

TANGENZIALE EST ESTERNA DI MILANO

CODICE C.U.P. I21B05000290007 CODICE C.I.G. 017107578C

PROGETTO ESECUTIVO

LOTTO C

INTERVENTI DI INSERIMENTO PAESISTICO - AMBIENTALE, RIPRISTINO E COMPENSAZIONI

PROGETTO SPECIALE AMBIENTALE N.5 "LAMBRO-MELEGNANO" PASSERELLA CICLOPEDONALE "FIUME LAMBRO" RELAZIONE DI CALCOLO IMPALCATO

IL PROGETTISTA
LANDE S.r.I.
Dott. Ing. Antonio Tosiani
Ordine Ingegeri di Roma
n. 19857

Dott. Ing Giorgio Taelliatue Ordine Ingegner Provincia di Bergamo n. 1516 CONSORZIO COSTRUTTORI TEEM IL DIRETTORE TECNICO

IL DIRETTORE TECNICO

Dott, Ing. Rocco Magri

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Dott. Ing. Pietro Mazzoli. Ordine Ingegneri di Parma n. 821

IL CONCEDENTE

IL CONCESSIONARIO

IL DIRETTORE DEI LAVORI

tangenziale esterna

Α	30.04.2014	EMISSIONE	M. ALTIERI	M. VARI	A. TOSIANI
EM./REV.	DATA	DESCRIZIONE	ELABORAZIONE PROGETTUALE	CONTR.	APPROV.
		· · · · · · · · · · · · · · · · · · ·			

DATA: **IDENTIFICAZIONE ELABORATO** 30.04.2014 NUM. PROGR. TRATTO OPERA OPERA AMBITO TIPO ELABORATO PROGRESSIVA REV. SCALA: C4114 Ε AC4 MAJ05 0 I|ARC 004 Α C

Doc. N. C4114

CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc

REV.

FOGLIO 2 di 83

INDICE

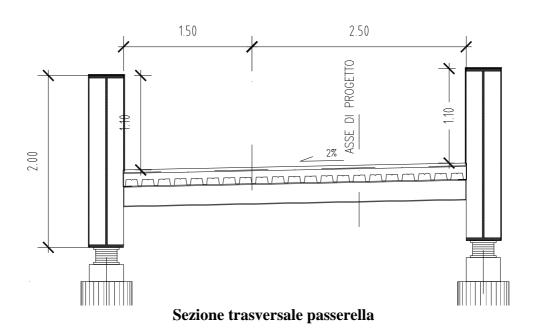
1	PRI	EMESSA	4
2		RMATIVA DI RIFERIMENTO	
	2.1	Normativa emessa dallo stato italiano	
	2.2	Normativa emanata dal C.N.R.	
	2.3	Norme UNI	
3	RIF	FERIMENTI BIBLIOGRAFICI	
4		OGRAMMI PER L'ANALISI AUTOMATICA	
5		RATTERISTICHE DEI MATERIALI	
	5.1	Calcestruzzo per elevazioni	
	5.2 5.3	Calcestruzzo per soletta	
	5.4	Acciaio per cemento armato	
	5.5	Acciaio per carpenteria metallica.	
٠	5.5.1	1 1	
	5.5.2	•	
	5.5.3		
4	5.6	Micropali di fondazione	
6		SCRIZIONE DEL MODELLO	
O	6.1.		
	6.1.2		
	6.1.3		
	6.1.4		
	6.1.5		
(5.2	Travi metalliche longitudinali	.19
6	5.3	Trasversi metallici	.24
7	AN	ALISI DEI CARICHI: TRAVI PRINCIPALI	26
7	7.1	Peso carpenteria metallica (PTR)	.26
7	7.2	Permanente portato (PERM)	
7	7.3	Azione del vento (VENTO)	
	7.3.1	1	
	7.3.2		
	7.3.3	$1 \mathcal{U}$	
	7.3.4	1 0	
	7.3.5	1	
	7.3.6		
,	7.3.7	1	
	7.4	Sovraccarico accidentale (ACCENVE)	
	7.6	Azione della neve (NEVE)	
8		ALISI DEI CARICHI: TRAVERSI	
	3.1 3.2	Peso proprio carpenteria metallica (PTR)	
	3.3	Sovraccarichi accidentali (ACC)	
	3.3 3.4	Azione del vento (VENTO)	
	3.5	Instabilità piattabanda compressa della trave principale	
9 `		ADRO DELLE COMBINAZIONI ADOTTATE	
_	Q∪ 9.1	Combinazioni di carico statiche	
	9.2	Combinazioni di carico sismiche	
: 10		ISULTATI DELL'ANALISI MODALE	
11		'ERIFICHE TRAVI LONGITUDINALI	
	11.1	Criteri di verifica impiegati	
	11.2 11.2	Verifica delle travi longitudinali	
1	11.2 11.3	Verifica all'imbozzamento dei pannelli d'anima	
	11.3	•	
	11.0	pumono a umma nona sezione ai mezzona	

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	3 di 83
0 0 -				

11.3.2 Verifica pannello d'anima nella sezione di appoggio pile	43
11.4 Verifiche integrative	44
11.4.1 Verifiche delle piattabande superiori ed inferiori	
11.4.2 Verifiche del montante verticale	
11.4.3 Verifiche saldature di composizione	52
12 VERIFICA DEI TRAVERSI	53
12.1 Sollecitazioni di verifica	
12.2 Verifiche tensionali e di resistenza	
12.2.1 Verifica sezione di mezzeria (Mmax+)	54
12.2.2 Verifica sezione di giunto (Mmax-)	
12.3 Stabilità all'imbozzamento	
12.4 Stabilità flesso-torsionale (svergolamento)	
12.5 Calcolo e verifica delle giunzioni flangiate	
12.5.1 Calcolo delle forze indotte da M nei bulloni	
12.5.2 Calcolo delle forze indotte da T nei bulloni	
12.5.3 Verifica dei bulloni	
12.5.4 Verifica della controflangia	
13 SOLLEVAMENTO DELL'IMPALCATO	
13.1 Verifica irrigidimento verticale	62
14 VERIFICA CONTROVENTI	64
14.1 Verifica del profilato ad "L" (90×90×6)	
14.2 Verifica dell'unione bullonata	
14.2.1 Rottura a taglio del gambo del bullone	
15 CALCOLO DELL'ESCURSIONE APPOGGI E GIUNTI	
16 FRECCE E CONTROMONTE	
16.1 Travi longitudinali	
16.2 Traversi	
16.3 Contromonta	
17 CALCOLO DELLE REAZIONI VINCOLARI	
18 EFFETTI LOCALI - CALCOLO E VERIFICA DELLA SOLETTA IN C.A	
18.1 Verifica lamiera grecata	
18.1.1 Schema statico	
18.1.2 Analisi dei carichi	
18.1.3 Calcolo freccia in mezzeria	
18.1.4 Verifica di resistenza	
18.2 Verifica longitudinale soletta	
18.2.1 Schema statico	
18.2.2 Analisi dei carichi	
18.2.3 Combinazioni di carico per le verifiche	
18.2.4 Sollecitazioni	
18.2.5 Verifiche agli Stati Limite	

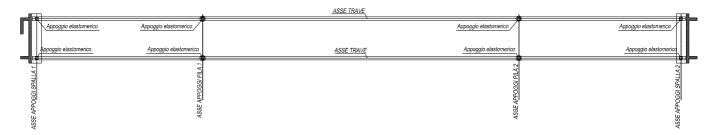
	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	4 di 83

1 PREMESSA


Scopo del presente lavoro è l'analisi statica delle strutture dell'impalcato costituenti la passerella ciclopedonale sul fiume Lambro, nel comune di Cerro al Lambro (MI); tale opera risulta inquadrata nell'ambito del Progetto Definitivo della nuova Tangenziale Est Esterna di Milano (viabilità di raccordo S.P.17-S.P.40-S.S.9 nei comuni di Cerro al Lambro, Vizzolo Predabissi e Melegnano).

Per dare continuità al percorso ciclopedonale di Cerro al Lambro è prevista la realizzazione di una passerella in fregio ad un ponte-canale esistente, in muratura a tre archi, di particolare interesse storico artistico in quanto risalente all'epoca napoleonica (1860 circa). La necessità di contenere le dimensioni della passerella in modo tale da ridurne l'impatto visivo, pur in considerazione della grande luce da coprire, ha orientato le scelte strutturali operate.

Prospetto passerella


Si è quindi optato per la tipologia di ponte a via di corsa inferiore con travi in acciaio a doppia 'T' in composizione saldata, riuscendo così a contenere l'ingombro verticale del ponte limitatamente all'altezza delle due travi longitudinali (pari a 2.0 m) e comunque limitate all'altezza del necessario parapetto.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	5 di 83

La passerella, a sviluppo planimetrico rettilineo, ha una campata centrale di 58.0 m e due campate di riva di 24.0 m ciascuna, per complessivi 106.0 m di opera (più due retrotrave da 50 cm). La suddivisione in conci (dettagliata negli elaborati grafici di progetto) viene effettuata in base a criteri di trasportabilità e movimentazione. L'assemblaggio, da realizzarsi in opera, verrà effettuato tramite saldature a completo ripristino. Altimetricamente, alla sezione di mezzeria della campata centrale viene imposta una controfreccia di 11 cm, necessaria al recupero delle deformazioni relative ai carichi permanenti più una percentuale dei carichi accidentali e, contemporaneamente, favorire lo smaltimento delle acque di superficie.

Gli appoggi delle travi, su pile e spalle sono costituiti da isolatori elastomerici aventi uno smorzamento pari al 16%. Tali isolatori consentono pertanto il disaccoppiamento del moto sismico dell'impalcato da quello della restante sottostruttura. Si viene a realizzare pertanto una struttura isolata.

Schema appoggi (figura non in scala)

L'impalcato è irrigidito da traversi realizzati con profilati in acciaio tipo IPE 240, posti ad un interasse di 2.0 m, sui quali viene posata una lamiera grecata zincata che accoglie il getto di completamento in calcestruzzo a supporto della pavimentazione.

Alle due estremità dell'impalcato, per una fascia di 4.50 m dal retro trave, la lamiera grecata è stata posizionata sull'ala inferiore del traverso e di conseguenza la soletta ha uno spessore maggiore rispetto al resto dell'impalcato. Tutto questo per evitare il sollevamento dell'impalcato sugli appoggi posti sulle due spalle.

La superficie pavimentata, complessivamente larga 4.0 m, è suddivisa in due corsie dedicate l'una al transito di pedoni (larghezza pari a 1.5 m), l'altra al transito di biciclette (larghezza pari a 2.5 m).

A livello di finitura e per un migliore inserimento dell'opera nel contesto le travi portanti longitudinali in acciaio vengono tamponate con pannelli di rivestimento in legno.

Le sottostrutture vengono trattate nella specifica relazione di calcolo.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	6 di 83

Per ulteriori dettagli si rimanda agli appositi elaborati grafici di progetto.

I criteri generali di progettazione delle opere seguono la ormai affermata e codificata filosofia del 'metodo agli stati limite' che prevede l'analisi sia degli stati di servizio/esercizio sia ultimi.

Anche la scelta dei materiali, in particolar modo della composizione dei calcestruzzi, in base alla tipologia di opera da eseguire, è subordinata a detti criteri, cui sempre più la normativa fa riferimento per sensibilizzare le amministrazioni alle problematiche di durabilità e manutenzione.

In generale i fondamenti normativi su cui si basa la progettazione definitiva svolta in questo contesto si basano sulle prescrizioni del D.M. 14/01/2008.

CCT	Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 7 di 83

2 NORMATIVA DI RIFERIMENTO

2.1 Normativa emessa dallo stato italiano

- Legge n.1086 del 05/11/1971: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- Legge n.64 del 02/02/1974: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- Ministero dei LL.PP. D.M. 09.01.1996: "Norme tecniche per l'esecuzione delle opere in cemento normale e precompresso e per le strutture metalliche" (parzialmente superato dal D.M. 14.01.2008 e relative istruzioni).
- Ministero dei LL.PP. Circ. 252 del 15.10.1996: "Istruzioni relative alle norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche, di cui al Decreto Ministeriale 09 gennaio 1996" (parzialmente superato dal D.M. 14.01.2008 e relative istruzioni).
- Ministero delle Infrastrutture D.M. 14/01/2008: "Nuove norme tecniche per le costruzioni".
- Consiglio Superiore dei LL.PP. Circ. n°617 del 02/02/2009: "Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al D.M. 14 gennaio 2008".
- Consiglio Superiore dei Lavori Pubblici Servizio Tecnico Centrale (febbraio 2008): "Linee guida per la messa in opera del calcestruzzo strutturale e per la valutazione delle caratteristiche meccaniche del calcestruzzo indurito mediante prove non distruttive".
- Ministero dei LL.PP. D.M. 11/03/1988: "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- Ministero dei LL.PP. Circ. n°30483 del 24/09/1988: Istruzioni per l'applicazione delle "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	8 di 83

2.2 Normativa emanata dal C.N.R.

- CNR-10011/97: "Costruzioni in acciaio. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione".
- **CNR-10030/87:** "Anime irrigidite di travi a parete piena".
- CNR-10018/85: "Apparecchi d'appoggio in gomma e PTFE nelle costruzioni: Istruzioni per il calcolo e l'impiego".
- CNR-DT 207/2008: "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni".
- **CNR 10024**: "Analisi di strutture mediante elaboratore. Impostazione e redazione delle relazioni di calcolo".

2.3 Norme UNI

Tutte le Norme UNI richiamate nei D.M., Istruzioni, Circolari di cui si fa menzione e in particolare:

- UNI EN 197-1: "Cemento Composizione, specificazioni e criteri di conformità per cementi comuni".
- UNI EN 206-1: "Calcestruzzo Specificazioni, prestazioni, produzione e conformità".
- UNI 11104/2004: "Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1".

CCT	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	9 di 83

3 RIFERIMENTI BIBLIOGRAFICI

• G. Ballio – F.M. Mazzolani: **Strutture in acciaio**

Ulrico Hoepli Editore 1988

• Migliacci – F. Mola: Progetto agli stati limite delle strutture in c.a.

Masson Italia Editori 1985

• C. Cestelli Guidi: Geotecnica e tecnica delle fondazioni

Ulrico Hoepli Editore 1987

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	10 di 83

4 PROGRAMMI PER L'ANALISI AUTOMATICA

• SAP2000 Advanced rel. 14.0

Structural Analysis program – Computers and Structures, Inc. – Berkeley CA, USA *Programma di calcolo ad elementi finiti monodimensionali, bidimensionali e tridimensionali.*

• Sezca Stati Limite rel. 1.0.1

Distribuito dall'Ing. R. Tritto

Programma di calcolo per le verifiche alle Tensioni Ammissibili ed agli Stati Limite di sezioni in c.a. e c.a.p.

• Spettri di risposta ver. 1.0.3

Foglio Excel del Consiglio Superiore dei Lavori Pubblici per il calcolo degli spettri di risposta secondo le nuove NTC di cui al D.M. 14 gennaio 2008

CCT Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 11 di 83
--------------------------	--	------	--------------------

CARATTERISTICHE DEI MATERIALI

5.1 Calcestruzzo per elevazioni

Resistenza caratteristica a compressione cubica Resistenza caratteristica a compressione cilindrica Resistenza media a compressione cilindrica Modulo elastico Resistenza a trazione semplice Resistenza a trazione caratteristica (frattile 5%) Stato Limite Ultimo	$ \begin{vmatrix} R_{ck} \\ f_{ck} \\ f_{cm} \\ E_{c} \\ f_{ctm} \\ f_{ctk} \end{vmatrix} $	= = = =	$\begin{array}{l} 0.83 \times R_{ck} \\ f_{ck} + 8 \\ 22000 \times (f_{cm}/10)^{0.3} \\ 0.30 \times f_{ck}^{2/3} \\ 0.70 \times f_{ctm} \end{array}$	= = = 336 = =	33.20 41.20 642.78 3.10	N/mm ² N/mm ² N/mm ² N/mm ² N/mm ²
Coefficiente parziale di sicurezza	$\begin{array}{c} \gamma_{\text{C}} \\ \alpha_{\text{cc}} \\ f_{\text{cd}} \\ f_{\text{ctd}} \end{array}$	= = =	$lpha_{cc}\!\! imes\!f_{ck}\!/\!\gamma_{C}$ $f_{ctk}\!/\!\gamma_{C}$	=		
Tensione max di compressione - Comb. rara Tensione max di compressione - Comb. quasi permanente	σ_c σ_c		$\begin{array}{c} 0.60 \times f_{ck} \\ 0.45 \times f_{ck} \end{array}$	=		N/mm ² N/mm ²
5.2 Calcestruzzo per soletta						
Resistenza a compressione cubica caratteristica:				R_{ck}	= 37 N	J/mm^2
Resistenza a compressione cilindrica caratteristica:				$f_{ck} =$	= 30.71	N/mm^2
Valore medio della resistenza cilindrica a compressione	e:			f_{cm}	= 38.7	1 N/mm^2
Valore medio della resistenza a trazione del calcestruzz	zo:			f_{ctm}	= 2.90	N/mm^2
Valore caratteristico della resistenza a trazione del calc	estru	ZZC):	f_{ctk}	= 2.03	N/mm ²
Valore medio del modulo elastico:						7 N/mm ²
Stato limite ultimo				-		
Coefficiente parziale di sicurezza:				$\gamma_{\rm c} =$	=1.5	
Coefficiente riduttivo per resistenze di lunga durata				α_{cc} =	= 0.85	
Valore di calcolo della resistenza cilindrica a compress	ione:			$f_{cd} =$	= 17.40	N/mm^2
Valore di calcolo della resistenza a trazione:				f _{ctd} =	=1.35]	N/mm^2
Stato limite di Esercizio						
Tensione max di compressione – Comb. Rara				$\sigma_{ m c}$ =	= 18.43	N/mm^2
Tensione max di compressione – Comb. Quasi permane	ente			$\sigma_{ m c}$ =	= 13.82	N/mm^2

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	12 di 83

5.3 Calcestruzzo per fondazioni

Resistenza caratteristica a compressione cubica	R_{ck}	=		30.00 N/mm ²
Resistenza caratteristica a compressione cilindrica	f_{ck}	$= 0.83 \times R_{ck}$	=	24.90 N/mm ²
Resistenza media a compressione cilindrica	f_{cm}	$= f_{ck} + 8$	=	32.90 N/mm ²
Modulo elastico	Ec	$= 22000 \times (f_{cm}/10)^{0.}$	3 =	31447.16 N/mm ²
Resistenza a trazione semplice	f_{ctm}	$= 0.30 \times f_{ck}^{2/3}$	=	2.56 N/mm ²
Resistenza a trazione caratteristica (frattile 5%)	f_{ctk}	$= 0.70 \times f_{ctm}$	=	1.79 N/mm ²
Stato Limite Ultimo	•			
Coefficiente parziale di sicurezza	γс	=		1.50
Coefficiente riduttivo per resistenze di lunga durata	α_{cc}	=		0.85
Resistenza a compressione di calcolo	f_{cd}	= $\alpha_{cc} \times f_{ck} / \gamma_{C}$	=	14.11 N/mm ²
Resistenza a trazione di calcolo	f_{ctd}	$= \alpha_{cc} \times f_{ck} / \gamma_C$ $= f_{ctk} / \gamma_C$	=	1.19 N/mm ²
Stato Limite di Esercizio				
Tensione max di compressione - Comb. rara	$\sigma_{\!\scriptscriptstyle C}$	$< 0.60 \times f_{ck}$	=	14.94 N/mm ²
Tensione max di compressione - Comb. quasi permanente	$\sigma_{\!\scriptscriptstyle c}$	$< 0.45 \times f_{ck}$	=	11.21 N/mm ²

5.4 Acciaio per cemento armato

Si utilizza un acciaio del tipo **B450**C con le seguenti caratteristiche meccaniche:

Si utilizza un acciaio del tipo B450C con le seguenti d	caratte	eristiche	meccaniche:		
Tensione caratteristica di rottura (frattile 5%)	f_{tk}	=		540.00	N/mm ²
Tensione caratteristica di snervamento (frattile 5%)	f_{vk}	=		450.00	N/mm ²
Stato Limite Ultimo					
Coefficiente parziale di sicurezza	γs	$= f_{vk}/\gamma_s$		1.15	
Resistenza a trazione di calcolo	f_{vd}	$= f_{vk}/\gamma_S$; =	391.30	N/mm ²
Stato Limite di Esercizio	• ,	, ,			
Tensione massima di trazione	$\sigma_{\rm s}$	< 0.80	$\times f_{vk}$ =	360.00	N/mm ²

CCT	Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 13 di 83

5.5 Acciaio per carpenteria metallica

5.5.1 Travi, traversi e piastre

Si utilizza un acciaio strutturale resistente agli agenti atmosferici tipo **S-275 J0 W** (zincato), conforme alle norme UNI EN 10025-2, con le seguenti caratteristiche meccaniche:

Modulo elastico	E =	210000 N/mm ² 275.00 N/mm ²
Tensione caratteristica di snervamento (t ≤ 40 mm)	f _{yk} =	
Tensione caratteristica di rottura (t ≤ 40 mm)	f _{tk} =	430.00 N/mm ²
Coefficiente di sicurezza per resistenza membrature	$\gamma_{MO} =$	1.05 -
Coefficiente di sicurezza per instabilità nei ponti	γ _{M1} =	1.10 -
Resistenza di calcolo membrature (t ≤ 40 mm)	f _d =	261.90 N/mm ²
Resistenza di calcolo per instabilità (t ≤ 40 mm)	f _d =	250.00 N/mm ²

5.5.2 Viti e bulloni

Si utilizzano bulloni ad alta resistenza di **classe 8.8**. Per le caratteristiche meccaniche si fa riferimento a quanto riportato nel paragrafo 11.3.4.6.1 del D.M. 14/01/2008.

5.5.3 Saldature

In base a quanto riportato in D.M. 14/01/2008 paragrafo 11.3.4.5, la saldatura degli acciai dovrà avvenire con uno dei procedimenti all'arco elettrico codificati secondo la norma UNI EN ISO 4063:2001.

In particolare tutte le saldature delle membrature principali dovranno essere a **completo ripristino di I** classe.

Le saldature delle orditure secondarie saranno **a cordoni d'angolo continue**, con spessore di gola minimo pari a 0.7 volte lo spessore minimo da unire.

5.6 Micropali di fondazione

I micropali di fondazione sono costituiti da tubi Ø168.3 mm, spessore 10 mm, d'acciaio tipo S275. Il diametro di perforazione è pari a 220 mm.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	14 di 83

6 DESCRIZIONE DEL MODELLO

6.1.1 Origine e caratteristiche dei codici di calcolo

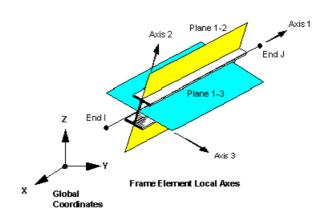
La struttura e' stata schematizzata escludendo il contributo degli elementi aventi rigidezza e resistenza trascurabili a fronte dei principali. E' quindi stata considerata l'orditura a telaio bidimensionale costituita dall'impalcato e dalle pile incastrate allo spiccato. In corrispondenza dell'appoggio dell'impalcato con le spalle sono stati introdotti due vincoli di cerniera.

La struttura e' modellata con il metodo degli elementi finiti, applicato a sistemi bidimensionali. Gli elementi utilizzati sono monodimensionali (trave con eventuali sconnessioni interne). I vincoli sono considerati puntuali ed inseriti tramite le sei costanti di rigidezza elastica.

Le analisi strutturali condotte sono statiche in regime lineare. La verifica delle membrature in cemento armato viene eseguita considerando tutte le caratteristiche di sollecitazione.

6.1.2 Individuazione del codice di calcolo

Il calcolo delle sollecitazioni è stato effettuato modellando la struttura con il seguente programma: SAP2000, versione 14.0 prodotto, distribuito ed assistito da Computers and Structures, Inc.1995 University Ave. Berkeley. Questa procedura è sviluppata in ambiente Windows, permette l'analisi elastica lineare e non di strutture tridimensionali con nodi a sei gradi di libertà utilizzando un solutore ad elementi finiti. Gli elementi considerati sono i frame (trave), con eventuali svincoli interni o rotazione attorno al proprio asse, e le shell, aventi comportamento di membrana e di piastra. I carichi possono essere applicati sia ai nodi, come forze o coppie concentrate, sia sulle travi, come forze distribuite, trapezie, concentrate, come coppie e come distorsioni termiche. A supporto del programma è fornito un ampio manuale d'uso contenente fra l'altro una vasta serie di test di validazione sia su esempi classici di Scienza delle Costruzioni, sia su strutture particolarmente impegnative e reperibili nella bibliografia specializzata.


Tale programma fornisce in output, oltre a tutte le caratteristiche geometriche e di carico delle strutture, i risultati relativi alle sollecitazioni indotte nelle sezioni degli elementi presenti. Il programma usa le seguenti convenzioni.

_, _,	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	15 di 83

6.1.3 Sistemi di riferimento

Si fa riferimento agli elementi asta che sono gli elementi che compongono gli usuali telai piani o spaziali in c.a. o in acciaio. Il programma tiene conto degli effetti determinati da tutti i tipi di deformazione (derivanti da azioni flettenti, torcenti, taglianti ed estensionali) in ambito lineare.

Ogni elemento viene riferito a una terna locale destra 1, 2, 3 come illustrata in figura.

Sistema locale elementi trave

Ogni asta è caratterizzata dai seguenti parametri.

Numero dell'asta (ovvero dell'elemento);

Nodi di riferimento I, J;

Svincoli alle estremità dell'elemento trave;

Materiale;

Sezione;

Carichi;

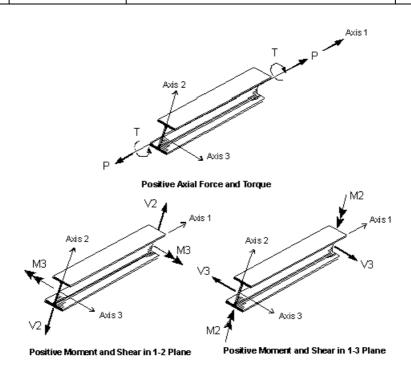
I nodi I e J sono i nodi iniziale e finale dell'asse baricentrico dell'asta, che viene orientata da I a J ed implicitamente definisce il verso dell'asse 1 locale.

Il programma calcola ai due nodi estremi di ogni elemento e per ogni combinazione di carico sei sollecitazioni, riferite agli assi locali che sono:

P = forza assiale nella direzione locale 1;

V2 = taglio nella direzione locale 2;

V3 = taglio nella direzione locale 3;


T = momento torcente attorno all'asse locale 1;

M2 = momento flettente attorno all'asse locale 2;

M3= momento flettente attorno all'asse locale 3.

 CCT
 Doc. N.
 CODIFICA DOCUMENTO
 REV.
 FOGLIO

 C4114
 C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc
 A
 16 di 83

Sollecitazioni locali per gli elementi asta

Sono stabilite le seguenti convenzioni sui segni:

Forze positive se concordi con gli assi locali (F);

Momenti positivi secondo la cosiddetta "regola del cacciavite" (F*L).

6.1.4 Unità di misura

Le unità di misura adottate sono le seguenti:

- lunghezze: m

- forze: kN

- masse: kN massa

- temperature: gradi centigradi

- angoli: gradi sessadecimali o radianti

Il calcolo della struttura è stato effettuato senza l'ipotesi d'impalcati rigidi.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	17 di 83

6.1.5 Modello di calcolo

Si analizza la struttura con l'ausilio del programma di calcolo ad elementi finiti SAP2000 Advanced, secondo un'analisi statica elastico-lineare.

Per l'impalcato è stata adottata una tipologia in carpenteria metallica con piano di calpestio in c.a.

L'impalcato è dunque schematizzabile semplicemente ad un graticcio metallico piano (costituito dalle travi e dai trasversi) su cui viene appoggiata una piastra (la soletta) avente unicamente funzione di ripartizione dei carichi.

Non avendo collegato la solleta in c.a. all'orditura metallica, la presenza (e quindi l'inerzia) della stessa non entra quindi nella rigidezza né delle travi né dei traversi.

Inoltre nel presente calcolo si prescinde dalla presenza dei controventi di montaggio, disposti in corrispondenza delle piattabande delle travi principali ed aventi unicamente funzione di irrigidimento in fase costruttiva (funzione di contenimento degli sbandamenti in fase di assemblaggio).

Tali isolatori vengono schematizzati tramite elementi link del tipo Rabber Isolator le cui rigidezze orizzontali sono ciascuno pari a :

K = 1090 kN/m

Sia l'impalcato sia le sottostrutture sono state schematizzate con elementi frame; gli elementi che schematizzano le pile (fusti circolari di diametro pari a $\Phi600$) hanno una lunghezza pari alla distanza tra l'estradosso pulvino e l'estradosso plinto di fondazione. Per tener conto delle lunghezze effettive sono stati introdotti agli estremi delle aste opportuni elementi infinitamente rigidi (End Offsets); il vincolamento del modello è stato eseguito con incastri perfetti alla base delle aste che schematizzano le pile, e cerniere in sommità delle spalle.

Lo schema di vincolamento dell'impalcato alle sottostrutture prevede l'utilizzo di isolatori elastomerici in corrispondenza di tutte le sottostrutture.

L'analisi sismica delle strutture, nella quale i sovraccarichi permanenti sono aggiunti in termini delle rispettive masse per poter considerare i relativi effetti inerziali, viene condotta mediante un'analisi dinamica-lineare.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	18 di 83

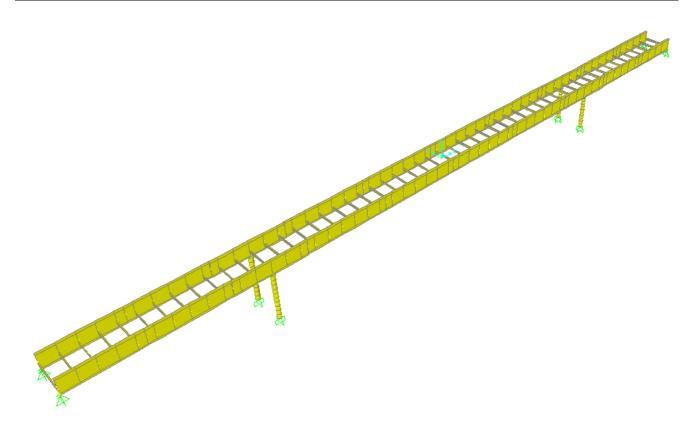
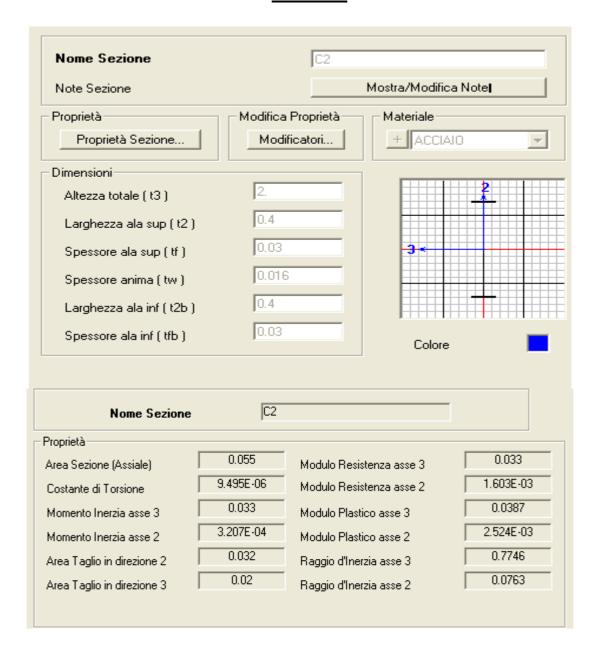


Figura 1: Schema statico tridimensionale

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	19 di 83

Qui di seguito si riportano le caratteristiche geometriche e meccaniche delle sezioni utilizzate nel calcolo.

6.2 Travi metalliche longitudinali


Conci 1 e 10

Nome Sezione		C1
Note Sezione		Mostra/Modifica Notel
Proprietà	Modifica F	Proprietà Materiale
Proprietà Sezione	Modific	catori + ACCIAIO
- Dimensioni		
Altezza totale (t3)	2.	
Larghezza ala sup (t2)	0.4	
Spessore ala sup (tf)	0.02	3*
Spessore anima (tw)	0.016	
Larghezza ala inf (t2b)	0.4	
Spessore ala inf (tfb)	0.02	Colore
Nome Sezione	C1	
Proprietà	0.0474	0.0057
Area Sezione (Assiale)	0.0474	Modulo Resistenza asse 3 0.0257
Costante di Torsione	4.728E-06	Modulo Resistenza asse 2 1.070E-03
Momento Inerzia asse 3	0.0257	Modulo Plastico asse 3 0.0312
Momento Inerzia asse 2	2.140E-04	Modulo Plastico asse 2 1.725E-03
Area Taglio in direzione 2	0.032	Raggio d'Inerzia asse 3 0.737
Area Taglio in direzione 3	0.0133	Raggio d'Inerzia asse 2 0.0672

Doc. N. C4114 CODIFICA DOCUMENTO
C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc

REV. A FOGLIO 20 di 83

Conci 2 e 9

Doc. N. C4114 CODIFICA DOCUMENTO
C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc

REV. A FOGLIO 21 di 83

Conci 3 e 8

Nome Sezione	C 3
Note Sezione	Mostra/Modifica Note
Proprietà Proprietà Sezione	Modifica Proprietà Materiale + ACCIAIO
Dimensioni Altezza totale (t3) Larghezza ala sup (t2) Spessore ala sup (tf) Spessore anima (tw) Larghezza ala inf (t2b) Spessore ala inf (tfb)	2.
Nome Sezione	C3
Proprietà Area Sezione (Assiale) Costante di Torsione Momento Inerzia asse 3 Momento Inerzia asse 2 Area Taglio in direzione 3	0.0666 Modulo Resistenza asse 3 0.0368 1.654E-05 Modulo Resistenza asse 2 1.873E-03 0.0388 Modulo Plastico asse 3 0.0459 3.746E-04 Modulo Plastico asse 2 2.993E-03 0.04 Raggio d'Inerzia asse 3 0.7632 0.0233 Raggio d'Inerzia asse 2 0.075

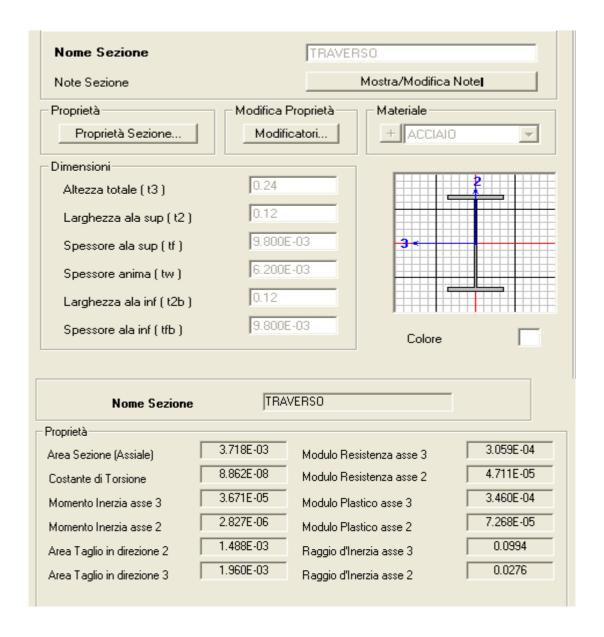
Doc. N. C4114 CODIFICA DOCUMENTO
C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc

REV. A FOGLIO 22 di 83

<u>Conci 4 e 7</u>

Nome Sezione	C4	
Note Sezione		Mostra/Modifica Note
Proprietà Proprietà Sezione	Modifica Proprietà Modificatori	Materiale + ACCIAIO
Dimensioni Altezza totale (t3) Larghezza ala sup (t2) Spessore ala sup (tf) Spessore anima (tw) Larghezza ala inf (t2b) Spessore ala inf (tfb)	2. 0.4 0.03 0.016 0.4 0.03	Colore
Nome Sezione	C4	
Proprietà Area Sezione (Assiale) Costante di Torsione Momento Inerzia asse 3 Momento Inerzia asse 2 Area Taglio in direzione 2 Area Taglio in direzione 3	9.495E-06 Modulo Re 0.033 Modulo Pla 3.207E-04 Modulo Pla 0.032 Raggio d'In	esistenza asse 3

Doc. N. C4114 CODIFICA DOCUMENTO
C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc


REV. A FOGLIO 23 di 83

Conci 5 e 6

Nome Sezione	C5		
Note Sezione		Mostra/Modifica Note	ı
Proprietà Proprietà Sezione	Modifica Proprietà Modificatori	Materiale + ACCIAIO	▼
Dimensioni Altezza totale (t3) Larghezza ala sup (t2) Spessore ala sup (tf) Spessore anima (tw) Larghezza ala inf (t2b) Spessore ala inf (tfb)	2. 0.4 0.04 0.016 0.4 0.04	3 × Colore	
Nome Sezione	C5		
Proprietà			
Area Sezione (Assiale)	0.0627 Modulo	Resistenza asse 3	0.0402
Costante di Torsione	1.860E-05 Modulo	Resistenza asse 2	2.137E-03
Momento Inerzia asse 3	0.0402 Modulo	Plastico asse 3	0.0461
Momento Inerzia asse 2	4.273E-04 Modulo	Plastico asse 2	3.323E-03
Area Taglio in direzione 2	0.032 Raggio	d'Inerzia asse 3	0.8003
Area Taglio in direzione 3	0.0007	d'Inerzia asse 2	0.0825

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	24 di 83

6.3 Trasversi metallici

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	25 di 83

dove:

t₃: altezza totale della trave;

t₂: larghezza del piatto superiore;

t_f: spessore del piatto superiore;

t_{2b} : larghezza del piatto inferiore;

t_{fb}: spessore del piatto inferiore;

tw: spessore dell'anima;

A: area della sezione in acciaio.

J₃: momento d'inerzia della trave rispetto all'asse orizzontale 3-3 passante per il suo baricentro.

J₂: momento d'inerzia della trave rispetto all'asse verticale 2-2 passante per il suo baricentro.

 J_T : rigidezza torsionale.

A_{t2}: area di taglio in direzione 2; si assume pari a 5/6 dell'area dell'anima della trave in acciaio.

A_{t3}: area di taglio in direzione 3; si assume pari a 5/6 della somma delle aree delle due ali.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	26 di 83

7 ANALISI DEI CARICHI: TRAVI PRINCIPALI

7.1 Peso carpenteria metallica (PTR)

Il peso proprio strutturale delle travi e dei traversi è stato valutato fornendone le corrette dimensioni (vedi paragr. precedente) e la relativa densità di peso ($\gamma = 78,5 \text{ kN/m}^3$).

Per tener conto infine di piastrame vario, controventi e bulloni, il peso di cui sopra è stato incrementato di un fattore pari a **1,25**.

7.2 Permanente portato (PERM)

Peso proprio soletta

Il peso proprio della soletta è valutato in ragione di 25.0 kN/m³, per uno spessore medio di 12.0 cm.

Per quanto riguarda il peso della soletta, questo è stato applicato direttamente sulle travi nella misura di 2.5*0.12*4/2 = 6.00 kN/m

Peso proprio lamiera grecata

Il peso proprio della lamiera grecata zincata è stimato sulla base di dati reperiti in letteratura e pertanto valutato in ragione di 13.1 kg/m².

Per quanto riguarda il peso della lamiera grecata, è anch'esso applicato direttamente sulle travi nella misura di 0.131*2.0 = 0.262 kN/m

Peso proprio pavimentazione

Il peso proprio della pavimentazione è valutato in ragione di 30.0 kN/m^3 , per uno spessore medio di 4.0 cm.

Il peso della pavimentazione, è anch'esso applicato direttamente sulle travi nella misura di 30*0.04*4/2 = 2.4 kN/m

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	27 di 83

7.3 Azione del vento (VENTO)

7.3.1 Calcolo della pressione del vento

Nell'analisi statica la pressione utilizzata è stata determinata, in accordo con le Nuove Norme Tecniche per le Costruzioni, seguendo le indicazioni fornite da CNR-DT 207/2008 "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni".

La pressione cinetica di picco del vento è data dall'espressione:

$$q_p(z) = \frac{1}{2} \cdot \rho \cdot v_r^2 \cdot c_e(z)$$

dove:

q_p è la pressione cinetica di picco;

ρ è la densità media dell'aria, pari a 1.25 kg/m²;

v_r è la velocità di riferimento di progetto in m/s;

c_e è il coefficiente di esposizione

Di seguito si procede calcolando nell'ordine le seguenti grandezze:

- Velocità di base di riferimento;
- Periodo di ritorno e velocità di riferimento di progetto;
- Coefficiente di topografia;
- Coefficiente di esposizione;
- Pressione cinetica di picco del vento.

7.3.2 Velocità base di riferimento

In mancanza di specifiche e adeguate indagini statistiche, la velocità di base di riferimento viene definita dalla seguente espressione:

$$V_b = V_{b,0} \cdot C_a$$

dove:

v_{b.0} è la velocità di base di riferimento a livello del mare;

c_a è il coefficiente di altitudine fornito dalla relazione:

$$c_a = 1$$
 per $a_s \le a_0$

$$c_a = 1 + k_a \cdot \left(\frac{a_s}{a_0} - 1\right)$$
 per $a_s > a_0$

dove: $a_0, \, k_a$ sono parametri assegnati in funzione della zona geografica;

CCT	Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 28 di 83

a_s è l'altitudine sul livello del mare del sito in esame.

In base alla zona geografica (Zona 1) ed all'altitudine del sito (circa 80 m s.l.m.), si ricava una velocità base di riferimento (v_b) pari a 25 m/s.

7.3.3 Periodo di ritorno e velocità di riferimento di progetto

In mancanza di specifiche e adeguate indagini statistiche, la velocità è fornita dalla relazione:

$$v_r = v_b \cdot c_r$$

dove: v_b è la velocità di riferimento del vento associata ad un periodo di ritorno di 50 anni;

c_r è il coefficiente di ritorno fornito dalla relazione:

$$c_r = 0.65 \cdot \left\{ 1 - 0.138 \cdot In \left[-In \left(1 - \frac{1}{T_R} \right) \right] \right\} \qquad \qquad \text{per } T_R \geq 50 \text{ anni}$$

In base ad un periodo di ritorno di progetto stimato in 50 anni, si ottengono un valore di velocità del vento pari a 25 m/s.

7.3.4 Coefficiente di topografia

In mancanza di più approfondite valutazioni, il coefficiente di topografia è posto di regola pari a 1 sia per le zone pianeggianti sia per quelle ondulate, collinose e montane.

7.3.5 Coefficiente di esposizione

In mancanza di più approfondite valutazioni ed operando a favore di sicurezza, si sceglie la classe C. Pertanto, considerata la zona e l'altitudine del sito, la costruzione è ubicata nella categoria di esposizione III, i cui parametri risultano i seguenti:

Il coefficiente di esposizione è fornito dalle seguenti relazioni:

$$c_{e}(z) = k_{r}^{2} \cdot ln\left(\frac{z_{min}}{z_{0}}\right) \cdot c_{t}(z_{min}) \cdot \left[ln\left(\frac{z_{min}}{z_{0}}\right) \cdot c_{t}(z_{min}) + 7\right] \qquad \text{per } z \leq z_{min}$$

$$c_{e}(z) = k_{r}^{2} \cdot ln\left(\frac{z}{z_{0}}\right) \cdot c_{t}(z) \cdot \left[ln\left(\frac{z}{z_{0}}\right) \cdot c_{t}(z) + 7\right]$$
 per $z > z_{min}$

Il coefficiente di esposizione è pertanto pari a 1.71.

CCT	Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV. A	FOGLIO 29 di 83

7.3.6 Pressione cinetica di picco del vento

In base a quanto esposto, la pressione cinetica del vento sull'impalcato assume il valore di 0.67 kN/m^2 .

7.3.7 Calcolo delle azioni sulle travi d'impalcato

Si assume che il vento agisca in direzione prevalentemente orizzontale, ortogonalmente all'asse dell'impalcato esercitando nel piano della sezione un sistema di azioni aerodinamiche per unità di lunghezza riconducibili ad una forza parallela alla direzione del vento (f_X) , a una forza verticale (f_Y) e ad un momento intorno alla linea d'asse (m_Z) . Tali azioni sono quantificate mediante una coppia di coefficienti di forza $(c_{fX} e c_{fY})$ e mediante un coefficiente di momento (c_{mZ}) .

In mancanza di valutazioni più accurate, i coefficienti di forza e di momento per unità di lunghezza sono forniti dalle seguenti relazioni:

$$c_{fX} = \begin{cases} \frac{1.85}{\text{d/h}_{tot}} - 0.10 & 2 \leq \text{d/h}_{tot} \leq 5 \\ \\ \frac{1.35}{\text{d/h}_{tot}} & \text{d/h}_{tot} > 5 \end{cases}$$

$$c_{fY} = \begin{cases} \pm \left(0.7 + 0.1 \cdot \frac{d}{h_{tot}}\right) & 2 \le d/h_{tot} \le 5 \\ \pm 1.2 & d/h_{tot} > 5 \end{cases}$$

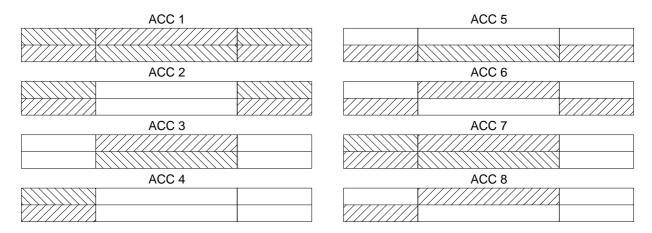
$$c_{mZ}=\pm\;0.2$$

dove: d è la larghezza totale dell'impalcato (pari a 4.80 m);

h_{tot} è l'altezza totale d'ingombro dell'impalcato (pari a 2.0 m).

Le forze sull'impalcato risultano pertanto pari a:

		Trave n°1	Trave n°2
	F _O [kN/m]	0.45	0.45
SCARICO	F _V [kN/m]	2.20	0.81


	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	30 di 83

7.4 Sovraccarico accidentale (ACCENVE)

In ossequio al § 5.1.3.3.3 del D.M. 14 gennaio 2008 si considera lo schema di carico '5' (ponti di 3° Categoria) costituito dalla folla compatta agente con intensità nominale, comprensiva degli effetti dinamici, di 5.0 kN/m².

Il carico in esame agisce sulla larghezza calpestabile dell'impalcato pari a 4.0 m. Sulla luce totale (106.0 m) si sono considerati otto campi di applicazione corrispondenti ad altrettante condizioni di carico base.

Tali condizioni vengono quindi inviluppate per ottenere gli effetti più sfavorevoli per la struttura in esame, come riportato nelle seguenti figure.

Posizioni del sovraccarico accidentale

Le singole stese sono state quindi raggruppate in un'unica combinazione di carico inviluppo (ACCENVE).

7.5 Azione della neve (NEVE)

L'azione della neve non viene considerata. Trattandosi infatti di una passerella scoperta il corrispondente sovraccarico non va considerato concomitante col sovraccarico accidentale e quest'ultimo, visto il sito in cui sorgerà l'opera, è più gravoso.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	31 di 83

7.6 Azione sismica (SLV)

Poiché gli appoggi dell'impalcato sono costituiti da isolatori in gomma aventi uno smorzamento pari al 16% si definisce l'azione sismica in riferimento al DM-2008 considerando uno spettro elastico ridotto per tutto il campo di periodi $T \ge 0.8T_{is}$ assumendo per il coefficiente riduttivo η il valore corrispondente al coefficiente di smorzamento viscoso equivalente ξ_{esi} del sistema di isolamento. Nelle immagini successive si riportano i parametri relativi allo spettro elastico ricavati dal programma 'Spettri NTC – ver.1.0.2' del consiglio superiore LL PP. Nel grafico finale si riporta lo spettro elastico utilizzato per le analisi in condizioni sismiche.

Il sito di costruzione (Comune di Cerro al Lambro) è caratterizzato, per ciascun periodo di ritorno di riferimento TR, dai seguenti valori di accelerazione orizzontale massima attesa su sito di riferimento rigido:

T_R	a _g
(anni)	(g)
30	0.023
50	0.029
72	0.033
101	0.037
140	0.041
201	0.047
475	0.062
975	0.077
2475	0.102

La passerella in oggetto è progettata per una vita nominale pari a 50 anni. Gli si attribuisce inoltre una classe d'uso II ai sensi del D. Min. 14/01/2008.

Pertanto il periodo di riferimento per l'azione sismica vale:

$$V_R = V_N \cdot C_U = 50 \times 1.0 = 50$$
 anni

Quindi i valori di ag relativi agli stati limite di interesse sono:

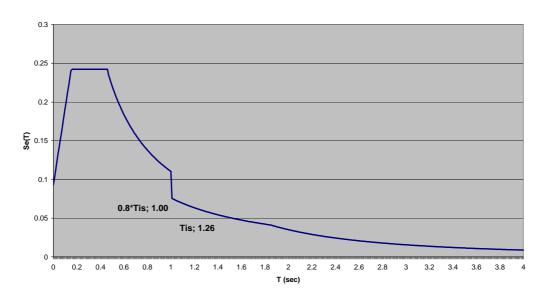
STATO	T_R	\mathbf{a}_{g}	F ₀
LIMITE	(anni)	(g)	-
SLD	50	0.029	2.541
SLV	475	0.062	2.606
SLC	975	0.077	2.618

Coefficiente di amplificazione stratigrafica: $S_S = 1.5$ (categoria di sottosuolo 'C')

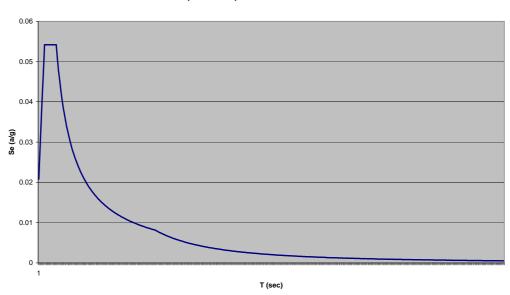
Coefficiente di amplificazioni topografica: $S_T = 1.0$ (categoria topografica 'T1')

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	32 di 83

Il periodo della struttura Tis, necessario per la definizione dello spettro isolato è il seguente:


Tis =
$$2\pi\sqrt{\frac{M}{k}}$$
 = 2*3.14* $\sqrt{\frac{3450/9.81}{8*1090}}$ = 1.26 s -periodo in dir. long.le e trasv.le

In cui:


M= è la massa sismica (peso travi+ peso soletta+ peso finiture)

K = rigidezza isolatori in direzione longitudinale

Spettro di risposta elastico orizzontale isolato

Spettro di risposta elastico verticale

CCT	Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 33 di 83

8 ANALISI DEI CARICHI: TRAVERSI

La verifica viene condotta sul traverso lato spalla che presenta un'altezza di soletta maggiore rispetto al resto dell'impalcato.

Si analizza una striscia (trasversale) di 2.00 m di larghezza (interasse trasversi) in due schemi statici di luce da 4,00 m: incastrato e semplicemente appoggiato. A favore di sicurezza si assumeranno, in fase di verifica, i massimi delle sollecitazioni e deformazioni ottenuti.

8.1 Peso proprio carpenteria metallica (PTR)

Il peso proprio strutturale dei trasversi è stato valutato fornendone le corrette dimensioni (vedi paragr. precedente) e la relativa densità di peso ($\gamma = 78,5 \text{ kN/m3}$).

Per tener conto infine di piastrame vario, controventi e bulloni, il peso di cui sopra è stato incrementato di un fattore pari a **1,25**.

8.2 Peso permanente portato (PERM)

Peso proprio soletta+grecata

Per quanto riguarda il peso della soletta, questo è stato applicato direttamente sul trasverso nella misura di 25*0.35x2.00=6.00 kN/m.

Il peso della lamiera grecata è: 0.131x2.00= 0.262 kN/m

Peso pavimentazione

Il carico della pavimentazione, assegnato al modello come carico uniformemente distribuito sulle trasverso nella misura di 30*0.04*2.00 = 2.4 kN/m.

8.3 Sovraccarichi accidentali (ACC)

Ai fini del dimensionamento e della verifica dei trasversi è stata considerata la presenza di folla $q_{1,e} = 5.00 \text{ kN/mq}$. Tale carico è stato assegnato all'elemento come carico uniformemente distribuito pari a 5.00*2.00 = 10.00 kN/m.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	34 di 83

8.4 Azione del vento (VENTO)

Si considera una forza del vento di 0.45KN/m (vedi par. 8.3) agente su entrambe le travi, considerando un'altezza delle travi principali pari a 2.00m e un'eccentricità tra il baricentro travi e l'asse del traverso di 0.4 m. Tale azione viene assegnata al trasverso come coppia di forze taglianti pari a:

M = 0.45*0.4*2.00 = 0.36 kNm

applicata allo schema a trave incastrata.

8.5 Instabilità piattabanda compressa della trave principale

Per effetto dell'instabilità della piattabanda compressa della trave principale (vedi paragrafo STABILITA' DELL'ALA COMPRESSA DELLA TRAVE PRINCIPALE nella presente relazione di calcolo), quest'ultima trasferisce al trasverso un momento aggiuntivo ΔM nella verifica della sezione di mezzeria (in corrispondenza del giunto si trascura essendo un momento di segno opposto a quello dei carichi).

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	35 di 83

9 QUADRO DELLE COMBINAZIONI ADOTTATE

9.1 Combinazioni di carico statiche

Nella tabella seguente si riportano le combinazioni di carico impiegate per gli stati limite ultimi e di esercizio.

	Combinazioni di carico 'Statiche'								
Combo	PP+SPINTE TER	PERM	ACC	VENTO	RES PAS				
STR-1 (A1)	1.35	1.50	0.00	0.00	1.35				
STR-2 (A1)	1.35	1.50	1.35	0.00	1.35				
STR-3 (A1)	1.35	1.50	0.00	1.50	1.35				
STR-4 (A1)	1.35	1.50	1.35	0.90	1.35				
STR-5 (A1)	1.35	1.50	0.54	1.50	1.35				
CAR-1(SLE)	1.00	1.00	1.00	0.00	1.00				
CAR-2(SLE)	1.00	1.00	0.00	1.00	1.00				
CAR-3(SLE)	1.00	1.00	1.00	0.60	1.00				
CAR-4(SLE)	1.00	1.00	0.40	1.00	1.00				
FREQ-1(SLE)	1.00	1.00	0.40	0.00	1.00				
FREQ-2(SLE)	1.00	1.00	0.40	0.20	1.00				
QP (SLE)	1.00	1.00	0.00	0.00	1.00				

9.2 Combinazioni di carico sismiche

Nella tabella seguente si riportano le combinazioni di carico impiegate nel caso sismico per gli stati limite di salvaguardia della vita (SLV) e di danno (SLD).

Combinazioni di carico 'Sismiche'								
Combo	PP+SPINTE TER PERM Sisma long Sisma trasv Sisma vert. RES P							
SLV-X	1.00	1.00	1.00	0.30	0.30	1.00		
SLV-Y	1.00	1.00	0.30	1.00	0.30	1.00		
SLV-Z	1.00	1.00	0.30	0.30	1.00	1.00		
SLD-X	1.00	1.00	1.00	0.30	0.30	1.00		
SLD-Y	1.00	1.00	0.30	1.00	0.30	1.00		
SLD-Z	1.00	1.00	0.30	0.30	1.00	1.00		

Con 'X', 'Y' e 'Z' si sono indicate, rispettivamente, le direzioni longitudinale, trasversale e verticale.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	36 di 83

10 RISULTATI DELL'ANALISI MODALE

Come richiesto dalla norma sono stati considerati un numero di modi la cui massa partecipante totale risulta evidentemente superiore all'85%.

TABLE: Mod	lal Participa	ting Mass	Ratios			
OutputCase			Period	SumUX	SumUY	SumUZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless
MODAL	Mode	1	4.058181	1.367E-20	0.40257	1.549E-20
MODAL	Mode	2	1.795836	3.091E-20	0.40911	2.484E-20
MODAL	Mode	3	1.561118	3.009E-19	0.87221	1.903E-17
MODAL	Mode	4	1.479232	9.792E-18	0.90651	2.676E-17
MODAL	Mode	5	1.292227	0.96103	0.90651	9.131E-07
MODAL	Mode	6	1.032168	0.96103	0.91488	9.131E-07
MODAL	Mode	7	0.81432	0.96103	0.91536	9.131E-07
MODAL	Mode	8	0.728684	0.96103	0.91537	9.131E-07
MODAL	Mode	9	0.693325	0.96103	0.92621	9.131E-07
MODAL	Mode	10	0.581218	0.96103	0.92621	0.26273
MODAL	Mode	11	0.580306	0.96103	0.92621	0.26273
MODAL	Mode	12	0.572796	0.96103	0.92622	0.26273
MODAL	Mode	13	0.491206	0.96103	0.97005	0.26273
MODAL	Mode	14	0.410635	0.96103	0.97005	0.26273
MODAL	Mode	15	0.342381	0.96103	0.97392	0.26273
MODAL	Mode	16	0.293599	0.96103	0.97395	0.26273
MODAL	Mode	17	0.254314	0.96103	0.97434	0.26273
MODAL	Mode	18	0.218039	0.96141	0.97434	0.26274
MODAL	Mode	19	0.218015	0.96141	0.97574	0.26274
MODAL	Mode	20	0.217857	0.96141	0.97575	0.26274
MODAL	Mode	21	0.217606	0.96141	0.97575	0.26274
MODAL	Mode	22	0.203284	0.96141	0.986	0.26274
MODAL	Mode	23	0.184494	0.96141	0.9862	0.26274
MODAL	Mode	24	0.16422	0.96141	0.98674	0.26274
MODAL	Mode	25	0.154421	0.96369	0.98674	0.50801
MODAL	Mode	26	0.154392	0.96369	0.98674	0.50801
MODAL	Mode	27	0.147561	0.96369	0.9891	0.50801
MODAL	Mode	28	0.1469	0.96369	0.9891	0.50801
MODAL	Mode	29	0.139261	0.96369	0.99647	0.50801
MODAL	Mode	30	0.13917	0.97995	0.99647	0.55472
MODAL	Mode	31	0.139126	0.97995	0.99965	0.55472
MODAL	Mode	32	0.132807	0.98174	0.99965	0.55896
MODAL	Mode	33	0.132805	0.98174	0.99965	0.55896
MODAL	Mode	34	0.128668	0.98174	0.99983	0.55896
MODAL	Mode	35	0.115005	0.98174	0.99985	0.55896
MODAL	Mode	36	0.103013	0.98174	0.99986	0.55896
MODAL	Mode	37	0.09764	0.98174	0.99986	0.55896
MODAL	Mode	38	0.09764	0.98174	0.99986	0.55896
MODAL	Mode	39	0.095201	0.98174	0.99991	0.55896
MODAL	Mode	40	0.09328	0.98433	0.99991	0.73039
MODAL	Mode	41	0.093274	0.98433	0.99991	0.73039
MODAL	Mode	42	0.087197	0.99974	0.99991	0.74256
MODAL	Mode	43	0.087196	0.99974	0.99991	0.74256
MODAL	Mode	44	0.084053	0.99974	0.99991	0.74256
MODAL	Mode	45	0.081793	0.99974	0.99991	0.74256
MODAL	Mode	46	0.081793	0.99974	0.99991	0.74256
MODAL	Mode	47	0.080163	0.99975	0.99991	0.74264
MODAL	Mode	48	0.079854	0.99975	0.99991	0.74264
MODAL	Mode	49	0.075806	0.99975	0.99991	0.74264
MODAL	Mode	50	0.075458	0.99975	0.99992	0.74264

CCT	Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 37 di 83

11 VERIFICHE TRAVI LONGITUDINALI

In questo capitolo si procede al dimensionamento della struttura portante in acciaio dell'impalcato (travi longitudinali).

I risultati dell'analisi statica sono valutati in termini di sforzi massimi per le combinazioni di carico più gravose tra quelle precedentemente specificate.

In tutti i casi analizzati i valori degli sforzi risultano entro i limiti di normativa.

Si osserva che gli sforzi vengono considerati positivi se di trazione.

11.1 Criteri di verifica impiegati

Le verifiche di resistenza delle membrature si eseguono con riferimento al seguente criterio:

$$\sigma_{x,\text{Ed}}^2 + \sigma_{z,\text{Ed}}^2 + 3 \cdot \tau_{\text{Ed}}^2 \leq \left(\frac{f_{yk}}{\gamma_{\text{M0}}}\right)^2$$

dove:

- $\sigma_{x,Ed}$ è il valore di calcolo della tensione normale nel punto in esame, agente in direzione parallela all'asse della membratura;
- $\sigma_{z,Ed}$ è il valore di calcolo della tensione normale nel punto in esame, agente in direzione ortogonale all'asse della membratura;
- τ_{Ed} è il valore di calcolo della tensione tangenziale nel punto in esame, agente nel piano della sezione della membratura.
- f_{yk} è il valore nominale della tensione caratteristica di snervamento per l'acciaio impiegato (secondo UNI EN 10025-2 per un acciaio S 275 con t \leq 40 mm è f_{yk} = 275 N/mm²);
- γ_{M0} è il coefficiente di sicurezza per la resistenza delle sezioni.

11.2 Verifica delle travi longitudinali

Le travi longitudinali presentano una sezione trasversale "a doppia T" in composizione saldata; per le caratteristiche geometriche si rimanda al paragrafo dedicato.

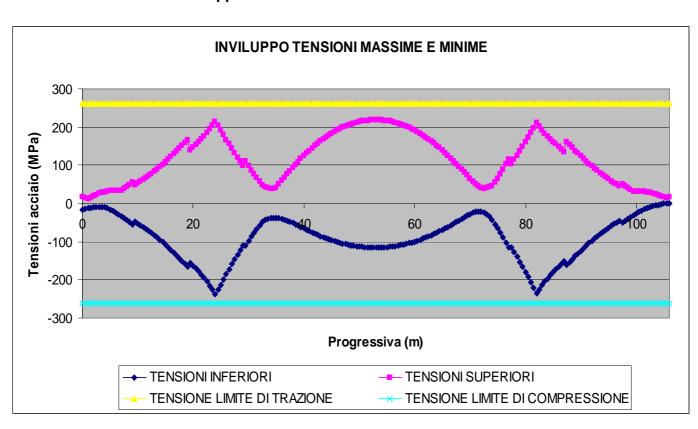
Si eseguono le verifiche sezionali in termini di sforzo, secondo lo schema delle combinazioni a Stato Limite Ultimo riportato precedentemente.

Facendo riferimento ad una procedura di comprovata validità, come consentito ai punti 4.2.4.1.2 e 4.2.4.1.3.4 del DM2008 e C4.2.4.1.3.4 della circoalre applicativa, le verifiche saranno eseguite

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	38 di 83

facendo riferimento al limite elastico degli elementi (stato limite ultimo elastico), indipendentemente dalla classificazione delle sezioni.

In tali ipotesi le verifiche di resistenza e stabilità saranno svolte con il metodo tensionale facendo riferimento alle istruzioni CNR 10011. In sostanza ciò significa considerare tutte le sezioni in classe 4 verificandone la stabilità locale senza impiegare il metodo delle larghezze efficaci.


Per una lettura immediata dei livelli di tensione, si riportano nel grafico a seguire l'andamento delle tensioni, ottenute con il modello di calcolo adottato, lungo lo sviluppo delle trave longitudinale.

In essi il limite di normativa da utilizzare per confrontare il livello di tensione nel materiale (limite superiore e inferiore) vale:

$$f_{yd} = \frac{f_{yk}}{\gamma_{M0}} = \frac{275}{1.05} = 261.9 \ N / mm^2 > \sigma_{id}$$

I grafici sono relativi allo SLU-STR (caso statico).

11.2.1 Tensioni acciaio: inviluppo dei massimi e dei minimi

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	39 di 83

11.3 Verifica all'imbozzamento dei pannelli d'anima

Questa verifica viene eseguita per l'imbozzamento dei pannelli d'anima in corrispondenza delle sezioni di mezzeria e di appoggio pile, di altezza pari rispettivamente a 1940 mm, spessore pari a 16 mm e larghezza pari a 2000 mm e pari a 1930 mm, spessore pari a 20 mm e larghezza pari a 2000 mm (pari all'interasse delle nervature di irrigidimento verticali);

Si effettua la verifica, secondo CNR 10011.

Si riportano di seguito il prospetto 7-VIII, relativo alla definizione dei coefficienti di imbozzamento, ed il paragrafo 7.6.2., che descrive nel dettaglio le modalità di verifica.

CCT

Doc. N. C4114 CODIFICA DOCUMENTO
C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc

REV. A FOGLIO 40 di 83

Prospetto 7-VIII — Coefficienti di imbozzamento

Numero d'ordine	• Condizio	o del pannello	Tensioni ideali di im- bozzamento*	$\alpha = \frac{a}{h}$	Coefficiente di imbozzamento		
,	Tensione di com- pressione variabile linearmente	0	u u	σ_1	$\sigma = k \sigma$	α ≥ 1	$k_{\sigma} = \frac{8,4}{\psi + 1,1}$
'	$0 \leqslant \psi \leqslant 1$	⊌	a	目 ∳σ₁	$\sigma_{\rm cr} = k_{\sigma} \sigma_{\rm cr,o}$	α < 1	$k_{\sigma} = \left(\alpha + \frac{1}{\alpha}\right)^2 \frac{2,1}{\psi + 1,1}$
11	Tensione di com- pressione e trazione variabili linearmen- te, ma preponderan- te la tensione di		=	01	$\sigma_{\rm cr} = k_{\sigma} \sigma_{\rm cr,o}$		$k_{\sigma} = 1 + \psi k_{1} - \psi k_{3} + \\ + 10 \psi (1 + \psi)$ dove: $k_{1} \text{ si ottiene dal caso I per}$ $\psi = 0;$
	compressione $-1 < \psi < 0$	pressione				$\psi = 0$, k_3 si ottiene dal caso III per $\psi = -1$	
Ш	Tensione di com- pressione e trazione variabili linearmen- te, ma uguali i valori massimi di compres- sione e trazione	σ -σ	a	σ_1 σ_2 σ_3	$\sigma_{\rm cr} = k_{\sigma} \sigma_{\rm cr.o}$	$\alpha \geqslant \frac{2}{3}$	$k_{\sigma} = 23.9$
	$\psi = -1$ ovvero preponderante la tensione di trazione $\psi < -1$	φ ψσ ₁	a	σ ₁	$\sigma_{\rm cr} = \kappa_{\sigma} \sigma_{\rm cr,o}$	$\alpha < \frac{2}{3}$	$k_{\sigma} = 15.87 + \frac{1.87}{\alpha^2} + 8.6 \alpha^2$
IV	Tensione tangenzia- le uniformemente di-	^	+ + + +		$\tau_{\rm cr} = k_T \sigma_{\rm cr,o}$	α ≥ 1	$k_{\tau} = 5.34 + \frac{4}{\alpha^2}$
	stribuita	$ \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$		cr or cr,o	α < 1	$\kappa_{\tau} = 4 + \frac{5,34}{\alpha^2}$	

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	41 di 83
001				

7.6.2. Verifica all'imbozzamento dei pannelli

7.6.2.1. Per la verifica all'imbozzamento occorre valutare, in assenza di indagini più sofisticate, che risulti:

$$\frac{\sigma_{\rm cr,id}}{\sqrt{\sigma_1^2 + 3 \tau^2}} \geqslant \beta \ v$$

dove: σ_1 e τ sono le tensioni normale e tangenziale definite rispettivamente nei punti 7.6.1.4 e 7.6.1.5;

 $\sigma_{\mathrm{cr,id}}$ è la tensione di confronto da valutarsi come segue:

$$\begin{split} &\sigma_{\text{cr,id}} = \sqrt{3} \ \tau_{\text{cr}} \ \text{per} \ \sigma_1 = 0 \\ &\sigma_{\text{cr,id}} = \sigma_{\text{cr}} \quad \text{per} \ \tau = 0 \\ &\sigma_{\text{cr,id}} = \frac{\sqrt{\sigma_1^2 + 3 \ \tau^2}}{\frac{1 + \psi}{4} \ \frac{\sigma_1}{\sigma_{\text{cr}}} + \sqrt{\left(\frac{3 - \psi}{4} \ \frac{\sigma_1}{\sigma_{\text{cr}}}\right)^2 + \left(\frac{\tau}{\tau_{\text{cr}}}\right)^2} \end{split} \quad \text{per} \ \sigma_1 \neq 0 \ \text{e} \ \tau \neq 0 \end{split}$$

v è il coefficiente definito al punto 7.1;

$$\beta = \frac{\sigma_{\rm N} + 0.80 \ \sigma_{\rm M}}{\sigma_{\rm N} + \sigma_{\rm M}} \ {\rm per} \ \alpha \leqslant 1.5; \ \beta = 1 \ {\rm per} \ \alpha \geqslant 1.5$$

essendo σ_N e σ_M i valori delle tensioni normali dovute allo sforzo normale N ed al momento flettente M rispettivamente;

 ψ il coefficiente che definisce la legge d variazione lineare della σ ;

$$\sigma_{\rm cr} = k_{\sigma} \, \sigma_{\rm cr,o}$$

$$\tau_{\rm cr} = k_{\tau} \, \sigma_{\rm cr,o}$$

in cui $\sigma_{cr,o} = 186\ 200\ (t/h)^2$ è la tensione di riferimento, in N/mm², indicata nel prospetto 7-IX;

è il coefficiente di imbozzamento, i cui valori si ricavano dal prospetto 7-VIII in funzione del coefficiente ψ e del rapporto $\alpha=a/h$. Qualora il rapporto tra il passo degli irrigidimenti e l'altezza totale dell'anima sia maggiore di 1,5, i valori del coefficiente k_{τ} per tensioni tangenziali desunti dal prospetto 7-VIII devono essere moltiplicati per 0,8.

Nel caso in cui il valore calcolato di $\sigma_{\rm cr}$ risulti maggiore del limite di proporzionalità del tipo di acciaio impiegato per il pannello, da porsi convenzionalmente pari a 0,8 $f_{\rm d}$, alla tensione ideale di confronto deve essere sostituita una tensione di confronto ridotta $\sigma_{\rm cr,red}$ ad essa corrispondente, secondo il prospetto 7-X, essendo:

$$\sigma_{\text{cr,red}} = f_{\text{d}} \frac{20 + \sqrt{25 - 15 (f_{\text{y}}/\sigma_{\text{cr,id}})^2}}{25 + (f_{\text{y}}/\sigma_{\text{cr,id}})^2}$$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	42 di 83

11.3.1 Verifica pannello d'anima nella sezione di mezzeria

	RAPPORTI LARGHEZZA-SPESSORE (cm)								
ft =	430	bsup=	40.00	binf=	40.00				
		tsup	3.00	tinf	3.00				
fd=	250	hw	194.00	tw	1.60				
hw/tw =	121.25		(CNR10011	7.2.6.2)					
limte	42.00		hw/tw> limit	w/tw> limite: fare verifica CNR10011					

	ν	ERIFICA /	ALL'IMBOZZAMENTO DELL'ANIMA
σ ₁ (+)		N/mm²	Tensione di compressione intradosso ala superiore
σ ₂ (-)	-211.65	N/mm ²	Tensione di trazione estradosso ala inferiore
N	0.00	kN	Sforzo normale
Τ	0.00		Taglio
A _{anima} =	310.40	cm ²	Area anima
i	200	cm	Interasse irrigidimenti verticali
α	1.03		Interasse degli irrigidimenti verticali / Altezza dell'anima
Ψ	-1.00		Coefficiente che definisce la legge di variazione della σ
kσ	23.90		Coefficiente d'imbozzamento
kτ	9.10		Coefficiente d'imbozzamento
$\sigma_{\rm cr,o}$		N/mm ²	Tensione di riferimento
$\sigma_{\rm cr}$		N/mm ²	Tensione critica normale
$ au_{ m cr}$	115.30	N/mm ²	Tensione critica tangenziale
σ_1		N/mm ²	Tensione massima normale nell'anima
τ_1		N/mm ²	Tensione media di taglio nell'anima
τ_2	0	N/mm ²	Tensione di taglio derivante dalla torsione
$ au_{ au o au}$		N/mm ²	Tensione tangenziale complessiva
$\sigma_{cr,id}$		N/mm ²	Tensione di confronto
$\sigma_{\sf cr,red}$		N/mm ²	Tensione di confronto ridotta nel caso in cui σ _{cr,id} >0,8*fd
σ_{ideale}	211.65	N/mm ²	Tensione ideale di imbozzamento
βν	0.8		
	1.14		Valore di riferimento per la verifica all'imbozzamento
1.14	>	βν	VERIFICATO

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	43 di 83

11.3.2 Verifica pannello d'anima nella sezione di appoggio pile

	RAPPORTI LARGHEZZA-SPESSORE (cm)								
ft =	430	bsup=	40.00	binf=	40.00				
		tsup	4.00	tinf	3.00				
fd=	250	hw	193.00	tw	2.00				
hw/tw =	96.50		(CNR10011	7.2.6.2)					
limte	42.00		hw/tw> limite: fare verifica CNR10011						

	VERIFICA ALL'IMBOZZAMENTO DELL'ANIMA							
σ ₁ (+)		N/mm²	Tensione di compressione intradosso ala inferriore					
σ ₂ (-)	-206.04	N/mm ²	Tensione di trazione estradosso ala superiore					
N	0.00	kN	Sforzo normale					
Τ	1061.03		Taglio					
A _{anima} =	386.00	cm ²	Area anima					
i	200	cm	Interasse irrigidimenti verticali					
α	1.04		Interasse degli irrigidimenti verticali / Altezza dell'anima					
Ψ	-0.91		Coefficiente che definisce la legge di variazione della σ					
kσ	14.89		Coefficiente d'imbozzamento					
kτ	9.06		Coefficiente d'imbozzamento					
$\sigma_{cr,o}$		N/mm ²	Tensione di riferimento					
σ_{cr}	297.78	N/mm ²	Tensione critica normale					
$ au_{ m cr}$	181.25	N/mm ²	Tensione critica tangenziale					
σ_1	227.38	N/mm ²	Tensione massima normale nell'anima					
τ_1		N/mm ²	Tensione media di taglio nell'anima					
τ_2		N/mm ²	Tensione di taglio derivante dalla torsione					
τ_{tot}		N/mm ²	Tensione tangenziale complessiva					
$\sigma_{cr,id}$		N/mm ²	Tensione di confronto					
$\sigma_{cr,red}$		N/mm ²	Tensione di confronto ridotta nel caso in cui σ _{cr,id} >0,8*fd					
σ_{ideale}	227.43	N/mm ²	Tensione ideale di imbozzamento					
βν	0.8							
	1.06		Valore di riferimento per la verifica all'imbozzamento					
1.06	>	βν	VERIFICATO					

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	44 di 83

11.4 Verifiche integrative

11.4.1 Verifiche delle piattabande superiori ed inferiori

Verifica ad imbozzamento

Si verifica la stabilità locale della piattabanda compressa considerando la semi-piattabanda compresa fra due irrigidenti successivi come un pannello vincolato su tre lati soggetto ad una compressione uniforme e in assenza di tensioni tangenziali.

In sostanza si verifica che il rapporto fra la larghezza e lo spessore sia inferiore a 14 (Prospetto 7-V – CNR 10011).

Nel nostro caso abbiamo:

piattabanda 400x20

 $t_{ala,min} = 20 \text{ mm}, t_{anima, min} = 16 \text{ mm}$

$$b = (400-16)/2 = 192 \text{ mm}$$
 $\rightarrow b/t = 192/20 = 9.6 < 14$

Stabilità dell'ala compressa

Si opera la verifica di stabilità dell'ala compressa in base alle indicazioni riportate al punto 7.2.7 delle norme C.N.R. 10011.

Modalità di verifica

n = Numero dei campi

l₀ = Distanza tra i centri teorici dei vincoli

A = Area dell'ala compressa

N = Forza assiale max nell'ala compressa

fyd = Tensione limite acciaio

$$\omega = \frac{f_{ud} \cdot A}{N}$$

 $\lambda_{\rm v} = ({\rm dal~prospetto~7\text{-}IIIc~delle~citate~C.N.R.~10011~in~corrispondenza~a~\omega})$

J_y = Momento di inerzia dell'asta compressa nel piano contenente i vincoli elastici

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	45 di 83

i_y = Raggio di inerzia dell'asta compressa nel piano contenente i vincoli elastici

$$\beta = \frac{\lambda_{y}}{l_{0}/i_{y}}$$

Essendo n > 2 e $1.2 \le \beta \le n/\sqrt{2}$:

$$K_0 = \frac{\pi^2}{4 \cdot \beta^2} \cdot \frac{N}{l_0} =$$

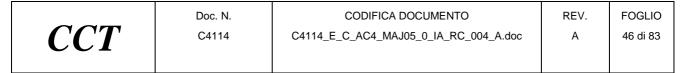
 $J_m = M$ omento di inerzia della membratura valutato sommando l'inerzia del profilo di irrigidimento con l'inerzia della parte di trave, inclusi i contributi di trasporto (vedi schema seguente – la lunghezza collaborante dell'anima è assunta pari a $20 \cdot t_w$)

 J_t = Momento di inerzia del traverso

 h_2 = Distanza baricentro ala compressa / trasverso

i = Interasse travi (membrature principali)

$$K_{i} = \frac{E}{\frac{h_{2}^{3}}{3 \cdot J_{m}} + \frac{h_{2}^{2} \cdot i}{J_{t}}} =$$


Adottando $\zeta = K_i/k_e = 1$ si ricava:

$$\eta_i = \frac{1 + 0.6 \cdot \zeta \cdot \beta}{2} \cdot \left[1 + \sqrt{1 - \frac{1.44 \cdot \zeta \cdot \beta}{(1 + 0.6 \cdot \zeta \cdot \beta)^2}} \right] > 1.1$$

Per la validità del sistema deve essere:

$$K_i \ge 1.0 \cdot \eta_i \cdot K_0$$

Di seguito si riportano i tabulati di verifica per la sezione di mezzeria:

	VERIFICA DI STABILITA' DELL' ALA COMPRESSA						
Jx tot	=	3302237.87	cm4	Momento d'inerzia di tutta la sezione rispetto all'asse x			
Sx	=	11820	cm3	Momento statico dell'ala compressa rispetto all'asse x			
Jala	=	2328720	cm4	Momento d'inerzia dell'ala compressa rispetto all'asse x			
Mmax		7212.00	kNm	Momento flettente nell"intera sezione			
Meq.	=	6611.62	kNm	1,3*Momento flettente nell'ala (0,75 Mmax ≤ Meq ≤ Mmax)			
Neq	1	2366.6	Forza assiale agente nell'ala supposta isolata dall'anima				
n	=	30		Numeri di campi			
lo	=	200	cm	Distanza tra i centri teorici dei vincoli			
Α	=	120	cm2	Area dell'ala compressa			
f _{ud} :	=	322.73	N/mm2	Tensione ammissibile acciaio (fyk/1.1)			
ω	=	1.64					
λу	II	75		(dal prospetto delle citate CNR 10011 in corrispondenza di ω)			
Jy ala	=	16000	cm4	Mom.d'iner. dell'ala compr. rispetto a y, nel piano contenenti i vincoli			
iy	=	11.55	cm	Raggio d'inerzia dell'ala compressa nel piano contenente i vincoli			
β	=	4.33					
K_0	=	155.56	kN/m	Rigidezza di progetto di ciascun vincolo elastico (traversi)			

	CALCOLO DELLA RIGIDEZZA DEI TRAVERSI								
Jm	=	8540	cm4	Mom. d' iner. della membr. (la lungh. collab. dell'anima è assunta pari a 20*t)					
Jt	=	3892	cm4	Momento d'inerzia del traverso (IPE 240)					
h2	=	= 140 cm Distanza baricentro ala compressa / traverso							
i	=	440	cm	Interasse travi (membrature principali)					
Ki	=	893	kN/m	Rigidezza di calcolo di ciascun vincolo elastico (traverso)					
ζ	=	1		Rapporto di rigidezze tra vincolo intermedio e vincolo di estremità (ki/ke)					
μ	=	3.09							

CONFRONTO TRA LA RIGIDEZZA DI CALCOLO E DI PROGETTO					
893	>	481	STABILE		

Si deduce che la piattabanda compressa è stabile.

CCT Doc. N. CODIFICA DOCUMENTO REV. FOGLIO C4114 C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc A 47 di 83

11.4.2 Verifiche del montante verticale

I traversi ed i montanti verticali formano dei telai trasversali rovesci, di rigidezza sufficiente ad impedire lo sbandamento fuori piano delle piattabande superiori compresse.

Nello specifico il montante, costituito dagli irrigidenti trasversali e dalla porzione di anima collaborante delle travi principali, si schematizza come una mensola soggetta ad un carico distribuito pari all'azione del vento e ad un carico concentrato in sommità pari all'effetto di sbandamento impedito. Risulta:

Calcolo dello stato di sollecitazione

Effetto del vento

Si considera una forza f = 0.45 kN/m

(si considera un interasse di 2.00 m):

$$V_W = f^* 1 = 0.45 \times 2.00 = +/-0.90 \text{ kN}$$

$$M_W = q_w l^2 / 2 = 0.45 \times 2.00^2 / 2 = +/- 0.9 \text{ kNm}$$

Azione instabilizzante delle travi principali

Massima forza di compressione (SLU)

Sigma Sup Max = 218.40 MPa

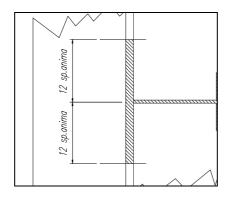
 $Sigma\ Inf\ Min = -218.40\ MPa$

Nc max = 2x(218.40x400x30)/1000 = 5241.6 kN

L'azione instabilizzante da utilizzare per le verifiche di resistenza del montante verticale è stata calcolata secondo quanto prescritto al punto 7.2.7.3 della C.N.R. 10011/97: $F=N_{max} / (100 \text{ x } \beta)$.

Azione instabilizzante: $F = N_{c \text{ max}} / 100*4.33 = 5241.6 / 433 = \pm 12.11 \text{ kN}$ (SLU)

L'eccentricità del carico rispetto all'asse del traverso : $e_{st} = 2.00 - 0.035 - 0.40 \approx 1.57 \text{ m}$


Momento associato all'azione instabilizzante: $M_{stab} = -/+ 12.11 \times 1.57 = -/+ 19.02 \text{ kNm}$

 $V = 12.11 + 0.9 \times (0.9) = 12.92 \text{ kN}$

 $M = 19.02 + 0.9 \times 0.9 = 19.83 \text{ kNm}$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	48 di 83

Verifica di resistenza

Anima 16 x 199.2 mm

Ptb. inf = $2 \times 12 t_{w \text{ trave}} = (12 \times 16 \times 2 + 16) \times 16 \text{ mm} = 400 \times 16 \text{ mm}$

MONTANTE							
Altezza	19	94					
Piatt. Sup	0	0					
Rinforzo	0	0					
Anima	190	16					
Piatt. Inf.	400	16					
A=	9440	mm2					
Jx=	85398187	mm4					
Wx,s	426990.9	mm3					
Wx,i	426990.9	mm3					
Vx	12.92	kN					
Mx	19.02	kNm					
τ =	2.02	MPa					
$\sigma_{\text{res,s}}$ =	44.54	MPa					
$\sigma_{\text{res,i}}$ =	44.54	MPa					
$\sigma_{\text{res,id,s}} =$	47.34	MPa					
$\sigma_{\text{res,id,i}} =$	47.47	MPa					

CCT	Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 49 di 83

Verifiche di stabilità

Imbozzamento

In accordo con il paragrafo 7.2.6.2 della CNR 10011 risulta:

Anima: b/t = 194/1.6 = 12.13 < 42

Verifica delle nervature di irrigidente verticale secondo CNR 10030

Di seguito si riporta la verifica della nervatura di irrigidimento verticale delle anime delle travi, secondo la CNR 10030.

Gli irrigidimenti verticali di cui si svolge la verifica sono tutti asimmetrici rispetto all'anima della trave (sono posti solo nella parte interna) hanno spessore dell'anima pari a 16 mm, larghezza di 199.2 mm, altezza pari a 1940 mm. Il passo degli irrigidenti è pari a 2000 mm.

Occorre verificare, secondo le CNR 10030, la disuguaglianza:

$$J \ge 0.15 \cdot \gamma_{T}^* \cdot h_{w} \cdot t_{w}^3$$

Assumendo lo stato tensionale più gravoso per la verifiche di ciascun irrigidimento si ottiene (cfr. [CNR 10030] Prospetto 3.1):

 α = a/hw = 2000/1940 = 1.03

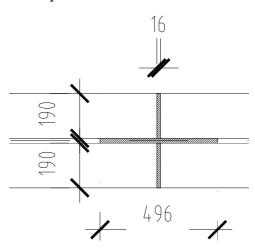
 $\gamma_T^* = 8$

 $\begin{array}{ll} I_{min,T} & = 0.15 \times 8 \times 1940 \times 16^3 = 9535488 \ mm^4 \\ I_{reale} & \cong 16x199.2^3/3 = 42156711 \ mm^4 \geq I_{min,L} \end{array}$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
<i>CCT</i> C4114		C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	50 di 83

Verifiche di stabilità in corrispondenza degli appoggi

In corrispondenza degli apparecchi di appoggio si effettua la verifica di stabilità dell'anima della trave e dei due montanti verticali a fronte di un carico concentrato:


Carico di punta

In accordo con [CNR 10030] §6.3, la sezione di verifica considerata è pari all'irrigidimento trasversale più un'aliquota dell'anima non inferiore a 12 volte il suo spessore (per ciascun lato). La verifica più gravosa si configura in corrispondenza dell'appoggio delle pila.

ts = 16 mm spessore montante

hs = 190 mm larghezza montante (simmetrico rispetto all'anima)

tw = 20 mm spessore anima

Sezione dell'irrigidimento utilizzata nelle verifiche

 $A = 16 \cdot 10^3 \text{ mm}^2$ area della sezione

 $J = 85.65 \cdot 10^6 \text{ mm}^4$ momento d'inerzia

i = 74 mm giratore d'inerzia

 $L_0 = 1940 \text{ mm}$ luce libera d'inflessione (h_{anima})

 $\lambda = 27$ snellezza dell'irrigidimento

ω (Prospetto 7-IIIc - λ = 17) = 1.06 coefficiente ω

 $N_{RD} = f_{yd} \cdot A/\omega = 275/1.10*16/1.06=3773 \text{ kN}$ massimo sforzo resistente

Tale valore si aggiunge al valore di sforzo normale proveniente dalla verifica di resistenza del montante effettuata in precedenza e pari a:

 $N = \sigma res *A = 47.34*16=757.44 kN$

La portata degli appoggi (≈1830 kN; P1-P2)

	Doc. N.	CODIFICA DOCUMENTO		FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	51 di 83

A tale valore si aggiunge al valore di sforzo normale proveniente dalla verifica di resistenza del montante effettuata in precedenza e pari a:

 $N = \sigma res *A = 47.34*16=757.44 \text{ kN}$

Pertanto Ntot \approx 1830+758 =2588 kN inferiore al massimo sforzo resistente sull'irrigidimento e quindi la verifica risulta soddisfatta.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	52 di 83

11.4.3 Verifiche saldature di composizione

Di seguito si riportano i valori di massimo scorrimento tra anima e piattabande calcolati mediante la teoria approssimata del taglio considerando le azioni derivanti dall'inviluppo dei massimi tagli sezione per sezione.

Date le dimensioni del cordone di saldatura utilizzato nel progetto, si calcola la τ sul cordone di saldatura che, in ogni caso, è minore della resistenza di progetto pari a $\beta_1 f_{yk} = 0.7$ x 275 = 192.5 MPa, in accordo con quanto specificato al punto 4.2.8.2.4 del DM 14/01/2008.

Saldature anima piattabande

	Saldature cordone superiore									
Sezione	t anima	Scorrimento	Ag,minma	•	cordone			τ		
	(mm)	[N/mm]	[mm ²]	[mm]			[mm]	[Mpa]		
1	16	29.04	0.15	8	Х	8	5.66	5.13		
2	16	28.74	0.15	8	Х	8	5.66	5.08		
3	20	35.74	0.19	10	Х	10	7.07	5.05		
4	16	28.74	0.15	8	Х	8	5.66	5.08		
5	15	26.95	0.14	8.0	Х	8	5.66	4.76		

Saldature cordone superiore									
Sezione	t anima	Scorrimento	Ag,minma	(cordone		h gola	τ	
	(mm)	[N/mm]	[mm²]	[mm]			[mm]	[Mpa]	
1	16	29.04	0.15	8	Х	8	5.66	5.13	
2	16	28.74	0.15	8	Х	8	5.66	5.08	
3	20	35.74	0.19	10	Х	10	7.07	5.05	
4	16	28.74	0.15	8	Х	8	5.66	5.08	
5	15	26.95	0.14	8.0	Х	8	5.66	4.76	

Saldatura irrigidenti-trave

Saldature del tronchetto – trave principale

V = 53.23 kN

M = 83.11 kNm

<u>Cordoni – superiori e inferiori</u>

F = N/2 + M/h = 53.23/2 + 83.11/194 = 69.46 kN

La forza è equilibrata dai cordoni trasversali (rispetto all'asse del viadotto) tra costola orizzontale e anima dell'irrigidente.

Cordoni trasversali – lato irrigidente: 4 cordoni 8 x 8

 $L_3 = 199.2 \text{ cm}$

 $A_g = 4 \times 0.8 \times 0.707 \times 199.2 = 450 \text{ mm}^2$

Risulta:

 $\tau_{\perp \; max} = 69.46 x 1000/450 = 155 \; MPa < 0.7 \; x \; 275/1.25 = 192.5 \; \; MPa$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	53 di 83

12 VERIFICA DEI TRAVERSI

12.1 Sollecitazioni di verifica

La verifica viene condotta sul traverso (IPE 240) lato spalla che presenta un'altezza di soletta maggiore rispetto al resto dell'impalcato.

Si analizza una striscia (trasversale) di 2.00 m di larghezza (interasse trasversi) in due schemi statici di luce da 4,00 m: incastrato e semplicemente appoggiato. A favore di sicurezza si assumeranno, in fase di verifica, i massimi delle sollecitazioni e deformazioni ottenuti.

Vengono riportate di seguito le sollecitazioni elementari, nonché combinate (comb.STR), di momento e taglio in corrispondenza delle sezioni di mezzeria e del giunto del trasverso:

Le sollecitazioni sono espresse in KN m per i momenti e in KN per i tagli

SEZ. MEZZERIA	M	T	coeff.
P.ACCIAIO	0.77	-	1,35
PERM PORTATI			
LAMIERA GRECATA	0.57		1.50
SOLETTA	12.0	-	1,50
PAVIMENTAZIONE	4.80	-	1,50
ACCIDENTALE	20.0	-	1,35
ΔM+VENTO	19.83	-	1,00

TOT-SLU	73.86	-

SEZ. GIUNTO	M	T	coeff.
P.ACCIAIO	0.52	0.77	1,35
PERM PORTATI			
LAMIERA GRECATA	0.35	0.53	1.50
SOLETTA	8.00	12.0	1,50
PAVIMENTAZIONE	3.20	4.80	1,50
ACCIDENTALE	13.3	20.0	1,35
ΔM+VENTO	-	-	1,00

TOT-SLU	35.98	54.04
---------	-------	-------

CCT	Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 54 di 83

12.2 Verifiche tensionali e di resistenza

Nei prospetti seguenti si riportano le verifiche del traverso:

• **Tensionali**, mostrando le tensioni nelle piattabande inferiore e superiore, e confrontando le stesse con quelle limite;

12.2.1 Verifica sezione di mezzeria (Mmax+)

SEZIONE DI MEZZERIA

GEOMETRIA DELLA SEZIONE DI	ACCIAIO			
Piattabanda sup. b1xt1 (cm) Anima txh Piattabanda inf. b2xt2	= = =	12.00 0.62 12.00	x x x	0.98 22.04 0.98
TABELLA RIASSUNTIVA				
AZIONE AS. (KN) MOMENTO (KNm) TAGLIO (KN)		0.00 73.86 0.00		
CARATTERISTICHE INERZIALI DI	ELLA TRA	AVE		
AREA (cm2) Jx (cm4) BARIC. da lembo sup. (cm) Ws acc. (cm3) Wi acc. (cm3)		39.10 3892.00 12.00 324.33 324.33		
VERIFICHE DELLE TENSIONI				
$\sigma_{a,sup}$ (N/mm ²) $\sigma_{a,inf}$ (N/mm ²)		227.73 -227.73		

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	55 di 83

12.2.2 Verifica sezione di giunto (Mmax-)

SEZIONE DI GIUNTO

GEOMETRIA DELLA SEZIONE DI ACCIAIO					
Piattabanda sup. b1xt1 (cm)	=	12.00	х	0.98	
Anima txh Piattabanda inf. b2xt2	=	0.62 12.00	X X	22.04 0.98	
TABELLA RIASSUNTIVA					
AZIONE AS. (KN)		0.00			
MOMENTO (KNm)		-35.98			
TAGLIO (KN)		54.04			
CARATTERISTICHE INERZIALI	DELLA TRA	AVE			
ADEA (1110)		00.40			
AREA (cm2)		39.10 3892.00			
Jx (cm4) BARIC. da lembo sup. (cm)		12.00			
Ws acc. (cm3)		324.33			
Wi acc. (cm3)		324.33			
VERIFICHE DELLE TENSIONI					
TERMINITE DELECT TERMINITE					
$\sigma_{a,sup} (N/mm^2)$		-110.94			
$\sigma_{a,inf}$ (N/mm ²)		110.94			

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	56 di 83

12.3 Stabilità all'imbozzamento

In accordo con il paragrafo 7.2.6.2 della CNR 10011 risulta:

Anima: b/t = 238.04/6.2 = 38.40 < 42Piattabande : bf/tf = (120-6.2)/(2*9.8) = 5.8 < 14

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	57 di 83

12.4 Stabilità flesso-torsionale (svergolamento)

Per travi a doppio T laminate, inflesse nel piano dell'anima, si deve verificare nel piano normale a quello di flessione, la stabilità dell'ala compressa supposta isolata dall'anima.

A tal fine, seguendo il criterio del 7.2.2.4 del CNR 10011, si ricava dal prospetto 7-IIIb il valore della tensione critica in corrispondenza della snellezza λ dell'ala compressa tra due ritegni torsionali successivi.

Deve essere:

$$\sigma = \omega \frac{N_{eq,f}}{A_f} \le f_{yd} = \frac{f_{yk}}{1.1} = 250 \text{ MPa}$$

Dove:

$$ω$$
= 1.11 ($λ$ = l_0/i_{min} =400/9.97 =40.12 – IPE 240 – Prospetto 7-IIIb CNR10011)

 $N_{eq,f} = \frac{\eta_1 M_{\text{max}}}{I_x} S_x$ è la forza assiale agente nell'ala supposta isolata dall'animca;

 $A_{\rm f} = 11.76~{\rm cm}^2$ è l'area dell'ala compressa;

 $Ix = 3892 \text{ cm}^4$ è il momento di inerzia di tutta la sezione rispetto all'asse x;

 $Sx = 135.36 \text{ cm}^3$ è il momento statico dell'ala compressa rispetto all'asse x;

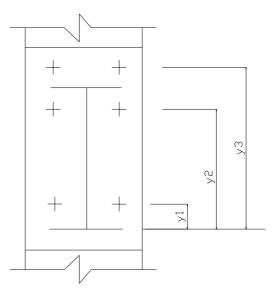
 $\eta_1 = M_{eq,f}/M_{max}$ è il coefficiente definito al punto 7.3.2.2.1 del CNR1001 e che nel caso di travi appoggiate è pari a 0.75

Di seguito si riporta esplicitata:

$$\sigma = 1.11 \cdot \frac{0.75 \cdot 73.86 \cdot 135.36}{11.76 \cdot 3892} \cdot 1000 = 181.85 MPa \le f_{yd} = \frac{f_{yk}}{1.1} = 250 \text{ MPa}$$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	58 di 83

12.5 Calcolo e verifica delle giunzioni flangiate


Viene di seguito descritta la verifica delle unioni flangiate che costituiscono il collegamento dei traversi con le travi preassemblati in officina:

12.5.1 Calcolo delle forze indotte da M nei bulloni

La posizione dell'AN non è nota a priori in quanto la sezione non è tutta reagente a trazione (l'area reagente a trazione è costituita dall'area dei bulloni).

La ricerca dell'asse neutro andrebbe effettuata imponendo la condizione C = T.

Si può assegnare approsimativamente la posizione dell'asse neutro come in figura giustificando tale scelta con la considerazione che, essendo modesta l'area resistente a trazione (area bulloni), dovrà esserlo di conseguenza anche l'area compressa (bulloni + lamiera) per garantire l'equilibrio C = T.

$$M_{est} = F_1 Y_1 + F_2 Y_2 + F_3 Y_3 \qquad \text{equilibrio}$$

$$\frac{F_1}{Y_1} = \frac{F_2}{Y_2} = \frac{F_3}{Y_3}$$
 congruenza (conservazione della sezione piana)

$$Y_1 = 5.0 \text{ cm}$$

$$Y_2 = 21.0 \text{ cm}$$

$$Y_3 = 28.5 \text{ cm}$$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	59 di 83
00				

$$M = \frac{F_1}{Y_1} (Y_1^2 + Y_2^2 + Y_3^2) \Rightarrow F_1 = (35.98 \times 100 \times 5.0) / (5.0^2 + 21.0^2 + 28.50^2)$$

$$F_1 = 14.08 \text{ kN}$$
 $N_{1b} = F_1/2 = 7.04 \text{ kN}$

$$F_2 = 59.14 \text{ kN}$$
 $N_{2b} = F_2/2 = 29.57 \text{ kN}$

$$F_3 = 80.26 \text{ kN}$$
 $N_{3b} = F_3/2 = 40.13 \text{ kN}$

12.5.2 Calcolo delle forze indotte da T nei bulloni

$$V_{lb} = T/6 = 54.04/6 = 9.00 \text{ kN}$$

12.5.3 Verifica dei bulloni

Il bullone più sollecitato (3) è soggetto a:

a. forza assiale
$$N_{3b}$$
= 40.13 kN;

b. forza di taglio
$$V_{1b} = 9.00 \text{ kN}.$$

Adottiamo bulloni classe 8.8: d = 16mm;

$$A_{res}\!=\!157~mm^2; \ f_{d,V}\!=\!0.6*f_{tb}/\gamma_{M2}\!=\!0.6*800/1.25\!=\!384~MPa; \ f_{d,N}\!=\!0.9*f_{tb}/\gamma_{M2}\!=\!0.9*800/1.25\!=\!576~MPa; \ f_{d,N}\!=\!0.9*f_{tb}/\gamma_{M2}$$

$$f_N = \frac{40.13 \times 1000}{157} = 255.60 \text{ N/mm}^2$$

$$f_V = \frac{9.00 \times 1000}{157} = 57.33 \text{ N/mm}^2$$

Verifica:

$$\left(\frac{f_V}{f_{d,V}}\right) = \left(\frac{57.33}{384}\right) = 0.15 \le 1$$

$$\left(\frac{f_N}{f_{d,N}}\right) = \left(\frac{255.6}{576}\right) = 0.44 \le 1$$

$$\left(\frac{f_V}{f_{d,V}}\right) + \left(\frac{f_N}{1.4 * f_{d,N}}\right) \le 1; \quad \left(\frac{57.33}{384}\right) + \left(\frac{255.6}{1.4 * 576}\right) = 0.47 < 1;$$

CCT Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 60 di 83	

12.5.4 Verifica della controflangia

8.6.4.1 <u>Calcolo dello spessore</u>

$$\begin{split} T/A_{netta} & \leq \sigma_{adm} \qquad F/[s(b\text{-}2d)] \leq \sigma_{adm} \\ & 54.04*10/[s(14\text{-}2*1.7)] = 50.98/s \ daN/cm^2 \leq fyk/(\sqrt{3}*1.05) = 1512.1 \ daN/cm^2 \\ & s \geq 0.033 \ cm \qquad \qquad si \ adotta \ una \ piastra \ di \ spessore \ 2.0 \ cm \end{split}$$

8.6.4.2 <u>Verifica al rifollamento</u>

La resistenza di calcolo a rifollamento del piatto dell'unione può essere assunta pari a:

$$\textbf{F}_{\text{b,Rd}} = \textbf{k} \cdot \boldsymbol{\alpha} \cdot \textbf{d} \cdot \boldsymbol{t} \cdot \frac{f_{tk}}{\gamma_{M2}}$$

dove:

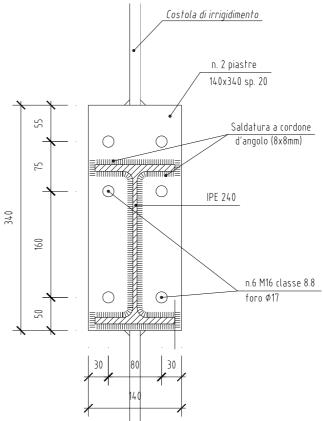
 $\gamma_{M2} = 1.25$


 $\alpha = min \left\{ \frac{e_1}{3 \cdot d_0}; \frac{f_{tb}}{f_t}; 1 \right\}$ (per bulloni di bordo nella direzione del carico applicato);

 $\alpha = min \left\{ \frac{p_1}{3 \cdot d_0} - 0.25; \frac{f_{tb}}{f_t}; 1 \right\} \qquad \text{(per bulloni interni nella direzione del carico applicato);}$

 $k = min \left\{ \frac{2.8 \cdot e_2}{d_0} - 1.7; 2.5 \right\}$ (per bulloni di bordo nella direzione perpendicolare al carico applicato);

 $k = min \left\{ \frac{1.4 \cdot p_2}{d_0} - 1.7; \ 2.5 \right\}$ (per bulloni interni nella direzione perpendicolare al carico applicato).


essendo e_1 , e_2 , p_1 e p_2 indicati nella figura sottostante e d_0 il diametro nominale del foro di alloggiamento del bullone (17 mm).

Parametri relativi ad un giunto bullonato

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	61 di 83

Risulta, per il caso più gravoso di bullone di bordo:

Collegamento oggetto di verifica

$$F_{b,Rd} = 2.5 \times 0.98 \times 17 \times 10 \times \frac{430}{1.25} \times 10^{-3} = 143.27 \text{ kN}$$

Supponendo che la forza di taglio si ripartisca equamente su ciascun bullone, la forza tagliante allo stato limite ultimo vale:

$$V_{1,b} = 9.00 \ kN < F_{b,Rd}$$

La verifica è dunque soddisfatta.

CCT Doc. N. C4114 C	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 62 di 83	

13 SOLLEVAMENTO DELL'IMPALCATO

Il sollevamento dell'impalcato per permettere la sostituzione degli apparecchi d'appoggio viene effettuato per mezzo di martinetti, posizionati in corrispondenza degli apparecchi di appoggio sotto le travi principali. In tale posizione le travi son state irrigidite mediante un fazzoletto di altezza pari a 40 cm.

Il carico massimo in corrispondenza dell'appoggio di pila è pari a $V=762~\mathrm{kN}$ (Comb. QP - vedi cap 16).

Si adotteranno dunque 2 martinetti da 40t ciascuno su ciascuno appoggio di pila.

Sulle spalle il carico massimo, in corrispondenza di ciascuno appoggio è pari a 100 kN (Cpmb. QP – vedi cap. 16).

Si adotterà dunque un martinetto per ciascuno appoggio di spalla, il cui carico massimo è pari a 15 t.

13.1 Verifica irrigidimento verticale

A favore di sicurezza si dimensiona per un valore di scarico di progetto sul singolo martinetto pari a 400 kN

Si verifica a carico di punta l'asta formata dall'anima della trave, per una lunghezza collaborante di 20t_w, oltre l'irrigidimento verticale formato da un piatto da 200*6. Le caratteristiche statiche dell'asta così composta sono le seguenti:

a	19	cm	lunghezza irrigidimento
n° lati	2		2 se l'irrigidimento è su due lati dell'anima della trave
b	39	cm	lunghezza anima trave collaborante
$t_{\rm w}$	1.6	cm	spessore anima trave
t_i	1.0	cm	spessore irrigidimento
A_i	100.4	cmq	
I_{aa}	7912	cm4	inerzia intorno alla dimensione a
I_{bb}	5346	cm4	inerzia intorno alla dimensione b
\mathbf{i}_{a}	8.87	cm	
\mathbf{i}_{b}	7.30	cm	

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	63 di 83

Assumendo quindi una lunghezza libera di inflessione dell'asta di 100cm (a favore di sicurezza in quanto l'irrigidimento è alto solo 40cm) si ha:

 l_{o} 100 cm altezza anima

lamda 14

Per $\lambda = 14$ si ottiene, dal prospetto 7-IIIc delle CNR 10011:

omega 1.00

da cui la verifica risulta essere:

 $\begin{array}{ccc} N & 400 & kN \\ sigma & 40 & N/mm^2 \end{array}$

CCT Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 64 di 83
--------------------------	--	------	--------------------

14 VERIFICA CONTROVENTI

Le azioni orizzontali sul modello di calcolo vengono assorbite dai traversi. La funzione dei controventi è solamente quella di sostegno delle travi principali in fase di montaggio. Comunque, in favore di sicurezza, si verificano facendo assorbire loro la forza orizzontale dovuta al vento (vedi par. 8.3).

In favore di sicurezza si considerano due controventi lungo lo sviluppo dell'intero impalcato:

 $N = 0.9*10/(2*\cos 24^\circ) = 5.00 \text{ kN}$

in cui:

 $f_2 = 0.9 \text{ kN/m}$ - forza orizzontale dovuta al vento

L = 10 - zona di influenza dei controventi esaminati

n = 2 - numero di controventi esaminati

 $\alpha = 24^{\circ}$ - inclinazione controventi rispetto verticale

14.1 Verifica del profilato ad "L" (90×90×6)

Verifica di resistenza

 $N/A_{forata} \le f_{yd} = fyk/1.05 = 261.9 \text{ MPa}$

Verifica di stabilità

 ω N/A \leq f_{vd}=fyk/1.10=250 MPa

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	65 di 83
~ ~ ~				

VERIFICA DI RESISTENZA

Caratteristiche delle travi in acciaio		
Altezza trave totale (90x90x6)	Htr (m)	0.0900000
Larghezza piattabanda superiore	Bpe (m)	0.0000000
Spessore piattabanda superiore	Spe (m)	0.0000000
Larghezza piattabanda inferiore	Bpi (m)	0.0900000
Spessore piattabanda inferiore	Spi (m)	0.0060000
Spessore anima	Ba (m)	0.0060000
Altezza anima	Ha (m)	0.0840000
Area della sezione forata	Aa (m2)	0.0004883
Momento statico lembo inferiore	Sai (m3)	0.0000258
Dist. baric. lembo inferiore	Dagi (m)	0.0528642
Dist. baric. lembo superiore	Dage (m)	0.0371358
Momento d'inerzia baricentrico X	Jgx (m4)	0.0000017
Modulo di resist. lembo super.	Wae (m3)	0.0000445
Modulo di resist. lembo infer.	Wai (m3)	0.0000313
Momento statico al lembo sup. anima	Sae (m3)	0.0000000
Momento statico al lembo inf. anima	Sai (m3)	0.0000269
Momento statico asse Y	Svi (m3)	0.0000258
Dist. baric. asse Y	Dvgi (m)	0.0528642
Momento d'inerzia baricentrico Y	Jgy (m4)	0.0000017

Sollecitazioni				
Sforzo normale	max	= N _{eser}	N (kN)	5
Sforzo di taglio	max	= T _{eser}	T (kN)	0
Momento flettente	max	= M _{eser}	M (kNm)	0

Verifica della trave - CAF	RICO MAS	SIMO		
σ anima sup. $ au$ anima sup. σ id sup.	=	10.24 N/mm ²	<fyd =<="" th=""><th>261.90 N/mm²</th></fyd>	261.90 N/mm²
	=	0 N/mm ²	<ft,d=< td=""><td>151.2 N/mm²</td></ft,d=<>	151.2 N/mm²
	=	10.24 N/mm ²	<fyd =<="" td=""><td>261.90 N/mm²</td></fyd>	261.90 N/mm²
σ anima inf. $ au$ anima inf. σ id inf.	=	10.24 N/mm²	<fyd =<="" td=""><td>261.90 N/mm²</td></fyd>	261.90 N/mm²
	=	0 N/mm²	<ft,d=< td=""><td>151.2 N/mm²</td></ft,d=<>	151.2 N/mm²
	=	10.24 N/mm²	<fyd =<="" td=""><td>261.90 N/mm²</td></fyd>	261.90 N/mm²

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	66 di 83

VERIFICA DI STABILITA'

Caratteristiche delle travi in acciaio		
Altezza trave totale (90x90x6)	Htr (m)	0.0900000
Larghezza piattabanda superiore	Bpe (n	n) <u>0.0000000</u>
Spessore piattabanda superiore	Spe (n	n) <u>0.0000000</u>
Larghezza piattabanda inferiore	Bpi (m	0.0900000
Spessore piattabanda inferiore	Spi (m	0.0060000
Spessore anima	Ba (m)	0.0060000
Altezza anima	Ha (m)	0.0840000
Area della sezione	Aa (m2	2) 0.0010440
Momento statico lembo inferiore	Sai (m	3) 0.0000258
Dist. baric. lembo inferiore	Dagi (r	n) 0.0247241
Dist. baric. lembo superiore	Dage (m) 0.0652759
Momento d'inerzia baricentrico X	Jgx (m	4) 0.0000008
Modulo di resist. lembo super.	Wae (ı	m3) 0.0000127
Modulo di resist. lembo infer.	Wai (n	13) 0.0000334
Momento statico al lembo sup. anima	Sae (n	n3) 0.0000000
Momento statico al lembo inf. anima	Sai (m	3) 0.0000117
Momento statico asse Y	Svi (m	3) 0.0000258
Dist. baric. asse Y	Dvgi (r	n) 0.0247241
Momento d'inerzia baricentrico Y	Jgy (m	4) 0.0000008

Sollecitazioni				
Sforzo normale	max	= N _{eser}	N (kN)	5
Sforzo di taglio	max	= T _{eser}	T (kN)	0
Momento flettente	max	= M _{eser}	M (kNm)	0

Fenomeni di instabilità		
Coefficiente beta		1.00
Lunghezza asta	m	4.61
Lunghezza libera d'inflessione	m	4.61
Asta composta		4.61
i _{min}	m3	0.0281
Lamba	λ	163.91
Omega	ω	4.56

Prosp. - 7IIIc - CNR10011

Verifica della trave	e - CARICO MAS	SSIMO		
o anima su τ anima su∣ o id sup.	•	21.84 N/mm² 0 N/mm² 21.84 N/mm²	<fyd =<br=""><ft,d= <fyd =<="" th=""><th>261.90 N/mm² 151.2 N/mm² 261.90 N/mm²</th></fyd></ft,d= </fyd>	261.90 N/mm² 151.2 N/mm² 261.90 N/mm²
σ anima information $ au$ anima information σ id info	•	21.84 N/mm ² 0 N/mm ² 21.84 N/mm ²	<fyd =<br=""><ft,d= <fyd =<="" td=""><td>261.90 N/mm² 151.2 N/mm² 261.90 N/mm²</td></fyd></ft,d= </fyd>	261.90 N/mm² 151.2 N/mm² 261.90 N/mm²

CCT	Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 67 di 83

14.2 Verifica dell'unione bullonata

Le verifiche effettuate sui bulloni,e sulle piastre di nodo sono le seguenti:

- 1) Rottura a taglio del gambo del bullone
 - a- eccentricità tra le linee d'asse e linee di truschinaggio
 - b- eccentricità perpendicolare al piano della trave
- 2) Verifica a rifollamento piastre di nodo
 - a- verifica a rifollamento anima angolare

Le tensioni di calcolo sono le seguenti:

1)
$$f_{yd} = f_{yk}/\gamma_{M0} = 275/1.05 = 261.9 \text{ MPa}$$

2) Classe dei bulloni 8.8

$$\begin{split} f_{d,V} &= 0.6*f_{tb}/\gamma_{M2} = 0.6*800/1.25 = 384 \text{ MPa;} \\ f_{d,N} &= 0.9*f_{tb}/\gamma_{M2} = 0.9*800/1.25 = 576 \text{ MPa} \end{split}$$

14.2.1 Rottura a taglio del gambo del bullone

Sulla sezione di rottura $\pi d^2/4$ agisce la forza F/n, dove n è il numero di bulloni di una fila.

Si adottano bulloni classe 8.8: d = 16 mm

$$A_{res} = 157 \text{ mm}^2$$

Per cui avremo:

$$f_b = \frac{F}{A_{res}} = \frac{5*1000}{157} = 31.85 \text{ MPa} < f_{yd} = 261.9 \text{ MPa}$$

Verifica a rifollamento piastra

F=5 kN <
$$F_{b,Rd} = 2.5 \times 0.68 \times 17 \times 10 \times \frac{430}{1.25} \times 10^{-3} = 99 \text{ kN}$$

CCT	Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 68 di 83

15 CALCOLO DELL'ESCURSIONE APPOGGI E GIUNTI

La valutazione degli spostamenti longitudinali e trasversali in corrispondenza degli apparecchi d'appoggio è eseguita con riferimento alle azioni statiche ed alle azioni sismiche. In particolare, le azioni considerate nell'analisi sono:

- variazione termica uniforme pari a 30°C, con effetto sia in allungamento sia un accorciamento (d_{□3}):
- azione sismica con doppio effetto (d_E).

•

Le combinazioni di calcolo utilizzate sono espresse in forma sintetica nel seguito:

- combinazione statica: $d_{tot,stat} = \pm d_{\varepsilon 3}$;
- combinazione sismica: $d_{tot,sisma} = \pm 0.5 \cdot d_{\varepsilon 3} \pm d_E$.

Pertanto, l'allungamento/accorciamento per metro lineare di impalcato dovuto alla dilatazione termica equivale a:

$$d_{\varepsilon 3} = 0.000012 \text{ x } (\pm 30^{\circ}) \text{ x } 1000 = \pm 0.36 \text{ mm/ml}$$

Escursione apparecchi d'appoggio:

allin.to		distanza dal fisso (m)			dal fisso unilaterale statica unila		O		Escursione trasv. unilaterale
			Accorc.	Allung.	Accorc.	Allung.			
	Giunto SPA	-53.5	-19.26	+19.26	-44.63	+44.63	± 35		
mobile	SPA	-53	-19.08	+19.08	-44.54	+44.54	± 35		
mobile	P1	-29	-10.44	+10.44	-40.22	+40.22	± 35		
fisso	Limp./2	0	0	0	-35.00	+35.00			
mobile	P2	29	-10.44	+10.44	-40.22	+40.22	± 35		
mobile	SPB	53	-19.08	+19.08	-44.54	+44.54	± 35		
	Giunto SPB	53.5	-19.26	+19.26	-44.63	+44.63	± 35		

L'escursione totale longitudinale e trasversale dei giunti è pari a:

 $e_T = 70 \text{ mm}$ -giunto SPA-SPB ($\pm 100 \text{mm}$) trasversale

 e_L = 89.26 mm -giunto SPA-SPB (±100mm) longitudinale

Il varco minimo è pari a:

 $v = e_L/2 + 20 \text{ mm} \approx 100 \text{ mm}$ -giunto SPA

 $v = e_L / 2 + 20 \text{ mm} \approx 100 \text{ mm}$ -giunto SPB

CCT	Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 69 di 83

16 FRECCE E CONTROMONTE

Al fine di evitare deformazioni e spostamenti che possano compromettere l'uso efficiente della struttura (danno al transito dei carichi mobili) o che possano risultare incompatibili con la geometria della struttura stessa, nonché dei vincoli e dei dispositivi di giunto previsti, è necessario verificare lo stato limite di esercizio di deformazione e/o spostamento.

Il valore totale dello spostamento ortogonale all'asse dell'elemento è definito come:

$$\delta_{tot} = \delta_1 + \delta_2$$

essendo:

• δ_C la monta iniziale della trave;

• δ_1 lo spostamento elastico dovuto ai carichi permanenti;

• δ_2 lo spostamento elastico dovuto ai carichi variabili;

• $\delta_{max} = \delta_{tot}$ - δ_{C} lo spostamento nello stato finale, depurato della monta iniziale.

Indicata con L la luce della trave, si adottano, in accordo alla tabella 4.2.X del D.M. 14 gennaio 2008, i seguenti limiti:

$$\frac{\delta_{\text{max}}}{L} < \frac{1}{250}$$

$$\frac{\delta_2}{L} < \frac{1}{350}$$

16.1 Travi longitudinali

Dal modello della passerella implementato in SAP si ricava:

$$\delta_1 = 91.50 \ mm$$
 $\delta_2 = 70.00 \ mm$
da cui:
 $\delta_{tot} = 161.50 \ mm$

Anche trascurando la monta iniziale la verifica è comunque soddisfatta. Infatti è:

$$\delta_{\text{max}} < \frac{\ell}{250} = \frac{58000}{250} = 232.0 \text{ mm}$$

$$\delta_{2} < \frac{\ell}{350} = \frac{58000}{350} = 165.7 \text{ mm}$$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	70 di 83

16.2 Traversi

Schematizzando i traversi come travi di luce $\ell=4.0$ m, semplicemente appoggiate agli estremi e soggette ad un carico uniformemente distribuito q, la freccia massima in mezzeria vale:

$$f_{\ell/2} = \frac{5}{384} \cdot \frac{q \cdot \ell^4}{E \cdot J}$$

Per un profilo IPE 240 si ha:

$$q_{PP} = 30.7 \text{ kg/m}$$

$$J = 3892 \text{ cm}^4$$

I traversi sono posti ad un interasse pari a i = 2.0 m; per cui:

$$q_{PERM} = (0.131 + 0.35 \times 25.0 + 0.04 \times 30.0) \times 2.0 = 20.16 \text{ kN/m}$$

Pertanto lo spostamento elastico dovuto ai carichi permanenti vale:

$$\delta_1 = \frac{5}{384} \times \frac{(0.31 + 20.16) \times 4000^4}{210000 \times 3892 \times 10^4} = 8.35 \text{ mm}$$

Il sovraccarico variabile vale:

$$q_{ACC} = 5.0 \times 2.0 = 10.0 \text{ kN/m}$$

Pertanto lo spostamento elastico dovuto ai carichi variabili vale:

$$\delta_2 = \frac{5}{384} \times \frac{10.0 \times 4000^4}{210000 \times 3892 \times 10^4} = 4.07 \ mm$$

Per i traversi non si prevede una monta iniziale; lo spostamento nello stato finale, ortogonale all'asse dell'elemento, vale:

$$\delta_{\text{max}} = \delta_{\text{tot}} = \delta_1 + \delta_2 = 8.35 + 4.07 = 12.42 \ mm$$

La verifica è pertanto soddisfatta. Infatti è:

$$\delta_{\text{max}} < \frac{\ell}{250} = \frac{4000}{250} = 16.0 \ mm$$

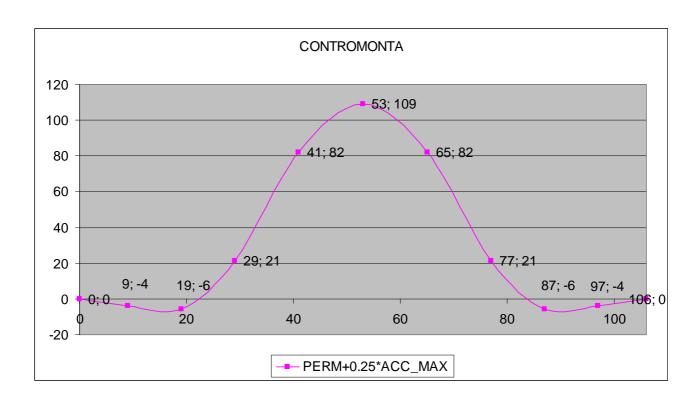
$$\delta_2 < \frac{\ell}{350} = \frac{4000}{350} = 11.42mm$$

~ ~	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	71 di 83

16.3 Contromonta

Le deformazioni massime della passerella devono risultare compatibili con la geometria della struttura in relazione alle esigenze del traffico, nonché ai vincoli ed i dispositivi di giunto previsti in progetto.

Dovrà comunque verificarsi quanto segue:


• l'impalcato deve presentare una contromonta da determinare per la totalità dei carichi permanenti, nonché per il 25% dei carichi accidentali;

dove:

Lc = luce di calcolo = 24+58+24 m

f = massima freccia

In base ai risultati ottenuti dall'analisi si ottengono i seguenti valori della contromonta:

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	72 di 83

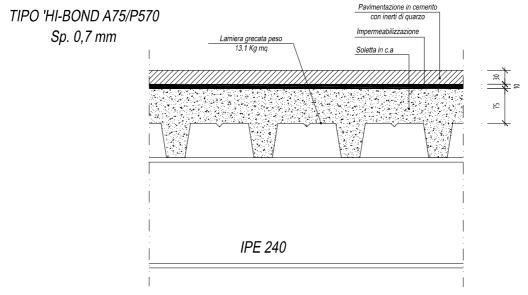
17 CALCOLO DELLE REAZIONI VINCOLARI

Si riportano di seguito le tabelle contenenti gli scarichi massimi e minimi sugli appoggi delle spalle e delle pile relativi alle combinazioni definite nel cap. 9:

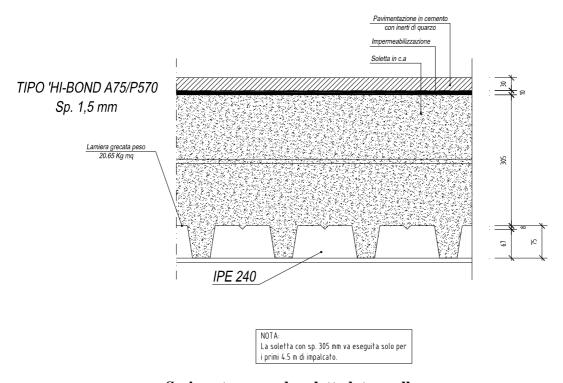
TABLE: Eleme	ent Forces - Link	KS			
Link	OutputCase	StepType	N	T _{long}	T _{trasv}
			kN	kN	kN
	STR-1	Max	-150.25	0	0
	STR-1	Min	-150.25	0	0
	STR-2	Max	-30.07	0	0
	STR-2	Min	-302.38	0	0
	STR-3	Max	-153.10	0	8.08
	STR-3	Min	-153.10	0	8.08
	STR-4	Max	-31.78	0	4.85
	STR-4	Min	-304.09	0	4.85
×	STR-5	Max	-105.03	0	8.08
Appoggio sx e dx	STR-5	Min	-213.95	0	8.08
×s	CAR-1	Max	-11.64	0	0.00
<u>.0</u>	CAR-1	Min	-213.35	0	0.00
66	CAR-2	Max	-102.56	0	5.39
od	CAR-2	Min	-102.56	0	5.39
Αp	CAR-3	Max	-12.78	0	3.23
·	CAR-3	Min	-214.49	0	3.23
e 7	CAR-4	Max	-66.96	0	5.39
0	CAR-4	Min	-147.64	0	5.39
À	FR-1	Max	-65.05	0	0.00
=	FR-1	Min	-145.74	0	0.00
SPALLA 1	FR-2	Max	-101.04	0	1.08
ဟ	FR-2	Min	-101.04	0	1.08
	QP	Max	-100.66	0	0
	QP	Min	-100.66	0	0
	SLV-X	Max	-98.89	27.68	6.14
	SLV-X	Min	-110.35	-25.67	-5.89
	SLV-Y	Max	-94.30	9.00	20.19
	SLV-Y	Min	-114.94	-6.99	-19.94
	SLV-Z	Max	-97.10	9.00	6.14
	SLV-Z	Min	-112.15	-6.99	-5.89

 CCT
 Doc. N.
 CODIFICA DOCUMENTO
 REV.
 FOGLIO

 C4114
 C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc
 A
 73 di 83


TABLE: Elem	ent Forces - Linl	ks			
Link	OutputCase	StepType	N	T _{long}	T _{trasv}
			kN	kN	kN
	STR-1	Max	-1094.90	0	0
	STR-1	Min	-1094.90	0	0
	STR-2	Max	-1266.44	0	0
	STR-2	Min	-1790.76	0	0
	STR-3	Max	-1156.45	0	27.68
	STR-3	Min	-1156.45	0	27.68
	STR-4	Max	-1303.37	0	16.61
	STR-4	Min	-1827.68	0	16.61
	STR-5	Max	-1225.06	0	27.68
×	STR-5	Min	-1434.79	0	27.68
0	CAR-1	Max	-888.65	0	0
×	CAR-1	Min	-1277.04	0	0
<u></u>	CAR-2	Max	-802.62	0	18.45
66	CAR-2	Min	-802.62	0	18.45
Appoggio sx e dx	CAR-3	Max	-913.27	0	11.07
Αp	CAR-3	Min	-1301.65	0	11.07
8	CAR-4	Max	-853.44	0	18.45
Φ.	CAR-4	Min	-1008.80	0	18.45
5	FR-1	Max	-812.41	0	0
PILA 1	FR-1	Min	-967.77	0	0
虿	FR-2	Max	-769.79	0	3.69
	FR-2	Min	-769.79	0	3.69
	QP	Max	-761.59	0	0
	QP	Min	-761.59	0	0
	SLV-X	Max	-750.28	14.35	4.23
	SLV-X	Min	-764.78	-34.88	-4.05
	SLV-Y	Max	-746.64	-2.89	13.90
	SLV-Y	Min	-768.42	-17.64	-13.71
	SLV-Z	Max	-737.58	-2.89	4.23
	SLV-Z	Min	-777.48	-17.64	-4.05

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	74 di 83


18 EFFETTI LOCALI - CALCOLO E VERIFICA DELLA SOLETTA IN C.A.

L'impalcato è realizzato in lamiera grecata zincata integrata da un getto di completamento in conglomerato cementizio armato.

Lo spessore della soletta è variabile da 9.5 cm (sezione corrente) a 30.5 cm lato spalla.

Sezione trasversale soletta corrente

Sezione trasversale soletta lato spalla

La soletta è collaborante con la lamiera, nella fase finale a maturazione del calcestruzzo avvenuta.

CCT	Doc. N. C4114	CODIFICA DOCUMENTO C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	REV.	FOGLIO 75 di 83

18.1 Verifica lamiera grecata

18.1.1 Schema statico

La lamiera grecata trova impiego come cassero autoportante nella fase di getto della soletta.

Occorre verificare che la lamiera non subisca inflessioni eccessive.

Si considera lo schema statico di trave su due appoggi di luce pari a 2.0 m (uguale all'interasse fra i traversi).

Trasversalmente si considera una fascia larga 1.0 m.

18.1.2 Analisi dei carichi

Peso proprio lamiera

Dai dati reperibili in letteratura la lamiera grecata zincata reca un peso proprio di 13.1 kg/m².

Peso getto fluido

La soletta, di spessore pari a 7.5 cm (sezione corrente), ha un'area (riferita ad una striscia pari a 1.0 m) di 0.12 m²; pertanto il peso del getto fluido vale:

$$p_{PGO} = \gamma_{CA} \cdot A_{soletta} = 25.0 \times 0.12 = 3.00 \text{ kN} / m$$

La soletta, di spessore pari a 30.5 cm (sezione lato spalle), ha un'area (riferita ad una striscia pari a 1.0 m) di 0.33 m²; pertanto il peso del getto fluido vale:

$$p_{PGO} = \gamma_{CA} \cdot A_{soletta} = 25.0 \times 0.33 = 8.25 \ kN \ / m$$

18.1.3 Calcolo freccia in mezzeria

La freccia in mezzeria vale quindi:

Sezione corrente

$$f = \frac{5}{384} \cdot \frac{q \cdot \ell^4}{E \cdot J} = \frac{5}{384} \times \frac{(0.131 + 3.00) \times 200^4}{21000000 \times 96.29} = 0.33 \ cm < \frac{\ell}{500} = 0.40 \ cm$$

dove:

 $E = 210000 \text{ N/mm}^2$ modulo elastico acciaio;

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	76 di 83

 $J = 96.29 \text{ cm}^4/\text{m}$

modulo di inerzia lamiera (A75/P570 S070; dato reperito in

letteratura).

Sezione lato spalle

$$f = \frac{5}{384} \cdot \frac{q \cdot \ell^4}{E \cdot J} = \frac{5}{384} \times \frac{(0.131 + 8.25) \times 200^4}{21000000 \times 220.57} = 0.38 \ cm < \frac{\ell}{500} = 0.40 \ cm$$

dove:

E = 210000 N/mm² modulo elastico acciaio;

 $J=220.57~\text{cm}^4\text{/m} \\ \hspace{1.5cm} \text{modulo di inerzia lamiera (A75/P570 S150; dato reperito in}$

letteratura).

La verifica è da ritenersi soddisfatta.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	77 di 83

18.1.4 Verifica di resistenza

Sezione corrente

Il momento massimo (positivo) in mezzeria vale, in base allo schema di trave su due appoggi soggetta a carico uniforme:

$$M_{max}^+ = \frac{1}{8} \cdot p \cdot \ell^2$$

Allo SLU si ha:

$$M_{SLU,\text{max}}^{+} = 1.35 \times \left[\frac{1}{8} \times (0.131 + 3.00) \times 2.0^{2} \right] = 2.11 \, kN / m$$

La corrispondente tensione ideale vale:

$$\sigma_i = \sigma_M = \frac{M}{W} = \frac{2.11 \times 10^6}{21.08 \times 10^3} = 100.09 \ N / mm^2 < \frac{f_{yk}}{\gamma_{m0}} = \frac{235}{1.05} = 224 \ N / mm^2$$

dove con $W = 21.08 \text{ cm}^3$ si è indicato il modulo resistente della lamiera (A75/P570 S070; valore reperito in letteratura).

Sezione lato spalle

Il momento massimo (positivo) in mezzeria vale, in base allo schema di trave su due appoggi soggetta a carico uniforme:

$$M_{max}^+ = \frac{1}{8} \cdot p \cdot \ell^2$$

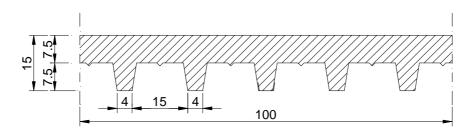
Allo SLU si ha:

$$M_{SLU,\text{max}}^+ = 1.35 \times \left[\frac{1}{8} \times (0.131 + 8.25) \times 2.0^2 \right] = 5.66 \text{ kN / m}$$

La corrispondente tensione ideale vale:

$$\sigma_i = \sigma_M = \frac{M}{W} = \frac{5.66 \times 10^6}{68.51 \times 10^3} = 82.62 \ N / mm^2 < \frac{f_{yk}}{\gamma_{m0}} = \frac{235}{1.05} = 224 \ N / mm^2$$

dove con $W = 21.08 \text{ cm}^3$ si è indicato il modulo resistente della lamiera (A75/P570 S150; valore reperito in letteratura).


La verifica è soddisfatta.

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	78 di 83

18.2 Verifica longitudinale soletta

18.2.1 Schema statico

A vantaggio di sicurezza si effettua la verifica solo sulla sezione corrente e si trascura la presenza della lamiera grecata verificando una sezione di larghezza pari a 100 cm:

Sezione soletta oggetto di verifica

Lo schema statico adottato è ancora quello di trave su due appoggi, di luce pari a 2.0 m, soggetta a carichi uniformemente distribuiti.

18.2.2 Analisi dei carichi

Peso proprio

Il peso proprio in ragione di 25.0 kN/m³ e di una sezione trasversale di area 0.12 m²:

$$p_{\textit{trave}} = \gamma_{\textit{CA}} \cdot A_{\textit{trave}} = 25.0 \times 0.12 = 3.00 \; kN \, / \, m$$

Sovraccarico permanente

Il sovraccarico permanente è rappresentato:

• dalla lamiera grecata:

$$p_{lamiera} = \gamma_{lamiera} \cdot \ell = 0.131 \times 1.0 = 0.131 \text{kN/m}$$

dalla pavimentazione avente spessore pari a 4.0 cm e peso per unità di volume pari a 30.0 kN/m³,

$$p_{\textit{pavimentazione}} = \gamma_{\textit{pav}} \cdot s_{\textit{pav}} \cdot \ell = 30.0 \times 0.04 \times 1.0 = 1.20 \; kN \, / \, m$$

Sovraccarico accidentale

Trattandosi di un ponte di 3° Categoria (passerelle pedonali), si considera un sovraccarico accidentale pari a 5.0 kN/m^2 :

$$q_{acc} = q_{fk} \cdot \ell = 5.0 \times 1.0 = 5.0 \text{ kN/m}$$

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	79 di 83

18.2.3 Combinazioni di carico per le verifiche

Nella seguente tabella si riportano le combinazioni di carico adottate per le verifiche.

COMBO	PP	PERM	ACC
SLE-car	1.00	1.00	1.00
SLF-freq	1.00	1.00	0.75
SLF-qp	1.00	1.00	0.00
SLU-str	1.35	1.50	1.50

18.2.4 Sollecitazioni

In base allo schema statico di trave semplicemente appoggiata agli estremi e soggetta ad un carico uniformemente distribuito, il momento massimo positivo in mezzeria e il taglio agli appoggi valgono rispettivamente:

$$M_{max}^+ = \frac{1}{8} \cdot p \cdot \ell^2$$

$$V_{max} = \frac{1}{2} \cdot p \cdot \ell$$

Nella tabella seguente si riportano le sollecitazioni utili per le verifiche.

COMBO	M _{max} (kNm)	V _{max} (kN)
SLE-car	4.67	9.33
SLE-Freq	4.05	8.08
SLE-qp	2.17	4.33
SLu-str	6.77	13.55

Si dispone all'intradosso di ciascun travetto 1 barra \emptyset 12; al fine di assorbire i momenti negativi agli appoggi, e non colti dal modello di calcolo adottato, si dispone all'estradosso della soletta una rete elettrosaldata \emptyset 10/20/20.

Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	80 di 83

18.2.5 Verifiche agli Stati Limite

DATI GENERALI SEZIONE IN C.A. NOME SEZIONE: soletta

Riferimento alla sismicità:

(Percorso File: D:\archivio\arc-sezca\a178\soletta.sez) Descrizione Sezione: Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica A Sforzo Norm. costante Percorso sollecitazione: Condizioni Ambientali: Poco aggressive Assi x,y principali d'inerzia Zona non classificata sismica Riferimento Sforzi assegnati:

Posizione sezione nell'asta: In prossimità dell'attacco a nodo

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Classe: Rck370 Resis. compr. di calcolo fcd : 174.0 daN/cm² Resis. traz. di calcolo fctd: 13.50 daN/cm² Modulo Elastico Normale Ec : 32837 daN/cm² Coeff. di Poisson 0.20 Resis. media a trazione fctm: 29.00 daN/cm² Coeff. Omogen. S.L.E. : 15.0 Combinazioni Rare in Esercizio (Tens.Limite): Sc Limite: 184.30 daN/cm² Apert.Fess.Limite : Non prevista Combinazioni Frequenti in Esercizio (Tens.Limite): Sc Limite: 184.30 daN/cm² Apert.Fess.Limite : 0.300 mm Combinazioni Quasi Permanenti in Esercizio (Tens.Limite): 138.20 daN/cm² Sc Limite : Apert.Fess.Limite : 0.200 mm Tipo: B450C ACCIAIO Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: 4500.0 daN/cm² Resist. caratt. rottura ftk: Resist. snerv. di calcolo fyd: 5400.0 daN/cm² 3913.0 daN/cm² Resist. ultima di calcolo ftd: 4200.0 daN/cm² Deform. ultima di calcolo Epu: 0.010 Modulo Elastico Ef : Coeff. Aderenza ist. £1*£2: 2060000 daN/cm2 1.00 daN/cm² Coeff. Aderenza diff. \$1*\$2:
Comb.Rare Sf Limite: 0.50 daN/cm² 3600.0 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1 Forma del Dominio: Classe Conglomerato: Poligonale Rck370

N.vertice	Ascissa X,	cm Ordinata Y, cm
1	-50.60	15.00
2	50.60	15.00
3	50.60	7.50
4	49.40	0.00
5	45.40	0.00
6	44.20	7.50
7	31.70	7.50
8	30.50	0.00
9	26.50	0.00
10	25.30	7.50
11	12.80	7.50
12	11.50	0.00
13	7.50	0.00
14	6.25	7.50
15	-6.25	7.50
16	-7.50	0.00
17	-11.50	0.00
18	-12.80	7.50
19	-25.30	7.50
20	-26.50	0.00
21	-30.50	0.00
22	-31.70	7.50
23	-44.20	7.50
24	-45.40	0.00
25	-49.40	0.00
26	-50.60	7.50

DATI BARRE ISOLATE

CCT Doc. N. CODIFICA DOCUMENTO REV. FOGLIO C4114 C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc A 81 di 83

Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Diam. Diametro in mm della barra

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mr
1	47.40	2.00	12
2	-47.40	2.00	12
3	-28.50	2.00	12
4	28.50	2.00	12
5	-9.50	2.00	12
6	9.50	2.00	12
7	-45.00	11.00	10
8	45 00	11.00	1.0

DATI GENERAZIONI LINEARI DI BARRE

N.Gen. Numero assegnato alla singola generazione lineare di barre
N.Barra In. Numero della barra iniziale cui si riferisce la gener.
N.Barra Fin. Numero della barra finale cui si riferisce la gener.
N.Barre Numero di barre generate equidist. inserite tra la barra iniz. e fin.
Diam. Diametro in mm della singola barra generata

N.Gen.	N.Barra	In. N	.Barra	Fin.	N.Barre	${\tt Diam.\emptyset,mm}$
1	7		8		3	1.0

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb.	N	Mx	My	Vy	Vx
1	0	677	0	0	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo superiore della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb.	N	Mx	My
1	0	467	0

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo superiore della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb.	N	Mx	My
1	0	405	0

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo superiore della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb.	N	Mx	My
1	0	217	0

RISULTATI DEL CALCOLO

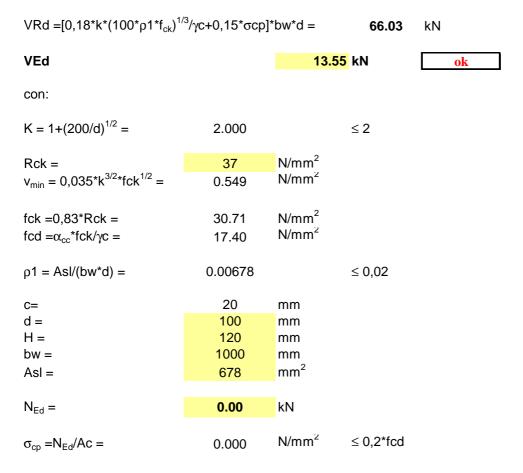
Copriferro netto minimo barre longitudinali: 1.4 cm Interferro netto minimo barre longitudinali: 8.2 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	А	82 di 83

Ver	
Ver	
	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My
	Verifica positiva se tale rapporto risulta >=1.000
N.Comb. Ve	r N Mx My Nult Mxult Myult Mis.Sic.
1 S	0 677 0 0 3442 0 5.085
ODO AGLI STA	TI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO
ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
	Deform. unit. minima nell'acciaio (negativa se di trazione)
ef min	
Xf min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xf max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
N.Comb. e	c max ec 3/7 Xc max Yc max ef min Xf min Yf min ef max Xf max Yf max
1 0.	00350 -0.00314 -50.6 15.0 -0.00063 -45.0 11.0 -0.00993 47.4 2.0
a b c	Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Coeff. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d C.Rid.	Rapp. di duttilità a rottura in presenza di sola fless.(travi) Coeff. di riduz. momenti per sola flessione in travi continue
N.Comb.	a b c x/d C.Rid.
N.Comb.	
	a b c x/d C.Rid.
1 0	.000000000 0.001032958 -0.011994366 0.261 0.766 RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE
1 0 BINAZIONI RA Ver Sc max Xc max	.000000000 0.001032958 -0.011994366 0.261 0.766 RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
1 0 BINAZIONI RA Ver Sc max	.000000000 0.001032958 -0.011994366 0.261 0.766 RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²]
1 0 BINAZIONI RA Ver Sc max Xc max	.000000000 0.001032958 -0.011994366 0.261 0.766 RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
1 0 BINAZIONI RA Ver Sc max Xc max Yc max Sf min	.000000000 0.001032958 -0.011994366 0.261 0.766 RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²]
1 0 BINAZIONI RA Ver Sc max Xc max Yc max Yc max Sf min Xf min	.000000000 0.001032958 -0.011994366 0.261 0.766 RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
1 0 BINAZIONI RA Ver Sc max Xc max Yc max Yc max Sf min Xf min Yf min	RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
1 0 BINAZIONI RA Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff.	RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di conglomerato [cm²] in zona tesa considerata aderente alle barre
1 0 BINAZIONI RA Ver Sc max Xc max Yc max Yc max Sf min Xf min Yf min	RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
1 0 BINAZIONI RA Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff.	RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di conglomerato [cm²] in zona tesa considerata aderente alle barre Distanza calcolata tra le fessure espressa in mm Coeff. di normativa dipendente dalla forma del diagramma delle tensioni
1 0 BINAZIONI RA Ver Sc max Xc max Yc max Yc max Sf min Xf min Af min Ac eff. D fess. K3 Ap.fess.	RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di conglomerato [cm²] in zona tesa considerata aderente alle barre Distanza calcolata tra le fessure espressa in mm Coeff. di normativa dipendente dalla forma del diagramma delle tensioni Apertura calcolata delle fessure espressa in mm
Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.fess. N.Comb. Ve	RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di conglomerato [cm²] in zona tesa considerata aderente alle barre Distanza calcolata tra le fessure espressa in mm Coeff. di normativa dipendente dalla forma del diagramma delle tensioni Apertura calcolata delle fessure espressa in mm
1 0 BINAZIONI RA Ver Sc max Xc max Yc max Sf min Xf min Af min Ac eff. D fess. K3 Ap.fess.	RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di conglomerato [cm²] in zona tesa considerata aderente alle barre Distanza calcolata tra le fessure espressa in mm Coeff. di normativa dipendente dalla forma del diagramma delle tensioni Apertura calcolata delle fessure espressa in mm
1 0 BINAZIONI RA Ver Sc max Xc max Yc max Yc max Sf min Xf min Af min Ac eff. D fess. K3 Ap.fess. N.Comb. Ve	RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di conglomerato [cm²] in zona tesa considerata aderente alle barre Distanza calcolata tra le fessure espressa in mm Coeff. di normativa dipendente dalla forma del diagramma delle tensioni Apertura calcolata delle fessure espressa in mm
Ver Sc max Yc max Yc max Yc max Yc min Yf min Ac eff. D fess. K3 Ap.fess. N.Comb. Ve	RE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE S = combinazione verificata / N = combin. non verificata Massima tensione positiva di compressione nel conglomerato [daN/cm²] Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione negativa di trazione nell'acciaio [daN/cm²] Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di conglomerato [cm²] in zona tesa considerata aderente alle barre Distanza calcolata tra le fessure espressa in mm Coeff. di normativa dipendente dalla forma del diagramma delle tensioni Apertura calcolata delle fessure espressa in mm or Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess. 18.8 -50.6 15.0 -595 9.5 2.0 195 71 0.125 0.01

N.Comb. Ver Sc max Xc max Yc max Sf min Xf min Yf min Ac eff. D fess. K3 Ap.Fess.


1 S 8.7 -50.6 15.0 -276 9.5 2.0 195 71 0.125 0.01

	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
CCT	C4114	C4114_E_C_AC4_MAJ05_0_IA_RC_004_A.doc	Α	83 di 83

Verifica a taglio

Elementi senza armatura trasversale a taglio

- Verifica del conglomerato

Dato che la verifica risulta soddisfatta non occorre disporre un'apposita armatura resistente a taglio.