

Rif - SEO-PR002-07 - RT - AD


Data: 06/09/07	Versione: 00	Modifiche: Versione Originale	
File: PR002-07 - CENTRALE EOL	ICA CHIEUTI _Allegato D.doc		
Redatto da:	Verificato da:	Approvato da:	
Girolamo Mauro Gentile	Pallotti Fabio	Davide Trevisani	

Committente: TREVI Energy S.p.A Via Larga, 201 – 47023 CESENA (FC)

Opera: "CENTRALE EOLICA OFF-SHORE CHIEUTI".

Capitaneria di Porto di Manfredonia (FG)

Oggetto: Individuazione caratteristiche moto ondoso al largo di Marina di Chieuti - Caratteristiche onda di progetto.

Progettista: Ing. Girolamo Mauro Gentile

Sezione A Ordine degli Ingegneri Provincia di Andria-Barletta-Trani nº10

Revisioni			
Versione	Data	Totale Pagine	Modifiche
00	06/09/2007	18	Versione Originale

Indice della Relazione.

1	Generalità	pag.	3
	1.1 Dati considerati	pag.	3
2	Individuazione caratteristiche moto ondoso verificatosi nel 1951-1994	pag.	4
	Individuazione tempeste di vento che hanno generato mareggiate in grado di raggiungere la zona al largo di Marina di Chieuti	pag.	4
	2.2 Calcolo delle caratteristiche del moto ondoso di tutte le mareggiate verificatesi	pag.	4
	2.3 Diagrammi e tabelle riassuntive dello studio effettuato	pag.	7
3	Analisi statistica di lungo periodo delle onde estreme	pag.	14
A	ppendice 1	pag.	17

1 Generalità.

Le note che seguono riportano i risultati dello studio compiuto ai fini della determinazione delle caratteristiche del moto ondoso nella zona individuata dalla Trevi S.p.A. al largo di Marina di Chieuti.

Nel seguito delle note sono riportate le massime caratteristiche del moto ondoso "storicamente" calcolate (massimi valori dell'altezza d'onda e relativo periodo), analiticamente dettagliate per direzione di provenienza del vento suscitatore, nonché le risultanze dell'analisi di tipo statistico che fornisce il valore dell'altezza d'onda di largo con uno stabilito tempo di ritorno.

Considerazioni ulteriori dettagliano, in analogia alla normativa relativa alla progettazione di moli, dighe ed opere a mare in genere, la relazione di rischio in modo da consentire l'adozione di un onda di progetto consona all'impianto che si vuol realizzare.

I dati contenuti in queste note hanno la definizione relativa alla stesura di un progetto di massima ed abbisognano di ulteriori elaborazioni, definizioni, integrazioni, rilievi e confronti per essere posti alla base di un progetto definitivo e/o esecutivo.

1.1 Dati considerati.

Per la determinazione delle massime caratteristiche del moto ondoso al largo di Marina di Chieuti o, come si suol dire, la determinazione del "clima ondoso", sono stati presi in considerazione i dati anemologici triorari misurati e registrati presso la stazione di Termoli dall' A.M.I. fra il 1951 ed il 1994 mentre, la misura dei tratti di mare (fetch) sui quali il vento trasferisce energia al mare suscitando il moto ondoso che raggiunge la zona in studio, è stata effettuata sulla carta nautica dell'I.I. della Marina in scala 1:1.000.000.

Ulteriori analisi e considerazioni derivano da conoscenze pregresse sulle mareggiate verificatesi negli ultimi decenni e da considerazioni sugli effetti delle stesse sui litorali prospicienti la zona, in altre parole dalle "ore di mare" dell'autore delle note.

2 Individuazione caratteristiche moto ondoso verificatosi nel 1951-1994.

Lo studio per l'individuazione delle caratteristiche del moto ondoso verificatosi nell'intervallo di tempo per il quale erano disponibili i dati meteorologici si è articolato nelle seguenti fasi:

- Individuazione delle tempeste di vento che hanno generato mareggiate in grado di raggiungere la zona al largo di Marina di Chieuti
- Calcolo delle caratteristiche del moto ondoso di ciascuna delle mareggiate individuate al punto precedente.
- Redazione di quadri e diagrammi sinottici.

2.1 Individuazione tempeste di vento che hanno generato mareggiate in grado di raggiungere la zona al largo di Marina di Chieuti.

Questa prima fase dello studio, esaminati i dati anemologici su base annua, triennale e dell'intero periodo, verificate le direzioni di provenienza del vento suscitatore di ciascuna mareggiata, ha individuato nell'intero arco di tempo considerato, ben 4603 mareggiate che hanno interessato con il loro moto ondoso la zona oggetto dello studio. Si riporta di seguito, nella tabella e grafico n.1, il dettaglio del numero di mareggiate verificatosi nell'intero periodo per ogni direzione di provenienza e per ciascuna classe di altezza d'onda considerata. (Le direzioni di provenienza prese in considerazione partono dalla direzione nord e si susseguono ad intervalli di 10°).

2.2 Calcolo delle caratteristiche del moto ondoso di tutte le mareggiate verificatesi.

Il calcolo delle caratteristiche del moto ondoso associato a tutte le 4603 mareggiate verificatesi nell'intervallo di tempo per il quale erano disponibili dati anemologici è stato eseguito con il metodo SMB (Sverdrup-Munk- Bretschneider) risolvendo, con un codice di calcolo, le equazioni di seguito riportate:

$$\begin{split} \frac{gH}{U^2} &= 0.283 \text{ tanh } \left[0.0125 \left(\frac{gF}{U^2} \right)^{0.42} \right], \\ \frac{gT}{2\pi U} &= 1.20 \text{ tanh } \left[0.077 \left(\frac{gF}{U^2} \right)^{0.25} \right], \end{split}$$

$$\frac{gt}{U} \ = \ K \ exp \left\{ \left[A \left(\ln \ \left(\frac{gF}{U^2} \right) \right)^2 \ - \ B \ \ln \ \left(\frac{gF}{U^2} \right) + \ C \right]^{\frac{1}{12}} \ + \ D \ \ln \ \left(\frac{gF}{U^2} \right) \right\} \ ,$$

Ove: g = 9.81m/s²(accelerazione di gravità)

U = velocità del vento [nodi]

H = altezza d'onda[m]

T = periodo [sec

t = durata dell'evento [ore]

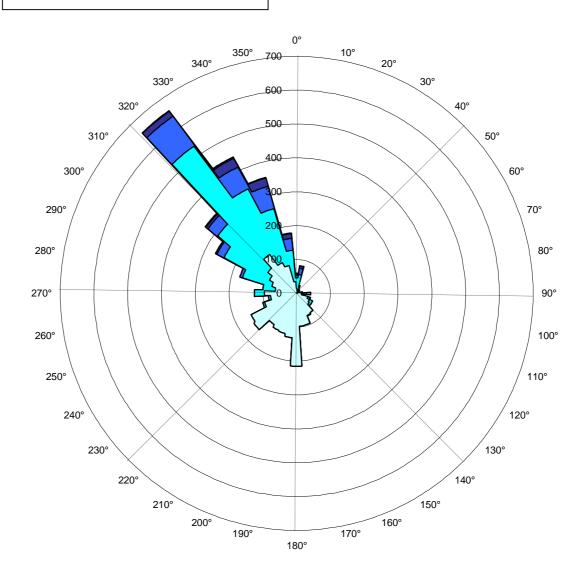
F = fetches length [nautical miles]

A, B, C, D = costanti

exp = esponenziale

tanh = tangente iperbolica

Occorre precisare che nelle relazioni precedentemente riportate si conoscono, per ogni tempesta i parametri U, t, A, B, C, D, F (Fetch); un codice di calcolo, ideato e di proprietà dell'autore delle note, ha fornito per ognuna delle 4603 mareggiate l'altezza d'onda significativa (H_{1/3}) ed il suo periodo (T).


La già citata tabella n. 1 riporta, per ogni direzione di provenienza del vento suscitatore delle mareggiate, i valori delle altezze d'onda verificatesi raggruppati per campi significativi. Dalla tabella n. 1 si evince che:

- 2529 mareggiate hanno presentato altezze d'onda inferiori ad 1 metro.
- 1563 mareggiate hanno presentato altezze d'onda comprese fra 1 metro e 2 metri.
- 387 mareggiate hanno raggiunto altezze d'onda comprese fra 2 metri e 3 metri.
- 109 mareggiate hanno presentato altezze d'onda comprese fra 3 metri e 4 metri.
- 15 mareggiate hanno raggiunto altezze d'onda superiori a 4 metri.

	H ≤ 1	1 < H ≤ 2	2 < H ≤ 3	3 < H ≤ 4	H > 4	Tot
10	9	47	19	7	0	82
20	6	14	4	0	0	24
30	2	9	2	0	0	13
40	5	7	1	0	0	13
50	5	3	2	0	0	10
60	1	4	0	1	0	6
70	5	5	0	0	0	10
80	13	4	0	0	0	17
90	29	12	0	0	0	41
100	14	3	1	0	0	18
110	34	7	1	0	0	42
120	42	10	0	0	0	52
130	46	6	0	0	0	52
140	69	0	0	0	0	69
150	72	2	0	0	0	74
160	96	0	0	0	0	96
170	97	0	0	0	0	97
180	215	0	0	0	0	215
190	131	0	0	0	0	131
200	123	0	0	0	0	123
210	121	0	0	0	0	121
220	113	0	0	0	0	113
230	154	0	0	0	0	154
240	148	0	0	0	0	148
250	98	5	0	0	0	103
260	77	7	0	0	0	84
270	95	30	0	0	0	125
280	64	37	0	0	0	101
290	76	90	8	0	0	174
300	89	150	23	5	0	267
310	105	183	36	8	2	334
320	140	390	108	18	2	658
330	100	240	71	28	5	444
340	85	174	68	25	2	354
350	35	93	35	14	2	179
360	15	31	8	3	2	59
Tot	2529	1563	387	109	15	4603

Tabella n. 1 Distribuzione delle mareggiate per classi di altezza d'onda significativa $H_{(1/3)}$ e direzione di provenienza

Periodo di riferimento: 1951 - 1994

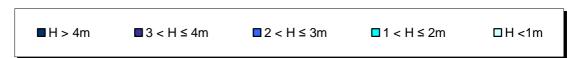


Grafico n. 1 Distribuzione delle mareggiate per classi di altezza d'onda e direzione di provenienza

2.3 Diagrammi e tabelle riassuntive dello studio effettuato.

In questo paragrafo vengono presentate alcune delle tabelle e diagrammi realizzati durante le varie fasi dello studio ritenute particolarmente interessanti al fine della presentazione del "clima ondoso" del paraggio. Analiticamente la tabella n. 2 presenta per ogni singola direzione del vento suscitatore delle mareggiate la lunghezza del Fetch geografico e la lunghezza del Fetch efficace presi in considerazione per il calcolo del moto ondoso di ognuna delle 4603 mareggiate. In modo ancor più immediato l'appendice n.1 mostra l'entità dei fetch geografici ed il grafico n. 2 presenta la comparazione tra fetch geografici ed efficaci.

Direzione	Fetch geografico	Fetch efficace
[N]	[Km]	[Km]
10	192	223,41
20	182	198,08
30	178	187,24
40	170	183,69
50	200	195,43
60	210	190,37
70	237	180,09
80	277	164,73
90	330	145,22
100	48	120,60
110	27	93,99
120	20	66,59
130	17	39,90
140	14	15,40
150	10	11,90
160	9	10,23
170	8	9,33
180	8	8,91
190	9	9,08
200	10	9,73
210	11	10,26
220	12	11,24
230	15	12,53
240	16	14,91
250	12	18,51
260	18	25,08
270	22	36,94
280	37	54,95
290	50	94,93
300	85	132,53
310	145	171,40
320	206	204,46
330	476	226,91
340	345	240,85
350	340	244,80
360	210	234,49

Tabella n. 2 Fetch geografici ed efficaci per il paraggio oggetto di studio

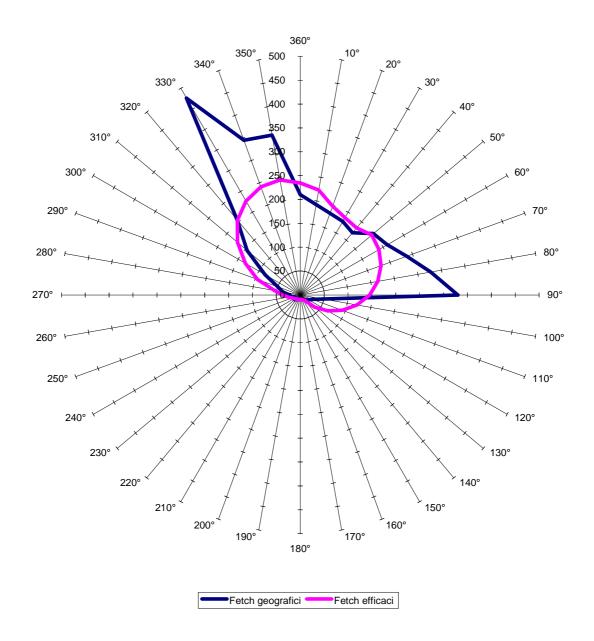


Grafico n. 2 Fetch geografici ed efficaci per il paraggio oggetto di studio

Si è giudicato particolarmente interessante presentare nella tabella n. 3 la distribuzione dei valori massimi dell'altezza d'onda significativa H $_{(1/3)}$ calcolata per i diversi anni e per le diverse direzioni di provenienza del vento suscitatore. Per una migliore sintesi e comprensione degli eventi meteomarini calcolati per l'intervallo temporale in esame, le tabelle n. 4 e 5 mostrano rispettivamente i valori di H $_{(1/3)}$ max nei diversi anni e per le diverse direzioni di provenienza

Direz	101	20	30	40	20	09	20	80	06	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	320	200	
MAX	3 97	2.85	2,22	2,01	2,25	3,05	1,61	1,63	1,92	2,06	2,05	1,53	1,39	0,83	1,25	96'0	0,84	8,78	0,71	0,92	0,74	06'0	68'0	86,0	1,16	1,21	1,68	1,68	2,74	3,67	4,65	4,49	4,62	4,40	4,29	60,0	
7661	900	00.0	00,0	00'0	0,00	00'0	00'0	0,85	00'0	89'0	0,72	0,77	00'0	00'0	0,50	99'0	0,52	95'0	98,0	0,57	0,61	0,47	65,0	0,57	0,51	00'0	1,15	0,00	0,00	1,71	0,82	1,61	1,81	2,92	1,55	2.92	12,1
1993	1 28	00.0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,59	0,00	0,00	0,44	0,59	0,59	0,63	0,00	0,50	0,54	0,51	0,46	0,57	0,00	0,00	0,00	0,61	0,77	48,	0,00	1,76	3,58	4,10	4,40	3,42	4.40	, F
1992	1 12	1.82	0,00	00'0	00'0	00'0	00'0	00'0	0,00	1,02	0,59	0,00	0,00	0,00	0,00	0,48	99'0	0,53	0,50	0,52	0,45	0,63	0,56	0,59	0,64	0,59	0,98	1,20	1,14	2,13	1,49	2,62	3,31	3,27	3,43	3.43	3.
1991	191	00.0	0,00	0,00	0,00	0,00	00'0	0,72	0,77	0,00	1,09	0,00	0,00	0,49	0,61	0,45	0,58	0,48	0,34	0,52	0,38	0,54	0,60	0,64	98'0	0,56	99'0	0,00	1,24	1,17	1,61	3,44	2,81	2,48	2,76	3.44	
1990	4-		0,00	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_		_	_	_	_	_	0,89	_	_	_	2,11	•	7	3,30	2,92	2,08	330	3,5
1989	4.	2 1.66	4 0,00	_	_	_	_	_	_	_	•	_	_	_	•	_	_	_	_	_	_	_	_	_	_	_	_	•	•		•	•			2,10	7 3.63	3,
1988	T	5 0 2	_	_	0 2,25													_		_						69'0 8						_	α	3,25	97 2,98	22 3.9	1
1986	4`		58 0,00	_	_			_	_	•	_		_	_	_	_	_	_	_	_	_	_	_	_	_	99 0,88	_		_	36 2,62	•	N	4	က်၊	2,21 3,9	2 4	f
985 19	Η.		0,00																																	22 0,	
186	Η.		0,00,0																																1,29 2	29 3	2
1983 1	Η.		0,00	_	_			0,00								0,56										0,53								3,42	3,01	3.42	1
1982	1 17	000	0,00	0,00	00'0	0,00	0,00	00'0	0,00	00'0	0,00	0,00	0,00	0,00	0,00	0,00	0,64	0,62	0,49	0,43	0,51	0,50	0,50	0,83	99,0	1,10	0,64	1,08	0,92	2,82	2,67	3,23	3,35	2,17	1,94	3.97	5
1981	3.60	0000	1,46	0,00	00'0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,47	0,00	0,00	0,84	69'0	0,40	0,48	0,42	0,53	0,59	0,51	0,56	0,85	0,64	1,08	1,25	1,78	1,07	3,26	4,62	3,24	2,82	0°.	<u> </u>
1980	4.		1,13		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_									2,22	3.82	;
1979	4`		1,99																																2,72	- 2	1
7 1978	+																																		7,27		5
197	4		00,00		_																														2,0) (c)	,
1975 197	Η.	_	22 1,35	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		•		•		29 3,13		1,25 3,1	59 3.8	
974 19	Η.			_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			•				•		1,28	F	
1973 19	4.	_	0,00,0	_	_	_	_	_		_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	0,56 0				•	•		_	2,14	59,00	9 86.	3
1979 1	4		0,00					0,00											0,42					0,67		1,18				2,88		2,89	3,16	2,53	00,00	3.16	2
1971	000	0000	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	00,0	000	3
1970	0	0000	0,00	0,00	00'0	0,00	0,00	1,02	0,00	0,00	0,95	99'0	0,67	0,46	0,52	0,49	0,45	0,44	0,45	0,00	0,49	0,45	0,54	99'0	0,75	0,58	1,13	1,54	1,44	1,74	2,76	2,14	3,71	1,87	2,94	3.71	
1969	1 83	000	0,00	0,00	0,00	0,00	0,00	00'0	0,00	00'0	0,80	0,00	0,00	0,00	0,49	0,44	0,47	0,57	0,33	0,49	0,51	0,47	0,47	09'0	0,56	00'0	00'0	1,39	1,82	1,92	1,87	2,97	3,61	3,68	09,1	3,68	;
1968	4	0000	0,00	00'00	0,00	0,00	0,00	0,93	0,00	00'0			3 0,70			3 0,00				09'0 t						9'0 9			1,69	3,18	~	3,93	4,59	2,43	3,99	1,73	+
_	4		00,00				4 0,00	0,00			4 0,00	_	7 0,78							4 0,44						99'0 8			_	0,99	6 2,74			0	n 0	3.54	2
1965 1966	4	_	00,00	_	•	_	0,5	0,0			00 0,54								_	_	_	_	_	_	_	21 0,78			_	39 2,14	26 2,2	•	.,			4.26 3.75	4
1964 19	4		0,00																											Ξ,			3,48 2,		2,5		+
1963 19	4		0,00,0																										•	_	C	C	.,		N 4	3.64	+
1962	4		0,00																							1,13 (•	3,35	• • •		3.81	+
1961	Η.	0.85	0,88	0,77	0,00	0,00	0,00	0,00	0,00	0,00	0,72	26'0	0,78	0,60	98'0	0,44	99'0	0,44	0,65	0,63	99,0	0,30	0,54	0,64	1,12	0,58	0,53	1,39	2,33	3,22	4,65	4,31	2,38	4,19	3,02	4.65	ř
1960	2 23	0000	0,00	0,00	0,74	0,00	1,61	0,93	0,00	0,00	1,60	0,00	0,78	0,73	0,52	0,91	0,77	0,75	99'0	0,49	0,64	0,61	0,58	0,81	1,10	1,10	1,50	1,32	1,62	3,12	2,43	3,96	1,67	3,60	8, 6	3.96	2,5
1959	4		0,00																							0,91				_		.,	2,98		4,22	4	+
1958	+																																		2,42	\vdash	+
6 1957	47		0,00																							3 0,00				3 2,47	•		3,62		1,56	ം 🗀	4
1956	4		00,00 71	0,0	9.0,93	0,0	0,100	_																				1,3	8,	9	6 2,2				0,00	\vdash	+
1954 1955	4		0,00 2,0	0,0	8'0 00	0,0	54 0,0	_	01 0,54	_										00 0,43						76 1,16	_	68 1,3	11 4.	54	10 1,7	•	22 2,40	•	7,57	۸ اد	+
1953 19	4	90	00	00.	00'	00,	00.	_			0,00					0,71 0,6						7,0 72,0		0,49 0,4		7,0 67,0			,28	63	,77 2,	4	0,0			70 4.	4
1952 19	4	000	0,00,0	,85 0,	,000,0	,000,0	,000,0	_		_	0,00,0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0,73 0,	_		_	69	,25		_	- '	90,	_ [_``	4
1951 19	+		0,00,0				0,000	0 00'0	0,54											0,000		_		_	_	0,00,0	_	_	1,88	0,72	0,00	3,11 3	0,00	0,63	0,00	3.11 3	;
Direz 1		Т	30	Н	П	_	20	8	06	100	_	_	_	140	_	_	_	_	190	_	210	_	_	240		260	_	_	290	900	310	320	330	340	320	٠.	
											_	_					_	_	_					_	_				_	_	_	_					_

Tabella n. 3 Distribuzione dei valori massimi delle altezze d'onda H (113) nei diversi anni e per le diverse direzioni di provenienza

Anno	H max		Anno	H max
	[m]	l		[m]
1951	3,11		1976	3,85
1952	3,62		1977	3,38
1953	2,70		1978	3,50
1954	4,49		1979	2,93
1955	3,47		1980	3,82
1956	2,76		1981	4,62
1957	3,66		1982	3,97
1958	3,67		1983	3,42
1959	4,22		1984	4,29
1960	3,96		1985	3,22
1961	4,65		1986	3,42
1962	3,81		1987	4,22
1963	3,64		1988	3,97
1964	3,48		1989	3,63
1965	4,26		1990	3,30
1966	3,75		1991	3,44
1967	3,54		1992	3,43
1968	4,59		1993	4,40
1969	3,68		1994	2,92
1970	3,71			
1971	0,00			
1972	3,16			
1973	4,38			
1974	6,28			
1975	6,59			
H ma	ax osserva	ta:	6,59	

Tabella n. 4 Serie storica dei valori H $_{(1/3)}$ max nel periodo 1951-1994

Direzione	H max
[N]	[m]
10	3,97
20	2,85
30	2,22
40	2,01
50	2,25
60	3,05
70	1,61
80	1,63
90	1,92
100	2,06
110	2,05
120	1,53
130	1,39
140	0,83
150	1,25
160	0,96
170	0,84
180	0,78
190	0,71
200	0,92
210	0,74
220	0,90
230	0,89
240	0,98
250	1,16
260	1,21
270	1,68
280	1,68
290	2,74
300	3,67
310	4,65
320	4,49
330	4,62
340	4,40
350	4,29
360	6,59
MAX	6,59
F	

Tabella n. 5 Distribuzione, per direzione dei provenienza, dei valori di $H_{(1/3)}$ max calcolati nel periodo 1951-1994

I successivi grafici n. 3 e 4 mostrano in maniera esplicita quanto riportato nelle tabelle n. 4 e 5.

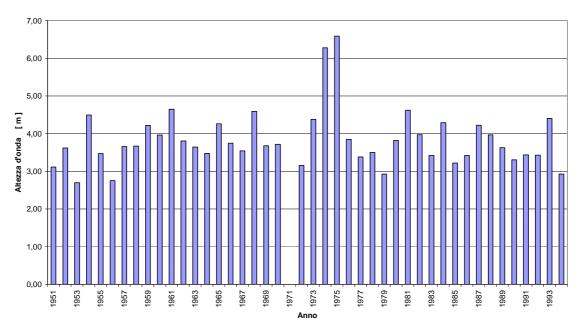


Grafico n. 3 Distribuzione, su base annuale, dei valori massimi dell'altezza d'onda H (1/3)



Grafico n. 4 Distribuzione, per direzione di provenienza, dei valori massimi dell'altezza d'onda H (1/3)

A conclusione di questo paragrafo si è ritenuto indispensabile presentare nel grafico n. 5 la relazione intercorrente tra periodo ed altezza d'onda.

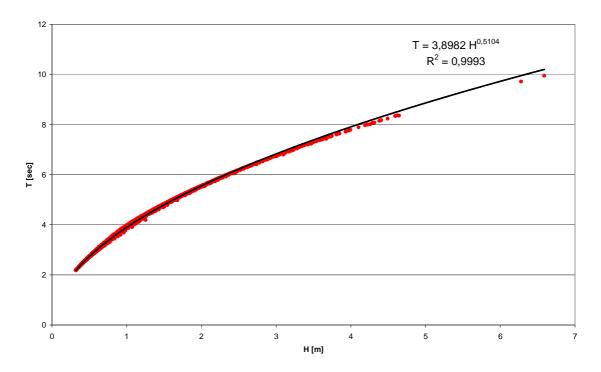


Grafico n. 5 Legge di correlazione tra periodo ed altezza d'onda.

3 Analisi statistica di lungo periodo delle onde estreme.

Attuali considerazioni sulla vita di un opera marittima, sul costo della stessa e sul rischio insito nell'intero intervento, hanno suscitato approcci statistici alla soluzione della "vexata quaestio" dell'individuazione dell'onda di progetto. In effetti reca gran conforto alla progettazione un analisi tendente a stabilire le caratteristiche di un onda che, pur storicamente mai presentatasi nel paraggio (dai dati a disposizione), può presentarsi ed essere superata almeno una volta in un periodo di tempo stabilito (Tempo di ritorno).

Essendo, considerazioni di tale tipo, ormai stabilmente introdotte sia nella pratica progettuale che nelle norme per la realizzazione di opere marittime è sembrato opportuno, anche alla conclusione di queste note, calcolare e riportare le massime altezze d'onda, per direzione di provenienza del vento suscitatore, con tempi di ritorno pari a 50, 100, 200, 500 anni.

L'approccio seguito in questo studio per la determinazione del binomio altezza d'onda – tempo di ritorno [H(Tr)] ha ipotizzato –come da prassi consolidata- e successivamente verificato, che la distribuzione del valore delle altezze d'onda storicamente calcolate possa essere convenientemente rappresentata dalla distribuzione di Gumbel.

La tabella ed il grafico n. 6 riportano, per ciascuna direzione di provenienza del vento suscitatore e per i predetti valori del tempo di ritorno, le varie H(Tr) calcolate.

		Tempo d	di ritorno	
	50	100	200	500
360	6,36	7,20	8,03	9,13
10	4,45	4,88	5,31	5,88
20	3,25	3,61	3,97	4,44
30	2,86	3,15	3,45	3,85
40	2,45	2,71	2,98	3,32
50	2,33	2,57	2,82	3,14
60	3,93	4,40	4,86	5,48
70	1,92	2,12	2,33	2,60
80	1,90	2,09	2,28	2,54
90	1,95	2,16	2,36	2,63
100	1,97	2,19	2,40	2,69
110	1,88	2,08	2,27	2,53
120	1,60	1,74	1,87	2,06
130	1,31	1,42	1,52	1,65
140	0,85	0,91	0,97	1,05
150	0,96	1,05	1,14	1,27
160	0,94	1,02	1,09	1,20
170	0,88	0,96	1,03	1,13
180	0,80	0,85	0,90	0,97
190	0,80	0,86	0,91	0,99
200	0,86	0,93	1,00	1,09
210	0,78	0,83	0,88	0,95
220	0,85	0,91	0,97	1,04
230	0,86	0,91	0,96	1,03
240	1,07	1,15	1,22	1,32
250	1,25	1,36	1,46	1,60
260	1,37	1,48	1,59	1,73
270	1,83	2,01	2,18	2,40
280	1,84	1,99	2,14	2,34
290	2,88	3,14	3,40	3,74
300	3,80	4,18	4,55	5,04
310	4,49	4,93	5,37	5,95
320	4,62	5,00	5,37	5,86
330	5,20	5,65	6,10	6,69
340	4,83	5,28	5,72	6,30
350	4,84	5,38	5,91	6,61
MAX	6,36	7,20	8,03	9,13

Tabella n. 6 Valore delle altezze d'onda, con assegnati tempi di ritorno, secondo la legge di distribuzione di Gumbel

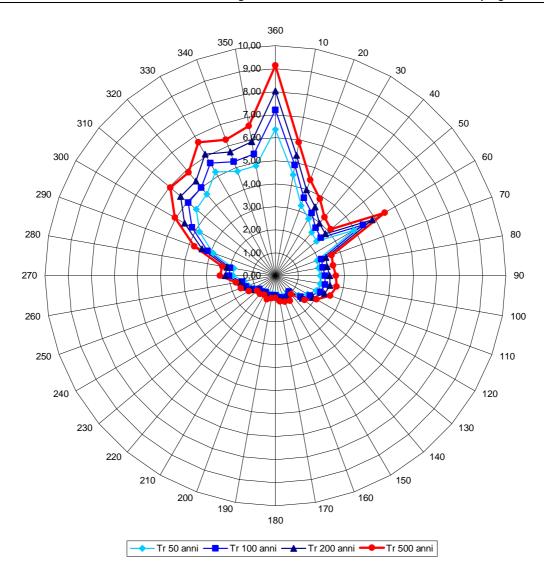
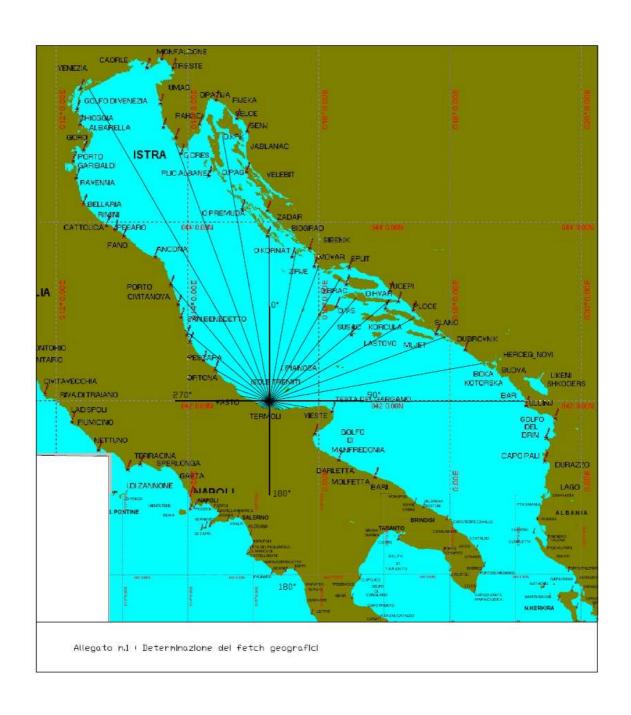


Grafico n. 6 Valore delle altezze d'onda, con assegnati tempi di ritorno, secondo la legge di distribuzione di Gumbel


Per la valutazione del tempo di ritorno da adottare, può essere conveniente far riferimento alla classica relazione $Tr=\frac{T_{_{V}}}{-\ln(1-E)}$ che fornisce il tempo di ritorno Tr dell'evento

di progetto in funzione della vita utile di quanto previsto in progetto Tv e della massima probabilità di danneggiamento ammissibile E nel periodo di vita utile dell'opera.

Si riportano di seguito i valori del tempo di ritorno Tr da adottare in funzione dei prima definiti parametri Tv ed E.

Tv	Е	Tr
25 anni	0.10	237 anni
25 anni	0.20	112 anni
50 anni	0.10	475 anni
50 anni	0.20	224 anni

zione di Progetto: " <i>Impianto eolico Off-Shore Chieuti</i> " r <mark>iduazione caratteristiche moto ondoso al largo di Marina di Chieuti - Caratteristiche onda di</mark>	17/18 progetto
pendice 1	

