

#### PROGETTAZIONE PRELIMINARE ED ANALISI ECONOMICA DEL TRATTO TERMINALE DEL COLLEGAMENTO DEL PORTO DI CIVITAVECCHIA CON IL NODO INTERMODALE DI ORTE PER IL COMPLETAMENTO DELL'ASSE VIARIO EST-OVEST (CIVITAVECCHIA-ANCONA) 2012-IT-91060-P

#### TRATTA: MONTE ROMANO EST - CIVITAVECCHIA

#### PROGETTO PRELIMINARE

**PROGETTAZIONE:** ANAS - DIREZIONE GENTRALE PROGETTAZIONE

| DPOCETTISTA:                                               |                                     | GRUPPO DI PROGETTAZIONE ANAS                        |                                     |                                         |                                                       |                 |                                  |  |  |
|------------------------------------------------------------|-------------------------------------|-----------------------------------------------------|-------------------------------------|-----------------------------------------|-------------------------------------------------------|-----------------|----------------------------------|--|--|
| Ing. Maurizio Mancinetti<br>Ordine Ing. di Roma nº 19506   |                                     | Ing. F. Bario<br>Ing. F. Bezzi                      |                                     | Geom                                    | Geom. R. Izzo<br>Ing. E. Luziatelli<br>Geom. D. Maggi |                 |                                  |  |  |
|                                                            |                                     |                                                     |                                     | Ing. E<br>Geom                          |                                                       |                 |                                  |  |  |
| IL GEOLOGO                                                 | )                                   |                                                     |                                     | Ing. L. Cedrone                         |                                                       | Geom            | Geom. M. Maggi                   |  |  |
| Dott. Geol. Stefano Serangeli<br>Ordina Cool. Lazia p. 650 |                                     |                                                     | Ing. P. G. D'Armini Ing. E. Mittiga |                                         |                                                       |                 |                                  |  |  |
|                                                            |                                     |                                                     |                                     | Sig.ra A. M. D'Aversa<br>Ina. A. De Leo |                                                       | Dott.s          | Dott.ssa D. Perfetti             |  |  |
| IL RESPONS                                                 | SABILE DEL S.I.A.<br>Serena Maietta |                                                     |                                     | Geom. E. De Masi Ing. A. Petrillo       |                                                       |                 |                                  |  |  |
|                                                            | Dott. Geol. Serena majetta          |                                                     |                                     | Geom. M. Diamente<br>Ing. P. Eabbro     |                                                       | Ing. F<br>Arch. | Ing. F. Pisani<br>Arch. R. Roaai |  |  |
| COORDINATO                                                 | RE PER LA SICUREZ                   | ZZA IN I                                            | FASE DI PROGETTAZIONE               | Ing. G. Giovannini                      |                                                       |                 |                                  |  |  |
| Arch. Robert                                               | to Roggi                            |                                                     |                                     |                                         |                                                       |                 |                                  |  |  |
|                                                            |                                     |                                                     |                                     | SERVIZI SUPPORTO ESTERNO                |                                                       |                 |                                  |  |  |
| IL RESP. DEL PROCEDIMENTO                                  |                                     |                                                     |                                     |                                         |                                                       |                 |                                  |  |  |
|                                                            |                                     |                                                     |                                     |                                         |                                                       |                 |                                  |  |  |
| PROTOCOLLO DATA                                            |                                     | VISTO: IL DIRETTORE CENTRALE<br>Ing. Ugo DIBENNARDO |                                     |                                         |                                                       |                 |                                  |  |  |
|                                                            |                                     |                                                     |                                     |                                         |                                                       |                 |                                  |  |  |
|                                                            |                                     |                                                     |                                     |                                         |                                                       |                 |                                  |  |  |
| STUDIO IDROLOGICO-IDRAU                                    |                                     |                                                     | JLICO DEI                           | L FIUMI                                 | E MIGN                                                | ONE             |                                  |  |  |
|                                                            |                                     |                                                     | Relazione                           | e idraulica                             |                                                       |                 |                                  |  |  |
| CODICE PROGETTO NOME FILE                                  |                                     |                                                     |                                     | REVISIONE                               |                                                       | 504LA           |                                  |  |  |
| PROGETTO                                                   | LIV. PROG. N. F                     | PROG.                                               | L0402D_P_1301_T00_S                 | GO7_IDR_RE02_A.DWG                      |                                                       | IAVULA          | SCALA:                           |  |  |
| LO402D P 1301 CODICE TOOS                                  |                                     | GO7IDRRE02                                          |                                     | Α                                       |                                                       |                 |                                  |  |  |
|                                                            |                                     |                                                     |                                     |                                         |                                                       |                 |                                  |  |  |
| С                                                          |                                     |                                                     |                                     |                                         |                                                       |                 |                                  |  |  |
| В                                                          |                                     |                                                     |                                     |                                         |                                                       |                 |                                  |  |  |
| A                                                          | A EMISSIONE                         |                                                     |                                     | GIUGNO_2014                             | TECNICO/RESP.TECN.                                    | MANCINETTI      | СОРРА                            |  |  |
| REV. DESCRIZIONE                                           |                                     |                                                     |                                     | REDATTO                                 | VERIFICATO                                            | APPROVATO       |                                  |  |  |

#### INDICE

| IN | ITRODUZIONE                                                            | 1  |  |
|----|------------------------------------------------------------------------|----|--|
| C2 | APITOLO PRIMO                                                          | 4  |  |
| D  | ATI DI BASE                                                            | 4  |  |
| 1  | Cartografia                                                            | 4  |  |
| 2  | Modello digitale dell'elevazione del terreno                           | 5  |  |
| 3  | Rilievi topografici pregressi                                          | 6  |  |
| 4  | Nuovo rilievo topo-batimetrico                                         | 7  |  |
| C2 | APITOLO SECONDO                                                        | 11 |  |
| М  | ODELLI DI MOTO PERMANENTE                                              | 11 |  |
| 1  | Descrizione del modello                                                | 11 |  |
| 2  | Applicazione del modello al Mignone alla SS1 Aurelia                   | 12 |  |
| 3  | Applicazione del modello al Mignone a Rota                             | 14 |  |
| C2 | APITOLO TERZO                                                          | 19 |  |
| М  | ODELLO DI MOTO VARIO                                                   | 19 |  |
| 1  | Descrizione del modello                                                | 19 |  |
| 2  | Applicazione del modello alla valle del Mignone                        | 20 |  |
| 3  | Configurazioni del modello                                             | 22 |  |
|    | 3.1 Geometrie del modello della valle del Mignone                      | 22 |  |
|    | 3.1.1 Valle del Mignone a valle della SS1 Aurelia (modello Quasi 2D)   | 24 |  |
|    | 3.1.2 Effetti della rimozione del vecchio ponte dell'Aurelia           | 28 |  |
|    | 3.1.3 Nuovo tracciato autostradale                                     | 29 |  |
|    | 3.2 Schematizzazione delle dinamiche di apertura delle brecce arginali | 29 |  |
| 4  | Calibrazione del modello                                               | 33 |  |
| 5  | Condizioni al contorno e iniziali                                      | 35 |  |
| C2 | CAPITOLO QUARTO                                                        |    |  |
| S  | CENARI ANTE OPERAM                                                     | 36 |  |
| 1  | Scenari nelle condizioni ante operam                                   | 36 |  |

|    | 1.1 Scenari realizzati                                                                                                                                 | 36                  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|    | 1.2 Sezioni di controllo                                                                                                                               | 38                  |
| 2  | Analisi degli scenari simulati                                                                                                                         | 39                  |
|    | 2.2 Scenario con argini fusibili ( <b>afus</b> )                                                                                                       | 40                  |
|    | 2.2.1 Descrizione delle dinamiche d'inondazione                                                                                                        | 40                  |
|    | 2.3 Scenario con argini tracimabili, ma non fusibili ( <b>anofus</b> )                                                                                 | 46                  |
|    | 2.3.1 Descrizione delle dinamiche d'inondazione                                                                                                        | 47                  |
|    | 2.4 Scenario con argini non tracimabili (anotra)                                                                                                       | 47                  |
|    | 2.4.1 Descrizione delle dinamiche d'inondazione                                                                                                        | 48                  |
|    | 2.5 Scenari senza il vecchio ponte dell'Aurelia ( <b>afusN</b> , <b>anofusl</b><br><b>anotraN</b> )                                                    | ✔е<br>49            |
|    | 2.5.1 Descrizione delle dinamiche d'inondazione                                                                                                        | 50                  |
|    | 2.6 Scenari con il nuovo attraversamento autostradale ( <b>sfus</b> , <b>sno</b> j<br><b>snotra</b> , <b>sfusN</b> , <b>snofusN</b> e <b>snotraN</b> ) | f <b>us</b> ,<br>51 |
|    | 2.6.1 Descrizione delle dinamiche d'inondazione                                                                                                        | 53                  |
|    | 2.6.1.1 Confronto tra gli scenari <b>sfus</b> e <b>afus</b>                                                                                            | 53                  |
|    | 2.6.1.2 Confronto tra gli scenari <b>snofus</b> e <b>anofus</b>                                                                                        | 54                  |
|    | 2.6.1.3 Confronto tra gli scenari <b>snotra</b> e <b>anotra</b>                                                                                        | 55                  |
|    | 2.6.1.4 Confronto tra gli scenari <b>sfus</b> e <b>sfusN</b>                                                                                           | 56                  |
|    | 2.6.1.5 Confronto tra gli scenari <b>snofus</b> e <b>snofusN</b>                                                                                       | 56                  |
|    | 2.6.1.6 Confronto tra gli scenari <b>snotra</b> e <b>snotraN</b>                                                                                       | 56                  |
| 3  | Scelta delle condizioni ante operam di riferimento                                                                                                     | 57                  |
| C  | CAPITOLO QUINTO                                                                                                                                        | 60                  |
| II | NTERFERENZE IDRAULICHE POST OPERAM                                                                                                                     | 60                  |
| 1  | Verifica delle livellette stradali di progetto                                                                                                         | 60                  |
|    | 1.1 Variante n. 1                                                                                                                                      | 60                  |
|    | 1.2 Variante n. 2                                                                                                                                      | 66                  |
|    | 1.3 Variante n. 3                                                                                                                                      | 71                  |
|    | 1.4 Variante n. 4                                                                                                                                      | 76                  |

|                  | 1.5 Scelta del tracciato della strada in progetto      | 76  |
|------------------|--------------------------------------------------------|-----|
| 2                | Interferenze con le piene del Mignone                  | 81  |
|                  | 2.1 Geometria del modello idraulico post operam        | 81  |
|                  | 2.2 Simulazioni post operam                            | 83  |
| C                | 97                                                     |     |
| P                | AI DELL'AUTORITÀ DEI BACINI REGIONALI DEL LAZIO        | 97  |
| 1                | PAI vigente                                            | 97  |
|                  | 1.1 Studio Hydrodata del 1998                          | 97  |
|                  | 1.2 Studio DSIC 2003                                   | 99  |
|                  | 1.3 Fasce fluviali del PAI vigente                     | 100 |
| 2                | Confronto PAI vigente - presente studio                | 101 |
|                  | 2.1 Interferenze dell'opera in progetto secondo il PAI | 103 |
| C                | 108                                                    |     |
| EROSIONI D'ALVEO |                                                        | 108 |
| 1                | Descrizione dei modelli                                | 108 |
|                  | 1.1 Obiettivi                                          | 108 |
|                  | 1.2 Bilancio dei sedimenti                             | 109 |
| 2                | Fenomeni erosivi                                       | 113 |

# INTRODUZIONE

I modelli idraulici hanno lo scopo di determinare i livelli idrici e l'ampiezza delle aree inondabili per onde di piena assegnate, nonché l'azione erosiva dell'acqua sugli alvei, allo scopo di individuare gli interventi per mettere in sicurezza le aree a rischio.

In questo studio sono stati impiegati tre tipi di modelli:

- a) un modello a fondo fisso monodimensionale in moto permanente,
- b) un modello a fondo fisso monodimensionale in moto vario.
- c) un modello a fondo mobile monodimensionale in moto gradualmente vario.

L'utilizzo dei modelli è stato guidato da alcune considerazioni.

I modelli a fondo fisso sono abbastanza affidabili, soprattutto dove possono essere tarati direttamente per la presenza di stazioni di misura delle portate. Dove queste stazioni mancano, è possibile scegliere con un sufficiente grado di attendibilità dei valori di letteratura, espressi in funzione delle caratteristiche degli alvei.

I modelli a fondo mobile, invece, impiegano algoritmi che simulano l'erosione e la sedimentazione che non sono tarabili per mancanza delle campagne d'indagini necessarie, che sono comunque difficili e molto onerose. D'altra parte, si può fare soltanto un limitato assegnamento sui parametri forniti dalla letteratura, che sono poco attendibili. Le alterazioni degli alvei simulate dai modelli a fondo mobile devono essere perciò considerate soltanto indicative, anche se molto utili per dare un'idea delle possibili localizzazioni degli scavi e un ordine di grandezza della loro entità.

I modelli monodimensionali riescono a simulare meglio di quelli bidimensionali gli andamenti dei livelli idrici nelle vallate relativamente strette, senza apprezzabili componenti trasversali delle velocità, perché possono far uso efficacemente di algoritmi che simulano al meglio i fenomeni idraulici.

I modelli di moto permanente consentono di valutare meglio di quelli di moto vario l'effetto idraulico di ostacoli e manufatti in alveo, e possono essere usati per determinare i livelli idrici con buona affidabilità nei tratti in cui la corrente varia lentamente nel tempo rispetto alla lunghezza del tratto.

I modelli di moto vario permettono di tenere conto efficacemente della variabilità delle portate nel tempo, quando questa è rapida rispetto alla lunghezza del tratto considerato, e di valutare l'effetto di laminazione delle esondazioni.

Le condizioni dell'area interessata dallo studio richiedono l'uso integrato di questi strumenti per risolvere i vari problemi posti dagli eventi di piena. In particolare, un modello di moto permanente a fondo fisso, tarato con le misure di livello e portata alle stazioni idrometrografiche del Mignone al ponte della SS1 Aurelia, alla Teleferica di Rota e al ponte di Rota, è stato usato per determinare le scale di deflusso di piena delle tre stazioni idrometrografiche citate.

Il modello monodimensionale di moto vario a fondo fisso, che utilizza gli stessi parametri di taratura di quelli di moto permanente, è stato usato per simulare l'andamento dei livelli idrici nella valle del Mignone, dalla foce e fino a monte della stazione idrometrografica di Rota.

Il modello di moto vario a fondo mobile è stato impiegato per individuare le zone di erosione e l'ordine di grandezza degli scavi.

Le piene utilizzate nei modelli di moto vario sono state desunte dallo studio idrologico descritto nella *Relazione Idrologica* e, in particolare, sono state determinate per mezzo del modello afflussi-deflussi descritto nel capitolo 4 di quella relazione, partendo dalle piogge intense descritte nel capitolo 2.

Questa *Relazione Idraulica* si articola in 7 capitoli:

- nel capitolo primo sono descritti i dati di base utilizzati per la realizzazione dei modelli idraulici e una sintesi sui rilievi topografici appositamente realizzati. Una completa descrizione del rilievo topo-batimetrico realizzato è riportata nella *Relazione sui rilievi topo-batimetrici*;
- nel capitolo secondo sono descritti i modelli di moto permanente utilizzati per definire le scale di deflusso delle stazioni idrometriche del Fiume Mignone. Nel punto 2 quello dalla foce a monte del ponte della SS1 Aurelia. Nel punto 3 quello da alcuni chilometri a valle della stazione idrometrografica di Rota teleferica a monte del ponte sul Mignone a Rota;
- nel capitolo terzo è descritto il modello in moto vario usato:
  - per analizzare, come mostrato nel capitolo quarto, gli scenari *ante operam* e scegliere quelli di riferimento,
  - per valutare, come mostrato nel capitolo quinto, le interferenze dell'opera in progetto nelle condizioni *post operam*;

- nel capitolo sesto si è svolta la valutazione delle interferenze idrauliche dell'opera in progetto riferita al PAI vigente dell'Autorità dei Bacini Regionali del Lazio;
- infine nel capitolo settimo è descritto il modello a fondo mobile e sono indicate le zone soggette a erosione e la possibile entità di queste.

# capitolo primo Dati di base

#### 1 Cartografia

La base cartografica utilizzata per le elaborazioni idrauliche è costituita dalla Nuova Carta Tecnica Regionale (NCTR) a scala 1:5.000, rappresentata nella figura 1.1. Nella figura si riportano, sulla base della NCTR, l'asse del Fiume Mignone nel tratto modellato e i limiti dei bacini alle sezioni di chiusura lungo il fiume.



Figura 1.1. NCTR a scala 1:5.000

#### 2 Modello digitale dell'elevazione del terreno

Lungo la valle del fiume è disponibile il volo Lidar del Ministero dell'Ambiente, la cui restituzione sotto forma di modello digitale dell'elevazione del suolo (DEM) è riportata nella figura 1.2. La risoluzione spaziale del DEM è a passo di 1 m nella valle del fiume e di 2 m lungo la fascia costiera. Nella figura 1.3 si riporta un esploso del DEM disponibile nella valle del Mignone a partire dalla confluenza del Fosso Nasso fino alla foce nel Mar Tirreno.



Figura 1.2. DEM nella valle del Mignone modellata idraulicamente



Figura 1.3. DEM della valle del Mignone dalla confluenza del Fosso Nasso alla foce

# 3 Rilievi topografici pregressi

Sono stati acquisiti, i seguenti rilievi topografici:

- rilievi eseguiti dal Consorzio di Bonifica della Maremma Etrusca nel 1958, per i Lavori di sistemazione del tronco inferiore del Fiume Mignone – 1° Lotto (progetto degli argini esistenti), in formato cartaceo;
- rilievi eseguiti dal Consorzio di Bonifica della Maremma Etrusca nel 1994, per i *Lavori di manutenzione ordinaria delle opere di bonifica del comprensorio per l'anno 1992*, in formato cartaceo;
- rilievi eseguiti della società Hydrodata per conto dell'Autorità dei Bacini Regionali del Lazio nel 1998, nell'ambito dello *Studio ST10*, in formato cartaceo;
- rilievi del Dipartimento di Scienze dell'Ingegneria Civile dell'Università degli Studi Roma Tre per conto dell'Autorità dei Bacini Regionali del Lazio del 2003, nell'ambito dello studio Rilievi, Studi e Ricerche finalizzati all'aggiornamento del Piano Stralcio per l'Assetto Idrogeologico (P.A.I.) relativamente alla difesa idraulica dei Bacini Regionali minori – Area Nord, in formato digitale georeferenziato;
- rilievi della società CO.RI.P. per conto dell'ARDIS del 2007 nell'ambito dei Lavori di demolizione e rimozione delle costruzioni abusive sull'area golenale destra, ripristino dell'argine a valle della strada litoranea – Progetto esecutivo e del 2010 nell'abito degli Interventi di riassetto idrogeologico della Maremma Laziale, con esecuzione di rilievi topografici sul Fiume Mignone dalla S.S. 1 Aurelia verso monte fino alla confluenza con il Fosso Nasso, in formato digitale;
- rilievi della società SPEA del 2010 nell'ambito del *Progetto esecutivo della nuova autostrada A12*, in formato digitale georeferenziato.

Come specificato in seguito, i rilievi digitali e georeferenziati indicati sono stati utilizzati per verificare ed integrare il nuovo rilievo topografico eseguito.

## 4 Nuovo rilievo topo-batimetrico

La nuova campagna topo-batimetrica, illustrata nel dettaglio nella relativa *Relazione sui rilievi topo-batimetrici*, è consistita nella rilevazione, durante l'ottobre e il novembre 2013, di 64 sezioni trasversali d'alveo e aree inondabili e di 7 opere d'arte, come mostrato nella figura 1.4.

Al fine di validare il DEM e i rilievi digitali pregressi (rilievo del 2003), alcune delle sezioni del nuovo rilievo sono state rilevate in corrispondenza delle sezioni rilevate nei rilievi pregressi. Successivamente si sono eseguiti dei sistematici confronti tra le nuove sezioni rilevate e le equivalenti sezioni dei rilievi pregressi, e tra le sezioni dei rilievi e le equivalenti sezioni estratte da DEM, di cui nelle figure dalla 1.5 alla 1.7 si riportano alcuni esempi, riscontrando delle differenze di quota estremamente contenute: mediamente non superiori ai 25 cm. Tali modeste differenze hanno consentito di infittire i modelli idraulici, laddove ritenuto opportuno, con nuove sezioni oltre quelle appositamente rilevate, sia utilizzando i rilievi pregressi (rilievo del 2003), sia estraendole direttamente dal DEM.



Figura 1.4. Nuovo rilievo eseguito nell'ottobre - novembre 2013



Figura 1.5. Confronti tra sezioni rilevate (rilievi 2003 e 2013)



Figura 1.6. Confronti tra sezioni rilevate (rilievi 2003 e 2013) e DEM



Figura 1.7. Confronti tra sezioni rilevate (rilievo 2013) e DEM

## capitolo secondo

## Modelli di moto permanente

#### 1 Descrizione del modello

Per il modello monodimensionale a fondo fisso in moto permanete è stato usato il classico codice Hec-Ras versione 4.1.0 del gennaio 2010, descritto nell'appendice 1, che svolge l'integrazione numerica dell'equazione dei profili di corrente:

$$\frac{dh}{dx} = \frac{\frac{i_f - \frac{Q^2}{\chi^2 b^2 h^3}}{1 - \frac{\alpha}{g} \frac{Q^2}{b^2 h^3}}$$

dove:

- x è l'ascissa lungo l'asse della corrente;
- g è l'accelerazione di gravità;
- $\alpha$  è il coefficiente di Coriolis per l'energia;
- h è l'altezza idrica rispetto al fondo;
- Q è la portata;
- b è la larghezza della superficie libera;
- $i_f$  è la pendenza del fondo;
- $\chi$  è il coefficiente di Chezy, espresso dalla formula di Manning:

$$\chi=\frac{1}{n}R^{1/6},$$

con:

- R raggio idraulico;
- n indice di scabrezza.

## 2 Applicazione del modello al Mignone alla SS1 Aurelia

Come accennato nell'introduzione, il modello è stato tarato sulle misure di portata alla stazione idrometrografica del Mignone alla SS1 Aurelia, secondo quanto indicato nel punto 3 del capitolo 3 della *Relazione Idrologica*.

Lo zero dell'asta idrometrica presente sulla pila del ponte della SS1, rilevato nell'ambito della nuova campagna di rilievi realizzata (figura 2.1), è risultato a quota -0,157 m s.m.

Sono stati assunti come parametri di taratura gli indici di scabrezza di Manning dell'alveo inciso e delle are inondabili, ottenendo i seguenti valori:

nell'alveo ordinario: n = 0,037, nelle aree inondabili: n = 0,060;

che sono sostanzialmente in linea con quelli ottenuti per le sezioni idrometrografiche dei corsi d'acqua del bacino del Tevere da Bencivenga e al. (2001), e dei corsi d'acqua statunitensi da Ven Te Chow (1986), e dal Corpo Geologico degli Stati Uniti (1989).

Per la realizzazione del modello si sono utilizzate, sia le sezioni idrauliche realizzate con il nuovo rilievo, sia le sezioni realizzate dall'Autorità dei Bacini Regionali del Lazio (rilievo PAI del 2003). La geometria del modello è rappresentata nella figura 2.2.

Il modello è stato usato per la ricostruzione della scala di deflusso alla SS1, tracciando i profili di corrente per portate variabili da 1 a  $1500 \text{ m}^3/\text{s}$ . Come condizione al contorno di valle è stato imposto un sovralzo di tempesta pari a 0,75 m s.m. I profili di corrente sono rappresentati nella figura 2.3.



Figura 2.1. Asta idrometrica del Mignone al ponte della SS1

La scala di deflusso è riportata nella figura 2.4. La scala di deflusso oltre i 700  $m^3/s$  è stata tracciata nella figura con una linea tratteggiata, poiché oltre tale portata cominciano le tracimazioni delle arginature presenti a valle dell'Aurelia e la scala di deflusso diventa aleatoria. La parte a tratteggio della scala di deflusso è stata ottenuta nell'ipotesi di arginature non tracimabili, elevando fittiziamente le sommità arginali nel modello idraulico per impedirne la tracimazione, come indicato nell'esempio di figura 2.5.



Figura 2.2. Geometria del modello (Scala di deflusso del Mignone al ponte della SS1)



Figura 2.3. Profili di corrente (Scala di deflusso del Mignone al ponte della SS1)



Figura 2.4. Scala di deflusso del Mignone al ponte della SS1 Aurelia



Figura 2.5. Esempio di modellazione con tracimazione arginale impedita (sez. n. 40)

## 3 Applicazione del modello al Mignone a Rota

Come indicato nel punto 2 del capitolo 3 della *Relazione Idrologica* la sezione idrometrografica di Rota era originariamente situata in una stretta ripida

gola del Fiume Mignone a valle della confluenza del Fosso Verginese (sezione di Rota teleferica), mentre recentemente (2012) le misurazioni di livelli idrometrici avvengono al ponte di Rota sul Mignone, ubicato immediatamente a monte del Fosso Verginese, dove si apre una piccola valle sub-pianeggiante.

Gli zeri delle aste idrometriche di Rota teleferica di Rota sul Mignone, rilevati nell'ambito della nuova campagna di rilievi realizzata (figure 2.6 e 2.7), sono risultati rispettivamente alle quote di 102,347 e 105,815 m s.m.

La geometria del modello è rappresentata nella figura 2.8. Per tutte e due le stazioni idrometrografiche si è utilizzato un unico modello di moto permanente, basato sul nuovo rilievo di sezioni topo-batimetriche realizzato nell'ottobre - novembre 2013, a partire (sez. 630) da circa quattro chilometri a valle della sezione idrometrografica di Rota teleferica (sez. 750) e fino a monte (sez. 830) del ponte di Rota sul Mignone (sez. 805).

Sono stati assunti come parametri di taratura gli indici di scabrezza di Manning dell'alveo inciso e delle zone inondabili, ottenendo i seguenti valori:

dalla sezione n. 630 alla sezione n. 760:

nell'alveo ordinario: n = 0,060nelle zone inondabili: n = 0,100

dalla sezione n. 770 alla sezione n. 830:

nell'alveo ordinario: n = 0,035

nelle zone inondabili: n = 0,080

che sono sostanzialmente in linea con quelli di letteratura già citati precedentemente.



Figura 2.6. Aste idrometriche del Mignone a Rota teleferica



Figura 2.7. Aste idrometriche del Mignone al ponte di Rota-sul Mignone

Il modello è stato usato per la ricostruzione della scala di deflusso alle due sezioni idrometrografiche citate, tracciando i profili di corrente per portate variabili da 1 a 800  $m^3/s$ . Come condizione al contorno di valle è stato imposta condizione di moto uniforme. I profili di corrente sono rappresentati nella figura 2.9.

Le scale di deflusso ottenute sono illustrate nelle figure 2.10 e 2.11.



Figura 2.8. Geometria del modello (Scale di deflusso del Mignone Rota)



Figura 2.9. Profili di corrente (Scala di deflusso del Mignone a Rota)



Figura 2.10. Scala di deflusso del Mignone a Rota teleferica



Figura 2.11. Scala di deflusso del Mignone al ponte di Rota

### capitolo terzo

### Modello di moto vario

#### 1 Descrizione del modello

Per il modello monodimensionale a fondo fisso in moto vario è stato usato il classico codice Hec-Ras versione 4.1.0 del gennaio 2010, descritto nell'appendice 2, che svolge l'integrazione numerica delle equazioni di de Saint Venant:

- l'equazione di continuità:

$$b\frac{\partial h}{\partial t} + \frac{\partial Q}{\partial x} - q = 0$$

- l'equazione della quantità di moto:

$$\frac{\partial Q}{\partial t} + \frac{2\beta Q}{\Omega} \frac{\partial Q}{\partial x} + \left(g\Omega - \frac{\beta bQ^2}{\Omega^2}\right) \frac{\partial h}{\partial x} - \frac{\beta Q^2}{\Omega^2} \left(\frac{\partial \Omega}{\partial x}\right)_h - g\Omega (i_f - J_r) - qv = 0$$

dove:

- t è il tempo
- $\beta$  è il coefficiente di Coriolis per la quantità di moto
- $\Omega$  è l'area della sezione bagnata
- $J_r$  è la pendenza della linea dell'energia, ricavata dalla formula di Chezy
- q è la portata per unità di lunghezza dei contributi laterali
- v è la velocità dei contributi laterali

Il modello è stato utilizzato per simulare l'andamento dei livelli idrici per le onde di piene di progetto relative ai tempi di ritorno esaminati di 30, 50, 100, 200 e 500 anni. Le onde di progetto sono state determinate come mostrato nel capitolo 4 della *Relazione Idrologica*.

Per ogni bacino schematizzato (figura 1.1), gli idrogrammi di piena e le portate al colmo per i vari tempi di ritorno esaminati sono rappresentati nella figura 3.1.



Figura 3.1 – Onde di piena critiche per assegnati tempi di ritorno nei diversi bacini esaminati del Mignone

## 2 Applicazione del modello alla valle del Mignone

La valutazione delle aree inondabili mediante modello numerico in moto vario pone alcuni problemi di carattere computazionale. In linea di principio, è possibile calcolare le aree d'inondazione mediante l'inviluppo dei risultati delle varie simulazioni effettuate imponendo di volta in volta in ogni tratto fluviale a monte di una sezione di interesse (sezione di chiusura dei bacini analizzati nel modello idrologico) il corrispondente idrogramma di piena, per assegnato tempo di ritorno. Oltre al notevole onere computazionale, derivante dall'elevato numero di simulazioni, la definizione dell'inviluppo dei limiti delle aree inondabili non è immediata, e presenta notevoli problemi di carattere operativo, quali ad esempio la risoluzione di discontinuità nelle perimetrazioni. Si consideri, infatti, che così facendo, in corrispondenza di una sezione di interesse, le aree inondabili vengono tracciate due volte: una prima volta con l'onda di piena del bacino di monte (tratto a monte della sezione di interesse) e una seconda volta con l'onda di piena del bacino di valle (tratto a valle della sezione di interesse); con una conseguente discontinuità nei profili idrici e nei limiti delle aree inondabili.

L'approccio qui seguito è quello di svolgere una sola simulazione numerica per ciascun tempo di ritorno imponendo nelle sezioni d'interesse del modello idraulico (sezioni di chiusura dei bacini idrologici) la congruenza con gli idrogrammi di progetto determinati dallo studio idrologico. I passi della procedura possono essere sintetizzati come segue, procedendo da monte verso valle:

- 1 s'impone a monte del dominio di calcolo (prima sezione di monte del modello idraulico) l'idrogramma di progetto relativo alla prima sezione di interesse del primo bacino idrologico considerato;
- 2 in corrispondenza della sezione di interesse successiva, di valle, si determina l'idrogramma di progetto relativo al bacino idrologico corrispondente, inserendo nel modello idraulico un'ulteriore contributo di portata ottenuto dalla differenza tra l'idrogramma di progetto (modello idrologico) e l'idrogramma fornito dal modello idraulico nella sezione di interesse di valle, ottenuto quindi per trasferimento e laminazione dell'onda di progetto (modello idrologico) della sezione di interesse di monte, dalla sezione di interesse di monte alla sezione di interesse di valle. La sezione del modello idraulico in cui si inserisce il contributo di portata viene scelta opportunamente in corrispondenza della confluenza del principale tributario nel tratto in esame tra le due sezioni di interesse in considerazione. Se i tributari principali sono più di uno, si può opportunamente parzializzare il contributo precedentemente determinato, tenendo in conto il tempo di trasferimento dell'onda di piena dalla sezione dove confluisce un tributario e la sezione di interesse di valle; il tempo di trasferimento dell'onda di piena è fornito dal modello idraulico;
- 3 si procede in questa maniera fino alla sezione estrema di valle del dominio di calcolo del modello idraulico (sezione di chiusura del bacino idrologico complessivo), verificando a posteriori la congruenza tra gli

idrogrammi del modello idraulico nelle varie sezioni di interesse intermedie e gli idrogrammi di piena previsti dallo studio idrologico nelle stesse sezioni di interesse (idrogrammi di progetto), raffinando eventualmente la procedura per tentativi.

In questo modo è possibile svolgere un'unica simulazione per ciascun tempo di ritorno considerato, con un notevole risparmio in termini di calcolo. Inoltre, la perimetrazione delle aree inondate è univoca, poiché la continuità dei flussi idrici relativi allo stesso tempo di ritorno esclude apriori qualsiasi discontinuità nei profili idrici in corrispondenza delle sezioni di interesse.

## 3 Configurazioni del modello

L'infrastruttura viaria in progetto, di cui nella figura 3.2 si mostrano le quattro varianti alternative esaminate, interessa la valle del Fiume Mignone a partire dalla confluenza nel Mignone del Fosso Nasso e fino alla SS1 Aurelia. Come mostrato nella figura, tre delle quattro varianti si mantengono sempre in destra idrografica del fiume, mentre la terza prevede l'attraversamento del fiume in viadotto circa  $3 \ km$  a monte della SS1 Aurelia. Nella figura, inoltre, si mostra come il fiume sia arginato, dalla sezione immediatamente a valle dell'Aurelia fino al mare.

#### 3.1 Geometrie del modello della valle del Mignone

Il modello di moto vario monodimensionale è stato implementato con le sezioni idrauliche ottenute dal rilievo topo-batrimetrico realizzato nell'ottobre novembre 2013. Per infittire il numero di sezioni del modello, previo controllo della congruità delle quote altimetriche come mostrato precedentemente (paragrafo 4 del capitolo 1), tale rilievo è stato integrato:

- nel tratto da poco a monte del ponte della SS1 al mare, con il rilievo delle sezioni d'alveo eseguito dall'Autorità dei Bacini Regionali del Lazio nel 2003;
- nel tratto da poco a monte della confluenza nel Mignone del Fosso Nasso al ponte della SS1 Aurelia, sia con l'estensione delle sezioni nelle aree

inondabili, sia con l'integrazione di nuove sezioni intermedie. Tali integrazioni sono state eseguite tramite estrazione dei relativi punti quotati dal DEM a passo di 1 m;

- nel tratto da poco a monte della confluenza nel Mignone del Fosso Nasso a circa 4 km a valle della sezione idrometrografica del Mignone a Rota teleferica, con l'integrazione di nuove sezioni intermedie tramite estrazione dei relativi punti quotati dal DEM, con eccezione delle due sezioni immediatamente a monte e a valle del ponte della ferrovia Capranica-Civitavecchia, che sono state rilevate;
- nel tratto da circa 4 km a valle della sezione idrometrografica del Mignone a Rota teleferica e fino a monte della nuova sezione idrometrografica di Rota sul Mignone, con l'estensione delle sezioni nelle aree inondabili tramite estrazione dei relativi punti quotati dal DEM.



Figura 3.2. Infrastruttura stradale in progetto: varianti esaminate

Nella figura 3.3 si mostra questa prima geometria del modello di moto vario monodimensionale da cui si evince che a valle del ponte della SS1 Aurelia le sezioni idrauliche del modello riguardano esclusivamente l'alveo fluviale contenuto tra le arginature esistenti.



Figura 3.3. Geometria iniziale del modello di moto vario monodimensionale

#### 3.1.1 Valle del Mignone a valle della SS1 Aurelia (modello Quasi 2D)

Come indicato precedentemente (paragrafo 2 del capitolo 2), le arginature del Mignone a valle dell'Aurelia vengono tracimate con piene a partire da circa 700  $m^3/s$ , conseguentemente già la piena trentennale, che ha una portata al colmo di circa 900  $m^3/s$  (figura 3.1), produrrebbe la tracimazione degli argini esistenti.

Per valutare le interferenze dell'opera in progetto con le dinamiche di piena del fiume immediatamente a monte della SS1, in cui i livelli e le velocità sono fortemente influenzati dalle condizioni idrodinamiche che si instaurano a valle della SS1, si è ritenuto necessario valutare l'effetto delle tracimazioni arginali e la conseguente apertura di brecce per crollo degli argini erodibili. Tale valutazione è stata eseguita tramite una modellazione *Quasi 2D* in cui a valle del ponte della SS1 Aurelia sono stati schematizzati tre alvei sub-paralleli composti da un *canale principale centrale*, costituito dall'alveo ordinario e di piena fino alle sommità arginali, e da due *canali secondari laterali*, costituiti dalle aree retrostanti le arginature in destra e sinistra idraulica, eventualmente inondabili per sormonto e crollo arginale. Le sezioni idrauliche dei *canali laterali* sono state estratte dal DEM.

I tre alvei schematizzati, mostrati nella figura 3.4, possono scambiare tra di loro portata tramite sfioratori laterali che rappresentano l'andamento dalle sommità arginali. Negli sfioratori laterali il modello idraulico è in grado di simulare l'eventuale apertura di brecce causata dai sormonti arginali.



Figura 3.4. Geometria finale del modello di moto vario monodimensionale (zona SS1 - foce)

Nella figura 3.5 si riporta, a partire da poco a monte della SS1 Aurelia e fino alla foce, il profilo del fondo dell'alveo del Fiume Mignone, delle quote minime delle aree retrostanti le arginature e del coronamento arginale.



Figura 3.5. Profili del fondo alveo, del fondo delle aree inondabili e dei coronamenti arginali

A valle dell'attraversamento dell'Aurelia, costituito dai ponti dell'attuale SS1 e della vecchia Aurelia, sono presenti quattro attraversamenti del Fiume Mignone:

- due ponti tubo acquedottistici, che interessano solamente l'alveo arginato;

 la ferrovia Roma – Pisa (figura 3.6) che attraversa la valle in rilevato, dove in sinistra idraulica è presente una discontinuità tra le aree eventualmente inondabili a monte e a valle della ferrovia stessa, causata della presenza di un rilievo naturale in cui si innestano le arginature esistenti, mentre in destra idraulica le aree eventualmente inondabili a monte e a valle della ferrovia sono connesse tramite due tombini, di cui uno relativo al sottopasso ferroviario della S.P. n. 97;



Figura 3.6. Ferrovia Roma - Pisa: attraversamento della valle del Mignone

- la litoranea S.P. n. 45 (figura 3.7), che attraversa la valle del Mignone con quote della livelletta stradale leggermente superiori al piano campagna.

Poco a valle dell'attraversamento della S.P. n. 45, in sinistra idraulica l'argine del Mignone abbandona il fiume e con continuità risale lungo la destra idraulica di un fosso affluente (figura 3.7), denominato Fosso della Vite. Per simulare l'allagamento da parte del Fiume Mignone delle aree di pertinenza di questo fosso, che può avvenire o per rigurgito da valle causato dall'innalzamento dei livelli di piena nel Mignone o per tracimazione delle arginature, nel modello idraulico è stata schematizzata una *cassa*, che rappresenta un'area di accumulo idrostatico (riportata in colore azzurro nella figura 3.4), che può scambiare portata, sia con il Mignone, sia con le aree retrostanti l'arginatura destra del fosso stesso (si consideri che tali aree sono

anche difese dall'arginatura in sinistra idraulica del Mignone, come mostrato nella figura 3.7). Lo scambio di portata può avvenire, sia con il fiume, tramite uno sfioratore che rappresenta la sezione idraulica del fosso alla sua confluenza nel fiume, sia con le aree retrostanti l'arginatura destra del fosso, tramite sfioratori che rappresentano l'andamento delle arginature stesse, in cui possono aprirsi brecce in caso di tracimazione. La curva d'invaso della *cassa* è stata ricavata direttamente dal DEM.



Figura 3.7. Litoranea S.P. n. 45: attraversamento della valle del Mignone

In corrispondenza dell'attraversamento dell'Aurelia sul Mignone sono attualmente presenti due ponti stradali, mostrati nella figura 3.8. Il ponte dell'attuale strada statale è ubicato immediatamente a monte di quello della vecchia Aurelia, che è attualmente dismesso. L'attuale accesso ai due ponti (figura 3.9) è costituito da un unico rilevato stradale che attraversando la valle determina due corde molli con quote estradosso inferiori di circa 3 m rispetto all'estradosso dell'attuale ponte stradale. Anche il vecchio ponte presenta una quota dell'estradosso inferiore di circa 1 m rispetto a quella dell'attuale attraversamento.

Nel modello idraulico le aree inondabili a monte dei due ponti (dove non sono presenti arginature) sono collegate alle aree eventualmente inondabili a valle dei ponti e a tergo delle arginature tramite sfioratori che rappresentano l'andamento delle quote stradali dei rilevati dell'Aurelia stessa. Le portate sfiorate per tracimazione del rilevato stradale, quindi, possono bypassare il *canale centrale* andando ad allagare direttamente le aree eventualmente inondabili a tergo delle arginature (figure 3.4 e 3.8). Per ovvie ragioni nella modellazione degli sfioratori che rappresentano l'andamento della livelletta dei rilevati dell'Aurelia è stata inibita la formazione di brecce.



Figura 3.8. Attraversamento della SS1 Aurelia della valle del Mignone

#### 3.1.2 Effetti della rimozione del vecchio ponte dell'Aurelia

Come mostrato nella figura 3.8, il vecchio ponte è costituito da tre arcate di cui la principale (centrale) in alveo e le secondarie (laterali) nelle golene di piena. Il vecchio ponte, possedendo una sezione idraulica decisamente inferiore a quella dell'attuale ponte stradale, costituisce un ostacolo al deflusso di piena del fiume. Questa ostruzione genera un rigurgito che si propaga a monte dell'attuale ponte stradale, dove il Mignone può allagare l'ampia vallata. Conseguentemente, l'incremento dell'inondazione a monte produce una laminazione delle piene del fiume a valle dell'attraversamento. Per valutare gli effetti indotti a monte e a valle dell'attraversamento di una eventuale rimozione del vecchio ponte dell'Aurelia, tutte le simulazioni idrauliche sono state svolte in due distinte configurazioni geometriche del modello idraulico che prevedono, sia la presenza, sia la rimozione del ponte.

#### 3.1.3 Nuovo tracciato autostradale

In corrispondenza dell'attraversamento dell'Aurelia sul Mignone è previsto che l'attuale tracciato stradale venga adeguato alla nuova autostrada Civitavecchia - Livorno. Tale adeguamento prevede, sia un innalzamento della livelletta stradale lungo i rilevati di accesso al ponte attuale, che si manterrebbe all'incirca all'attuale estradosso, sia la realizzazione di tre tombini, di cui due stradali e uno idraulico, ubicati alle estremità della valle del Mignone.

Nella figura 3.9 si riporta il profilo dell'adeguamento dell'attraversamento del Mignone al nuovo tracciato autostradale.

Per valutare gli effetti dell'adeguamento dell'attuale ponte stradale alla nuova autostrada prevista, tutte le simulazioni idrauliche sono state svolte anche nella configurazione geometrica del modello idraulico che prevede l'inserimento del nuovo attraversamento autostradale.



Figura 3.9. Nuovo attraversamento autostradale della valle del Mignone

# 3.2 Schematizzazione delle dinamiche di apertura delle brecce arginali

I parametri necessari alla schematizzazione delle brecce ne descrivono la forma, la larghezza e l'evoluzione temporale.

L'evoluzione temporale di una breccia in un rilevato omogeneo sottoposto a tracimazione risulta sempre di difficile valutazione. La varietà e complessità dei fenomeni fisici coinvolti non consente una determinazione accurata delle dinamiche evolutive. Inoltre, queste sono spesso determinate da fattori difficilmente valutabili, dipendenti dalla disomogeneità della geometria e delle caratteristiche meccaniche del rilevato. Per questi motivi è arduo determinare in maniera certa l'idrogramma di piena in uscita da una breccia, e l'analisi del fenomeno deve necessariamente essere guidata da principi di cautela.

L'evoluzione della breccia rappresenta, dunque, il fenomeno di maggiore incertezza nella stima della portata uscente dal corso d'acqua. La maggior parte degli approcci seguiti si basa sull'analisi di crolli storici di dighe in (Wahl, sciolti 1998). Ouesto tipo analisi materiali di si fonda sull'elaborazione di alcune grandezze rappresentative del fenomeno, quali la profondità ed estensione finali della breccia e il tempo necessario per la sua completa formazione. Sebbene affette da incertezza, queste grandezze possono dare una prima indicazione riguardo le dinamiche evolutive del crollo arginale. Tra le varie formule disponibili in letteratura, si è scelto di utilizzare le formule di MacDonald e Langridge-Monopolis (1984) e di Froelich (1995), che sono basate su un maggiore numero di osservazioni. Queste formule consentono di stimare i parametri più significativi per la caratterizzazione del fenomeno, cioè la larghezza finale della breccia ed il suo tempo di formazione.

Le due formule utilizzate hanno le seguenti espressioni:

- MacDonald  $V_{er} = 0.0261 \cdot (V_{out} \cdot h_w)^{0.769}$  (m<sup>3</sup>) (3.10)

$$t_f = 0.0179 \cdot V_{er}^{0.364} \cdot 60$$
 (min) (3.11)

- Froelich  $B = 0.1803 \cdot K_{_{0}} \cdot V_{_{W}}^{0.32} \cdot h_{_{b}}^{0.19}$  (m) (3.12)

$$t_f = 0.00254 \cdot V_w^{0.53} \cdot h_b^{-0.9} \cdot 60$$
 (min) (3.13)

Nelle formule compaiono le seguenti grandezze:

- $V_w$  volume d'acqua invasato
- Vout volume d'acqua transitato attraverso la breccia
- $h_{w}$  altezza idrica immediatamente a monte dello sbarramento, misurata rispetto al fondo della breccia
- $h_b$  altezza della breccia

Le grandezze restituite dalle formule sono:

- $V_{er}$  volume di terreno dello sbarramento eroso nel corso dell'apertura della breccia,
- B larghezza della breccia,
- $t_f$  tempo di formazione della breccia.

Il parametro  $K_0$  è uguale a 1,4 nel caso di crollo per tracimazione, mentre nel caso di sifonamento del rilevato arginale esso assume valore unitario. Si sottolinea che i parametri  $V_{er}$ , B e  $t_f$  stimati mediante le (3.10 - 3.13) sono soggetti a notevoli errori, e sono talvolta espressi in termini di ordini di grandezza delle variabili medesime (*Wahl*, 1998). Di conseguenza, le formule di regressione devono essere utilizzate con estrema cautela.

Le formule sopra riportate sono basate sull'elaborazione statistica di dati osservati riguardanti un grande numero di crolli di sbarramenti artificiali in terra. L'applicabilità delle formule al caso del crollo di argini fluviali è giustificata dalla notevole corrispondenza tra i due fenomeni.

La quasi totalità delle formule presenti in letteratura, raggruppate e descritte efficacemente in *Wahl* (1998), scaturendo dall'analisi statistica di eventi accaduti, correlano grandezze proprie degli invasi artificiali, con i molti possibili parametri di apertura delle brecce. È stato quindi necessario determinare quali grandezze, in ambito fluviale, potessero essere meglio rappresentative di quelle messe in correlazione nelle formule. A partire dalle grandezze presenti nelle formule (3.20 - 3.23), sono quindi state fatte le seguenti ipotesi:

- 1 la breccia si apre per erosione progressiva innescata da sormonto arginale; il parametro  $K_0$  nella formula di MacDonald è quindi assunto pari a 1,4; si assume quindi in via preliminare che siano assenti fenomeni di sifonamento del rilevato arginale, che potrebbero essere innescati sia da elevati gradienti idraulici nella filtrazione che da fallanze presenti all'interno del corpo arginale,
- 2 sulla base della geometria degli argini nel tratto di corso d'acqua interessato dal presente studio, si sono assunte le seguenti dimensioni caratteristiche della sezione arginale: sezione uniforme, trapezoidale con base pari a 10 m, coronamento pari a 4 m e altezza media pari a 2,5 m. Nella formula di MacDonald la lunghezza della breccia risulta quindi calcolabile come  $V_{er}/A$ , dove A è l'area della sezione del rilevato arginale pari a 17,5 m<sup>2</sup>;
- 3 dalle osservazioni condotte su crolli di dighe in terra (Wahl, 1998), la breccia è solitamente di forma trapezoidale con pendenza dei versanti pari ad 1:Z (h:v), con Z variabile da 1 a 3. Tuttavia, l'osservazione di brecce arginali in corsi d'acqua della stessa regione con caratteristiche idrologiche simili a quelle del Mignone, evidenzia come la pendenza delle brecce sia maggiore di quella indicata mediamente per le dighe in terra. In mancanza di ulteriori informazioni a riguardo si è ipotizzata una breccia trapezia con fondo coincidente con la quota golenale e Z pari a 1; questo, congiuntamente all'ipotesi (2), comporta che  $h_w$ =  $h_b$ =2.5 m e  $V_{out}$ coincida con il volume  $V_w$ ;

- 4 tutte le brecce arginali che si formano nel corso d'acqua presentano le medesime caratteristiche morfologiche e la stessa dinamica di sviluppo;
- 5 la formazione della breccia avviene qualora il livello idrico, in ciascuno dei *canali* schematizzati, e nella *cassa* collegata al *canale principale*, superi la sommità arginale.

Risulta evidente dalle (3.10 - 3.13) che la dimensione media della breccia ed il suo tempo di formazione dipendono principalmente dal volume transitato attraverso la breccia ( $V_{out} = V_w$ ). Tale volume, insieme al numero complessivo delle brecce che si instaurano nel rilevato arginale, è a sua volta determinato dal volume di piena in ingresso in alveo, e quindi dal tempo di ritorno di progetto. In definitiva, associato alla piena le caratteristiche morfologico/dinamiche della breccia dipendono in linea di principio dal tempo di ritorno dell'evento considerato, imponendo una complessa differenziazione delle dinamiche di tracimazione per ciascun evento. Poiché il volume transitato nella breccia è incognito e dipende dalla evoluzione morfologica della breccia, la determinazione delle caratteristiche delle brecce risulta non-lineare, soluzione da un processo la cui richiede necessariamente un procedimento iterativo. Considerata la complessità dei calcoli richiesti nella determinazione delle caratteristiche delle brecce per ciascun tempo di ritorno, unitamente alla intrinseca incertezza dei risultati ottenuti dalle formule (3.10 - 3.13), si è necessariamente dovuto semplificare il problema adottando una coppia di parametri delle brecce uguale per tutti i tempi di ritorno. Procedendo secondo il principio di cautela, il set di parametri è stato ottenuto applicando il processo iterativo successivamente esposto al caso relativo al tempo di ritorno di 200 anni.

Il procedimento è consistito nei seguenti passi. Si è ipotizzato un valore di tentativo per il volume medio transitante in tutte le brecce formatesi  $V_{out}$ , mediante il quale si ottengono dalle (3.10 - 3.13) due coppie di valori di primo tentativo per le grandezze B e  $t_f$ . Utilizzando tali valori nel modello idraulico si è ottenuto un nuovo valore per  $V_{out}$ . Si è proceduto, quindi, con una nuova valutazione dei parametri B e  $t_f$  fino a convergenza del processo iterativo. Quest'ultimo converge rapidamente (1-2 iterazioni), dimostrando la robustezza delle ipotesi adottate. I valori a convergenza per il tempo di ritorno di 200 anni risultano essere i seguenti:

MacDonald:  $B = 100 \text{ m}; t_f = 30 \text{ minuti},$ Froelich:  $B = 20 \text{ m}; t_f = 120 \text{ minuti}.$ 

Dei quattro valori ottenuti, il valore di larghezza *B* dalla formula di MacDonald è stato determinato a posteriori, sulla base dell'osservazione di brecce occorse in eventi di piena simili in corsi d'acqua analoghi, tra cui anche il Mignone stesso (come mostrato successivamente). Si noti, inoltre, come la formula di MacDonald sia generalmente caratterizzata da un
maggiore intervallo di confidenza nella previsione rispetto ad altre formule (*Wahl*, 2001). L'elevato valore della ampiezza media della breccia ottenuto nella presente analisi conferma l'incertezza relativa alla formula di MacDonald. L'estrema incertezza nella valutazione dei parametri della breccia è anche dimostrata dalla disparità dei valori ottenuti dalle diverse formule. È da osservare che l'applicazione di altre formule empiriche fornisce risultati più simili a quelli di Froelich.

Per quanto riguarda il tempo di formazione della breccia, in presenza delle incertezze prima enunciate, si è ritenuto opportuno adottare un valore intermedio tra quelli forniti dalle formule di MacDonald e Froelich.

La scelta dei parametri morfologici della breccia è quindi caduta sulla seguente coppia di valori (sezione trapezia con pendenza dei versanti 1:1):

 $B = 40 m; t_f = 60 minuti,$ 

che sono quelli adottati per le successive valutazioni delle simulazioni idrauliche eseguite.

### 4 Calibrazione del modello

Nel modello idraulico di moto vario, di cui nella figura 3.10 si riporta la geometria complessiva, sono state adottate le stesse scabrezze adottate nei modelli di moto permanente che, come mostrato precedentemente, sono state determinate tramite taratura dei modelli in corrispondenza delle sezioni idrometrografiche in cui sono state realizzate le misure di portata, con eccezione per la valle del Mignone da monte del ponte della SS1 e fino a poco a monte della confluenza del Fosso Nasso, interessata dall'infrastruttura viaria in oggetto, in cui si è adottata una scabrezza in alveo leggermente superiore a quella determinata per il tratto a valle del ponte della SS1. Tale maggiorazione della scabrezza è dovuta principalmente alla presenza in alveo di isolati alberi ad alto fusto, non presenti nel tratto di valle.



Figura 3.10. Geometria complessiva della valle del Mignone

In particolare si sono adottate le seguenti scabrezze:

nella valle del Mignone a monte della SS1 Aurelia:

- dalla sezione n. 830 alla sezione n. 770 (a monte del ponte di Rota sul Mignone):

nell'alveo ordinario: n = 0,035, nelle zone inondabili: n = 0,080,

- dalla sezione n. 760 alla sezione n. 463 (a cavallo della stazione del Mignone a Rota, gole del Mignone):

nell'alveo ordinario: n = 0,060,

nelle zone inondabili: n = 0,100,

- dalla sezione n. 460 alla sezione n. 200 (a monte della SS1):

nell'alveo ordinario: n = 0,040,

nelle zone inondabili: n = 0,060,

- dalla sezione n. 190 alla sezione n. 170 (immediatamente a monte della SS1):

nell'alveo ordinario: n = 0,037,

nelle zone inondabili: n = 0,060;

nella valle del Mignone a valle della SS1 Aurelia:

- nel canale principale centrale, dalla sezione n. 162 alla sezione n. 10:

nell'alveo ordinario: n = 0,037, nelle zone golenali: n = 0,060,

- nel *canale principale centrale*, dalla sezione n. 10 alla sezione n. 1 (zona di battigia fociale):

nell'alveo ordinario: n = 0,020,

nelle zone golenali: n = 0,025,

- nel *canale secondario destro*, dalla sezione n. 430 alla sezione n. 1:
   nell'intera sezione: n = 0,060,
- nel *canale secondario sinistro*, dalla sezione n. 380 alla sezione n. 1:
   nell'intera sezione: n = 0,060.

### 5 Condizioni al contorno e iniziali

Come mostrato nella *Relazione Idrologica* (paragrafo 1.4 del capitolo 5), la determinazione statistica di valori estremi del livello marino è stata realizzata sia con il modello di distribuzione di probabilità di Gumbel, sia con quello di Weibull. Pur mostrando, ambedue le distribuzioni, un buon adattamento al campione statistico disponibile, le stime sono affette da notevole incertezza, dato l'esiguo numero di eventi disponibile (23 eventi). Conseguentemente nelle elaborazioni idrauliche svolte si è deciso di adottare per le condizioni estreme il modello di Weibull in quanto comunemente utilizzato nell'analisi degli estremi ondametrici.

Nella tabella 3.1 si riportano le condizioni di valle imposte al modello idraulico al variare dei tempi di ritorno considerati.

| Tr (anni) | Livello (Weibull)<br>(cm s.m.) |
|-----------|--------------------------------|
| 30        | 65                             |
| 50        | 68                             |
| 100       | 72                             |
| 200       | 75                             |
| 500       | 79                             |

Tabella 3.1 – Valori estremi del livello marino; distribuzione di probabilità di Weibull stimata mediante il metodo della massima verosimiglianza

Per assicurare stabilità al modello, sono state imposte le seguenti condizioni iniziali nella valle del Mignone a monte e a valle della SS1 Aurelia:

- una portata minima costante pari a 10 m3/s, che è ampiamente contenuta nell'alveo ordinario del fiume;
- nei canali secondari destro e sinistro, una portata minima costante pari a 100 l/s, tale da non generare alcun tipo di allagamento.

## capitolo quarto

## Scenari ante operam

### 1 Scenari nelle condizioni ante operam

Il modello di moto vario descritto nel capitolo precedente è stato utilizzato nelle condizioni *ante operam* per simulare gli scenari successivamente illustrati.

### 1.1 Scenari realizzati

Per valutare le interferenze dell'infrastruttura viaria in progetto sulle piene del Fiume Mignone nella valle a monte dell'attraversamento della SS1 Aurelia (situazione *post operam*), in cui i livelli e le velocità sono influenzati dalle condizioni idrodinamiche che si instaurano a valle della SS1, si sono analizzati diversi scenari *ante operam* che riguardano diverse schematizzazioni delle possibili configurazioni attuali e future delle valle del Mignone a partire dall'attraversamento della SS1 Aurelia e fino alla sua foce nel Mar Tirreno.

In particolare sono state svolte, per i tempi di ritorno di *30*, *50*, *100*, *200* e *500 anni*, le seguenti simulazioni:

- ad <u>argini tracimabili e fusibili</u>, in cui si possono aprire delle brecce-quando
  i livelli idrici raggiungono il coronamento arginale. In questa
  configurazione si sono simulate anche le possibili tracimazioni del rilevato
  di accesso all'attuale attraversamento della SS1, in cui sono state impedite
  le aperture di brecce per crollo, considerate, sia la larghezza del rilevato
  stradale, sia la presenza del manto stradale difficilmente erodibile. Nelle
  figure e tabelle successive queste 5 simulazioni sono state indicate
  sinteticamente con la sigla "*afus*" seguita dal relativo tempo di ritorno
  simulato: "*afusTr...*";
- ad <u>argini tracimabili ma non erodibili</u>, per valutare anche gli effetti a valle e a monte della SS1 di eventuali tracimazioni arginali che non provocano il crollo arginale. Anche in queste simulazioni i rilevati di accesso alla SS1 sono tracimabili ma non erodibili. Nelle figure e tabelle successive queste 5

simulazioni sono state indicate sinteticamente con la sigla "*anofus*" seguita dal relativo tempo di ritorno simulato: "*anofusTr...*";

- ad <u>argini non tracimabili</u>, per valutare gli effetti a monte della SS1 di un eventuale adeguamento delle arginature del Mignone alle piene di progetto simulate. In queste simulazioni le quote del coronamento degli argini del Mignone, della livelletta stradale dei rilevati di accesso all'attraversamento della SS1 e dell'estradosso dell'attuale attraversamento stesso della SS1, sono state elevate fino ad impedire la tracimazione con le piene di progetto. Nelle figure e tabelle successive queste 5 simulazioni sono state indicate sinteticamente con la sigla "anotra" seguita dal relativo tempo di ritorno simulato: "anotraTr...";

Per valutare l'effetto, a monte e a valle della SS1, dell'eventuale <u>demolizione</u> <u>del vecchio ponte dell'Aurelia</u> (come mostrato nel paragrafo 3.1 del capitolo 3), le precedenti 15 simulazioni sono state ripetute nelle rispettive configurazioni geometriche in cui è stato eliminato l'ingombro (incluse le spalle) del vecchio ponte dell'Aurelia. Nelle figure e tabelle successive queste ulteriori 15 simulazioni sono state indicate sinteticamente con le medesime sigle delle precedenti simulazioni, seguite dalla lettera "**N**": "*afusTr...N*", "*anofusTr...N*" e "*anotraTr...N*".

Per valutare, infine, l'influenza dell'<u>adeguamento ad autostrada dell'attuale</u> <u>attraversamento della SS1</u>, le precedenti *30* simulazioni sono state ripetute nelle rispettive configurazioni geometriche in cui l'attuale attraversamento della SS1 (rilevati di accesso al ponte e ponte stesso) è stato sostituito con il nuovo attraversamento, come mostrato nel paragrafo 3.1 del capitolo 3. Nella configurazione con argini non tracimabili, invece, a differenza del caso con l'attraversamento attuale, si è mantenuto l'attraversamento autostradale che, come esposto successivamente viene tracimato per la portata maggiore, per verificare il possibile by-pass in caso di adeguamento delle arginature a valle della SS1, anche a causa della presenza dei tombini nel rilevato autostradale di accesso al ponte (figura 3.9). Nelle figure e tabelle successive queste ulteriori *30* simulazioni sono state indicate sinteticamente con le medesime sigle delle precedenti simulazioni, in cui la prima lettera "**a**" è stata sostituita con la lettera "**s**": "**sfusTr...**", "**snofusTr...**", "**snotraTr...**"

Complessivamente, come precedentemente indicato, sono state svolte 60 simulazioni nei 12 distinti scenari descritti.

### 1.2 Sezioni di controllo

Al fine di confrontare le simulazioni idrauliche dei diversi scenari ipotizzati, si sono individuate 6 sezioni di controllo, riportate nella figura 4.1, che interessano i tre alvei schematizzati a valle dell'attraversamento della SS1 Aurelia.



Figura 4.1. Sezioni di controllo lungo i tre alvei schematizzati a valle della SS1 Aurelia

Le sezioni di controllo sono ubicate:

- *sezione C1*: immediatamente a valle dell'attraversamento della SS1, in modo da controllare l'eventuale sfioro sui rilevati viari di accesso al ponte (canali secondari destro e sinistro) e la portata che transita nel canale principale centrale (alveo arginato);
- sezione C2: circa 500 m a monte del ponte ferroviario, in modo da controllare l'eventuale portata che transita nei canali secondari destro e sinistro e la portata complessiva che include il canale principale;
- *sezione C3*: immediatamente a monte del ponte ferroviario, in modo da controllare, sia la portata che transita nei due tombini del rilevato ferroviario in destra idraulica, sia la portata che transita nel ponte ferroviario (canale principale). La somma delle precedenti fornisce la portata complessiva in quanto il collegamento monte valle della ferrovia in sinistra idraulica, che nella situazione reale è impedito dalla presenza di un rilievo naturale (paragrafo 3.1 del capitolo 3), è stato schematizzato con

un tombino di sezione idraulica sufficiente a far transitare solo pochi l/s, che non generano allagamenti a valle. Conseguentemente la portata che transita in sinistra idraulica è costretta a rientrare in alveo (nel canale principale) a monte della sezione di controllo, mentre in corrispondenza della sezione di controllo risulta sempre trascurabile;

- *sezione C4*: immediatamente a monte della SP 45 litoranea, in modo da controllare le portate che transitano nei tre alvei schematizzati e la relativa portata complessiva;
- *sezione C5*: circa *1000 m* a monte della foce, in modo da controllare la portata che transita nel canale secondario in destra idraulica e nel canale principale. La somma delle precedenti fornisce la portata complessiva in quanto in sinistra idraulica non è più presente il canale secondario, dove il fiume, non più arginato, è contenuto da dei rilievi naturali;
- *sezione C6*: in corrispondenza della foce, in modo da controllare la portata che sfocia a mare, sia dal canale secondario destro, per tracimazione della fascia dunale ivi presente, sia dalla sinistra idraulica dell'ultimo tratto del canale principale, dove ugualmente è presente una fascia dunale tracimabile, sia dal canale principale stesso (foce).

## 2 Analisi degli scenari simulati

Per tutti i tempi di ritorno esaminati di *30*, *50*, *100*, *200* e *500 anni* e per tutti i *12* scenari simulati, nell'Appendice 3 si riportano:

- per la sezione immediatamente a monte dell'attuale attraversamento della SS1 Aurelia:
  - nella tabella A3.1 i massimi livelli idrici,
  - nella tabella A3.2 le massime portate,
  - nella tabella A3.3 i franchi idraulici rispetto all'intradosso del ponte;
- per le sezioni di controllo a valle della SS1, dalla *C1* alla *C6*:
  - nelle tabelle A3.4, A3.7, A3.10, A3.13, A3.16 e A3.19 i massimi livelli idrici nell'alveo fluviale e nelle zone golenali contenuti dalle arginature, e nelle aree eventualmente inondabili retrostanti le arginature in sinistra e destra idraulica,
  - nelle tabelle A3.5, A3.8, A3.11, A3.14, A3.17 e A3.20 le massime portate complessive nelle relative sezioni di controllo,

- nelle tabelle A3.6, A3.9, A3.12, A3.15, A3.18 e A3.21 le massime portate parziali, in alveo e nelle aree eventualmente inondabili retrostanti le arginature in sinistra e destra idraulica.

### 2.2 Scenario con argini fusibili (afus)

I risultati delle simulazioni con argini tracimabili, in cui al momento delle tracimazioni si possono aprire negli argini erodibili delle brecce (paragrafo 3.2 del capitolo 3), sono riportati nelle figure dell'Appendice 3.1, per tutti i tempi di ritorno esaminati di *30*, *50*, *100*, *200* e *500 anni*. In particolare:

- nelle figure A3.1, A3.4, A3.7, A3.10 e A3.13 si riportano, sia le onde di piena nelle sezioni di chiusura dei bacini MIG-180 (a monte della confluenza del Fosso Nasso), MIG-200 (a monte del Fosso Capocaccia), e MIG-250 (a monte dell'attraversamento della SS1), sia i massimi livelli a monte dell'attraversamento della SS1, sia le onde di piena nelle 6 sezioni di controllo a valle della SS1 (in alveo, in destra e sinistra idraulica e complessive);
- nelle figure A3.2, A3.5, A3.8, A3.11 e A3.14 si riportano i profili idraulici dei massimi livelli in alveo e nelle aree eventualmente inondabili retrostanti le arginature a partire da circa 5 km a monte dell'attraversamento della SS1 (sezione n. 300) al Mar Tirreno (foce);
- nelle figure A3.3, A3.6, A3.9, A3.12 e A3.15 si riportano i limiti delle aree inondate con i relativi tiranti idrici.

### 2.2.1 Descrizione delle dinamiche d'inondazione

Le dinamiche relative alle inondazioni dovute alle tracimazioni arginali e alle conseguenti aperture di brecce nelle arginature stesse vengono di seguito descritte facendo riferimento, nelle figure di seguito riportate, all'evento con il tempo di ritorno di *200 anni*.

Le piene simulate determinano la tracimazione del rilevato di accesso dell'attuale attraversamento della SS1: in destra idraulica per tutti i tempi di ritorno considerati, in sinistra idraulica fino al tempo di ritorno di 50 anni (figure dell'Appendice 3.1). L'intradosso del ponte viene sommerso di circa 60 cm per la piena cinquecentennale (franco negativo nella tabella 3.3 dell'Appendice 3) e il franco varia da circa 5 cm a circa 1 m per i restanti tempi di ritorno considerati.

Nella figura 4.2 si riporta l'immagine delle aree inondabili della piena duecentennale al tempo di simulazione di *8,0 ore*, quando la valle a monte della SS1 è già inondata, ma non sono ancora stati tracimati, né i rilevati di accesso al ponte della SS1, né le arginature a valle della SS1.



Figura 4.2. *T* = 8,0 ore: aree inondabili e tiranti idrici (*afusTr200*)

La tracimazione dei rilevati di accesso al ponte della SS1 determina l'allagamento delle aree retrostanti le arginature ubicate nel tratto compreso tra la SS1 e la ferrovia. In questo tratto la tracimazione degli argini causa l'apertura di due brecce (una in destra e una in sinistra idraulica) con il conseguente ulteriore allagamento delle aree inondabili retrostanti le arginature, come mostrato nella figura 4.3, relativa al tempo di simulazione di *8,5 ore*. Dalla figura si evince anche che nel tratto tra la ferrovia e la litoranea si aprono altre due brecce in destra idraulica.

Sempre in destra idraulica a causa del rigurgito provocato dal rilevato ferroviario, in cui sono presenti solamente due tombini, i volumi esondati dalla breccia aperta poco a monte della ferrovia cominciano ad allagare da valle verso monte le aree retrostanti le arginature, come riportato nelle figure dell'Appendice 3.1 (portate iniziali negative in destra nella sezione di controllo C2) e nella figura 4.4, relativa al tempo di simulazione di 9,0 ore, da cui si evince anche che si sono aperte altre quattro brecce: due in sinistra a monte della ferrovia e due in destra nel tratto tra la ferrovia e la litoranea.

In corrispondenza del ponte della ferrovia, a causa della presenza di un rilievo naturale in sinistra idraulica, i volumi esondati in sinistra rientrano in alveo, come mostrato nelle figure dell'Appendice 3.1 (sezione di controllo C3) e nella tabella 3.12 dell'Appendice 3, in cui la portata in sinistra risulta sempre nulla. In destra della medesima sezione di controllo la massima portata che transita nei due tombini ferroviari varia da circa 200 a circa 60  $m^3/s$  per i tempi di ritorno considerati (tabella 3.12 dell'Appendice 3). Il rilevato ferroviario non viene mai tracimato, per tutti i tempi di ritorno considerati.



Figura 4.3. *T* = 8,5 ore: aree inondabili e tiranti idrici (*afusTr200*)



Figura 4.4. *T* = 9,0 ore: aree inondabili e tiranti idrici (*afusTr200*)

Nel tratto compreso tra la ferrovia e la litoranea (per tutti i tempi di ritorno considerati) le arginature vengono tracimate solo in destra idraulica, dove si aprono, per il tempo di ritorno di *200 anni*, complessivamente 5 brecce, come mostrato nella figura 4.5, relativa al tempo di simulazione di *9,5 ore*. Dalla figura si evince anche la tracimazione in destra del modesto rilevato della litoranea.



Figura 4.5. *T* = *9*,*5 ore*: aree inondabili e tiranti idrici (*afusTr200*)

In sinistra idraulica immediatamente a valle della litoranea, invece, avviene la tracimazione dell'argine in destra idraulica del Fosso della Vite, ubicato immediatamente a valle della litoranea, con l'apertura di una breccia che provoca l'allagamento da valle verso monte delle aree retrostanti le arginature, come mostrato nella figura 4.6 relativa al tempo di simulazione di 10,0 ore (nella figura si mostra anche come il coronamento dell'argine destro del Fosso della Vite sia più basso dell'argine sinistro del Fiume Mignone). I volumi esondati risalgono la valle (portate negative in sinistra nelle figure dell'Appendice 3.1, alla sezione di controllo C4, e nella tabella 3.15 dell'Appendice 3) e il livello che si instaura è circa idrostatico, comandato dal livello in alveo a valle in corrispondenza della breccia (figure dei profili idraulici dell'Appendice 3.1).

A valle della litoranea e fino al mare i volumi esondati in destra raggiungono la linea dunale costiera, come mostrato nelle figure 4.7 e 4.8, relative ai tempi di simulazione di *10,5* e *11,0 ore*. Prima della tracimazione della linea dunale costiera, però, parte del volume esondato in destra ritorna in alveo a causa della tracimazione dell'argine destro del Mignone, immediatamente a monte della foce. La tracimazione avviene perché i livelli in destra superano le quote arginali (figure dei profili idraulici dell'Appendice 3.1), inferiori in questo tratto a quelle della duna costiera.



Figura 4.6. *T* = *10,0 ore*: aree inondabili e tiranti idrici (*afusTr200*)



Figura 4.7. *T* = 10,5 ore: aree inondabili e tiranti idrici (*afusTr200*)



Figura 4.8. *T* = 11,0 ore: aree inondabili e tiranti idrici (*afusTr200*)

Successivamente i volumi esondati in destra confluiscono, sia in alveo, sia direttamente in mare, per tracimazione della fascia dunale costiera. In alveo, invece, oltre allo sbocco fociale, parte del volume di piena confluisce direttamente in mare immediatamente prima della foce, per tracimazione in sinistra idraulica della fascia dunale ivi presente (per tempi di ritorno maggiori di 50 anni), come mostrato nelle figure dell'Appendice 3.1, alla sezione di controllo C6, e nella figura 4.9, relativa ai massimi tiranti idrici.



Figura 4.9. Massimi tiranti idrici (*afusTr200*)

Si segnala, a conferma delle criticità arginali mostrate dal modello idraulico, che durante la piena del febbraio 2014 si è aperta una breccia nell'argine sinistro del Fiume Mignone nel tratto compreso tra la SS1 e la ferrovia, come mostrato nella figura 4.10.



Figura 4.10. Breccia arginale durante la piena del febbraio 2014

## 2.3 Scenario con argini tracimabili, ma non fusibili (*anofus*)

I risultati delle simulazioni con argini tracimabili, in cui nelle simulazioni è stata inibita la possibilità di apertura delle brecce arginali, sono riportati nelle figure dell'Appendice 3.2, per tutti i tempi di ritorno esaminati di *30*, *50*, *100*, *200* e *500 anni*. In particolare:

- nelle figure A3.16, A3.19, A3.22, A3.25 e A3.28 si riportano, sia le onde di piena nelle sezioni di chiusura dei bacini MIG-180 (a monte della confluenza del Fosso Nasso), MIG-200 (a monte del Fosso Capocaccia), e MIG-250 (a monte dell'attraversamento della SS1), sia i massimi livelli a monte dell'attraversamento della SS1, sia le onde di piena nelle 6 sezioni di controllo a valle della SS1 (in alveo, in destra e sinistra idraulica e complessive);
- nelle figure A3.17, A3.20, A3.23, A3.26 e A3.29 si riportano i profili idraulici dei massimi livelli in alveo e nelle aree eventualmente inondabili retrostanti le arginature a partire da circa 5 km a monte dell'attraversamento della SS1 (sezione n. 300) al Mar Tirreno (foce);

- nelle figure A3.18, A3.21, A3.24, A3.27 e A3.30 si riportano i limiti delle aree inondate con i relativi tiranti idrici.

### 2.3.1 Descrizione delle dinamiche d'inondazione

Con le sole tracimazioni arginali, impedita l'apertura di brecce, si riscontra un incremento dei livelli in alveo nel tratto tra la SS1 e la ferrovia (confronto tra le figure dei profili idrici nei due scenari, riportate nell'Appendice 3.1 e 3.2), per tutti i tempi di ritorno esaminati ad esclusione della piena cinquecentennale, in cui i volumi esondati in destra e sinistra saturano comunque le limitate capacità d'invaso delle aree retrostanti le arginature (confronto tra le figure della aree inondabili A3.15 e A3.30 dell'Appendice 3.1 e 3.2). Il maggior rigurgito da valle determina un incremento dei livelli a monte della SS1 (tabella 3.1 dell'Appendice 3) e un decremento del franco idraulico con la sommersione dell'intradosso del ponte anche per la piena duecentennale (-5 cm nella tabella 3.3 dell'Appendice 3), mentre per i restanti tempi di ritorno esaminati esso varia da circa 20 a circa 80 cm. Sempre nel medesimo tratto, per i tempi di ritorno di 50 e 30 anni, in destra idraulica i limiti delle aree inondabili si riducono rispetto alle simulazioni in cui si possono aprire le brecce arginali e le portate sono sempre positive con un deflusso da monte verso valle (confronto tra le figure delle due simulazioni nell'Appendice 3.1 e 3.2).

Nel tratto a valle della ferrovia si riscontra in sinistra idraulica la tracimazione (per tutti i tempi di ritorno considerati), oltre che dell'argine destro del Fosso della Vite, anche delle arginature sinistre del Mignone, con un incremento delle aree inondabili, rispetto alle simulazioni con argini erodibili, in cui le portate sono sempre positive con un deflusso da monte verso valle (confronto tra le figure delle due simulazioni dell'Appendice 3.1 e 3.2). In destra idraulica, invece, per i tempi di ritorno di 50 e 30 anni, le aree inondabili si riducono rispetto alle simulazioni in cui si possono aprire le brecce arginali (confronto tra le figure delle due simulazioni nell'Appendice 3.1 e 3.2).

### 2.4 Scenario con argini non tracimabili (anotra)

I risultati delle simulazioni con argini non tracimabili, in cui nelle simulazioni sono state impedite le tracimazioni arginali, sono riportati nelle figure dell'Appendice 3.3, per tutti i tempi di ritorno esaminati di *30*, *50*, *100*, *200* e *500 anni*. In particolare:

- nelle figure A3.31, A3.34, A3.37, A3.40 e A3.43 si riportano, sia le onde di piena nelle sezioni di chiusura dei bacini MIG-180 (a monte della confluenza del Fosso Nasso), MIG-200 (a monte del Fosso Capocaccia), e MIG-250 (a monte dell'attraversamento della SS1), sia i massimi livelli a monte dell'attraversamento della SS1, sia le onde di piena nelle 6 sezioni di controllo a valle della SS1 (in alveo, in destra e sinistra idraulica e complessive);
- nelle figure A3.32, A3.35, A3.38, A3.42 e A3.44 si riportano i profili idraulici dei massimi livelli in alveo e nelle aree eventualmente inondabili retrostanti le arginature a partire da circa 5 km a monte dell'attraversamento della SS1 (sezione n. 300) al Mar Tirreno (foce);
- nelle figure A3.33, A3.36, A3.39, A3.43 e A3.45 si riportano i limiti delle aree inondate con i relativi tiranti idrici.

### 2.4.1 Descrizione delle dinamiche d'inondazione

Queste simulazioni consentono di valutare gli effetti а monte dell'attraversamento della SS1 di un eventuale adeguamento alle piene per i livelli tempi di ritorno considerati. sia dei arginali valle а dell'attraversamento, sia della livelletta stradale dell'attraversamento stesso.

Avendo impedito le tracimazioni, sia degli argini a valle della SS1, sia dell'attuale attraversamento della SS1, a valle della SS1 non si riscontrano, ovviamente, esondazioni. Sempre a valle della SS1 si osservano, invece, dei notevoli incrementi dei livelli idrici in alveo, variabili da 1,6 a 0,5 m per i tempi di ritorno considerati (tabella 3.4 dell'Appendice 3, sezione di controllo C1). Tale rigurgito da valle determina un analogo incremento dei livelli a monte della SS1 (tabella 3.1 dell'Appendice 3), con una conseguente diminuzione del franco idraulico e la sommersione dell'intradosso del ponte anche con la piena centennale (tabella 3.3 dell'Appendice 3). L'incremento dei livelli a monte della SS1 determina sia un incremento dei volumi esondati e delle aree inondabili a monte dell'attraversamento (figure dell'Appendice 3.3), sia una laminazione delle portate di piena, che immediatamente monte dell'attraversamento (tabella а stesso 3.2 dell'Appendice 3) risultano inferiori da 190 a 30  $m^3/s$ , per i vari tempi di ritorno considerati, rispetto alle simulazioni con argini tracimabili ed erodibili.

## 2.5 Scenari senza il vecchio ponte dell'Aurelia (**afusN**, **anofusN** e **anotraN**)

I risultati delle simulazioni in cui è stato eliminato l'ingombro del vecchio ponte dell'Aurelia (paragrafo 3.1 del capitolo 3), sono riportati nelle figure dell'Appendice 3.4, per tutti i tempi di ritorno esaminati di *30*, *50*, *100*, *200* e *500 anni*. In particolare per i tre scenari esaminati:

- i risultati delle simulazioni con argini tracimabili in cui, per effetto delle tracimazioni, si possono aprire delle brecce arginali (*afusN*) sono riportati nell'Appendice 3.4.1, dove:
  - nelle figure A3.46, A3.49, A3.52, A3.55 e A3.58 si riportano, sia le onde di piena nelle sezioni di chiusura dei bacini MIG-180 (a monte della confluenza del Fosso Nasso), MIG-200 (a monte del Fosso Capocaccia), e MIG-250 (a monte dell'attraversamento della SS1), sia i massimi livelli a monte dell'attraversamento della SS1, sia le onde di piena nelle 6 sezioni di controllo a valle della SS1 (in alveo, in destra e sinistra idraulica e complessive),
  - nelle figure A3.47, A3.50, A3.53, A3.56 e A3.59 si riportano i profili idraulici dei massimi livelli in alveo e nelle aree eventualmente inondabili retrostanti le arginature a partire da circa 5 km a monte dell'attraversamento della SS1 (sezione n. 300) al Mar Tirreno (foce),
  - nelle figure A3.48, A3.51, A3.54, A3.57 e A3.60 si riportano i limiti delle aree inondate con i relativi tiranti idrici;
- i risultati delle simulazioni ad argini tracimabili, ma non erodibili (*anofusN*), sono riportati nell'Appendice 3.4.2, dove:
  - nelle figure A3.61, A3.64, A3.67, A3.70 e A3.73 si riportano, sia le onde di piena nelle sezioni di chiusura dei bacini MIG-180 (a monte della confluenza del Fosso Nasso), MIG-200 (a monte del Fosso Capocaccia), e MIG-250 (a monte dell'attraversamento della SS1), sia i massimi livelli a monte dell'attraversamento della SS1, sia le onde di piena nelle 6 sezioni di controllo a valle della SS1 (in alveo, in destra e sinistra idraulica e complessive),
  - nelle figure A3.62, A3.65, A3.68, A3.71 e A3.74 si riportano i profili idraulici dei massimi livelli in alveo e nelle aree eventualmente inondabili retrostanti le arginature a partire da circa 5 km a monte dell'attraversamento della SS1 (sezione n. 300) al Mar Tirreno (foce),
  - nelle figure A3.63, A3.66, A3.69, A3.72 e A3.75 si riportano i limiti delle aree inondate con i relativi tiranti idrici;

- i risultati delle simulazioni ad argini non tracimabili (**anotraN**) sono riportati nell'Appendice 3.4.3, dove:
  - nelle figure A3.76, A3.79, A3.82, A3.85 e A3.88 si riportano, sia le onde di piena nelle sezioni di chiusura dei bacini MIG-180 (a monte della confluenza del Fosso Nasso), MIG-200 (a monte del Fosso Capocaccia), e MIG-250 (a monte dell'attraversamento della SS1), sia i massimi livelli a monte dell'attraversamento della SS1, sia le onde di piena nelle 6 sezioni di controllo a valle della SS1 (in alveo, in destra e sinistra idraulica e complessive),
  - nelle figure A3.77, A3.80, A3.83, A3.86 e A3.89 si riportano i profili idraulici dei massimi livelli in alveo e nelle aree eventualmente inondabili retrostanti le arginature a partire da circa 5 km a monte dell'attraversamento della SS1 (sezione n. 300) al Mar Tirreno (foce),
  - nelle figure A3.78, A3.81, A3.84, A3.87 e A3.90 si riportano i limiti delle aree inondate con i relativi tiranti idrici.

### 2.5.1 *Descrizione delle dinamiche d'inondazione*

Queste simulazioni consentono di valutare gli effetti della rimozione del vecchio ponte dell'Aurelia rispettivamente nelle configurazioni con argini tracimabili in cui, per effetto delle tracimazioni, si possono aprire delle brecce arginali, con argini tracimabili, ma non erodibili e con argini non tracimabili.

Per tutti e tre gli scenari simulati e per tutti i tempi di ritorno esaminati, la rimozione del vecchio ponte, con sezione idraulica di deflusso inferiore a quella dell'attuale attraversamento viario ubicato immediatamente a monte (figura 3.8), determina un minor rigurgito a monte del ponte rimosso con una conseguente diminuzione dei livelli idrici. A monte della SS1, infatti, i livelli diminuiscono (tabella 3.1 dell'Appendice 3):

- da circa 60 a circa 30 cm, rispetto al relativo scenario con argini tracimabili ed erodibili,
- da circa 50 a circa 20 cm, rispetto al relativo scenario con argini tracimabili, ma non erodibili,
- circa 15 ÷ 20 cm, rispetto al relativo scenario con argini non tracimabili.

A seguito del decremento dei livelli idrici aumenta il franco idraulico dell'attuale attraversamento della SS1 (tabella 3.3 dell'Appendice 3), che si mantiene positivo anche per la piena cinquecentennale, seppur di soli 7 cm e per il solo scenario con argini tracimabili ed erodibili.

Sempre per tutti e tre gli scenari simulati e per tutti i tempi di ritorno esaminati, la diminuzione dei livelli idrici a monte della SS1 comporta localmente, rispetto agli scenari con il vecchio ponte, una lieve diminuzione delle aree inondabili (confronto, rispettivamente per i tre scenari in esame, tra le figure dell'Appendice 3.1 e 3.4.1, 3.2 e 3.4.2 e 3.3 e 3.4.3), assieme a una minor laminazione e un conseguente modesto incremento di portata (tabella 3.2 dell'Appendice 3).

A valle della SS1, come si evince dal confronto tra le figure dell'Appendice 3.1 e 3.4.1 e 3.2 e 3.4.2, le dinamiche d'inondazione sono del tutto simili a quelle relative agli scenari con argini tracimabili ed erodibili e con argini tracimabili, ma non erodibili, in cui è invece presente il vecchio ponte dell'Aurelia. I relativi limiti delle aree inondabili risultano pressoché identici a valle della ferrovia, mentre nel tratto tra la SS1 e la ferrovia si osserva una leggera diminuzione dei tiranti idrici e dei limiti delle aree inondabili, dovuta a una diminuzione delle portate tracimate dai rilevati di accesso al ponte dell'attuale SS1 (tabella 3.6 dell'Appendice A, relativa alla sezione di controllo C1), a causa della citata diminuzione dei livelli idrici a monte di essi.

Per lo scenario con argini non tracimabili, ovviamente, anche in assenza del vecchio ponte dell'Aurelia non si hanno esondazioni a valle della SS1 e l'incremento di portata risulta trascurabile (tabelle dell'Appendice 3). In questo scenario, infatti, l'influenza dell'eliminazione del vecchio ponte sulle portate a valle è trascurabile poiché i deflussi sono regolati dai ponti della litoranea e della ferrovia, che determinano un rigurgito a monte che interessa anche il vecchio e l'attuale ponte dell'Aurelia (confronto tra le figure dei profili dell'Appendice 3.3 e 3.4.3).

## 2.6 Scenari con il nuovo attraversamento autostradale (*sfus*, *snofus*, *snotra*, *sfusN*, *snofusN* e *snotraN*)

I risultati delle simulazioni in cui è stato inserito il nuovo attraversamento dell'autostrada Civitavecchia – Livorno, in fase di realizzazione (paragrafo 3.1 del capitolo 3), sono riportati nelle figure dell'Appendice 3.5, per tutti i tempi di ritorno esaminati di *30*, *50*, *100*, *200* e *500 anni*. In particolare per i 6 scenari esaminati:

i risultati delle simulazioni con argini tracimabili in cui, per effetto delle tracimazioni, si possono aprire delle brecce arginali sono riportati nell'Appendice 3.5.1 nella configurazione con la presenza del vecchio ponte dell'Aurelia (*sfus*), e nell'Appendice 3.5.4 nella configurazione senza il vecchio ponte dell'Aurelia (*sfusN*), dove:

- rispettivamente nelle figure A3.91, A3.94, A3.97, A3.100 e A3.103 (*sfus*) e A3.136, A3.139, A3.142, A3.145 e A3.148 (*sfusN*) si riportano, sia le onde di piena nelle sezioni di chiusura dei bacini MIG-180 (a monte della confluenza del Fosso Nasso), MIG-200 (a monte del Fosso Capocaccia), e MIG-250 (a monte dell'attraversamento della SS1), sia i massimi livelli a monte dell'attraversamento della SS1, sia le onde di piena nelle 6 sezioni di controllo a valle della SS1 (in alveo, in destra e sinistra idraulica e complessive),
- rispettivamente nelle figure A3.92, A3.95, A3.98, A3.101 e A3.104 (*sfus*) e A3.137, A3.140, A3.143, A3.146 e A3.149 (*sfusN*) si riportano i profili idraulici dei massimi livelli in alveo e nelle aree eventualmente inondabili retrostanti le arginature a partire da circa 5 km a monte dell'attraversamento della SS1 (sezione n. 300) al Mar Tirreno (foce),
- rispettivamente nelle figure A3.93, A3.96, A3.99, A3.102 e A3.105 (*sfus*) e A3.138, A3.141, A3.144, A3.147 e A3.150 (*sfusN*) si riportano i limiti delle aree inondate con i relativi tiranti idrici;
- i risultati delle simulazioni ad argini tracimabili, ma non erodibili, sono riportati nell'Appendice 3.5.2 nella configurazione con la presenza del vecchio ponte dell'Aurelia (*snofus*), e nell'Appendice 3.5.5 nella configurazione senza il vecchio ponte dell'Aurelia (*snofusN*), dove:
  - rispettivamente nelle figure A3.106, A3.109, A3.112, A3.115 e A3.118 (*snofus*) e A3.151, A3.154, A3.157, A3.160 e A3.163 (*snofusN*) si riportano, sia le onde di piena nelle sezioni di chiusura dei bacini MIG-180 (a monte della confluenza del Fosso Nasso), MIG-200 (a monte del Fosso Capocaccia), e MIG-250 (a monte dell'attraversamento della SS1), sia i massimi livelli a monte dell'attraversamento della SS1, sia le onde di piena nelle 6 sezioni di controllo a valle della SS1 (in alveo, in destra e sinistra idraulica e complessive),
  - rispettivamente nelle figure A3.107, A3.110, A3.113, A3.116 e A3.119 (*snofus*) e A3.152, A3.155, A3.158, A3.161 e A3.164 (*snofusN*) si riportano si riportano i profili idraulici dei massimi livelli in alveo e nelle aree eventualmente inondabili retrostanti le arginature a partire da circa 5 km a monte dell'attraversamento della SS1 (sezione n. 300) al Mar Tirreno (foce),
  - rispettivamente nelle figure A3.108, A3.111, A3.114, A3.117 e A3.120
     (*snofus*) e A3.153, A3.156, A3.159, A3.162 e A3.165 (*snofusN*) si riportano si riportano i limiti delle aree inondate con i relativi tiranti idrici;
- i risultati delle simulazioni ad argini non tracimabili, in cui sono state impedite le tracimazioni a valle della SS1 ed è stato inserito

l'attraversamento autostradale con le livellette e i tombini previsti, sono riportati nell'Appendice 3.5.3 nella configurazione con la presenza del vecchio ponte dell'Aurelia (**snotra**), e nell'Appendice 3.5.6 nella configurazione senza il vecchio ponte dell'Aurelia (**snotraN**), dove:

- rispettivamente nelle figure A3.121, A3.124, A3.127, A3.130 e A3.133 (*snotra*) e A3.166, A3.169, A3.172, A3.175 e A3.178 (*snotraN*) si riportano, sia le onde di piena nelle sezioni di chiusura dei bacini MIG-180 (a monte della confluenza del Fosso Nasso), MIG-200 (a monte del Fosso Capocaccia), e MIG-250 (a monte dell'attraversamento della SS1), sia i massimi livelli a monte dell'attraversamento della SS1, sia le onde di piena nelle 6 sezioni di controllo a valle della SS1 (in alveo, in destra e sinistra idraulica e complessive),
- rispettivamente nelle figure A3.122, A3.125, A3.128, A3.131 e A3.134 (*snotra*) e A3.167, A3.170, A3.173, A3.176 e A3.179 (*snotraN*) si riportano i profili idraulici dei massimi livelli in alveo e nelle aree eventualmente inondabili retrostanti le arginature a partire da circa 5 km a monte dell'attraversamento della SS1 (sezione n. 300) al Mar Tirreno (foce),
- rispettivamente nelle figure A3.123, A3.126, A3.129, A3.132 e A3.135
   (*snotra*) e A3.168, A3.171, A3.174, A3.177 e A3.180 (*snotraN*) si riportano i limiti delle aree inondate con i relativi tiranti idrici.

### 2.6.1 Descrizione delle dinamiche d'inondazione

Queste simulazioni consentono di valutare gli effetti del nuovo intervento, previsto e in fase di realizzazione, dell'adeguamento dell'attuale attraversamento della SS1 del Mignone alla futura autostrada Civitavecchia – Livorno. Tale adeguamento prevede, come mostrato nel paragrafo 3.1 del capitolo 3, sia un innalzamento della livelletta stradale lungo i rilevati di accesso al ponte attuale, che è previsto mantenere circa l'attuale estradosso, sia la realizzazione di tre tombini, di cui due stradali e uno idraulico, ubicati alle estremità della valle del Mignone (figura 3.9).

### 2.6.1.1 Confronto tra gli scenari **sfus** e **afus**

Nel confronto tra i due scenari con argini tracimabili e fusibili (confronto tra le figure dell'Appendice 3.5.1 e 3.1) si osserva una leggera diminuzione delle aree inondabili a monte della SS1, dovuta a un modesto decremento dei livelli idrici localizzato immediatamente a monte del ponte (tabella 3.1 dell'Appendice 3), principalmente per i tempi di ritorno di 200 e 500 anni.

La nuova livelletta autostradale non viene mai tracimata, per tutti i tempi di ritorno considerati, e il franco idraulico si incrementa dai 15 ai 10 cm (tabella 3.3 dell'Appendice 3). I nuovi tombini stradali del rilevato autostradale, invece, che mettono in comunicazione le aree inondabili a monte dell'attraversamento con le aree a valle retrostanti le arginature, vengono allagati: quello di sinistra, previsto a quote inferiori, per tutti i tempi di ritorno considerati; quello di destra per tempi di ritorno maggiori di 50 anni (figure dell'Appendice 3.5.1).

Nei due scenari in esame le dinamiche d'inondazione a valle della SS1 sono simili:

- nel tratto tra la SS1 e la ferrovia si osserva una modesta diminuzione dei livelli idrici e dei limiti delle aree inondabili nella sola destra idraulica, dovuta ai minori volumi esondati a causa del mancato sfioro sul rilevato stradale (come mostrato nelle tabelle 3.6 e 3.9 dell'Appendice 3, relative alle sezioni di controllo C1 e C2). In sinistra idraulica, invece, la maggiore portata che transita nel tombino stradale sinistro, ubicato a quote inferiori di quello destro, compensa parzialmente la mancata portata sfiorata sul rilevato stradale e non si apprezzano sensibili differenze nei due scenari;
- nel tratto a valle della ferrovia non si osservano apprezzabili differenze tra i livelli idrici e i limiti delle aree inondabili nei due scenari in esame.

### 2.6.1.2 Confronto tra gli scenari **snofus** e **anofus**

Nel confronto tra i due scenari con argini tracimabili, ma non erodibili (confronto tra le figure dell'Appendice 3.5.2 e 3.2), la diminuzione delle aree inondabili a monte della SS1 diventa inapprezzabile, poiché le differenze tra i livelli idrici a monte del ponte si riducono a pochi centimetri (tabella 3.1 dell'Appendice 3).

Anche in questo caso la nuova livelletta autostradale non viene mai tracimata, per tutti i tempi di ritorno considerati, mentre i nuovi tombini stradali del rilevato autostradale continuano ad essere allagati con i medesimi tempi di ritorno del caso precedente (figure dell'Appendice 3.5.2).

A valle della SS1:

- in destra idraulica la diminuzione dei livelli idrici e dei limiti delle aree inondabili è più marcata del caso precedente e diventa apprezzabile anche nel tratto a valle della ferrovia;
- in sinistra idraulica: nel tratto tra la SS1 e la ferrovia, la maggiore portata che transita nel tombino stradale sinistro compensa la mancata portata sfiorata sul rilevato stradale, con conseguenti livelli idrici e limiti delle aree inondabili simili nei due scenari in esame (si osserva addirittura un

leggero incremento per il solo tempo di ritorno di *30 anni*). Nel tratto a valle della ferrovia, invece, le dinamiche sono identiche.

#### 2.6.1.3 Confronto tra gli scenari **snotra** e **anotra**

Nel confronto tra i due scenari con argini non tracimabili (confronto tra le figure dell'Appendice 3.5.3 e 3.3) le differenze sono sensibili. In questo confronto, infatti, mentre in un caso (*anotra*) non si verificano scambi di portata tra le aree inondabili a monte della SS1 e le aree a valle retrostanti le arginature - essendo stati elevati, sia la livelletta dei rilevati di accesso al ponte, sia l'estradosso del ponte stesso, sia i coronamenti arginali a valle della SS1, fino a quote che non consentono tracimazioni - nel caso di attraversamento autostradale (*snotra*) la presenza dei tombini stradali consente lo scambio di portata monte valle, mentre rimangono impediti, a valle della SS1, gli scambi per tracimazioni arginali. Conseguentemente, i volumi esondati a monte dell'attraversamento autostradale, possono trasferirsi a valle del rilevato autostradale stesso, con il conseguente allagamento delle aree retrostanti le arginature, a differenza del caso *anotra* in cui non vengono mai allagate.

Come mostrato nelle figure dell'Appendice 3.5.3, il rilevato dell'attraversamento autostradale viene tracimato per la sola portata cinquecentennale, sia in destra, sia in sinistra idraulica:

- in destra idraulica i volumi tracimati e quelli defluiti attraverso il tombino del rilevato autostradale allagano a valle dell'attraversamento autostradale le aree retrostanti le arginature fino alla litoranea, a valle della quale gli allagamenti diventano marginali;
- in sinistra idraulica, invece, dove il tombino stradale è previsto a quote inferiori di quello destro, i volumi tracimati dal rilevato e quelli trasferiti a valle tramite il tombino stesso, non potendo rientrare in alveo (tracimazioni arginali impedite), determinano, nelle aree allagate retrostanti le arginature, dei tiranti idrici estremamente elevati tra la SS1 e la ferrovia (maggiori di 4 m a monte della ferrovia). Le aree allagate retrostanti le arginature a valle della ferrovia, invece, sono fittizie, in quanto per schematizzare la continuità idraulica dell'alveo in sinistra si è inserito un piccolo tombino fittizio nei rilievi naturali presenti in corrispondenza della ferrovia, che, a causa del notevole carico di monte, riesce a trasferire a valle una modesta portata che genera dei marginali allagamenti.

Per i restanti tempi di ritorno il rilevato autostradale non viene tracimato e gli allagamenti dei tombini del rilevato autostradale avvengono con tiranti minori. Conseguentemente, in destra e sinistra idraulica, le aree inondate si riducono, permanendo comunque in sinistra idraulica tiranti idrici elevati tra la SS1 e la ferrovia. In destra idraulica non si riscontrano più aree inondate con tempi di ritorno inferiori al centennale, in quanto anche il tombino destro del rilevato autostradale non viene più allagato (figure dell'Appendice 3.5.3).

### 2.6.1.4 Confronto tra gli scenari **sfus** e **sfusN**

Nel confronto tra i due scenari con argini tracimabili ed erodibili e con e senza il vecchio ponte dell'Aurelia, in cui in entrambi gli scenari si è schematizzato il nuovo attraversamento autostradale, si evince che l'eliminazione del vecchio ponte determina, come nel caso diminuzione dei livelli dell'attraversamento attuale. una а monte dell'attraversamento stesso (tabella 3.1 dell'Appendice 3), con una conseguente diminuzione dei limiti delle aree inondabili, sempre a monte dell'attraversamento (confronto tra le figure dell'Appendice 3.5.1 e 3.5.4). A valle dell'attraversamento, invece, non si apprezzano sensibili differenze nei livelli idrici e nei limiti delle aree inondabili in destra e sinistra idraulica (confronto tra le figure dell'Appendice 3.5.1 e 3.5.4), a meno di una leggera diminuzione in destra idraulica, tra la SS1 e la ferrovia, con il solo tempo di ritorno di 30 anni e nella configurazione senza vecchio ponte.

#### 2.6.1.5 Confronto tra gli scenari **snofus** e **snofus**N

Nel confronto tra i due scenari con argini tracimabili, ma non erodibili, e con e senza il vecchio ponte dell'Aurelia, in cui in entrambi gli scenari si è schematizzato il nuovo attraversamento autostradale, si evince che l'eliminazione del vecchio ponte determina, come nel caso precedente, una diminuzione dei livelli a monte dell'attraversamento stesso (tabella 3.1 dell'Appendice 3), con una conseguente diminuzione dei limiti delle aree inondabili, sempre a monte dell'attraversamento (confronto tra le figure dell'Appendice 3.5.2 e 3.5.5). A valle dell'attraversamento, invece, si apprezza un modesto incremento dei livelli idrici e dei limiti delle aree inondabili in destra e sinistra idraulica, con i soli tempi di ritorno di 50 e 30 anni e nella configurazione senza vecchio ponte.

#### 2.6.1.6 Confronto tra gli scenari **snotra** e **snotra**N

Anche in questo caso, nel confronto tra i due scenari con argini non tracimabili e con e senza il vecchio ponte dell'Aurelia, in cui in entrambi gli scenari si è schematizzato il nuovo attraversamento autostradale, si evince che l'eliminazione del vecchio ponte determina una modesta diminuzione dei livelli a monte dell'attraversamento stesso (tabella 3.1 dell'Appendice 3), con una conseguente modesta diminuzione dei limiti delle aree inondabili, sempre a monte dell'attraversamento (confronto tra le figure dell'Appendice 3.5.3 e 3.5.6). A valle dell'attraversamento si apprezza ugualmente una leggera diminuzione dei livelli idrici e dei limiti delle aree inondabili in destra e sinistra idraulica, per tutti i tempi di ritorno esaminati e nella configurazione senza vecchio ponte, dovuta ai minori volumi esondati e trasferiti da monte a valle dell'attraversamento autostradale dai tombini del rilevato autostradale stesso, a causa della citata diminuzione dei livelli a monte.

# 3 Scelta delle condizioni *ante operam* di riferimento

Come mostrato nei paragrafi precedenti, per tutti i tempi di ritorno esaminati di *30*, *50*, *100*, *200* e *500 anni*, si sono analizzati *12* differenti scenari nelle condizioni *ante operam*, realizzando complessivamente *60* simulazioni.

Dall'analisi eseguita appare evidente che nei confronti della nuova opera viaria in progetto, che costeggia in destra idraulica gran parte della valle del Mignone dalla confluenza del Fosso Nasso e fino a monte della SS1 Aurelia, lo scenario più gravoso in termini di massimi livelli idrici è quello relativo all'ipotesi di un futuro adeguamento alle piene di progetto delle arginature presenti a valle della SS1 e dell'attuale attraversamento della SS1 stesso (scenario **anotra**). Tutti gli altri scenari, infatti, determinano livelli idrici a monte della SS1 inferiori di quelli dello scenario citato (tabella 3.1 dell'Appendice 3).

Dai profili idraulici mostrati nell'Appendice 3 si evince che già circa 3 km a monte dell'attraversamento della SS1 (sezione del modello idraulico n. 255) non si risente più dei rigurgiti provocati dalle differenti schematizzazioni ipotizzate a valle della SS1. Nei relativi tempi di ritorno esaminati, infatti, da questa sezione in poi e fino a monte della confluenza del Fosso Nasso tutti gli scenari simulati restituiscono gli stessi livelli idrici, come mostrato nella figura 4.11 in cui a titolo di esempio si riporta, da a monte della confluenza del Fosso Nasso e fino alla foce, il confronto per il tempo di ritorno duecentennale tra i profili idraulici negli scenari **anotra** (argini non tracimabili) e **afus** (argini tracimabili ed erodibili), dove per quest'ultimo scenario a valle della SS1 si riporta solo il profilo idrico in alveo. Per valutare la sicurezza della livelletta stradale dell'opera in progetto nei confronti dei livelli idrici di piena, quindi, si è assunto come riferimento lo scenario ad argini non tracimabili (**anotra**).

Per verificare l'interferenza dell'opera stradale in progetto con i deflussi di piena del Fiume Mignone (condizioni *post operam*) si è assunto lo scenario più realistico ad argini tracimabili ed erodibili (*afus*), in considerazione anche di quanto accaduto nella recente piena del febbraio 2014 (figura 4.10). Tale scenario è risultato essere, tra i *12* esaminati, uno degli scenari che fornisce a monte della SS1 le massime portate e conseguentemente le massime velocità (tabella 3.2 dell'Appendice 3).



Figura 4.12. Confronto tra i massimi livelli idrici dello scenario **anotra** rispetto allo scenario **afus** (*Tr 200 anni*)

## capitolo quinto

## Interferenze idrauliche post operam

## 1 Verifica delle livellette stradali di progetto

Come mostrato nella figura 3.2, si sono prese in considerazione 4 varianti al tracciato viario dell'opera stradale in progetto.

Di seguito si mostrerà una prima verifica delle varianti in esame relativa ai franchi idraulici di sicurezza della livelletta stradale di progetto rispetto alle piene del Mignone con tempi di ritorno di 200 e 500 anni. Tale verifica, come mostrato nel paragrafo 3 del capitolo 4, è relativa allo scenario che determina i massimi livelli idrici a monte della SS1 e che considera l'ipotesi di un futuro adeguamento alle piene di progetto delle arginature presenti a valle della SS1 e dell'attuale attraversamento della SS1 stesso (scenario **anotra**).

### 1.1 Variante n. 1

Nella figura 5.1 si riporta il tracciato viario della prima variante esaminata, denominata *Variante n. 1.* Come si evince dalla figura, essa prevede che il tracciato viario interessi la valle in destra idraulica del Mignone a partire circa dalla confluenza del Fosso Nasso nel Fiume Mignone e fino al suo innesto sulla attuale viabilità della SS1 Aurelia, poco a nord dell'attuale ponte sul Mignone.

Nella figura 5.2 si riportano l'andamento delle quote della livelletta stradale di progetto della variante in esame, assieme ai profili idrici delle piene del Mignone, relative ai tempi di ritorno di *200* e *500 anni*. Nelle figure 5.3 e 5.4 si mostrano i limiti delle aree inondabili e i relativi tiranti idrici per i tempi di ritorno di *200* e *500 anni*, assieme al tracciato stradale.

Dalla figure si evince che il tracciato viario interferisce con le piene del Mignone in 3 tratti, numerati da 1 a 3 da monte verso valle. Dalla figura 5.2 si evince che nei primi due tratti il franco idraulico della livelletta si mantiene sempre superiore ai 2 m, anche con la piena cinquecentennale, mentre nell'ultimo tratto esso si riduce a meno di 50 cm per la piena

duecentennale ed è negativo per la piena cinquecentennale (la strada in progetto verrebbe sommersa).



Figura 5.1. Planimetria del tracciato viario della Variante n. 1



Figura 5.2. Profili idrici e della livelletta stradale della Variante n. 1



Figura 5.3. Planimetria delle aree inondabili **anotraTr200** e del tracciato della Variante n. 1



Figura 5.4. Planimetria delle aree inondabili **anotraTr500** e del tracciato della Variante n. 1

### 1.2 Variante n. 2

Nella figura 5.5 si riporta il tracciato viario della seconda variante esaminata, denominata *Variante n. 2.* Come si evince dalla figura essa prevede, in corrispondenza della valle del Mignone, un tracciato viario spostato più a nord e a quote più elevate di quello della *Variante 1*, fino a innestarsi sulla SS1 Aurelia sempre più a nord della *Variante 1*.

Nella figura 5.6 si riportano l'andamento delle quote della livelletta stradale di progetto della variante in esame, assieme ai profili idrici delle piene del Mignone, relative ai tempi di ritorno di *200* e *500 anni*. Nelle figure 5.7 e 5.8 si mostrano i limiti delle aree inondabili e i relativi tiranti idrici per i tempi di ritorno di *200* e *500 anni*, assieme al tracciato stradale.

Dalla figure si evince che il tracciato viario interferisce con le piene del Mignone in 2 tratti, numerati 1 e 2 da monte verso valle. Dalla figura 5.6 si evince anche che il tracciato viario di questa variante si mantiene sempre a quote notevolmente superiori alle piene di riferimento ad eccezione dell'innesto della variante sulla SS1 Aurelia (tratto 2), dove la variante si porta necessariamente alla quota della SS1 stessa. In corrispondenza dell'innesto sulla SS1, infatti, la variante è interessata dalle piene del Mignone con un franco idraulico inferiore ai 50 cm per la piena duecentennale e negativo per la piena cinquecentennale (la strada in progetto verrebbe sommersa).



Figura 5.5. Planimetria del tracciato viario della Variante n. 2



Figura 5.6. Profili idrici e della livelletta stradale della Variante n. 2


Figura 5.7. Planimetria delle aree inondabili **anotraTr200** e del tracciato della Variante n. 2



Figura 5.8. Planimetria delle aree inondabili **anotraTr500** e del tracciato della Variante n. 2

## 1.3 Variante n. 3

Nella figura 5.9 si riporta il tracciato viario della terza variante esaminata, denominata Variante n. 3. Come si evince dalla figura essa prevede un tracciato viario pressoché uguale a quello della Variante 2, per una buona parte del tratto di monte della valle del Mignone (circa 2/3 della valle), per poi piegare più a sud della Variante 2 fino ad attraversare la valle del Mignone con un nuovo ponte. L'attraversamento della valle avviene in viadotto con un angolo di circa  $45^{\circ}$ . In corrispondenza del nuovo ponte sul Mignone, invece, l'attraversamento del fiume avviene ortogonalmente all'alveo fluviale. Attraversata la valle questa variante ne prevede l'abbandono con un innesto sulla SS1 Aurelia molto più sud delle varianti precedenti.

Nella figura 5.10 si riportano l'andamento delle quote della livelletta stradale di progetto della variante in esame, assieme ai profili idrici delle piene del Mignone, relative ai tempi di ritorno di *200* e *500 anni*. Nelle figure 5.11 e 5.12 si mostrano i limiti delle aree inondabili e i relativi tiranti idrici per i tempi di ritorno di *200* e *500 anni*, assieme al tracciato stradale.

Dalla figure si evince che il tracciato viario interferisce con le piene del Mignone nel solo tratto a cavallo del nuovo attraversamento della valle del Mignone, denominato tratto 1. Dalla figura 5.10 si evince che il tracciato viario di questa variante si mantiene sempre a quote notevolmente superiori alle piene di riferimento ad eccezione di un breve tratto (di circa 100 m) a monte del nuovo attraversamento previsto sul Mignone, dove la livelletta della variante risulta avere un franco idraulico negativo di circa 1 m, già per la piena duecentennale (la strada in progetto verrebbe sommersa).



Figura 5.9. Planimetria del tracciato viario della Variante n. 3