European Commission	delle Infrastrutture e dei Frasporti	PORTI di ROMA e del LAZIO	Anas SpA Direzione Centrale Progettaz
PROGETTAZIONE PI	RELIMINARE ED	ANALISI ECON	OMICA DEL TRATTO
TERMINALE DEL CO	LLEGAMENTO DI	EL PORTO DI CI	VITAVECCHIA CON IL

NODO INTERMODALE DI ORTE PER IL COMPLETAMENTO DELL'ASSE VIARIO EST-OVEST (CIVITAVECCHIA-ANCONA)

2012-IT-91060-P

TRATTA: MONTE ROMANO EST - CIVITAVECCHIA

PROGETTO PRELIMINARE

PROGETTAZIONE: ANAS - DIREZIONE CENTRALE PROGETTAZIONE

PROGETTISTA: Ing. Maurizio Mancinetti Ordine Ing. di Roma n° 19506		GRUPPO DI PROGETTAZIONE AI Ing. F. Bario		E ANAS Geom	ANAS Geom. R. Izzo			
		Ing. F. Bezzi Geol. G. Cardi	Ing. F. Bezzi Ing. E. Luziatelli Geol. G. Cardillo Geom. D. Magai					
IL GEOLOGO Dott. Geol. Stefano Serangeli Ordine Geol. Lazio n. 659		Ing. L. CedroneGeom. M. MaggiIng. P. G. D'ArminiIng. E. MittigaSig.ra A. M. D'AversaIng. M. Panebianco			:0			
IL RESPONSABILE DEL S.I.A. Dott. Geol. Serena Majetta		Ing. A. De LeoDott.ssa D. PerfettiGeom. E. De MasiIng. A. PetrilloGeom. M. DiamenteIng. F. PisaniLeo D. EchterArch. D. Passi		tti				
COORDINATO Arch. Robert	DRE PER LA SICUREZ to Roggi	ZA IN	FASE DI PROGETTAZIONE	Ing. G. Giovan	Ing. P. Fabbro Arch. R. Roggi Ing. G. Giovannini			
IL RESP. DEL PROCEDIMENTO Ing. Ilaria COPPA		SERVIZI SUPPORTO ESTERNO						
PROTOCOLLO DATA			VISTO: IL DIRETTORE CENTRALE Ing. Ugo DIBENNARDO					
STUDIO GEOLOGIC		O E GE		NICO				
Indagini geofisiche		progetto	prelimi	nare				
			Rapporto	o tecnico				
	ROGETTO	PROG.	NOME FILE L0402D_P_1301_T00_(GE00_GE0_RE03_A.	DWG	REVISIONE	TAVOLA	SCALA:
LO402D P 1301 CODICE TOOG		EOOGEO	RE 03	Α	_	-		
С								
В								
A EMISSIONE				GIUGNO_2014	SERANGELI	MANCINETTI	СОРРА	
REV.	DESCRIZIONE					REDATTO	VERIFICATO	APPROVATO

Anas SpA Società con Socio Unico Cap. Soc. €2.269.892.000,00 – Iscr. R.E.A. 1024951 – P.IVA 02133681003 – C.F. 80208450587 Sede legale: Via Monzambano, 10 – 00185 Roma – Tel. 06 44461 - Fax 06 4456224 Sede Compartimentale: V.Ie dei Mille,36 - 50131 Firenze - Tel. 055.56401 - Fax. 055.573497

DIREZIONE GENERALE - DIREZIONE CENTRALE PROGETTAZIONE

ASSE VIARIO EST-OVEST "PORTO DI CIVITAVECCHIA - ORTE" TRATTA MONTE ROMANO EST - CIVITAVECCHIA

INDAGINI GEOFISICHE DI SUPPORTO ALLA PROGETTAZIONE PRELIMINARE

PROGEO S.r.I. Indagini geofisiche Via Talete 10/8 47122 Forli tel. 0543 723580 fax. 0543 721486					CNICI	
VISTO: IL RESPONSABILE UNICO DEL PROCEDIMENTO				OCEDIMENTO		
			CONTR	CODICE CI	G XXXXXXXXXX	
=					_	
IS NEN						
NAN			-		-	-
EVIS	Δ -		-		-	-
AGA	A - DATA		- DESCRIZION	E	- DISEGNATO	- CONTROLLATO
	DATE		DESCRIPTIO	N	DRAWING	CHECKED
тітс	LO				PROGETTO N.	_
					DESIGN N	
	NDAGINI G	EOSISMICE	1E		DISEGNON	
_						
	ELAZIONE I	ECINICA				
			DRAWING N.			
SCALA			SCALA			
1376 File:	/2014 1376-ANAS - Indagini (geofisiche Orte-Civitaveo	cchia.doc		DATA	
QUEST E' PROI CESSIC	O DISEGNO E' DI NOSTRA PROPR BITA LA RIPRODUZIONE ANCHE F INE A TERZI SENZA LA NOSTRA A	IETA' ESCLUSIVA ARZIALE E LA UTORIZZAZIONE	ATO Dott. R. Masotti	CONTROLLATO Dott. M. Furani	APPROVATO	

INDICE

<u>1.</u>	INDICAZIONI GENERALI	3
<u>2.</u>	ELABORATI CARTOGRAFICI	6
<u>3.</u>	ATTREZZATURE TECNICHE	6
<u>4.</u>	PROSPEZIONE SISMICA A RIFRAZIONE TOMOGRAFICA	8
4.1. 4.2.	MODALITA' OPERATIVE ELABORAZIONE DATI	8 10
<u>5.</u>	PROSPEZIONE SISMICA IN FORO CON TECNICA DOWN HOLE	16
5.1. 5.2. 5.3. 5.4. 5.5.	MODALITÀ OPERATIVE ELABORAZIONE DATI ELABORAZIONE DEI LOG DI VS, VP E DEI MODULI ELASTICI DINAMICI ELABORATI PROVE DOWN HOLE CAROTAGGIO SONICO	16 17 23 24 24
<u>6.</u>	RISULTANZE	25

ANAS DIREZIONE CENTRALE PROGETTAZIONE

ASSE VIARIO EST-OVEST "PORTO DI CIVITAVECCHIA - ORTE" TRATTA MONTE ROMANO EST – CIVITAVECCHIA

INDAGINI GEOFISICHE DI SUPPORTO AL PROGETTO PRELIMINARE

1. INDICAZIONI GENERALI

A seguito di incarico dell'ANAS – Direzione Centrale Progettazione, si sono eseguite indagini geofisiche finalizzate a fornire informazioni sulle consistenze e sulle deformabilità dei materiali relativamente ad alcuni settori per il progetto definitivo dell'asse attrezzato "Asse viario Porto di Civitavecchia con il nodo internodale di Orte per il completamento dell'asses viario est-ovest – Tratta Monte Romano est – Civitavecchia".

Come da incarico l'indagine si è sviluppata effettuando:

n° 5 sezioni sismiche ad onde di taglio:

Sez. LS1:	n° stazioni 24	interdistanza stazioni 2.5 m	lunghezza: 57.50 m
Sez. LS2:	n° stazioni 31	interdistanza stazioni 5.0 m	lunghezza: 150.00 m
Sez. LS3:	n° stazioni 42	interdistanza stazioni 5.0 m	lunghezza: 205.00 m
Sez. LS4:	n° stazioni 24	interdistanza stazioni 5.0 m	lunghezza: 115.00 m
Sez. LS5:	n° stazioni 21	interdistanza stazioni 5.0 m	lunghezza: 100.00 m

Per un complessivo di 627.50 m

E' stata inoltre acquisita una sezione ad onde di compressione (LS4), non prevista dall'incarico, a nostro carico

Sez. LS4: n° stazioni 24 interdistanza stazioni 5.0 m lunghezza: 115.00 m

n° 3 Down Hole

S2_DH	lunghezza prova 35.00 m
S5_DH	lunghezza prova 35.00 m
S8_DH	lunghezza prova 35.00 m

Per un complessivo di 105.00 m

Le sezioni geofisiche sono state acquisite in copertura "full fold" cioè con l'array interamente posizionato sul terreno.

Questo ha permesso di ottenere sezioni complete sull'intero tratto in una unica fase di acquisizione senza le problematiche connesse all'unione di più elementi che deriva dall'utilizzo di meno sensori.

Le sezioni sismiche sono state effettuate acquisendo onde di taglio Sh con shot polarizzato orizzontalmente mediamente ogni 3-4 stazioni.

Nelle pagine seguenti sono riportate alcune immagini relative alle acquisizioni in sito.

Stendimento sismico LS2

Stendimento sismico LS4

Prova down-hole in S5

Carotaggio sonico in S8

2. ELABORATI CARTOGRAFICI

Allegati alla presente relazione tecnica sono riportati gli elaborati cartografici costituiti da:

- Fig. 1 Planimetria indagini geofisiche Sez LS1, LS2, S2_DH
- Fig. 2Planimetria indagini geofisiche Sez LS3, S8_DH
- Fig. 3 Planimetria indagini geofisiche Sez LS4, LS5
- Fig. 4Planimetria indagini geofisiche S5_DH
- Fig. 5 Sezione sismica tomografica LS1;
- Fig. 6 Sezioni sismiche tomografiche LS2;
- Fig. 7 Sezioni sismiche tomografiche LS3;
- Fig. 8 Sezioni sismiche tomografiche LS4;
- Fig. 9 Sezioni sismiche tomografiche LS5;
- Fig. 10 S2_Dh Sismogrammi e sonico.
- Fig. 11 S2_Dh Tabella dati.
- Fig. 12 S2_Dh Logs dati.
- Fig. 13 S5_Dh Sismogrammi e sonico.
- Fig. 14 S5_Dh Tabella dati.
- Fig. 15 S5_Dh Logs dati.
- Fig. 16 S8_Dh Sismogrammi e sonico.
- Fig. 17 S8_Dh Tabella dati.
- Fig. 18 S8_Dh Logs dati.

3. ATTREZZATURE TECNICHE

Sono state utilizzate le seguenti strumentazioni e software

Tomografia sismica

Sismografi Ricevitori	n° 2 Geometrics Geode da 24 canali; n° 55 stazioni orizzontali da 14 Hz specifici per le onde di taglio.
Energizzazione	Shot mediante mazza strumentata da 10 Kg per onde di taglio con polarizzazione orizzontale.
Software	SEISVIEW (Progeo srl) per analisi dei sismogrammi; SRA (Progeo srl) per analisi tomografica in velocità.

Down Hole

Sismografi	n° 1 Geometrics Geode;
Ricevitori	3D differenziale costituita da 6 sensori in due gruppi interdistanti 1 m.
Energizzazione	Shot mediante mazza strumentata da 10 Kg sia per le onde di
Software	DOWN HOLE (Progeo srl) per analisi in modalità tomografica.

Rilievo topografico

Strumentazione GPS Topcon.

SISMOMETRO PER ACQUISIZIONE DATI

Modello: GEOMETRICS ES-3000 GEODE

December 6, 2001

01

San Jose, California, USA

EC DECLARATION OF CONFORMITY

We, Geometrics, Inc. Geometrics Europe 2190 Fortune Dr. San Jose, CA 95131 USA Ph: (408) 954-0522 FAX: (408) 954-0902

Declare under our sole responsibility that our seismograph StrataVisor models NZC, NZII/0, NZII/8 through NZII/64, ES-3000, and Geode models to which this declaration relates are in conformity with the following standards as these units operate from batteries under 15VDC:

EN 55011: 1998, A1:1999, EN50082-2: 1995, ENV 50140: 1994, ENV 50141: 1994, EN 61000-4-2 : 1995, EN 61000-4-4 : 1995

per the provisions of the **Electromagnetic Compatibility Directive** *89/336/EEC* of May 1989 as Amended by *92/31/EEC* of 28 April 1992 and *93/68-EEC, Article 5* of 22 July 1993.

The authorized representative located within the Community is:

Geometrics Europe Christopher Leech Manor Farm Cottage Galley Lane Great Brickhill Bucks.MK17 9AB, U.K. ph: +44 1525 261874 FAX: +44 1525 261867

Mark Prouty, President, San Jose, CA, USA

4. PROSPEZIONE SISMICA A RIFRAZIONE TOMOGRAFICA

4.1. MODALITA' OPERATIVE

4.1.1. Generalità

La tecnica di prospezione sismica a rifrazione prevede la misura dei tempi di propagazione delle onde di taglio (S) tra il punto di energizzazione in superficie (shot) e vari punti di ricezione (geofoni) disposti sulla superficie topografica.

L'analisi della velocità di propagazione delle onde elastiche nel sottosuolo trasversali (Vs), ottenuta conoscendo la distanza shot-ricevitore ed il relativo tempo di arrivo dell'impulso sismico (velocità=spazio/tempo), consente di rilevare in sintesi le proprietà fisiche e meccaniche dei terreni, poiché i valori di Vs sono proporzionali al grado di compattezza dei mezzi percorsi.

L'elaborazione dei dati e le relative rappresentazioni cartografiche sono state effettuate secondo le disposizioni della Committenza, tramite tecnica analitica tomografica.

L'analisi tomografica, nella quale cioè il sottosuolo della sezione sismica viene suddiviso in minime celle analitiche, ha consentito rispetto ad analisi standard per rifrattori (ad esempio G.R.M., Generalized Reciprocal Method -Palmer 1980-) un'elaborazione più di dettaglio in termini di velocità particellari dell'intero ammasso, permettendo di distinguere mediante rappresentazioni a countour line di isovelocità anche intorni minimi con caratteristiche differenziate per variazioni di consistenza, grado di alterazione, petrografia, granulometria o addensamento.

Quindi, le prospezioni geosismiche a rifrazione, specialmente quelle con tecnica tomografica, mediante la delineazione particolareggiata di aree di discontinuità fisica possono validamente contribuire alla definizione dello stato di resistenza del materiale, ad ampie correlazioni stratigrafico-geomeccaniche ed a significative ricostruzioni geomorfologiche.

Riguardo inoltre alla correlazione con i contatti litostratigrafici individuati nei sondaggi geomeccanici, l'identificazione dei livelli o settori rilevati dalla prospezione geosismica con tecnica tomografica dipende dal grado di effettiva omogeneità dello spessore litostratigrafico.

Cioè molto spesso interferiscono, con effetti opposti, fenomeni di cementazione o di disaddensamento al tetto e/o al letto dello strato geologico, i quali causano rispettivamente un innalzamento e un abbassamento dei valori particellari di velocità sismica per cui non necessariamente devono coincidere livelli di discontinuità fisica e semplici delimitazioni geologiche.

Anzi la prospezione geosismica a rifrazione, specialmente quella con tecnica tomografica grazie al suo estremo dettaglio analitico, può mettere in luce importanti effetti di anisotropia laterale anche entro uno stesso livello litostratigrafico indicati da significative variazioni verticolaterali dei valori di velocità di propagazione delle onde elastiche che evidenziano stati particolari di degradazione non sempre individuabili direttamente dalle analisi litologiche e geotecniche relative ai limitati prelievi nei punti di perforazione.

Per l'insieme delle osservazioni sopra esposte, l'elaborazione dei diversi risultati ottenuti mediante un accurato rilievo di sismica a rifrazione, può rispondere validamente ad esigenze di sintesi analitica e geognostica secondo convenienti criteri di praticità.

4.1.2. Sorgente di energia

Sono stati usati vari dispositivi di energizzazione a seconda del tipo di onda sismica da generare e registrare e dell'accessibilità del sito.

Per le onde di taglio si è impiegato un maglio, da 10 kg, polarizzato orizzontale in grado di fornire onde di taglio Sh.

4.1.3. Apparato di ricezione

Sono stati utilizzati geofoni da 12 Hz con asse strumentale orizzontale per la ricezione delle onde S, posizionati sul terreno ad intervalli variabili in funzione del dettaglio richiesto collegati tra loro da cavo elettrico e tramite questo al sistema di registrazione.

Inoltre è stato usato un geofono (geofono del time break o hammer switch) applicato nelle estreme vicinanze dell'apparato energizzatore, il quale costituisce il dispositivo di trigger per l'inizio della registrazione; tale segnale viene trasmesso tramite impulsi radio al sismografo.

4.1.4. Operazioni di campagna

Le operazioni di campagna per consentire l'elaborazione tomografica più di dettaglio sono analoghe a quelle di sismica standard con elaborazione per rifrattori anche se, per i rilievi di sismica tomografica, il numero di registrazioni che vengono realizzate è assai superiore (anche più del doppio) per consentire di avere a disposizione una quantità di dati tale da coprire con la giusta geometria dei raggi e in maniera omogenea l'intera sezione sismica in tutti i settori e fino alle profondità adeguate senza lasciare tratti scoperti o disomogenei.

Eseguito il posizionamento dei geofoni sul terreno, collegati questi tramite morsetti bipolari al cavo elettrico e quest'ultimo al sistema di registrazione, verificati i segnali via radio tra apparato di energizzazione e di ricezione, sono stati realizzati alcuni shot di prova allo scopo di tarare i parametri di acquisizione dello strumento di registrazione dati.

Effettuata la taratura della strumentazione si è proceduto alla prospezione sismica a rifrazione in modo tale che dopo ogni energizzazione (o somma di energizzazioni) su ciascun punto d'impatto prestabilito, si fosse acquisito e registrato il segnale sull'hard disk del p.c. collegato al sismografo per la successiva elaborazione da effettuarsi in sede.

4.1.5. Acquisizione dati

Gli impulsi sismici ricevuti dai geofoni posizionati sulla superficie topografica sono stati acquisiti utilizzando apparecchiature elettroniche EG&G Geometrics Geode a 24 canali di registrazione, si possono anche collegare in serie di registrazione simultanea in modo che, avendo a disposizione un numero sufficiente di canali attivi per tutti i geofoni collegati, si può procedere con gli impatti lungo l'allineamento sismico senza dover effettuare altri collegamenti e registrazioni parziali durante la fase di acquisizione dati e quindi con notevole guadagno in tempi esecutivi di campagna.

I dati acquisiti, dopo amplificazione, conversione analogico/digitale e filtraggio, sono stati registrati nel supporto magnetico (computer) al quale sono collegati in serie i Geodi utilizzati.

₩ SEISVIEW v 8.05 File = 3760301.dat	
File Option Merge Analisi Dati Load File Geo Print Config Help	
	·
✓ A (Scala Drizzontale Sinistra) (Scala Drizzontale Destra	• ™ → <u>G</u> ain 1.5

Esempio di records da 42 canali - sezione LS5: onde di taglio disaccoppiate Sh, con shot sul geofono 1 e tempo di acquisizione 1 sec con 4000 campioni.

4.2. ELABORAZIONE DATI

4.2.1. Elaborazione sismogrammi (preprocessing)

a) Traduzione tracce sismiche

La prima operazione che è stata eseguita in sede, una volta terminata la fase di acquisizione dati in campagna, è stata quella di tradurre i file di dati.

Questa fase di preprocessing permette di convertire il formato con cui i dati sismici sono registrati dal sismografo EG&G GEOMETRICS GEODE in quello del programma elaborativo (SeisView[®]).

b) Analisi dei first break peak (F.B.P.)

Di seguito è stata fatta all'elaboratore col programma **Seisview** [®] la ricerca su ciascuna traccia di ogni sismogramma del primo arrivo (F.B.P. first break peak) dell'onda di taglio (S).

Di ogni file di dati acquisito in campagna è stato quindi creato un nuovo file con i tempi di arrivo (in millisec) degli F.B.P.; tutti i file F.B.P. relativi ad una singola sezione sismica sono stati riuniti in un unico file di dati (con programma originale Graf-Dxf[®]).

Tali dati possono essere graficizzati per ottenere la rappresentazione delle Diagrafie Tempi- distanze (Dromocrone) della sezione sismica.

I dati in formato numerico sono invece stati inseriti (opportunamente tradotti per poter essere analizzati dagli specifici programmi elaborativi) nel programma originale S.R.A.[®] (Seismic Refraction Analysis) per l'elaborazione tomografica.

Dromocrone onde di taglio - sezione LS1_S

Dromocrone onde di taglio - sezione LS2_S

Dromocrone onde di taglio - sezione LS3_S

Dromocrone onde di compressione - sezione LS4_P

Dromocrone onde di taglio - sezione LS5_S

4.2.2. Processing in velocità

L'elaborazione delle sezioni mediante analisi tomografica viene effettuata sia per avere un maggior dettaglio in termini di consistenza dell'ammasso sia per raggiungere maggiori profondità d'investigazione sopperendo quindi alla comune mancanza di rifrattori significativi procedendo in profondità specialmente in seguito alla presenza di materiale non sufficientemente differenziato nei termini dei parametri elastici.

a) Definizione della geometria della ricerca

La prima procedura di elaborazione tomografica consiste nella ricerca della geometria di percorso dei raggi sismici da ogni punto di energizzazione a ciascun geofono collegato che ha registrato l'impulso proveniente da quello stesso punto.

Tale operazione preliminare viene effettuata mediante tecniche di Ray Tracing Curvilineo.

b) Ray tracing e definizione dei parametri di calcolo

Il file di dati di ciascuna sezione sismica precedentemente ottenuto, è stato per questo inserito nel programma di calcolo **S.R.A.**[®] (Seismic Refraction Analysis, programma originale sviluppato dalla Progeo che utilizza la piattaforma di Windows); il quale traccia, sulla base di una prima modellazione in velocità del sottosuolo, i vari raggi sismici che coprono da un estremo all'altro dello stendimento sismico l'intera area investigata al di sotto della superficie topografica.

La profondità d'indagine è funzione della lunghezza dello stendimento, di quella dei "tiri" di registrazione degli impulsi sismici e della velocità del materiale investigato dai raggi sismici.

La geometria d'investigazione dei raggi sismici mediante elaborazione tomografica consente infatti il raggiungimento di profondità massime al centro della sezione (la figura geometrica della sezione sismica è assimilabile a quella di un trapezio con la base maggiore in superficie) di circa 1/5 della lunghezza dell'allineamento in superficie considerando che questo sia stato interamente coperto da un estremo all'altro dal "tiro" sismico.

L'elaborazione tomografica è ottenuta utilizzando celle di analisi di larghezza coerente con la geometria d'indagine ed approssimativamente con larghezza pari alla metà della spaziatura dei sensori ed altezza pari ad un quarto di quest'ultima.

c) Analisi delle risultanze delle velocità

Il passo successivo è stato l'applicazione sempre con lo stesso programma S.R.A.[®] di procedure tipo S.I.R.T. (Simultaneous Iterative Reconstruction Technique) le quali forniscono valori di velocità sismica per partizioni unitarie (celle di analisi di dimensione metrica), col quale l'operatore ha cercato, con successive iterazioni dalla prima modellazione del sottosuolo, di far convergere (dal punto di vista statistico fino a quando gli scarti quadratici e le varianze dei tempi calcolati sono minimi rispetto a quelli definiti in input) i dati modellati con quelli reali e corrispondenti ai tempi ottenuti dalle dromocrone originali.

In pratica le successive approssimazioni calcolate dall'elaboratore coi dati sempre più affinati e inseriti dall'operatore terminano quando le dromocrone, relative a quella data distribuzione di velocità particellari, sono coincidenti e con scarto minimo (mediamente inferiore a 0.5%) con quelle reali ottenute dalle letture degli F.B.P. sui sismogrammi.

Inoltre con tale tecnologia elaborativa si sopperisce alla mancanza di rifrattori significativi e alla presenza, assai comune col procedere in profondità, di materiale non sufficientemente differenziato nei termini fisici dei parametri elastici, per cui le tecniche tradizionali di sismica a rifrazione non riescono a discriminare il grado di consistenza, alterazione o disomogeneità dell'ammasso.

La rappresentazione tomografica delle sezioni geofisiche avviene mediante software (Surfer della Golden Software - Colorado) con il quale i valori dei parametri geofisici vengono espressi mediante contour line e campitura di colore.

4.2.5. Analisi del gradiente geotomografico

Per localizzare i principali livelli di consistenza si è sviluppata l'analisi del gradiente geosismico il quale consiste in un'analisi matematica (*processing di gradiente*) allo scopo di rintracciare i luoghi ove il parametro elastico tomografico subisce significativi incrementi in brevi tratti.

E' in questi luoghi, i quali non necessariamente coincidono per un'area ad un unico valore, ove la probabilità di individuare una interfaccia significativa è maggiormente elevata.

Per la determinazione ed individuazione quindi di tali orizzonti è stato applicato sui dati tomografici un algoritmo statistico il quale valuta la variazione del parametro tomografico (ad es. Velocità, Attenuazione) in termini di gradiente verticolaterale.

E' evidente che se i parametri geofisici non variano arealmente oppure variano di poco il gradiente è pressoché nullo o molto basso, laddove invece si presentano variazioni verticolaterali importanti il gradiente si presenta con i massimi valori.

E' in tali tratti quindi che è possibile localizzare passaggi significativi e suddividere il sottosuolo in "strati" di consistenza differenziata ed inoltre, nel caso in cui sia possibile una taratura mediante sondaggi geomeccanici, effettuare anche una correlazione litologica.

Di seguito viene presentata una immagine a monitor del software di elaborazione tomografica relativamente ad un momento della valutazione del gradiente.

L'esempio di processing di gradiente riporta le varie schermate ottenibili dal programma di calcolo in fase elaborativa: dall'alto in basso si osservano i dati di input –dromocrone-, la sezione sismostratigrafica con differenziazione cromatica del parametro considerato, log parametrici e diagrafie lungo tratti di sezione prestabiliti nei quali sono marcati i "top" del gradiente parametrico (al quale o ai quali corrisponderà in sezione tomografica una o più isolinee differenziate di countour line e cromatismi di diversa tonalità).

Esempio di "Processing di Gradiente" (immagine di repertorio)

5. PROSPEZIONE SISMICA IN FORO CON TECNICA DOWN HOLE

5.1. Modalità operative

La tecnica down-hole prevede la misura dei tempi di propagazione delle onde di compressione (P) e di taglio (S) tra il punto di energizzazione in superficie (shot) ed il punto di ricezione mobile in profondità entro il foro di sondaggio.

5.1.1. Sorgente di energia

Per effettuare tali operazioni è necessario utilizzare una sorgente di energia a polarizzazione verticale ed orizzontale: con la prima si generano onde di compressione P mentre con la seconda onde di taglio Sh.

Nel caso in esame si è scelta una sorgente di energia che potesse garantire una buona risposta sismica in alta frequenza oltre a caratteristiche dinamiche ripetitive similari; il generatore usato e denominato "Hammer Blow" è rappresentato da un maglio di 8 Kg usato da un operatore lasciato cadere con forza da circa 2 m su una piastra di acciaio per la generazione delle onde di compressione ed orizzontalmente, colpendo un supporto solidale per attrito radente al terreno, (trave in legno con sopra un autocarro) per quelle di taglio.

3.1.2. Apparato di ricezione

L'apparato di ricezione è provvisto di un apposito meccanismo di ancoraggio alle pareti del foro durante la registrazione dell'impulso e di disancoraggio per essere mobilizzato lungo la verticale del sondaggio stesso; tale apparato ha la possibilità di essere orientato sul piano orizzontale mediante l'utilizzo di "aste in alluminio" (vedasi foto allegata a fianco).

Tale apparato (sonda 3D) è formato da due gruppi di sensori composti ciascuno da tre geofoni da 14 Hz smorzati del 70%, dei quali uno con l'asse funzionale verticale (V) e due orizzontali (H1 e H2) fra loro ortogonali; l'interdistanza fra i due gruppi è di 1 m. (vedasi foto a lato).

Oltre alla sonda calettata entro il foro si utilizza in superficie un interruttore piezoelettrico applicato all'apparato energizzatore, il quale costituisce il dispositivo di trigger per

l'inizio della registrazione ed alcuni geofoni di riferimento posizionati nelle vicinanze della bocca del foro che rimangono fissi per tutte le misure effettuate nel sondaggio e che costituiscono il dispositivo di controllo affinché tutti gli impulsi sismici siano in fase ed utilizzabili per le correzioni nella fase di preprocessing nel caso in cui si opti per una elaborazione di tipo tomografico.

Tali geofoni risultano superflui nel caso in cui si intraprenda l'iter elaborativo di tipo differenziale, cioè per ogni ordinata o step di misura, in quanto è sufficiente determinare, per differenza tra i tempi sismici di propagazione (Δ t) fra i due ricevitori posti alle estremità opposte della sonda, i singoli valori di velocità sia dell'onda di compressione (per i ricevitori verticali) sia dell'onda di taglio (per i ricevitori orizzontali).

5.1.3. Operazioni di campagna

Dopo aver eseguito il collegamento al sismografo del cavo elettrico per i 6 canali della sonda 3D, dell'interruttore piezoelettrico solidale all'apparato di energizzazione e dei geofoni di riferimento si è effettuato il posizionamento della sonda 3D a fondo foro e si sono realizzati alcuni shot di prova allo scopo di tarare i parametri di acquisizione dello strumento di registrazione dati.

Effettuata la taratura della strumentazione si è proceduto alla prospezione down-hole a partire da fondo foro.

5.1.4. Acquisizione dati

Gli impulsi sismici ricevuti dalla sonda in foro sono stati acquisiti utilizzando l'apparecchiatura EG&G Geometrics Geode dotata di estremo dettaglio di campionatura (0.02 millisec) tramite la quale, dopo amplificazione, conversione analogico/digitale e filtraggio, sono trasferiti e registrati su P.C.

I files dei dati sono così realizzati:

canale 1	-	segnale del geofono orizzontale superiore direzione ortogonale	(H2)
canale 2	-	segnale del geofono orizzontale inferiore direzione ortogonale	(H2)
canale 3	-	segnale del geofono orizzontale superiore direzione parallela	(H1)
canale 4	-	segnale del geofono orizzontale inferiore direzione parallela	(H1)
canale 5	-	segnale del geofono verticale superiore	(V)
canale 6	-	segnale del geofono verticale inferiore	(V)

In tal modo, per ogni step di misura di un metro in profondità, si possono analizzare i first break imputabili all'arrivo dell'onda di compressione (P) sia sul geofono del canale 5 sia sul geofono del canale 6 e per differenza si ottiene il valore della differenza di tempo di percorrenza relativa all'intervallo in oggetto.

Analogamente per ogni step di misura di un metro di profondità, si possono analizzare i first break imputabili all'arrivo dell'onda di taglio (S) sia sul geofono del canale 3 sia sul geofono del canale 4 e per differenza si ottiene il valore della differenza di tempo di percorrenza relativa all'intervallo in oggetto.

5.2. Elaborazione dati

Il procedimento elaborativo dei dati down hole può essere sviluppato secondo due differenti modalità:

- down hole tomografico,
- down hole differenziale.

5.2.1. Down hole tomografico

Si sviluppa fondamentalmente in due fasi.

- 1) Elaborazione sismogrammi:
 - display sismogrammi,
 - convoluzione,
 - lettura first break (realizzazione dromocrone per analisi down hole).

- 2) Elaborazione delle sezioni down-hole:
 - analisi delle velocità generalizzazione tempo-profondità,
 - routine di ottimizzazione,
 - routine per trasferimento dati in un sistema C.A.D.

Esprimendo in parole i punti sopraindicati si può affermare che una volta ottenute le velocità delle onde di compressione (Vp) e di taglio (Vs) entro i fori vengono calcolate tramite programmi all'elaboratore le distribuzioni areali di Vp e Vs ottimizzando l'elaborazione mediante assemblaggio delle risultanze di una molteplicità di registrazioni sismiche e tramite trasformazioni dei dati da valori numerici ad informazioni grafiche per plot delle risultanze.

Come si è visto il procedimento elaborativo si sviluppa fondamentalmente in due fasi: la prima è relativa allo studio delle tracce sismiche, la seconda riguarda lo studio delle velocità Vp e Vs lungo la verticale del foro.

Vengono riportati qui di seguito i principali step dell'elaborazione dove viene fatta una differenziazione del materiale in celle unitarie (una cella per ogni sensore).

Preprocessing

In questa fase si utilizzano sia programmi originali all'elaboratore sia routine sviluppate dalla I.C.I. (Interactive Concepts Incorporated) distribuite dal Kansas Geological Survey.

a) Traduzione tracce sismiche

Questa fase di preprocessing permette di convertire il formato con cui i dati sismici sono registrati dal sismografo EG&G GEOMETRICS GEODE in quello dei programmi elaborativi.

b) Gathering dei canali 1, 2, 3 e 4

Fase di preprocessing nella quale vengono riunite le tracce omologhe dei sismogrammi acquisiti in un unico file di dati: si realizzano pertanto nº 4 file, ognuno dei quali rappresenta la raccolta di tutte le tracce corrispondenti.

- Gather 1 traccia 1 (onda di compressione P ricevuta dal geofono verticale in superficie=riferimento "T₀" per correzioni time break)
- Gather 2 traccia 2 (onda di compressione P ricevuta dal geofono verticale V nella sonda 3D alle varie profondità nel foro)
- Gather 3 traccia 3 (onda di taglio S ricevuta dal geofono orizzontale H1 nella sonda 3D alle varie profondità nel foro)
- Gather 4 traccia 4 (onda di taglio S ricevuta dal geofono orizzontale H2, ortogonale all'H1 nella sonda 3D, alle varie profondità nel foro)
- c) Analisi dei singoli gather

Viene effettuata l'analisi del gather 1 onde ricavare, traccia per traccia, la correzione da apportare, in millisecondi alle corrispondenti tracce 2, 3 e 4 (della stessa profondità) relative ai diversi shot effettuati in ciascun foro per investigare l'intera profondità. L'analisi, che si sviluppa con criteri statistici, definisce un termine di riferimento 0 e gli spostamenti positivi o negativi di ciascuna traccia.

d) Analisi spettrale (F.F.T.)

Vengono realizzate le analisi spettrali in frequenza (Fast Fourier Transform) di alcune tracce campione relative ai gather 2, 3 e 4 a finestre sia nei settori con rumore di fondo sia in quelli con segnale utile (onda P e onda S).

Note queste frequenze fondamentali si procede alla costruzione di appositi filtri digitali per ridurre il rumore di fondo ed esaltare i segnali utili.

e) <u>Stacking canali 3 e 4</u>

Somma dei canali 3 e 4 (orizzontali) con rotazione dell'asse di vibrazione lungo la direzione della massima fase coerente.

Il procedimento viene realizzato mediante elaborazioni statistiche con ricerca automatica delle massime fasi coerenti delle onde di taglio (S).

Si ottiene pertanto un nuovo file di dati (canale 5) delle onde di taglio.

f) First break peak canali 2 e 5

Lettura dei primi arrivi dell'onda di compressione P e di taglio S. Nei nuovi files di dati creati al punto b) e al punto e) dall'assemblaggio delle varie tracce sismiche vengono considerati i files dei canali 2 (assemblaggio onde P) e dei canali 5 (assemblaggio onde S).

<u>g) Muting</u>

Operazione che riduce il segnale sismico dal tempo 0 al time break letto sulle singole tracce al passo (f) e che accentua visivamente i primi arrivi. Viene così ridotto il disturbo aleatorio costituito da rumore di fondo non eliminabile dall'operatore in fase di filtraggio (punto c) in quanto caratterizzato dalle stesse frequenze del segnale utile.

h) Plot

Stampa finale delle tracce sismiche relative alle onde di compressione e di taglio.

Processing tomografico

Questo consiste nell'interpretazione dei tempi di arrivo delle onde di compressione P e di taglio S. Per l'analisi di questi dati vengono utilizzati programmi al calcolatore di utilità, originali della Progeo.

Il procedimento di calcolo si sviluppa secondo i seguenti ulteriori step.

- i) Definizione della geometria della ricerca
 - coordinate del sensore in pozzo (3D),
 - posizionamento punto di shot.

I) Input tempi di arrivo onde P e onde S

Realizzazione dei file dei dati relativi ai tempi di arrivo delle onde P ed S associate alle coordinate spaziali delle stazioni di misura.

m) Input modello di velocità

In base alle conoscenze stratigrafiche e sismiche vengono definiti degli intervalli a velocità costante lungo l'asse del foro in funzione dei quali viene realizzato il ray tracing (step n).

n) Ray tracing

Vengono create le traiettorie dei raggi sismici in base ai modelli di velocità definiti allo step m).

Per il calcolo si sono utilizzati i seguenti parametri:

- anisotropia ellittica (massima velocità in senso verticale)

(.05%)
(1")
(500)
(on)
(on)

o) Definizione dei parametri di calcolo

Il programma utilizzato necessita, per il calcolo della sezione in profondità lungo la verticale del foro e in funzione dei valori di velocità , dei seguenti parametri di calcolo:

 definizione tipo di griglia 	(1 cella ogni m)
- tipo di anisotropia del mezzo investigato	(verticale)
- numero di iterazioni	(500)
- algoritmo di calcolo	(S.I.R.T.)

L'algoritmo S.I.R.T. (Simultaneous Iterative Reconstruction Technique) crea un'immagine di velocità apprezzabile, sufficientemente stabile e che converge velocemente verso i valori sperimentali.

Immagine di repertorio del processing del Down Hole Tomografico

p) Analisi delle risultanze

Queste vengono inizialmente valutate dal punto di vista statistico attraverso gli scarti quadratici e le varianze dei tempi calcolati rispetto a quelli definiti in input. In base a tali valori possono essere modificati i parametri di calcolo per una migliore ottimizzazione. Si passa in seguito all'analisi delle velocità intergeofoniche relative alle onde P ed S dalla quale si ricava un modello di velocità più adeguato (a tale modello si farà riferimento in seguito come velocità intervallari).Il calcolo riprende perciò dallo step m) con l'input del nuovo modello di velocità e si procede fino a quando gli scarti e le varianze divengono minimi.

g) Predisposizione tabelle e grafici dei dati

I dati calcolati al punto p) vengono riportati in un foglio elettronico appositamente predisposto allo scopo di calcolare i moduli elastici relativi e graficizzare le risultanze.

r) Conversione in immagini computerizzate

La prospezione down hole con elaborazione tomografica si concretizza nella definizione di celle analitiche elementari; per ogni cella il valore della velocità tomografica rappresenta il valore medio risultante dei valori differenziali relativi a tutti i tragitti elementari dei raggi di investigazione che attraversano la cella considerata. La determinazione delle celle elementari che definiscono la rappresentazione tomografica deriva dalle variazioni dei parametri cinematici Vp e Vs in funzione del grado di consistenza differenziata del materiale.

5.2.2. Down hole differenziale (cross correlazione)

In questo caso specifico si è utilizzata questa tecnica elaborativa perché è stato possibile utilizzare in foro una sonda ricevente con spaziatura intergeofonica di 1 metro la quale, grazie anche al ridotto intervallo di campionamento (0.020 millisecondi) consentito dal sismografo EG&G GEOMETRICS GEODE permette di determinare per partizioni discrete direttamente nel tratto interessato i valori cinematici differenziali.

La valutazione dei tempi di arrivo delle onde di compressione e di taglio viene effettuata mediante Cross Correlazione.

Tale tecnica viene normalmente impiegata allo scopo di aumentare il grado di affidabilità dei tempi.

Questa metodologia è indicata e sufficientemente precisa per la valutazione dei tempi di arrivo delle onde di compressione P; nell'immagine sottostante si ha un esempio di quanto indicato.

Per le onde di taglio S si procede all'analisi dell'inversione delle tracce sismografiche individuando quale sia il primo arrivo dell'onda di taglio (inversione di polarità), poi si affina la ricerca mediante Cross Correlazione (applicando la metodologia proposta da Willis e Toksoz - 1983-) e si determina così il valore del tempo differenziale fra le due tracce omologhe.

Nell'immagine sottostante si evidenzia il primo arrivo delle onde di taglio fra le tracce sismografiche relative ai geofoni dei canali 3 e 4.

Una volta individuato il primo arrivo dell'onda di taglio (con procedura analoga per le onde di compressione) si procede con una serie di passaggi di Cross Correlazione a finestre variabili tra le varie tracce allo scopo di individuare la massima rassomiglianza tra gli arrivi omologhi e determinare la massima verosimiglianza tra le tracce dei canali indicati nelle tabelle dei down hole riportate alle pagine precedenti.

Tale tecnica in pratica consiste nel valutare il "ritardo" di arrivo dell'onda di compressione e/o di taglio fra il geofono inferiore e quello superiore valutando unicamente su base sismografica il valore di tempo che intercorre fra i due arrivi; qui di seguito è riportato un esempio di tale tecnica elaborativa.

Una volta stabiliti i tempi di "ritardo" delle onde correlate nelle posizioni interdistanti 1 m si procede alla composizione delle tabelle e log dei parametri elastici.

5.3. Elaborazione dei log di Vs, Vp e dei Moduli Elastici Dinamici

Attraverso la determinazione sia delle velocità delle onde di compressione sia delle velocità delle onde di taglio è possibile ricavare i seguenti parametri (per ulteriori dettagli si veda, tra i più recenti, "The rock physics handbook – tools for seismic analysis in porous media" di G. Mavko, T. Mukerji e J. Dvorkin, Cambridge University Press, UK, pp. 1-329, 1998):

- Coefficiente di Poisson	(v)	
- Peso di volume	(γ _{din})	in t/m³
 Modulo di Elasticità dinamico 	(E _{din})	in Kg/cm ²
- Modulo di Taglio dinamico	(G _{din})	in Kgcm ²
- Modulo di Compressibilità dinamico	(K _{din})	in Kgcm ²

Il Coefficiente di Poisson (v), noto come la costante che lega le deformazioni in un corpo, può essere collegato, da un punto di vista bidimensionale, ad uno sforzo di trazione, che causa nel corpo stesso un allungamento in una direzione e un raccorciamento nell'altra, o ad uno sforzo di compressione che, analogamente, determina una contrazione in una direzione e una dilatazione nella direzione opposta.

Tale parametro può presentare un range di variazione compreso tra un massimo di 0.5 ed un minimo di 0; il valore di 0.5 è caratteristico di materiali che si deformano senza cambiamenti di volume (es. acqua), valori leggermente inferiori (0.47 - 0.49) sono tipici di argille o materiali molto saturi; valori inferiori sono indicativi di materiali da poco consolidati a sovraconsolidati.

Per le rocce si presentano range di variazioni molto ampi collegati in particolare sia al grado di fratturazione sia alla presenza di cavità, stratificazioni e litologie e comunque tra (0.46 e 0.20).

In funzione di Vp e di Vs il parametro è definito dalla seguente relazione:

Coefficiente di Poisson
$$v = \frac{Vp^2 - 2 \cdot Vs^2}{2 \cdot (Vp^2 - Vs^2)}$$

Il *Peso di volume* (γ_{din}) del terreno può essere indicativamente ricavato, in via empirica, anche dalla velocità delle onde di compressione sulla base della seguente relazione:

Peso di volume
$$\gamma_{din} = 0.51 \cdot V p_{m/sec}^{0.19}$$
 (γ_{din} in T/m³).

Da tale relazione si può ottenere anche la densità geofisica, intesa come:

Densità geofisica
$$\delta_{din} = \frac{\gamma}{g}$$
 (g = 9.8 – accelerazione di gravità

m/sec),

la quale viene utilizzata come parametro nelle formule per ricavare i moduli di elasticità e di taglio.

Il *Modulo di Young* o di *Elasticità normale* E_{din} . definisce la *deformazione longitudinale* di un corpo, intesa come il rapporto tra l'allungamento (o l'accorciamento) e la lunghezza originale del corpo stesso; in funzione dei valori della velocità delle onde di compressione Vp, della densità geofisica e del coefficiente di Poisson il parametro è definito dalla seguente relazione:

Modulo di Elasticità
$$E_{din} = Vp^2 \cdot \delta_{din} \cdot \frac{(1+v) \cdot (1-2v)}{(1-v)}$$
 (E_{din} in Kg/cm²).

Il Modulo di Taglio o di Rigidità G_{din} definisce invece la deformazione tangenziale di un corpo, intesa come l'angolo di cui ruota il corpo stesso in seguito ad uno sforzo di taglio; in funzione dei valori della velocità delle onde di taglio Vs e della densità geofisica il parametro è definito dalla seguente relazione:

Modulo di Taglio
$$G_{din} = \delta_{din} \cdot Vs^2$$
 (G_{din} in Kg/cm²).

Infine, il *Modulo di Compressibilità* o *Modulo di Volume* è quel parametro ottenibile se lo sforzo viene applicato tridimensionalmente (lungo tutti i tre assi cartesiani) generando una pressione idrostatica uniforme con la quale si avranno componenti dello sforzo uguali e con deformazione rappresentata da una variazione di volume la quale può essere indicata numericamente dall'inverso del coefficiente di compressibilità; utilizzando i valori del modulo di elasticità e del coefficiente di Poisson il parametro è definito dalla seguente relazione:

Modulo di Compressibilità
$$K_{din} = \frac{E_{din}}{3 \cdot (1 - 2 \cdot v)}$$
 (K_{din} in Kg/cm²).

5.4. Elaborati prove down hole

Nella documentazione down hole riportata al termine della presente relazione sono presentate in dati in 3 tavole distinte per prova:

- Sismogrammi delle onde di compressione e taglio oltre alla prova sonica per la valutazione della cementazione del pvc nell'intercapedine del foro;
- Tabelle numeriche
- Logs relativi ai parametri geosismici e moduli elastici dinamici analizzati.

5.5. Carotaggio sonico

La misura del carotaggio sonico è stata effettuata con la strumentazione MAE AU3000 e consente, utilizzando due sonde alla distanza di 50 cm, di valutare il tempo di trascorrenza di un'onda sonica. Questo tempo sarà tanto più ridotto quanto più elevata risulta la velocità nell'intorno del pvc.

L'utilità in questo caso non è tanto stabilire la velocità delle onde di compressione dell'ammasso bensì di verificare il contatto tra il Pvc e l'ammasso il quale dovrebbe essere stato ottenuto mediante cementazione.

Nel caso in cui questo contatto risulti ridotto o assente ovviamente le misure di Down Hole ne possono risultare influenzate negativamente.

Nel caso in oggetto, a parte qualche leggera anomalia, il contatto tra il Pvc e la roccia incassante, risulta presente e sufficiente per tutte le prove come si può verificare dai log del sonico presente nei certificati delle prove Down Hole.

6. RISULTANZE

In coda alla relazione sono presenti 4 figure con le planimetrie alla scala 1:1000 a cui seguono le sezioni sismiche tomografiche.

Queste sono riportate esprimendo i dati di velocità delle onde di taglio calcolati mediante isolinee e falsi colori mantenendo fisso il range della scala cromatica.

Al di sotto della sezione sismica è riportato il log del valore di VsH cioè del parametro equivalente di Vs utile se si vuole classificare il sito secondo la normativa NTC2008.

E' da dire questo riguardo che il valore indicato fa riferimento alla colonna di dati tomografici: quando la colonna non giunge a 30 m viene riportato il valore in blu mentre se giunge a 30 m viene riportato in rosso.

Nei certificati dei Down Hole sono altresì riportati le categorie di suolo ed i valori di Vs₃₀ corretti, anche in questo caso è riportato il valore di Vs_H il quale fa riferimento, in questo caso, ai soli parametri con Vs<800 m/sec che può coincidere al valore di Vs₃₀ nel caso in cui si sia in presenza di un suolo B, C o D.

Sulle sezioni, in scala 1:500/1:1000, sono riportate le posizioni dei sensori che trovano riscontro anche sulle planimetrie, ed eventualmente i sondaggi dell'ultima campagna del 2013.

Sulla base dell'analisi del gradiente geosismico si sono rilevate due interfacce significative che sono, con un piccolo scarto, del medesimo ordine per tutte le sezioni indagate.

La prima (Vs=~0.25 km/sec) risulta maggiormente evidente mentre la seconda non sempre appare nitida dalle analisi di gradiente infatti è soggetta ad un maggiore scarto.

Queste interfacce rilevate, espresse in grassetto sulle sezioni, sono a:

- 1. Vs = 0.25 km/sec +/- 0.05
- 2. Vs = 0.45 km/sec per le sezioni LS3, LS4 e LS5 (con scarto valutato in -0.05 / +0.15) mentre 0.52 km/sec -0.05/+0.10 per la sezione LS1.

La prima interfaccia si pone a separazione di un materiale molto allentato riferibile alla coltre superficiale (suolo e detrito disaddensato) da un materiale, probabilmente sempre di natura detritica, leggermente più consistente.

La seconda interfaccia a 0.45 km/sec separa la porzione principalmente detritica della copertura dalla formazione di base più consistente o comunque da un materiale già in buono stato di consistenza, tendenzialmente abbastanza rigido e poco deformabile (lapideo della formazione di base locale – sezioni LS3 - LS4) mentre 0.52 km/sec sulla LS1 dove questa interfaccia dovrebbe rappresentare la base del corpo detritico di versante.

Per quanto riguarda l'analisi di dettaglio in ottica progettuale si rimanda alle singole sezioni tenendo presente quanto sopra indicato.

Hanno collaborato: Dott. Gabriele Pulelli Dott. Andrea Fabbri Dott. Stefano Tomidei

PROGEO S.r.L.	CRED.	Cliente:	ANAS S.p.A.	Nome:	Planimetria sezioni sismiche L1-L2 e DH2
47100 Forli tel. 0543 723580 fax. 0543 721486		Progetto:	Tratta Monte Romano est - Civitavecchia.	Scala:	1:2500
mail.progeo@gmail.com www.progeo.info	REG. N. 2013 -A UNI FN TRO ROT - 2008	Lavoro:	Servizi di indagine geofisica	File:	1376 - Planimetria sezioni L1-L2 e DH2.srf

	PROGEO S.r.L.	C RED	Cliente:	ANAS S.p.A.	Nome:	Planimetria sezioni sismiche L3 e DH8
PROGEO	47100 Forli tel. 0543 723580 fax. 0543 721486		Progetto:	Tratta Monte Romano est - Civitavecchia.	Scala:	1:2500
	mail.progeo@gmail.com www.progeo.info	REG. N. 2017 - A UNI FN ISO 8001 - 9008	Lavoro:	Servizi di indagine geofisica	File:	1376 - Planimetria sezioni L3 _ DH8.srf

	PROGEO S.r.L.	C RED	Cliente:	ANAS S.p.A.	Nome:	Planimetria DH5
PROGEO	47100 Forli tel. 0543 723580 fax. 0543 721486		Progetto:	Tratta Monte Romano est - Civitavecchia.	Scala:	1:2500
	mail.progeo@gmail.com www.progeo.info	REG.N. 2017-A UNI FN IKO MOT - 2008	Lavoro:	Servizi di indagine geofisica	File:	1376 - Planimetria DH5.srf

Fig. 4

	PROGEO S.r.L.		CREO	Cliente:	ANAS S.p.A.	Nome:	Sezione sismica 1 - onde di taglio
PROGEO	Via Talete 10/8 47100 Forli tel. 0543 723580 fax. 0543 721486			Progetto:	Tratta Monte Romano est - Civitavecchia.	Scala:	1:1000
	mail.progeo@gmail.com www.progeo.info	REG.N. 2610 - A UNI FN ISO 8001 - 2008	9 ACCALDINA	Lavoro:	Servizi di indagine geofisica	File:	1376 - Sezione L1.srf

Fig. 5

SEZIONE SISMICA TOMOGRAFICA L3 [Velocità onde di taglio]

Fig. 7

2.00

Progetto:	Tratta Monte Romano est - Civitavecchia.	Scala:	1:1000
Lavoro:	Servizi di indagine geofisica	File:	1376 - Sezione L4.srf

Fig. 8

PROGEO S.r.L.	CRED	Cliente:	ANAS S.p.A.	Nome:	Sezione sismica 5 - onde di compressione e taglio
via Talete 10/8 47100 Forli tel. 0543 723580 fax. 0543 721486		Progetto:	Tratta Monte Romano est - Civitavecchia.	Scala:	1:500
mail.progeo@gmail.com www.progeo.info	REC.N.2017-A IINI FN ISO SIGN - 9008	Lavoro:	Servizi di indagine geofisica	File:	1376 - Sezione L5.srf

Fig. 9

COMMITTENTE	ANAS SpA				Sismogrammi
DOWN HOLE	S2_DH			e in 4	Est (m) = 1740358.788
Località - Progetto	Monte Romano (S.S. 675)			rdinat VGS84	Nord (m) = 4682239.952
Data acquisizione	11/03/2014	Cod.	1376	C C C O	Quota (m) = 268.38

1 di 3

Profondità Sismogrammi onde di compressione Sismogrammi onde di taglio Carotaggio Sonico Millisecondi Millisecondi 250 Microsecondi 1000 250 m 0 MÁ 1 2 NVL. ř 🖌 الهم 3 1.... 4 5 ۸ , **K**. 6 Settore dove la cementazione del foro appare non completa 7 8 (A) 9 **A** V **A**, **A** 10 11 1¹² 14 VMVAĽ, 12 VII A G. Sec 13 Settore dove la cementazione del foro appare non completa 14 **A**A A 15 16 10 `₄¥¥`₩`₩` 17 10.00 ML. 18 AN ALAA 19 .∐**a**'aj 20 5 21 ۳**L** 22 VI LA 23 24 12.6 PLA. A. A. 25 ٨ 26 27 4 ia. 28 29 1 30 4 4 31 in h Agen Work 32 11AA 33 ļ Ser. C 34 a l 1966 (D.P.)-35

ΙV

ł

COMMITTENT	ſE	ANAS Sp	A				Metodologia DH				PROGEO	
DOWN HOLE		S2_DH						Differenzia	le		I	PROGEO s.r.l.
Località - Pro	getto	Monte Ro	mano (S.S	. 675)			Progressivo				bal. 0543 723580 fax. 0543 721486 mail.progeo@gmail.com www.progeo.info	
Data acquisiz	ione	11/03	/2014	Cod.	1376					Fald	a -5.00 m	2 di 3
Profondità	Тр	Ts	Vp	Vs	Poisson	Densità	E°	G°	K°		STRATIGRA	FIA
m	msec	msec	km/sec	km/sec		t/m³	Kg/cm ²	Kg/cm ²	Kg/cm ²		semplificata	а
0	4.96	8.66	0.26	0.09	0.435	1.46	321	112	821		0.00-1.10 Terreno di riporto.	
1	5.76	10.63	0.35	0.13	0.425	1.55	724	254	1614		1.10-2.80 Frammenti	e blocchi angolari
2	6.11	14.46	0.45	0.16	0.427	1.63	1211	424	2750		calcareniticiintercalati molto consistente.	i in argilla limosa
3	6.68	18.08	0.59	0.19	0.440	1.72	1893	657	5284			
4	7.25	20.51	0.76	0.21	0.457	1.80	2442	838	9572		2.80-8.00	
5	9.09	25.51	0.79	0.23	0.452	1.81	2947	1015	10132		Argilla limosa alterata caotica a tratti decom	, ossidata, pressa. Presenti
6	9.90	29.89	0.83	0.22	0.461	1.83	2749	941	11608		clasti calcarenitici ang profondità. Presenti in sabbiose nell'ultimo n	olari. Marnosa in ntercalazioni netro.
7	10.70	31.72	0.89	0.25	0.457	1.85	3482	1195	13496			
8	11.51	35.39	1.04	0.31	0.452	1.91	5407	1862	18689		8.00-9.70 Calcarenite	e, da molto
9	12.42	37.70	1.11	0.33	0.450	1.93	6356	2192	21130		fratturate a poco fratt profondità. Molto frat	turate in tturata da 8.00 a
10	13.23	39.54	1.19	0.38	0.443	1.96	8275	2867	24250		9.70-23.00 Limo argi alterato, ossidato a st	lloso sabbioso ruttura caotica
11	13.69	42.09	1.45	0.40	0.459	2.03	9675	3317	38877		con inclusi frammenti arenacei e calcareo marnosi ang	marnoso
12	14.03	44.62	1.86	0.41	0.475	2.13	10597	3593	69979		consistente, localmen	trici. Molto te duro; di colore
13	14.38	46.73	2.20	0.40	0.483	2.20	10502	3540	104071		avana beige. Presenti intercalazion	i e/o blocchi
14	14.84	49.83	2.30	0.38	0.486	2.22	9947	3348	114864		calcareo marnosi/mar alterati e fratturati all profondità: 12.00±12	noso arenacei e seguenti 70 14 20+14 35
15	15.41	52.80	2.17	0.37	0.485	2.20	9032	3041	101270		14,70+15,20, 16,00+1 17,90+18,40, 19,10+1	7,10, 9,40,
16	15.99	55.59	2.03	0.37	0.482	2.17	9182	3097	86921	a Dara Ala	20,70+21,20 m.	
17	16.22	57.11	2.02	0.40	0.479	2.17	10523	3556	85452			
18	16.91	59.22	1.91	0.45	0.471	2.14	12869	4375	73593			
19	17.82	61.39	1.77	0.47	0.462	2.11	13980	4781	61334			
20	18.05	63.31	1.88	0.49	0.464	2.14	15239	5206	69840	****		
21	18.31	64.83	2.34	0.51	0.475	2.23	17603	5968	116212			
22	18.74	67.22	2.75	0.53	0.480	2.30	19781	6681	168520			
23	19.09	68.66	2.84	0.54	0.481	2.31	20358	6872	180371	1		
24	19.43	70.19	2.69	0.56	0.478	2.29	21513	7280	159585		23.00-2500 Framme marnoso arenacei e c alterati e fratturati di	nti e blocchi alcareo marnosi colore grigio
25	19.89	71.95	2.51	0.56	0.474	2.26	21249	7208	135701		avana	
26	20.47	74.04	2.30	0.54	0.471	2.22	19354	6579	111319		debolmente marnosa a molto dura; di color	alterata; da dura re beige.
27	20.81	76.67	2.17	0.50	0.472	2.20	16696	5672	98253		Presenti inclusi calcan marnoso arenacei ang millimetrici a centime	eo marnosi e golari da etrici.
28	21.39	78.65	2.18	0.48	0.475	2.20	15115	5125	99111			
29	21.62	80.42	2.34	0.48	0.478	2.23	15267	5164	116951		28.00-3500 Argilla li debolmente marnosa elementi o livelli cent	moso sabbiosa con intercalati imetrici marnosi e
30	22.19	82.65	2.35	0.48	0.478	2.23	15624	5286	118030		calcareo marnosi pre 31,40÷32,20 e da 34,7	valentemente da 70÷35,00 m. Da
31	22.53	84.67	2.40	0.49	0.479	2.24	15886	5372	123880		grigio scuro a grigio o ocracee da 30,20 a 31	on sfumature 1,50.
32	22.99	86.41	2.43	0.51	0.477	2.24	17403	5891	127080			
33	23.22	88.02	2.77	0.55	0.479	2.30	21110	7135	169898			
34	23.57	89.60	2.94	0.60	0.478	2.33	25061	8475	194059			
35	24.03	91.12	2.85	0.63	0.474	2.31	27671	9385	179354			

Legenda parametri dinamici	
----------------------------	--

Tn	Tempi onde di compressione (r	meac)
'P	rempronde di compressione (i	11300)

- Ts Tempi onde di taglio (msec)
- Vp Velocità onde di compressione (km/sec)
- Vs Velocità onde di taglio (km/sec)
- v Coefficiente di Poisson
- γ Peso di volume (T/m³)
- Edin Modulo di Elasticità dinamico (Kg/cm²)
- Gdin Modulo di Taglio dinamico (Kg/cm²)
- Kdin Modulo di Compressibilità dinamico (Kg/cm²)

CLASSIFICAZIONE SISMICA DEI SUOLI (NUOVE NORME TECNICHE PER LE COSTRUZIONI D.M. del 14 gennaio 2008 e successivi)											
$Vs_{30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_i}}$	VsH (0-30m) Vs₃₀ G ₀	308 <mark>308</mark> 1868	m/sec m/sec Kg/cm²								
CATEG	GORIA SUOLO	С									

COMMITTENTE	ANAS SpA					Sismogrammi	
DOWN HOLE	S5_DH]	e in	Est (m) =1738980.683	PRO
Località - Progetto	Monte Romano ((S.S. 675)]	rdinat VGS84	Nord (m) =4682059.714	96 Isaa Waxaa Waxaa
Data acquisizione	11/03/2014	Cod.	1376]	CO CO CO	Quota (m) = 185.73]

1 di 3

Profondità	Sismogrammi onde di compressione	Sismogrammi onde di taglio	Carotaggio Sonico
m	0 Millisecondi 250	D Millisecondi 250	0 Microsecondi 1000
0		- A ANAMAAAAAAA	
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17		┉┉┾┥┥┥┥	Settore dove la
18			cementazione del foro appare non completa
19			
20			
21			
22			
23			
24		──┼──╋╲╢Ӎ╢╢╢┝┝╍╍╍	
25			
26	<u>└───</u> ╷╢╢╢╢╢╢╢╢╢╢╢╷		
27			
28			
29			
30			
31			
32			
33			
34			
35			

COMMITTEN	ſE	ANAS Sp	A				Metodologia DH			PROMO			
DOWN HOLE		S5_DH					Differenziale				PROGEO s.r.l.		
Località - Pro	getto	Monte Ro	mano (S.S	. 675)			Progressivo		0			sel. 0543 723580 fax. 0543 721486 mail.progeo.ggmail.com www.progeo.info	
Data acquisiz	ione	11/03	/2014	Cod.	1376					Falo	la -1.70 m	2 di 3	
Profondità	Тр	Ts	Vp	Vs	Poisson	Densità	E°	G°	K°		STRATIGRAFIA		
m	msec	msec	km/sec	km/sec		t/m³	Kg/cm²	Kg/cm²	Kg/cm ²		semplificata	a	
0	6.14	14.59	0.25	0.11	0.391	1.46	471	169	723	0	0.00-1.00 Terreno colluviale r granulometricamemnte	ecente, rimaneggiato,	
1	5.99	17.99	0.34	0.11	0.444	1.54	525	182	1562		1.00-2.00 Limo sabbioso argili inclusi clasti calcarei,	oso, rimaneggiato, con	
2	5.96	19.77	0.43	0.12	0.453	1.61	734	253	2629		2.00 - 9.00 Limo argill sabbioso debolmente	oso localmente marnoso a tratti	
3	6.20	22.45	0.65	0.17	0.465	1.75	1431	488	6885		scaglioso. Da molto co nei tratti coesivi; da addensato a molto ad	Idensato a molto	
4	6.66	24.06	0.98	0.22	0.474	1.89	2654	900	17293		addensato nei tratti maggiormente granul Colore da marrone vio	ari. olaceo a grigio	
5	7.07	25.73	1.28	0.33	0.463	1.98	6589	2251	29975		(4,80+5,70 m; 6,30+7,	./U m).	
6	7.77	27.10	1.46	0.44	0.449	2.04	11759	4057	38589				
7	8.08	28.40	1.66	0.54	0.442	2.09	17699	6139	50446				
8	8.42	29.99	1.93	0.59	0.449	2.15	21841	7535	71796				
9	8.78	31.32	2.22	0.60	0.460	2.21	24021	8227	99923		9.00 - 16.70 Argilla lin marnosa, molto dura	noso sabbiosa, con intercalati	
10	9.14	32.78	2.47	0.64	0.464	2.25	27693	9459	127748		Inaritosa, moto dura cun interchana livelii marnoso arenacei teneri da semi litoidi a lixodi alle seguenti profondita: 9,2019,30 m, 3,4019,60 m, 10,0011,02 m, 11,0011,120 m, 12,0012,20 m. Colore grigio, Localmente con sfumature rosate (10,00 + 10,50 m) fino a 12,00 m marrone violaceo in profondità.		
11	9.47	33.95	2.60	0.71	0.460	2.27	33988	11641	140928				
12	9.82	34.76	2.71	0.86	0.444	2.29	49421	17108	148035				
13	10.22	35.48	2.67	1.01	0.416	2.28	67578	23865	133779				
14	10.63	36.32	2.61	1.13	0.385	2.27	81539	29430	118487				
15	11.04	37.03	2.58	1.20	0.362	2.27	90570	33248	109417				
16	11.33	37.78	2.65	1.26	0.354	2.28	100154	36979	114486				
17	11.60	38.46	2.80	1.29	0.366	2.30	106597	39016	132640		16.70 - 25.40 Argilla li scagliosa, a tratti aren intercalzioni	moso sabbiosa, Iacea con	
18	11.98	39.42	2.87	1.28	0.377	2.32	105999	38488	143692		di dimensioni centime 18,70+19,00 m ; 19,70 20 15+20.40 m)	etriche (da 0+20,00 m;	
19	12.32	40.19	2.88	1.23	0.390	2.32	98566	35465	148823		Presenti, inoltre, livell arenacei scagliosi litoi	i marnoso idi alle	
20	12.69	41.07	2.79	1.22	0.382	2.30	96843	35042	136557		22,30+23,20 m ; 23,60 m.	0+23,80	
21	13.05	41.77	2.74	1.26	0.366	2.30	101956	37329	126486		di colore grigio con sfi rosate soprattutto da	con tratti litoidi umature 23,90 a 25,00 m.	
22	13.51	42.42	2.65	1.25	0.358	2.28	97836	36022	114827				
23	13.84	43.07	2.71	1.31	0.349	2.29	107655	39906	118700				
24	14.14	43.76	2.90	1.33	0.367	2.32	114302	41821	142761				
25	14.38	44.55	3.24	1.40	0.385	2.37	131441	47447	190716		25.40, 25.00 Colores		
26	14.62	45.28	3.54	1.39	0.408	2.41	134204	47654	243440		media litoide con pres calcitiche a stratificazi	senza di venature one	
27	14.89	45.95	3.74	1.41	0.417	2.43	139764	49306	281657		Generalmente litoide localmente fratturata	compatta alle seguenti	
28	15.10	46.51	3.93	1.43	0.423	2.46	146722	51543	318843		profondità: 25,40+25, 28,30+28,40 m, 30,80 32,00+32,15 m. Da m	70 m, +31,00 m, 30,00 a 34,10	
29	15.34	47.26	4.05	1.45	0.427	2.47	150890	52887	342256		maggiormente frattur intercalati frequenti ri calcitici di spessore ce	ata con con iempimenti entimetrico e	
30	15.61	48.09	4.20	1.40	0.438	2.49	142348	49508	380348		tratti marnoso scistosi profondità: 31,00+31, 31,60+32,00 m, 32,60	i alle seguenti 30 m, +33, 00 m,	
31	15.82	48.86	4.31	1.34	0.447	2.50	131946	45602	412792		33,20+34,00 m. Prese fratture variamente ir prevalentemente con	nti inoltre nclinate pareti rugose e	
32	16.00	49.57	4.56	1.33	0.453	2.53	132960	45744	474469		riempimento da asser seguenti profondità: 2 30,20 m, 31,50 m, 31,	nte a calcitico alle 28,75 m, 29,50 m, 90 m, 32,30 m,	
33	16.24	50.17	4.68	1.38	0.452	2.54	143962	49568	501734		32,70 m, 33,30 m, 33,	50 m, 34,40 m.	
34	16.45	50.91	4.73	1.43	0.449	2.55	154279	53219	508794				
35	16.69	51.59	4.56	1.44	0.445	2.53	154078	53326	464309				

Logonda paramotri dinamici	
Leuenua varamenti umannut	

Тр	Tempi onde di compressione (msec)

- Ts Tempi onde di taglio (msec)
- Vp Velocità onde di compressione (km/sec)
- Vs Velocità onde di taglio (km/sec)
- v Coefficiente di Poisson
- γ Peso di volume (T/m³)
- Edin Modulo di Elasticità dinamico (Kg/cm²)
- Gdin Modulo di Taglio dinamico (Kg/cm²)
- Kdin Modulo di Compressibilità dinamico (Kg/cm²)

CLASSIFICAZIONE SISMICA DEI SUOLI (NUOVE NORME TECNICHE PER LE COSTRUZIONI D.M. del 14 gennaio 2008 e successivi)								
$Vs_{30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_i}}$	VsH (0-12m) Vs₃₀ G ₀	256 <mark>469</mark> 4539	m/sec m/sec Kg/cm²					
CATEO	GORIA SUOLO	E						

Profondità	Sismogrammi onde di compressione	Sismogrammi onde di taglio	Carotaggio Sonico
	0 Millisecondi 250 0	Millisecondi 250	0 Microsecondi 1000
m			
0			Settore dove la
1			cementazione del foro appare non completa
2			
3			
4	┝──╋╵┍┻┥╼──┼──┼──┝		
5			
6			
7			
8			
9			(2.1.1.2.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
10			
11			
10			
12			
13			《《公司》:"如何 的法言
14			
15			1996年1月1日, 期 期期,1996
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			SARSAN NUMBER
31			Settore dove la
30			cementazione del foro appare non completa
33	A share all a share and a share and		CARGE CONTRACTOR
34	A Martin Martin Martin		
35	Aller Aller Manual And		State Barrier
			 A construction of the analysis of the analysis of the analysis of

COMMITTEN	ſE	ANAS Sp	A				Me	etodologia l	DH			PROGEO
DOWN HOLE		S8_DH					Differenziale		е			PROGEO s.r.l.
Località - Pro	getto	Monte Ro	mano (S.S	. 675)			Progressivo					sel. 0543 723580 fax: 0543 721486 mail.progeo@gmail.com www.progeo.info
Data acquisiz	ione	11/03	/2014	Cod.	1376					Fald	la -6.00 m	2 di 3
Profondità	Тр	Ts	Vp	Vs	Poisson	Densità	E°	G°	K°		STRATIGRAFIA	
m	msec	msec	km/sec	km/sec		t/m³	Kg/cm ²	Kg/cm²	Kg/cm ²		semplifica	ta
0	7.29	20.24	0.27	0.10	0.432	1.48	392	137	954		0.00-7.70 Argilla limoso sabbi	osa caotica,
1	7.47	21.18	0.29	0.10	0.430	1.49	437	153	1045		alterata e sovracons per essiccazione; co elementi di natura	solidata on inclusi minuti
2	7.64	24.47	0.30	0.11	0.429	1.51	486	170	1141		marnosa e arenacea millimetriche a	a di dimensioni da
3	7.76	32.94	0.49	0.12	0.466	1.65	759	259	3690		Da dura a molto con marrone bruno.	nsistente, di colore
4	8.16	36.47	0.87	0.11	0.492	1.85	640	215	14009		Presente da 2,50+2,85 m blocco calcareo arenaceo; fratturato da 1.00+2.50 m	
5	9.03	39.29	1.05	0.18	0.486	1.91	1785	601	20751		(probabile corpo di	frana)
6	9.90	42.82	1.04	0.24	0.471	1.91	3394	1153	19706			
7	11.12	46.34	0.95	0.25	0.462	1.88	3581	1225	15712			
8	12.57	50.81	0.80	0.25	0.447	1.82	3294	1138	10400		7.70 - 11.70 Sabbia da fine a media localmente grossa) con limo, debolmente argillosa, alterata ed ossidata. Maggiormente argillosa al tetto, nel primo metro e da 11,20+12,00 m. Presenti tracce di elementi vulcanici.	
9	13.39	54.34	0.77	0.23	0.453	1.80	2733	940	9775			
10	14.43	58.57	0.90	0.25	0.460	1.86	3367	1153	13927			
11	15.65	63.04	0.94	0.23	0.468	1.87	2988	1018	15382		Moderatamente ad	densata di colore
12	17.39	66.10	0.82	0.23	0.455	1.82	2977	1023	11015		11.70 - 15.00 Argilla noduli carboniosi e	i limosa con rari sottili
13	18.96	69.24	0.60	0.23	0.414	1.72	2581	913	4999		Molto consistente; azzurro.	colore grigio
14	21.31	71.92	0.51	0.24	0.355	1.67	2713	1001	3113			
15	22.08	74.23	0.61	0.25	0.394	1.72	3164	1135	4961			
16	22.60	77.30	1.39	0.38	0.460	2.02	8605	2947	35590			
17	23.14	79.97	1.44	0.37	0.466	2.03	8086	2758	39271			
18	23.65	82.06	1.70	0.37	0.475	2.10	8726	2958	57586			
19	24.18	85.38	1.91	0.38	0.480	2.14	9289	3139	75878			
20	24.53	88.91	2.05	0.33	0.487	2.17	7240	2435	90064			
21	25.03	91.49	2.13	0.30	0.490	2.19	6149	2064	98825			
22	25.58	95.96	2.13	0.31	0.489	2.19	6301	2115	97915			
23	26.10	99.25	2.00	0.26	0.491	2.16	4497	1508	86330			
24	26.63	102.78	1.87	0.28	0.489	2.14	4902	1646	74262		15.00 - 35.00 Argilla limosa con ra carboniosi e sottili	ari noduli
25	27.32	106.54	1.73	0.28	0.487	2.10	4975	1673	62317		intercalazioni sabbi Molto consistente;	ose. colore grigio
26	27.95	109.36	1.59	0.28	0.483	2.07	5060	1706	50940		azzurro.	
27	28.60	113.36	1.54	0.31	0.479	2.06	5835	1972	46987			
28	29.13	116.89	1.57	0.27	0.485	2.06	4616	1555	49856			
29	29.75	119.47	1.68	0.29	0.485	2.09	5253	1769	58044			
30	30.30	123.24	1.70	0.33	0.480	2.10	6941	2344	58690			
31	30.88	125.59	1.75	0.31	0.484	2.11	6143	2070	63170			
32	31.36	128.18	1.80	0.37	0.477	2.12	8948	3028	65921			
33	31.85	131.94	1.98	0.36	0.483	2.16	8281	2792	82627			
34	32.34	134.52	2.05	0.30	0.489	2.17	6040	2028	90238			
35	32.71	137.35	2.16	0.35	0.486	2.19	8236	2770	100232			

Legenda parametri dinamici

Тр	Tempi onde di compressione (msec)

- Ts Tempi onde di taglio (msec)
- Vp Velocità onde di compressione (km/sec)
- Vs Velocità onde di taglio (km/sec)
- v Coefficiente di Poisson
- γ Peso di volume (T/m³)
- Edin Modulo di Elasticità dinamico (Kg/cm²)
- Gdin Modulo di Taglio dinamico (Kg/cm²)
- Kdin Modulo di Compressibilità dinamico (Kg/cm²)

CLASSIFICAZIONE SISMICA DEI SUOLI (NUOVE NORME TECNICHE PER LE COSTRUZIONI D.M. del 14 gennaio 2008 e successivi)								
$Vs_{30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_i}}$	217 <mark>217</mark> 880	m/sec m/sec Kg/cm²						
CATEGORIA SUOLO C								

