CONCEDENTE

CONCESSIONARIA

CUP E3 1 B05000390007

COLLEGAMENTO AUTOSTRADALE DI CONNESSIONE TRA LE CITTA' DI BRESCIA E MILANO

PROCEDURA AUTORIZZATIVA D. LGS 163/2006 Delibera C.I.P.E. DI Approvazione del Progetto Definitivo n $^{\circ}$ 42/2009

INTERCONNESSIONE A35-A4 PROGETTO DEFINITIVO

INTERCONNESSIONE A35-A4

INTERCONNESSIONE A35-A4 DA PROG. 5+060

CVAX1 - CAVALCAVIA VIA CAVALLERA

RELAZIONE DI CALCOLO SPALLE, APPOGGI E GIUNTI PROGETTAZIONE: **VERIFICA:** MATOBO CONSORZIO B.B.M. PER IL CONSORZIO PER IL CONSORZIO PROBETTISTA RESPONSABILE INTEGRAZIONE IL DIRETTORE TECNICO MARESA PIZZAROTH E.S. S. P. IMPRESA PIZZAROTTI E C. S.P.A. DOTT. ING. SABING DEL BALZO ORDINE DEGLI INGEGNERI DI PARMA N. 821 Ordine degli Ingegneri di Potenza N. 631 IDENTIFICAZIONE ELABORATO I.D. MARZO 60220 D 1 11 CV 00 00 001 00 Α 00 04 RC AX1 SCALA: ELABORAZIONE PROGETTUALE REVISIONE REDATTO CONTROLLATO DATA APPROVATO RFV. DESCRIZIONE DATA ROGETTISTA 00 04/03/15 04/03/15 04/03/15 PIACENTINI NI INSEGNERI S.R.L. PIACENT HA PLACENTINI Dott. GNERI DI BOLOGNA N. ORDINE DEG IL CONCEDENTE IL CONCESSIONARIO SOCIETÀ DI PROGETTO

IL PRESENTE DOCUMENTO NON POTRA' ESSERE COPIATO, RIPRODOTTO O ALTRIMENTI PUBBLICATO, IN TUTTO O IN PARTE, SENZA IL CONSENSO SCRITTO DELLA SAP BREBEMI S.P.A. OGNI UTILIZZO NON AUTORIZZATO SARA' PERSEGUITO ANDRIADI LEGGE. THIS DOCUMENT MAY NOT BE COPIED REPRODUCED OR PUBLISHED, ETHER IN PART OR IN ITS ENTIRETY, WITHOUT THE WRITTEN PERMISSION OF SUP BREBEMI S.P.A. UNAUTHORIZED USE WILL BE PROSECUTE BY LAW

CONCESSIONI AUTOSTRADALI LOMBARDE

INDICE

1	PRE	MESSA	
2		RMATIVA E RIFERIMENTI 5	
3	CRI	TERI DI CALCOLO6	
	3.1	CRITERI E DEFINIZIONE DELL'AZIONE SISMICA	6
	3.2	COMBINAZIONI DI CARICO	9
	3.2.1	Combinazioni per la verifica allo SLU	9
	3.2.2	Combinazioni per la verifica allo SLE	10
	3.2.3	Combinazioni per la condizione sismica	10
	3.2.4	Coefficienti di combinazione	11
	3.3	SISTEMA DI VINCOLAMENTO	12
	3.4	VALUTAZIONE DELLE SPINTE DEL TERRENO	12
	3.5	VERIFICHE DEGLI ELEMENTI STRUTTURALI	13
	3.6	PROGETTAZIONE DELLE STRUTTURE DI FONDAZIONE.	13
4	CAR	ATTERISTICHE DEI MATERIALI15	
	4.1	CALCESTRUZZO PER MAGRONE	15
	4.2	CALCESTRUZZO	15
	4.3	ACCIAIO PER CEMENTO ARMATO	16
	4.4	DURABILITÀ E PRESCRIZIONI SUI MATERIALI	16
	4.5	COPRIFERRO MINIMO E COPRIFERRO NOMINALE	17
5	PRO	GRAMMA DI CALCOLO18	
	5.1	Pro_sap	18
6	GEO	OMETRIA DELLA STRUTTURA19	
7	CAL	COLO DELLA STRUTTURA21	
	7.1	CONVENZIONE SUI SEGNI	21
	7.2	DATI PER ANALISI SISMICA	22
	7.3	ELENCO DATI	24
	7.3.1		
	7.3.2	Dati relativi alla soletta e alla pavimentazione	24
	7.3.3	Dati relativi alle finiture	24
	7.3.4	Dati relativi ai carichi mobili	24
	7.3.5	Dati relativi alle azioni sismiche	25
	7.3.6	Dati relativi agli appoggi ed alla curvatura impalcato	25
	7.3.7	Dati relativi ai baggioli	25
	7.3.8	Dati relativi alla spalla	25
	7.3.9	•	
	7.3.1	Societa di Progetto	26
	7.4	AZIONI TRASMESSE DALL'IMPALCATO	
	7.4.1	1	
	7.4.2	Azione elastica dovuta allo scorrimento dei dispositivi di appoggio	27

	7.4.3	Carichi accidentali	28
	7.4.4	Azione di frenamento	29
	7.4.5	Azione del vento	29
	7.4.6	Azione sismica	30
	7.5	AZIONI RELATIVE ALLA SPALLA	31
	7.5.1	Peso proprio	31
	7.5.2	Spinta delle terre	31
	7.5.3	Azione del vento	33
	7.5.4	Azione sismica	33
	7.6	FONDAZIONE	36
	7.6.1	Palificata di fondazione	36
	7.6.2	Geometria della palificata	36
	7.6.3	Carichi elementari	37
	7.6.4	Combinzioni di carico	38
	7.6.5	Sollecitazioni sulla fondazione	40
	7.6.6	Azioni sui pali	45
	7.7	SOLLECITAZIONI SUGLI ELEMENTI STRUTTURALI	47
	7.7.1	Platea di fondazione	47
	7.7.2	Fusto spalla	52
	7.7.3	Muri di risvolto	55
	7.7.4	Paraghiaia	64
8	VER	IFICHE DEGLI ELEMENTI STRUTTURALI	69
	8.1	PARAGHIAIA	70
	8.1.1	Sezione d'incastro con il fusto	
	8.2	FUSTO	74
	8.3	Muri di risvolto	
	8.3.1	Sezione di attacco con la platea (sezione da filo orecchia b=1.5m)	78
	8.3.2	Sezione di attacco con la platea (sezione corrente)	83
	8.4	PLATEA DI FONDAZIONE	87
	8.4.1	Sezione d'incastro con il risvolto $(b_m = 1,5 m)$	87
	8.4.2	Sezione d'incastro con il risvolto (sezione corrente)	91
	8.4.3	Sezione d'incastro con il fusto	95
	8.5	PALI DI FONDAZIONE	99
9	VER	IFICA DI PORTANZA DEI PALI	104
10	SIST	EMA DI VINCOLAMENTO, APPOGGI E GIUNTI	108
	10.1	CRITERI DI PROGETTO DEI DISPOSITIVI	109
	10.2	AZIONI SUGLI APPOGGI	109
	10.2.		Società di Progetto 109
	10.3	PRESCRIZIONI ISOLATORI	Brebemi SpA
	10.4	GIUNTI	/

REV. 00

FOGLIO 4 di 116

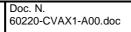
1 **PREMESSA**

Nel presente documento è descritto il cavalcavia con impalcato ad arco portante sottile e trave irrigidente, posto alla progressiva chilometrica 0+257,99 denominato Cavalcavia Cavallera, necessario per lo scavalco dell'autostrada A4 Milano -Brescia. Il progetto s'inserisce nell'ambito del Progetto Definitivo dell'interconnessione A35-A4.

Il cavalcavia è costituito da un'unica campata in semplice appoggio di lunghezza complessiva dell'implacato è 61.00m, la luce di calcolo è 60.00 m

L'andamento planimetrico del ponte è in rettifilo, la sezione trasversale dell'opera accoglie una strada tipo F2, presenta quindi una larghezza utile del pavimentato pari a 8.50m e due marciapiedi laterali da 2.3m, per una larghezza complessiva di 13.10m. Sono previste barriere di sicurezza tipo H4 bordo ponte. E' garantita la deflessione della barriera e del mezzo per tutta la lunghezza dell'opera.

Le spalle dell'opera sono di tipo ordinario in conglomerato cementizio armato e presentano una platea a fondazione su pali.


L'opera è realizzata in zona sismica secondo quanto previsto dalla nuova mappatura sismica del suolo nazionale.

Il sistema di vincolamento è costituito da dispositivi di appoggio ad isolamento sismico in elastomero armato su ogni elemento di sostegno. I dispositivi sono costituiti da strati alterni di acciaio e di elastomero collegati mediante vulcanizzazione; essendo caratterizzati da un ridotto valore della rigidezza orizzontale essi garantiscono un disaccoppiamento del moto orizzontale della struttura rispetto a quello del terreno ed una conseguente riduzione della risposta sismica della struttura. I dispositivi sono inoltre dotati di una certa capacità dissipativa, che è determinata dalle caratteristiche della mescola elastomerica da cui sono costituiti, utile a minimizzare gli spostamenti della struttura isolata. Quindi sia le azioni longitudinali che trasversali sono naturalmente ripartite sulle spalle.

Le azioni considerate nel calcolo sono quelle derivante dall'applicazione della Normativa sui ponti stradali D. M. Min. II. TT. del 14 gennaio 2008 – Norme tecniche per le costruzioni.

L'opera ricade in zona sismica, pertanto, saranno applicate le azioni di rito previste dalla norma così come riportato nei capitoli successivi.

Le spalle dell'opera, su fondazione su pali, hanno identiche caratteristiche geometriche ed i calcoli svolti di seguito sono quindi validi per entrambe.

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 5 di 116

2 NORMATIVA E RIFERIMENTI

BBM

I calcoli e le disposizioni esecutive sono conformi alle norme attualmente in vigore.

- D. M. Min. II. TT. del 14 gennaio 2008 Norme tecniche per le costruzioni
- CIRCOLARE 2 febbraio 2009, n.617 "Istruzione per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008
- UNI EN 1991-1-5:2004 Parte 1-5: Azioni sulle strutture Azioni in generale Azioni termiche
- UNI EN 1991-2:2005 Parte 2: Azioni sulle strutture Carichi da traffico sui ponti
- UNI EN 1992-1-1:2005 Parte 1-1: Progettazione delle strutture in calcestruzzo Regole generali e regole per gli edifici
- UNI EN 1997-1:2005 Parte 1: Progettazione geotecnica Regole generali
- UNI EN 1998-1:2005 Parte 1: Progettazione delle strutture per la resistenza sismica Regole generali, azioni sismiche e regole per gli edifici
- UNI EN 1998-2:2009 Parte 2: Progettazione delle strutture per la resistenza sismica Ponti
- UNI EN 1998-5:2005 Parte 5: Progettazione delle strutture per la resistenza sismica Fondazioni, strutture di contenimento ed aspetti geotecnici
- UNI EN 197-1 giugno 2001 "Cemento: composizione, specificazioni e criteri di conformità per cementi comuni
- UNI EN 11104 marzo 2004 "Calcestruzzo: specificazione, prestazione, produzione e conformità",
 Istruzioni complementari per l'applicazione delle EN 206-1
- UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità"
- Linee guida sul calcestruzzo strutturale Presidenza del Consiglio Superiore dei Lavori Pubblici Servizio Tecnico Centrale

04RCDII1CVAX1000000100A00

FOGLIO 6 di 116

REV.

00

CRITERI DI CALCOLO 3

In ottemperanza al D.M. del 14.01.2008 (Norme tecniche per le costruzioni), i calcoli sono condotti con il metodo semiprobabilistico agli stati limite.

3.1 Criteri e definizione dell'azione sismica

L'effetto dell'azione sismica di progetto sull'opera nel suo complesso, includendo il volume significativo di terreno, la struttura di fondazione, gli elementi strutturali e non, nonché gli impianti, deve rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, i cui requisiti di sicurezza sono indicati nel § 7.1 della norma.

Il rispetto degli stati limite si considera conseguito quando:

- nei confronti degli stati limite di esercizio siano rispettate le verifiche relative al solo Stato Limite di Danno;
- nei confronti degli stati limite ultimi siano rispettate le indicazioni progettuali e costruttive riportate nel § 7 e siano soddisfatte le verifiche relative al solo Stato Limite di salvaguardia della Vita.

Per Stato Limite di Danno (SLD) s'intende che l'opera, nel suo complesso, a seguito del terremoto, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non provocare rischi agli utenti e non compromette significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali e orizzontali. Lo stato limite di esercizio comporta la verifica delle tensioni di lavoro, in conformità al § 4.1.2.2.5 (NT).

Per Stato Limite di salvaguardia della Vita (SLV) si intende che l'opera a seguito del terremoto subisce rotture e crolli dei componenti non strutturali e impiantistici e significativi danni di componenti strutturali, cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali (creazione di cerniere plastiche secondo il criterio della gerarchia delle resistenze), mantenendo ancora un margine di sicurezza (resistenza e rigidezza) nei confronti delle azioni verticali.

Gli stati limite, sia di esercizio sia ultimi, sono individuati riferendosi alle prestazioni che l'opera a realizzarsi deve assolvere durante un evento sismico; per la funzione che l'opera deve espletare nella sua vita utile, è significativo calcolare lo Stato Limite di Danno (SLD) per l'esercizio e lo Stato Limite di Salvaguardia della Vita (SLV) per lo stato limite ultimo.

In merito alle spalle, nel rispetto del punto § 7.9.2., rientrando tra le opere che si muovono con il terreno (§ 7.9.2.1), si può ritenere che la struttura debba mantenere sotto l'azione sismica il comportamento elastico; queste categorie di opere che si muovono con il terreno non subiscono le amplificazioni dell'accelerazione del suolo.

A riguardo del calcolo allo SLV, dovendo la struttura mantenere durante l'evento sismico un comportamento elastico, vengono eseguite le verifiche alle tensioni di esercizio (§ 4.1.2.2.5), assumendo come limite delle tensioni di esercizio quelle adottate per la combinazione caratteristica (rara) (§ 4.1.2.2.5)/(EC2 § 7.2). Tale combinazione, in accordo al punto § 7.10.6.1. (NTC) e alla Circ. 617 § 7.10.6.1. (nella quale si afferma che il sostanziale mantenimento in campo elastico della struttura nelle verifiche allo SLU, fornisce ampie garanzie rispetto alla sicurezza nei confronti dello SLD), consente di ritenere soddisfatte anche le verifiche nei confronti dello SLD.

Per la definizione dell'azione sismica, occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato.

La vita nominale (VN) dell'opera è stata assunta pari a 50 anni.

La classe d'uso assunta è la IV.

Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso vale: $V_R = V_N \cdot C_u = 100$ anni

Coordinate	Latitudina IDEC coco	adaaimala1		N	4E E427
geografiche	Latitudine [DEG sess	-			45.5437
geografiche	Longitudine [DEG ses			E	10.1266
Suolo e	Cat. suolo di fondazio	ne (A,E)		C	
topografia	Categoria topografica	(T1,T4)		T1	
topograna	Coeff. di amplificazion	e topografica	S _T		1.0
	Vita nominale dell'ope	era (10, 50, 100)	V _N [anni]	•	50
Varie	Classe d'uso (I, II, III,	IV)		IV	
valle	Coefficiente d'uso	C _U		2.0	
	Periodo di riferimento		V _R [anni]		100
	Descrizione	Ponte integrale			
	Massimo fattore di sti	q_0		1	
Struttura	Coefficiente riduttivo p	K _R		1	
Siruitura	Fattore di struttura		q		1.0
	Coeff. di smorz. visco	ξ		5%	
	Fattore di smorzamer	nto viscoso	η		1.00
	1/q		1.00		

Descrizione suolo di fondazione	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (owero 15 < NSPT,30 < 50 nei terreni a grana grossa e 70 < cu,30 < 250 kPa nei terreni a grana fina).						
DATI ORETTRAI		Stati limite	d'esercizio	Stati lim	ite ultimi		
DATI SPETTRAL		SLO	SLD	SLV	SLC		
Probabilità di superamento	P _{Vr}	81%	63%	10%	5%		
Periodo di ritorno	T _R [anni]	60	101	949	1950		
Accelerazione	a _g [m/s ²]	0.579	0.747	1.808	2.288		
	a _g /g	0.059	0.076	0.184	0.233		
Fattore di amplificazione	F ₀	2.419	2.414	2.454	2.462		
Periodo in. velocità costante	T _C * [s]	0.239	0.252	0.289	0.297		
Coefficiente di sottosuolo	C _C	1.68	1.65	1.58	1.57		
Coeff. di amplif. stratigrafica	Ss	1.50	1.50	1.43	1.36		
Coefficiente di sito	S	1.50	1.50	1.43	1.36		
Periodi	T _B [s]	0.134	0.139	0.152	0.155		
	T _C [s]	0.402	0.417	0.457	0.466		
	T _D [s]	1.836	1.905	2.337	2.533		

Il calcolo viene eseguito con il metodo <u>pseudostatico</u> (NT § 7.11.6). In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche allo Stato Limite Ultimo i valori dei coefficienti sismici orizzontali k_h e verticale k_v possono essere valutati mediante le espressioni:

$$k_h=\beta_m \cdot \frac{a \max}{g}$$
 $k_v=\pm 0.5* k_h$

dove

amax = accelerazione orizzontale massima attesa al sito;

g= accelerazione di gravità;

L'accelerazione massima è valutata con la relazione

 $a_{max}(SLV)=S \cdot a_g = 1.43 \cdot 0.184g = 0.263 g$

Essendo lo scatolare una struttura che non ammette spostamenti relativi rispetto al terreno, il coefficiente β_m , assume il valore:

 $\beta_{m}=1,00$

Pertanto, i due coefficienti sismici valgono:

(SLV)
$$k_h = \beta_m \cdot \frac{a \max}{g} = 0.263$$
 $k_v = \pm 0.5* k_h = 0.125$

Le spinte delle terre, considerando la spalla una struttura priva di spostamenti rispetto al terrenco (NT par. 7.11.6.2.1 e EC8-5 par.7.3.2.1), sono calcolate in regime di spinta attiva, condizione che comporta il calcolo delle spinte in condiszione sismica con la formula di Mononobe-Okabe:

$$\Delta P_d = 1/2 \times S \times (1+k_v) \times (K-k_a) \times \gamma \times h_{tot^2}$$

Doc. N. 60220-CVAX1-A00.doc CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 8 di 116

Il punto di applicazione della spinta che interessa la spalla è posto h/2.

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per i coefficienti sismici in precedenza definiti, di cui la componente verticale è considerata agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli.

APPROVATO BOP

3.2 Combinazioni di carico

BBM

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto al cap. 2 delle NT.

3.2.1 Combinazioni per la verifica allo SLU

Gli stati limite ultimi delle opere interrate si riferiscono allo sviluppo di meccanismi di collasso, determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono l'opera.

Le verifiche agli stati limite ultimi sono eseguiti in riferimento ai seguenti stati limite:

- -SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)
 - collasso per carico limite dell'insieme fondazione-terreno;
- -SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali.

Trattandosi di opere interrate, le verifiche saranno condotte secondo l'approccio progettuale "Approccio 1", utilizzando i coefficienti parziali riportati nelle Tabelle 6.2.I e 5.1.V per i parametri geotecnici e le azioni.

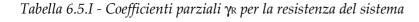

- 1. combinazione 1 \rightarrow (A1+M1+R1) \rightarrow STR
- 2. combinazione 2 \rightarrow (A2+M1+R2) \rightarrow GEO (carico limite)

Tabella 6.2.II - Coefficienti parziali per i parametri del terreno

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	M1	M ₂
	APPLICARE IL COEFF. PARZIALE	PARZIALE		
		γм		12
Tangente dell'angolo di	tan φ' _k	$\gamma_{\phi'}$	1	1.25
resistenza al taglio	ιαπ ψ κ		AP-	
Coesione efficace	C'k	γς′	D	1.25
Resistenza non drenata	C'uk	γcu	1	1.4
Peso dell'unità di		γ_{γ}	1	1
volume	γ			

Tabella 6.2.I/5.1.V - Coefficienti parziali per le azioni o per l'effetto delle azioni

0.2.110.1. Coefficienti pur ziuti per te uzioni o per i effetto uette uzioni						
CARICHI	EFFETTO	SIMBOLO	EQU	(A1)	(A2)	
	EFFEFFO	γF		STR	GEO	
Permanente	favorevole	24-	0.9	1.0	1.0	
	sfavorevole	γ G1	1.1	1.35	1.0	
Permanente	favorevole		0.0(0.9)	0.0	0.0	
non strutturali	sfavorevole	$\gamma_{ m G2}$	1.5 (1.1)	1.35	1.0/1.3	
Variabili da	favorevole	0/0	0.0	0.0	0.0	
traffico	sfavorevole	γQ	1.35	1.35 _{Sc}	cietà d Frogeti	
Variabili	favorevole	Mar	0.0	0.0	Brebenni SpA	
	sfavorevole	$\gamma_{ m Qi}$	1.5	1.5	1.30	

VERIFICA	COEFF. PARZIALE	COEFF. PARZIALE
	(R1)	(R2)
Capacità portante della fondazione	γ _R =1	γ _R =1.8
Scorrimento	γ _R =1	γ _R =1.1

Ai fini delle verifiche degli <u>stati limite ultimi</u> si definiscono le seguenti combinazioni:

$$\begin{split} STR) \Rightarrow & \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{Q1} \cdot Q_{k1} + \sum_{i} \gamma_{Qi} \cdot \psi_{0i} \cdot Q_{ki} & \Rightarrow (\Phi_d' = \Phi_k') \\ EQU) \Rightarrow & \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{Q1} \cdot Q_{k1} + \sum_{i} \gamma_{Qi} \cdot \psi_{0i} \cdot Q_{ki} & \Rightarrow (\Phi_d' = \Phi_k') \\ GEO) \Rightarrow & \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{Q1} \cdot Q_{k1} + \sum_{i} \gamma_{Qi} \cdot \psi_{0i} \cdot Q_{ki} & \Rightarrow (spinte \ \Phi_d' = tan^{-1}(tan\Phi_k' / \gamma_{\Phi})) \end{split}$$

3.2.2 Combinazioni per la verifica allo SLE

Ai fini delle verifiche degli <u>stati limite di esercizio</u> (fessurazione/ stato tensionale) si definiscono le seguenti combinazioni:

Frequente)
$$\Rightarrow$$
 $G_1 + G_2 + \psi_{11} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$ $\Rightarrow (\Phi_d' = \Phi_k')$

Quasi permanente) \Rightarrow $G_1 + G_2 + \psi_{21} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$ $\Rightarrow (\Phi_d' = \Phi_k')$

Rara) \Rightarrow $G_1 + G_2 + Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki}$ $\Rightarrow (\Phi_d' = \Phi_k')$

3.2.3 Combinazioni per la condizione sismica

Per la <u>condizione sismica</u>, le combinazioni per gli stati limite ultimi da prendere in considerazione sono le seguenti (approccio 1):

$$\begin{split} \text{STR}) \Rightarrow & E + G_1 + G_2 + \sum_i \psi_{2i} \cdot Q_{ki} & \Rightarrow (\Phi_d' = \Phi_{k'}) \\ \\ \text{GEO}) \Rightarrow & E + G_1 + G_2 + \sum_i \psi_{2i} \cdot Q_{ki} & \Rightarrow (\text{spinte } \Phi_d' = \text{tan}^{-1}(\text{tan}\Phi_{k'}/\gamma_{\Phi})) \end{split}$$

Le verifiche agli stati limite ultimi § 7.11.1(NTC) devono essere effettuate ponendo pari all'unità i coefficienti parziali sulle azioni e impiegando i parametri geotecnici e le resistenze di progetto, con i valori dei coefficienti parziali indicati nel Cap. 6.

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1+G_2+\sum_i \psi_{2i}\cdot Q_{ki}$$

I valori del coefficiente ψ_{2i} sono quelli riportati nella tabella 5.1.VI e § 2.5.I della norma; la stessa propone nel caso di ponti, e più in generale per opere stradali, di assumere per i carichi dovuti al transito dei mezzi ψ_{2i} = 0÷0.2 (condizione cautelativa).

Data la natura dell'opera in progetto, così come previsto dalla norma, si può assumere iψ2i=0.2,

3.2.4 Coefficienti di combinazione

Il raggruppamento in maniera sintetica delle combinazioni di base applicate nello sviluppo dei calcoli sono riportate nella tabella seguente:

stradali		PERMANENTI +PORTATI + RESISTENZE PASSIVE:	SPINTE	ACCIDENTALI VERTICALI SU OPERA:	ACCIDENTALI VERT. SU TERRAPIENO:	FRENATURA:	FORZA CENTRIFUGA:	VENTO:	ACCIDENTALI DIVERSI:	VARIAZIONI TERMICHE:	AZIONI SISMICHE ORIZZONTALI	AZIONI SISMICHE VERTICALI
		a	b	с	d	e	f	g	i	1	j	k
amunno 1	SLU.1	(1.00)1.35	(1.00)1.35	1.350	1.350	0.000	0.000	0.900	1.125	0.720	0.000	0.000
gruppo 1	SLU.2	(1.00)1.35	(1.00)1.35	1.013	1.013	0.000	0.000	0.900	1.500	0.720	0.000	0.000
gruppo 2a	SLU.3	(1.00)1.35	(1.00)1.35	1.013	1.013	1.350	0.000	0.900	1.125	0.720	0.000	0.000
gruppo 2b	SLU.4	(1.00)1.35	(1.00)1.35	1.013	1.013	0.000	1.350	0.900	1.125	0.720	0.000	0.000
sisma	SISMA	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	1.000	1.000
	FR1	1.000	1.000	0.750	0.000	0.000	0.000	0.000	0.000	0.500	0.000	0.000
	FR2	1.000	1.000	0.750	0.750	0.750	0.750	0.000	0.000	0.500	0.000	0.000
CLE	QP	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500	0.000	0.000
SLE	RAR-gr1	1.000	1.000	1.000	1.000	0.000	0.000	0.600	0.000	0.600	0.000	0.000
	RAR-gr2a	1.000	1.000	0.750	0.750	1.000	0.000	0.600	0.000	0.600	0.000	0.000
	RAR-gr2b	1.000	1.000	0.750	0.750	0.000	1.000	0.600	0.000	0.600	0.000	0.000

Per ogni tipologia di combinazioni (SLU, SLE), a loro volta sono state splittate in ulteriori sottogruppi, in modo da raccogliere tutte le possibili casistiche di combinazioni, questi sottogruppi (che saranno riportati nei paragrafi di calcolo appropriati) sono poi numerati con ordine "I, II, III, IV".

	PERMANENTI +PORTATI + RESISTENZE PASSIVE:	SPINTE	ACCIDENTALI VERTICALI SU OPERA:	ACCIDENTALI VERT. SU TERRAPIENO:	FRENATURA:	FORZA CENTRIFUGA:	VENTO:	VARIAZIONI TERMICHE:
	a	ь	c	d	e	f	g	1
I	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0
II	1.0	1.0	1.0	1.0	0.0	0.0	1.0	1.0
III	1.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0
IV	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0

Per ogni combinazione di carico con eventuale sottogruppo si distinguono poi, quando occorra rigseguenti casi dovuti all'accidentale da traffico:

Brebemi SpA

- a) carichi rilevato ed impalcato contemporaneamente
- b) carico il solo impalcato
- c) carico il solo rilevato

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BBM	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	12 di 116

Si aggiunge inoltre la verifica per la condizione provvisoria di rilevato sovraccarico in assenza dell'impalcato nonché la condizione con i soli carichi permanenti.

3.3 Sistema di vincolamento

Il calcolo svolto, nella condizione sismica, è un'analisi statica equivalente, secondo quanto previsto dalla normativa di riferimento.

Le caratteristiche dei dispositivi ed in particolare i valori delle rigidezze orizzontali vengono considerate nel calcolo delle sollecitazioni degli elementi di sostegno dell'opera in condizioni sismiche in un'analisi di tipo statico equivalente al fine della valutazione delle azioni sismiche ed in condizioni di esercizio per la ripartizione delle forze orizzontali tra i diversi elementi di sostegno.

Il sistema di vincolamento previsto per il ponte è costituito da dispositivi di appoggio ed isolamento sismico in elastomero armato. Tali dispositivi, essendo caratterizzati da un ridotto valore della rigidezza orizzontale, garantiscono un disaccoppiamento del moto orizzontale della struttura rispetto a quello del terreno ed una conseguente riduzione della risposta sismica della struttura; inoltre i dispositivi sono dotati di una certa capacità dissipativa che è determinata dalla mescola elastomerica da cui sono costituiti e che è utile a minimizzare gli spostamenti della struttura isolata. I dispositivi previsti in corrispondenza delle pile sono inoltre dotati di una slitta che permette gli spostamenti in direzione longitudinale: di conseguenza le azioni longitudinali in condizioni di esercizio o in condizione sismica si ripartiscono sulle sole spalle e non vengono trasmesse alle pile. L'unica azione longitudinale agente sulle pile è dovuta all'attrito. Le azioni trasversali invece sono trasmesse a pile e spalle: in questo modo viene ripartita su un maggior numero di punti l'azione del vento e quindi vengono minimizzati gli spostamenti orizzontali trasversali dovuti a tale azione che altrimenti rappresenterebbero un malfunzionamento dell'opera in condizioni di esercizio.

Di seguito si anticipano i valori delle rigidezze traslazionali dei dispositivi previsti in corrispondenza delle spalle in condizioni di esercizio e sismiche: tali valori verranno infatti utilizzate in condizioni sismiche in un'analisi dinamica lineare al fine della valutazione delle azioni sismiche e nella ripartizione delle azioni orizzontali trasmesse dall'impalcato ai diversi elementi di sostegno.

			Spalle
Numero	dispositivi	di	2
appoggio			

	Kh dispositivi spalle
Condizioni di esercizio	9600 kN/m
Condizioni sismiche	3840 kN/m

3.4 Valutazione delle spinte del terreno

Il calcolo delle spinte del terreno verrà svolto considerando uno schema di "spinta a riposo" in esercizio e uno schema di "spinta attiva" in condizione sismica. In condizioni sismiche, si applica dilfingramento dinamico di spinta del terreno calcolato secondo la formula di Mononobe-Okabe.

Brebemi SpA

REV. 00 FOGLIO 13 di 116

3.5 Verifiche degli elementi strutturali

I dispositivi precedentemente descritti sono progettati affinché resistano senza danneggiarsi e quindi compromettere il funzionamento nelle condizioni di esercizio. Tale requisito si ritiene normalmente soddisfatto se sono soddisfatte le verifiche allo SLV dei dispositivi.

Gli elementi di sostegno (spalle) sono progettati affinché, come richiesto dalla norma stessa al paragrafo 7.9.2., si mantengano in campo elastico sotto l'azione sismica allo stato limite ultimo: in questo modo si ottiene la garanzia che, anche a seguito di un evento sismico di eccezionale intensità, gli unici elementi che ne possono rimanere danneggiati sono i dispositivi di vincolamento, più facilmente sostituibili alla fine dell'evento sismico, mentre gli elementi strutturali costituenti l'opera mantengono integre le proprie capacità di resistenza. A tal fine le verifiche in condizioni sismiche vengono svolte controllando che i materiali si mantengano al di sotto di limiti tensionali che possono ritenersi i massimi, valori entro i quali il loro comportamento si mantiene sostanzialmente lineare elastico. Tali limiti tensionali massimi assunti sono riportati nel paragrafo specifico relativo alle caratteristiche dei materiali.

Anche i pali di fondazione devono essere progettati in modo da rimanere in campo elastico, secondo quanto richiesto dalla norma al paragrafo 7.9.2..

Per le verifiche degli elementi strutturali costituenti le spalle saranno quindi svolti due tipi di verifiche: allo stato limite ultimo per le condizioni di esercizio e di controllo del mantenimento del comportamento elastico dei materiali per le condizioni sismiche, nonché le verifiche tensionali e a fessurazione per lo stato limite di esercizio.

3.6 Progettazione delle strutture di fondazione

Nel presente paragrafo si espongono i criteri di progettazione adottati per le strutture di fondazione, intese come il complesso palificata e plinto di fondazione.

In ottemperanza al D.M. del 14.01.2008 (Norme tecniche per le costruzioni), le verifiche delle fondazioni su pali vengono condotte con riferimento agli stati limite di tipo geotecnico (GEO) e strutturali (STR).

Nella fattispecie si eseguono le analisi di progetto e verifica seguendo l'Approccio 1, utilizzando i coefficienti parziali riportati nelle Tabelle 6.2.I e 5.1.V per i parametri geotecnici e le azioni.

L'Approccio 1 prevede la presa in esame delle seguenti due combinazioni:

Combinazione 1 (A1+M1+R1) Combinazione 2 (A2+M1+R2)

Secondo quanto prescritto dalla normativa vigente gli elementi strutturali di fondazione devono essere dimensionati sulla base delle sollecitazioni ad essi trasmessi dalla struttura sovrastante.

Nel rispetto di tale indicazione le azioni sollecitanti agenti a base spalla, in termini di sforzo normale, tagli e momenti flettenti agenti nelle direzioni longitudinale e trasversale (N, Hl, Ht, Ml, Mt), vengono desunte dall'analisi globale della sovrastruttura in condizioni statiche e sismiche.

Si assume di progettare e verificare le strutture di fondazione per rimanere in campo elastico.

Individuate come appena esposto le azioni sollecitanti a quota estradosso plinto di fondazione, si esegue il dovuto trasporto delle stesse sino a quota testa palificata, secondo i principi della scienza delle costruzioni.

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00

REV. 00

FOGLIO 14 di 116

Infine si esegue il calcolo delle sollecitazioni di progetto sui singoli pali, a partire dalle azioni globali agenti sulla palificata.

Il calcolo viene svolto ipotizzando una ripartizione lineare delle azioni verticali, taglianti e dei momenti flettenti sui pali di fondazione.

Per maggiori dettagli si rimanda alle descrizioni riportate nei paragrafi specifici.

Si è scelto di condurre entrambi i calcoli per poter avere uno strumento di controllo diretto sui risultati.

Le verifiche geotecniche allo S.L.U. dei pali vengono condotte nei confronti sia del carico limite verticale che del carico limite orizzontale.

La valutazione delle resistenze del complesso pali-terreno vengono desunte dalle indicazioni riportate nella relazione specialistica redatta dal progettista geotecnico.

Le verifiche geotecniche si ritengono soddisfatte quando risulti verificato che le azioni sollecitanti di progetto siano sempre inferiori alle corrispondenti resistenze, ossia quando, sia in condizioni statiche che sismiche:

 $Ed \leq Rd$.

Le verifiche geotecniche allo S.L.E. dei pali vengono condotte calcolando l'entità degli spostamenti verticali ed orizzontali delle strutture di fondazione e verificandone la compatibilità con i requisiti della struttura in elevazione. Per la valutazione di tali spostamenti ci si avvale ancora una volta delle indicazioni riportate nella relazione specialistica geotecnica di riferimento.

Per le verifiche strutturali si considerano tutte le combinazioni previste dalla normativa di riferimento e precedentemente riportate, sia per lo S.L.U. che per lo S.L.E..

Allo S.L.U. si condurranno tutti i controlli di rito tramite domini di interazione per verificare la resistenza strutturale delle sezioni, mentre allo S.L.E. si eseguiranno i dovuti controlli, sia tensionali che di fessurazione, applicando i coefficienti parziali di combinazioni delle azioni previsti dalla normativa di riferimento e riportati nei paragrafi precedenti. Nella specifica combinazione sismica le verifiche di resistenza strutturali verranno condotte controllando che le tensioni massime, sia nel calcestruzzo che nell'acciaio, siano inferiori ai limiti del campo elastico.

CARATTERISTICHE DEI MATERIALI

Per la realizzazione dell'opera è previsto l'impiego dei sotto elencati materiali.

Doc. N.

4.1 Calcestruzzo per magrone

Per il magrone di sottofondazione si prevede l'utilizzo di calcestruzzo di classe Rck 15.

4.2 Calcestruzzo

Per la realizzazione dei pali, si prevede l'utilizzo di calcestruzzo in Classe C25/30

Resistenza caratteristica cubica	$f_{ m ck,cube}$	$= 30 \text{ N/mm}^2$
Resistenza caratteristica cilindrica	$f_{ck,cyl}$	$= 25 \text{ N/mm}^2$
Resistenza a compressione (cilindrica)	$ ightarrow f_{ m ck}$	$= 25.00 \text{ N/mm}^2$
Resistenza di calcolo a compressione	$\rightarrow f_{cd} = \alpha_{cc} f_{ck}/\gamma_c = 0.85 f_{ck}/1.5$	$= 14.16 \text{ N/mm}^2$
Resistenza di calcolo a compressione elastica	$\rightarrow \sigma_c = 0.60^* f_{ck}$	$= 15.00 \text{ N/mm}^2$
Resistenza a trazione media	$\rightarrow f_{ctm} = 0.30^* f_{ck}^{2/3}$	$= 2.56 \text{ N/mm}^2$
Resistenza a trazione	$\rightarrow f_{ctk} = 0.7^* f_{ctm}$	$= 1.79 \text{ N/mm}^2$
Resistenza a trazione di calcolo	$\rightarrow f_{ctd} = f_{ctk} / \gamma_c$	$= 1.20 \text{ N/mm}^2$
Resistenza a compressione (comb. Rara)	$\rightarrow \sigma_c$ =0.60* fck	$= 15.00 \text{ N/mm}^2$
Resistenza a compressione (comb. Quasi pern	nanente)→σc=0.45* fck	$= 11.25 \text{ N/mm}^2$

Per la realizzazione della **fondazione**, si prevede l'utilizzo di calcestruzzo in Classe C28/35

Resistenza caratteristica cubica	$f_{ m ck,cube}$	$= 35 \text{ N/mm}^2$
Resistenza caratteristica cilindrica	$ m f_{ck,cyl}$	$= 28 \text{ N/mm}^2$
Resistenza a compressione (cilindrica)	$ ightarrow f_{ck}$	$= 28.00 \text{ N/mm}^2$
Resistenza di calcolo a compressione	\rightarrow fcd = α_{cc} * fck/ γ_c =0.85* fck/1.5	= 15.86 N/mm ²
Resistenza di calcolo a compressione elastica	$\rightarrow \sigma_c = 0.60^* f_{ck}$	=16.80 N/mm ²
Resistenza a trazione media	$\rightarrow f_{ctm} = 0.30^* f_{ck}^{2/3}$	$= 2.766 \text{ N/mm}^2$
Resistenza a trazione	$\rightarrow f_{ctk} = 0.7^* f_{ctm}$	$= 1.936 \text{ N/mm}^2$
Resistenza a trazione di calcolo	$\rightarrow f_{\rm ctd} = f_{\rm ctk} / \gamma_{\rm c}$	$= 1.291 \text{ N/mm}^2$
Resistenza a compressione (comb. Rara)	$\rightarrow \sigma_c = 0.60^* f_{ck}$	$=16.80 \text{ N/mm}^2$
Resistenza a compressione (comb. Quasi pern	nanente)→σc=0.45* fck	=12.6 N/mm ²

Per la realizzazione della elevazione, si prevede l'utilizzo di calcestruzzo in classe C32/40

, I		•
Resistenza caratteristica cubica	$f_{ m ck,cube}$	$= 40 \text{ N/mm}^2$
Resistenza caratteristica cilindrica	$f_{ m ck,cyl}$	$= 32 \text{ N/mm}^2$
Resistenza di calcolo a compressione	$\rightarrow f_{cd} = \alpha_{cc} * f_{ck}/\gamma_c = 0.85 * f_{ck}/1.5$	$= 18.13 \text{ N/mm}^2$
Resistenza di calcolo a compressione elastica	\rightarrow σ_c =0.60* f_{ck}	$= 19.20 \text{ N/mm}^2$
Resistenza a trazione media	$\rightarrow f_{ctm} = 0.30^* f_{ck}^{2/3}$	$= 3.024 \text{ N/mm}^2$
Resistenza a trazione	$\rightarrow f_{ctk} = 0.7^* f_{ctm}$	$= 2.117 \text{ N/mm}^2$
Resistenza a trazione di calcolo	$\rightarrow f_{\rm ctd} = f_{\rm ctk} / \gamma_{\rm c}$	$= 1.411 \text{ N/mm}^2$
Resistenza a compressione (comb. Rara)	\rightarrow σ_c =0.60* f_{ck}	$= 19.20 \text{ N/mm}^2$
Resistenza a compressione (comb. Quasi perm	anente)→σc=0.45* fck	= 14.40 Mmm ² Progetto
		9

Brebemi SpA

4.3 Acciaio per cemento armato

Per le armature metalliche si adottano tondini in acciaio del tipo B450C controllato in stabilimento che presentano le seguenti caratteristiche:

Proprietà	Requisito
Limite di snervamento f _y	≥450 MPa
Limite di rottura ft	≥540 MPa
Allungamento totale al carico massimo Agt	≥7.5%
Rapporto ft/fy	$1.15 \le R_m/R_e \le 1.35$
Rapporto fy misurato/ fy nom	≤ 1,25

Tensione di snervamento caratteristica	\rightarrow	f_{yk}	≥	450	N/mm^2
Tensione caratteristica a rottura	\rightarrow	\mathbf{f}_{tk}	≥	540	N/mm^2
Tensione in condizione di esercizio (comb. Rara)	\rightarrow	$\sigma_c = 0.8$	30* f _{yk}	360.00	N/mm ²
Fattore di sicurezza acciaio	\rightarrow	$\gamma_{\rm s}$ =		1.15	
Resistenza a trazione di calcolo	\rightarrow	$f_{yd} = f_y$	rk/γs	391.30	0 N/mm ²

4.4 Durabilità e prescrizioni sui materiali

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Al fine di ottenere la prestazione richiesta in funzione delle condizioni ambientali, nonché per la definizione della relativa classe, si fa riferimento alle indicazioni contenute nelle Linee Guida sul calcestruzzo strutturale edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici ovvero alle norme UNI EN 206-1:2006 ed UNI 11104:2004.

Per le opere della presente relazione si adotta quanto segue:

<u>Fondazione</u>	CLASSE DI ESPOSIZIONE	XC2
Elevazione	CLASSE DI ESPOSIZIONE	XC4-XF1

Nel rispetto del p.to 5.2.3.3.4 dell'NTC, in cui viene inserito oltre alla condizione ambientale anche il vincolo della ispezionabilità delle parti d'opera, le parti di struttura non ispezionabili perché contro terra vengono inseriti tra le parti di struttura in ambiente aggressivo.

Condizioni ambientali	Classe di esposizione		
Ordinarie	X0, XC1, XC2, XC3, XF1		
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3		
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4		

Tabella 4.1.III: Descrizione delle condizioni ambientali

Le fondazioni si trovano in condzioni ambientali Ordinarie, le elevazioni in condozioni Aggressive.

Nella tabella 4.1.IV sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle condizioni ambientale e al tipo di armatura.

			Armatura			
Gruppi di	Condizioni	Combinazione	Sensibile	Poco sensibile		
esigenze	ambientali	di azioni	Stato limite	W d	Stato limite	W d
		frequente	ap. fessure	$\leq w_2$	ap. fessure	≤ w ₃
a	Ordinarie	quasi permanente	ap. fessure	≤ w ₂	ap. fessure	≤ w ₂
		frequente	ap. fessure	$\leq w_2$	ap. fessure	≤ w ₂
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤ W1
	Molto	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
С	aggressive	quasi permanente	decompressione	-	ap. fessure	≤ w ₁

Tabella 4.1.IV: Criteri di scelta dello stato limite di fessurazione

In grigio chiaro sono indicate gli stati limite di fessurazione da utilizzare per le verifiche in condizioni ordinarie.

In grigio scuro sono indicate gli stati limite di fessurazione da utilizzare per le verifiche in condizioni Aggressive.

4.5 Copriferro minimo e copriferro nominale

Ai fini di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro nominale c_{nom} è somma di due contributi, il copriferro minimo c_{min} e la tolleranza di posizionamento h. Vale pertanto: $c_{nom} = c_{min} + h$.

La tolleranza di posizionamento delle armature h, per le strutture gettate in opera, può essere assunta pari ad almeno 10 mm. Considerata la Classe di esposizione ambientale dell'opera, si adotta un copriferro minimo pari a 30mm, pertanto c_{nom}=40 mm, valore valido per tutte le parti di struttura.

REV. 00

FOGLIO 18 di 116

PROGRAMMA DI CALCOLO 5

5.1 Pro_sap

Il calcolo degli elementi strutturali viene condotto con il programma PRO_SAP (prodotto dalla 2S.I. Software e Servizi per l'Ingegneria S.r.l. P.tta Schiatti 8/b 44100 Ferrara) Ver. 8.0.0. Licenza d'uso n. dsi 2955

Gli elementi utilizzati per la modellazione dello schema statico della struttura sono i seguenti:

- Elemento tipo BEAM (trave)
- Elemento tipo BOUNDARY (molla)
- Elemento tipo STIFFNESS (matrice di rigidezza)

Il codice di calcolo adottato e' ALGOR SUPERSAP prodotto dalla ALGOR INTERACTIVE SYSTEMS, Inc. Pittsburgh, PA, USA.

Il programma SUPERSAP applica il metodo degli elementi finiti a strutture di forma qualunque, diversamente caricate e vincolate, nell' ambito del comportamento lineare delle stesse.

Si sottolinea che il solutore ALGOR SUPERSAP e' stato sottoposto, con esito positivo e relativa certificazione, ai test NAFEMS (test di confronto della National Agency for Finite Element Methods and Standards in Inghilterra).

Inoltre, il solutore ALGOR SUPERSAP e' soggetto ad attivita' di controllo ai sensi della QA (quality assurance), condizione essenziale per l' utilizzo dei codici di calcolo nell' ambito della progettazione APPRIL ATO BOF nucleare ed off-shore.

La geometria è quella riportata nella fig. 1e 2.

6 GEOMETRIA DELLA STRUTTURA

La geometria è quella riportata nella fig. 1 e 2.

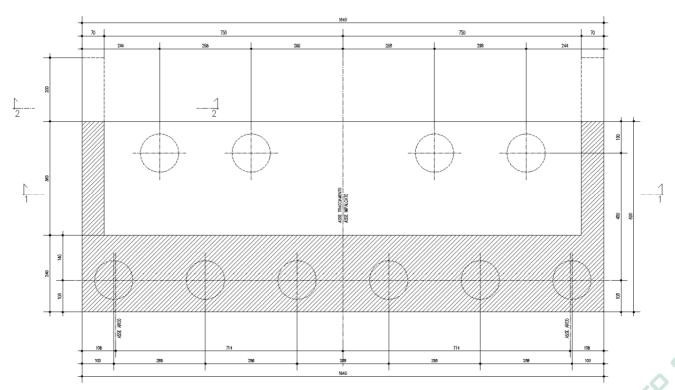


Fig. 1- Pianta

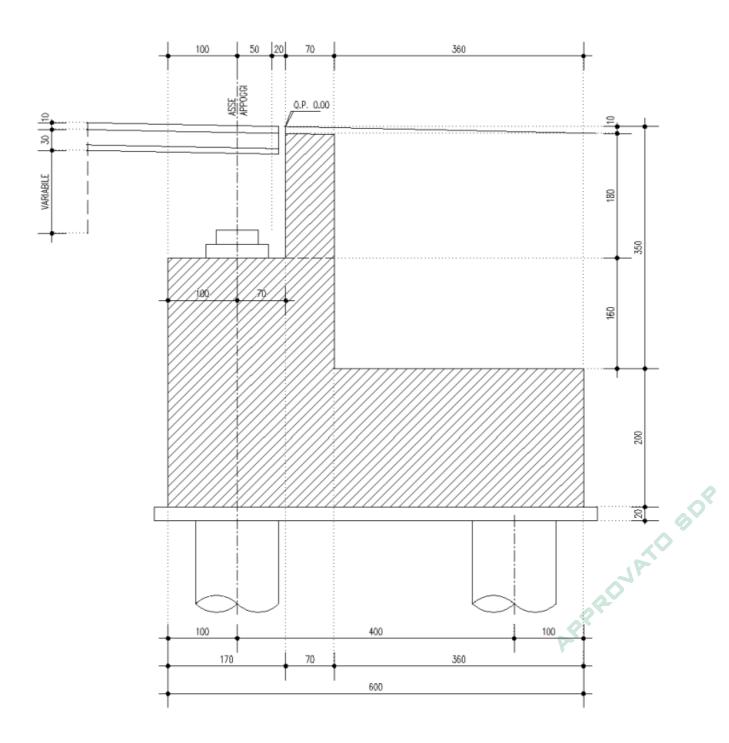
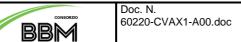
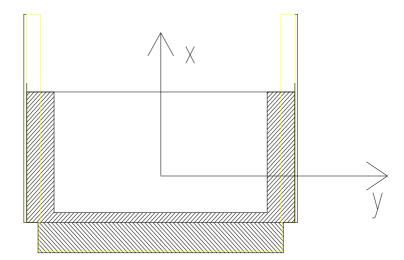



Fig. 2- Sezione longitudinale


CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 21 di 116

7 CALCOLO DELLA STRUTTURA

Di seguito, vengono riportate le verifiche delle strutture costituenti la spalla in oggetto; esse sono state condotte utilizzando gli usuali metodi di verifica adottati per tali strutture, nel pieno rispetto delle normative vigenti in materia.

7.1 Convenzione sui segni

Il sistema di riferimento globale è costituito dagli assi x, y aventi origine nel baricentro della platea di fondazione e con l'asse x parallelo all'asse del ponte. In direzione longitudinale x, si considerano positive le azioni che hanno effetto stabilizzante nei confronti della spalla. Nel computo dei carichi e delle eccentricità si fa riferimento alla figura che segue.

7.2 Dati per analisi sismica

La struttura a realizzarsi deve conservare sotto l'azione sismica il suo comportamento elastico, quindi senza innesco di sistemi dissipativi (cerniere plastiche stabili).

Le verifiche sismiche delle spalle da ponte, possono essere eseguite applicando l'azione sismica indipendentemente nelle due direzioni orizzontali, rispettivamente trasversale e longitudinale e combinandole successivamente tra di loro.

Gli effetti massimi generati dalle due componenti sismiche ai fini delle verifiche di resistenza allo SLU, possono essere ottenuti utilizzando come azione di progetto:

 $\gamma_i \times E + G_k + P_k$

Le combinazioni delle azioni dovute alle due componenti orizzontali sono ottenute utilizzando come azione di progetto, la combinazione più sfavorevole tra:

EL=AEL+0.30 AET

E_T=A_{ET}+0.30 A_{EL}

Per il calcolo delle forze d'inerzia agenti sulla spalla, vengono considerati i contributi di tutte le sue parti nonché del terreno imbarcato.

La forza statica equivalente che l'impalcato trasferisce alla spalla è data dall'espressione:

 $F=m\times S_e(T)$

nella quale $S_e(T)$ è l'ordinata dello spettro di risposta elastico in accelerazione assoluta, in funzione del periodo proprio della struttura.

Il periodo "T" per il calcolo con l'analisi statica equivalente, è valutato mediante l'espressione:

 $T=2\times\pi\times\sqrt{m/k}$

nella quale "k" è la rigidezza della struttura nella direzione considerata.

Rispettivamente il periodo fondamentale per le due direzioni valido per entrambe le spalle vale:

Tl=1,76s

Tt=1,76s

Tv = 0.1s

I simboli utilizzati nelle formule parametriche di calcolo, per la definizione delle azioni sismiche nei paragrafi successivi, sono di seguito elencati:

γ= peso specifico del terreno

φ= angolo di attrito del terreno

γ_{cls}= peso specifico calcestruzzo

ag= accelerazione di picco a suolo

S=fattore profilo stratigrafico del terreno

γ_I= fattore d'importanza

k= coefficiente di spinta

pt= pressione terreno alla base del fusto

ptp= pressione terreno alla base del paraghiaia

pt= pressione terreno alla base del muro di risvolto

htot= altezza totale (fondazione+fusto+paraghiaia)

h_{fust}= altezza fusto spalla

h_p= altezza del paraghiaia

h= altezza totale fusto più paraghiaia

h_r= altezza risvolti (parte inferiore sotto risega o altezza fino imposta orecchia)

h_{rs}= altezza risvolti (parte superiore)

h₀= altezza orecchia

Doc. N. 60220-CVAX1-A00.doc CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 23 di 116

 A_{r1} =area risvolto + orecchia (lato a maggiore y) A_{r2} =area risvolto + orecchia (lato a minore y)

hь= altezza baggioli

h= altezza fondazione

h_{ter}= altezza terreno imbarcato

s= spessore fusto

s_p= spessore paraghiaia

s_r= spessore risvolti

so= spessore orecchia

L= lunghezza fusto

L_p= lunghezza paraghiaia

L_r= lunghezza risvolto

Lo= lunghezza orecchia

Afond=area fondazione

Ater=area terreno imbarcato

Pimp.= peso impalcato

F_{cor.}= forza correttiva

T_{is}= azione sismica dovuta all'impalcato in direzione longitudinale

 T_{ts} = azione sismica dovuta all'impalcato in direzione trasversale

Tvs = azione sismica dovuta all'impalcato in direzione verticale

APPROVATO BOP

7.3 Elenco dati

7.3.1 Dati relativi alle travi

numero travi	n=	2
lunghezza travi (m)	Lt=	61.00
peso travi (kN/m) /peso struttura in acciaio (kN/m²)	Pt=	4,00
interasse travi (m)	it=	14.28
altezza travi (m)	ht=	1,50+arco
interasse giunti (m)	ig=	61.00
interasse appoggi (m)	ia=	60,00
Lunghezza di afferenza alla spalla per carichi permanenti	Laff=	30,50
distribuiti uniformemente e per spinta del vento		
sull'impalcato		
numero traversi	nt=	16

7.3.2 Dati relativi alla soletta e alla pavimentazione

lunghezza impalcato (m)	Li=	61.00
larghezza pavimentazione (m)	Lp=	8,50
spessore pavimentazione (m)	spav=	0,10
peso pavimentazione (kN/m2)	γp=	3,00
larghezza soletta (m)	Ls=	14.00
larghezza carreggiata (m)	Lcar=	8,50
spessore medio soletta (m)	ss=	0,30
spessore minimo soletta in corrispondenza marciapiede	ssmin=	0,30
(m)		
spessore pav. + eventuale pendenza trsvper az. vento-	pv=	0,18
(m)		1
larghezza cordolo n° 1 -a maggior y- (m)	lc1=	2.3
larghezza cordolo n° 2 -a minor y - (m)	lc2=	2.3
altezza max cordoli (m)	hcmax=	0,17
altezza media cordoli (m)	hc=	0,14

7.3.3 Dati relativi alle finiture

peso barriere (kN/m)	pbar=	5,00
rete di protezione (kN/m)	pret=	1,00
elemento di bordo (kN/m)	pbor=	0,00

7.3.4 Dati relativi ai carichi mobili

numero di colonne di carico nc= 2,00

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGAMO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	25 di 116

larghezza colonne di carico (m)	Lcolon=	3,00
larghezza marciapiede 1 q1F (m)	lm1=	2.3
larghezza marciapiede 2 q1F (m)	lm2=	2.3
Azione di frenatura (kN)	fcalc=	0,00
Azione di frenatura imposta (kN)	fr,imp=	0,00

7.3.5 Dati relativi alle azioni sismiche

categoria del suolo - A B C D E -	С
accelerazione orizzontale massima	0,184
azione da impalcato agente su spalla per sisma longitudinale	802
(kN)	
azione da impalcato agente su spalla per sisma trasversale (kN)	802
azione da impalcato agente su spalla per sisma verticale (kN)	1700,00
quota baricentro impalcato rispetto intradosso travi (m)	1,492

7.3.6 Dati relativi agli appoggi ed alla curvatura impalcato

spessore apparecchi di appoggio (m)	sapp=	0,20
posizione asse appoggi rispetto a filo valle spalla (m)	das=	1,00
eccentricità (distanza asse impalcato-asse appoggi travi)	dia=	0,00
raggio di curvatura -zero se rettilineo- (m)	Rcurv=	0,00
azione d'attrito sugli appoggi in % sui carichi permanenti	a%=	0,00
Azione orizzontale imposta sugli appoggi (kN)	Himp=	-432,00

7.3.7 Dati relativi ai baggioli

altezza baggioli (m)	hb=	0,30
larghezza baggioli (m)	lb=	0,90
profondità baggioli (m)	pb=	0,90
posizione asse baggioli rispetto filo di valle spalla (m)	ib=	1,00

7.3.8 Dati relativi alla spalla

altezza fusto spalla (m)	hf=	1,60
spessore fusto spalla (m)	sf=	2,40
lunghezza fusto spalla (m)	lf=	16.40
eccentricità trasversale fusto rispetto alla platea (m)	efp=	0,00
altezza paraghiaia (m)	hp=	1,90
spessore paraghiaia (m)	sp=	0,70
distanza asse paraghiaia da filo anteriore fusto (m)	dpf=	2,05
lunghezza risvolti (m)	lr=	3,60
spessore medio risvolti (m)	sr=	0,70
altezza orecchie (m)	ho=	3,356tà di Progetto 2,00ebemi SpA
lunghezza orecchie (m)	lo=	2,00 SpA
spessore orecchie (m)	so=	0,70
azione longitudinale aggiuntiva -tiranti- (kN)	Hlt=	0,00

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGAMO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	26 di 116

azione trasversale aggiuntiva (kN)	Htt=	0,00
carico verticale aggiuntivo -tiranti- (kN)	Hvt=	0,00
quota di app.ne azione long. agg. da intradosso fond. (m)	hla=	0,00
quota di app.ne azione trasv. agg. da intradosso fond. (m)	hta=	0,00
distanza da filo di valle fusto del carico vert. agg. (m)	dfv=	0,00
eccentricità trasversale del carico vert. agg. (m)	etv=	0,00
azione - elemento correttivo- (kN)	Pcorr=	0,00
eccentricità long.nale elemento corr. rispetto a bar. platea (m)	elcorr=	0,00
eccentricità trasversale elemento correttivo (m)	etcorr=	0,00
quota applicazione elemento correttivo da intradosso fond. (m)	hcorr=	0,00

7.3.9 Dati relativi alla platea di fondazione

lunghezza platea di fondazione (m)	luf=	16,40
larghezza platea di fondazione -lungo asse stradale- (m)	laf=	6,00
sbalzo anteriore (m)	sa=	0,00
spessore platea (m)	spl=	2,00

7.3.10 Dati relativi al terreno

inclinazione muro rispetto all'orizzontale (°)	90,0
inclinazione terrapieno rispetto all'orizzontale (°)	0,0

peso specifico terreno (kN/m2)	gterr=	19,00
angolo di attrito interno del terreno di monte (°)	Ф=	38,00
angolo di attrito interno del terreno di valle (°)	Φ v=	38,00
altezza a filo anteriore fondazione del terreno di valle (m)	hv=	0,00
altezza a filo elevazione fusto del terreno di valle (m)	hef=	0,00
altezza a filo elevazione alle estremità della fondazione (m)	heef=	0,00
altezza a filo posteriore fondazione del terreno alle estremità (m)	hpf=	2,30
carico accidentale sul terrapieno ad impalcato carico (kN/m2)	qic=	20,00
carico accidentale sul terrapieno ad impalcato scarico (kN/m2)	qis=	40,00

Per quanto riguarda il carico accidentale utilizzato sul rilevato, ai fini del dimensionamento degli elementi strutturali della spalla, è stato assunto in accordo alla cir. 617 par. 5.1.3.3.7.1. lo shema di carico 1, questo sovraccarico distribuito è stato opportunamente diffuso attraverso il rilevato con un'angolo di 30°.

A favore di sicurezza e per semplicità applicativa del carico cosi ripartito, si sono utilizzati i sovraccarichi distribuiti uniformi di cui alla precedente tabella.

7.4 Azioni trasmesse dall'impalcato

7.4.1 Carichi permanenti

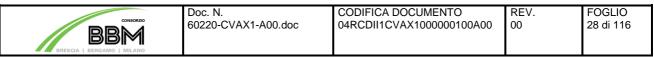
Impalcato			
		gt=Pt*Li*(Lp+lc1+lc2)=	2937,88
struttura in acciaio	(k		·
soletta	(kN)	gs=Ls*ss*Li*25=	5554,05
traversi di campata	(kN)	gtc=Ptc*2=	0,00
traversi di testata	(kN)	gtt=Ptt*(nt-2)=	0,00
cordoli	(kN)	gc=(lc1*hc+lc2*hc)*Li*25=	764,82
pavimentazione	(kN)	gpav=Li*Lp*gp=	1547,85
Finiture			
Barriere	(kN)	gbar=pbar*Li=	303,50
Rete di protezione	(kN)	gret=pret*Li=	60,70
Elemento di bordo	(kN)	gbor=pbor*Li=	0,00
Carico totale (Ptot)	(kN)	Ptot=gt+gs+gtc+gtt+gc+gpav+gbar+gret +gbor=	11290,20
Carico permanente trasmesso (kN)	dall'impalcato	Rper=(Ptot/Li)*Laff=	5645,10 0
agente con eccentricità trasversa	ale (m)	et=((lc1*hc*25)*(Ls/2-lc1/2)- (lc2*hc*25)*(Ls/2-lc2/2))*(Laff)/Rper=	0,00

Considerando la lunghezza di afferenza dell'impalcato alla spalla, i carichi trasmessi alla sotto struttura sono di seguito riportati:

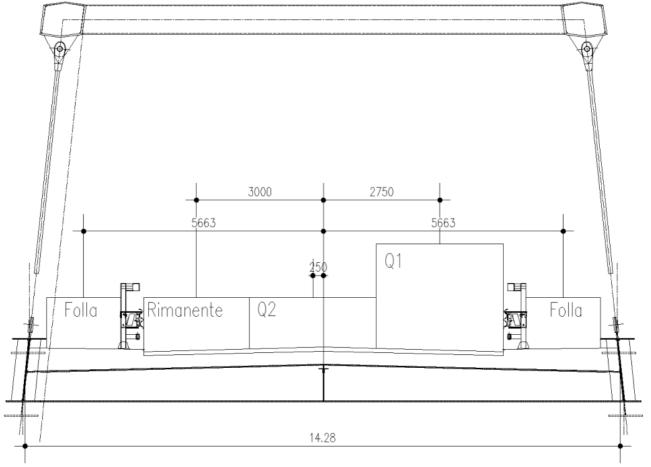
 $L_{aff}=30,5m$

Carico permanente trasmesso dall'impalcato R_{per} =5645,10 kN

agente con eccentricità trasversale $e_t = 0,00$


Effetto dell'attrito sugli appoggi (-0,00% R_{per}) H_{att} =0,00 kN Azione orizzontale aggiuntiva (imposta) sugli appoggi H_{agg} =-432,00kN

Agente ad h da intradosso fondazione h=4,00m


7.4.2 Azione elastica dovuta allo scorrimento dei dispositivi di appoggio

I dispositivi di appoggio in elastomero armato, previsti per il ponte, trasmettono agli elementi di sostegno un'azione orizzontale proporzionale alla loro rigidezza ed allo scorrimento massimo dovuto a deformazioni lente corrispondente alla dilatazione termica dell'impalcato e all'effetto ritiro e fluage (trasformato in un'azione equivalente generata dal AT).

Dal paragrafo relativo ai dispositivi di appoggio, in condizione SLV si deduce un'azione massima pari a 401kN.

7.4.3 Carichi accidentali

Le colonne dei carichi mobili vengono disposte, a partire da quella di entità massima, in adiacenza al cordolo n° 1.

La disposizione dei carichi sull'impalcato, partendo dal cordolo di destra guardando verso la spalla, è la seguente:

I carichi delle tre colonne di carico sono dislocati sull'impalcato, secondo lo schema seguente, schema che massimizza gli scarichi sulla spalla.

A favore di sicurezza, si considera comunque uno schema di appoggio – appoggio (non viene utilizzata la reale lunghezza d'influenza).

Le reazioni sulla spalla dovute ad ogni singola colonna di carico, compresa la folla sui marciapiedi, e la reazione totale sono le seguenti:

Scarico su app. colonna di carico n°1 (vicina al cordolo 1)	R,1=	1758;3i9 tà di Progetto
Scarico su appoggio colonna di carico n°2 (kN)	R,2=	720,80 eberni SpA
Scarico su appoggio colonna di carico n°3 (kN)	R,3=	0,00
Scarico su appoggio colonna di carico n°4 (kN)	R,4=	0,00

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGAMO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	29 di 116

Scario su appoggio folla cordolo n°1 (kN)	R,1e=	349,63
Scario su appoggio folla cordolo n°2 (kN)	R,2e=	349,63
Reazione totale (kN)	Rtot=	3178,45
Reazione accidentali in condizioni dinamiche	Racc=Rtot*\$\phi\$	3178,45
Eccentricità carico R1 (m)	e,1=	2,800
Eccentricità carico R2 (m)	e,2=	-0,200
Eccentricità carico R3 (m)	e,3=	
Eccentricità carico R4 (m)	e,4=	
Eccentricità carico R1e (m)	e,1e=	4,900
Eccentricità carico R2e (m)	e,2e=	-4,900
Eccentricità globale (m)	e,tot=	1,504

Nelle condizioni di carico per gli stati limite di fessurazione per strutture di luce di calcolo maggiore di 10 m (e minore di 100 m) si sono considerati i seguenti valori del coefficiente ψ :

coefficiente Psi1	ψ,1=	0,750
coefficiente Psi2	ψ,2=	0.000

7.4.4 Azione di frenamento

Azione frenatura di calcolo (kN)	fr=	-592,18
Azione di frenatura imposta (kN)	fr,imp=	-296,09
Azione di frenatura (kN)	fcalc=	-296,09
agente ad h da intradosso fondazione (m)	hfr=	4,00

L'impalcato trasmette questa azione alla spalla tramite gli appoggi. Tale azione genera uno squilibrio verticale così definito:

Azione squilibrio verticale dovuto alla frenatura	Hpsqu=	-296,09
(kN)		
Quota di azione rispetto agli appoggi (m)	hsf=ht+Ssmin+pv=	1,98
Carico verticale aggiuntivo dovuto alla frenatura	Vpsqui=	9,77
(kN)		

7.4.5 Azione del vento

Si considera la lunghezza di afferenza alla spalla dei carichi dovuti all'impalcato.

Zona		Z=	1
altitudine sul livello del mare as	(m)	as=	145
velocità di riferimento vb	(m/s)	V _b =	25,000
velocità di riferimento vb(100)	(m/s)	v _b (100)=	25,981
categoria di esposizione		cat=	2
altezza costruzione	(m)	hz=	10
coefficiente di esposizione cev		Cev=	Socie <u>2</u> 3352Progett
pressione cinetica di riferimento q _b	(kN/m²)	q _b =	Bre b,422 i SpA
pressione del vento p (kN/m	1 ²)	p=	0,993
pressione globale (sopravento e	sottovento) w	w=	1,19

(kN/m^2)		
Superficie impalcato investita a ponte carico (m²)	S,c=(ht+ssmin+pv+3)*Li/2=	151,14
Superficie impalcato investita a ponte scarico (m²)	$S_{,s}=(ht+ssmin+hcmax+1)*Li/2=$	90,44
Spinta relativa a ponte carico (kN)	Hvc=w*S,c=	179,86
Spinta relativa a ponte scarico (kN)	Hvs=w*S,s=	107,62
Altezza di applicazione della spinta a ponte carico da intradosso fond.	h,vc=sapp+hb+hf+spl+(ht+ssmin+pv+3)/2=	6,49
Altezza di applicazione della spinta a ponte scarico da intradosso fond.	h,vs=sapp+hb+hf+spl+(ht+ssmin+hcm ax+1)/2=	5,48

7.4.6 Azione sismica

Le azioni che l'impalcato trasferiscono alla spalla dipendono dalle caratteristiche dei dispositivi stessi ed in particolare dal valore della loro rigidezza orizzontale. Il calcolo di tali azioni è riportato per esteso nella Relazione impalcato ed è svolta attraverso il metodo dell'analisi statica equivalente. Si riportano di seguito i risultati principali di tali calcolazioni.

Azioni orizzontali trasmesse alla spalla in condizione sismica:

Azioni sismiche trasmesse da impalcato:

- in senso longitudinale $F_{\rm sl}$ =802,00 kN agente a m 5,590 sopra intradosso fondazione.
- in senso trasversale F_{st} =802,00 kN agente a m5,590 sopra intradosso fondazione. Azione sismica verticale F_{sv} =1700,00 kN

APPROVATO BOP

BBM BRESCIA | BERGAMO | MILANO

7.5 Azioni relative alla spalla

7.5.1 Peso proprio

Peso proprio	N (kN)	ex (m)	Ml(kNm)	ey (m)	Mt(kNm)
terreno alle testate	233,370	1,000	233,346	0,00	0,00
paraghiaia	460,530	-0,949	-437,043	0,000	0,000
fusto spalla	1403,520	-1,799	-2524,932	0,000	0,000
baggioli	8,100	-1,999	-16,192	0,000	0,000
fondazione	4920,000	0,000	0,000	0,000	0,000
risvolti	446,040	1,201	535,694	0,00	0,00
orecchie	234,500	4,001	938,235	0,000	0,00
terreno a monte	3163,989	1,201	3798,369	0,000	0,00
terreno a valle	0,000	-3,000	0,00	0,000	0,00
elemento correttivo	0,000	0,000	0,000	0,000	0,000
TOTALE	10870,049		2527,476		0,000
carico verticale	0,000	0,000	0,000	0,000	0,000
aggiuntivo					

azione longitudinale aggiuntiva Hl =0,000 kN agente da intradosso fondazione a hl = 0,000m azione trasversale aggiuntiva Ht = 0,000kN agente da intradosso fondazione a ht =0,000 m carico verticale aggiuntivo Hv = 0,000kN

eccentricità trasversale del carico verticale aggiuntivo e_y =0,000 m

7.5.2 Spinta delle terre

Spinta del terreno di monte

Si prevede un riempimento con terreno di buona qualità, con strati drenanti a ridosso della spalla. Si assumono quindi i seguenti parametri geotecnici:

- peso di volume $\gamma = 19,00 \text{ kN/m}^3$

- angolo d'attrito $\phi = 38,00$

Il coefficiente di spinta a riposo risulta

 $K_r = 1 - sen \phi = 0.384$

Altezza totale della spalla:

 $H_{\text{tot}} = 2,00 + 1,60 + 1,80 + 0,10 = 5,500 \text{ m}$

Il diagramma delle pressioni è triangolare con valore massimo alla base:

pressione massima $p_1 = 40,128 \text{ kN/m}$

Spinta totale $S_1 = -1613,346 \text{ kN}$

agente a quota h₁ =1,833 m da intradosso fondazione.

Spinta relativa del sovraccarico sul terrapieno

Si considerano due condizioni di carico sul terrapieno: sovraccarico concomitante con impalcato scarico = 40,00 kN/m²

sovraccarico concomitante con impalcato carico = 20,00 kN/m²

Il diagramma delle pressioni, considerando la spinta riposo, è rettangolare:

pressione concomitante con impalcato carico pressione concomitante con impalcato scarico

 $p_{2a} = 7,680 \text{ kN/m}^2$

pressione concomitante con impalcato scarico Spinta concomitante con impalcato carico $S_{2a} =$ $p_{2b} = 15,360 \text{ kN/m}^2$

Spinta concomitante con impalcato scarico $S_{2b} =$

-617,549 kN -1235,098 kN

agenti ad h_2 = 4.058 m da intradosso fondazione.

Per quanto concerne gli accidentali adottati per il calcolo delle sollecitazioni che interessano gli elementi strutturali, si fa riferimento al carico ripartito dato dallo schema di carico 1.

Come azioni variabili da traffico gravante sul rilevato si assume lo schema di carico 1. Lo schema 1 prevede:

- ✓ il carico Q_{1,k} costituito da un mezzo convenzionale da 600kN a due assi da 300 kN ognuno (carico tandem) posti ad un interasse di 1.20m lungo il senso di marcia e caratterizzati da una larghezza di 2.40m (comprese le dimensioni delle impronte)
- ✓ il carico ripartito q_{1,k} da 9kN/m²

Tale carico viene posizionato in adiacenza all'elemento in esame e considerato ripartito sia in direzione longitudinale che trasversale.

Le larghezze su cui si considera agente il carico sono:

in direzione longitudinale alla strada:

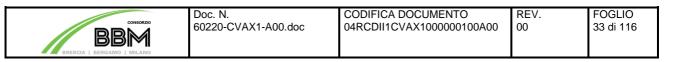
Detta L_d la *larghezza di diffusione del carico longitudinale* dal piano stradale alla quota di calcolo, assumendo che detta diffusione avvenga con angolo di diffusione di 30° attraverso il rilevato stradale

in direzione trasversale alla strada:

Detta L_{dt} la *larghezza di diffusione del carico trasversale* dal piano stradale alla quota del piano medio della soletta superiore, assumendo che detta diffusione avvenga con angolo di diffusione di 30° attraverso il rilevato stradale

Il valore di L_{dt} viene poi limitato in base alle seguenti circostanze:

- ✓ presenza della della seconda colonna di carico: il carico della 1° colonna, in corrispondenza dell'adiacenza alla 2° colonna, può essere diffuso al massimo fino a 0.30m all'esterno dell'impronta del carico;
- ✓ posizionando il carico in adiacenza al cordolo;


La pressione dovuta al Q1k risulta pertanto:

 $Q_{1k.dis} = 600/(L_{dl} * L_{dt})$

 $q_{1k,dis} = 9 \text{ kN/m}^2$

Società di Progetto Brebemi SpA

Spinta relativa al terreno di valle

Prudenzialmente non si tiene conto del contributo alla stabilità offerto dalla spinta del terreno di valle.

7.5.3 Azione del vento

superficie fianco spalla investita dal vento (m2)		21,222
spinta relativa (kN)	Hs=	49,914
agente a quota hs da intradosso fondazione (m)	h,s=	3,770

7.5.4 Azione sismica

Elenco dei dati utilizzati nelle formule parametriche per il calcolo delle azioni sismiche:

 γ = 19,0 kN/m³

φ=38,0°

 $\gamma_{cls} = 25 \text{ kN/m}^3$

 $a_g = 0.184 \text{ m/s}^2$

S = 1,43

 $\gamma_I = 1$

k = 0.238

 $h_{tot} = 5.4 m$

 $h_{\text{fust}}=1,60 \text{ m}$

 $h_p = 1.9 m$

 $h_r=3,45$

 $h_{rs} = 0.01 m$

 $h_b = 0.30 m$

 $h_f = 2,00m$

 $h_{ter}=3.4 \text{ m}$

s = 2,40 m

 $s_p = 0.70 \text{m}$

s = 0.70 m

 $s_0 = 0.70 m$

L = 14,62 m

 $L_p = 16.40 m$

 $L_r = 3,60 \text{ m}$

 $L_0 = 2,00 m$

Afond= $98,40 \text{ m}^2$

 $A_{\text{ter}}=36,00 \text{ m}^2$

 $A_{r1} = 6,70 \text{ m}^2$

 $A_{r2}=6,70m^2$

APPROVATO BOP

Azioni inerziali

Fondazione

Impalcato

Terreno imbarcato

L'inerzia del complesso spalla e terreno imbarcato si articola con i seguenti contributi elementari:

Paraghiaia $(\gamma_{cls} \times h_p \times s_p \times L_p \times a_g/g \times S \times \gamma_I) = 143,93 \text{ kN}$

applicata a quota h=4,500m da intradosso fondazione

Fusto $(\gamma_{cls} \times h_f \times s_f \times L_f \times a_g/g \times S \times \gamma_I) = 438,65 \text{ kN}$

applicata a quota h=2,80m da intradosso fondazione

 $(\gamma_{cls} \times h_r \times s_r \times L_r \times a_g/g \times S \times \gamma_I) \times 2 = 135,86 \text{ kN}$ Muri di risvolto (h=1,73m)

Applicata a quota h=3,73m da intradosso fondazione

 $[(\gamma_{cls} \times A_{r1} \times s_r) + (\gamma_{cls} \times A_{r2} \times s_r)] \times a_g/g \times S \times \gamma_l = 73,29kN$ Muri di risvolto (part. Sup.)

applicata a quota h=5,45m da intradosso fondazione

 $(\gamma_{cls} \times A_{fond} \times h_f) \times a_g/g \times S \times \gamma_f = 1537,69 \text{ kN}$

applicata a quota h=1,00m da intradosso fondazione

 $(\gamma \times A_{ter} \times h_{ter}) \times a_g/g \times S \times \gamma_I = 726,84 \text{ kN}$

Applicata a quota h=3,70m da intradosso fondazione

 $T_{ls}=m \times S_e(T_l)=950,00kN$ $T_{ts}=m \times S_{e}(T_{t})=950,00 \text{ kN}$

APPROUNT BOP applicata a quota h=3,80m da intradosso fondazione

Doc. N. 60220-CVAX1-A00.doc CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 35 di 116

Spinta terre

Le spinte delle terre, sono calcolate in regime di spinta a spinta attiva; per il calcolo delle spinte sismiche in tali condizioni, la spinta totale di progetto Ed può essere calcolato come:

 $E_{d} = 0.5 \cdot (1 + k_v) \cdot K \cdot \gamma \cdot h_{tot}^{2}$

dove il coefficiente di spinta del terreno è calcolato mediante la formula di Mononobe e Okabe.

Il punto di applicazione della spinta è posto ad h_{tot}/3, mentre quello di applicazione della sovraspinta dinamica ad h_{tot}/2, con "h_{tot}" altezza del paramento su cui agisce la spinta delle terre.

La spinta delle terre vale:

 $S_t = 1/2 \times \gamma \times h_{tot}^2 \times k \times L_t = 963,91 \text{ kN}$

applicato a quota h=1,800m da intradosso fondazione

L'incremento sismico delle spinte dovute al terreno risulta: ΔP_d = 1/2× S ×(1+k_v) × (K-k_a)× γ × h_{tot}²× γ _I× L_f =1194,147 kN applicato a quota h=2,70m da intradosso fondazione

APPROVATO BOP

7.6 Fondazione

7.6.1 Palificata di fondazione

Dimensionamento della palificata: ripartizione lineare delle azioni verticali, taglianti e dei momenti flettenti sui pali e definizione del carico assiale agente sul palo più sollecitato in accordo con la seguente espressione, valida sotto le ipotesi di plinto rigido e di vincolo di incastro tra la testa dei pali e il plinto:

$$N_{i} = \frac{N}{n} + \frac{\left(M_{L} + M_{L,i}\right) \cdot y_{i}}{\sum_{1}^{n} y_{i}^{2}} + \frac{\left(M_{T} + M_{T,i}\right) \cdot x_{i}}{\sum_{1}^{n} x_{i}^{2}}$$

dove:

N=azione verticale agente in testa alla palificata

 M_L , M_T =momenti flettenti agenti in testa alla palificata in direzione longitudinale e trasversale

Ni=azione assiale agente alla testa del palo i-esimo

 $M_{L,i}$, $M_{T,i}$ =momenti di incastro risultanti che i pali esercitano sul plinto per effetto del vincolo di rotazione impedita, ottenuti come: $M_{L,i}$ = $H_{L,i}$ /2 α , $M_{T,i}$ = $H_{T,i}$ /2 α

 $H_{L,i}$, $H_{T,i}$ =azioni di taglio sul palo i-esimo in direzione longitudinale e trasversale, ottenuti come: $H_{L,i}$ = H_{L}/n , $H_{T,i}$ = H_{T}/n , dove H_{L} e H_{T} sono le azioni orizzontali agenti sulla palificata in direzione longitudinale e trasversale

x_i, y_i= distanze in direzione longitudinale e trasversale del palo i-esimo dal baricentro della palificata n=numero di pali che compongono la palificata

Definizione della lunghezza dei pali sulla base dell'azione assiale agente sul palo più sollecitato. Verifiche strutturali pali (SLU, SLE).

Nel calcolo della valutazione del parametro α , e cioè per valutare le caratteristiche di sollecitazione nel palo dovute all'azione tagliante applicata in sommità, si segue l'ipotesi di Winkler, assumendo il coefficiente k = 0.005 N/mm³ (valore cautelativo per i terreni attraversati).

Si ha: $\alpha = (K * b / (4 * E * J))^1/4 \cong 0.262 \text{ m}^{-1}$ dove $b = 1.0 * \phi = 120 \text{ cm}$ $E = 31476 \text{ N/mm}^2$ (essendo C25/30) $J = 10178760 \text{ cm}^4$

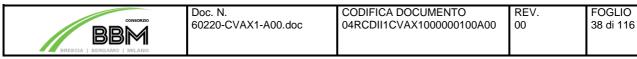
7.6.2 Geometria della palificata

diametro pali	$\phi =$	1,20 m	
numero totale pali =		10	
numero pali attivi longitudinalmente =		10	
numero pali attivi trasversalmente =		10	Società di Progetto
			Brebemi SpA

Nella tabella seguente sono riportate le dimensioni della fondazione e le rispettive caratteristiche meccaniche della sezione rispetto agli assi baricentrici della platea (asse x ed asse y) e i moduli di resistenza relativi agli assi principali d'inerzia della palificata (asse 1 ed asse 2) individuati dalle

coordinate del baricentro della palificata x_0 =-0,400 m, y_0 =0,000 m, e dall'angolo α =0,000 deg tra l'asse x e l'asse 1.

n° palo	x (m)	y (m)	x0 (m)	y0 (m)	W,t (m)	W,l (m)	W,1 (m)	W,2 (m)
1	-2,00	7,200	-1,600	7,200	-31,680	24,000	-31,680	24,000
2	-2,00	4,320	-1,600	4,320	-52,800	24,000	-52,800	24,000
3	-2,00	1,440	-1,600	1,440	-158,400	24,000	-158,400	24,000
4	-2,00	-1,440	-1,600	-1,440	158,400	24,000	158,400	24,000
5	-2,00	-4,320	-1,600	-4,320	52,800	24,000	52,800	24,000
6	-2,00	-7,200	-1,600	-7,200	31,680	24,000	31,680	24,000
7	2,00	5,760	2,400	5,760	-39,600	-16,000	-39,600	-16,000
8	2,00	2,880	2,400	2,880	-79,200	-16,000	-79,200	-16,000
9	2,00	-2,880	2,400	-2,880	79,200	16,000	79,200	-16,000
10	2,00	-5,760	2,400	-5,760	39,600	16,000	39,600	-16,000


7.6.3 Carichi elementari

Vengono riportate nel seguito le caratteristiche di sollecitazione relative alla palificata (valori caratteristici), riferite agli assi baricentrici della platea.

Elenco dei carichi elementari.

- A) = Peso proprio della spalla e spinta delle terre
- B) = Peso proprio dell'impalcato
- C) = Carico accidentale sull'impalcato
- D) = Carico accidentale sul rilevato contemporaneo all'accidentale sull'impalcato
- E) = Carico accidentale sul rilevato in assenza di accidentale sull'impalcato
- F) = Azione di frenatura
- G) = Azione centrifuga
- H) = Azione del vento a ponte carico
- I) = Azione del vento a ponte scarico
- L) = Azioni sismiche longitudinali
- M) = Azioni sismiche trasversali
- N) = Azioni sismiche verticali
- O) = Squilibrio verticale frenatura

carico	P (kN)	Mt (kN)	Ml (kNm)	Ht (kN)	Hl (kN)
A (peso proprio della spalla e spinta delle	10870,049	0,000	-430,325	0,000	-1613,346
terre)					
B (peso proprio dell'impalcato)	5645,100	0,000	-13012,555	0,000	-432,000
C (carico accidentale impalcato)	3178,454	4779,325	-6353,729	0,000	0,000
D (carico acc. sul rilev contemp. all'acc.	0,000	0,000	-1698,26	0,000	-617,549
Sull'imp.)					
E (carico acc. sul rilev in ass. di acc.	0,000	0,000	-3396,52	0,000	-1335i998 di Progetto
sull'imp.)					Brebemi SpA
F (azione di frenamento)	0,000	0,000	-1184,355	0,000	-296,089
G (azione centrifuga)	0,000	0,000	0,000	0,000	0,000
H (azione del vento a ponte carico)	0,000	1355,467	0,000	229,774	0,000
I (azione del vento a ponte scarico)	0,000	778,202	0,000	157,534	0,000

L (squilibrio verticale frenatura)	9,770	0,000	-19,530	0,000	0,000
M (azioni sismiche longitudinali)	16166,637	1917,434	-23766,935	1201,881	-6337,278
N (azioni sismiche trasversali)	16166,637	6391,446	-17035,986	4006,269	-2696,987
O (azioni sismiche verticali)	19425,830	1917,434	-19389,900	1201,881	-2696,987

7.6.4 Combinzioni di carico

Carichi costituenti le varie combinazioni

g = carichi permanenti

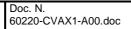
q1 = carichi mobili

q2 = effetto dinamico dei carichi mobili

q3 = azione di frenamento

q4 = azione centrifuga

q5 = azione del vento


q7 = azioni da attrito

Combinazioni di carico considerate Stati limite ultimi

		PERMANENTI+ PORTATI:	SPINTE	ACCIDENTALI VERTICALI SU OPERA:	ACCIDENTALI VERT. SU TERRAPIENO:	FRENATURA:	FORZA CENTRIFUGA:	VENTO:	ACCIDENTALI DIVERSI:	ATTRITO
		a=g	b=g	c=q1	d=q1	e=q3	f=q4	g=q5	i=q1	i=q7
	SLU.1	(1.00)1.35	(1.00)1.35	1.350	1.350	0.000	0.000	0.900	1.125	(1.00)1.35
gruppo 1	SLU.2	(1.00)1.35	(1.00)1.35	1.013	1.013	0.000	0.000	0.900	1.500	(1.00)1.35
gruppo 2a	SLU.3	(1.00)1.35	(1.00)1.35	1.013	1.013	1.350	0.000	0.900	1.125	(1.00)1.35
gruppo 2b	SLU.4	(1.00)1.35	(1.00)1.35	1.013	1.013	0.000	1.350	0.900	1.125	(1.00)1.35

Per ogni tipologia di combinazioni (SLU, SLE), a loro volta sono state splittate in ulteriori sottogruppi, in modo da raccogliere tutte le possibili casistiche di combinazioni, questi sottogruppi sono a loro volta numerati con ordine "I, II, III, IV".

	PERMANENTI +PORTATI + RESISTENZE PASSIVE:	SPINTE	ACCIDENTALI VERTICALI SU OPERA:	ACCIDENTALI VERT. SU TERRAPIENO:	FRENATURA:	FORZA CENTRIFUGA:	VENTO:	VARIAZIONI TERMICHE:
	a	ь	c	d	e	f	g	1
I	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0
II	1.0	1.0	1.0	1.0	0.0	0.0	1.0	1.0
III	1.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0
IV	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0

Stati limite di fessurazione

BBM

		PERMANENTI+ PORTATI:	SPINTE	ACCIDENTALI VERTICALI SU OPERA:	ACCIDENTALI VERT. SU TERRAPIENO:	FRENATURA:	FORZA CENTRIFUGA:	VENTO:	ACCIDENTALI DIVERSI:	ATTRITO
		a=g	b=g	c=q1	d=q1	e=q3	f=q4	g=q5	i=q1	i=q7
	FR1	1.000	1.000	0.750	0.000	0.000	0.000	0.000	0.000	1,000
SLE	FR2	1.000	1.000	0.750	0.750	0.750	0.750	0.000	0.000	1,000
	QP	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	1,000
SLE	RAR-gr1	1.000	1.000	1.000	1.000	0.000	0.000	0.600	0.000	1,000
SLE	RAR-gr2a	1.000	1.000	0.750	0.750	1.000	0.000	0.600	0.000	1,000
SLE	RAR-gr2b	1.000	1.000	0.750	0.750	0.000	1.000	0.600	0.000	1,000

Stati limite ultimi in condizione sismica

Gli effetti massimi generati dalle due componenti sismiche, si ottengono utilizzando come azione di progetto:

 $\gamma_I E + G_K$

Gli effetti massimi generati dalle tre componenti traslazionali, possono essere ottenuti utilizzando come azione di progetto la combinazione più sfavorevole tra:

 $E_L = A_{EL} + 0.30 A_{ET} + 0.30 A_{EV}$

 $E_T = A_{ET} + 0.30 A_{EL} + 0.30 A_{EV}$

	PERMANENTI+ PORTATI:	SPINTE	ACCIDENTALI VERTICALI SU OPERA:	ACCIDENTALI VERT. SU TERRAPIENO:	FRENATURA:	FORZA CENTRIFUGA:	VENTO:	ACCIDENTALI DIVERSI:	AZIONI SISMICHE ORIZZONTALI	ATTRITO
	a=g	b=g	c=q1	d=q1	e=q3	f=q4	g=q5	i=q1	i=q6	i=q7
sisma	1,000	1,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000	1,000

7.6.5 Sollecitazioni sulla fondazione

Carichi permanenti e condizione provvisoria

Combinazion							
e	N (kN)	Mt (kN)	M1 (kN)	Ml (kNm)	M2 (kNm)	Ht (kN)	Hl (kN)
Provv.	10870,049	0,000	0,000	-3826,845	521,175	0,000	-2848,444
C.Perm. (A+)	16515,149	0,000	0,000	-11714,880	-5108,820	0,000	-1613,346

Stati limite di esercizio (RAR)

Combinazione	N (kN)	Mt (kN)	M1 (kN)	Ml (kNm)	M2 (kNm)	Ht (kN)	Hl (kN)
RAR-gr1- I (V+, A+)	16515,149	778,202	778,202	-13442,880	-6836,820	157,534	-2045,346
RAR-gr1- IIa (V+, A+)	19693,603	5592,605	5592,605	-21494,869	-13617,428	137,8644	-2662,895
RAR-gr1-IIb (V+, A+)	19693,603	5592,605	5592,605	-19796,609	-11919,168	137,8644	-2045,346
RAR-gr1- IIc (V+, A+)	16515,149	466,921	466,921	-16839,400	-10233,340	94,5204	-3280,444
RAR-gr2a- IIIa (V+, A+,F+)	18908,759	4397,774	4397,774	-20685,757	-13122,253	137,8644	-2804,597
RAR-gr2a- IIIa (V+, A+,F-)	18889,219	4397,774	4397,774	-18277,987	-10722,299	137,8644	-2212,419
RAR-gr2a-IIIb (V+, A+,F+)	18898,989	4397,774	4397,774	-19392,532	-11832,936	137,8644	-2341,435
RAR-gr2a-IIIb (V+, A+,F-)	18898,989	4397,774	4397,774	-17023,822	-9464,226	137,8644	-1749,257
RAR-gr2a- IIIc (V+, A+,F+)	16515,149	466,921	466,921	-17174,625	-10568,565	94,52	-3267,758
RAR-gr2a- IIIc (V+, A+,F-)	16515,149	466,921	466,921	-14805,915	-8199,855	94,52	-2675,581
RAR-gr2b- IVa (V+, A+,C)	18898,989	4397,774	4397,774	-19481,872	-11922,276	137,864	-2508,508
RAR-gr2b- IVb (V+, A+,C)	18898,989	4397,774	4397,774	-18208,177	-10648,581	137,864	-2045,346

Stati limite di fessurazione


Combinazione	N (kN)	Mt (kN)	M1 (kN)	Ml (kNm)	M2 (kNm)	Ht (kN)	Hl (kN)
FR1a (A+)	18898,99	3584,49	3584,49	-18208,18	-10648,58	0,00	-2045,35
FR2b (A+,F+)	18906,32	3584,49	3584,49	-19111,09	-11548,56	0,00	-2267,41
QP (A+)	16515,15	0,00	0,00	-13442,88	-6836,82	0,00	-2045,35

Stati limite ultimi (STRU)

Combinazione	N (kN)	Mt (kN)	M1 (kN)	Ml (kNm)	M2 (kNm)	Ht (kN)	Hl (kN)
SLU.1-gr1-I (V+, A+)=g+q5*0.9	16515,15	700,38	700,38	-13442,88	-6836,82	141,78	-2045,35
SLU.1-gr1-I(V+, A+)=g*1.35+q5*0.9	22295,45	700,38	700,38	-18147,89	-9229,71	141,78	-2761,22
SLU.1-gr1-IIa(v+, A+)=g+q1+q2*1.35+0.9*q5	20806,06	7672,01	7672,01	-24313,07	-15990,64	206,80	-2879,04
SLU.1-gr1-IIa(v+, A+)=g*1.35+q1*1.35+q2*1.35+0.9*q5	26586,36	7672,01	7672,01	-29018,07	-18383,53	206,80	-3594,91
SLU.1-gr1-IIb(v+, A+)=g+q1+q2*1,35+0,9*q5	20806,06	7672,01	7672,01	-22020,41	-13697,99	206,80	-2045,35
SLU.1-gr1-IIb(v+, A+)=g*1,35+q1*1,35+q2*1,35+0,9*q5	26586,36	7672,01	7672,01	-26725,42	-16090,88	206,80	-2761,22
SLU.1-gr1-IIc(v+, A+)=g+q1+q2*1,35+0,9*q5	16515,15	700,38	700,38	-18028,18	-11422,12	141,78	ocieta di 73 ro
SLU.1-gr1-IIc(v+, A+)=g*1,35+q1*1,35+q2*1,35+0,9*q5	22295,45	700,38	700,38	-22733,19	-13815,01	141,78	4428,60
SLU.2-gr1-IIa(V+, A+)=g+q1+q2*1,013+q3*1,013+0,9*q5	19733,33	6058,99	6058,99	-21595,52	-13702,19	206,80	-2670,61

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA I BERGANO I MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	41 di 116

SLU.2-gr1-IIa _{(V+,}	25513,64	6058,99	6058,99	-26300,53	-16095,07	206,80	-3386,49	
A+)=g*1,35+q1*1,35+q2*1,013+q3*1,013+								
0,9*q5								
SLU.2-gr1-IIb _(V+, A+) =g+q1+q2*1,35-	19733,33	7672,01	7672,01	-19876,03	-11982,70	206,80	-2045,35	
q3*1,013+0,9*q5								
SLU.2-gr1-IIb _{(V+,}	23608,41	6058,99	6058,99	-24581,04	-15137,67	206,80	-2761,22	
A+)=g*1,35+q1*1,35+q2*1,013-								
q3*1,013+0,9*q5								
SLU.2-gr1-IIc(V+,	16515,15	700,38	700,38	-16881,86	-10275,80	141,78	-3295,88	
A+)=g+q1+q2*1,013+q3*1,013+0,9*q5								
SLU.2-gr1-IIc(V+,	22295,45	700,38	700,38	-21586,86	-12668,68	206,80	-4011,75	
A+)=g*1,35+q1*1,35+q2*1,013+q3*1,013+								
0,9*q5								
SLU.3-gr2a-IIIa(V+, A+, F-	19720,14	6058,99	6058,99	-20023,01	-12134,95	206,80	-2270,89	
)=g+q1+q2*1,013+q3*1,35+0,9*q5								
SLU.3-gr2a-IIIa(V+, A+, F-	25500,45	6058,99	6058,99	-24728,01	-14527,84	206,80	-2986,77	
)=g*1,35+q1*1,35+q2*1,013+q3*1,35+0,9								
*q5								
SLU.3-gr2a-IIIa(V+, A+,	16515,15	6058,99	6058,99	-23220,76	-16614,70	206,80	-2670,61	
F+)=g+q1+q2*1,013+q3*1,35+0,9*q5								1
SLU.3-gr2a-IIIa(V+, A+,	25526,83	6058,99	6058,99	-27925,77	-17715,04	206,80	-3386,49	
F+)=g*1,35+q1*1,35+q2*1,013+q3*1,35+0,								
9*q5		_						
SLU.3-gr2a-IIIb(V+, A+,	19746,52	6058,99	6058,99	-21501,28	-13602,67	206,80	-2445,07	
F+)=g+q1+q2*1,013+q3*1,35+0,9*q5								
SLU.3-gr2a-IIIb(V+, A+,	25526,83	6058,99	6058,99	-26206,28	-15995,55	206,80	-3160,94	
F+)=g*1,35+q1*1,35+q2*1,013+q3*1,35+0,								
9*q5								
SLU.3-gr2a-IIIb(V+, A+, F-	19746,52	6058,99	6058,99	-18303,52	-10404,91	206,80	-1645,63	
)=g+q1+q2*1,013+q3*1,35+0,9*q5								
SLU.3-gr2a-IIIb(V+, A+, F-	25526,83	6058,99	6058,99	-23008,53	-12797,80	206,80	-2361,50	
)=g*1,35+q1*1,35+q2*1,013+q3*1,35+0,9								
*q5								
SLU.3-gr2a-IIIc(V+, A+,	16528,339	700,382	700,38	-18507,102	-11895,77	141,781	-3695,603	
F+)=g+q1+q2*1,013+q3*1,35+0,9*q5								
SLU.3-gr2a-IIIc(V+, A+,	22308,641	700,382	700,38	-23212,11	-14288,65	141,781	-4411,474	
F+)=g*1,35+q1*1,35+q2*1,013+q3*1,35+0,	·	•	,		,	,	,	
9*q5								. 0
SLU.3-gr2a-IIIc(V+, A+, F-	16528,339	700,382	700,38	-15309,343	-8698,01	141,781	-2896,163	7,
)=g+q1+q2*1,013+q3*1,35+0,9*q5								1
SLU.3-gr2a-IIIc(V+, A+, F-	22308,641	700,382	700,38	-20014,351	-11090,89	141,781	-3612,034	
)=g*1,35+q1*1,35+q2*1,013+q3*1,35+0,9							A	
*q5							N. C.	
SLU.4-gr2b-IVa(v+,	19733,33	6058,99	6058,99	-21595,52	-13702,19	206,80	-2670,61	
A+,C)=g+q1+q2*1,013+q3*1,013+q4*1,35+	·	,	,		,	ŕ	•	
0,9*q5								
SLU.4-gr2b-IVa(V+, A+,	25513,64	6058,99	6058,99	-26300,53	-16095,07	206,80	-3386,49	
c)=g*1,35+q1*1,35+q2*1,013+q3*1,013+q								
4*1,35+0,9*q5								
SLU.4-gr2b-IVb(V+, A+,	19733,33	6058,99	6058,99	-19876,03	-11982,70	206,80	-2045,35	
c)=g+q1+q2*1,013+q3*1,013+q4*1,35+0,	17755,55	0030,77	0000,77	17070,00	11702,70	200,00	2043,33	
9*q5								
SLU.4-gr2b-IVb(V+, A+,	25513,64	6058,99	6058,99	-24581,04	-14375,59	206,80	-2761,22	
c)=g*1,35+q1*1,35+q2*1,013+q3*1,013+q	23010,04	3030,77	5555,77	_1001,04	1 10,0,07	200,000	2,01,22	
4*1,35+0,9*q5								
SLU.4-gr2b-IVc(V+, A+,	16515,149	700,382	700,38	-16881,857	-10275,80	141,781	-3295,883	1
C)=g+q1+q2*1,013+q3*1,013+q4*1,35+0,	10010,147	7 00,002	700,00	10001,007	102/0,00	141,701	5275,000	
9*q5								
SLU.4-gr2b-IVc(V+, A+,	22295,451	700,382	700,38	-21586,865	-12668,68	141,781	-4011,754	1
c)=g*1,35+q1*1,35+q2*1,013+q3*1,013+q	22293, 4 31	100,362	100,00	-21300,003	-12000,00			
4*1,35+0,9*q5						5	ocietà di Pr	ogett
Provv.=g+q2*1,35	10870,05	0,00	0,00	-5015,63	-667,61	0,00	3rebemi -3280,73	SpA
		, and the second				· ·		1
Provv.=g*1,35+q2*1,35	14674,57	0,00	0,00	-5166,24	703,59	0,00	-3845,40	
				Ì	i			j

Stati limite ultimi (GEO)

BBM

Combinazione	N (kN)	Mt (kN)	M1 (kN)	Ml (kNm)	M2 (kNm)	Ht (kN)	Hl (kN)
SLU.1-GEO-gr1-I (V+, A+)=g+q5*0,69	16515,149	536,959	536,959	-13442,880	-6836,820	108,698	-2045,346
SLU.1-GEO-gr1-IIa(v+, _{A+)} =g+q1+q2*1.15+0,69*q5	20170,371	6431,496	6431,496	-22702,667	-14634,519	158,54406	-2755,527
SLU.1-GEO-gr1-IIb(v+, A+)=g+q1+q2*1,15+0,69*q5	20170,371	6431,496	6431,496	-20749,668	-12681,520	158,54406	-2045,346
SLU.1-GEO-gr1-IIc(v+, A+)=g+q1+q2*1,15+0,69*q5	16515,149	536,959	536,959	-17348,878	-10742,818	108,69846	-3465,709
SLU.2-GEO-gr1-IIa(v+, A+)=g+q1+q2*1,15+0,69*q5	20170,371	7258,331	7258,331	-22702,667	-14634,519	158,54406	-2755,5274
SLU.2-GEO-gr1-IIb(v+, _{A+)} =g+q1+q2*1,15+0,69*q5	20170,371	6431,496	6431,496	-20749,668	-12681,520	158,54406	-2045,346
SLU.2-GEO-gr1-IIc(v+, A+)=g+q1+q2*1,15+0,69*q5	16515,149	935,272	935,272	-17348,878	-10742,818	158,54406	-3465,7087
SLU.3-GEO-gr2a-IIIa(V+, A+, F-)=g+q1+q2*1,15-q3*0.862+0,69*q5	20161,944	6431,496	6431,496	-21698,006	-13633,228	158,54406	-2500,1508
SLU.3-GEO-gr2a-IIIa(V+, A+, F+)=g+q1+q2*1,15+q3*0.862+0,69*q5	20178,797	6431,496	6431,496	23741,0184	-15669,499	158,54406	-3010,9039
SLU.3-GEO-gr2a-IIIb _(V+, A+, F+) =g+q1+q2*0.862+q3*1,15+0,69*q5	19256,565	5057,440	5057,440	-20284,980	-12582,354	158,544	-2385,848
SLU.3-GEO-gr2a-IIIb _{(V+, A+, F-})=g+q1+q2*0.862-q3*1,15+0,69*q5	19256,565	5057,440	5057,440	-17560,963	-9858,337	158,544	-1704,844
SLU.3-GEO-gr2a-IIIc(V+, A+, F+)=g+q1+q2*0.862+q3*1,15+0,69*q5	16526,385	536,959	536,959	-17756,847	-11146,293	108,698	-3451,120
SLU.3-GEO-gr2a-IIIc(v+, A+, F-)=g+q1+q2*0.862-q3*1,15+0,69*q5	16526,385	536,959	536,959	-15032,830	-8422,276	108,698	-2770,116
SLU.4-GEO-gr2b-IVa _{(V+,} _{A+,C)} =g+q1+q2*0.862+q4*1,15+0,69*q5	19256,565	5057,44	5057,440	20387,7205	-12685,094	158,54406	-2577,982
SLU.4-GEO-gr2b-IVb _{(V+, A+,} c)=g+q1+q2*0.862+q4*1,15+0,69*q5	19256,565	5057,44	5057,440	-18922,971	-11220,345	158,544	-2045,346
SLU.4-GEO-gr2b-IVc(V+, A+, C)=g+q1+q2*0.862+q4*1,15+0,69*q5	16515,149	536,959	536,959	-16372,379	-9766,319		-3110,618 ocietà di Pr
ProvvGEO=g+q2*1,15	10870,049	0	0,000	-4336,323	11,697	-3033,7087	3rebemi - -2182,233

C.PermGEO=g	16515,149	9 0	0,000	-13442,88	-6836,820	0	-2045,346
		•					
Combinazione	N (kN)	Mt (kN)	M1 (kN)	Ml (kNm)	M2 (kNm)	Ht (kN)	Hl (kN)
RAR-GEO-gr1- I (V+, A+)	16515,149	778,202	778,202	-13442,880	-6836,820	157,534	-2045,346
RAR-GEO-gr1- IIa (V+, A+)	19693,603	5592,605	5592,605	-21494,869	-13617,428	137,8644	-2662,895
RAR-GEO-gr1-IIb (V+, A+)	19693,603	5592,605	5592,605	-19796,609	-11919,168	137,8644	-2045,346
RAR-GEO-gr1- IIc (V+, A+)	16515,149	466,921	466,921	-16839,400	-10233,340	94,5204	-3280,444
RAR-GEO-gr2a- IIIa (V+, A+,F+)	18908,759	4397,774	4397,774	-20685,757	-13122,253	137,8644	-2804,5965
RAR-GEO-gr2a- IIIa (V+, A+,F-)	18889,219	4397,774	4397,774	-18277,987	-10722,299	137,8644	-2212,419
RAR-GEO-gr2a-IIIb (V+, A+,F+)	18898,989	4397,774	4397,774	-19392,532	-11832,936	137,8644	-
							2341,43475
RAR-GEO-gr2a-IIIb (V+, A+,F-)	18898,989	4397,774	4397,774	-17023,822	-9464,226	137,8644	- 1749,25725
RAR-GEO-gr2a- IIIc (V+, A+,F+)	16515,149	466,921	466,921	-17174,625	-10568,565	94,52	-3267,758
RAR-GEO-gr2a- IIIc (V+, A+,F-)	16515,149	466,921	466,921	-14805,915	-8199,855	94,52	-2675,581
RAR-GEO-gr2b- IVa (V+, A+,C)	18898,989	4397,774	4397,774	-19481,872	-11922,276	137,864	-2508,508
RAR-GEO-gr2b- IVb (V+, A+,C)	18898,989	4397,774	4397,774	-18208,177	-10648,581	137,864	-2045,346
ProvvGEO	10870,049	0,000	0,000	-3826,845	521,175	0,000	-2848,444
C.Perm. (A+)-GEO	16515,149	0,000	0,000	-11714,880	-5108,820	0,000	-1613,346

APPROVATO BOP

Condizione sismica

Sollecitazioni nel baricentro fondazione per sisma longitudinale

Le azioni riportate nella tabella seguente sono dovute alla inerzia del complesso spalla, nonché alle spinte delle terre in condizioni statiche e dinamiche. Le azioni della tabella seguente derivano dai singoli contributi presi con la loro eccentricità rispetto al baricentro della fondazione.

	Mı (kNm)	Mt (kNm)	N (kN)	Hı (kN)	H _t (kN)
Spinta terre	1735,03	0,0	0,0	963,91	0,0
Incremento dinamico spin.	3224,20	0,00	0,0	1194,15	0,00
Inerzia risvolti+orecchie	905,51	271,65	700,57	209,15	62,75
Inerzia fusto+paraghiaia	1875,93	562,78	1951,44	582,59	174,78
Inerzia terreno imbarcato	0,00	0,00	2434,63	726,84	218,05
Azioni da impalcato	3610,00	1083,00	6160,00	950,00	285,00
Inerzia fondazione	0.00	0.00	4920,00	1537,69	461,3072

Le sollecitazioni risultanti applicate nel baricentro della fondazione, sono le seguenti:

	Mı (kNm)	Mt (kNm)	N (kN)	Hı (kN)	Ht (kN)
Risultanti	23766,94	1917,434	16166,6	6337,28	1201,881

Sollecitazioni nel baricentro fondazione per sisma trasversale

Le azioni riportate nella tabella seguente sono dovute alla inerzia del complesso spalla, nonché alle spinte delle terre in condizioni statiche e dinamiche. Le azioni riportate nella tabella seguente derivano dai singoli contributi presi con la loro eccentricità rispetto al baricentro della fondazione.

	Mı (kNm)	Mt (kNm)	N (kN)	Hı (kN)	Ht (kN)
Spinta terre	1735,03	0,0	0,0	963,91	0,0
Incremento dinamico spin.	967,26	0,00	0,0	358,24	0,00
Inerzia risvolti+orecchie	271,65	905,51	700,57	62,75	209,15
Inerzia fusto+paraghiaia	562,78	1875,93	1951,44	174,78	582,59
Inerzia terreno imbarcato	0,00	0,00	2434,63	218,05	726,84
Azioni da impalcato	1083,00	3610,00	6160,00	285,00	950,00
Inerzia fondazione	0.00	0.00	4920,00	461,31	1537,69

Le sollecitazioni risultanti applicate nel baricentro della fondazione, sono le seguenti:

	Mı (kNm)	Mt (kNm)	N (kN)	Hı (kN)	H _t (kN)
Risultanti	17035,99	6391,45	16166,64	2696,99	4006,27

Sollecitazioni nel baricentro fondazione per sisma verticale

Le azioni riportate nella tabella seguente sono dovute alla inerzia del complesso spalla, nonché alle spinte delle terre in condizioni statiche e dinamiche. Le azioni riportate nella tabella seguente derivano dai singoli contributi presi con la loro eccentricità rispetto al baricentro della fondazione. Società di Progetto

Brebemi SpA

					, ,
	Mı (kNm)	Mt (kNm)	N (kN)	Hı (kN)	H _t (kN)
Spinta terre	1735,03	0,0	0,0	963,91	0,0
Incremento dinamico spin.	967,26	0,00	0,0	358,24	0,00

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGAMO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	45 di 116

Inerzia risvolti+orecchie	271,65	271,65	773,78	62,75	62,75	
Inerzia fusto+paraghiaia	562,78	562,78	2155,34	174,78	174,78	
Inerzia terreno imbarcato	0,00	0,00	2689,02	218,05	218,05	
Azioni da impalcato	1083,00	1083,00	7350,00	285,00	285,00	
Inerzia fondazione	0.00	0.00	4920,00	461,31	461,31	

Le sollecitazioni risultanti applicate nel baricentro della fondazione, sono le seguenti:

	Mı (kNm)	Mt (kNm)	N (kN)	Hı (kN)	Ht (kN)
Risultanti	19389,90	1917,434	19425,8	2696,99	1201,881

7.6.6 Azioni sui pali

Le azioni sui pali, sono ricavate con la teoria elastica sintetizzabile nell'espressione $N_{palo} = N_{palificata} / n_{pali} + M_{t,palificata} / W_{t,palificata} + M_{l,palificata} / W_{t,palificata} + T_t / (2*\alpha) / W_{t,palificata} + T_l / (2*\alpha) / W_{t,palifi$

Minimo sforzo di compressione alla testa del palo = -3965,58 kN nel 1 (Cond. SLU.1-gr1-IIa(V+, A+)=g*1.35+q1*1.35+q2*1.35+0.9*q5)

Massimo sforzo di compressione alla testa del palo = -76,036kN nel palo 10

(Cond. (STR) SISMA LONGITUDINALE)

STATI LIMITE DI ESERCIZIO (RAR)

Minimo sforzo di compressione alla testa del palo = -2933,69kN nel palo 1

(Cond. RAR-gr1- IIa (V+, A+))

Massimo sforzo di compressione alla testa del palo = -652,262kN nel palo 10

(Cond.RAR-gr1- IIa (V+, A+))

Massima azione orizzontale alla testa dei pali = 328,181kN

(Cond. RAR-gr1- IIc (V+, A+))

STATI LIMITE DI ESERCIZIO (RAR-GEO)

Minimo sforzo di compressione alla testa del palo = -2933,69kN nel palo 1

(Cond. RAR-GEO-gr1- IIa (V+, A+))

Massimo sforzo di compressione alla testa del palo = -652,262kN nel palo 11

(Cond.RAR-GEO-gr1- IIa (V+, A+))

Massima azione orizzontale alla testa dei pali = 266,646kN

(Cond.RAR-GEO-gr1- IIa (V+, A+))

STATI LIMITE DI FESSURAZIONE (FR)

Minimo sforzo di compressione alla testa del palo = -2665,555kN nel palo 1

(Cond.FR2b (A+,F+))

Massimo sforzo di compressione alla testa del palo = -807,449kN nel palo 10

(Cond.FR2b (A+,F+))

Massima azione orizzontale alla testa dei pali = Società di Progetto Brebemi SpA

(Cond.FR2b (A+,F+))

STATI LIMITE DI FESSURAZIONE (QP)

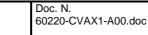
BBM BRESCIA L BERGANG L MILANO	Doc. N. 60220-CVAX1-A00.doc	CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00	REV. 00	FOGLIO 46 di 116
BRESCIA BERGAMO MILANO				4

Minimo sforzo di compressione alla testa del palo =	-2099,283kN nel palo 1
(Cond.QP (A+))	
Massimo sforzo di compressione alla testa del palo =	-979,863kN nel palo 7
(Cond.QP (A+))	
Massima azione orizzontale alla testa dei pali =	204,535kN
(Cond.QP (A+))	

STATI LIMITE ULTIMI (STR)

Minimo sforzo di compressione alla testa del palo =	-3965,58kN nel palo 1
(Cond.SLU.1-gr1-IIa(V+, A+)=g*1.35+q1*1.35+q2*1.35+0.9*q5)	
Massimo sforzo di compressione alla testa del palo =	-876,476kN nel palo 10
(Cond.SLU.1-gr1-IIa(V+, A+)=g*1.35+q1*1.35+q2*1.35+0.9*q5)	
Massima azione orizzontale alla testa dei pali =	443,087kN
(Cond.SLU.1-gr1-IIc(V+, A+)= $g^*1,35+q1^*1,35+q2^*1,35+0,9^*q5$)	

STATI LIMITE ULTIMI (GEO)


Minimo sforzo di compressione alla testa del palo =	-3279,708 kN nel palo 1
$ \big(Cond. \text{SLU.3-GEO-gr2a-IIIa}(\text{V+, A+, F+}) = g + q1 + q2*1, 15 + q3*0.862 + 0,69*q5 \big) $	
Massimo sforzo di compressione alla testa del palo =	-278,148kN nel palo 10
$ \big(Cond. \text{SLU.3-GEO-gr2a-IIIa}(\text{V+, A+, F+}) = g + q1 + q2*1, 15 + q3*0.862 + 0,69*q5 \big) $	
Massima azione orizzontale alla testa dei pali =	346,933kN
(Cond.SLU.2-GEO-gr1-IIc(V+, A+)=g+q1+q2*1,15+0,69*q5)	

STATI LIMITE ULTIMI – SISMA (STR)

Minimo sforzo di compressione alla testa del palo =	-2705,835kN nel palo 1
(Cond.(STR) SISMA LONGITUDINALE)	
Massimo sforzo di compressione alla testa del palo =	-76,036kN nel palo 10
(Cond.(STR) SISMA LONGITUDINALE)	QQ*
Massima azione orizzontale alla testa dei pali =	645,024kN
(Cond.(STR) SISMA LONGITUDINALE)	•

STATI LIMITE ULTIMI – SISMA (GEO)

Minimo sforzo di compressione alla testa del palo =	-2705,835kN nel palo 1
(Cond.(str) sisma longitudinale)	
Massimo sforzo di compressione alla testa del palo =	-76,036kN nel palo 10
(Cond.(str) sisma longitudinale)	
Massima azione orizzontale alla testa dei pali =	645,024kN
(Cond.(GEO) SISMA TRASVERSALE)	

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00

REV. 00

FOGLIO 47 di 116

Sollecitazioni sugli elementi strutturali

BBM

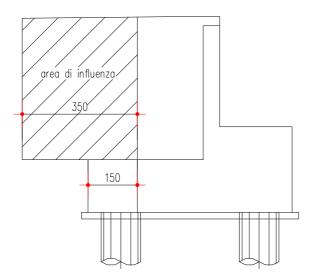
Nel presente paragrafo, vengono calcolate le sollecitazioni dei vari elementi strutturali componenti il complesso spalla.

7.7.1 Platea di fondazione

Per quanto riguarda le sollecitazioni che interessano la fondazione in direzione trasversale, si può assumere che i muri di risvolto, incastrati sulla stessa, trasmettano una tenso-flessione.

Data la geometria della fondazione, in direzione longitudinale, le sollecitazioni sono dovute all'incastro della stessa con il fusto. Le sollecitazioni vengono determinate dalla pressione che la fondazione esercita sul terreno di fondazione, depurata dal peso proprio. E' evidente che questo schema di funzionamento è ampiamente cautelativo, tenendo presente che la fondazione è una lastra e che quindi il suo comportamento è spaziale.

Data la coincidenza degli assi appoggi impalcato e la prima fila di pali con il fusto, la struttura di fondazione ha un comportamento prettamente a struttura tozza, pertanto saranno eseguite verifiche a punzonamento per la fila di pali posteriori.


Data la posizione della prima fila di pali rispetto al fusto non sono significative veriche. Si prevederà tuttavia nel basamento una conveniente armatura.

Direzione trasversale

Le sollecitazioni che interessano la fondazione sono, quelle trasmesse dai muri di risvolto, ipotizzando per questi un comportamento a mensola verticale incastrata alla base, come da schema seguente:

Le sollecitazioni inerenti la prima fascia di muro a filo orecchia (ipotizzando che le sollecitazioni derivanti dall'orecchia vengano assorbiti dalla prima fascia di muro di risvolto) sono:

Il calcolo è fatto con schemi statici semplici, ribaltando alla fondazione le sollecitazioni alla base dei risvolti, che quindi diventano le sollecitazioni della stessa all'attacco con i risvolti.

Larghezza di calcolo della sezione a flessione

bm = 1.5m

Sollecitazioni allo SLU:

M=8691,352 kNm/m

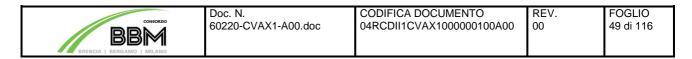
N=+2584,516 kN/m

Mrar=6438,039 kNm/m

Sollecitazioni allo SLE:

N_{RAR}=+1914,457 kN/m

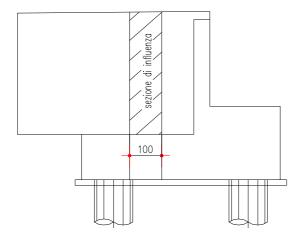
Società di Progetto


M_{FR}=5432,151 kNm/m

N_{FR}=+ 1914,457kN/m

 $M_{QP}=2414,487 \text{ kNm/m}$

 N_{QP} =+ 978,85 kN/m



Sollecitazioni in condizione Sismica:

M=437,12 kNm/m N=+261,60 kN/m

Le sollecitazioni che interessano la base del muro di risvolto per la restante parte (sezione corrente):

Sollecitazioni allo SLU: M=1559,991 kNm/m

N=+893,011 kN/m

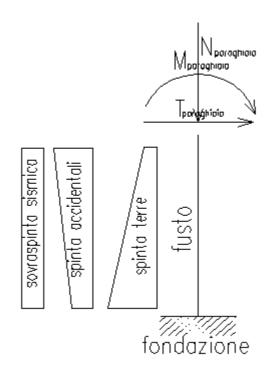
Sollecitazioni allo SLE: Mrar=1155,549 kNm/m

N_{RAR}=+661,490 kN/m M_{FR}=930,528 kNm/m N_{FR}=+ 661,490kN/m M_{QP}=255,466 kNm/m N_{QP}=+218,97 kN/m

Sollecitazioni in condizione Sismica: M=437,12 kNm/m

N=+261,60 kN/m

Direzione longitudinale - zattera posteriore


Le sollecitazioni che interessano la zattera posteriore sono ricavate per differenza tra la sollecitazione alla base del fusto ed il momento dello sbalzo anteriore, dovendo il nodo essere in equilibrio tra le sollecitazioni applicate allo stesso.

La condizione che genera le massime sollecitazioni sulla zattera posteriore, è dovuta alla condizione provvisoria, o meglio quella in cui l'impalcato non è ancora posato e la spalla risulta già rinterrata e quindi presente l'accidentale ripartito di norma.

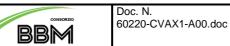
Il momento che interessano la zattera posteriore, se di segno positivo tende le fibre di estradosso della fondazione, altrimenti quelle di intradosso.

Lo schema statico di calcolo adottato per il calcolo delle sollecitazioni alla base del fusto, e quindi la trasmissione delle stesse alla fondazione, è costituito da uno schema a mensola verticale interstrutte della fondazione.

Brebemi SpA

Da semplici calcoli si ricavano le sollecitazioni agenti alla base del fusto, di seguito raggruppate per condizioni di carico:

STATI LIMITE DI ESERCIZIO, PROVVISORIA (RAR)


Condizione di carico		N (kN/m)	Ml (kN/m)	Tl (kN/m)	
impalcato	e	rilevato	732,248	-287,043	-121,369
carichi+frenat	ura				
(A+B+C+D+E+	+F+L)				
rilevato sovra	ccarico	in assenza	128,054	-208,544	-134,468
di impalcato	(<i>A</i>	A+B+G)			

STATI LIMITE DI ESERCIZIO-FESSURAZIONE

Condizione di carico		N (kN/m)	Ml (kN/m)	Tl (kN/m)
Fessurazione	FRa	677,229	-170,587	-64,848
$(A+B+C+(D+F)*\psi 1)$				
Fessurazione	FRb	677,229	-135,307	-44,688
$(A+B+C'+D*\psi 1)$				
Fessurazione	FRc	514,176	-240,000	-112,023
$(A+B+C'+G*\psi 1)$				
Fessurazione	QP	514,176	-102,696	-44,688
$(A+B+C'+(D+F)*\psi 2)$				

Società di Progetto Brebemi SpA

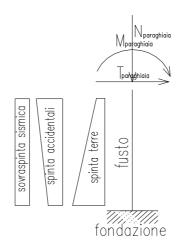
STATI LIMITE ULTIMI (STR)

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 51 di 116

Condizione di carico		N (kN/m)	Ml (kN/m)	Tl (kN/m)
impalcato e rilevato carichi+frenatura (A+B+C+D+E+F+L)*1,35	Nmax	988,309	-373,793	-157,013
impalcato e rilevato carichi+frenatura (A+B*1,35+C*1,35+D*1,35+E*1,35+F*1,35+L* 1,35)	Mmax	943,490	-383,125	-157,013
impalcato e rilevato carichi+frenatura (A*1,35+B+C+D+E+F+L)	Tmax	777,067	-277,711	-121,369
rilevato sovraccarico in assenza di impalcato (A+B+G)*1,35	Nmax	172,873	-281,534	-181,531
rilevato sovraccarico in assenza di impalcato (A+B*1,35+G*1,35)	Mmax	128,054	-290,867	-181,531
rilevato sovraccarico in assenza di impalcato (A*1,35+B+G)	Tmax	172,873	-199,212	-134,468

CONDIZIONE SISMICA

	Ml (kNm/m)	N (kN/m)	Hl (kN/m)
Risultante	284,00	683,48	181,90


APPROVATO BOP

REV.

00

7.7.2 Fusto spalla

Data la geometria della spalla è plausibile il comportamento a mensola incastrata nella fondazione. Il calcolo delle sollecitazioni viene istituito trascurando, a favore di sicurezza, il contributo fornito dalle spinte relative al terreno di valle.

Effetto dei carichi permanenti relativi all' elevazione

	N (kN/m)	e (kN/m)	MI (kN/m)	Tl (kN/m)
paraghiaia	31,500	0,85	26,775	
fusto spalla	96,000	0,00	0,000	
baggioli	0,554	-0,20	-0,111	
totali=	128,054		26,664	

considerando gli incrementi dovuti ai carichi verticali aggiuntivi risulta:

N = 128,054 kN/m

M = 26,664 kNm/m

T = 0.000 kN/m

Elenco dei carichi elementari

- Peso della spalla + az. aggiuntive permanenti A) =
- B) =Spinta terreno di monte
- C) =Azioni permanenti da impalcato
- C')=Azioni permanenti da impalcato senza attrito e az. agg.
- D) =Carico accidentale sull'impalcato
- E) =Azione di frenatura
- F) =Carico accidentale sul rilevato contemporaneo all'accidentale sull'impalcato
- G) =Carico accidentale sul rilevato in assenza di accidentale sull'impalcato
- H) =Azioni sismiche longitudinali
- I) =Azioni sismiche verticali
- L) =Squilibrio verticale frenatura

	P (kN/m)	M1 (kN/m)	Tl (kN/m)
A	128,054	26,664	0,000
В	0,000	-52,136	-44,688
С	386,122	-130,412	-29,549
C'	386,122	-77,224	0,000
D	217,404	-43,481	0,000
E	0,000	-40,504	-20,252
F	0,000	-47,040	-26,880
G	0,000	-183,072	-89,780
Н	683,48	284,00	181,90
I	683,48	284,00	181,90
L	0,668	-0,134	0,000

Sollecitazioni nella sezione di base

STATI LIMITE DI ESERCIZIO, PROVVISORIA (RAR)

Condizione di c	ondizione di carico		Ml (kN/m)	Tl (kN/m)	
impalcato	e rilevato	<mark>732,248</mark>	<mark>-287,043</mark>	<mark>-121,369</mark>	
carichi+frenatur	a				
(A+B+C+D+E+F	+L)				
rilevato sovraco	arico in assenza	128,054	-208,544	-134,468	
di impalcato	(A+B+G)				

STATI LIMITE DI ESERCIZIO-FESSURAZIONE

Condizione di carico		N (kN/m)	Ml (kN/m)	Tl (kN/m)
Fessurazione	FRa	677,229	-170,587	-64,848
$(A+B+C+(D+F)*\psi 1)$				
Fessurazione	FRb	677,229	-135,307	-44,688
$(A+B+C'+D*\psi 1)$				
Fessurazione	FRc	<mark>514,176</mark>	-240,000	-112,023
$(A+B+C'+G*\psi 1)$				
Fessurazione	QP	<mark>514,176</mark>	-102,696	-44,688
$(A+B+C'+(D+F)*\psi 2)$				

STATI LIMITE ULTIMI (STR)

Condizione di carico		N (kN/m)	Ml (kN/m)	Tl (kN/m)
impalcato e rilevato carichi+frenatura (A+B+C+D+E+F+L)*1,35	Nmax	988,309	-373,793	-157,013
impalcato e rilevato carichi+frenatura (A+B*1,35+C*1,35+D*1,35+E*1,35+F*1,35+L* 1,35)	Mmax	943,490	-383,125	-157,013 Società di Progetto
impalcato e rilevato carichi+frenatura (A*1,35+B+C+D+E+F+L)	Tmax	777,067	-277,711	-121,369 Brebemi SpA
rilevato sovraccarico in assenza di impalcato (A+B+G)*1,35	Nmax	172,873	-281,534	-181,531

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGANO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	54 di 116

rilevato sovraccarico in assenza di impalcato (A+B*1,35+G*1,35)	Mmax	128,054	-290,867	-181,531
rilevato sovraccarico in assenza di impalcato (A*1,35+B+G)	Tmax	172,873	-199,212	-134,468

CONDIZIONE SISMICA

Elenco dei dati, non precedentemente definiti, utilizzati nelle formule parametriche per il calcolo delle azioni sismiche:

ht=3.4m

 $h_{\text{fust}}=1,60\text{m}$

 $h_p = 1.8 m$

 $P_{imp.} = 5650,00kN$

 $F_{cor.} = 0kN$

Le sollecitazioni agenti alla base del fusto generate dai vari contributi, sono di seguito riportati:

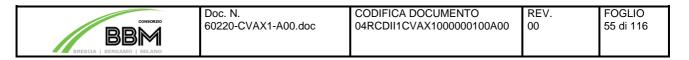
·Inerzia (fusto+paraghiaia)

 $M = ((\gamma_{\rm cls} \times h_p \times s_p \times L_p \times a_g/g \times S \times \gamma_I) \times (h_p/2 + h_{\rm fust}) + (\gamma_{\rm cls} \times h_{\rm fust} \times s_f \times L_f \times a_g/g \times S \times \gamma_I) \times h_{\rm fust}/2) / (L_f - s_r \times 2) = 53,76 kNm/m$

 $N = (\gamma_{cls} \times s_p \times h_p + \gamma_{cls} \times s_f \times h_{fust} + F_{cor.}) / L_f + P_{imp} / (L_f - s_r \times 2) = 554,88kN/m$ $T = (\gamma_{cls} \times h_p \times s_p \times L_p \times a_g / g \times S \times \gamma_I + \gamma_{cls} \times h_{fust} \times s_f \times L_f \times a_g / g \times S \times \gamma_I) / (L_f - s_r \times 2) = 44,07kN/m$

·Spinta terre

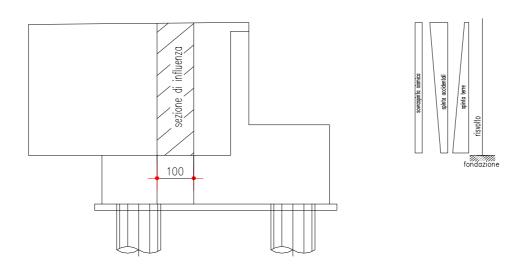
$p_{tt}=(\gamma \times h_t \times k_0)=$	15,37(kN/m²)/m
$M=(\gamma \times h_t \times k_0 \times h_t^2)/6=$	29,62kNm/m
$T = p_{tf} \times h_t/2 =$	26,14kN/m


·Incremento spinta dovuto al sisma

$M=(S \times a_g/g \times \gamma \times h_{t^2} \times \gamma_I) \times h_{t/2} =$	47,61kNm/m
$T=(S \times a_g/g \times \gamma \times h_t^2 \times \gamma_I)=$	28,00kN/m

·Azione dovuta all'impalcato

T_{ls} =	950,00kNm/m
$M=T_{ls}\times(h_{fust}+h_b)/(L_{f}-s_r\times 2)=$	129,35kNm/m
$T=T_{ls}/(L_{f-} s_r \times 2)=$	71,86kN/m


	Ml (kNm/m)	N (kN/m)	Hl (kN/m)
Risultante	284,00	683,48	181,90

7.7.3 Muri di risvolto

Per il calcolo delle sollecitazioni che interessano le fibre verticali, si considera il funzionamento a mensola verticale incastrata nella fondazione. Il muro oltre a ricevere le azioni trasmesse dal terreno presente sulla platea di fondazione, riceve anche le azioni trasmesse dalle orecchie. Cautelativamente si assume che tali azioni siano assorbite da una parte di muro avente larghezza b=1.5m.

Calcolo nello schema di mensola verticale incastrata alla base (sezione corrente)

Con riferimento ad un sovraccarico sul rilevato dato dalla ripartizione dallo schema di carico 1 le pressioni e le sollecitazioni sono le seguenti:

Come azioni variabili da traffico gravante sul rilevato si assume lo schema di carico 1. Lo schema 1 prevede:

- ✓ il carico Q_{1,k} costituito da un mezzo convenzionale da 600kN a due assi da 300 kN ognuno (carico tandem) posti ad un interasse di 1.20m lungo il senso di marcia e caratterizzati da una larghezza di 2.40m (comprese le dimensioni delle impronte)
- ✓ il carico ripartito q_{1,k} da 9kN/m²

STATO LIMITE ULTIMO

Lunghezza mensola=	0,00	m
Pressione alla base=	52,348	kN/m2
Pressione alla sommità=	51,793	kN/m2
Momento alla base=	318,365	kNm/m
Taglio alla base=	182,247	kN/m

Sforzo normale alla base=	61,250 kN/m
---------------------------	-------------

STATI LIMITE DI ESERCIZIO (RARA)

Lunghezza mensola=	3,50	m
Pressione alla base=	38,777	kN/m2
Pressione alla sommità=	38,365	kN/m2
Momento alla base=	235,826	kNm/m
Taglio alla base=	134,998	kN/m
Sforzo normale alla base=	61,250	kN/m

STATI LIMITE DI ESERCIZIO (FR)

Pressione alla base=	35,47	kN/m2
Pressione alla sommità=	28,77	kN/m2
Momento alla base=	189,90	kNm/m
Taglio alla base=	112,42	kN/m
Sforzo normale alla base=	61,25	kN/m

STATI LIMITE DI ESERCIZIO (QP)

ESERO	CIZIO (QP)			SPROVATO BOP
	palla base=	25,54	kN/m2	APPE
	p in sommità=	0,00	kN/m2	-
	Momento alla base=	52,14	kNm/m	S
	Taglio alla base=	44,69	kN/m	
	Sforzo normale alla base=	61,25	kN/m	

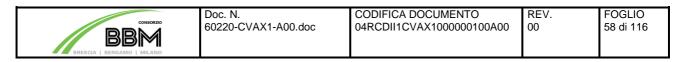
CONDIZIONI SISMICHE

·lnerzia	(risvo	lti)
----------	--------	------

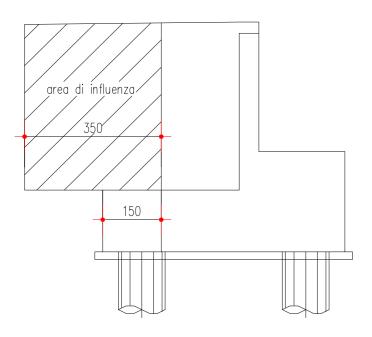
 $\begin{aligned} M &= (\gamma_{cls} \times l_r \times s_r \times a_g/g \times S \times \gamma_l) \times \ l_r/2 = \\ T &= (\gamma_{cls} \times l_r \times s_r \times a_g/g \times S \times \gamma_l) = \end{aligned}$ 67,67 kNm/m 29,05 kN/m

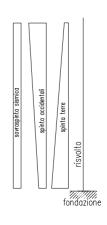
·Spinta terre

·Incremento spinta dovuto al sisma


 $M = (S \times a_g/g \times \gamma \times (h_r + h_o) \times \gamma_I) \times l_r^2/2$ $T = (S \times a_g/g \times \gamma \times (h_r + h_o) \times \gamma_I) \times l_r =$ 29,00 kN/m

Doc. N. 60220-CVAX1-A00.doc CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 57 di 116


	Mtot (kNm/m)	Ttot (kN/m)
Risultante muro sotto sisma	149,06	85,12
Risultante muro sopra sisma	-36,45	-1,98


APPROVATO BOP

Calcolo nello schema di mensola verticale incastrata alla fondazione (sezione a filo orecchia)

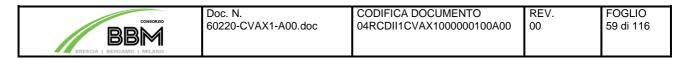
Come già detto la sezione resistente su cui viene eseguita la verifica ha una larghezza b=1.5m.

Le sollecitazioni generate dalle azioni agenti sul risvolto sono:

STATO LIMITE ULTIMO

Lunghezza mensola=	3,50	m
Momento alla base=	1559,991	kNm/m
Taglio alla base=	893,011	kN/m
Sforzo normale alla base=	300,125	kN/m

STATI LIMITE DI ESERCIZIO (RARA)


Momento alla base=	1155,549	kNm/m
Taglio alla base=	661,490	kN/m
Sforzo normale alla base=	300,125	kN/m

STATI LIMITE DI ESERCIZIO (FR)

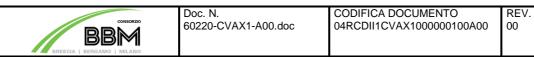
Momento alla base=	930,528	kNm/m
--------------------	---------	-------

Società di Progetto Brebemi SpA

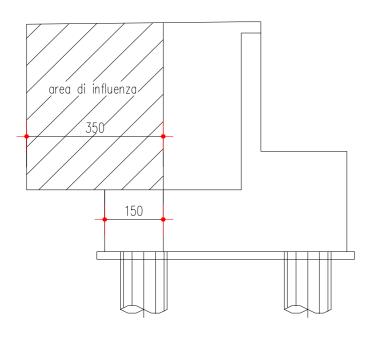
APPROVATO BOP

Taglio=	661,490	kN/m
Sforzo normale alla base=	300,125	kN/m

STATI LIMITE DI ESERCIZIO (QP)


Momento alla base=	255,466	kNm/m
Taglio=	218,97	kN/m
Sforzo normale alla base=	300,125	kN/m

CONDIZIONE SISMICA


Le sollecitazioni agenti alla base del risvolto date dai vari contributi, sono di seguito riportate: Sollecitazioni per muro sotto sisma

	Mtot (kNm/m)	Ntot (kN/m)	H _{tot} (kN/m)
Risultante muro sotto sisma	1249,12	324,80	354,67

APPROVATO BOP

Calcolo nello schema di mensola verticale incastrata alla fondazione (sezione a filo orecchia)

FOGLIO

60 di 116

Come già detto la sezione resistente su cui viene eseguita la verifica ha una larghezza b=1,5m. Le sollecitazioni generate dalle azioni agenti sul risvolto sono:

STATO LIMITE ULTIMO

lunghezza orecchia=	2.00	m
Momento alla base=	1559,991	kNm/m
Taglio alla base=	893,011	kN/m
Sforzo normale alla base=	300,125	kN/m

STATI LIMITE DI ESERCIZIO (RARA)

lunghezza orecchia=	3,40	m
Momento alla base=	1155,549	kNm/m
Taglio alla base=	661,490	kN/m
Sforzo normale alla base=	300,125	kN/m

STATI LIMITE DI ESERCIZIO (FR)

Momento alla base=	930,528	kNm/m
Taglio=	661,490	kN/m
Sforzo normale alla base=	300,125	kN/m

STATI LIMITE DI ESERCIZIO (QP)

Società di Progetto Brebemi SpA

APPROVATO BOP

Doc. N.	
60220-CVAX1-A00.doc	

CODIFICA DOCUMENTO
04RCDII1CVAX1000000100A00

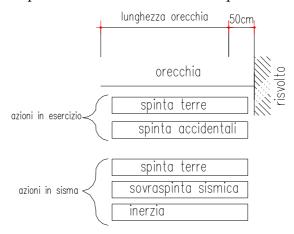

REV. 00 FOGLIO 61 di 116

Momento alla base=	255,466	kNm/m
Taglio=	218,97	kN/m
Sforzo normale alla base=	300,125	kN/m

CONDIZIONE SISMICA

M	N	T
(kNm/m)	(kN/m)	(kN/m)
437,12	211,925	261,60

APPRILIVATO BOP


CODIFICA DOCUMENTO REV. FOGLIO 04RCDII1CVAX1000000100A00 62 di 116 00

7.7.3.1

Orecchia

Le orecchie risultano incastrate ai muri di risvolto; lo schema statico assunto per il calcolo delle sollecitazioni è quello di mensola orizzontale soggetta alle azioni trasmesse dal terreno.

A favore di sicurezza, si assume per il calcolo della mensola, la pressione alla base dell'orecchia.

Ipotizzando che il carico orizzontale trasmesso dall'orecchia al risvolto sia assorbito dal primo metro di quest'ultimo, si assume come lunghezza di calcolo della mensola la sua dimensione incrementata di 50cm.

altezza dell'orecchia=	3,400	m
Lunghezza della mensola =	3,400	m

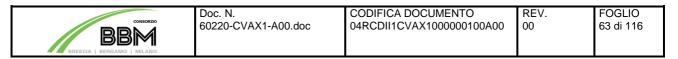
Le sollecitazioni sono ricavate con le seguenti espressioni:

 $M=q\cdot l^2/2$ (kNm/m)

 $T=q\cdot l$ (kN/m)

STATO LIMITE DI ESERCIZIO (RARA)

Pressione alla base=	63,171	kN/m²
Momento =	480,419	kNm/m
Taglio =	214,783	kN/m


STATO LIMITE ULTIMO

Pressione alla base=	85,282	kN/m²
Momento =	648,566	kNm/m
Taglio =	289,957	kN/m

STATI LIMITE DI FESSURAZIONE

CONDIZIONI DI FESSURAZIONE FR (Ψ1=0.75)		
Pressione alla base=	53,580	kN/m²

Momento =	407,478	kNm/m		
Taglio =	182,173	kN/m		
CONDIZIONI DI FESSURAZIONE QP (Ψ2=0,00)				
Pressione alla base= 24,806 kN/m ²				
Momento = 188,653 kNm/m				
Taglio =	84,342	kN/m		

CONDIZIONE SISMICA

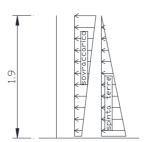
Dati geometrici			M	N	T
			(kNm/m)	(kN/m)	(kN/m)
h ₀	3,40	m			
Lo	2,00	m			
S0	0,70	m			
$\boxed{ p = gcls \times lo \times so \times ag/g \times S \times gI + 0.5 \times (K - ka) \times gt \times ho \times gi + g \times ho \times k = }$	34,55	kN/m²	(presione alla base)		
M=px(l ₀ +0,50)^2/2	107,97	kN/m			
T=pxl ₀	69,10	kN/m			
totale			107,97		69,10

APPROUVATO BOF

7.7.4 Paraghiaia

Il calcolo delle sollecitazioni viene istituito con riferimento alla condizione di massimo sovraccarico sul rilevato e con azione frenante concentrata sulla sommità del paraghiaia. Si considera che agisca direttamente sul paraghiaia l'azione frenante data da un'asse da 30 t costituenti il Q1k, ripartita su una larghezza pari all'ingombro delle ruote del Q1k aumentata della quantità derivante da una ripartizione a 45° sull'altezza del paraghiaia.

Come azioni variabili da traffico gravante sul rilevato si assume lo schema di carico 1. Lo schema 1 prevede:


- ✓ il carico Q_{1,k} costituito da un mezzo convenzionale da 600kN a due assi da 300 kN ognuno (carico tandem) posti ad un interasse di 1.20m lungo il senso di marcia e caratterizzati da una larghezza di 2.40m (comprese le dimensioni delle impronte)
- ✓ il carico ripartito q_{1,k} da 9kN/m²

Si esamina la sezione d'incastro nel fusto ed inoltre la sezione di incastro col risvolto, essendo questa in regime di tenso-flessione.

Sezione d'incastro sul fusto

Le sollecitazioni alla base del paraghiaia, si ricavano con un semplice schema statico di mensola verticale incastrata nel fusto.

A favore di sicurezza si assume la massima latezza del paraghiaia Lo schema di calcolo a mensola verticale ed i carichi applicati è il seguente:

Le sollecitazioni sono ricavate con le seguenti espressioni:

 $M = p_{terre} \cdot l^2 / 6 + \left(p_{sovr, max} - p_{sovr, min} \right) l^2 / 3 + p_{sovr, min} \cdot l^2 / 2$ (kNm/m)

 $T=p_{\text{terre}}\cdot 1/2+(p_{\text{sovr, max}}-p_{\text{sovr, min}})\ 1/2\ +p_{\text{sovr, min}}\cdot 1 \qquad (kN/m)$

STATO LIMITE DI ESERCIZIO (RARA)

Altezza di calcolo paraghiaia h=	1,9	m
pa=	38,37	kN/m²
p _b =	19,59	kN/m ²

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGAMO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	65 di 116

M=	121,45	kNm/m
T=	97,26	kN/m
N=	33,25	kN/m

STATI LIMITE DI FESSURAZIONE

CONDIZIONI DI FESSURAZIONE FR (Ψ1=0,75)						
M=93,17 kNm/m						
T=	15,73	kN/m				
N=	33,25	kN/m				
CONDIZIONI DI FESSURAZIONE QP (Ψ2=0,00)						
M=	8,34	kNm/m				
T=	13,17	kN/m				
N=	33,25	kN/m				

STATO LIMITE ULTIMO

pa=	51,79	kN/m²
p _b =	26,44	kN/m²
M=	145,34	kNm/m
T=	121,50	kN/m
N=	33,25	kN/m

CONDIZIONE SISMICA

Le sollecitazioni agenti alla base del paraghiaia dovute ai vari contributi, sono di seguito esplicitate, vine inoltre riportato lo schema di calcolo ed i carichi applicati alla struttura:

·Inerzia

$M=((\gamma_{cls} \times h_p \times s_p \times L_p \times a_g/g \times S \times \gamma_I) \times h_p/2)/(L_p - s_r \times 2)=$	9,80 kNm/m
$N=\gamma_{cls}\times s_p\times h_p=$	31,50 kN/m
$T=(\gamma_{cls} \times h_p \times s_p \times L_p \times a_g/g \times S \times \gamma_I)/(L_p - s_r \times 2)=$	10,89 kN/m

·Spinta terre

$p_{tp}=(\gamma \times h_p \times k)=$	8,14kN/m ²
$M=(\gamma \times h_p \times k \times h_p^2)/6=$	4,40kNm/m
$T=p_{tp}\times h_p/2=$	7,33kN/m

·Incremento spinta dovuto al sisma

$M=1/2\times k \times \gamma \times (h_{fust}+h_p)^2)\times h_p/(h_{fust}+h_p))\times h_p/2=13,34kNm/m$	
$T=1/2\times k \times \gamma \times (h_{\text{fust}}+h_p)^2)\times h_p/(h_{\text{fust}}+h_p)=$	14,83kN/m

	Ml (kNm/m)	N (kN/m)	Hl (kN/m)
Risultante	27,54	31,50	33,04

Pali di fondazione

I pali sono soggetti ad un'azione di sforzo normale ed ad un'azione tagliante necessaria ad equilibrare le spinte.

Per valutare le caratteristiche di sollecitazione nel palo, relative all'azione tagliante applicata in sommità, si segue l'ipotesi di Winkler, assumendo il coefficiente $k=0.05 \, \text{N/mm}^3$ (valore plausibile per i terreni attraversati) ed ipotizzando che la pur debole coesione degli strati superficiali consenta una risposta elastica anche alle quote più alte ove il carico di terra è modesto.

Si ha: $\alpha = (K^*b/(4^*E^*J))^1/4 = 0,262 1/m$

lunghezza d'onda = $2\pi/\alpha$ = 24,020 m

dove $b = \phi = 120 \text{ cm}$

 $E = 31476 \text{ N/mm}^2 \text{ (essendo R}_{ck} = 30 \text{ N/mm}^2\text{)}$

 $J = 10178760 \text{cm}^4$

Data la lunghezza dei pali, l'ipotesi di trave illimitata è più che soddisfatta. In tali ipotesi, l'impedimento alla rotazione in sommità, assicurato dalla forte rigidezza della fondazione, comporta l'insorgere del momento flettente massimo alla testa del palo:

$$C = T_{max}/2\alpha$$

Il momento ed il taglio variano poi con la profondità secondo la legge:

$$M = C * s(x) - T_{max} / \alpha f(x)$$

ove f(x) ed s(x) sono valori tabellati in funzione di αx

mentre il taglio varia secondo la legge:

$$T = T_{\text{max}} * [d(x) + f(x)]$$

ove d(x) ed f(x) sono valori tabellati in funzione di αx .

STATI LIMITE DI ESERCIZIO

Il taglio ed il momento massimi alla testa del palo risultano

 $T_{max} = 328,181kN$

 $M_{max} = T_{max} / 2\alpha = 627,306kNm$

cui vanno associati gli sforzi normali massimo e minimo

 $N_{max} = -2933,69kN$

 $N_{min} = -652,262kN$

Nella tabella seguente sono riportati valori del momento flettente e del taglio nel palo in funzione della profondità:

		1			1	1	
x (m)	alfa*x	f(x)	s(x)	d(x)	M (kNm)	T (kN)	M (kNm)
0	0,000	0,000	1,000	1,000	627,306	328,181	627,306
0,765	0,200	0,163	0,965	0,640	400,848	263,529	400,848
1,529	0,400	0,261	0,878	0,356	223,321	202,488	223,321
2,294	0,600	0,310	0,763	0,143	89,705	148,666	89,705
3,058	0,800	0,322	0,635	-0,009	-5,646	102,721	-5,646
3,823	1,000	0,310	0,508	-0,111	-70,258	65,308	-70,258
5,734	1,500	0,223	0,238	-0,207	-130,480	5,251	-130,480
7 646	2 000	0.123	0.067	-0 179	-112 288	-18 378	-142 288

-152,288 ni SpA

Dalla tabella si rileva che la sollecitazione flessionale va smorzandosi rapidamente con la profondità.

BBM BRESCIA | BERGAMO | MILANO

STATI LIMITE DI FESSURAZIONE

Il taglio ed il momento massimi alla testa del palo risultano

 $T_{max} = 226,741 \text{ kN}$

 $M_{max} = T_{max} / 2\alpha = 433,407 \text{ kNm}$

cui vanno associati gli sforzi normali massimo e minimo

 $N_{max} = -2665,555 \text{ kN}$

 $N_{min} = -807,449 \text{ kN}$

Nella tabella seguente sono riportati valori del momento flettente e del taglio nel palo in funzione della profondità:

x (m)	alfa*x	f(x)	s(x)	d(x)	M (kNm)	T (kN)
0	0,0	0,000	1,000	1,000	433,407	226,741
0,765	0,2	0,163	0,965	0,640	276,947	182,073
1,529	0,4	0,261	0,878	0,356	154,293	139,899
2,294	0,6	0,310	0,763	0,143	61,977	102,714
3,058	0,8	0,322	0,635	-0,009	-3,901	70,970
3,823	1,0	0,310	0,508	-0,111	-48,542	45,121
5,734	1,5	0,223	0,238	-0,207	-90,149	3,628
7,646	2,0	0,123	0,067	-0,179	-77,580	-12,697

Dalla tabella si rileva che la sollecitazione flessionale va smorzandosi rapidamente con la profondità.

STATI LIMITE ULTIMI

Il taglio ed il momento massimi alla testa del palo risultano

 $T_{max} = 443,087 \text{ kN}$

 $M_{max} = T_{max} / 2\alpha = 846,944 \text{ kNm}$

cui vanno associati gli sforzi normali massimo e minimo

 $N_{max} = -3965,58 \text{ kN}$

 $N_{min} = -876,476 \text{ kN}$

Nella tabella seguente sono riportati valori del momento flettente e del taglio nel palo in funzione della profondità:

x (m)	alfa*x	f(x)	s(x)	d(x)	M (kNm)	T (kN)
0	0,0	0,000	1,000	1,000	846,944	443,087
0,765	0,2	0,163	0,965	0,640	541,197	355,799
1,529	0,4	0,261	0,878	0,356	301,512	273,385
2,294	0,6	0,310	0,763	0,143	121,113	200,718
3,058	0,8	0,322	0,635	-0,009	-7,622	138,686
3,823	1,0	0,310	0,508	-0,111	-94,858	88,174
5,734	1,5	0,223	0,238	-0,207	-176,164	7,089
7,646	2,0	0,123	0,067	-0,179	-151,603	-2428113à d

Progetto

Brebemi SpA

CONDIZIONI SISMICHE

Il taglio ed il momento massimi alla testa del palo risultano

Doc. N. 60220-CVAX1-A00.doc CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 68 di 116

 $T_{max} = 645,024 \text{ kN}$

 $M_{max} = T_{max} / 2\alpha = 1232.94 \text{ kNm}$

cui vanno associati gli sforzi normali massimo e minimo

 $N_{\text{max}} = 2705 \text{ kN}$

 $N_{min} = 76.03kN$

Nella tabella seguente sono riportati valori del momento flettente e del taglio nel palo in funzione della profondità:

r							
x (m)	alfa*x	f(x)	s(x)	d(x)	M (kNm)	T (kN)	M (kNm)
0,000	0,0	0,000	1,000	1,000	1232,939	645,024	1232,939
0,765	0,2	0,163	0,965	0,640	787,848	517,954	787,8482
1,529	0,4	0,261	0,878	0,356	438,926	397,980	438,9264
2,294	0,6	0,310	0,763	0,143	176,310	292,196	176,3103
3,058	0,8	0,322	0,635	-0,009	-11,096	201,893	-11,09645
3,823	1,0	0,310	0,508	-0,111	-138,089	128,360	-138,0892
5,734	1,5	0,223	0,238	-0,207	-256,451	10,320	-256,4514
7,646	2,0	0,123	0,067	-0,179	-220,696	-36,121	-220,6961

Dalla tabella si rileva che la sollecitazione flessionale va smorzandosi rapidamente con la profondità.

APPROVATO BOP

8 VERIFICHE DEGLI ELEMENTI STRUTTURALI

Di seguito si riportano le verifiche delle sezioni più significative e per le Combinazioni di carico risultate più critiche.

I calcoli di verifica sono effettuati con il metodo degli Stati Limite, applicando il combinato D. M.14.01.2008 con l'UNI EN 1992 (Eurocodice 2).

Le verifiche a fessurazione sono state condotte considerando:

Verifica di formazione delle fessure: la verifica si esegue per la sezione interamente reagente e per le sollecitazioni di esercizio si determina la massima trazione nel calcestruzzo σ_{ct} , confrontandola con la resistenza caratteristica a trazione per flessione f_{cfk} : se risulta $\sigma_{ct} < f_{cfk}$ la verifica è soddisfatta, altrimenti si procede alla verifica di apertura delle fessure.

<u>Verifica di apertura delle fessure</u>: l'apertura convenzionale delle fessure è calcolata con le modalità indicate nell'EC2, come richiesto dal D. M. Min. II. TT. del 14 gennaio 2008 e valutata con le sollecitazioni relative alle Combinazioni FR o QP della normativa vigente sui ponti. La massima apertura ammissibile risulta rispettivamente per le strutture in ambiente aggressivo (elevazioni) ed armature poco sensibili:

b.1) combinazione di carico Frequante:

wk≤w3=0.30mm

b.2) combinazione di carico quasi permanente:

wk≤w2=0.20mm

mentre per le strutture in ambiente orinario (fondazione) si ha:

b.1) combinazione di carico Frequante:

wk≤w3=0.40mm

b.2) combinazione di carico quasi permanente:

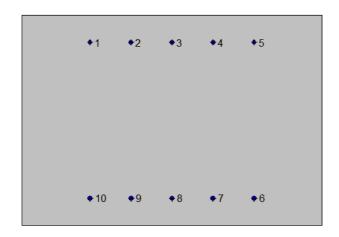
 $w_k \le w_2 = 0.30 \text{mm}$

<u>Verifica delle tensioni di esercizio</u>: per la condizione di carico Quasi Permanente e Rara, verificando rispettivamente che le tensioni di lavoro siano inferiori ai seguenti limiti:

- per la condizione QP si verifica che le massime tensioni presenti nel calcestruzzo siano inferiori a $\sigma_c < 0.45 \; f_{ck}$;
- per la condizione rara si verifica che le massime tensioni presenti nel calcestruzzo siano inferiori a σ_c < 0.60 f_{ck}, mentre quelle dell'acciaio σ_s < 0.80 f_{yk}

8.1 Paraghiaia

8.1.1 Sezione d'incastro con il fusto


Verifiche allo stato limite ultimo per Presso-Flessione

2SI s.r.l - ProVLIM - Verifica sezioni

Geomeria della sezione:

Vert.	X	Y
n.	cm	cm
1	0,0	0,0
2	0,0	70,0
3	100,0	70,0
4	100,0	0,0

Armature:

Pos.	X	Y	Area	Pretens
n.	cm	cm	cmq	(s/n)
1	22,7	61,0	1,5	no

APPROVATOROP

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGAMO MILLANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	71 di 116

2	36,3	61,0	1,5	no
3	50,0	61,0	1,5	no
4	63,7	61,0	1,5	no
5	77,3	61,0	1,5	no
6	77,3	9,0	2,0	no
7	63,7	9,0	2,0	no
8	50,0	9,0	2,0	no
9	36,3	9,0	2,0	no
10	22,7	9,0	2,0	no

Normativa di riferimento:

D.M. 14/01/2008 - 'Norme tecniche per le costruzioni'

Note:

Verifiche SLE per ambiente aggressivo

Materiali:

Calcestruzzo classe: C32/40

Rck (resistenza caratteristica cubica a compressione) = 400 daN/cmq fck (resistenza caratteristica cilindrica a compressione) = 332 daN/cmq fctm (resistenza a trazione media) = 31 daN/cmq

G (modulo di elasticità tangenziale) = 150192 daN/cmq

E (modulo elastico istantaneo iniziale) = 336430 daN/cmq

C. Poisson (coefficiente di contrazione trasversale) = 0.12

Coefficiente di dilatazione termica = 0.000050

Peso specifico del calcestruzzo armato = 2500 daN/mc

Barre d'acciaio ad aderenza migliorata tipo: B450C

fyk (tensione caratteristica di snervamento) = 4500 daN/cmq

fkt (tensione caratteristica di rottura) = 5400 daN/cmq

Euk (deformazione di rottura) = 0.075

G (modulo di elasticità tangenziale) = 793100 daN/cmq

E (modulo elastico) = 2060000 daN/cmq

C. Poisson (coefficiente di contrazione trasversale) = 0.30

Coefficiente di dilatazione termica = 0.000012

Peso specifico = 7850 daN/mc

Società di Progetto

Brebemi SpA

Dominio SLU:

Caratteristiche limite della sezione:

Nu	Mxu	Myu	Stato Sez.
kN	kN m	kN m	
-694,6	24,0	0,0	Completamente tesa
13863,9	-24,0	0,0	Completamente compressa
0,0	253,9	0,0	Fibre inferiori tese
0,0	-205,9	0,0	Fibre superiori tese
0,0	0,0	327,6	Fibre di sinistra tese
0,0	0,0	-327,6	Fibre di destra tese

Verifiche stato limite ultimo:

Per ogni combinazione di carico saranno svolte le verifiche: Verifica per Mxu, Myu e Nu proporzionali (sigla verifica: P) Verifica con rapporto Mxu, Myu assegnato (sigla verifica: M) Verifica con Nu costante (sigla verifica: N)

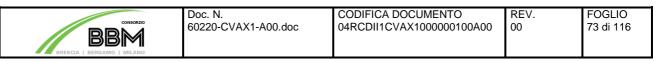
Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
1	33,3	145,3	0,0	P	62,5	273,3	0,0	0,530	OK
				M	13193,1	145,1	0,0	0,000	
				N	33,3	264,2	0,0	0,550	
5	33,3	27,5	0,0	P	472,6	391,4	0,0	0,070	OK
				M	13660,8	27,4	0,0	0,000	
				N	33.3	264.2	0.0	0.100	

Riepilogo combinazioni maggiormente gravose:

Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
1	33,3	145,3	0,0	P	62,5	273,3	0,0	0,530	OK
1	33,3	145,3	0,0	M	13193,1	145,1	0,0	0,000	OK
1	33,3	145,3	0,0	N	33,3	264,2	0,0	0,550	OK

Verifiche stato limite di esercizio per c. c. rare:

Valori limite (tensioni: segno (-) = compressione, (+) = trazione):


CLS: $\sigma_{cL} = 19920,0 \text{ kN/mq} \text{ (verifica Ok per } \sigma_{c}/\sigma_{cL} < 1)$

Acciaio: $\sigma_a L = 360000,0 \text{ kN/mq}$ (verifica Ok per $\sigma_a/\sigma_a L < 1$)

Cmb Mx My N \mathbf{G}_{c} $\mathbf{G}_{c}/\mathbf{G}_{c}L$ \mathbf{G}_{a} $\mathbf{G}_{a}/\mathbf{G}_{a}L$

Società di Progetto Brebemi SpA

APPROVATO BOP

n. e stato kN m kN m kN kN/mq kN/mq 2 OK 121,5 0,0 33,3 -3438,3 0,17 195876,4 0,54

Verifiche stato limite di esercizio per c. c. frequenti:

Valori limite:

Fessure: WkL = 0.30 mm (verifica Ok per Wk/WkL < 1)

Cmb Mx My N Wk Wk/WkL

n. e stato kN m kN m kN mm

3 OK 93,2 0,0 33,3 0.00 0,00

Verifiche stato limite di esercizio per c. c. quasi permanenti:

Valori limite:

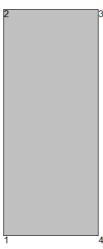
CLS: $\sigma cL = 14940.0 \text{ kN/mq}$ (verifica Ok per $\sigma c/\sigma cL < 1$)

Fessure: WkL = 0.20 mm (verifica Ok per Wk/WkL < 1)

 σ_{c} σc/σcL Wk Cmb MxMy Wk/WkL kN/mq n. e stato kN m kN m kN mm 4 OK 8,3 0,0 33,3 -176,8 0,01 0.00 0,00

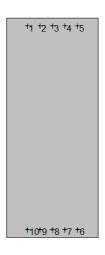
Verifiche a taglio allo stato limite ultimo

V_{sdu}	121,5	kN					
Msdu	-	kNm					
Nsdu	33,25	kN					
Rck	40	N/mm ²					
fck	32	N/mm ²					
γ _c =	1,5						
fyk	450	N/mm ²					
bw	100	cm					
d	62,00	cm					
Asl	10,05	cm ²					
С	8,00	cm					
α	90	gradi					
α	1,57	rad					
θ	41,00	gradi					
ctgθ	1,15						
θ imposto	-	gradi					
Asw	0,0	cm ²					
passo staffe	0,0	cm					
f_{cd}	18,133	N/mm ²					
fctd _{0,05}	1,356	N/mm ²					
fyd	391,304	N/mm ²					
σ_{cp}	0,0476	N/mm ²					
verifica senza armatura resistenta a taglio							


Società di Progetto Brebemi SpA

APPROVATO BOP

8.2 Fusto


Verifiche allo stato limite ultimo per Presso-Flessione

2SI s.r.l - ProVLIM - Verifica sezioni

Geomeria della sezione:

Vert.	X	Y
n.	cm	cm
1	0,0	0,0
2	0,0	240,0
3	100,0	240,0
4	100,0	0,0

Armature:

Pos.	X	Y	Area	Pretens.
n.	cm	cm	cmq	(s/n)
1	22,5	231,3	2,0	no
2	36,2	231,3	2,0	no
3	50,0	231,3	2,0	no

APPROUVATE BOP

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGANO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	75 di 116

4	63,8	231,3	2,0	no
5	77,5	231,3	2,0	no
6	77,5	8,8	3,1	no
7	63,7	8,8	3,1	no
8	50,0	8,8	3,1	no
9	36,3	8,8	3,1	no
10	22,5	8,8	3,1	no

Normativa di riferimento:

D.M. 14/01/2008 - 'Norme tecniche per le costruzioni'

Note:

Verifiche SLE per ambiente aggressivo

Materiali:

Calcestruzzo classe: C32/40

Rck (resistenza caratteristica cubica a compressione) = 400 daN/cmq fck (resistenza caratteristica cilindrica a compressione) = 332 daN/cmq fctm (resistenza a trazione media) = 31 daN/cmq
G (modulo di elasticità tangenziale) = 150192 daN/cmq
E (modulo elastico istantaneo iniziale) = 336430 daN/cmq

C. Poisson (coefficiente di contrazione trasversale) = 0.12

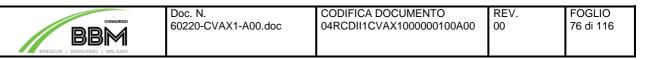
Coefficiente di dilatazione termica = 0.000050

Peso specifico del calcestruzzo armato = 2500 daN/mc

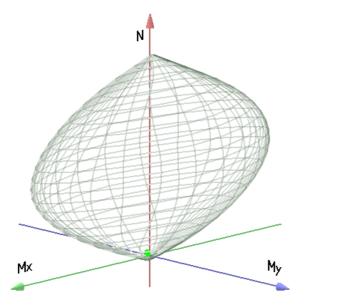
Barre d'acciaio ad aderenza migliorata tipo: B450C

fyk (tensione caratteristica di snervamento) = 4500 daN/cmq fkt (tensione caratteristica di rottura) = 5400 daN/cmq Euk (deformazione di rottura) = 0.075

G (modulo di elasticità tangenziale) = 793100 daN/cmq


E (modulo elastico) = 2060000 daN/cmq

C. Poisson (coefficiente di contrazione trasversale) = 0.30


Coefficiente di dilatazione termica = 0.000012

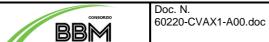
Peso specifico = 7850 daN/mc

APPROVATO BOP

Dominio SLU:

Caratteristiche limite della sezione:

Nu	Mxu	Myu	Stato Sez.
kN	kN m	kN m	
-1008,0	245,7	0,0	Completamente tesa
46160,0	-245,7	0,0	Completamente compressa
0,0	1424,6	0,0	Fibre inferiori tese
0,0	-932,8	0,0	Fibre superiori tese
n.d.	n.d.	n.d.	Fibre di sinistra tese
n.d.	n.d.	n.d.	Fibre di destra tese


Verifiche stato limite ultimo:

Per ogni combinazione di carico saranno svolte le verifiche: Verifica per Mxu, Myu e Nu proporzionali (sigla verifica: P) Verifica con rapporto Mxu, Myu assegnato (sigla verifica: M) Verifica con Nu costante (sigla verifica: N)

Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m	-	kN	kN m	kN m		
1	943,5	383,1	0,0	P	29977,2	12172,7	0,0	0,030	OK
				M	45469,4	380,9	0,0	0,020	
				N	943,5	2486,7	0,0	0,150	
5	683,5	284,0	0,0	P	29648,9	12319,7	0,0	0,020	OK
				M	45580,7	282,0	0,0	0,010	
				N	683.5	2195.4	0.0	0.130	

Riepilogo combinazioni maggiormente gravose:

	0				0				
Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
1	943,5	383,1	0,0	P	29977,2	12172,7	0,0	0,030	OK
1	943,5	383,1	0,0	M	45469,4	380,9	0,0	0,020	OK
1	943,5	383,1	0,0	N	943,5	2486,7	0,0	0,150	OK

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00

FOGLIO 77 di 116

Verifiche stato limite di esercizio per c. c. rare:

Valori limite (tensioni: segno (-) = compressione, (+) = trazione):

CLS: $\sigma cL = 19920,0 \text{ kN/mq}$ (verifica Ok per $\sigma c/\sigma cL < 1$)

Acciaio: $\sigma aL = 360000,0 \text{ kN/mq}$ (verifica Ok per $\sigma a/\sigma aL < 1$)

Cmb	Mx	My	N	σ_{c}	σ_c/σ_{cL}	σ_a	σ_a/σ_a L
n. e stato	kN m	kN m	kN	kN/mq		kN/mq	
2 OK	287,0	0,0	732,3	-591,1	0,03	-8551,6	0,02

Verifiche stato limite di esercizio per c. c. frequenti:

Valori limite:

Fessure: WkL = 0.30 mm (verifica Ok per Wk/WkL < 1)

Wk Wk/WkL Cmb MxMy N

n. e stato kN m kN m kN mm

0,00 3 OK 240,0 0,0 514,2 0.00

Verifiche stato limite di esercizio per c. c. quasi permanenti:

Valori limite:

CLS: $\sigma cL = 14940.0 \text{ kN/mq}$ (verifica Ok per $\sigma c/\sigma cL < 1$)

Fessure: WkL = 0.20 mm (verifica Ok per Wk/WkL < 1)

Cmb	Mx	My	N	σ_{c}	σ_{c}/σ_{c}	L Wk	Wk/WkL
n. e stato	kN m	kN m	kN	kN/mq		mm	
4 OK	102,7	0,0	514,2	-315,9	0,02	0.00	0,00

Verifiche a taglio allo stato limite ultimo

V_{sdu}	181,9	kN
M_{sdu}	-	kNm
Nsdu	0	kN
Rck	40	N/mm ²
fck	32	N/mm²
γ _c =	1,5	
fyk	450	N/mm²
bw	100	cm
d	232,00	cm
Asl	15,7	cm ²
С	8,00	cm
α	90	gradi
α	1,57	rad
θ	41,07	gradi
ctgθ	1,15	
θ imposto	-	gradi
Asw	0,00	cm ²
passo staffe	0,00	cm

Brebemi SpA

APPROVATO BOP

Società di Progetto

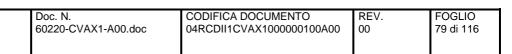
BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGAMO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	78 di 116

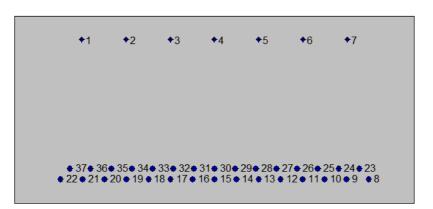
f_{cd}	18,133	N/mm ²
fctd0,05	1,356	N/mm ²
fyd	391,304	N/mm ²
σ_{cp}	0,0000	N/mm ²
verifica senza arm. taglio	atura resistenta a	
V_{Rd}	465,936	kN

8.3 Muri di risvolto

8.3.1 Sezione di attacco con la platea (sezione da filo orecchia b=1.5m)

Verifiche allo stato limite ultimo per Presso-Flessione


2SI s.r.l - ProVLIM - Verifica sezioni



Geomeria della sezione:

Vert.	X	Y
n.	cm	cm
1	0,0	0,0
2	0,0	70,0
3	150,0	70,0
4	150.0	0.0

APPROVATORY

BBM

Armature:

Pos.	X	Y	Area	Pretens.
n.	cm	cm	cmq	(s/n)
1	25,3	61,3	1,5	no
2	41,8	61,3	1,5	no
3	58,4	61,3	1,5	no
4	<i>75,</i> 0	61,3	1,5	no
5	91,6	61,3	1,5	no
6	108,2	61,3	1,5	no
7	124,7	61,3	1,5	no
8	132,8	9,0	3,1	no
9	124,5	9,0	3,1	no
10	116,3	9,0	3,1	no
11	108,0	9,0	3,1	no
12	99,8	9,0	3,1	no
13	91,5	9,0	3,1	no
14	83,3	9,0	3,1	no
15	75,0	9,0	3,1	no
16	66,8	9,0	3,1	no
17	58,5	9,0	3,1	no
18	50,3	9,0	3,1	no
19	42,0	9,0	3,1	no
20	33,8	9,0	3,1	no
21	25,5	9,0	3,1	no
22	17,3	9,0	3,1	no
23	129,3	13,0	3,1	no
24	121,5	13,0	3,1	no
25	113,8	13,0	3,1	no
26	106,0	13,0	3,1	no
27	98,3	13,0	3,1	no
28	90,5	13,0	3,1	no

APPRILIVATIO BDP

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGAMO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	80 di 116

29	82,8	13,0	3,1	no
30	75,0	13,0	3,1	no
31	67,3	13,0	3,1	no
32	59,5	13,0	3,1	no
33	51,8	13,0	3,1	no
34	44,0	13,0	3,1	no
35	36,3	13,0	3,1	no
36	28,5	13,0	3,1	no
37	20,8	13,0	3,1	no

Normativa di riferimento:

D.M. 14/01/2008 - 'Norme tecniche per le costruzioni'

Note:

Verifiche SLE per ambiente aggressivo

Materiali:

Calcestruzzo classe: C32/40

Rck (resistenza caratteristica cubica a compressione) = 400 daN/cmq fck (resistenza caratteristica cilindrica a compressione) = 332 daN/cmq fctm (resistenza a trazione media) = 31 daN/cmq G (modulo di elasticità tangenziale) = 150192 daN/cmq E (modulo elastico istantaneo iniziale) = 336430 daN/cmq

C. Poisson (coefficiente di contrazione trasversale) = 0.12

Coefficiente di dilatazione termica = 0.000050

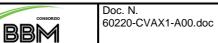
Peso specifico del calcestruzzo armato = 2500 daN/mc

Barre d'acciaio ad aderenza migliorata tipo: B450C

fyk (tensione caratteristica di snervamento) = 4500 daN/cmq fkt (tensione caratteristica di rottura) = 5400 daN/cmq

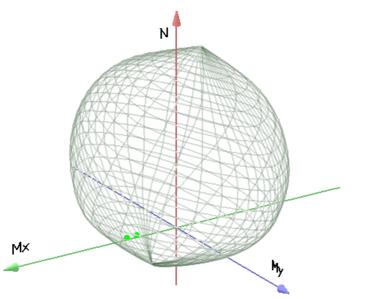
Euk (deformazione di rottura) = 0.075

G (modulo di elasticità tangenziale) = 793100 daN/cmq


E (modulo elastico) = 2060000 daN/cmq

C. Poisson (coefficiente di contrazione trasversale) = 0.30

Coefficiente di dilatazione termica = 0.000012


Peso specifico = 7850 daN/mc

APPROVATIV

REV. 00 FOGLIO 81 di 116

Dominio SLU:

Caratteristiche limite della sezione:

Nu	Mxu	Myu	Stato Sez.
kN	kN m	kN m	
-4109,6	774,2	0,0	Completamente tesa
23863,6	-774,2	0,0	Completamente compressa
0,0	1941,2	0,0	Fibre inferiori tese
0,0	-389,9	0,0	Fibre superiori tese
0,0	0,0	2123,3	Fibre di sinistra tese
0.0	0.0	-2123.3	Fibre di destra tese

Verifiche stato limite ultimo:

Per ogni combinazione di carico saranno svolte le verifiche: Verifica per Mxu, Myu e Nu proporzionali (sigla verifica: P) Verifica con rapporto Mxu, Myu assegnato (sigla verifica: M) Verifica con Nu costante (sigla verifica: N)

Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
1	300,0	1560,0	0,0	P	390,2	2029,0	0,0	0,770	OK
				M	13695,3	1560,2	0,0	0,020	
				N	300,0	2009,1	0,0	0,780	
5	300,0	1249,1	0,0	P	492,7	2051,3	0,0	0,610	OK
				M	15389,2	1249,7	0,0	0,020	
				N	300.0	2009.1	0.0	0.620	

Riepilogo combinazioni maggiormente gravose:

1	O			00	U				
Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
1	300,0	1560,0	0,0	P	390,2	2029,0	0,0	0,770	OK
1	300,0	1560,0	0,0	M	13695,3	1560,2	0,0	0,020	OK
1	300,0	1560,0	0,0	N	300,0	2009,1	0,0	0,780	OK

Verifiche stato limite di esercizio per c. c. rare:

Valori limite (tensioni: segno (-) = compressione, (+) = trazione): CLS: σ cL = 19920,0 kN/mq (verifica Ok per σ c/ σ cL < 1)

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00

FOGLIO 82 di 116

Acciaio: $\sigma aL = 360000,0 \text{ kN/mq}$ (verifica Ok per $\sigma a/\sigma aL < 1$)

 σ_c/σ_{cL} σ_a Cmb Mx My N σ_{c}

kN n. e stato kN m kN m kN/mq kN/mq 2 OK 1155,6 0,0 300,0 -11847,0 0,59 240018,0 0,67

Verifiche stato limite di esercizio per c. c. frequenti:

Valori limite:

Fessure: WkL = 0.30 mm (verifica Ok per Wk/WkL < 1)

Wk/WkL Cmb MxMy N Wk

kN n. e stato kN m kN m mm

3 OK 930,5 0,0 300,0 0.27 0,91

Verifiche stato limite di esercizio per c. c. quasi permanenti:

Valori limite:

CLS: $\sigma_{cL} = 14940,0 \text{ kN/mq}$ (verifica Ok per $\sigma_{c}/\sigma_{cL} < 1$)

Fessure: WkL = 0.20 mm (verifica Ok per Wk/WkL < 1)

Ν σ_{c} σ_c/σ_{cL} Wk Cmb Mx My Wk/WkL kN/mq n. e stato kN m kN m kN mm 4 OK 255,5 0,0 300,0 -2784,1 0,19 0.00 0,00

Verifiche a taglio allo stato limite ultimo

V_{sdu}	893,01	kN
Msdu	-	kNm
Nsdu	300	kN
Rck	40	N/mm ²
f_{ck}	32	N/mm ²
γ _c =	1,5	
fyk	450	N/mm²
bw	150	cm
d	62,00	cm
Asl	47,1	cm ²
c	8,00	cm
α	90	gradi
α	1,57	rad
θ	21,80	gradi
$ctg\theta$	2,50	
θ imposto	21,80	gradi
Asw	4,52	cm ²
passo staffe	20,00	cm
fcd	18,133	N/mm ²
fctd0,05	1,356	N/mm ²

Società di Progetto Brebemi SpA

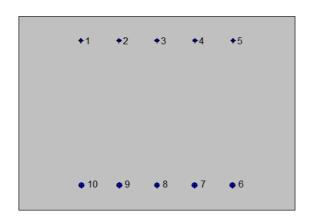
APPROVATO BOP

fyd	391,304	N/mm ²				
σ_{cp}	0,2870	N/mm ²				
verifica senza armatura resistenta a taglio						
V_{Rd}	482,859	kN				
VRd,min	401,554	kN				
ρsw,min	0,001006					
Sl,max	46,50	cm				
Asw,min	7,014	cm ² /sl,max				
verifica con armatur (staffe)	a resistenta a taglio					
VRcd	2658,108	kN				
V _{Rsd}	1233,753	kN				
V _{Rd}	1233,753	kN				

8.3.2 Sezione di attacco con la platea (sezione corrente)

Verifiche allo stato limite ultimo per Presso-Flessione

2SI s.r.l - ProVLIM - Verifica sezioni


Geomeria della sezione:

Vert.	X	Y
n.	cm	cm
1	0,0	0,0
2	0,0	70,0
3	100,0	70,0
4	100.0	0.0

APPRILVATIO BOP

Armature:

Pos.	X	Y	Area	Pretens.
n.	cm	cm	cmq	(s/n)
1	22,5	61,3	1,5	no
2	36,2	61,3	1,5	no
3	50,0	61,3	1,5	no
4	63,8	61,3	1,5	no
5	<i>77,</i> 5	61,3	1,5	no
6	77,3	9,0	3,1	no
7	63,7	9,0	3,1	no
8	50,0	9,0	3,1	no
9	36,3	9,0	3,1	no
10	22,7	9,0	3,1	no

Normativa di riferimento:

D.M. 14/01/2008 - 'Norme tecniche per le costruzioni'

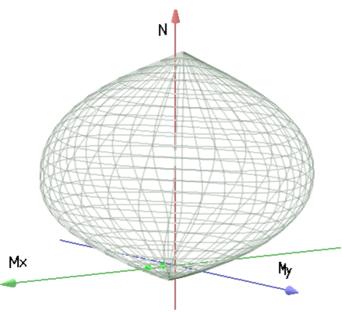
Note:

Verifiche SLE per ambiente aggressivo

Materiali:

Calcestruzzo classe: C32/40

Rck (resistenza caratteristica cubica a compressione) = 400 daN/cmq fck (resistenza caratteristica cilindrica a compressione) = 332 daN/cmq fctm (resistenza a trazione media) = 31 daN/cmq G (modulo di elasticità tangenziale) = 150192 daN/cmq E (modulo elastico istantaneo iniziale) = 336430 daN/cmq C. Poisson (coefficiente di contrazione trasversale) = 0.12 Coefficiente di dilatazione termica = 0.000050 Peso specifico del calcestruzzo armato = 2500 daN/mc


Barre d'acciaio ad aderenza migliorata tipo: B450C

fyk (tensione caratteristica di snervamento) = 4500 daN/cmq fkt (tensione caratteristica di rottura) = 5400 daN/cmq

Euk (deformazione di rottura) = 0.075 G (modulo di elasticità tangenziale) = 793100 daN/cmq E (modulo elastico) = 2060000 daN/cmq C. Poisson (coefficiente di contrazione trasversale) = 0.30 Coefficiente di dilatazione termica = 0.000012 Peso specifico = 7850 daN/mc

Dominio SLU:

Caratteristiche limite della sezione:

Nu	Mxu	Myu	Stato Sez.
kN	kN m	kN m	
-915,8	80,6	0,0	Completamente tesa
14085,2	-80,6	0,0	Completamente compressa
0,0	377,0	0,0	Fibre inferiori tese
0,0	-216,1	0,0	Fibre superiori tese
0,0	0,0	417,4	Fibre di sinistra tese
0,0	0,0	-417,4	Fibre di destra tese

Verifiche stato limite ultimo:

Per ogni combinazione di carico saranno svolte le verifiche: Verifica per Mxu, Myu e Nu proporzionali (sigla verifica: P) Verifica con rapporto Mxu, Myu assegnato (sigla verifica: M) Verifica con Nu costante (sigla verifica: N)

Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
1	61,3	318,4	0,0	P	76,7	398,7	0,0	0,800	OK
				M	12504,0	318,0	0,0	0,000	
				N	61,3	394,4	0,0	0,810	
5	61,3	149,1	0,0	P	175,3	426,6	0,0	0,350	OK
				M	13177,4	148,7	0,0	0,000	
				N	61,3	394,4	0,0	0,380	

Riepilogo combinazioni maggiormente gravose:

1	O			00	U				
Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	νNI	kN m	kN m		νNI	kN m	kN m		

Doc. N. 60220-CVAX1-A00.doc	CODIFICA DOCUMENTO	REV.	FOGLIO
	04RCDII1CVAX1000000100A00	00	86 di 116

1	61,3	318,4	0,0	P	76,7	398,7	0,0	0,800	OK
1	61,3	318,4	0,0	M	12504,0	318,0	0,0	0,000	OK
1	61.3	318.4	0.0	N	61.3	394.4	0.0	0.810	OK

Verifiche stato limite di esercizio per c. c. rare:

Valori limite (tensioni: segno (-) = compressione, (+) = trazione):

CLS: $\sigma_{cL} = 19920,0 \text{ kN/mq}$ (verifica Ok per $\sigma_{c}/\sigma_{cL} < 1$)

Acciaio: $\sigma aL = 360000,0 \text{ kN/mq}$ (verifica Ok per $\sigma a/\sigma aL < 1$)

Cmb	Mx	My	N	σ_{c}	σ_c/σ_{cL}	σ_a	σ_a/σ_a
n. e stato	kN m	kN m	kN	kN/mq		kN/mq	
2 OK	235.8	0.0	61.3	-5551.2	0.28	248842.7	0.69

Verifiche stato limite di esercizio per c. c. frequenti:

Valori limite:

Fessure: WkL = 0.30 mm (verifica Ok per Wk/WkL < 1)

N Wk/WkL Cmb Mx My

n. e stato kN m kN m kN mm

3 OK 189,9 0,0 61,3 0.00 0,00

Verifiche stato limite di esercizio per c. c. quasi permanenti:

Valori limite:

CLS: $\sigma_{cL} = 14940,0 \text{ kN/mq}$ (verifica Ok per $\sigma_{c}/\sigma_{cL} < 1$)

Fessure: WkL = 0.20 mm (verifica Ok per Wk/WkL < 1)

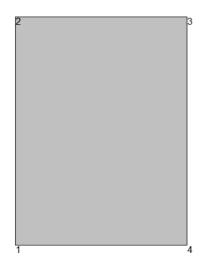
Cmb	Mx	My	N	σ_{c}	σ_c/σ_{cL}	Wk	Wk/WkL
n. e stato	kN m	kN m	kN	kN/mq		mm	
4 OK	52,1	0,0	61,3	-1228,8	0,08	0.00	0,00

Verifiche a taglio allo stato limite ultimo

Vsdu	182,25	kN
Msdu	-	kNm
Nsdu	0	kN
Rck	40	N/mm ²
fck	32	N/mm ²
γ _c =	1,5	
fyk	450	N/mm ²
bw	100	cm
d	62,00	cm
Asl	15,7	cm ²
С	8,00	cm
α	90	gradi
α	1,57	rad
θ	41,07	gradi

Società di Progetto

Brebemi SpA

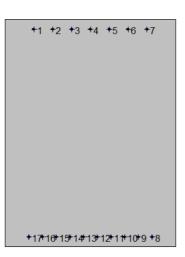

ctgθ	1,15					
θ imposto	-	gradi				
Asw	0,00	cm ²				
passo staffe	0,00	cm				
fcd	18,133	N/mm ²				
fctd0,05	1,356	N/mm ²				
fyd	391,304	N/mm ²				
σср	0,0000	N/mm ²				
verifica senza armatura resistenta a						
taglio						
V _{Rd}	234,312	kN				

8.4 Platea di fondazione

8.4.1 Sezione d'incastro con il risvolto $(b_m = 1,5 m)$

Verifiche allo stato limite ultimo per Tenso-Flessione

2SI s.r.l - ProVLIM - Verifica sezioni



Geomeria della sezione:

Vert.	X	Y
n.	cm	cm
1	0,0	0,0
2	0,0	200,0
3	150,0	200,0
4	150,0	0,0

APPROVATO BOP

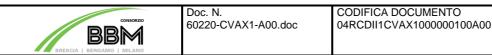
Armature:

_	tuic.				
	Pos.	X	Y	Area	Pretens.
	n.	cm	cm	cmq	(s/n)
	1	25,4	191,2	4,5	no
	2	41,9	191,2	4,5	no
	3	58,5	191,2	4,5	no
	4	75,0	191,2	4,5	no
	5	91,6	191,2	4,5	no
	6	108,1	191,2	4,5	no
	7	124,6	191,2	4,5	no
	8	129,2	8,8	4,5	no
	9	117,1	8,8	4,5	no
	10	105,1	8,8	4,5	no
	11	93,1	8,8	4,5	no
	12	81,0	8,8	4,5	no
	13	69,0	8,8	4,5	no
	14	56,9	8,8	4,5	no
	15	44,9	8,8	4,5	no
	16	32,9	8,8	4,5	no
	17	20,8	8,8	4,5	no

Normativa di riferimento:

D.M. 14/01/2008 - 'Norme tecniche per le costruzioni'

Note:


Verifiche SLE per ambiente ordinario

Materiali:

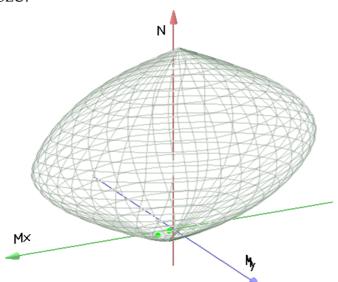
Calcestruzzo classe: C28/35

Rck (resistenza caratteristica cubica a compressione) = 350 daN/cmq fck (resistenza caratteristica cilindrica a compressione) = 290 daN/cmq fctm (resistenza a trazione media) = 28 daN/cmq G (modulo di elasticità tangenziale) = 145424 daN/cmq E (modulo elastico istantaneo iniziale) = 325750 daN/cmq

C. Poisson (coefficiente di contrazione trasversale) = 0.12

Coefficiente di dilatazione termica = 0.000050

Peso specifico del calcestruzzo armato = 2500 daN/mc


Barre d'acciaio ad aderenza migliorata tipo: B450C

fyk (tensione caratteristica di snervamento) = 4500 daN/cmq fkt (tensione caratteristica di rottura) = 5400 daN/cmq Euk (deformazione di rottura) = 0.075 G (modulo di elasticità tangenziale) = 793100 daN/cmq E (modulo elastico) = 2060000 daN/cmq C. Poisson (coefficiente di contrazione trasversale) = 0.30

Coefficiente di dilatazione termica = 0.000012

Peso specifico = 7850 daN/mc

Dominio SLU:

Caratteristiche limite della sezione:

Nu	Mxu	Myu	Stato Sez.
kN	kN m	kN m	
-3009,4	484,3	0,0	Completamente tesa
49228,1	-484,3	0,0	Completamente compressa
0,0	3314,2	0,0	Fibre inferiori tese
0,0	-2342,5	0,0	Fibre superiori tese
0,0	0,0	2084,5	Fibre di sinistra tese
0,0	0,0	-2084,5	Fibre di destra tese

Verifiche stato limite ultimo:

Per ogni combinazione di carico saranno svolte le verifiche: Verifica per Mxu, Myu e Nu proporzionali (sigla verifica: P) Verifica con rapporto Mxu, Myu assegnato (sigla verifica: M) Verifica con Nu costante (sigla verifica: N)

Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
1	-893,0	1560,0	0,0	P	-1242,6	2170,7	0,0	0,720	OK
				M	-1909,6	1555,9	0,0	0,470	
				N	-893,0	2492,9	0,0	0,630	

Società di Progetto Brebemi SpA

APPROVATO BOE

REV.

00

FOGLIO

89 di 116

DOC. N. 60220-CVAX1-A00.doc	CODIFICA DOCUMENTO	REV.	FOGLIO
	04RCDII1CVAX1000000100A00	00	90 di 116

10	-261,0	437,1	0,0	P	-1277,1	2138,9	0,0	0,200	OK
				M	-2963,5	438,6	0,0	0,090	
				N	-261,0	3074,5	0,0	0,140	

Riepilogo combinazioni maggiormente gravose:

1	0			00	0				
Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
1	-893,0	1560,0	0,0	P	-1242,6	2170,7	0,0	0,720	OK
1	-893,0	1560,0	0,0	M	-1909,6	1555,9	0,0	0,470	OK
1	-893,0	1560,0	0,0	N	-893,0	2492,9	0,0	0,630	OK

Verifiche stato limite di esercizio per c. c. rare:

Valori limite (tensioni: segno (-) = compressione, (+) = trazione):

CLS: $\sigma cL = 17400,0 \text{ kN/mq}$ (verifica Ok per $\sigma c/\sigma cL < 1$)

Acciaio: $\sigma aL = 360000,0 \text{ kN/mq}$ (verifica Ok per $\sigma a/\sigma aL < 1$)

Cmb	Mx	My	N	σ_{c}	σ_c/σ_{cL}	σ_a	σ_a/σ_a
n. e stato	o kN m	kN m	kN	kN/mq		kN/mq	
5 OK	1155.6	0.0	-661.5	-1678.2	0.10	212516.7	0.59

Verifiche stato limite di esercizio per c. c. frequenti:

Valori limite:

Fessure: WkL = 0.40 mm (verifica Ok per Wk/WkL < 1)

 Cmb
 Mx
 My
 N
 Wk
 Wk/WkL

 n. e stato
 kN m
 kN m
 kN
 mm

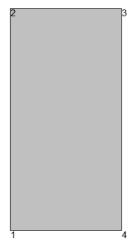
 7
 OK
 930,5
 0,0
 -661,5
 0.00
 0,00

Verifiche stato limite di esercizio per c. c. quasi permanenti:

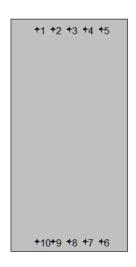
Valori limite:

CLS: $\sigma cL = 13050,0 \text{ kN/mq}$ (verifica Ok per $\sigma c/\sigma cL < 1$)

Fessure: WkL = 0.30 mm (verifica Ok per Wk/WkL < 1)


Cmb	Mx	My	N	σ_{c}	σ_{c}/σ_{c}	cL Wk	Wk/WkL
n. e stato	kN m	kN m	kN	kN/mq		mm	
7 OK	255,5	0,0	-219,0	-266,5	0,02	0.00	0,00

8.4.2 Sezione d'incastro con il risvolto (sezione corrente)


Verifiche allo stato limite ultimo per Tenso-Flessione

2SI s.r.l - ProVLIM - Verifica sezioni

Geomeria della sezione:

Vert.	X	Y
n.	cm	cm
1	0,0	0,0
2	0,0	200,0
3	100,0	200,0
4	100.0	0.0

Armature:

Pos.	X	Y	Area	Pretens.
n.	cm	cm	cmq	(s/n)
1	22,5	191,2	4,5	no
2	36,3	191,2	4,5	no
3	50,0	191,2	4,5	no

APPROVATO BD.

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGANO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	92 di 116

4	63,7	191,2	4,5	no
5	<i>77,</i> 5	191,2	4,5	no
6	<i>77,</i> 5	8,8	4,5	no
7	63,7	8,8	4,5	no
8	50,0	8,8	4,5	no
9	36,3	8,8	4,5	no
10	22,5	8,8	4,5	no

Normativa di riferimento:

D.M. 14/01/2008 - 'Norme tecniche per le costruzioni'

Note:

Verifiche SLE per ambiente ordinario

Materiali:

Calcestruzzo classe: C28/35

Rck (resistenza caratteristica cubica a compressione) = 350 daN/cmq fck (resistenza caratteristica cilindrica a compressione) = 290 daN/cmq fctm (resistenza a trazione media) = 28 daN/cmq G (modulo di elasticità tangenziale) = 145424 daN/cmq E (modulo elastico istantaneo iniziale) = 325750 daN/cmq

C. Poisson (coefficiente di contrazione trasversale) = 0.12

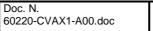
Coefficiente di dilatazione termica = 0.000050

Peso specifico del calcestruzzo armato = 2500 daN/mc

Barre d'acciaio ad aderenza migliorata tipo: B450C

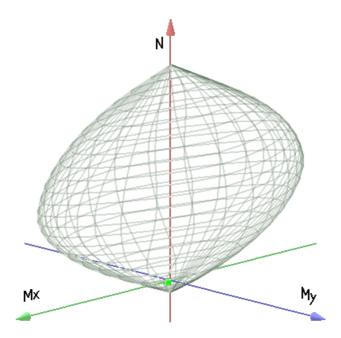
fyk (tensione caratteristica di snervamento) = 4500 daN/cmq fkt (tensione caratteristica di rottura) = 5400 daN/cmq

Euk (deformazione di rottura) = 0.075


G (modulo di elasticità tangenziale) = 793100 daN/cmq

E (modulo elastico) = 2060000 daN/cmq

C. Poisson (coefficiente di contrazione trasversale) = 0.30


Coefficiente di dilatazione termica = 0.000012

Peso specifico = 7850 daN/mc

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 93 di 116

Dominio SLU:

Caratteristiche limite della sezione:

BBM

Nu Mxu		Myu	Stato Sez.			
kN	kN m	kN m				
-1770,2	0,0	0,0	Completamente tesa			
32582,7	0,0	0,0	Completamente compressa			
0,0	1669,4	0,0	Fibre inferiori tese			
0,0	-1669,4	0,0	Fibre superiori tese			
0,0	0,0	832,9	Fibre di sinistra tese			
0,0	0,0	-832,9	Fibre di destra tese			

Verifiche stato limite ultimo:

Per ogni combinazione di carico saranno svolte le verifiche: Verifica per Mxu, Myu e Nu proporzionali (sigla verifica: P) Verifica con rapporto Mxu, Myu assegnato (sigla verifica: M) Verifica con Nu costante (sigla verifica: N)

Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
1	-182,3	318,4	0,0	P	-625,8	1093,2	0,0	0,290	OK
				M	-1448,2	318,4	0,0	0,130	
				N	-182,3	1501,7	0,0	0,210	
10	-85,1	149,1	0,0	P	-624,8	1094,1	0,0	0,140	OK
				M	-1621,7	147,6	0,0	0,050	
				N	-85.1	1591 1	0.0	0.090	

Riepilogo combinazioni maggiormente gravose:

1	U			00	U				
Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
1	-182,3	318,4	0,0	P	-625,8	1093,2	0,0	0,290	OK
1	-182,3	318,4	0,0	M	-1448,2	318,4	0,0	0,130	OK
1	-182,3	318,4	0,0	N	-182,3	1501,7	0,0	0,210	OK

Verifiche stato limite di esercizio per c. c. rare:

Valori limite (tensioni: segno (-) = compressione, (+) = trazione): CLS: σ cL = 17400,0 kN/mq (verifica Ok per σ c/ σ cL < 1)

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 94 di 116

Acciaio: $\sigma aL = 360000,0 \text{ kN/mq}$ (verifica Ok per $\sigma a/\sigma aL < 1$)

5 OK 235,8 0,0 -135,0 -583,1 0,03 86635,3 0,24

Verifiche stato limite di esercizio per c. c. frequenti:

Valori limite:

Fessure: WkL = 0.40 mm (verifica Ok per Wk/WkL < 1)

Cmb Mx My N Wk Wk/WkL

n. e stato kN m kN m kN mm

7 OK 189,9 0,0 -112,4 0.00 0,00

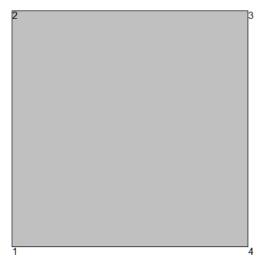
Verifiche stato limite di esercizio per c. c. quasi permanenti:

Valori limite:

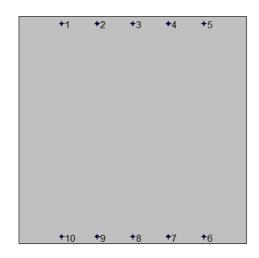
CLS: $\sigma cL = 13050,0 \text{ kN/mg}$ (verifica Ok per $\sigma c/\sigma cL < 1$)

Fessure: WkL = 0.30 mm (verifica Ok per Wk/WkL < 1)

Cmb	Mx	My	N	σ_{c}	σ_c/σ_{cI}	Wk	Wk/WkL
n. e stato	kN m	kN m	kN	kN/mq		mm	
7 OK	52,1	0,0	-44,7	-94,5	0,01	0.00	0,00


APPROVATO BOP

8.4.3 Sezione d'incastro con il fusto


Verifiche allo stato limite ultimo per Flessione

2SI s.r.l - ProVLIM - Verifica sezioni

Geomeria della sezione:

Vert.	X	Y
n.	cm	cm
1	0,0	0,0
2	0,0	200,0
3	200,0	200,0
4	200,0	0,0

Armature:

Pos.	X	Y	Area	Pretens.
n.	cm	cm	cmq	(s/n)
1	37,5	193,7	5,3	no
2	68,8	193,7	5,3	no

APPROVATORD

3	100,0	193,7	5,3	no
4	131,2	193,7	5,3	no
5	162,5	193,7	5,3	no
6	162,5	6,3	5,3	no
7	131,2	6,3	5,3	no
8	100,0	6,3	5,3	no
9	68,8	6,3	5,3	no
10	37,5	6,3	5,3	no

Normativa di riferimento:

D.M. 14/01/2008 - 'Norme tecniche per le costruzioni'

Note:

Verifiche SLE per ambiente ordinario

Materiali:

Calcestruzzo classe: C28/35

Rck (resistenza caratteristica cubica a compressione) = 350 daN/cmq fck (resistenza caratteristica cilindrica a compressione) = 290 daN/cmq fctm (resistenza a trazione media) = 28 daN/cmq

G (modulo di elasticità tangenziale) = 145424 daN/cmq

E (modulo elastico istantaneo iniziale) = 325750 daN/cmq

C. Poisson (coefficiente di contrazione trasversale) = 0.12

Coefficiente di dilatazione termica = 0.000050

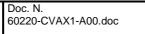
Peso specifico del calcestruzzo armato = 2500 daN/mc

Barre d'acciaio ad aderenza migliorata tipo: B450C

fyk (tensione caratteristica di snervamento) = 4500 daN/cmq fkt (tensione caratteristica di rottura) = 5400 daN/cmq

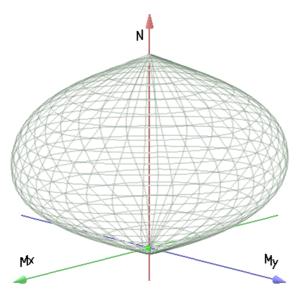
Euk (deformazione di rottura) = 0.075

G (modulo di elasticità tangenziale) = 793100 daN/cmq


E (modulo elastico) = 2060000 daN/cmq

C. Poisson (coefficiente di contrazione trasversale) = 0.30

Coefficiente di dilatazione termica = 0.000012


Peso specifico = 7850 daN/mc

APPROVATO BY

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 97 di 116

Dominio SLU:

Caratteristiche limite della sezione:

BBM

Nu	Mxu	Myu	Stato Sez.
kN	kN m	kN m	
-2077,5	0,0	0,0	Completamente tesa
63702,5	0,0	0,0	Completamente compressa
0,0	2001,3	0,0	Fibre inferiori tese
0,0	-2001,3	0,0	Fibre superiori tese
0,0	0,0	2005,6	Fibre di sinistra tese
0,0	0,0	-2005,6	Fibre di destra tese

Verifiche stato limite ultimo:

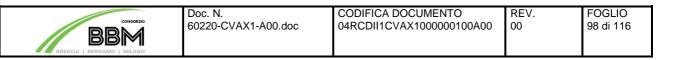
Per ogni combinazione di carico saranno svolte le verifiche: Verifica per Mxu, Myu e Nu proporzionali (sigla verifica: P) Verifica con rapporto Mxu, Myu assegnato (sigla verifica: M) Verifica con Nu costante (sigla verifica: N)

Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
1	0,0	383,1	0,0	P	0,0	2001,3	0,0	0,190	OK
				M	n.d.	n.d.	n.d.	n.d.	
				N	0,0	2001,3	0,0	0,190	
7	0,0	284,0	0,0	P	0,0	2001,3	0,0	0,140	OK
				M	n.d.	n.d.	n.d.	n.d.	
				N	0,0	2001,3	0,0	0,140	

Riepilogo combinazioni maggiormente gravose:

- T	0		_	00 -	0				
Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
1	0,0	383,1	0,0	P	0,0	2001,3	0,0	0,190	OK
1	0,0	383,1	0,0	M	n.d.	n.d.	n.d.	n.d.	OK
1	0,0	383,1	0,0	N	0,0	2001,3	0,0	0,190	OK

Verifiche stato limite di esercizio per c. c. rare:


Valori limite (tensioni: segno (-) = compressione, (+) = trazione):

CLS: $\sigma_{cL} = 17400,0 \text{ kN/mq}$ (verifica Ok per $\sigma_{c}/\sigma_{cL} < 1$)

Acciaio: $\sigma aL = 360000,0 \text{ kN/mq}$ (verifica Ok per $\sigma a/\sigma aL < 1$)

Società di Progetto Brebemi SpA

APPROVATO BOP

Cmb	Mx	My	N	σ_{c}	σ_c/σ_{cL}	G a	σ_a/σ_a
n. e stato	kN m	kN m	kN	kN/mq		kN/mq	
3 OK	287,0	0,0	0,0	-562,5	0,03	58217,9	0,16

Verifiche stato limite di esercizio per c. c. frequenti:

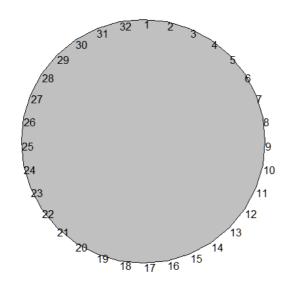
Valori limite:

Fessure: WkL = 0.40 mm (verifica Ok per Wk/WkL < 1)

Cmb Mx My N Wk Wk/WkL

 $n.\ e\ stato\ kN\ m \qquad kN\ m \qquad kN \qquad mm$

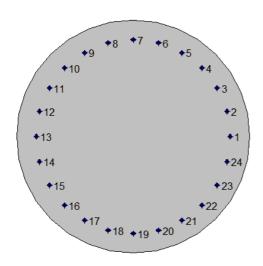
5 OK 240,0 0,0 0,0 0.00 0,00


APPROVATO BOP

8.5 Pali di fondazione

Verifiche allo stato limite ultimo per Presso-Flessione

2SI s.r.l - ProVLIM - Verifica sezioni


Geomeria della sezione:

Vert.	X	Y
n.	cm	cm
1	60,0	120,0
2	71,7	118,8
3	83,0	115,4
4	93,3	109,9
5	102,4	102,4
6	109,9	93,3
7	115,4	83,0
8	118,8	71,7
9	120,0	60,0
10	118,8	48,3
11	115,4	37,0
12	109,9	26,7
13	102,4	17,6
14	93,3	10,1
15	83,0	4,6
16	71,7	1,2
17	60,0	0,0
18	48,3	1,2
19	37,0	4,6
20	26,7	10,1
21	17,6	17,6
22	10,1	26,7
23	4,6	37,0

APPROVATO

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGAMO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	100 di 116

24	1,2	48,3
25	0,0	60,0
26	1,2	71,7
27	4,6	83,0
28	10,1	93,3
29	17,6	102,4
30	26,7	109,9
31	37,0	115,4
32	48,3	118,8

Armature:

Pos.	X	Y	Area	Pretens.
n.	cm	cm	cmq	(s/n)
1	110,0	60,0	3,1	no
2	108,3	72,9	3,1	no
3	103,3	85,0	3,1	no
4	95,4	95,4	3,1	no
5	85,0	103,3	3,1	no
6	72,9	108,3	3,1	no
7	60,0	110,0	3,1	no
8	47,1	108,3	3,1	no
9	35,0	103,3	3,1	no
10	24,6	95,4	3,1	no
11	16,7	85,0	3,1	no
12	11,7	72,9	3,1	no
13	10,0	60,0	3,1	no
14	11,7	47,1	3,1	no
15	16,7	35,0	3,1	no
16	24,6	24,6	3,1	no
17	35,0	16,7	3,1	no
18	47,1	11,7	3,1	no
19	60,0	10,0	3,1	no
20	72,9	11,7	3,1	no
21	85,0	16,7	3,1	no

APPROVATO BOP

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGANO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	101 di 116

22	95,4	24,6	3,1	no
23	103,3	35,0	3,1	no
24	108.3	47.1	3.1	no

Normativa di riferimento:

D.M. 14/01/2008 - 'Norme tecniche per le costruzioni'

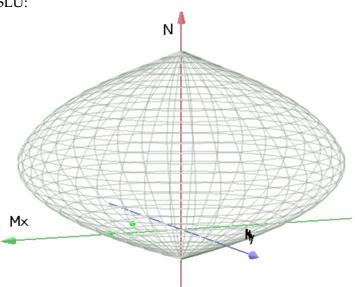
Note:

Verifiche SLE per ambiente ordinario

Materiali:

Calcestruzzo classe: C25/30

Rck (resistenza caratteristica cubica a compressione) = 300 daN/cmq fck (resistenza caratteristica cilindrica a compressione) = 249 daN/cmq fctm (resistenza a trazione media) = 26 daN/cmq G (modulo di elasticità tangenziale) = 140388 daN/cmq E (modulo elastico istantaneo iniziale) = 314470 daN/cmq C. Poisson (coefficiente di contrazione trasversale) = 0.12 Coefficiente di dilatazione termica = 0.000050 Peso specifico del calcestruzzo armato = 2500 daN/mc


Barre d'acciaio ad aderenza migliorata tipo: B450C

fyk (tensione caratteristica di snervamento) = 4500 daN/cmq fkt (tensione caratteristica di rottura) = 5400 daN/cmq Euk (deformazione di rottura) = 0.075 G (modulo di elasticità tangenziale) = 793100 daN/cmq E (modulo elastico) = 2060000 daN/cmq C. Poisson (coefficiente di contrazione trasversale) = 0.30

Coefficiente di dilatazione termica = 0.000012

Peso specifico = 7850 daN/mc

Dominio SLU:

Caratteristiche limite della sezione:

Brebemi SpA

Nu	Mxu	Myu	Stato Sez.
kN	kN m	kN m	
-2950,4	0,0	0,0	Completamente tesa
17815,1	0,0	0,0	Completamente compressa
0,0	1362,3	0,0	Fibre inferiori tese
0,0	-1362,3	0,0	Fibre superiori tese
0,0	0,0	1362,3	Fibre di sinistra tese
0,0	0,0	-1362,3	Fibre di destra tese

Verifiche stato limite ultimo:

Per ogni combinazione di carico saranno svolte le verifiche: Verifica per Mxu, Myu e Nu proporzionali (sigla verifica: P) Verifica con rapporto Mxu, Myu assegnato (sigla verifica: M) Verifica con Nu costante (sigla verifica: N)

Cmb.	N kN	Mx kN m	My kN m	Tipo	Nu kN	Mxu kN m	Myu kN m	Sd/Su	Verif.
1	876,5	846,9	0,0	P	2114,1	2042,8	0,0	0,410	OK
				M	15580,5	846,3	0,0	0,060	
				N	876,5	1677,6	0,0	0,500	
10	76,0	1232,9	0,0	P	86,0	1394,5	0,0	0,880	OK
				M	14544,9	1231,6	0,0	0,000	
				N	76.0	1390.8	0.0	0.890	

Riepilogo combinazioni maggiormente gravose:

Cmb.	N	Mx	My	Tipo	Nu	Mxu	Myu	Sd/Su	Verif.
	kN	kN m	kN m		kN	kN m	kN m		
10	76,0	1232,9	0,0	P	86,0	1394,5	0,0	0,880	OK
1	876,5	846,9	0,0	M	15580,5	846,3	0,0	0,060	OK
10	76,0	1232,9	0,0	N	76,0	1390,8	0,0	0,890	OK

Verifiche stato limite di esercizio per c. c. rare:

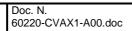
Valori limite (tensioni: segno (-) = compressione, (+) = trazione):

CLS: $\sigma cL = 14940.0 \text{ kN/mq}$ (verifica Ok per $\sigma c/\sigma cL < 1$)

Acciaio: $\sigma aL = 360000,0 \text{ kN/mq}$ (verifica Ok per $\sigma a/\sigma aL < 1$)

Cmb	Mx	My	N	σ_{c}	σ_c/σ_{cL}	σ_a	σ_a/σ_a
n. e stato	kN m	kN m	kN	kN/mq		kN/mq	
5 OK	627,3	0,0	652,3	-6595,0	0,44	158185,8	0,44

Verifiche stato limite di esercizio per c. c. frequenti:


Valori limite:

Fessure: WkL = 0.40 mm (verifica Ok per Wk/WkL < 1)

CmbMxMyNWkWk/WkLn. e statokN mkN mkNmm

> Società di Progetto Brebemi SpA

APPROVATO

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 103 di 116

Verifiche a taglio allo stato limite ultimo

BBM

V _{sdu}	645,02	kN
Msdu	-	kNm
Nsdu	76	kN
Rck	30	N/mm ²
fck	25	N/mm ²
γ _c =	1,5	
fyk	450	N/mm ²
Φ	120	cm
bw	108,00	cm
he	73,86	cm
d	63,86	cm
Asl	75,36	cm ²
С	10,00	cm
α	90	gradi
α	1,57	rad
θ	13,86	gradi
ctgθ	4,05	
heta imposto	-	gradi
Asw	2,26	cm ²
passo staffe	20	cm
fcd	14,167	N/mm ²
fctd0,05	1,119	N/mm ²
fyd	391,304	N/mm ²
σср	0,0957	N/mm ²
,	atura resistenta a	
taglio	210 442	1 N I
VRd	318,443	kN
V _{Rd,min}	244,979	kN
ρsw,min	0,000889	
Sl,max	47,89	cm
Asw,min	4,598	cm ² /Sl,max
	a resistenta a taglio (s	
V _{Rcd}	1029,677	kN
V _{Rsd}	1029,677	kN
V_{Rd}	1029,677	kN

APPRILIVATO BOP

VERIFICA DI PORTANZA DEI PALI

Si riportano di seguito le verifiche di portanza verticale per i pali di fondazione delle spalle in parola. I pali di fondazione presentano diametro φ 120 cm e lunghezza pari a 36,0 m.

I primi 2,0 m di palo vengono realizzati all'interno del rilevato di approccio alla spalla, per cui il piede del palo risulta a quota -34,0 m da piano campagna.

Nelle verifiche si trascura il contributo di resistenza offerto dalla porzione di palo all'interno del rilevato e del primo metro di terreno in sito a causa del rimaneggiamento dovuto alla realizzazione del palo stesso.

La stratigrafia di progetto risulta essere la seguente:

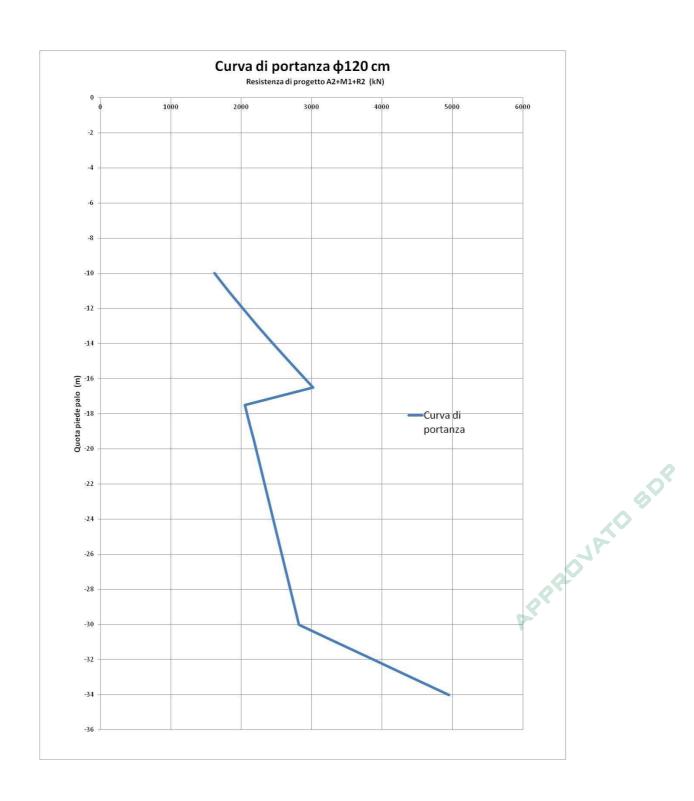
- da 0.00 a 9.00 m	da p.c. Limo/Argilla	$\gamma = 20 \text{ kN/m}^3$; $\phi' = 30^\circ$; $c' = 10 \text{ kPa}$; $Cu = 100$
kPa		
- da 9.00 a 16.50 m	da p.c. Ghiaia/Sabbia	$\gamma = 20 \text{ kN/m}^3$; $\phi' = 36^\circ$; $c' = 0$
- da 16.50 a 30.0 m	da p.c. Limo/Argilla	$\gamma = 20 \text{ kN/m}^3$; $\phi' = 30^\circ$; $c' = 10 \text{ kPa}$; $Cu = 100$
kPa		
- da 30.0 a 35.00 m	da p.c. Ghiaia/Sabbia	$\gamma = 20 \text{ kN/m}^3$; $\phi' = 36^\circ$; $c' = 0$

La falda viene assunta alla quota di -7,0 m da p.c.

Si effettuano le verifiche nella combinazione GEO - A2+M1+R2 in quanto la più gravosa e quindi APPROVATO BOP dimensionante ai fini della capacità portante verticale.

Il carico massimo verticale a testa palo in condizione GEO - SLU risulta pari a: $N_{slu_t.p.} = 3300 \text{ kN}$

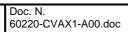
A ciò viene aggiunto il peso proprio del palo: $N_{slu} = 3300 \text{ kN} + \pi/4 \text{ x} (1.2 \text{ m})^2 \text{ x} 25 \text{ kN/m}^3 \text{ x} 36 \text{ m} = 4320 \text{ kN}$


La resistenza di progetto con piede palo a quota - 34,0 m da p.c. vale:

 $R_{,d} = R_{,d_lat} + R_{,d_base} = 3384,25 \text{ kN} + 1565,36 \text{ kN} = 4945 \text{ kN}$

Risultando R,d = 4945 kN > Nshu = 4320 kN la verifica risulta soddisfatta.

Si riporta per completezza la curva di capacità portante per il palo in parola e i dettagli di calcolo.



CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 106 di 116

APPROVATO BOP

BBM

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 107 di 116

			1															
				K=0,7 per pali in compressione K=0,5 per pali in trazione	ompressione azione													
	^ ^	Y lat 1,45		¥	7'0													
		٤٠ 17																
		+																
	Quota falda [m] =	7-	-	Limitazioni tu kN/m2														
	γ [kN/m³] =	20	Ghiaia	150														
			D palo (cm) =															
STRATO Da (m) Z _m N° A (m) [m]	ij (w)	AH 7 [m] [KW/m³]	G'v0 37 [kN/m²]	G'vme [RN/m²]	9	coesivo/ granulare	c_u $\mu = [kN/m^2]$	¢ buat	T Riat :	fkNJ	Riat uitima Riat t	Riat totale design [kN]	Cu base palo [RN/mq]	bN	qu base paio [kN/mq]	Qu _{buse palo} ultims [kN]	Qu base palo design [KN]	Capacità portante di design Rd
1 -1,00	1,00	1,00 20,00		30,00	30	o	100,00	0,58 4	40,00 150	150,80	150,80	61,18	100,00	0	00'006	1017,88	352,21	413,38
Ш	\vdash		Ш	90'09	30	υ	Н				301,59	122,35	100,00	0	00'006	1017,88	352,21	474,56
3 -3,50	3,00 1,	1,00 20,00	\perp	70,00	30	v	100,00	0,58	40,00 150	150,80	452,39	183,53	100,00	0	00'006	1017,88	352,21	535,73
4 -4,00	4,00 1,	1,00 20,00	Ш	00'06	30	o	100,001	0,58 4	40,00 150	150,80 6	603,19	244,70	100,00	0	00'006	1017,88	352,21	596,91
-5,00	5,00 1,	1,00 20,00		110,00	30	o	100,00	0,58	40,00 150	150,80	753,98	305,88	100,00	0	00'006	1017,88	352,21	658,08
	6,00 1,	1,00 20,00		130,00	30	o	+	0,58 4	40,00 150	150,80	904,78	367,05	100,001	0	00'006	1017,88	352,21	719,26
7 7.50	7,00 1,	1,00 10,00	Ш	145,00	30	v	+	0,58	40,00 150	150,80	1055,58	428,23	100,00	0	00'006	1017,88	352,21	780,43
-8,00	8,00 1.	1,00 10,00		155,00	30	v	100,00	0,58 4	40,00 150	150,80 1:	1206,37	489,40	100,00	0	00'006	1017,88	352,21	841,61
96- 00'6- 6	00'6	1,00 10,00		165,00	36	6	00'0	0,73 8	83,86 316	316,14	1522,51	617,65	00'0	16	2557,50	2892,46	1000,85	1618,51
10 -10,50	10,00	1,00 10,00		175,00	36	6	00'00	0,73 8	88,94 336	335,30	1857,82	753,68	00'0	16	2712,50	3067,77	1061,51	1815,19
11 -11,50	11,00	1,00 10,00		185,00	36	6	00'0	0,73	94,02 35	354,46 2:	2212,28	897,48	00'0	16	2867,50	3243,07	1122,17	2019,64
	12,00	1,00 10,00	+	195,00	36	6	00'0	0,73	37.5	373,62	2585,90	1049,05	00'0	16	3022,50	3418,37	1182,83	2231,87
13 -13,50	13,00	1,00 10,00	200,000	205,00	38	6	00'0	0,73 10	104,19 392	392,78	2978,69	1208,39	00'0	16	3177,50	3593,67	1243,48	2451,88
14 -14,500 -14,5	14,00	1,00 10,00	Н	215,00	36	6	00'0	0,73	109,27 41:	411,94 3:	3390,63	1375,51	00'0	16	3332,50	3768,97	1304,14	2679,65
15 -15,75	15,50	1,50 10,00		227,50	36	6	00'0	1.	115,62 65	653,84 41	4044,47	1640,76	00'0	16	3526,25	3988,09	1379,96	3020,72
16 -17	16,50 1,	1,00 10,00	Н	240,00	36	o	100,00	0,73 4	40,00 150	150,80 4	4195,27	1701,93	100,001	16	00'006	1017,88	352,21	2054,14
17	17,50 1,	1,00 10,00	4	250,00	36	o	100,001	0,73 4	40,00 150	150,80 4.	4346,06	1763,11	100,001	16	00'006	1017,88	352,21	2115,32
18 -19	18,50 1,	1,00 10,00	Н	260,00	98	o	100,001	0,73 4	40,00 150	150,80 4	4496,86	1824,28	100,00	16	00'006	1017,88	352,21	2176,49
19 20	19,50 1,	1,00 10,00	4	270,00	36	o	100,00	0,73 4	40,00 150	150,80 44	4647,66	1885,46	100,00	16	00'006	1017,88	352,21	2237,67
20 -21 50 -21	20,50 1,	1,00 10,00	Ш	280,00	36	o	100,00	0,73	40,00 150	150,80 4	4798,45	1946,63	100,00	16	00'006	1017,88	352,21	2298,84
21 -22	21,50 1,	1,00 10,00		290,00	36	0	100,00	0,73 4	40,00 150	150,80 49	4949,25	2007,81	100,001	16	00'006	1017,88	352,21	2360,02
22 -23	22,50 1,	1,00 10,00	H	300,000	36	o	100,00	0,73 4	40,00 150	150,80 5	5100,005	2068,98	100,001	16	00'006	1017,88	352,21	2421,19
23 24.50 -24	23,50 1,	1,00 10,00	Ш	310,00	36	o	100,00	0,73 4	40,00	150,80 5:	5250,84	2130,16	100,001	16	00'006	1017,88	352,21	2482,37
24 -25	24,50 1,	1,00 10,00	Ш	320,00	36	0	100,001	0,73 4	40,00 150	150,80 5	5401,64	2191,33	100,00	16	00'006	1017,88	352,21	2543,54
25 -28,50	25,50 1,	1,00 10,00	1	330,00	36	v	100,00	0,73 4	40,00 150	150,80 5	5552,44	2252,51	100,00	16	00'006	1017,88	352,21	2604,72
26 -27	26,50 1.	1,00 10,00	\perp	340,00	36	٥	100,00	0,73 4	40,00 150	150,80 5	5703,23	2313,68	100,001	16	900,00	1017,88	352,21	2665,89
27,50		1,00 10,00		350,00	36	v	+	0,73 4	40,00 150	150,80 5		2374,86	100,00	16	00'006	1017,88	352,21	2727,07
-28,50	++	+		360,00	36	o	-				+	2436,03	100,00	16	00'006	1017,88	352,21	2788,24
59	29,00	0,50 10,00		367,50	36	v	100,00	0,73 4	40,00 75	75,40 6	6080,22	2466,62	100,00	16	00'006	1017,88	352,21	2818,83
30 -30,5	30,00	1,00 10,00	370,00	375,00	36	6	00'0	0,73	150,00 564	565,49 68	6645,71	2696,03	00'0	16	1675,00	1894,38	655,49	3351,52
31	31,00	1,00 10,00		385,00	36	6	00'0	0,73	150,00 564	565,49 7.	7211,20	2925,43	00'0	16	2450,00	2770,88	958,78	3884,22
32	32,00	1,00 10,00		395,00	36	6	+	0,73		565,49 7	7776,68	3154,84	00'0	16	3225,00	3647,39	1262,07	4416,91
33	33,00	1,00 10,00		405,00	36	6	00'0	0,73	150,00 564	565,49 8:	8342,17	3384,25	00'0	16	4000,00	4523,89	1565,36	4949,61
34 -34,50	34,00	1,00 10,00	410,00	415,00	36	0	00'00	11 0.73	150,00 564	565,49 81	8907,66	3613,65	00'0	16	4000,00	4523,89	1565.36	5179,01

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 108 di 116

10 SISTEMA DI VINCOLAMENTO, APPOGGI E GIUNTI

Il sistema di vincolamento previsto per il Cavalcavia è costituito da dispositivi di appoggio ed isolamento sismico in elastomero armato. Tali dispositivi, essendo caratterizzati da un ridotto valore della rigidezza orizzontale, garantiscono un disaccoppiamento del moto orizzontale della struttura rispetto a quello del terreno ed una conseguente riduzione della risposta sismica della struttura; inoltre i dispositivi sono dotati di una certa capacità dissipativa che è determinata dalla mescola elastomerica da cui sono costituiti e che è utile a minimizzare gli spostamenti della struttura isolata. I dispositivi previsti in corrispondenza delle spalle sono inoltre dotati di una slitta che permette gli spostamenti in direzione longitudinale: di conseguenza le azioni longitudinali in condizioni di esercizio o in condizione sismica si ripartiscono sulle sole spalle e non vengono trasmesse alle spalle. Le azioni trasversali invece sono trasmesse a spalle e spalle: in questo modo viene ripartita su un maggior numero di punti l'azione del vento e quindi vengono minimizzati gli spostamenti orizzontali trasversali dovuti a tale azione che altrimenti rappresenterebbero un malfunzionamento dell'opera in condizioni di esercizio.

Le diverse caratteristiche dei dispositivi di appoggio ed isolamento, posti rispettivamente in corrispondenza della spalla e delle spalle, vengono in primo luogo definite dal valore di portata verticale che i dispositivi stessi devono essere in grado di garantire e quindi in base alle lunghezze di pertinenza dei carichi per le spalle e per le spalle. Ne conseguono diversi valori di rigidezza traslazionale kh proporzionali alle lunghezze di pertinenza secondo l'espressione kh = G*A/te dove te indica lo spessore totale della gomma costituente il dispositivo.

Come mostrato dall'espressione precedente un fattore che influenza il valore della rigidezza traslazionale dei dispositivi è quello del modulo di elasticità tangenziale G. Le mescole elastomeriche ad alto smorzamento di cui sono costituiti i dispositivi di isolamento sono caratterizzate da una sensibile variazione del modulo G al variare della deformazione. In particolare il valore di G al disotto del 50% della deformazione massima di un dispositivo risulta circa 2 volte superiore al valore assunto da G per deformazioni più elevate. Di conseguenza il valore della rigidezza traslazionale dei dispositivi in condizioni di esercizio risulta più elevata di quella in condizione sismica.

Di seguito si anticipano i valori delle rigidezze traslazionali dei dispositivi previsti in corrispondenza delle spalle e delle spalle in condizioni di esercizio e sismiche: tali valori verranno infatti utilizzate in condizioni sismiche in un'analisi dinamica lineare al fine della valutazione delle azioni sismiche e nella ripartizione delle azioni orizzontali trasmesse dall'impalcato ai diversi elementi di sostegno.

			Spalle
Numero	dispositivi	di	2
appoggio			

	Kh dispositivi spalle
Condizioni di esercizio	9600 kN/m
Condizioni sismiche	3840 kN/m

10.1 Criteri di progetto dei dispositivi

BBM

Per quanto riguarda le sollecitazioni di natura sismica, in accordo a quanto riportato al punto 7.10 del D.M. 2008, i dispositivi del sistema d'isolamento devono essere in grado di sostenere, senza rotture, gli spostamenti valutati per un terremoto avente probabilità di superamento pari a quella prevista per lo SLC, al fine di garantire il soddisfacimento del requisito riguardante il livello superiore di sicurezza richiesto al sistema di isolamento rispetto alle altre parti costituenti l'opera.

Per un corretto funzionamento del sistema di isolamento, occorre che gli elementi della sottostruttura si mantengano in campo sostanzialmente elastico, sotto l'effetto delle azioni sismiche di progetto.

10.2 Azioni sugli appoggi

Il calcolo di seguito riportato è valido per entrambe le spalle del cavalcavia.

10.2.1 Azioni trasmesse dall'impalcato

10.2.1.1 Carichi Permanenti

Si riassumono i pesi permanenti lineari dei diversi elementi dell'impalcato, calcolati in base ai dati definiti in precedenza.

Peso struttura metallica	45.50 kN/m
Peso soletta	91.50 kN/m
Peso dei cordoli	18.50 kN/m
Totale permanenti strutturali	155.50 kN/m
Peso pavimentazione	25.50 kN/m
Peso barriere di sicurezza	2.00 kN/m
Parapetti	2.00 kN/m
Totale permanenti portati	29.50 kN/m

PROVATOBOR Il peso complessivo dell'impalcato si ottiene moltiplicando il peso permanente lineare ottenuto per la lunghezza totale dell'opera; analogamente, la quota parte del peso permanente totale che grava sulla pila è pari al suddetto peso permanente lineare moltiplicato per la lunghezza di afferenza definita in precedenza.

Peso totale dell'impalcato 11290.0 kN

10.2.1.2 CARICHI VARIABILI

Le reazioni vincolari sulla pila vengono valutate attraverso un modello monofilare agli elementi finiti costituito da elementi beam. E' applicato lo schema di carico 1 costituito da carichi concentrati su due assi in tandem applicati su impronte di pneumatico di forma quadrata e lato 0.40m e da carichi uniformemente distribuiti.

Le reazioni vincolari della trave continua in corrispondenza della pila vengono valutate disponendo gli assi dei carichi concentrati in corrispondenza della pila in modo da massimizzare la reazione verticale Società di Progetto sulla pila stessa.

Si riporta il riepilogo dell'analisi dei carichi accidentali effettuata.

Categoria ponte 1

BBM	Doc. N.	CODIFICA DOCUMENTO	REV.	FOGLIO
BRESCIA BERGAMO MILANO	60220-CVAX1-A00.doc	04RCDII1CVAX1000000100A00	00	110 di 116

Larghezza della carreggiata w	8.50 m
Lunghezza corsia convenzionale	3.00 m
Numero di corsie convenzionali	2.00
Larghezza della zona rimanente w _r	2.50 m
C : 1	2.50 III

Corsia numero 1

Folla

Q_{1k}	300.00 kN
q_{1k}	9.00 kN/m^2
Corsia numero 2	
Q_{2k}	200.00 kN
q_{2k}	2.50 kN/m^2
Corsia numero 3	
Q_{3k}	100.00 kN
q_{3k}	2.50 kN/m^2
Altre corsie e zona rimanente	2.50 kN/m^2

Le colonne dei carichi mobili vengono disposte, a partire da quella di entità massima, in adiacenza al cordolo numero 1, definito come il cordolo di larghezza minore. Il numero di colonne di carico prese in considerazione è quello che determina le condizioni più sfavorevoli per la pila.

 $2.50 \ kN/m^2$

APPRILIVATO BOP

BBM BBSGIA I RERGAMO I MILANO

10.2.1.3 AZIONI ORIZZONTALI TRASVERSALI – AZIONE DEL VENTO

L'azione del vento può essere convenzionalmente assimilata ad un carico orizzontale statico, diretto nelle direzioni più sfavorevoli per le pile.

La pressione cinetica del vento è calcolata secondo quanto stabilito dalla normativa. Il calcolo è riportato di seguito:

Zona vento = 1

 $v_{b,0} = 25 \text{m/s}; A_0 = 1000 \text{m}; K_a = 0.010 \text{ 1/s}$

Classe di rugosità del terreno: D Categoria esposizione: tipo II

 $K_r = 0.19 \text{ m/s}$; $z_0 = 0.05 \text{ m}$; $z_{min} = 4 \text{ m}$

Velocità di riferimento = 25 m/s

Pressione cinetica di riferimento (q_b) =0.40 kN/m²

Coefficiente di forma (C_P) = 1.20 Coefficiente dinamico (C_d) = 1.00

Coefficiente di esposizione topografico (Ct) = 1.00

Coefficiente di esposizione (C_e) = 2.35

Pressione del vento (p = $q_b*C_b*C_p*C_d$) = 2.00 kN/m²

Per la determinazione delle azioni del vento si considerano le due distinte situazioni di ponte carico e ponte scarico.

Superficie esposta al vento a ponte scarico	116 m^2
Azione del vento a ponte scarico	232 kN
Applicata a quota rispetto base appoggi	3.50 m

Superficie esposta al vento a ponte carico	300 m^2
Azione del vento a ponte carico	600 kN
Applicata a quota rispetto base appoggi	2.48 m

Le azioni di taglio sul singolo appoggio si calcolano pertanto:

 $\begin{array}{ll} n=4 & numero\ di\ appoggi\\ K=3.85\ kN/mm & rigidezza\ del\ singolo\ appoggio\\ F,scarico=232\ /\ 4=58\ kN & carico\ trasversale\ ad\ impalcato\ scarico\\ F,carico=600\ /\ 4=150\ kN & carico\ trasversale\ ad\ impalcato\ carico\\ \end{array}$

Da cui si ottengono gli spostamenti trasversali derivanti dall'azione del vento: u, scarico = F, scarico / K = 15 mmspostamento trasversale impalcato scarico u, carico = F, carico / K = 39 mm spostamento trasversale impalcato carico

Si calcola inoltre l'incremento di sforzo normale sugli appoggi dovuto all'eccentricità dell'azione del vento rispetto la quota appoggi, come esplicitato sopra.

N = F/2 * H / B

Dove:

F = risultante carico del vento

H = quota risultante rispetto base appoggi

B = 13.00 m interasse travi longitudinali

Società di Progetto Brebemi SpA

Si calcola pertanto, per le due situazioni di impalcato scarico e carico il seguente incremento:

N,scarico = 232/2 * 3.50 / 13.00 = 31.25 kN

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 112 di 116

N, carico = 600/2 * 2.48 / 13.00 = 57.25 kN

10.2.1.4 Azioni orizzontali longitudinali - frenamento

Secondo quanto riportato nel DM2008 - §5.1.3.5, la forza di frenamento o di accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale numero 1 e, per i ponti di prima categoria, è data dalla seguente espressione:

 $180kN \le q_3 = 0.6*(2*Q_{1k}) + 0.10*q_{1k}*w_1*L \le 900kN$

Dove, per la struttura in oggetto:

 $Q_{1k} = 300 \text{ kN}$

 $q_{1k} = 9.00 \text{ kN/m}^2$

 $w_1 = 3.00 \text{ m}$ larghezza della corsia

L = 60.00 m lunghezza della zona caricata

L'azione di frenamento totale massima per l'impalcato in oggetto risulta:

 $q_3 = 0.6*(2*300) + 0.1*9.00*3.00*60.00 = 522 \text{ kN}$

si calcola pertanto lo spostamento indotto da tale azione variabile date le caratteristiche dell'appoggio:

K = 3.85 kN/mm

rigidezza appoggi

n = 4

numero di appoggi totale

u, frenatura = q_3 /(nK) = 33.90 mmspostamento indotto da azione frenatura

10.2.1.5 AZIONI ORIZZONTALI LONGITUDINALI – VARIAZIONE TERMICA

I dispositivi di appoggio in elastomero armato previsti per l'opera in oggetto trasmettono agli elementi di sostegno un'azione orizzontale proporzionale alla loro rigidezza ed allo scorrimento massimo dovuto a deformazioni lente corrispondenti alla dilatazione termica dell'impalcato.

L'accorciamento dovuto ad escursione termica tra due punti A e B dell'impalcato è dato dalla seguente espressione:

Azione Longitudinale

 $\Delta L_{AB} = L_{AB} * \alpha * \Delta T$

dove si assume:

 L_{AB} = 60.00/2 = 30.00 m semi-lunghezza impalcato α = 1.2*10⁻⁵ C⁻¹ coefficiente di dilatazione termica ΔT = 30° C variazione termica

 Δ L_{AB}= 30.00 * 1.2*10⁻⁵ * 30 = 10.8 mm

Di seguito, considerando i valori delle rigidezze orizzontali in condizioni di esercizio dei dispositivi previsti, viene calcolata l'azione orizzontale conseguente alla suddetta deformazione termica.

 $H_{el} = n^* \Delta L_{AB}^* k$

dove si assume:

n = 2 numero dei dispositivi su ogni spalla k = 3.85 kN/mm rigidezza orizzontale di ciascun dispositivo

 $H_{el} = 2 * 3.85 * 10.8 = 83.16 \text{ kN}$

Azione Trasversale

 $L_{AB}=13.00/2=6.50~m~semi-larghezza~impalcato $$\alpha=1.2*10^{-5}~C^{-1}$ coefficiente di dilatazione termica $$\Delta T=30^{\circ}~C$$ variazione termica

 Δ L_{AB}= 30.00 * 1.2*10⁻⁵ * 6.50 = 2.34 mm

L'azione trasversale associata risulta pertanto:

n = 2 numero dei dispositivi su ogni spalla k = 3.85 kN/mm rigidezza orizzontale di ciascun dispositivo

 $H_{el} = 2 * 3.85 * 2.34 = 18.00 \text{ kN}$

10.2.1.6 AZIONI SISMICHE TRASMESSE DALL'IMPALCATO

Di seguito si calcolano la forza totale applicata al sistema di isolamento, il corrispondente spostamento e l'azione trasmessa alla spalla per la direzione longitudinale e trasversale.

Gli effetti dell'azione sismica vengono valutati mediante analisi statica lineare, applicando parametri sismici relativi al sito in cui ricade l'opera e definiti in precedenza.

Direzione longitudinale

Rigidezza traslazionale dispositivo singolo Numero dispositivi Rigidezza traslazionale sistema isolato (Kimp e Kis in serie) Periodo sistema rigido	Kis n Keq = Kis * n Trigido	4	kN/m kN/m sec
Periodo sistema isolato	Tis	1.71	sec
SLV Ordinata spettro elastico per Tis e smorzamento equivalente	Se (Tis, ξis)	0.144	g
Forza complessiva orizzontale applicata al sistema di isolamento	F = F,dis * n	1604	kN
Rigidezza minima Spostamento centro di rigidezza	Keq, min = 2.5 * Kis U,slv		kN/m mm
Forza per dispositivo	F,dis	401	kN
SLC Ordinata spettro elastico per Tis e smorzamento equivalente	Se (Tis, ξis)	0.177	APPR
Forza complessiva orizzontale applicata al sistema di isolamento	F = F,dis * n	1976	kN
Rigidezza minima Spostamento centro di rigidezza	Keq, min = 2.5 * Kis U,slc		kN/m mm
Forza per dispositivo	F,dis	494	kN

Direzione trasversale

Il calcolo nella direzione trasversale risulta del tutto analogo a quello svolto per la direzione longitudinale. L'azione sismica trasmessa alla spalla nella direzione longitudinale e nella direzione trasversale risulta dunque:

SLV

 $H_{sis, long} = H_{sis, trasv} = 401 \text{ kN}$

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 114 di 116

 $SLC \\ H_{sis, long} = H_{sis, trasv} = 494 \ kN$

APPROVATO BOP

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 115 di 116

10.3 Prescrizioni isolatori

Si riepilogano pertanto le azioni calcolate nei capitoli precedenti, con le quali si vanno a definire le caratteristiche meccaniche degli isolatori di progetto. Le sollecitazioni di seguito riportate si intendono riferite su un singolo isolatore.

Peso totale dell'impalcato 11160.0 kN

Numero appoggi 4

Carichi verticali

V,perm = P/4 = 2790 kN reazione vincolare su singolo appoggio, carichi

permanenti

V,var = 1502 kN reazione vincolare su singolo appoggio, carichi

variabili

V,vento,scarico = 31.25 kN V,vento,carico = 57.25 kN

Carichi orizzontali longitudinali

H,frenatura = 522/4 = 130.5 kN

 $H_{var.term} = 83.16/2 = 41.60 \text{ kN}$

H,sisma(SLV) = 490 kN

H,sisma(SLC) = 526 kN

Carichi orizzontali trasversali

H, vento, scarico = 58 kN

H, vento, carico = 150 kN

H,sisma(SLV) = 490 kN

H,sisma(SLC) = 526 kN

Prescrizioni per gli appoggi

Carico verticale massimo SLE R,rara = 4292 kN

Carico verticale carichi permanenti SLE R,qperm = 2790 kN

Carico orizzontale longitudinale massimo R,sisma = 526 + 0.5*41.60 = 547 kN Carico orizzontale trasversale massimo R,sisma = 526 kN

Deformazione longitudinale termica massima $D_{r}t = \pm 10.8 \text{ mm}$

Deformazione longitudinale massima D1 = D, sisma + D, term $= 136 + 10.8 = \pm 10$

146.8 mm

Deformazione trasversale massima $D2 = D_s$ isma + D_s term = 136 + 2.34 = ±

138.3 mm

Rigidezza orizzontale corrispondente al max spostamento K = 3.85 kN/mm

Smorzamento equivalente > 10%

CODIFICA DOCUMENTO 04RCDII1CVAX1000000100A00 REV. 00 FOGLIO 116 di 116

10.4 Giunti

Si riportano di seguito gli spostamenti massimi provocati dall'escursione termica e dal sisma di progetto allo Stato Limite di Salvaguardia della Vita e allo Stato Limite di Collasso. Si vedano i capitoli precedenti per il dettaglio sul calcolo di tali spostamenti, di seguito riepilogati:

 $D_{t} = \pm 10.8 \text{ mm}$

 $D_s lu = 109 mm$

 $D_s lc = 134 \text{ mm}$

Secondo quanto riportato nelle NTC08 - §5.1.3.12 - Tabella 5.1.VI si combinano le azioni di sisma e variazione termica.

Combinazione sismica SLV = D,slu + 0.5*D,t = 114.4 mm

Combinazione sismica SLC = D_r slc + $0.5*D_r$ t = 139.4 mm

Si prevede pertanto su entrambe le spalle un giunto con escursione ± 150 mm

APPROUVATO BOP