

RICHIESTA Nº 13

NOTA DELLA REGIONE LOMBARDIA

Emissione in atmosfera:

Nel confronto delle ricadute al suolo degli inquinanti tra gli stati ante e post operam, per la situazione attuale è stato considerato come riferimento la massima capacità produttiva della raffineria di 2.6 Mt/anno di greggio lavorabile, anziché quella "reale". Si richiede pertanto di confrontare, in termini di portate, concentrazioni e ricadute al suolo le emissioni in atmosfera reali del triennio 2005÷2007 e quelle attese a seguito della realizzazione del progetto proposto

PROGETTO DI ADEGUAMENTO TECNOLOGICO DEGLI IMPIANTI DI RAFFINERIA ALLA DIRETTIVA AUTO-OIL

Relazione tecnica integrativa allo Studio di Impatto Ambientale

Il presente documento è costituito da n° 5 pagine progressivamente numerate e n° 1 allegato.

Emissione: 01

Data: Maggio 2008 Doc. n° 8-SIA-26013-13

Commessa: 26013

File: 26013 E01 13.doc

Raffineria di Mantova

PROGETTO DI ADEGUAMENTO TECNOLOGICO DEGLI IMPIANTI DI RAFFINERIA ALLA DIRETTIVA AUTO-OIL

Relazione tecnica integrativa al S.I.A.
Richiesta N°13

Premessa

IES ha presentato domanda di autorizzazione integrata ambientale per la raffineria di Mantova in data 06 luglio 2006. Ai sensi della normativa vigente a tale epoca ed in linea con quanto indicato dal Ministero Ambiente anche nel relativo documento di Linee Guida, sono stati inseriti nella scheda C della domanda di AIA gli interventi di miglioramento che la Società avrebbe dovuto attuare entro il 30 ottobre 2007.

Di conseguenza, posto che in base alla normativa vigente IES avrebbe dovuto obbligatoriamente adeguare l'impianto alla disciplina dettata dal DLgs n. 59/05 entro il suddetto termine del 30 ottobre 2007 (termine che, come noto, è stato successivamente prorogato a causa del mancato rilascio dell'AIA entro i termini previsti dalla legge), la situazione ante operam recepita nel SIA, come peraltro suggerito dal Ministero dell'Ambiente, è quella derivante dalla esecuzione degli interventi di adequamento proposti in sede di AIA, consistenti per quanto qui rileva:

- C.6.2: nella riduzione a 1,5% del tenore massimo di zolfo nel combustibile liquido consumi interni ammesso per i mesi da Marzo a Novembre (precedente limite 2.0% e 2.2 %)
- C.6.3 : nella sostituzione dei bruciatori delle caldaie "A" e "B" di CTE (nell'ambito della sostituzione delle caldaie stesse) con bruciatori tipo low-nox,

atteso che le modifiche esaminate nel SIA si ponevano a valle della realizzazione di tali interventi.

Situazione emissioni nel triennio 2005 ÷ 2007.

La corretta lettura delle emissioni e delle ricadute al suolo di inquinanti nel triennio 2005 - 2007 ed il relativo confronto con i profili emissivi "ante operam" e "post operam" inseriti nel SIA presentato nel luglio 2007, non può quindi prescindere dalle considerazioni esposte nella premessa.

Si riportano di seguito le tabelle riportanti i profili emissivi e le ricadute al suolo relativamente al triennio 2005÷2007.

Nella tabella profili emissivi sono inoltre riportate le condizioni di processo, rispettivamente:

- capacità produttiva dell'anno di riferimento
- contenuto di zolfo nell'olio combustibile (combustibile utilizzato nel forno della distillazione atmosferica e nella centrale termoelettrica); per tale parametro vengono riportati sia il valore medio ponderato e il massimo valore registrato dalle analisi di laboratorio.
- Fattori di emissione adottati per NOx a seconda dei diversi impianti e tipologia di combustibile (FG= fuel gas; OC= olio combustibile)

PROGETTO DI ADEGUAMENTO TECNOLOGICO DEGLI IMPIANTI DI RAFFINERIA ALLA DIRETTIVA AUTO-OIL

Raffineria di Mantova

Relazione tecnica integrativa al S.I.A. Richiesta N°13

Tab 1- profili emissivi triennio 2005÷2007

	condizioni d	di processo				- INQUINANTI EMESSI			
Identificativo anno	Capacità	zolfo in olio combustibile [%]		fattori di emissione funzione di impian [mg/N	ti e combustibili	[t/anno]			
aiiio	Produttiva [ton/anno]	valore medio ponderale su base annua	valore massimo della singola partita	Impianto	combustibile FG (OC)	SO ₂	NO _x	СО	PM
ANNO 2005	2.238.569	0,99	-	Topping HDS1 CTE visbreaker	230 (380) 200 250 (480) 220	1.692,3	436,3	178,0	46,8
ANNO 2006	2.380.417	0,40	1,72%	Topping HDS1 CTE visbreaker	230 (380) 200 250 (480) 220	1.309,3	443,7	181,0	44,8
ANNO 2007	2.576.470	0,37	1,0 %	Topping HDS1 CTE visbreaker	230 (380) 200 250 (480) 220	1.361,3	460,6	195,4	42,8

Tab 2- ricadute al suolo triennio 2005÷2007

Tab 2- Headule a	Tab 2- ricadute ai suoio triennio 2005–2007										
		Valore massimo di ricaduta al suolo									
Identificativo anno	SO₂			N	O _X	СО	PM				
racinimodavo dimo	media oraria [ug/m3]	media giorno [ug/m3]	media annua [ug/m3]	Media media oraria annua [ug/m3] [ug/m3]		media 8 ore [ug/m3]	media giorno [ug/m3]	media annua [ug/m3]			
ANNO 2005	94.39	26.28	7.22	32.64	2.84	7.88	0.95	0.24			
ANNO 2006	71.07	19.87	5.33	32.33	2.86	7.93	0.88	0.22			
ANNO 2007	68.58	19.22	5.10	32.24	2.82	8.39	0.79	0.21			
Limite qualità Aria	350	125	20	200	30-40	10000	50 (PM10)	40-20 (PM10)			

Oltre a quanto indicato in premessa si deve ulteriormente considerare che la situazione Ante Operam presentata nel SIA nel luglio 2007:

- è riferita alla massima capacità produttiva (2.600.000 ton/anno)
- adotta un tenore di zolfo pari a: 1,0% nel periodo invernale e 1,5% nel periodo estivo
- include le migliorie che riducono le emissioni di NOx

PROGETTO DI ADEGUAMENTO TECNOLOGICO DEGLI IMPIANTI DI RAFFINERIA ALLA DIRETTIVA AUTO-OIL

Raffineria di Mantova

Relazione tecnica integrativa al S.I.A. Richiesta N°13

Ulteriori scenari emissivi di confronto tra stato attuale e stato futuro

Sempre alla luce di quanto descritto in premessa ed al fine di confrontare lo stato attuale e stato futuro si riportano i seguenti ulteriori profili emissivi:

- Anno 2007 flessato: le condizioni operative registrate nel 2007 sono adattate fino alla massima capacità produttiva e viene usato un olio combustibile con tenore di zolfo costante al 0,5%.
- 2. Anno 2008 flessato : ripete le condizioni operative del caso "1" , ma considera la installazione della nuova caldaia "AN" in CTE, che riduce la emissione di NOx
- 3. Anno 2009 flessato : applica al caso "1" le modifiche indicate nel progetto Auto-Oil, considera anche la nuova caldaia "BN" e usa bruciatori low-nox al Visbreaker, riducendo notevolmente le emissioni di macroinquinanti.

Si riportano in allegato gli assetti di Raffineria.

Tab 3- profili emissivi

	condizioni di p	condizioni di processo							
Identificativo scenario	Capacità Produttiva	massimo tenore zolfo	funzione di impi	ne di NOx adottati in ianti e combustibili g/Nm3]	- INQUINANTI EMESSI [t/anno]				
	[ton/anno]	[%]	Impianto	combustibile FG (OC)	SO ₂	NO _x	СО	PM	
ANNO 2007 flessato	2.600.000	0,5	Topping HDS1 CTE Visbreaker	230 (380) 200 250 (480) 220	1.478	482	193	46	
ANNO 2008 flessato	2.600.000	0,5	Topping HDS1 CTE Visbreaker	230 (380) 200 225 (320) 220	1.478	417	145	46	
ANNO 2009 flessato	2.600.000	0,5	Topping HDS1 CTE Visbreaker HDS3	230 (380) 100 200 (200) 100 100	579	347	106	45	

Tab 4- ricadute al suolo

	valore massimo di ricaduta al suolo									
Identificativo	SO ₂			N	O ₂	CO PN		М		
scenario	media oraria [ug/m3]	media giorno [ug/m3]	media annua [ug/m3]	media oraria [ug/m3]	Media annua [ug/m3]	media 8 ore [ug/m3]	media giorno [ug/m3]	media annua [ug/m3]		
ANNO 2007 flessato	74.78	20.93	5.57	36.0	3.14	8.81	0.85	0.23		
ANNO 2008 flessato	74.78	20.93	5.57	32.90	2.90	6.94	0.85	0.23		
ANNO 2009 flessato	31.41	9.14	2.53	29.28	2.61	5.55	0.85	0.23		
Limite qualità Aria	350	125	20	200	30-40	10000	50 (PM10)	40-20 (PM10)		

PROGETTO DI ADEGUAMENTO TECNOLOGICO DEGLI IMPIANTI DI RAFFINERIA ALLA DIRETTIVA AUTO-OIL

Raffineria di Mantova

Relazione tecnica integrativa al S.I.A. Richiesta N°13

Si riportano infine, per completezza e con riferimento a quanto descritto in premessa, gli scenari utilizzati nel SIA.

Tab 5- profili emissivi

	condizioni di p	processo			INQUINANTI EMESSI			
Identificativo scenario	Capacità Produttiva	tenore zolfo in	fattori di emission funzione di impi [mg	[t/anno]				
	[ton/anno]	[%]	Impianto	combustibile FG (OC)	SO ₂	NO _x	со	РМ
Ante Opera AUTO-OIL	2.600.000	1,0 (inverno) 1,5 (estate)	Topping HDS1 CTE visbreaker	200 (380) 200 200 (200) 200	2.381,8	355,7	169,4	47,4
Post Opera AUTO-OIL	2.600.000	1,0 (inverno) 1,5 (estate)	Topping HDS1 CTE visbreaker HDS3	200 (380) 200 200 (200) 200 200	1.307,7	383,5	218,4	53,6

Tab 6- ricadute al suolo

Tab o- ficadute ai suolo										
	valore massimo di ricaduta al suolo									
Identificativo scenario (punto massimo)	SO ₂			NO2		СО	PM			
	media oraria [ug/m3]	media giorno [ug/m3]	media annua [ug/m3]	media oraria [ug/m3]	Media annua [ug/m3]	media 8 ore [ug/m3]	media giorno [ug/m3]	media annua [ug/m3]		
Ante Opera AUTO-OIL	134.55	37.58	10.16	29.55	2.66	8.57	0.95	0.24		
Post Opera AUTO-OIL	81.34	25.20	6.86	33.46	3.07	11.22	1.11	0.30		
Limite qualità Aria	350	125	20	200	30-40	10000	50 (PM10)	40-20 (PM10)		

Raffineria di Mantova

PROGETTO DI ADEGUAMENTO TECNOLOGICO DEGLI IMPIANTI DI RAFFINERIA ALLA DIRETTIVA AUTO-OIL

Relazione tecnica integrativa al S.I.A.
Richiesta N°13

Allegato 1

Assetti di Raffineria

1) CASO BASE: OPERAZIONE 2007 EFFETTIVA.

Lo zolfo nell'olio combustibile consumi interni è 0.37~% (dato medio pesato effettivo 2007), le cariche impianti sono quelle effettive ed i consumi di combustibili sono quelli certificati.

fuels	2007 effettivo	kcal/kg	tons	Smc/g
	Fuel Gas	11900	75.236,90	
	OCCI	10050	32.985,03	
	V,N,	10500	7.206,54	
	Nat. Gas	11720	15.884,71	62.475
	fuel gas pool	11868	91.121,61	

2007 anno (effettivo)	Cariche impianti	heat fired	heat fired	occi	FG POOL	VN
Impianto	TON / A	Mkcal/ton	Mkcal/y	T/A	T/A	T/A
Topping	2.576.470	0,120	309.176	3.722,030	23.099,393	
Unifining	527.343	0,044	23.017		1.939,414	
Reforming	258.791	0,411	106.392		6.839,313	2.402,180
Penex	96.015	0,003	328		72,282	
HDS1	445.033	0,071	31.542		2.657,711	
HDS2	400.095	0,062	24.926		2.100,263	
Visbreaker	1.104.916	0,180	198.885		16.958,079	
Vacuum	889.138	0,053	47.124		3.970,704	
Hydrocr.	577.414	0,140	81.030		7.027,640	
Thermal Cr.	295.396	0,180	53.138		4.477,457	
SRU/H1904	22.517	0,500	11.259		700,800	
Hot Oil		0,000	178.850		10.819,365	4.804,360
boilers	550.000	0,760	418.000	29.263,000	10.440,415	
		Totale	1.483.668	32.985,030	91.102,836	7.206,540
			disponibile	32.985,030	91.122,610	7.206,540

Emissi	oni per forno	2007 effettivo , kg/anno	SO2	NO2	СО	CO2	PM	PM10
Punto	Unità	Forni	kg	kg	kg	kg	kg	kg
E1	Topping	H101	36.782,78	89.124	35.828	75.837.884	6.032	1.680
E2	Unifiner	H201	775,77	6.580	263	5.385.667	194	66
	Hot Oil	H304*	4.327,75	37.093	2.061	45.079.608	1.562	515
E3	Platform.	H 301-302-303	2.735,73	22.039	1.224	26.509.824	924	306
E4	Penex	H401	28,91	245	10	200.725	7	2
E 5	HDS1	H701	1.063,08	7.213	361	7.380.345	266	90
E6	CTE	caldaie "A" "B" "C"	220.722,37	204.502	148.181	120.915.551	30.307	7.399
		H1701	840,11	7.125	285	5.832.336	210	71
		H 1904 (postcomb.)	280,32	2.378	95	1.946.090	70	24
		Tail gas to H1904	1.080.816,00	0	0	0	0	0
E7	Visbreaker	H1401	6.783,23	50.629	2.301	47.091.827	1.696	575
E8	Vacuum	H1151	1.588,28	10.777	3.233	11.026.467	397	135
E9	TH.CR.	H1201	1.790,98	13.368	608	12.433.698	448	152
E 10	мнс	H1501 - H1502	2.811,06	9.537	954	19.515.442	703	238
		TOTALE	1.361.346,36	460.610	195.403	379.155.464	42.816	11.254
		Dichiarazione INES 2007	1.357.070,00	463.330			42.820	

2) CASO DI CONFIGURAZIONE ATTUALE CON IMPIANTI TUTTI ALLA MASSIMA CAPACITA'.

Si è simulata una operazione della configurazione raffineria "2007" portando tutti gli impianti alla massima capacità ed utilizzando un OCCI al 0,5% zolfo (massimo concordato con Comune di Mantova) per identificare una situazione di emissione complessiva tendente al massimo potenzialmente raggiungibile in questa condizione

	2007 flex max			
Fuels	сар	kcal/kg	Tons	Smc/g
	Fuel Gas	11900	78.000	
	OCCI	10050	36.000	
	V,N,	10500	8.100	
	Nat. Gas	11720	14.530	59814
	fuel gas pool	11868	92.530	

		heat fired	heat fired	OCCI	FG POOL	VN
Impianto	TON / A	Mkcal/ton	Mkcal/y	T/A	T/A	T/A
Topping	2.600.000	0,120	312.000	3.000,000	23.848,736	
Unifining	608.900	0,044	26.577		2.239,357	
Reforming	324.400	0,411	133.364		8.848,538	2.700,000
Penex	131.800	0,003	451		72,282	
HDS1	466.666	0,071	33.075		2.786,902	
HDS2	433.333	0,062	26.997		2.274,745	
Visbreaker	1.133.333	0,180	204.000		17.389,075	
Vacuum	928.833	0,053	49.228		4.147,973	
Hydrocr.	633.333	0,140	88.878		7.688,855	
Thermal Cr.	466.666	0,180	83.948		7.173,477	
SRU/H1904	26.667	0,500	13.333		700,800	
Hot Oil		0,000	163.332		8.984,808	5.400,000
Boilers	543.040	0,750	407.280	33.000,000	6.372,605	
		totale	1.542.462	36.000,000	92.528,154	8.100,000
			Disponibile	36.000,000	92.530,000	8.100,000

Emissi	oni 2007 flex	red max capacità	SO2	NO2	СО	CO2	PM	PM10
Punto	Unità	Forni	kg/anno	kg/anno	kg/anno	kg/anno	kg/anno	kg/anno
E1	Topping	H101	39.539	88.140	35.967	75.710.888	5.385	1.531
E2	Unifiner	H201	896	7.595	304	6.224.249	224	76
	Hot Oil	H304*	3.594	33.928	1.885	41.871.797	1.438	471
E3	Platform.	H 301-302-303	3.539	27.602	1.533	33.043.684	1.155	383
E4	Penex	H401	29	245	10	200.907	7	2
E5	HDS1	H701	1.115	7.562	378	7.746.138	279	95
E6	СТЕ	caldaie "A" "B" "C"	332.549	212.288	145.108	121.374.437	33.637	8.161
	HDS2	H1701	910	7.715	309	6.322.607	227	77
		H 1904 (postcomb.)	280	2.377	95	1.947.859	70	24
		Tail gas to H1904	1.080.816	-	-	-	-	-
E7	Visbreaker	H1401	6.956	51.902	2.359	48.332.581	1.739	590
E8	Vacuum	H1151	1.659	11.255	3.377	11.529.208	415	141
E9	TH.CR.	H1201	2.869	21.411	973	19.938.534	717	243
E 10	мнс	H1501 - H1502	3.076	10.431	1.043	21.371.016	769	261
		TOTALE	1.477.827	482.452	193.341	395.613.905	46.063	12.055

3) CASO INTERMEDIO "2008"

Su specifica richiesta , si identifica l'effetto della sostituzione della Caldaia "A" di CTE (primo step del programma di miglioramento emissioni macro inquinanti) sul quadro emissivo identificato nel Caso 2.

L'effetto della sostituzione della caldaia "A" , si riflette solo sulla emissione di NOx e CO a seguito della migliore performance dei bruciatori impiegati.

Emissioni 2008 max capacità , kg/anno		SO2	NO2	CO	CO2	PM	PM10	
Punto	Unità	Forni	kg/anno	kg/anno	kg/anno	kg/anno	kg/anno	kg/anno
E1	Topping	H101	39.539	88.140	35.967	75.710.888	5.385	1.531
E2	Unifiner	H201	896	7.595	304	6.224.249	224	76
	Hot Oil	H304*	3.594	33.928	1.885	41.871.797	1.438	471
E 3	Platform.	H 301-302-303	3.539	27.602	1.533	33.043.684	1.155	383
E4	Penex	H401	29	245	10	200.907	7	2
E5	HDS1	H701	1.115	7.562	378	7.746.138	279	95
E6	CTE	caldaie "AN" "B" "C"	332.549	146.569	96.739	121.374.437	33.637	8.161
	HDS2	H1701	910	7.715	309	6.322.607	227	77
		H 1904 (postcomb.)	280	2.377	95	1.947.859	70	24
		Tail gas to H1904	1.080.816	-	-	-	ı	T
E7	Visbreaker	H1401	6.956	51.902	2.359	48.332.581	1.739	590
E8	Vacuum	H1151	1.659	11.255	3.377	11.529.208	415	141
E9	TH.CR.	H1201	2.869	21.411	973	19.938.534	717	243
E 10	мнс	H1501 - H1502	3.076	10.431	1.043	21.371.016	769	261
		TOTALE	1.477.827	416.733	144.971	395.613.905	46.063	12.055

4) CASO FINALE "2009 ".

In questa simulazione si assume che siano state sostituite le caldaie "A" e "B", sia fermato l'HDS 2, siano operativi il nuovo HDS3 ed il nuovo impianto recupero zolfo 3 dotato di TGCU (rendimento di recupero 99,7%), gli impianti sono tutti alla massima capacità (HDS3 2000 T/G, SRU3 100 T/G), la produzione vapore è aumentata di 15 t/ora, i bruciatori del forno H1401 (E7) sono nuovi "low nox", il consumo di OCCI è ridotto per diminuire la emissione di polveri, lo zolfo nel OCCI è 0.5% (max concordato).

Fuels		Kcal/kg	tons	Smc/g
2009	Fuel Gas	11900	78.000	
max capacità	OCCI	10050	34.000	
	V,N,	10500	12.500	
	Nat. Gas	11720	21.000	82.593
	fuel gas pool	11868	99.000	

		heat fired	heat fired	OCCI	FG POOL	VN
Impianto	TON / A	Mkcal/ton	Mkcal/y	T/A	T/A	T/A
Topping	2.600.000	0,120	312.000	1.000,000	25.542,366	
Unifining	608.900	0,044	26.577		2.239,357	
Reforming	324.400	0,411	133.364		7.550,931	4.166,7
Penex	131.800	0,003	451		72,688	
HDS1	466.666	0,071	33.075		2.786,902	
HDS3	666.660	0,072	48.000		4.044,449	
Visbreaker	1.133.333	0,180	204.000		17.389,075	
Vacuum	928.833	0,053	49.228		4.147,973	
Hydrocr.	633.333	0,140	88.878		7.688,855	
Thermal Cr.	466.666	0,180	83.948		7.173,477	
SRU/H1904	33.333	0,500	16.667		700,800	
Hot Oil		0,000	163.332		6.389,594	8.333,3
Boilers	678.880	0,718	487.436	33.000,000	13.126,545	·
		Totale	1.646.954	34.000,000	98.853,013	12.500,0
			disponibile	34.000,000	99.000,000	12.500,0

Emissi	oni per forno	2009 max cap kg/anno	S02	NO2	СО	CO2	PM	PM10
Punto	Unità	Forni	kg/anno	kg/anno	kg/anno	kg/anno	kg/anno	kg/anno
E1	Topping	H101	20.217	84322	35877	73999658	3554	1108
E2	Unifiner	H201	896	7600	304	6212316	224	76
	Hot Oil	H304*	2.556	34111	1895	43803950	1472	474
E3	Platform.	H 301-302-303	3.020	27699	1539	33986549	1172	385
E4	Penex	H401	29	247	10	201648	7	2
E5	HDS1	H701	1.115	3783	378	7731288	279	95
E6	CTE	caldaie "AN" "BN" "C"	335.251	115085	57543	140076933	34313	8390
	HDS2	H1701 (fermo)	1	0	0	0	0	0
		Postcomb. TGCU	275	2333	93	1906841	69	23
		Tail gas TGCU	199.998	0	0	0	0	0
E7	Visbreaker	H1401	6.956	23605	2361	48239924	1739	590
E8	Vacuum	H1151	1.659	11261	3378	11507106	415	141
E9	TH.CR.	H1201	2.869	21423	974	19900311	717	243
E 10	мнс	H1501 - H1502	3.076	10437	1044	21330047	769	261
E 11	HDS3	H 1301	1.618	5490	549	11219913	404	137
		TOTALE	579.534	347.397	105.944	420.116.484	45.134	11.925

RIASSUNTO DELLA EVOLUZIONE DELLE EMISSIONI TOTALI BASE ANNO.

Sono stati confrontate le emissioni totali annua nei seguenti casi :

1) Caso base: operazione 2007 effettiva.

Lo zolfo nell'olio combustibile consumi interni è 0,37 % (dato medio pesato effettivo 2007), le cariche impianti sono quelle effettive ed i consumi di combustibili sono quelli certificati.

2) Caso di configurazione attuale con impianti tutti alla massima capacità.

Si è simulata una operazione della configurazione raffineria "2007" portando tutti gli impianti alla massima capacità ed utilizzando un OCCI al 0,5% zolfo (massimo concordato con Comune di Mantova) per identificare una situazione di emissione complessiva tendente al massimo potenzialmente raggiungibile in questa condizione

Si assume anche la eliminazione della disottimizzazione nella produzione vapore di CTE causata dall'impiego delle caldaie ausiliarie temporanee utilizzate durante i lavori di sostituzione della caldia "A".

3) Caso intermedio "2008"

Su specifica richiesta , si identifica l'effetto della sostituzione della Caldaia "A" di CTE (primo step del programma di miglioramento emissioni macro inquinanti) sul quadro emissivo identificato nel Caso 2.

L'effetto della sostituzione della caldaia "A" , si riflette solo sulla emissione di NOx e CO a seguito della migliore performance dei bruciatori impiegati.

4) Caso finale "2009 ".

In questa simulazione si assume che siano state sostituite le caldaie "A" e "B", sia fermato l'HDS 2, siano operativi il nuovo HDS3 ed il nuovo impianto recupero zolfo 3 dotato di TGCU (rendimento di recupero 99,7%).

Gli impianti sono tutti alla massima capacità (HDS3 2000 T/G, SRU3 100 T/G), la produzione vapore è aumentata di 15 t/ora, i bruciatori del forno H1401 (Visbreaker, punto E7) sono nuovi "low nox", il consumo di OCCI è ridotto per diminuire la emissione di polveri, lo zolfo nel OCCI è 0.5% (massimo concordato con il Comune di Mantova).

La seguente tabella riassume i dati di emissioni di macroinquinanti dei 4 casi esaminati.

TOTALE kg/anno	SO2	NO2	СО	CO2	PM	PM10
1. Emissioni 2007 (cariche effettive) , 0,37 % zolfo OCCI (media effettiva)	1.361.346	460.610	195.403	379.155.464	42.816	11.254
2. Emissioni 2007 flexed max capacità, 0.5% zolfo OCCI (max concordato)	1.477.827	482.452	193.341	395.613.905	46.063	12.055
3. Emissioni 2008 max capacità step 1 (nuova caldaia "AN") , resto come caso 2	1.477.827	416.733	144.971	395.613.905	46.063	12.055
4. Emissioni 2009 max capacità "post" 0.5% zolfo OCCI (max concordato)	579.534	347.397	105.944	420.116.484	45.134	11.925

Commenti.

SO2: Caso 2 è maggiore di Caso 1 perché ricalcola la emissione per maggiori consumi dovuti alla massimizzazione delle cariche impianti rispetto alla operazione effettiva 2007 e usa un OCCI al 0.5% zolfo (massimo concordato con il Comune di Mantova).

Nel Caso 4, la SO2 cala per effetto del migliore rendimento del nuovo impianto di recupero zolfo (99,7% contro 97,6%)

NO2: Caso 2 è maggiore di Caso 1 (vedi nota precedente su SO2).

Caso 3 cala per effetto dei nuovi bruciatori sulla nuova caldaia "A", Caso 4 cala per effetto della nuova caldaia "B" e dei bruciatori low-nox su H701 (E5) e H1401 (E7).

CO: Caso 2 cala leggermente per la eliminazione della disottimizzazione di produzione vapore in CTE (impiego caldaie temporanee).

Caso 3 e Caso 4 calano per effetto dei nuovi bruciatori delle Caldaie "A" e "B"

PTS / PM 10: il valore di riferimento di emissione è quello indicato in Caso2 (emissione che si sarebbe avuta nel 2007 se gli impianti fossero stati portati tutti alla massima capacità).

Il calo di Caso 4 è dovuto solo al contenimento di consumo OCCI , imposto per soddisfare la richiesta del Comune di Mantova e non tiene conto di probabile miglioramento di emissione dalle nuove caldaie dovuto ai nuovi bruciatori (da quantizzare dopo test operativi non ancora disponibili, dato che la prima caldaia è entrata in funzione solo in Maggio 2008) .