.3.04
Aggiornato:	Data :	Descrizione:	Redatto:	Controllato:	Approvato:	Lotto	Prog. Tipo Elaborato
						Data:	Marzo 2015
Aggiornato:	Data :	Descrizione:	Redatto:	Controllato:	Approvato:		Marzo zu 15
						Scala:	
Aggiornato:	Data :	Descrizione:	Redatto:	Controllato:	Approvato:		_
							-

PROGETTISTA e RESP. INTEGRAZIONE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Enrico Ghislandi

Albo di Milano

N° A 16993

CONCESSIONARIA:

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

INDICE

1.	PREMESSA2	
2.	DESCRIZIONE DELLE OPERE	
3.	CALCOLI IDRAULICI4	
4.	CALCOLI STRUTTURALI5	
5.	NORMATIVA VIGENTE5	
6.	MATERIALI PREVISTI5	
6	5.1. CALCESTRUZZO	
	6.1.1. Dosatura dei materiali5	
	6.1.2. Qualità dei componenti6	
	6.1.3. Prescrizione per inerti	
	6.1.4. Prescrizione per il disarmo6	
	6.1.5. Controlli di accettazione - Provini da prelevarsi in cantiere (Punto 11.2.5 del D.M. 14/01/08)6	
6	6.2. ACCIAIO PER C.A	
7. VIT 8.	PRESTAZIONI DI PROGETTO – CLASSE DELLE STRUTTURE – 'A UTILE8 STATI LIMITE8	
ο.	31A11 LIWI11E0	
9.	PARAMETRI GEOTECNICI8	
10.	PARAMETRI SISMICI9	
11.	METODO DI CALCOLO PER I POZZETTI9	
_	1.1. CALCOLO DEL CARICO SULLA CALOTTA (IN CASO DI PRESENZA DI SOLETTA	. DI
1	1.2. SPINTA SUI PIEDRITTI	
1	1.3. SPINTA IN PRESENZA DI FALDA (IN CASO DI PRESENZA DI FALDA)11	
1	1.4. SPINTA IN PRESENZA DI SISMA - METODO DI MONOBE-OKABE11	
12.	ANALISI DEI CARICHI SU POZZETTI12	
P	ALLEGATO 1 - Analisi e verifica pozzetto 2.20 x 1.80 x 3.40 m	
_	ALLEGATO 2 - Analisi e verifica pozzetto 1.80 x 1.50 x 3.80 m	

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

1. PREMESSA

La presente relazione descrive gli aspetti progettuali e di dimensionamento strutturale dei sifoni previsti lungo le canalizzazioni di scarico delle acque di prima pioggia trattate dalle 16 vasche in progetto.

In conseguenza della ridotta presenza di recapiti compatibili con le portate da scaricare, si rende necessario prevedere lunghe canalizzazioni al piede del rilevato autostradale che, lungo il loro sviluppo, interferiscono con la rete irrigua esistente in prossimità di diversi manufatti di attraversamento della stessa sede autostradale.

Si rende, pertanto, necessario sottopassare i fossi irrigui con le canalizzazioni di scarico mediante manufatti a sifone di dimensioni DN1200 e DN 1500 mm.

2. DESCRIZIONE DELLE OPERE

I manufatti sifone sono costituiti generalmente da:

- 2 pozzetti di testa previsti all'interno della recinzione autostradale coperti superiormente da griglia pedonabile;
- tubazione in cls di lunghezza adeguata in funzione delle caratteristiche del fosso interferito.

Il sifone si inserisce generalmente lungo un canale in c.a. di sezione rettangolare con larghezza di base 1,50 m e altezza variabile da 1,00 a 1,50 m; i pozzetti di testata presentano dimensioni in pianta compatibili con i canali di monte e di valle e con le dimensioni del collettore:

- pozzetti di larghezza 1,80 m e lunghezza 1,50 m per canali rettangolari in arrivo e partenza e per collettore in cls DN 1200;
- pozzetti di larghezza 2,20 m e lunghezza 1,50 m per canali rettangolari in arrivo e partenza e per collettore in cls DN 1500;
- pozzetto di larghezza 1,80 m e lunghezza 1,80 quando la testata di monte coincide con il pozzetto di uscita della vasca di trattamento.

Rispetto a tale casistica di segnalano come uniche eccezioni il sifone a pk 6+213 che viene alimentato da una tubazione DN 600 e prosegue a valle con un fosso trapezio rivestito in lastre prefabbricate di cemento armato e il sifone a pk 9+185 che viene alimentato da una tubazione DN 1000.

La posizione altimetrica del sifone è stata studiata in modo tale da garantire sempre un adeguato ricoprimento del collettore, costituito da una tubazione autoportante in c.a. turbocentrifugato, rispetto al fondo fosso irriguo interferito.

Per motivi manutentivi si è previsto di assegnare al collettore una leggere pendenza verso valle pur mantenendo costanti le quote di fondo dei 2 pozzetti di testata.

Si riporta nel seguito l'elenco completo dei sifoni con i principali dati dimensionali caratteristici.

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

Localizzazione	Dimensioni	I	L	Pozzetto di	Pozzetto di	Canaliz	zazione
(PK)	(DN mm)	(m)	(m)	monte (bxlxh)	valle (bxlxh)	in ingresso (bxh)/D	in uscita (bxh)
4+030	1200	11,40	14,40	1,80x1,50x3,80	1,80x1,50x3,80	1,50x1,00	1,50x1,00
5+600	1200	9,00	12,30	1,80x1,80x3,40	1,80x1,50x3,40	Ø 800	1,50x1,00
5+720	1200	14,00	17,00	1,80x1,50x2,20	1,80x1,50x2,80	1,50x1,00	1,50x1,50
5+927	1200	9,50	12,80	1,80x1,80x2,75	1,80x1,50x2,55	1,50x1,50	1,50x1,25
6+036	1200	11,00	14,00	1,80x1,50x3,30	1,80x1,50x3,10	1,50x1,25	1,50x1,25
6+213	1200	8,00	11,00	1,80x1,50x2,90	1,80x1,50x2,90	DN 600	0,70x0,70
6+220	1200	9,00	12,00	1,80x1,50x2,90	1,80x1,50x2,90	1,50x1,25	1,50x1,25
sv. Alba Ovest	1200	8,00	11,00	1,80x1,50x2,70	1,80x1,50x2,70	1,50x1,00	1,50x1,00
6+795	1500	9,00	12,30	2,20x1,80x3,40	2,20x1,50x3,00	1,50x1,00 + Ø 800	1,50x1,00
6+802	1500	9,00	12,30	2,20x1,80x3,40	2,20x1,50x3,25	1,50x1,25 +Ø 800	1,50x1,25
7+220	1200	8,00	11,00	1,80x1,50x3,80	1,80x1,50x3,80	1,50x1,00	1,50x1,00
7+550	1200	11,00	14,00	1,80x1,50x2,80	1,80x1,50x2,80	1,50x1,50	1,50x1,50
9+185	1200	7,00	10,00	1,80x1,50x3,50	1,80x1,50x3,50	DN 1000	1,50x1,00

Tabella 1 - Caratteristiche dimensionali dei sifoni.

Dove i termini indicati assumono il seguente significato:

1a colonna: progressiva asse autostradale;

2a colonna: diametro in (mm) del collettore in cls;

3a colonna: lunghezza interna del sifone ovvero del collettore in cls;

4a colonna: lunghezza esterna del manufatto misurata da inizio pozzetto di monte a

fine pozzetto di valle;

5a colonna: dimensioni interne del pozzetto di monte (b = larghezza, l = lunghezza, h

= altezza) espresse in metri;

6a colonna: dimensioni interne del pozzetto di valle;

7a colonna: dimensioni interne della canalizzazione in ingresso (b = larghezza, I =

lunghezza, h = altezza in m, $\emptyset = diametro$ in mm per condotta in acciaio,

DN = diametro in mm per collettore in cls);

8a colonna: dimensioni interne della canalizzazione in uscita.

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

Per ogni indicazione di dettaglio in merito alle caratteristiche costruttive dei sifoni si rimanda agli elaborati grafici specifici.

3. CALCOLI IDRAULICI

Tutti i sifoni previsti in progetto sono stati verificati idraulicamente per definirne le condizioni di funzionamento e valutarne la compatibilità in termini di perdita di carico indotta sulla canalizzazione di monte.

Per il dettaglio sulla metodologia di calcolo impiegata si rimanda alla specifica relazione idrologica e idraulica relativa allo smaltimento delle acque di piattaforma (2.6D-rB.3.1.3); nel seguito si fornisce una tabella riassuntiva dei risultati ottenuti.

Localizzazione (PK)	Dimensioni (DN mm)	l (m)	Q manufatto (m³/s)	Perdita di carico (m)
4+030	1200	11,40	0,354	0,009
5+600	1200	9,00	0,502	0,017
5+720	1200	14,00	0,502	0,018
5+927	1200	9,50	0,765	0,039
6+036	1200	11,00	0,765	0,040
6+213	1200	8,00	0,261	0,005
6+220	1200	9,00	0,765	0,039
sv. Alba Ovest	1200	8,00	0,470	0,015
6+795	1500	9,00	0,961	0,025
6+802	1500			
		9,00	1,519	0,062
7+220	1200	8,00	0,555	0,020
7+550	1200	11,00	0,555	0,021
9+185	1200	7,00	0,374	0,009

Tabella 2 - Verifica idraulica dei sifoni.

Per tutti i casi considerati, la perdita di carico indotta dal manufatto, che si trasforma in un innalzamento di livello nella canalizzazione di monte, risulta sempre compatibile con i livelli idrici massimi calcolati nel rispetto dei franchi assunti a base del dimensionamento dei canali.

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

4. CALCOLI STRUTTURALI

Ai fini della verifica strutturale dei pozzetti posti a monte ed a valle dei sifoni, si riportano in relazione le analisi e le verifiche relative alle tipologie di pozzetti aventi dimensioni maggiori.

In particolare si sono verificati

- pozzetto di dimensioni b x l x h = $2.2 \times 1.8 \times 3.4$ m realizzato alla progressiva 6+802, avente soletta di fondo e pareti di spessore 30 cm (Allegato 1)
- pozzetto di dimensioni b x l x h = $1.8 \times 1.5 \times 3.8 \text{ m}$ realizzato alla progressiva 7+220, avente soletta di fondo e pareti di spessore 30 cm (Allegato 2)

Il comune nel quale si trovano le opere in oggetto è quello di Roddi, considerato zona sismica 4.

5. NORMATIVA VIGENTE

- D.M. 14 gennaio 2008 "Nuove Norma Tecniche per le costruzioni"
- Circolare 2 febbraio 2009, n. 617 "Istruzioni per l'applicazione delle "Nuove Norme Tecniche per le Costruzioni" di cui al D.M. 14 gennaio 2008".

6. MATERIALI PREVISTI

6.1. CALCESTRUZZO

- Calcestruzzo con Classe di resistenza C 32/40
- R_{ck} = resistenza cubica del calcestruzzo = 40 N/mm²
- f_{ck} = resistenza cilindrica a compressione = 0.83 R_{ck} = 33.2 N/mm²
- f_{cm} = valore medio della resistenza cilindrica = f_{ck} + 8 = 41.2 N/mm²
- f_{ctm} = resistenza media a trazione semplice assiale = 0.30 $f_{ck}^{2/3}$ = 3.1 N/mm²
- f_{cfm} = resistenza a trazione per flessione = 1.2 f_{ctm} = 3.7 N/mm²
- E_{cm} = modulo elastico = 22000 ($f_{cm}/10$)^{0.3} = 33543 N/mm²
- v = coefficiente di Poisson = 0.20
- Classe di consistenza : S4
- Classe d'esposizione ambientale : XC2, XA2
- Copriferro ≥ 30 mm

6.1.1. Dosatura dei materiali

La dosatura dei materiali per ottenere Rck 400 (40) è orientativamente la seguente (per m3 d'impasto).

sabbia	0.4 m3
ghiaia	0.8 m3

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

acqua 150 litri cemento tipo 425 350 kg/m3

6.1.2. Qualità dei componenti

La sabbia deve essere viva, con grani assortiti in grossezza da 0 a 3 mm, non proveniente da rocce in decomposizione, scricchiolante alla mano, pulita, priva di materie organiche, melmose, terrose e di salsedine.

La ghiaia deve contenere elementi assortiti, di dimensioni fino a 16 mm, resistenti e non gelivi, non friabili, scevri di sostanze estranee, terra e salsedine. Le ghiaie sporche vanno accuratamente lavate.

Anche il pietrisco proveniente da rocce compatte, non gessose né gelive, dovrà essere privo di impurità od elementi in decomposizione.

In definitiva gli inerti dovranno essere lavati ed esenti da corpi terrosi ed organici. Non sarà consentito assolutamente il misto di fiume. L'acqua da utilizzare per gli impasti dovrà essere potabile, priva di sali (cloruri e solfuri).

Potranno essere impiegati additivi fluidificanti o superfluidificanti per contenere il rapporto acqua/cemento mantenendo la lavorabilità necessaria.

6.1.3. Prescrizione per inerti

Sabbia viva 0-7 mm, pulita, priva di materie organiche e terrose; sabbia fino a 30 mm (70mm per fondazioni), non geliva, lavata; pietrisco di roccia compatta.

Assortimento granulometrico in composizione compresa tra le curve granulometriche sperimentali:

- passante al vaglio di mm 16 = 100%
- passante al vaglio di mm 8 = 88-60%
- passante al vaglio di mm 4 = 78-36%
- passante al vaglio di mm 2 = 62-21%
- passante al vaglio di mm 1 = 49-12%
- passante al vaglio di mm 0.25 = 18-3%

6.1.4. Prescrizione per il disarmo

Indicativamente: pilastri 3-4 giorni; solette modeste 10-12 giorni; travi, archi 24-25 giorni, mensole 28 giorni.

Per ogni porzione di struttura, il disarmo non può essere eseguito se non previa autorizzazione della Direzione Lavori.

6.1.5. Controlli di accettazione - Provini da prelevarsi in cantiere (Punto 11.2.5 del D.M. 14/01/08)

Prelievo = n° 2 cubetti di lato 15 cm;

Controllo tipo A

Il controllo è riferito ad un quantitativo di miscela omogenea non maggiore di 300 m3.

☐: 2.6E-rC.4.3.04-00 ☐ 6/58

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

Ogni controllo di accettazione di tipo A è rappresentato da tre prelievi, ciascuno dei quali eseguito su un massimo di 100 m3 di getto di miscela omogenea. Risulta quindi un controllo di accettazione ogni 300 m2 massimo di getto. Per ogni giorno di getto va comunque effettuato almeno un prelievo.

Nelle costruzioni con meno di 100 m3 di getto di miscela omogenea, fermo restando l'obbligo di almeno 3 prelievi e del rispetto delle limitazioni di cui sopra, è consentito derogare all'obbligo del prelievo giornaliero.

Controllo di accettazione di tipo A (quantitativo di miscela omogenea non maggiore di 300 m3), positivo se :

Controllo tipo B

Nella realizzazione di opere strutturali che richiedano l'impiego di più di 1500 m3 di miscela omogenea è obbligatorio il controllo di accettazione di tipo statistico (B).

Il controllo è riferito ad una definita miscela omogenea e va eseguito con frequenza non minore di un controllo ogni 1500 m3 di calcestruzzo.

Per ogni giorno di getto di miscela omogenea va effettuato un prelievo e complessivamente almeno 15 prelievi sui 1500 m3.

Il prelievo dei provini per il controllo di accettazione va eseguito alla presenza del Direttore dei Lavori o di un Tecnico di sua fiducia che provvede alla redazione di un apposito verbale di prelievo e dispone l'identificazione dei provini mediante sigle.

La domanda di prove al Laboratorio deve essere sottoscritta dal Direttore dei Lavori e deve contenere precise indicazioni sulla posizione delle strutture interessate da ciascun prelievo.

6.2. ACCIAIO PER C.A.

- Tipo B450C
- f_{yk} = tensione caratteristica di snervamento = 450 N/mm²
- f_{vt} = tensione caratteristica di rottura = 540 N/mm²
- $(f_t/f_v)_k \ge 1.15 e < 1.35$
- $(f_t/f_{ynom})_k \le 1.25$
- Allungamento (A_{at})_k ≥ 7.5%
- γ_s = coefficiente di sicurezza dell'acciaio per c.a. = 1.15
- f_{yd} = resistenza di calcolo = 450 : 1.15 = 391.30 N/mm²
- f_{bd} = resistenza tangenziale di aderenza acciaio-calcestruzzo = f_{bk} : γ_c = 5.755 : 1.5 = 3.837 N/mm²
- f_{bk} = resistenza tangenziale caratteristica = 2.25 x η x f_{ctk} = 2.25 x 1.0 x 2.558 = 5.755 N/mm²

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

7. PRESTAZIONI DI PROGETTO – CLASSE DELLE STRUTTURE – VITA UTILE

La costruzione in oggetto è di classe d'uso IV (costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità) ed è di tipo 2 (opere ordinarie) con vita nominale ≥ 100 anni, CU = coefficiente d'uso = 2.0, VR = vita di riferimento = CU x VN = 200 anni.

8. STATI LIMITE

La sicurezza e le prestazioni dei manufatti sono state valutate in relazione agli Stati Limite che si possono verificare durante la loro vita nominale. In particolare le varie tipologie strutturali devono possedere i seguenti requisiti:

- sicurezza nei confronti di stati limite ultimi (SLU), sia di tipo geotecnico (GEO e di equilibrio di corpo rigido (EQU,) che di tipo strutturale (STR)
- sicurezza nei confronti di stati limite di esercizio (SLE)

La verifica della sicurezza nei riguardi degli stati limite di resistenza si effettua con il "metodo dei coefficienti parziali" di sicurezza espresso dall'equazione formale:

$$R_d \ge E_d$$

dove:

R_d è la resistenza di progetto, valutata in base ai valori di progetto della resistenza dei materiali ed ai valori nominali delle grandezze geometriche interessate;

 E_d è il valore di progetto dell'effetto delle azioni, valutato in base ai valori di progetto $F_{dj} = F_{kj} \cdot \gamma_{Fj}$ delle azioni o direttamente $E_{dj} = E_{kj} \cdot \gamma_{Ej}$

Inoltre si è considerata:

V_N = vita nominale dell'opera ≥ 100 anni

Classe d'uso di tipo II con coefficiente $C_U = 2.0$

 V_R = periodo di riferimento = V_N C_U = 200 anni

9. PARAMETRI GEOTECNICI

Il terreno assunto come presente negli interventi in oggetto è caratterizzato dai seguenti parametri geotecnici:

- da p.c. fino a circa -2.1 m: <u>complesso limoso sabbioso</u>: sabbia fine limosa poco addensata e limo con livelli di sabbia medio fine da sciolta a poco addensata.

 Φ = angolo d'attrito del terreno = 25°

y = peso specifico del terreno = 18.0 kN/m³

 $c = coesione = 15 kN/m^2$

δ = angolo d'attrito terra - calcestruzzo = 16.67°

 da -2.1. fino a circa -4.8 m: <u>complesso ghiaioso sabbioso</u>: ghiaia eterometrica poligenica con ciottoli (Dmax = 12 cm) e sabbia medio-grossolana, localmente prevalente

 Φ = angolo d'attrito del terreno = 33°

 γ = peso specifico del terreno = 18.0 kN/m³

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

c = coesione = 0.0 kN/m^2 δ = angolo d'attrito terra - calcestruzzo = 22°

La falda è stata individuata a -3.0 m dal piano campagna.

10. PARAMETRI SISMICI

L'azione dell'azione sismica di progetto viene effettuata in funzione della "pericolosità sismica di base" del sito mediante opportune formule spettrali variabili in relazione alla probabilità di superamento, nel periodo di riferimento adottato e, pertanto, in relazione al particolare stato limite considerato (SLV = Stato limite di Salvaguardia della Vita e SLD = Stato Limite di Danno).

I valori base dei parametri utili che consentono di definire le suddette azioni sismiche, per sito di riferimento rigido orizzontale sono quelli della "Accelerazione orizzontale massima al sito" (ag), del "Fattore di amplificazione dello spettro in accelerazione" (Fo) e del "Periodo di inizio del tratto costante dello spettro in accelerazione" (TC) che, come detto sono variabili a seconda dello stato limite considerato.

Tali valori sono definiti interpolando tra i valori forniti per i vertici del reticolo di riferimento più prossimi al sito.

E poiché il Comune di Roddi (CN), è posizionato secondo i seguenti valori:

Latitudine: 44°.680 Longitudine: 7°.974

Si hanno i seguenti parametri sismici:

in particolare per lo SLV si sono adottati i seguenti parametri sismici:

P_r = periodo di ritorno = 1898 anni

a_g = accelerazione massima del sito = 0.067 g

 F_o = valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale = 2.898

 T_{C}^{*} = periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale = 0.317

Ai fini della definizione sismica di progetto, il terreno interessato dall'intervento può essere classificato di categoria "E" (*Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con Vs > 800 m/s)*).

11. METODO DI CALCOLO PER I POZZETTI

Le sollecitazioni, sono state valutate con il programma agli elementi finiti della AZTEC SOFTWARE srl "SCAT 10.0

Il terreno di rinfianco e di fondazione viene schematizzato come una serie di elementi molle proporzionali alla costante di Winkler del terreno ed all'area di influenza della molla stessa.

La soluzione del sistema viene fatta per ogni combinazione di carico agente sul pozzetto.

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

L'interazione con il terreno di fondazione è stata modellata secondo lo schema classico di trave su suolo elastico alla Winkler.

L'analisi è condotta sia in condizioni statiche che sismiche considerando una serie di combinazioni di carico generate automaticamente.

11.1. CALCOLO DEL CARICO SULLA CALOTTA (IN CASO DI PRESENZA DI SOLETTA DI COPERTURA)

In questo caso la pressione in calotta viene calcolata come prodotto tra il peso di volume del terreno per l'altezza del ricoprimento (Spessore dello strato di terreno superiore). Quindi la pressione in calotta è fornita dalla seguente relazione:

$$P_v = y H$$

Se sul profilo del piano campagna se sono presenti dei sovraccarichi, concentrati e/o distribuiti, la diffusione di questi nel terreno avviene secondo un angolo, rispetto alla verticale, pari a 35.00°.

11.2. SPINTA SUI PIEDRITTI

La teoria di Coulomb considera l'ipotesi di un cuneo di spinta a monte della parete che si muove rigidamente lungo una superficie di rottura rettilinea. Dall'equilibrio del cuneo si ricava la spinta che il terreno esercita sull'opera di sostegno. In particolare Coulomb ammette, al contrario della teoria di Rankine, l'esistenza di attrito fra il terreno e la parete, e quindi la retta di spinta risulta inclinata rispetto alla normale alla parete stesso di un angolo di attrito terra-parete.

L'espressione della spinta esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Coulomb dalla seguente relazione (per terreno incoerente)

$$S = 1/2yH^2K_a$$

K_a rappresenta il coefficiente di spinta attiva di Coulomb nella versione riveduta da Muller-Breslau, espresso come

$$\mathsf{K}_{\mathsf{a}} = \frac{\sin(\alpha + \Phi)}{\sqrt{\left[\sin(\Phi + \delta)\sin(\Phi - \beta)\right]}}$$

$$\sin^2\alpha \sin(\alpha - \delta)\left[1 + \frac{\sqrt{\left[\sin(\Phi - \delta)\sin(\Phi - \beta)\right]}}{\sqrt{\left[\sin(\Phi - \delta)\sin(\Phi + \beta)\right]}}\right]^2}$$

dove Φ è l'angolo d'attrito del terreno, α rappresenta l'angolo che la parete forma con l'orizzontale (α = 90° per parete verticale), δ è l'angolo d'attrito terreno-parete, β è l'inclinazione del terrapieno rispetto all'orizzontale.

La spinta risulta inclinata dell'angolo d'attrito terreno-parete δ rispetto alla normale alla parete.

Il diagramma delle pressioni del terreno sulla parete risulta triangolare con il vertice in alto. Il punto di applicazione della spinta si trova in corrispondenza del baricentro del diagramma delle pressioni (1/3~H rispetto alla base della parete). L'espressione di K $_a$ perde di significato per β > Φ . Questo coincide con quanto si intuisce fisicamente: la

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

pendenza del terreno a monte della parete non può superare l'angolo di naturale declivio del terreno stesso.

Nel caso di terreno dotato di attrito e coesione c l'espressione della pressione del terreno ad una generica profondità z vale

$$\sigma_a = \gamma z K_a - 2 c \sqrt{K_a}$$

L'utilizzo del coefficiente di spinta attiva K_a tende talvolta a sottostimare la spinta del terreno. Infatti il valore di K_a rappresenta il limite inferiore per quanto riguarda la spinta del terreno, mentre il limite superiore è rappresentato dal coefficiente di spinta a riposo K_0

Inoltre la teoria di Coulomb risulta quella generalmente accettata ed utilizzata dai principali software ad elementi finiti, in quanto più raffinata e tende a non sovrastimare il valore della spinta delle terre, come ad esempio la teoria di Rankine.

11.3. SPINTA IN PRESENZA DI FALDA (IN CASO DI PRESENZA DI FALDA)

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_a = \gamma_{sat} - \gamma_w$$

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_w è il peso di volume dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

11.4. SPINTA IN PRESENZA DI SISMA - METODO DI MONOBE-OKABE

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ϵ l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parete pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove θ = arctg ($k_h/(1\pm k_v)$) essendo k_h il coefficiente sismico orizzontale e k_v il coefficiente sismico verticale, definito in funzione di k_h .

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta \cos\theta}$$

Tale incremento di spinta deve essere applicato ad una distanza dalla base pari a 1/2 dell'altezza della parete.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali che si destano per effetto del sisma. Tale forza viene valutata come

$$F_i = CW$$

dove W è il peso della parete e dei relativi sovraccarichi permanenti e va applicata nel baricentro dei pesi.

12. ANALISI DEI CARICHI SU POZZETTI

-Pozzetto 2.20x1.80x3.40 m

All'interno del pozzetto si è previsto un carico agente sui piedritti e sulla soletta di fondazione dovuto alla presenze di acqua. Si è considerata un'altezza massima di acqua di 2.9 m, quindi un carico massimo di 29 kPa agente sulla soletta di fondazione e ai piedi dei piedritti.

-Pozzetto 1.80x1.50x3.80 m

All'interno del pozzetto si è previsto un carico agente sui piedritti e sulla soletta di fondazione dovuto alla presenze di acqua. Si è considerata un'altezza massima di acqua di 3.3 m, quindi un carico massimo di 33 kPa agente sulla soletta di fondazione e ai piedi dei piedritti.

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

ALLEGATO 1 - Analisi e verifica pozzetto 2.20 x 1.80 x 3.40 m

Geometria scatolare

Descrizione:	Scatolare tipo vasca

Altezza esterna	3.70	[m]
Larghezza esterna	2.80	[m]
Lunghezza mensola di fondazione sinistra	0.00	[m]
Lunghezza mensola di fondazione destra	0.00	[m]
Spessore piedritto sinistro	0.30	[m]
Spessore piedritto destro	0.30	[m]
Spessore fondazione	0.30	[m]

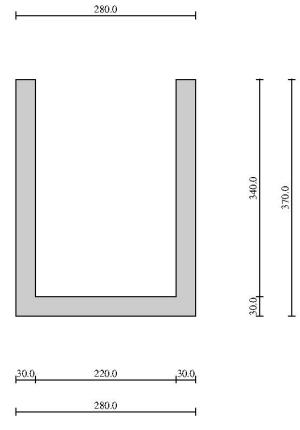


Fig.1: Geometria pozzetto

Condizioni di carico

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Carichi verticali positivi se diretti verso il basso

Carichi orizzontali positivi se diretti verso destra

Coppie concentrate positive se antiorarie

Ascisse X (espresse in m) positive verso destra

Ordinate Y (espresse in m) positive verso l'alto

Carichi concentrati espressi in kN

Coppie concentrate espressi in kNm

Carichi distribuiti espressi in kN/m

Simbologia adottata e unità di misura

Forze concentrate

- X ascissa del punto di applicazione dei carichi verticali concentrati
- Y ordinata del punto di applicazione dei carichi orizzontali concentrati
- F_v componente Y del carico concentrato
- F_x componente X del carico concentrato
- M momento

Forze distribuite

- X_i, X_f ascisse del punto iniziale e finale per carichi distribuiti verticali
- Y_i, Y_f ordinate del punto iniziale e finale per carichi distribuiti orizzontali
- V_{ni} componente normale del carico distribuito nel punto iniziale
- V_{nf} componente normale del carico distribuito nel punto finale
- V_{ti} componente tangenziale del carico distribuito nel punto iniziale
- V_{ff} componente tangenziale del carico distribuito nel punto finale
- D_{te} variazione termica lembo esterno espressa in gradi centigradi
- D_{ti} variazione termica lembo interno espressa in gradi centigradi

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

Condizione di carico n°6 (Spinta falda)

Condizione di carico n° 7 (Pozzetto pieno)

Distr	Pied_S V_{tf} = 0.00	$Y_i = 0.30$	Y _f = 3.20	V _{ni} = -29.00	$V_{nf} = 0.00$	V _{ti} =	0.00
Distr	Pied_D V _{tf} = 0.00	$Y_i = 0.30$	Y _f = 3.20	V _{ni} = 29.00	V _{nf} = 0.00	V _{ti} =	0.00
Distr	Fondaz. $V_{\rm ff}$ = 0.00	$X_i = 0.30$	$X_f = 2.50$	V _{ni} = 29.00	V _{nf} = 29.00	V _{ti} =	0.00

Impostazioni di progetto

Verifica materiali:

Stato Limite Ultimo

Coefficiente di sicurezza calcestruzzo γ _c	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00

Verifica Taglio - Metodo dell'inclinazione variabile del traliccio

$$\begin{split} V_{\text{Rd}} = & [0.18 \text{*k*} (100.0 \text{*} \rho_{\text{I}} \text{*fck})^{1/3} / \gamma_{\text{c}} + 0.15 \text{*} \sigma_{\text{cp}}] \text{*bw*d>} (\text{vmin+0.15*} \sigma_{\text{cp}}) \text{*b}_{\text{w}} \text{*d} \\ V_{\text{Rsd}} = & 0.9 \text{*d*A}_{\text{sw}} / \text{s*fyd*} (\text{ctg}\alpha + \text{ctg}\theta) \text{*sin}\alpha \\ V_{\text{Rcd}} = & 0.9 \text{*d*b}_{\text{w}} \text{*} \alpha_{\text{c}} \text{*fcd'*} (\text{ctg}(\theta) + \text{ctg}(\alpha) / (1.0 + \text{ctg}\theta^2)) \\ \text{con:} \end{split}$$

d altezza utile sezione [mm]

b_w larghezza minima sezione [mm]

 σ_{cp} tensione media di compressione [N/mmq]

ρ_I rapporto geometrico di armaturaA_{sw} area armatuta trasversale [mmq]

s interasse tra due armature trasversali consecutive [mm]

 α_c coefficiente maggiorativo, funzione di fcd e σ_{cp}

fcd'=0.5*fcd k=1+ $(200/d)^{1/2}$ vmin=0.035* $k^{3/2}$ *fc $k^{1/2}$

☐ : 2.6E-rC.4.3.04-00 ☐ 16/58

Stato Limite di Esercizio

Criteri di scelta per verifiche tensioni di esercizio:

Ambiente poco aggressivo

Limite tensioni di compressione nel calcestruzzo (comb. rare) 0.60 f_{ck}

Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.) f_{ck} 0.45

Limite tensioni di trazione nell'acciaio (comb. rare) 0.70 f_{vk}

Criteri verifiche a fessurazione:

Armatura sensibile

Apertura limite fessure espresse in [mm]

Apertura limite fessure w1=0.10 w2=0.20 w3=0.40

Verifiche secondo:

Norme Tecniche 2008 - Approccio 2

Copriferro sezioni 3.00 [cm]

Descrizione combinazioni di carico

Simbologia adottata

γ Coefficiente di partecipazione della condizione

 Ψ Coefficiente di combinazione della condizione

C Coefficiente totale di partecipazione della condizione

Norme Tecniche 2008

Simbologia adottata

 γ_{G1sfav} Coefficiente parziale sfavorevole sulle azioni permanenti

 γ_{G1fav} Coefficiente parziale favorevole sulle azioni permanenti

 γ_{G2sfav} Coefficiente parziale sfavorevole sulle azioni permanenti non strutturali

 $\gamma_{\rm G2fav}$ Coefficiente parziale favorevole sulle azioni permanenti non strutturali

γ_Q Coefficiente parziale sulle azioni variabili

 $\gamma_{tan\phi'}$ Coefficiente parziale di riduzione dell'angolo di attrito drenato

γ_{c'} Coefficiente parziale di riduzione della coesione drenata

 γ_{cu} Coefficiente parziale di riduzione della coesione non drenata

 γ_{qu} Coefficiente parziale di riduzione del carico ultimo

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le az	ioni o per l'effetto	delle azioni	:	
Carichi	Effetto		- A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.30	1.00
Permanenti non strutturali	Favorevole	γG2fav	0.00	0.00
Permanenti non strutturali	Sfavorevole	γG2sfav	1.50	1.30
Variabili	Favorevole	γ̈Qfav	0.00	0.00
Variabili	Sfavorevole	γ̈Qsfav	1.50	1.30
Coefficienti parziali per i para	ametri geotecnici	del terreno:		
Parametri			M1	<i>M</i> 2
Tangente dell'angolo di attrit	:0	γtan _φ '	1.00	1.25
Coesione efficace		γ _{c'}	1.00	1.25
Resistenza non drenata		γcu	1.00	1.40
Resistenza a compressione	uniassiale	γ_{qu}	1.00	1.60
Peso dell'unità di volume		γ_{γ}	1.00	1.00
Coefficienti parziali per le az				
Coefficienti parziali per le az	ioni o per l'effetto		<u>:</u> A1	A2
		delle azioni	_ '	<i>A2</i> 1.00
Coefficienti parziali per le az	ioni o per l'effetto Effetto		A1	
Coefficienti parziali per le az Carichi Permanenti	ioni o per l'effetto <i>Effetto</i> Favorevole	o delle azioni γ _{G1fav}	<i>A1</i> 1.00	1.00
Coefficienti parziali per le az Carichi Permanenti Permanenti	ioni o per l'effetto Effetto Favorevole Sfavorevole	o delle azioni γ _{G1fav} γ _{G1sfav}	<i>A1</i> 1.00 1.00	1.00 1.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti	ioni o per l'effetto Effetto Favorevole Sfavorevole Favorevole	yG1fav γG1sfav γG2fav	A1 1.00 1.00 0.00	1.00 1.00 0.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti	ioni o per l'effetto Effetto Favorevole Sfavorevole Favorevole Sfavorevole	yG1fav γG1sfav γG2fav γG2sfav	A1 1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili	ioni o per l'effetto Effetto Favorevole Sfavorevole Favorevole Sfavorevole Favorevole Favorevole Sfavorevole	yG1fav γG1sfav γG2fav γG2sfav γQ2sfav γQfav γQsfav	A1 1.00 1.00 0.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00 0.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili	ioni o per l'effetto Effetto Favorevole Sfavorevole Favorevole Sfavorevole Favorevole Favorevole Sfavorevole	yG1fav γG1sfav γG2fav γG2sfav γQ2sfav γQfav γQsfav	A1 1.00 1.00 0.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00 0.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Coefficienti parziali per i parz	ioni o per l'effetto Effetto Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Sfavorevole	yG1fav γG1sfav γG2fav γG2sfav γQ2sfav γQfav γQsfav	A1 1.00 1.00 0.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00 0.00 1.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Coefficienti parziali per i para Parametri	ioni o per l'effetto Effetto Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Sfavorevole	γG1fav γG1sfav γG2sfav γG2sfav γQfav γQsfav	A1 1.00 1.00 0.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00 0.00 1.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Coefficienti parziali per i para Parametri Tangente dell'angolo di attrit	ioni o per l'effetto Effetto Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Sfavorevole	yG1fav γG1sfav γG2sfav γG2sfav γQfav γQsfav del terreno:	A1 1.00 1.00 0.00 1.00 0.00 1.00 M1 1.00	1.00 1.00 0.00 1.00 0.00 1.00 <i>M2</i> 1.25
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Coefficienti parziali per i para Parametri Tangente dell'angolo di attrit Coesione efficace	ioni o per l'effetto Effetto Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole ametri geotecnici	yG1fav γG1fav γG1sfav γG2sfav γQfav γQsfav del terreno: γtanφ' γc'	A1 1.00 1.00 0.00 1.00 0.00 1.00 M1 1.00 1.00	1.00 1.00 0.00 1.00 0.00 1.00 <i>M2</i> 1.25 1.25

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le az	ioni o per l'effetto	delle azioni	j .	
Carichi	Effetto	GOIIO GEIOII	. <u>.</u> A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.30	1.00
Permanenti non strutturali	Favorevole	γG2fav	0.00	0.00
Permanenti non strutturali	Sfavorevole	γG2sfav	1.50	1.30
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γQsfav	1.50	1.30
Coefficienti parziali per i para	ametri geotecnici	del terreno:		
Parametri			M1	M2
Tangente dell'angolo di attrit	0	γtanφ'	1.00	1.25
Coesione efficace		γс'	1.00	1.25
Resistenza non drenata		γcu	1.00	1.40
Resistenza a compressione	uniassiale	γ_{qu}	1.00	1.60
Peso dell'unità di volume		γ_{γ}	1.00	1.00
Coefficienti di partecipazio	ne combinazior	ni eiemiche		
0000.0 a. pa. 100.pa_10	nic combination			
			i:	
Coefficienti parziali per le az			i <u>:</u> A1	A2
Coefficienti parziali per le az	ioni o per l'effetto			<i>A2</i> 1.00
Coefficienti parziali per le az Carichi	ioni o per l'effetto Effetto	delle azion	A1	
Coefficienti parziali per le az Carichi Permanenti	ioni o per l'effetto <i>Effetto</i> Favorevole	o delle azion γ _{G1fav}	<i>A1</i> 1.00	1.00
Coefficienti parziali per le az Carichi Permanenti Permanenti	ioni o per l'effetto Effetto Favorevole Sfavorevole	yG1fav γG1sfav	A1 1.00 1.00	1.00 1.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti	ioni o per l'effetto Effetto Favorevole Sfavorevole Favorevole	γG1fav γG1sfav γG2fav	A1 1.00 1.00 0.00	1.00 1.00 0.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti	ioni o per l'effetto Effetto Favorevole Sfavorevole Favorevole Sfavorevole	yG1fav γG1sfav γG2fav γG2sfav	A1 1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili	ioni o per l'effetto Effetto Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Favorevole Sfavorevole	γG1fav γG1sfav γG2fav γG2sfav γG2sfav γQfav γQsfav	A1 1.00 1.00 0.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00 0.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili	ioni o per l'effetto Effetto Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Favorevole Sfavorevole	γG1fav γG1sfav γG2fav γG2sfav γG2sfav γQfav γQsfav	A1 1.00 1.00 0.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00 0.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Coefficienti parziali per i para Parametri	ioni o per l'effetto Effetto Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Sfavorevole Sfavorevole	γG1fav γG1sfav γG2fav γG2sfav γQfav γQsfav	A1 1.00 1.00 0.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00 0.00 1.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Coefficienti parziali per i parz	ioni o per l'effetto Effetto Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Sfavorevole Sfavorevole	γG1fav γG1sfav γG2sfav γG2sfav γQfav γQsfav del terreno:	A1 1.00 1.00 0.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00 0.00 1.00
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Coefficienti parziali per i para Parametri Tangente dell'angolo di attrit	ioni o per l'effetto Effetto Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Sfavorevole Sfavorevole	γG1fav γG1sfav γG2fav γG2sfav γQfav γQsfav	A1 1.00 1.00 0.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00 0.00 1.00 <i>M</i> 2 1.25
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Coefficienti parziali per i para Parametri Tangente dell'angolo di attrit Coesione efficace	ioni o per l'effetto Effetto Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole o	yG1fav γG1fav γG1sfav γG2sfav γQ2sfav γQsfav del terreno: γtanφ' γc' γcu	A1 1.00 1.00 0.00 1.00 0.00 1.00 M1 1.00 1.00	1.00 1.00 0.00 1.00 0.00 1.00 <i>M2</i> 1.25 1.25
Coefficienti parziali per le az Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Coefficienti parziali per i para Parametri Tangente dell'angolo di attrit Coesione efficace Resistenza non drenata	ioni o per l'effetto Effetto Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole o	γG1fav γG1fav γG1sfav γG2sfav γQfav γQsfav del terreno: γtanφ' γc'	A1 1.00 1.00 0.00 1.00 0.00 1.00 M1 1.00 1.00	1.00 1.00 0.00 1.00 0.00 1.00 <i>M</i> 2 1.25 1.25 1.40

Coeff. di combinazione Ψ_0 = 0.70 Ψ_1 = 0.50 Ψ_2 = 0.20

	γ	Ψ	C
Peso Proprio	1.30	1.00	1.30
Spinta terreno sinistra	1.30	1.00	1.30
Spinta terreno destra	1.30	1.00	1.30

Combinazione n° 2 SLU (Approccio 2)

	γ	Ψ	C
Peso Proprio	1.30	1.00	1.30
Spinta terreno sinistra	1.30	1.00	1.30
Spinta terreno destra	1.30	1.00	1.30
Spinta falda	1.30	1.00	1.30

Combinazione n° 3 SLU (Approccio 2)

	γ	Ψ	C
Peso Proprio	1.30	1.00	1.30
Spinta terreno sinistra	1.30	1.00	1.30
Spinta terreno destra	1.30	1.00	1.30
Pozzetto pieno	1.50	1.00	1.50

Combinazione n° 4 SLU (Approccio 2) - Sisma Vert. positivo

	γ	Ψ	С	
Peso Proprio	1.00	1.00	1.00	
Spinta terreno sinistra	1.00	1.00	1.00	
Spinta terreno destra	1.00	1.00	1.00	
Sisma da sinistra	1.00	1.00	1.00	

Combinazione n° 5 SLU (Approccio 2) - Sisma Vert. negativo

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Sisma da sinistra	1.00	1.00	1.00

Combinazione n° 6 SLU (Approccio 2) - Sisma Vert. positivo

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Pozzetto pieno	1.00	0.20	0.20
Sisma da sinistra	1.00	1.00	1.00

Combinazione n° 7 SLU (Approccio 2) - Sisma Vert. negativo				
	γ	Ψ	С	
Peso Proprio	1.00	1.00	1.00	
Spinta terreno sinistra	1.00	1.00	1.00	
Spinta terreno destra	1.00	1.00	1.00	
Spinta falda	1.00	1.00	1.00	
Pozzetto pieno	1.00	0.20	0.20	

Combinazione n° 8 SLU (Approccio 2) - Sisma Vert. positivo

1.00

Sisma da sinistra 1.00 1.00

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Pozzetto pieno	1.00	0.20	0.20
Sisma da sinistra	1.00	1.00	1.00

Combinazione n° 9 SLU (Approccio 2) - Sisma Vert. negativo

	γ	Ψ	С	
Peso Proprio	1.00	1.00	1.00	
Spinta terreno sinistra	1.00	1.00	1.00	
Spinta terreno destra	1.00	1.00	1.00	
Spinta falda	1.00	1.00	1.00	
Pozzetto pieno	1.00	0.20	0.20	
Sisma da sinistra	1.00	1.00	1.00	

Combinazione n° 10 SLE (Quasi Permanente)

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Pozzetto pieno	1.00	0.20	0.20

Combinazione n° 11 SLE (Frequente)

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00

Pozzetto pieno	1.00	0.20	0.20

Combinazione n° 12 SLE (Frequente)

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Pozzetto pieno	1.00	0.50	0.50
Spinta falda	1.00	1.00	1.00

Combinazione n° 13 SLE (Rara)

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Pozzetto pieno	1.00	0.70	0.70

Combinazione n° 14 SLE (Rara)

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Pozzetto pieno	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00

Analisi della combinazione n° 1

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro [kPa]	Pressione sup. 0.0000 [kPa]	Pressione	inf.	12.6632
Piedritto destro [kPa]	Pressione sup. 0.0000 [kPa]	Pressione	inf.	12.6632

Analisi della combinazione n° 2

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 9.5786 [kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 9.5786 [kPa]

Falda

Spinta 3.12[kN] Sottospinta 8.92[kPa]

Analisi della combinazione n° 3

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 12.6632 [kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 12.6632 [kPa]

Analisi della combinazione n° 4

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 5.7571

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 5.7571

[kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 0.1418 [kPa] Pressione inf. 0.1418

[kPa]

Analisi della combinazione n° 5

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 5.7571

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 5.7571

[kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 0.0813 [kPa] Pressione inf. 0.0813

[kPa]

Analisi della combinazione n° 6

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 0.1311 [kPa] Pressione inf. 0.1311

[kPa]

<u>Falda</u>

Spinta 2.40[kN] Sottospinta 6.86[kPa]

Analisi della combinazione n° 7

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 0.0750 [kPa] Pressione inf. 0.0750

[kPa]

<u>Falda</u>

Spinta 2.40[kN] Sottospinta 6.86[kPa]

Analisi della combinazione n° 8

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 0.1311 [kPa] Pressione inf. 0.1311

[kPa]

<u>Falda</u>

Spinta 2.40[kN]
Sottospinta 6.86[kPa]

Analisi della combinazione n° 9

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 0.0750 [kPa] Pressione inf. 0.0750

[kPa]

<u>Falda</u>

Spinta 2.40[kN] Sottospinta 6.86[kPa]

Analisi della combinazione n° 10

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

<u>Falda</u>

Spinta 2.40[kN] Sottospinta 6.86[kPa]

Analisi della combinazione n° 11

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

<u>Falda</u>

Spinta 2.40[kN] Sottospinta 6.86[kPa]

Analisi della combinazione n° 12

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

<u>Falda</u>

Spinta 2.40[kN] Sottospinta 6.86[kPa]

Analisi della combinazione n° 13

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

<u>Falda</u>

Spinta 2.40[kN] Sottospinta 6.86[kPa]

Analisi della combinazione n° 14

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.17 14.97 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 3.3843

[kPa]

<u>Falda</u>

Spinta 2.40[kN] Sottospinta 6.86[kPa]

Inviluppo sollecitazioni nodali

Inviluppo sollecitazioni fondazione

X [m]	M _{min} [kNm]	M _{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	N_{max} [kN]
0.15	-7.28	26.15	-32.76	-23.85	-38.36	10.75
0.58	4.44	35.30	-20.10	-9.32	-38.36	10.75

0.94	9.30	39.09	-10.34	-3.56	-38.36	10.75
1.40	11.15	40.59	1.17	3.06	-38.36	10.75
1.86	9.06	39.09	7.72	13.17	-38.36	10.75
2.23	4.44	35.30	13.98	23.13	-38.36	10.75
2.65	-7.28	26.15	23.85	32.76	-38.36	10.75

Inviluppo sollecitazioni piedritto sinistro

Y [m]M	_{min} [kNm] M	_{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	N_{max} [kN]
0.15	-7.28	26.15	-38.36	10.75	25.85	33.94
0.68	-3.49	7.29	-28.18	4.53	21.98	28.85
1.16	-2.97	-1.95	-15.32	1.93	18.50	24.28
1.64	-7.58	-1.30	-4.65	1.24	15.02	19.71
2.22	-7.43	-0.73	0.84	3.76	10.78	14.16
2.71	-4.66	-0.37	0.61	6.32	7.21	9.47
3.20	-1.61	-0.12	0.36	4.82	3.64	4.78
3.70	0.00	0.00	0.09	1.59	0.00	0.00

Inviluppo sollecitazioni piedritto destro

Y [m]M	min [kNm] M	_{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	N_{max} [kN]
0.15	-7.28	26.15	-10.75	38.36	25.85	33.94
0.68	-3.49	7.29	-4.53	28.18	21.98	28.85
1.16	-2.97	-1.95	-1.93	15.32	18.50	24.28
1.64	-7.58	-1.30	-1.36	4.65	15.02	19.71
2.22	-7.43	-0.73	-3.76	-0.84	10.78	14.16
2.71	-4.66	-0.37	-6.32	-0.61	7.21	9.47
3.20	-1.61	-0.12	-4.82	-0.36	3.64	4.78
3.70	0.00	0.00	-1.59	-0.12	0.00	0.00

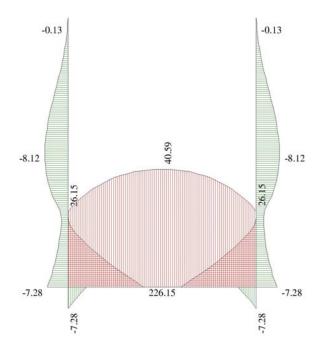


Fig. 2: Inviluppo sollecitazioni di momento flettente [kNm]

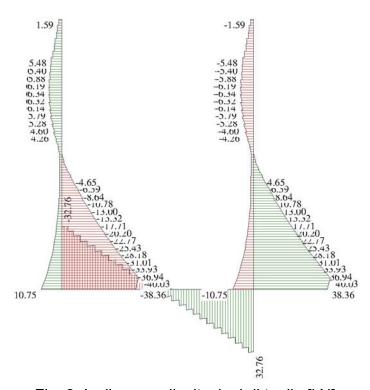


Fig. 3: Inviluppo sollecitazioni di taglio [kN]

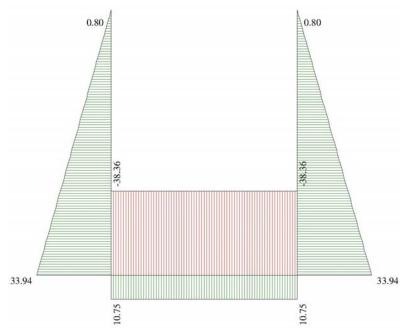


Fig. 4: Inviluppo sollecitazioni di sforzo normale [kN]

Inviluppo verifiche stato limite ultimo (SLU)

Verifica sezioni fondazione (Inviluppo)

Base sezione	B = 100 cm
Altezza sezione	H = 30.00 cm

X	A_{fi}	\mathbf{A}_{fs}	CS		
0.15	15.39	7.70	2.03		
0.58	7.70	7.70	1.82		
0.94	7.70	7.70	1.73		
1.40	7.70	7.70	1.71		
1.86	7.70	7.70	1.71		
2.23	7.70	7.70	1.75		
2.65	15.39	7.70	2.03		
X	V_{Rd}		V_{Rsd}	V_{Rcd}	A_{sw}
X 0.15	V _{Rd} 163.11		V _{Rsd} 0.00	V _{Rcd} 0.00	A sw 0.00
0.15	163.11		0.00	0.00	0.00
0.15 0.58	163.11 140.94		0.00 0.00	0.00 0.00	0.00 0.00
0.15 0.58 0.94	163.11 140.94 140.94		0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
0.15 0.58 0.94 1.40	163.11 140.94 140.94 140.94		0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
0.15 0.58 0.94 1.40 1.86	163.11 140.94 140.94 140.94 140.94		0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 30.00 cm

Υ	${\sf A}_{\sf fi}$	A_{fs}	cs		
0.15	7.70	7.70	3.53		
0.68	7.70	7.70	7.31		
1.16	5.65	5.65	15.60		
1.64	5.65	5.65	10.15		
2.22	5.65	5.65	9.07		
2.71	5.65	5.65	11.51		
3.20	5.65	5.65	26.34		
3.70	5.65	5.65	150.26		
Υ	V_{Rd}		V_{Rsd}		V_{Rcd}
0.15	144.23		0.00		0.00
0.68	143.54		0.00		0.00
1.16	142.93		0.00		0.00
1.64	142.31		0.00		0.00
2.22	141.56		0.00		0.00
2.71	140.93		0.00		0.00
3.20	140.30		0.00		0.00
JU			2.00		0.00

0.00

Verifica sezioni piedritto destro (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 30.00 cm

139.65

3.70

Υ	A_{fi}	A_{fs}	CS
0.15	7.70	7.70	3.53
0.68	7.70	7.70	7.31
1.16	5.65	5.65	15.60
1.64	5.65	5.65	10.15
2.22	5.65	5.65	9.07
2.71	5.65	5.65	11.51
3.20	5.65	5.65	26.34
3.70	5.65	5.65	150.26

Υ	V_{Rd}	V_Rsd	V_{Rcd}	A_{sw}
0.15	144.23	0.00	0.00	0.00

0.00

0.00

0.68	143.54	0.00	0.00	0.00
1.16	142.93	0.00	0.00	0.00
1.64	142.31	0.00	0.00	0.00
2.22	141.56	0.00	0.00	0.00
2.71	140.93	0.00	0.00	0.00
3.20	140.30	0.00	0.00	0.00
3.70	139.65	0.00	0.00	0.00

Inviluppo verifiche stato limite esercizio (SLE)

Verifica sezioni fondazione (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 30.00 cm

X	A_fi	${\sf A_{fs}}$	σ_{c}	σ_{fi}	σ_{fs}
0.15	15.39	7.70	1705	10253	112299
0.58	7.70	7.70	2625	18303	150224
0.94	7.70	7.70	2958	20948	166486
1.40	7.70	7.70	3093	22010	173020
1.86	7.70	7.70	2958	20948	166486
2.23	7.70	7.70	2625	18303	150224
2.65	15.39	7.70	1705	10253	112299
X	$ au_{\mathbf{c}}$		\mathbf{A}_{sw}		
0.15	-108		0.00		
0.58	-61		0.00		

0.15	-108	0.00
0.58	-61	0.00
0.94	-30	0.00
1.40	9	0.00
1.86	42	0.00
2.23	74	0.00
2.65	108	0.00

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 30.00 cm

Υ	${\sf A}_{\sf fi}$	\mathbf{A}_{fs}	σ_{c}	σ_{fi}	σ_{fs}
0.15	7.70	7.70	1967	78145	17539
0.68	7.70	7.70	469	10081	5130
1.16	5.65	5.65	317	3614	5549

5.65	5.65	710	6442	27276
5.65	5.65	668	5765	28241
5.65	5.65	413	3614	17031
5.65	5.65	141	1335	4949
5.65	5.65	0	0	0
$ au_{ extsf{c}}$		\mathbf{A}_{sw}		
-122		0.00		
-88		0.00		
-44		0.00		
-11		0.00		
13		0.00		
20		0.00		
15		0.00		
5		0.00		
	5.65 5.65 5.65 5.65 -122 -88 -44 -11 13 20 15	5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 • • • • • • • • • • • • • • • • • • •	5.65 5.65 668 5.65 5.65 413 5.65 5.65 141 5.65 5.65 0 τ _c A _{sw} -122 0.00 -88 0.00 -44 0.00 -11 0.00 13 0.00 20 0.00 15 0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Verifica sezioni piedritto destro (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 30.00 cm

Υ	A_fi	A_{fs}	σ_{c}	σ_{fi}	σ_{fs}
0.15	7.70	7.70	1967	78145	17539
0.68	7.70	7.70	469	10081	5130
1.16	5.65	5.65	317	3614	5549
1.64	5.65	5.65	710	6442	27276
2.22	5.65	5.65	668	5765	28241
2.71	5.65	5.65	413	3614	17031
3.20	5.65	5.65	141	1335	4949
3.70	5.65	5.65	0	0	0
Y	$ au_{ extsf{c}}$		\mathbf{A}_{sw}		
0.15	122		0.00		
0.68	88		0.00		
1.16	44		0.00		
1.64	11		0.00		
2.22	-13		0.00		
2.71	-20		0.00		
3.20	-15		0.00		
3.70	-5		0.00		

Collegamento autostradale Asti – Cuneo – Tronco II Lotto 6 PROGETTO ESECUTIVO

Impianti di trattamento acque di prima pioggia – Sifoni - Relazione descrittiva e di calcolo

ALLEGATO 2 - Analisi e verifica pozzetto 1.80 x 1.50 x 3.80 m

Geometria scatolare

Altezza esterna	4.10	[m]
Larghezza esterna	2.40	[m]
Lunghezza mensola di fondazione sinistra	0.00	[m]
•		
Lunghezza mensola di fondazione destra	0.00	[m]
Spessore piedritto sinistro	0.30	[m]
Spessore piedritto destro	0.30	[m]
Spessore fondazione	0.30	[m]

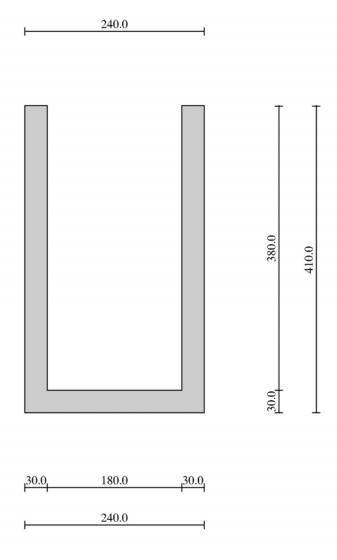


Fig. 5: Geometria pozzetto

Condizioni di carico

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Carichi verticali positivi se diretti verso il basso

Carichi orizzontali positivi se diretti verso destra

Coppie concentrate positive se antiorarie

Ascisse X (espresse in m) positive verso destra

Ordinate Y (espresse in m) positive verso l'alto

Carichi concentrati espressi in kN

Coppie concentrate espressi in kNm

Carichi distribuiti espressi in kN/m

Simbologia adottata e unità di misura

Forze concentrate

X ascissa del punto di applicazione dei carichi verticali concentrati

Y ordinata del punto di applicazione dei carichi orizzontali concentrati

F_y componente Y del carico concentrato

F_x componente X del carico concentrato

M momento

Forze distribuite

X_i, X_f ascisse del punto iniziale e finale per carichi distribuiti verticali

Y_i, Y_f ordinate del punto iniziale e finale per carichi distribuiti orizzontali

V_{ni} componente normale del carico distribuito nel punto iniziale

V_{nf} componente normale del carico distribuito nel punto finale

V_{fi} componente tangenziale del carico distribuito nel punto iniziale

V_{tf} componente tangenziale del carico distribuito nel punto finale

D_{te} variazione termica lembo esterno espressa in gradi centigradi

D_{fi} variazione termica lembo interno espressa in gradi centigradi

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

Condizione di carico n°6 (Spinta falda)

Condizione di carico n° 7 (Pozzetto pieno)

Distr	Pied_S V_{tf} = 0.00	$Y_i = 0.30$	$Y_f = 3.60$	$V_{ni} = -33.00$	$V_{nf} = 0.00$	V _{ti} =	0.00
Distr	Pied_D V _{tf} = 0.00	$Y_i = 0.30$	$Y_f = 3.60$	V _{ni} = 33.00	V _{nf} = 0.00	V _{ti} =	0.00
Distr	Fondaz. V _{tf} = 0.00	$X_i = 0.30$	$X_f = 2.10$	V _{ni} = 33.00	$V_{nf} = 33.00$	V _{ti} =	0.00

Impostazioni di progetto

Verifica materiali:

Stato Limite Ultimo

Coefficiente di sicurezza calcestruzzo γ _c	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00

Verifica Taglio - Metodo dell'inclinazione variabile del traliccio

$$\begin{split} &V_{Rd} = [0.18*k*(100.0*\rho_l*fck)^{1/3}/\gamma_c + 0.15*\sigma_{cp}]*bw*d > (vmin+0.15*\sigma_{cp})*b_w*d \\ &V_{Rsd} = 0.9*d*A_{sw}/s*fyd*(ctg\alpha + ctg\theta)*sin\alpha \\ &V_{Rcd} = 0.9*d*b_w*\alpha_c*fcd'*(ctg(\theta) + ctg(\alpha)/(1.0 + ctg\theta^2) \\ &con: \end{split}$$

d altezza utile sezione [mm]

b_w larghezza minima sezione [mm]

 σ_{cp} tensione media di compressione [N/mmq]

ρ_I rapporto geometrico di armaturaA_{sw} area armatuta trasversale [mmq]

s interasse tra due armature trasversali consecutive [mm]

 α_c coefficiente maggiorativo, funzione di fcd e σ_{cp}

fcd'=0.5*fcd k=1+(200/d)^{1/2} vmin=0.035*k^{3/2}*fck^{1/2}

Stato Limite di Esercizio

Criteri di scelta per verifiche tensioni di esercizio:

Ambiente poco aggressivo

Limite tensioni di compressione nel calcestruzzo (comb. rare) 0.60 f_{ck}

Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.)

0.45

 f_{ck}

Limite tensioni di trazione nell'acciaio (comb. rare) 0.70 f_{vk}

Criteri verifiche a fessurazione:

Armatura sensibile

Apertura limite fessure espresse in [mm]

Apertura limite fessure w1=0.10 w2=0.20 w3=0.40

Verifiche secondo:

Norme Tecniche 2008 - Approccio 2

Copriferro sezioni 3.00 [cm]

Descrizione combinazioni di carico

Simbologia adottata

γ Coefficiente di partecipazione della condizione

 Ψ Coefficiente di combinazione della condizione

C Coefficiente totale di partecipazione della condizione

Norme Tecniche 2008

Simbologia adottata

 γ_{G1sfav} Coefficiente parziale sfavorevole sulle azioni permanenti

YG1fav Coefficiente parziale favorevole sulle azioni permanenti

 γ_{G2sfav} Coefficiente parziale sfavorevole sulle azioni permanenti non strutturali

 γ_{G2fav} Coefficiente parziale favorevole sulle azioni permanenti non strutturali

γ_Q Coefficiente parziale sulle azioni variabili

 $\gamma_{tan\phi}$ Coefficiente parziale di riduzione dell'angolo di attrito drenato

γ_{c'} Coefficiente parziale di riduzione della coesione drenata

 γ_{cu} Coefficiente parziale di riduzione della coesione non drenata

γ_{qu} Coefficiente parziale di riduzione del carico ultimo

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.30	1.00
Permanenti non strutturali	Favorevole	γG2fav	0.00	0.00

Permanenti non strutturali	Sfavorevole	γG2sfav	1.50	1.30
Variabili	Favorevole	γ̈Qfav	0.00	0.00
Variabili	Sfavorevole	γ̈́Qsfav	1.50	1.30
Coefficienti parziali per i para	ametri geotecnici	del terreno:		
Parametri			M1	M2
Tangente dell'angolo di attrit	to	$\gamma_{tan\phi'}$	1.00	1.25
Coesione efficace		γc'	1.00	1.25
Resistenza non drenata		γ_{cu}	1.00	1.40
Resistenza a compressione	uniassiale	γ_{qu}	1.00	1.60
Peso dell'unità di volume		γ_{γ}	1.00	1.00
Coefficienti di partecipazio	one combinazion	ii sismiche		
Coefficienti parziali per le az	ioni o ner l'effetto	delle azioni		
Carichi	Effetto	delle azioni	<u>.</u> A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1av γG1sfav	1.00	1.00
Permanenti	Favorevole	γG1slav γG2fav	0.00	0.00
Permanenti	Sfavorevole	γG2iav γG2sfav	1.00	1.00
Variabili	Favorevole	·	0.00	0.00
Variabili	Sfavorevole	γQfav	1.00	1.00
variabili	Siavorevole	γ̈Qsfav	1.00	1.00
Coefficienti parziali per i para	ametri geotecnici	del terreno:		
Parametri	-		M1	<i>M</i> 2
Tangente dell'angolo di attrit	to	γ̃tan₀'	1.00	1.25
Coesione efficace		γс'	1.00	1.25
Resistenza non drenata		γcu	1.00	1.40
Resistenza a compressione	uniassiale	γqu	1.00	1.60
Peso dell'unità di volume		γ_{γ}	1.00	1.00
		.,		
Coefficienti di partecipazio	one combinazion	ni statiche		
Coefficienti parziali per le az	<u>ioni o per l'effetto</u>	delle azioni	<u>:</u>	
Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.30	1.00
Permanenti non strutturali	Favorevole	γG2fav	0.00	0.00
Permanenti non strutturali	Sfavorevole	γG2sfav	1.50	1.30
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γ̈Qsfav	1.50	1.30

Coefficienti parziali per i parametri geotecnici di	<u>el terreno:</u>		
Parametri		M1	<i>M</i> 2
Tangente dell'angolo di attrito	γtan _φ '	1.00	1.25
Coesione efficace	γc'	1.00	1.25
Resistenza non drenata	γcu	1.00	1.40
Resistenza a compressione uniassiale	γqu	1.00	1.60
Peso dell'unità di volume	γ_{γ}	1.00	1.00

Coefficienti di partecipazione combinazioni sismiche

Coefficienti p	arziali per	le azioni o	per l'effetto delle	azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.00	1.00
Permanenti	Favorevole	γG2fav	0.00	0.00
Permanenti	Sfavorevole	γG2sfav	1.00	1.00
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γ̈Qsfav	1.00	1.00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	γtan _φ '	1.00	1.25
Coesione efficace	γс'	1.00	1.25
Resistenza non drenata	γcu	1.00	1.40
Resistenza a compressione uniassiale	γ_{qu}	1.00	1.60
Peso dell'unità di volume	γ_{γ}	1.00	1.00

Coeff. di combinazione Ψ_0 = 0.70 Ψ_1 = 0.50 Ψ_2 = 0.20

Combinazione n° 1 SLU (Approccio 2)

	γ	Ψ	С
Peso Proprio	1.30	1.00	1.30
Spinta terreno sinistra	1.30	1.00	1.30
Spinta terreno destra	1.30	1.00	1.30

Combinazione n° 2 SLU (Approccio 2)

	γ	Ψ	С
Peso Proprio	1.30	1.00	1.30
Spinta terreno sinistra	1.30	1.00	1.30
Spinta terreno destra	1.30	1.00	1.30

Spinta falda	1.30	1.00	1.30

Combinazione n° 3 SLU (Approccio 2)

	γ	Ψ	С
Peso Proprio	1.30	1.00	1.30
Spinta terreno sinistra	1.30	1.00	1.30
Spinta terreno destra	1.30	1.00	1.30
Pozzetto pieno	1.50	1.00	1.50

Combinazione n° 4 SLU (Approccio 2) - Sisma Vert. positivo

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Sisma da sinistra	1.00	1.00	1.00

Combinazione n° 5 SLU (Approccio 2) - Sisma Vert. negativo

	γ	Ψ	С	
Peso Proprio	1.00	1.00	1.00	
Spinta terreno sinistra	1.00	1.00	1.00	
Spinta terreno destra	1.00	1.00	1.00	
Sisma da sinistra	1.00	1.00	1.00	

Combinazione n° 6 SLU (Approccio 2) - Sisma Vert. positivo

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Pozzetto pieno	1.00	0.20	0.20
Sisma da sinistra	1.00	1.00	1.00

Combinazione n° 7 SLU (Approccio 2) - Sisma Vert. negativo

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Pozzetto pieno	1.00	0.20	0.20
Sisma da sinistra	1.00	1.00	1.00

Combinazione n° 8 SLU (Ap	proccio 2) - Sisma Ve	ert. positivo
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Pozzetto pieno	1.00	0.20	0.20
Sisma da sinistra	1.00	1.00	1.00
Combinazione n° 9 SLU (Ap	proccio 2	<u>) - Sisma Ve</u>	ert. negativo
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Pozzetto pieno	1.00	0.20	0.20
Sisma da sinistra	1.00	1.00	1.00
Combinazione n° 10 SLE (Q	<u>uasi Perr</u>	<u>nanente)</u>	
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Pozzetto pieno	1.00	0.20	0.20
Combinazione n° 11 SLE (Fr	equente)	<u>)</u>	
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Pozzetto pieno	1.00	0.20	0.20
Combinazione n° 12 SLE (Fr	equente)	<u>)</u>	
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Pozzetto pieno	1.00	0.50	0.50
Spinta falda	1.00	1.00	1.00

Combinazione n° 13 SLE (Rara)

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Pozzetto pieno	1.00	0.70	0.70

Combinazione n° 14 SLE (Rara)

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Pozzetto pieno	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00

Analisi della combinazione n° 1

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-12.42	14.82	0.0000

Spinte sui piedritti

Piedritto sinistro [kPa]	Pressione sup. 0.0000 [kPa]	Pressione	inf.	15.8985
Piedritto destro [kPa]	Pressione sup. 0.0000 [kPa]	Pressione	inf.	15.8985

Analisi della combinazione n° 2

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-12.42	14.82	0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 11.0512

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 11.0512

[kPa]

<u>Falda</u>

Spinta 7.71[kN] Sottospinta 14.02[kPa]

Analisi della combinazione n° 3

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.42 14.82 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 15.8985

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 15.8985

[kPa]

Analisi della combinazione n° 4

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.42 14.82 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 8.2458

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 8.2458 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 0.2015 [kPa] Pressione inf. 0.2015 [kPa]

Analisi della combinazione n° 5

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.42 14.82 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 8.2458

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 8.2458

[kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 0.1162 [kPa] Pressione inf. 0.1162

[kPa]

Analisi della combinazione n° 6

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.42 14.82 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 0.1777 [kPa] Pressione inf. 0.1777

[kPa]

<u>Falda</u>

Spinta 5.93[kN] Sottospinta 10.79[kPa]

Analisi della combinazione n° 7

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.42 14.82 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 0.1022 [kPa] Pressione inf. 0.1022

[kPa]

<u>Falda</u>

Spinta 5.93[kN] Sottospinta 10.79[kPa]

Analisi della combinazione n° 8

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

 ${\ensuremath{ \begin{tabular}{l} \ensuremath{ \hfill \ensuremath$

Carichi verticali in calotta

Xi Xj Q[kPa] -12.42 14.82 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 0.1777 [kPa] Pressione inf. 0.1777

[kPa]

Falda

Spinta 5.93[kN] Sottospinta 10.79[kPa]

Analisi della combinazione n° 9

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.42 14.82 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 0.1022 [kPa] Pressione inf. 0.1022

[kPa]

<u>Falda</u>

Spinta 5.93[kN] Sottospinta 10.79[kPa]

Analisi della combinazione n° 10

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.42 14.82 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

<u>Falda</u>

Spinta 5.93[kN] Sottospinta 10.79[kPa]

Analisi della combinazione n° 11

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.42 14.82 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

<u>Falda</u>

Spinta 5.93[kN] Sottospinta 10.79[kPa]

Analisi della combinazione n° 12

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.42 14.82 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171 [kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

<u>Falda</u>

Spinta 5.93[kN] Sottospinta 10.79[kPa]

Analisi della combinazione n° 13

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.42 14.82 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171 [kPa]

Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 4.5171

[kPa]

<u>Falda</u>

Spinta 5.93[kN] Sottospinta 10.79[kPa]

Analisi della combinazione n° 14

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12.42 14.82 0.0000

Spinte sui piedritti

Piedritto sinistro [kPa]	Pressione sup. 0.0000 [kPa]	Pressione	inf.	4.5171
Piedritto destro [kPa]	Pressione sup. 0.0000 [kPa]	Pressione	inf.	4.5171

<u>Falda</u>

Spinta 5.93[kN] Sottospinta 10.79[kPa]

Inviluppo sollecitazioni nodali

Inviluppo sollecitazioni fondazione

X [m]	M _{min} [kNm]	M_{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	N_{max} [kN]
0.15	-9.45	34.79	-36.52	-26.59	-46.33	17.20
0.48	0.98	43.24	-24.05	-12.01	-46.33	17.20
0.84	7.82	47.89	-11.20	-4.29	-46.33	17.20
1.20	10.08	49.33	1.36	3.64	-46.33	17.20
1.56	7.82	47.89	9.02	14.57	-46.33	17.20
1.92	0.98	43.24	17.22	27.54	-46.33	17.20
2.25	-9.45	34.79	26.59	36.52	-46.33	17.20

Inviluppo sollecitazioni piedritto sinistro

Y [m]M _r	_{ուո} [kNm] M։	_{nax} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	N _{max} [kN]
0.15	-9.45	34.79	-46.33	17.20	28.77	37.77
0.68	-3.37	11.60	-35.54	7.45	24.88	32.66

1.16	-2.17	-0.77	-21.38	2.86	21.38	28.07
1.64	-9.18	-0.09	-9.49	0.93	17.88	23.48
2.13	-11.22	-0.02	0.03	0.82	14.38	18.88
2.62	-9.40	-0.01	0.02	6.08	10.80	14.18
3.11	-5.61	0.00	0.01	7.94	7.22	9.48
3.60	-1.91	0.00	0.00	5.65	3.64	4.78
4.10	0.00	0.00	0.00	1.95	0.00	0.00

Inviluppo sollecitazioni piedritto destro

Y [m]	M _{min} [kNm] N	l _{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	N_{max} [kN]
0.15	-9.45	34.79	-17.20	46.33	28.77	37.77
0.68	-3.37	11.60	-7.45	35.54	24.88	32.66
1.16	-2.17	-0.77	-2.86	21.38	21.38	28.07
1.64	-9.18	-0.09	-1.05	9.49	17.88	23.48
2.13	-11.22	-0.02	-0.85	-0.03	14.38	18.88
2.62	-9.40	-0.01	-6.08	-0.02	10.80	14.18
3.11	-5.61	0.00	-7.94	-0.01	7.22	9.48
3.60	-1.91	0.00	-5.65	0.00	3.64	4.78
4.10	0.00	0.00	-1.95	0.00	0.00	0.00

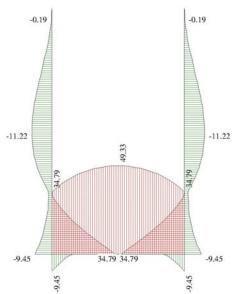


Fig. 6: Inviluppo sollecitazioni di momento flettente [kNm]

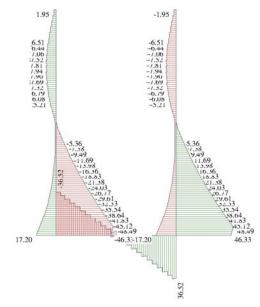


Fig. 7: Inviluppo sollecitazioni di taglio [kN]

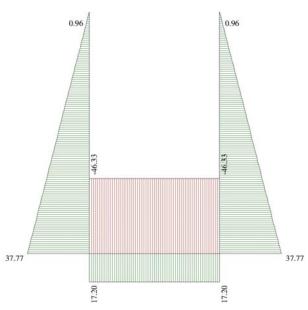


Fig. 8: Inviluppo sollecitazioni di sforzo normale [kN] Inviluppo verifiche stato limite ultimo (SLU)

Verifica sezioni fondazione (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 30.00 cm

X	A_{fi}	A_{fs}	CS
0.15	15.39	7.70	1.59
0.48	7.70	7.70	1.48
0.84	7.70	7.70	1.42
1.20	7.70	7.70	1.41
1.56	7.70	7.70	1.41
1.92	7.70	7.70	1.43

2.25	15.39	7.70	1.59		
X	V_{Rd}		V_{Rsd}	V_Rcd	A_{sw}
0.15	163.67		0.00	0.00	0.00
0.48	141.49		0.00	0.00	0.00
0.84	141.49		0.00	0.00	0.00
1.20	141.49		0.00	0.00	0.00
1.56	141.49		0.00	0.00	0.00
1.92	141.49		0.00	0.00	0.00
2.25	163.67		0.00	0.00	0.00

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 30.00 cm

Υ	A_{fi}	A_{fs}	cs
0.15	7.70	7.70	2.58
0.68	7.70	7.70	4.78
1.16	5.65	5.65	15.71
1.64	5.65	5.65	6.94
2.13	5.65	5.65	6.50
2.62	5.65	5.65	6.33
3.11	5.65	5.65	9.08
3.60	5.65	5.65	21.49
4.10	5.65	5.65	122.23

Υ	V_{Rd}	$ m V_{Rsd}$	V_{Rcd}	A_{sw}
0.15	144.75	0.00	0.00	0.00
0.68	144.06	0.00	0.00	0.00
1.16	143.44	0.00	0.00	0.00
1.64	142.82	0.00	0.00	0.00
2.13	142.20	0.00	0.00	0.00
2.62	141.56	0.00	0.00	0.00
3.11	140.93	0.00	0.00	0.00
3.60	140.30	0.00	0.00	0.00
4.10	139.65	0.00	0.00	0.00

Verifica sezioni piedritto destro (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 30.00 cm

Υ	A_{fi}	A_{fs}	CS		
0.15	7.70	7.70	2.58		
0.68	7.70	7.70	4.78		
1.16	5.65	5.65	15.71		
1.64	5.65	5.65	6.94		
2.13	5.65	5.65	6.50		
2.62	5.65	5.65	6.33		
3.11	5.65	5.65	9.08		
3.60	5.65	5.65	21.49		
4.10	5.65	5.65	122.23		
Υ	V_{Rd}		V_{Rsd}	V_{Rcd}	A_{sw}
0.15	144.75		0.00	0.00	0.00
0.68	144.06		0.00	0.00	0.00
1.16	143.44		0.00	0.00	0.00
1.64	142.82		0.00	0.00	0.00
2.13	142.20		0.00	0.00	0.00
2.62	141.56		0.00	0.00	0.00
3.11	140.93		0.00	0.00	0.00
3.60	140.30		0.00	0.00	0.00
4.10	139.65		0.00	0.00	0.00
	سينائي حسا			incite econolisis (CLE)	

Inviluppo verifiche stato limite esercizio (SLE)

Verifica sezioni fondazione (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 30.00 cm

X	A_fi	A_{fs}	σ_{c}	σ_{fi}	σ_{fs}
0.15	15.39	7.70	2314	14347	148537
0.48	7.70	7.70	3220	22568	183338
0.84	7.70	7.70	3625	25775	203069
1.20	7.70	7.70	3752	26776	209233
1.56	7.70	7.70	3625	25775	203069
1.92	7.70	7.70	3220	22568	183338
2.25	15.39	7.70	2314	14347	148537
X	$ au_{ extsf{c}}$		\mathbf{A}_{sw}		
0.15	-120		0.00		
0.48	-74		0.00		
0.84	-32		0.00		

1.20	10	0.00
1.56	46	0.00
1.92	88	0.00
2.25	120	0.00

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 30.00 cm

3.7	_	_			
Y	A_{fi}	A_{fs}	σ_{c}	σ_{fi}	σ_{fs}
0.15	7.70	7.70	2647	109227	23163
0.68	7.70	7.70	835	24815	8371
1.16	5.65	5.65	229	2866	1635
1.64	5.65	5.65	891	7997	34913
2.13	5.65	5.65	1030	8688	45423
2.62	5.65	5.65	843	7018	37978
3.11	5.65	5.65	498	4226	21743
3.60	5.65	5.65	168	1532	6391
4.10	5.65	5.65	0	0	0
Υ	$ au_{ extsf{c}}$		A_{sw}		
0.15	-144		0.00		
0.68	-112		0.00		
1.16	-66		0.00		
1.64	-26		0.00		
2.13	3		0.00		
2.62	20		0.00		

0.00

0.00

0.00

Verifica sezioni piedritto destro (Inviluppo)

25

17

6

Base sezione B = 100 cmAltezza sezione H = 30.00 cm

3.11

3.60

4.10

Υ	A_{fi}	A_{fs}	σ_{c}	σ_{fi}	σ_{fs}
0.15	7.70	7.70	2647	109227	23163
0.68	7.70	7.70	835	24815	8371

5.65	5.65	229	2866	1635
5.65	5.65	891	7997	34913
5.65	5.65	1030	8688	45423
5.65	5.65	843	7018	37978
5.65	5.65	498	4226	21743
5.65	5.65	168	1532	6391
5.65	5.65	0	0	0
$ au_{c}$		\mathbf{A}_{sw}		
144		0.00		
112		0.00		
66		0.00		
26		0.00		
-3		0.00		
-20		0.00		
-25		0.00		
-17		0.00		
-6		0.00		
	5.65 5.65 5.65 5.65 5.65 5.65 5.65 -3 -20 -25 -17	5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 -3 -20 -25 -17	5.65 5.65 891 5.65 5.65 1030 5.65 5.65 843 5.65 5.65 498 5.65 5.65 168 5.65 5.65 0 τ _c A _{sw} 144 0.00 112 0.00 66 0.00 26 0.00 -3 0.00 -20 0.00 -25 0.00 -17 0.00	5.65 5.65 891 7997 5.65 5.65 1030 8688 5.65 5.65 843 7018 5.65 5.65 498 4226 5.65 5.65 168 1532 5.65 5.65 0 0 144 0.00 0 112 0.00 0 66 0.00 0 26 0.00 0 -3 0.00 0 -20 0.00 0 -25 0.00 0 -17 0.00

Dichiarazioni secondo N.T.C. 2008 (punto 10.2)