ENI S.p.A. - DIVISIONE E&P

SERVIZI DI MONITORAGGIO AMBIENTALE CAMPO ANNAMARIA B

MONITORAGGIO DELL'AREA INTERESSATA DALL'INSTALLAZIONE DEL SEA-LINE ANNAMARIA B - BRENDA

IV SURVEY DOPO I LAVORI DI INSTALLAZIONE (II SEMESTRE 2011)

OPERATORE SCIENTIFICO: CNR – ISMAR SEDE DI ANCONA

RESPONSABILE SCIENTIFICO:

GIANNA FABI

RAPPORTO A CURA DI:

GIANNA FABI ANNA MARIA DE BIASI CRISTINA NASCI ALESSANDRA SPAGNOLO

INDICE

1.	INT	RODUZIONE	1
2.	MAT	TERIALI E METODI	4
	2.1.	CAMPIONAMENTO IN MARE	4
		2.1.1. Indagini fisiche e chimiche dei sedimenti e sulla comunità bentonica	4
		2.1.2. ECOTOSSICOLOGIA DEI SEDIMENTI	
		2.1.3. AVVISTAMENTI DI CETACEI E TARTARUGHE MARINE	8
	2. 2.	ANALISI DI LABORATORIO E ANALISI DEI DATI	8
		2.2.1. INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI	
		2.2.2. ECOTOSSICOLOGIA DEI SEDIMENTI	
		2.2.2.1 Dunaliella tertiolecta	
		2.2.2.2 Vibrio fischeri (sistema Microtox®)	
		2.2.2.3 Corophium orientale	
		2.2.2.4 Acartia tonsa	
		2.2.2.5 Crassostrea gigas	
		2.2.2.6 <i>Hediste diversicolor</i>	
3.	RISU	JLTATI	30
	3.1.	INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI	30
		3.1.1. Granulometria	30
		3.1.2. IPA	
		3.1.3. METALLI PESANTI	
		3.1.4. SOSTANZA ORGANICA	48
	3.2.	ECOTOSSICOLOGIA DEI SEDIMENTI	51
		3.2.1. Dunaliella tertiolecta	51
		3.2.2. Vibrio fischeri	
		3.2.3. COROPHIUM ORIENTALE	
		3.2.4. ACARTIA TONSA	
		3.2.5. Crassostrea gigas	
		3.2.6. HEDISTE DIVERSICOLOR	
	3.3.	INDAGINI SULLA COMUNITÀ BENTONICA	64
		3.3.1. Densità	
		3.3.2. BIOMASSA	
		3.3.3. AFFINITÀ BIOCENOTICHE DELLE SPECIE RINVENUTE	
		3.3.4. DOMINANZA	
		3.3.5. RICCHEZZA SPECIFICA TOTALE	
		3.3.6. RICCHEZZA SPECIFICA MEDIA	
		3.3.7. DIVERSITÀ SPECIFICA	
		3.3.8. MULTIDIMENSIONAL SCALING	
		3.3.9.1 Indice W di Clarke	

			3.3.9.2 Indice AMBI	90
			3.3.9.3 Indice BENTIX	90
			3.3.9.4 Stato ecologico	94
	3.4.	AV	VISTAMENTI DI CETACEI E TARTARUGHE MARINE	97
4.	CON	CLU	SIONI	98
5.	BIBL	IOG	RAFIA	102
ALI	LEGAT	O A	Schede tecniche della strumentazione utilizzata nelle indagini .	
			- ALL. A1 Indagini fisiche e chimiche dei sedimenti	II
			- ALL. A2 I Indagini sulla comunità bentonica	VII
ALI	LEGAT	O B	Schede granulometriche - Estate 2011	X
ALI	LEGAT	O C	Comunità bentonica - Lista e Densità delle specie rinvenute	XXXI
ALI	LEGAT	O D	Comunità bentonica - Lista e Biomassa delle specie rinvenute.	LII

PARTECIPANTI AL PROGRAMMA

Il presente programma è stato svolto in collaborazione con il Consorzio Interuniversitario di Biologia Marina ed Ecologia Applicata (CIBM) di Livorno e con Thetys di Venezia.

Responsabile Scientifico	G. Fabi	CNR - ISMAR Ancona
Analisi dei sedimenti ed		
ecotossicologia	S. De Ranieri	CIBM Livorno
C	N. Bigongiari	CIBM Livorno
		CIBM Livorno
	S. Dell'Ira	CIBM Livorno
	L. Kozinkova	CIBM Livorno
	L Pacciardi	CIBM Livorno
	M. Pertusati	CIBM Livorno
	S. Polese	CIBM Livorno
	O. Spinelli	CIBM Livorno
	C. Nasci	Thetis Venezia
	M. Bergamin	Thetis Venezia
	A. Gomiero	Thetis Venezia
	R. Lo Re	Thetis Venezia
	F. Perin	Thetis Venezia
	M. Picone	Thetis Venezia
Comunità bentonica	A. Spagnolo	CNR - ISMAR Ancona
	B. Brunetti	CNR – ISMAR Ancona
	C. Cuicchi	CNR – ISMAR Ancona
	P. Polidori	CNR - ISMAR Ancona
	E. Punzo	CNR - ISMAR Ancona
	A. Santelli	CNR - ISMAR Ancona
	P. Strafella	CNR - ISMAR Ancona

Hanno inoltre collaborato allo svolgimento dei campionamenti in mare i Sigg.ri Giampaolo Gaetani e Antonio Marziali imbarcati sulla M/R Tecnopesca II del CNR – ISMAR di Ancona utilizzata per le indagini.

1. INTRODUZIONE

In riferimento al GAB-DEC-2008-0000271 del 12/12/2008 emesso dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare il CNR-ISMAR Sede di Ancona è stato incaricato da ENI S.p.A. – Divisione E&P di effettuare un monitoraggio volto a valutare il potenziale impatto ambientale conseguente l'installazione della piattaforma Annamaria B e delle condotte sottomarine colleganti le piattaforme Annamaria B – Annamaria A e Annamaria B - Brenda.

La piattaforma Annamaria B è stata posizionata nel luglio 2010 a circa 60 km al largo di Pesaro alla profondità di circa 60 m, nella zona delle sabbie relitte del largo. Il sea-line collegante Annamaria B con la piattaforma Annamaria A, posizionato nel settembre 2009, si estende per circa 5 km in direzione SSE-NNW sullo stesso tipo di fondale della piattaforma Annamaria B, mentre il sea-line collegante Annamaria B alla piattaforma Brenda, installato nel settembre 2009, ha una lunghezza di circa 41 km con direzione NNE-SSW ed è posto anch'esso per quasi tutta la sua estensione su sabbie relitte del largo, passando ai fanghi terrigeni costieri in prossimità di Brenda. L'area in cui sono installate le strutture è particolarmente interessante dal punto di vista idrodinamico in quanto, trovandosi al centro dell'Adriatico, non è influenzata in maniera consistente dalla circolazione generale di questo bacino (verso Nord lungo il versante croato e verso Sud lungo quello italiano). Tuttavia, in alcuni periodi dell'anno può essere soggetta a un maggiore idrodinamismo dovuto al passaggio sul fondo di acque dense formatesi nel Nord Adriatico durante la stagione invernale con caratteristiche chimiche e fisiche differenti da quelle presenti in zona e che possono modificare le caratteristiche biogeochimiche e la distribuzione spaziale dei sedimenti. La parte più superficiale della colonna d'acqua (10-20 m), può essere interessata da eventi di Bora anche abbastanza consistenti, che possono determinare variazioni brusche di correnti.

Sulla base di tali considerazioni si è ritenuto opportuno proporre un programma di monitoraggio comprendente le seguenti indagini:

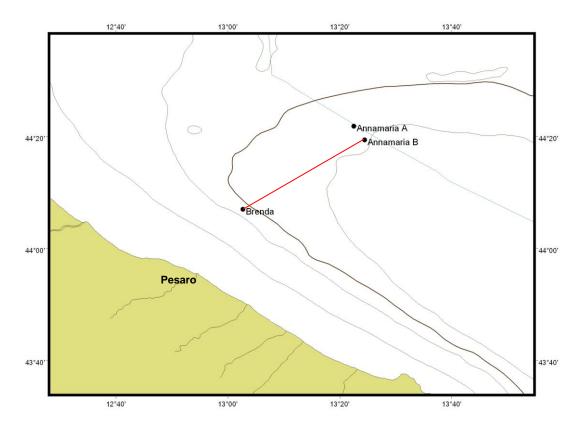
- 1. caratteristiche idrologiche della colonna d'acqua (correnti, temperatura, salinità, ossigeno disciolto, sali nutritivi, ecc.) nell'area interessata dalla piattaforma;
- 2. caratteristiche fisiche e chimiche dei sedimenti presenti nel fondo mobile circostante la piattaforma e i sea-line (la ricerca di sostanze organostanniche è

- prevista solo nei sedimenti circostanti la piattaforma);
- accumulo e degradazione degli IPA nei sedimenti circostanti la piattaforma (stagioni estive);
- 4. rilascio e assorbimento di metalli pesanti nei sedimenti circostanti la piattaforma (stagioni estive);
- 5. accumulo e degradazione di sostanze organostanniche nei sedimenti circostanti la piattaforma (stagioni estive);
- 6. ecotossicologia dei sedimenti circostanti la piattaforma e i sea-line;
- 7. caratteristiche delle comunità bentoniche presenti nei sedimenti circostanti la piattaforma e i sea-line;
- 8. analisi di inquinanti e di biomarkers e indagini ultrastrutturali nei mitili insediati sulle parti immerse della piattaforma;
- 9. evoluzione del popolamento ittico nell'area interessata dalla piattaforma;
- 10. rilevamento del passaggio di cetacei e tartarughe marine nei pressi della piattaforma e dei sea-line.

Al fine di ottenere un quadro esaustivo degli effetti indotti dall'installazione delle due condotte sottomarine, sulla base della tempistica delle operazioni di posa in opera fornite da ENI Divisione E&P, nel programma di monitoraggio sono stati previsti i seguenti survey (Tab. 1-I):

- due survey precedenti la posa in opera dei sealine (pre-survey);
- sei survey, da svolgersi durante le stagioni invernali ed estive nei tre anni di indagini successivi alla loro installazione.

Non è stato possibile condurre il secondo pre-survey sulle aree destinate ad accogliere le condotte sottomarine previsto nell'estate 2009 poiché, al momento del campionamento, le due strutture erano già state posizionate. Di conseguenza, i monitoraggi da effettuare dopo la fine dei lavori di posa in opera delle due condotte sottomarine sono iniziati nell'inverno 2010 (e non nell'estate 2010 come previsto inizialmente) e termineranno nell'estate 2012 anziché nell'inverno 2013 (Tab. 1-I).


Nel presente rapporto sono descritti i risultati conseguiti nel corso del quarto survey effettuato sul sea-line Annamaria B - Brenda dopo l'installazione della struttura (estate 2011), confrontati con quelli relativi all'intero periodo di indagine e che riguardano i punti 2), 6), 7) e 10) del precedente elenco.

Tab. 1-I – Survey previsti durante il programma di monitoraggio ambientale. In base della tempistica dei lavori di installazione delle condotte sottomarine sono state apportate alcune modifiche rispetto al cronoprogramma riportato nella Specifica Tecnica. In particolare, in celeste sono indicati i survey che non sono stati effettuati (estate 2009) o che non verranno effettuati (inverno 2013). $\mathbf{x} = \mathbf{survey}$ già eseguiti sino all'estate 2011.

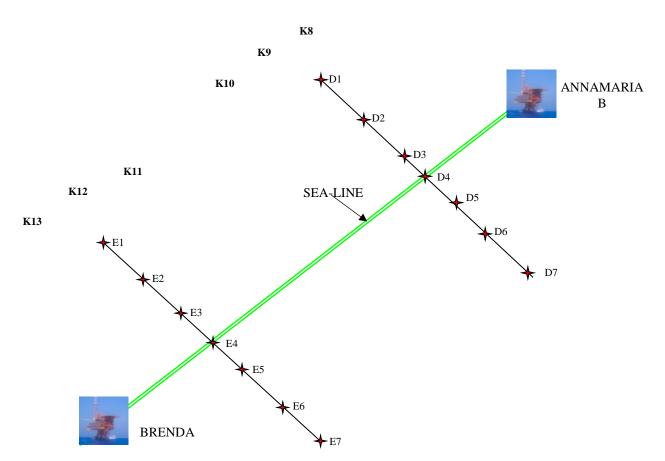
	Survey precedenti i lavori di installazione		Survey dopo i lavori di installazione						
	Inv '09	Est '09	Inv '10	Est '10	Inv '11	Est '11	Inv '12	Est '12	Inv '13
Sea-line Annamaria B – Annamaria A	X		X	X	X	X			
Sea-line Annamaria B - Brenda	X		X	X	X	X			

2. MATERIALI E METODI

Il sea-line Annamaria B - Brenda ha una lunghezza di circa 41 km, con direzione NNE-SSW, ed è posto per quasi tutta la sua estensione su sabbie relitte del largo, passando ai fanghi terrigeni costieri in prossimità di Brenda (fig. 2.1).

Fig. 2.1 – Ubicazione del sea-line Annamaria B - Brenda (in rosso).

2.1. CAMPIONAMENTO IN MARE


2.1.1 INDAGINI CHIMICHE E FISICHE DEI SEDIMENTI E SULLA COMUNITÀ BENTONICA

Nel pre-survey i prelievi erano stati effettuati su 4 stazioni, di cui due poste lungo il tracciato del sea-line a circa 13-14 km da Annamaria B (SL1) e 13-14 km da Brenda (SL2) e due da utilizzare come controlli (SL1K1 e SL2K1) posizionate a 1000 m circa rispettivamente da SL1 e SL2 in direzione NNW (Fabi *et al.*, 2009).

Nei monitoraggi condotti dopo l'installazione della condotta sono stati tracciati due transetti perpendicolari ad essa in direzione NNW-SSE denominati transetto "D" e

transetto "E", lungo i quali sono state posizionate n. 7 stazioni di campionamento a 100 m, 60 m, 30 m 0 m, 30 m, 60 m e 100 m di distanza dalla condotta stessa (fig. 2.2). Le stazioni poste in corrispondenza del sea-line, denominate D4 ed E4, corrispondono rispettivamente ai siti SL1 e SL2 del pre-survey. Sono state inoltre scelte n. 3 stazioni di controllo per ciascun transetto poste in direzione NNW rispetto ai transetti stessi a circa 1000 m di distanza dal sea-line e a circa 500 m l'una dall'altra. I controlli relativi al transetto D sono stati nominati K8, K9 (corrispondente a SL1K1 del pre-survey) e K10; quelli relativi al transetto E sono stati nominati K11, K12 (corrispondente a SL2K1 del pre-survey) e K13.

In Tab. 2-I sono riportate le coordinate geografiche di tutti i siti campionati nell'estate 2011.

Fig. 2.2 - Schema delle stazioni di campionamento utilizzate nell'inverno e nell'estate 2010 dopo la posa in opera della condotta sottomarina. Non in scala.

Tab. 2-I - Dati identificativi delle stazioni di campionamento utilizzate nell'estate 2011 per le indagini sedimentologiche e sulla comunità bentonica. In rosso i punti di campionamento corrispondenti alla condotta sottomarina.

	Distanza dal sea-line (m)	Posizione rispetto al sea-line	Coordinate geografiche	Profondità (m)
D1	100	NNW	44°15'17'',76N 13°17'04'',02E	56,6
D2	60	NNW	44°15'16'',62N 13°17'04'',56E	56,6
C3	30	NNW	44°15'15'',78N 13°17'05'',58E	56,8
D4	0	-	44°15'14'',82N 13°17'05'',94E	56,4
D5	30	SSE	44°15'13'',62N 13°17'06'',34E	56,9
D6	60	SSE	44°15'13'',26N 13°17'07'',02E	56,9
D7	100	SSE	44°15'13'',14N 13°17'10'',80E	56,7
K8	1000	NNW	44°15'49'',44N 13°16'58'',08E	56,1
К9	1000	NNW	44°15'39'',06N 13°16'38'',28E	56,0
K10	1000	NNW	44°15'28'',50N 13°16'21'',96E	56,3
E1	100	NNW	44°11'10'',62N 13°09'47'',22E	53,8
E2	60	NNW	44°11'08''88N 13°09'47'',04E	53,8
E3	30	NNW	44°11'08'',88N 13°09'51'',30E	53,8
E4	0	-	44°11'09'',12N 13°09'52'',68E	53,4
E5	30	SSE	44°11'07'',86N 13°09'52'',26E	53,7
E6	60	SSE	44°11'07'',56N 13°09'54'',66E	53,9
E7	100	SSE	44°11'06'',66N 13°09'55'',92E	54,0
K11	1000	NNW	44°11'44'',04N 13°09'28'',02E	53,3
K12	1000	NNW	44°11'34'',20N 13°09'28'',02E	53,2
K13	1000	NNW	44°11'22'',92N 13°09'07'',80E	53,1

Indagini fisiche e chimiche dei sedimenti - Tutte le stazioni sono state campionate mediante box-corer (fig. 2.3; All. A1-I).

Dal campione, dopo la descrizione degli aspetti macroscopici, è stata prelevata la porzione superficiale (0-2 cm). L'ulteriore campione così ottenuto è stato successivamente omogeneizzato e suddiviso in 3 aliquote per le seguenti analisi:

- analisi granulometriche;
- metalli in tracce;
- sostanze organiche.

I campioni sono stati congelati e conservati a -18° C ad eccezione di quelli utilizzati per la granulometria, conservati a $+4^{\circ}$ C.

Fig. 2.3 – Box-corer utilizzato per le indagini fisiche e chimiche dei sedimenti (in primo piano) e recupero della benna Van Veen utilizzata per lo studio della comunità bentonica.

Indagini sulla comunità bentonica - Tutte le stazioni sono state campionate mediante una benna di tipo Van Veen avente capacità di 12 lt e apertura di 0,095 m² (fig. 2.3; All. A2-I). Presso ogni stazione sono state effettuate 6 repliche. I campioni sono stati lavati e setacciati con maglia di 0,5 mm (All. A3-II) e fissati in formaldeide diluita in acqua di mare al 5%.

2.1.2. ECOTOSSICOLOGIA DEI SEDIMENTI

Dati i recenti sviluppi in questo settore, si è ritenuto opportuno aggiornare e ampliare la batteria dei saggi prevista nelle Specifiche Tecniche Saop 09/02 Rev. 0 e 09/02 Rev. 1 considerando organismi appartenenti a vari livelli trofici e gruppi tassonomici differenti, diverse matrici ambientali e diversi livelli di tossicità. In quest'ottica, anche sulla base dei monitoraggi condotti in precedenza su altre piattaforme offshore, si è ritenuto opportuno sostituire il test su *Paracentrotus lividus* che non può essere effettuato in estate poiché questa specie non emette i gameti durante i periodi caldi, con test su organismi altrettanto sensibili ma realizzabili durante tutto l'anno (*A. tonsa* e *C. gigas*).

Pertanto, durante i survey effettuati per i sedimenti, presso le stazioni D4, E4, D6,

E6, K9 e K12 sono stati prelevati mediante benna Van-Veen anche campioni di sedimento per lo svolgimento dei seguenti saggi biologici:

- Dunaliella tertiolecta (accrescimento);
- Vibrio fischeri (variazione della bioluminescenza);
- Corophium orientale (mortalità a 10 gg);
- Acartia tonsa (sviluppo larvale);
- Crassostrea gigas (embriotossicità);
- Hediste diversicolor (prove di bioaccumulo per Alluminio, Arsenico, Bario,
 Cadmio, Cromo, Mercurio, Nichel, Piombo, Rame, Vanadio, Zinco).

Dal campione di sedimento è stata prelevata solo la porzione superficiale (5-10 cm) eliminando lo strato di fango venuto a contatto con le pareti della benna, al fine di evitare eventuali contaminazioni. Il materiale così ottenuto è stato posto in recipienti puliti e conservato a circa 5°C.

2.1.3. AVVISTAMENTI DI CETACEI E TARTARUGHE MARINE

Al fine di rilevare la presenza di cetacei e tartarughe marine nell'area del sea-line Annamaria B – Brenda, nel periodo luglio - dicembre 2011 sono stati condotti 17 censimenti visivi nel corso delle indagini svolte presso il campo Annamaria B.

2.2. ANALISI DI LABORATORIO E ANALISI DEI DATI

2.2.1. INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI

Granulometria - In laboratorio i campioni di sedimento sono stati pesati tal quali per la determinazione del peso umido utilizzando una bilancia elettronica tipo "Europe" (All. A1-II). Successivamente sono stati posti in contenitori di alluminio e introdotti in stufa (All. A1-III) a 110°C per almeno 24 h. Una volta raggiunta la completa essiccazione si è proceduto alla misurazione del peso secco.

Per la separazione in sabbie e peliti ogni campione è stato immerso in acqua tiepida sino alla sua completa disgregazione; si è quindi proceduto alla setacciatura con maglie da 63 μ. Il materiale trattenuto dal setaccio, definito come sabbie, è stato fatto essiccare in stufa a 130°C per almeno 24 h ed è stato sottoposto a indagine gra-

nulometrica, ovvero è stata analizzata la distribuzione percentuale in peso dei grani costituenti il campione secondo le loro dimensioni, utilizzando un set di setacci (All. A1-IV) aventi dimensioni delle maglie decrescenti (4000 μ , 2000 μ , 1000 μ , 500 μ , 250 μ , 125 μ , 63 μ). Una volta terminata la setacciatura sono stati pesati i residui di ogni setaccio ed è stata determinata la percentuale conchigliare presente. I dati così ottenuti sono stati riportati su un diagramma semilogaritmico e uniti mediante la cosiddetta "curva granulometrica".

Le peliti (materiale inferiore a 63μ) sono state fatte decantare ed essiccare in stufa a 130° C sino a completa evaporazione. E' stata quindi eseguita l'aerometria mediante l'utilizzo di un densimetro (All. A1-V) per terreni secondo il metodo di Casagrande basato su due proprietà: a) velocità con cui si depositano i grani in sospensione in un liquido viscoso in quiete dipende dal volume, dalla forma e dal peso dei granuli stessi (Legge di Stokes); b) la densità della sospensione ad un dato istante è funzione della qualità del prodotto solido non ancora depositato.

Idrocarburi Policiclici Aromatici - Per la determinazione degli Idrocarburi Policiclici Aromatici (IPA) ogni campione è stato scongelato e privato dell'eventuale frazione più grossolana; in seguito, l'analisi è stata compiuta su un'aliquota di circa 20 g (peso umido), mentre una seconda aliquota è stata utilizzata per la determinazione del peso secco.

La determinazione degli IPA è stata effettuata mediante gas cromatografia utilizzando un Gas cromatografo doppia colonna (All. A1-VI). I componenti della miscela (IPA), separati tra loro, sono stati rilevati con la tecnica FID (rilevatore ionizzazione di fiamma), che consente di valutare i tempi di ritenzione e l'ampiezza dei picchi relativi. Il limite di rilevabilità dello strumento e quello della metodica corrispondono rispettivamente a 0,05 µg di solvente e 0,002 mg kg⁻¹ di campione s.s.

Sono stati ricercati nei siti di campionamento i 16 IPA indicati dall'EPA come contaminanti di interesse prioritario, espressi in mg kg⁻¹ di sostanza secca: Naftene, Acenaftalene, Acenaftene, Fenantrene, Antracene, Fluorantene, Pirene, Benz(a)Antracene, Crisene, Benzo(b)Fluorantene, Benzo(k)Fluorantene, Benzo(a)Pirene, Di-Benzo(a,h)Antracene, Fluorene, Benzo(g,h,i)Perilene, Indeno(1,2,3,c,d)Pirene. Le rette di calibrazione sono state preparate con la tecnica della standardizzazione esterna utilizzando come IPA di riferimento il Perilene, che permette anche di

normalizzare le aree dei picchi dei singoli componenti la miscela e di confrontarle tra loro ai fini della quantizzazione.

Metalli pesanti - Sono stati analizzati i seguenti elementi, espressi in percentuale o mg kg⁻¹ di sostanza secca: alluminio, arsenico, bario, cadmio, cromo, mercurio, nichel, piombo, rame, vanadio e zinco.

La mineralizzazione dei campioni è stata effettuata su circa 0,3 g di sostanza secca, mediante un sistema di digestione a microonde opportunamente programmato, aggiungendo a 3 ml di HNO₃, 1 ml di HCl e 4 ml di H₂O.

Al termine della mineralizzazione i campioni sono stati filtrati e portati a un volume finale di 25 ml utilizzando acqua ultrapura. Gli acidi impiegati sono tutti rigorosamente ultrapuri.

Per la determinazione del **mercurio** è stato seguito il metodo EPA 7473 (2007a) sul campione tal quale previa essiccazione in stufa a 40°C fino a peso costante (circa 48 h). Il particolare procedimento di decomposizione porta alla riduzione chimica del mercurio, alla sua successiva preconcentrazione su un amalgama d'oro e infine alla sua analisi quantitativa in assorbimento atomico (DMA-80 Analizzatore Diretto del Mercurio; All. A1-VII).

Le determinazioni di **cadmio, arsenico** e **piombo** sono state effettuate mediante spettroscopia di assorbimento atomico in fornetto di grafite (Varian SpectrAA-240Z. All. A1-VIII), secondo la procedura EPA 7010 (2007b).

Le concentrazioni di **alluminio**, **bario**, **cromo**, **nichel**, **rame**, **vanadio** e **zinco** sono state determinate mediante spettrofotometria ad emissione atomica al plasma (Varian ICP-720ES; All.A1-IX) seguendo il metodo EPA6010C (2007c).

L'accuratezza delle procedure di digestione e di analisi dei campioni è stata verificata impiegando i materiali standard di riferimento (LGC 6137 o MESS-3).

I recuperi percentuali ottenuti rispetto ai valori certificati dei suddetti materiali sono riportati in Tab. 2-II.

Tab. 2-II - Recuperi percentuali ottenuti sui materiali certificati LGC 6137, tranne il mercurio per il quale è stato usato MESS-3.

Al	As	Ba	Cd	Cr	Cu	Hg	Ni	Pb	V	Zn
116	115	101	119	76	89	106	83	90	83	77

Tutti i parametri strumentali sono stati inoltre ottimizzati tramite una risposta tipica strumentale conforme a quella fornita dalla casa costruttrice.

I limiti di rilevabilità strumentale e della metodica per i metalli determinati, relativamente alla strumentazione impiegata, sono riportati in Tab 2-III

Tab. 2-III - Limiti di rilevabilità strumentali (D.L.) e della metodica (M.D.L.) dei metalli determinati.

Recupero %	Al	Ba	Cd	Cr	Hg	Ni	Pb	Cu	V	Zn
D.L. (μg l ⁻¹)	1,5	0,07	0,01	4	2	4,5	5,5	0,28	2	0,9
M.D.L. (mg kg ⁻¹)	0,10%	1,0	0,02	1,0	1,0	0,04	0,50	0,20	2,0	1,0

Sostanza organica - La determinazione della sostanza organica è stata eseguita mediante calcinazione in muffola: sono stati prelevati circa 3 g di sostanza essiccata in stufa (48h a 40°C) che sono stati successivamente posti in muffola a 375°C fino a peso costante.

2.2.2. ECOTOSSICOLOGIA DEI SEDIMENTI

2.2.2.1 Dunaliella tertiolecta

Il saggio di crescita algale con la cloroficea *Dunaliella tertiolecta* è stato eseguito secondo le indicazioni riportate nella linea guida ASTM E1218-04e1 (2004a). Il saggio consiste nell'esposizione di una quantità definita di clone algale in condizioni di crescita esponenziale a diverse diluizioni di campione (nella fattispecie elutriato) e al controllo negativo costituito da sola acqua marina artificiale; prima dell'inoculo del clone algale, tutti i trattamenti, compreso il controllo, sono stati arricchiti in macro- e micronutrienti secondo le specifiche riportate in USEPA (1995).

<u>Preparazione degli elutriati</u> - L'elutriato è stato preparato secondo il metodo ICRAM (2001), utilizzando come acqua di lavorazione il medium preparato secondo le specifiche riportate nella norma UNI EN ISO 10253:2000 (2000).

Esecuzione del saggio – Il saggio con *D. tertiolecta* è stato condotto in triplicato, effettuando 5 diluizioni a partire dal campione tal quale; come supporto sono state utilizzate piastre sterili di polisterene da 24 pozzetti della capacità di 3 ml ciascuno. Parallelamente per ogni piastra è stato eseguito anche un test con un controllo

negativo costituito da acqua di diluizione (acqua di mare ISO a cui sono state aggiunte concentrazioni note di nutrienti). A ciascuna diluizione e al controllo è stata aggiunta una concentrazione nota di clone algale in rapporto di 1:1000. Una volta inoculato il clone algale (concentrazione iniziale 2 10³ cellule ml¹¹), le piastre sono state trasferite per 72 h in camera fitologica a condizioni di temperatura e luminosità controllate (T = 20±2°C, luminosità < 10000 lux). Al termine dell'esposizione, è stata verificata la crescita algale nel campione, espressa come densità algale, mediante lettura al Coulter Counter; si è proceduto quindi al conteggio delle tre repliche del campione tal quale e del controllo e al loro confronto statistico, per verificare eventuali aumenti o diminuzioni significative della crescita algale nel campione rispetto al controllo e procedere eventualmente alla lettura delle altre diluizioni.

Espressione ed analisi dei dati – I risultati del saggio possono essere riportati come percentuale di inibizione della crescita algale e, qualora la tossicità del campione lo consenta, in termini di EC₅₀ o EC₂₀. L'EC₅₀ e l'EC₂₀ si calcolano utilizzando il foglio Excel sviluppato dalla DTU (Danmarks Tekniske Universitet) denominato "KOK457T3" che utilizza i programmi statistici LOG457.EXE e LOG457W.EXE elaborati per la determinazione della relazione concentrazione-effetto in endpoint continui (Christensen *et al.*, 2009).

Sulla base dei risultati espressi in termini di inibizione/stimolazione della crescita e dell'analisi statistica del dato eco tossicologico (eseguita secondo lo schema USEPA, 1991), i risultati del saggio possono essere suddivisi nelle seguenti categorie:

- assenza di effetto: percentuale di inibizione/stimolazione <20% e assenza di differenze significative;
- presenza di significativo effetto eutrofizzante: percentuale di biostimolazione
 >20% e differenza significativa rispetto alla crescita nel controllo;
- presenza di significativo effetto tossico: inibizione della crescita >20% e differenza significativa con il controllo.

Nel caso in cui la distribuzione dei dati nelle varie diluizioni lo consenta, è possibile calcolare altri parametri tra cui la NOEC (secondo la procedura di Dunnett) e l'EC₂₀ (Christensen *et al.*, 2009).

QA/QC - La sensibilità di ogni clone algale impiegato per i test con i campioni di

elutriato è stata verificata mediante il test di controllo positivo eseguito con bicromato di potassio, il cui risultato espresso come EC_{50} è stato confrontato con i dati della carta di controllo del laboratorio il cui intervallo è compreso tra $6,2\,$ e $\,8,9\,$ mg $\,\Gamma^1$ come cromo; altri parametri che devono essere rispettati affinché il test sia considerato valido sono:

- densità cellulare dopo 72 h deve aumentare di un fattore non inferiore a 16 rispetto al valore di partenza (2 10³ cellule ml⁻¹);
- coefficiente di variazione nei controlli e nel campione tal quale (CV%): $\leq 15\%$.

2.2.2.2 Vibrio fischeri (sistema Microtox®)

<u>Preparazione delle matrice</u> - La fase solida è stata ottenuta per centrifugazione refrigerata (30 minuti a 3.500 rpm a 4°C), con successiva riomogenizzazione.

Vibrio fischeri è un batterio marino Gram-negativo ed eterotrofo, appartenente alla famiglia delle *Vibrionaceae*. E' cosmopolita, ma con maggior diffusione nelle fasce temperate e subtropicali.

Il sistema Microtox[®] è un test biologico di tossicità acuta basato sull'utilizzo della bioluminescenza naturale di questa specie. Poiché in presenza di contaminanti l'emissione di luce diminuisce, la misura dell'eventuale inibizione della bioluminescenza, a seguito dell'esposizione del batterio a una sostanza nota o a un campione naturale di acqua o sedimento, consente di valutare il grado di tossicità acuta della sostanza o della matrice testata.

Il sistema di misura risulta piuttosto versatile in quanto è applicabile a matrici naturali, sia continentali che marine, acquose (acqua potabile, acqua interstiziale, elutriato, ecc.) e solide (fanghi, suoli, sedimenti), nonché a soluzioni acquose di sostanze tossiche pure sia organiche che inorganiche.

<u>Procedura adottata e lettura dei dati</u> - I saggi biologici sulla fase solida sono stati completati entro 24 h dalla preparazione della matrice.

L'emissione della bioluminescenza è stata misurata all'interno del luminometro M500, dotato di pozzetti termostatati a 15°C per i controlli e i campioni e a 4°C per il reagente.

E' stato applicato il protocollo Solid Phase Test (SPT) con la procedura Large

Sample Method (Azur Environmental, 1994), organizzato con 9-12 diluizioni e 3 controlli, a seconda della granulometria del campione. Il test prevede una prima esposizione di 20 minuti durante i quali i batteri si trovano a diretto contatto con il sedimento e una seconda fase di ulteriori 10 minuti in cui la risospensione batterica viene incubata nel luminometro a 15°C.

La relazione dose-risposta, ovvero concentrazione del campione-inibizione della bioluminescenza, è stata elaborata mediante un software dedicato (Microtox OmniTM v. 1.16), che consente di individuare l'EC50 (o qualunque altra EC), ossia la concentrazione del campione cui corrisponde una riduzione della bioluminescenza pari al 50% o, in alternativa, la semplice variazione percentuale di emissione di luce rispetto al controllo. Il risultato è stato espresso sia in TU (Unità Tossiche = 100/EC50), che consente di ottenere una relazione diretta fra tossicità e riduzione della bioluminescenza, sia come Sediment Toxicity Index (S.T.I.), che permette di esprimere la reale tossicità acuta del campione rispetto alla tossicità "naturale" di un campione di riferimento avente le medesime caratteristiche granulometriche (Onorati, 1999; Onorati *et al.*, 2007).

Al fine di esprimere il risultato del saggio nella scala S.T.I., poiché il test in fase solida viene effettivamente applicato sulla frazione granulometrica < 1 mm e poiché la componente naturale della tossicità è funzione della frazione pelitica, sono state utilizzate le analisi granulometriche dei campioni di sedimento per individuare la proporzione tra le due frazioni citate, indispensabile per la valutazione del reale livello di tossicità acuta.

La fase solida è stata giudicata tossica quando il valore di S.T.I è risultato >3.

In particolare è stata adottata la scala di tossicità (Tab. 2-IV) indicata nel Manuale ICRAM-APAT (2007).

Tab. 2-IV - Scala di tossicità adottata per il saggio Microtox[®].

Specie-test	Colonna A Tossicità assente /trascurabile	Colonna B Tossicità presente	Colonna C Tossicità elevata	Colonna D Tossicità molto elevata
Vibrio fischeri (sedimento)	S.T.I. ≤ 3	3 < S.T.I. ≤ 6	6 < S.T.I. ≤ 12	S.T.I. > 12

2.2.2.3 Corophium orientale

Il saggio effettuato con esemplari di *Corophium orientale* (fig. 2.4) è stato allestito secondo il protocollo ISO (2005).

Il principio del saggio biologico "a breve termine" (di tossicità acuta) consiste nell'esposizione di un numero stabilito di organismi per 10 gg al sedimento tal quale, con la finalità di stimare la percentuale di mortalità degli organismi stessi.

Fig. 2.4 - Esemplari di C. orientale.

Gli anfipodi sono stati campionati setacciando il loro sedimento nativo con setaccio a maglia di 0,5 mm, che permette di selezionare organismi di ~4 mm idonei per il test, scartando gli individui maturi e le forme giovanili. Gli anfipodi selezionati sono quindi stati portati in laboratorio e acclimatati alle seguenti condizioni del test:

Temperatura dell'acqua: 16±2°C

Salinità: 36±2‰

- Illuminazione: continua

- O₂ disciolto nell'acqua sovrastante il sedimento: >60%.

Procedimento del saggio - Circa 200 cc di sedimento da testare sono stati introdotti all'interno di un barattolo di vetro da 1 l, ai quali sono stati aggiunti circa 750 cc di acqua di mare naturale filtrata. Per ogni campione sono state allestite 4 repliche. Dopo 24 h sono stati immessi 25 individui in ciascun barattolo. Come sedimento di controllo è stato utilizzato il sedimento nativo proveniente da un sito non contaminato. I barattoli contenenti gli organismi sono stati coperti per ridurre l'evaporazione dell'acqua, posti alla temperatura di 16±2°C e areati in continuo.

Dopo 10 gg è stato vagliato il contenuto di ogni barattolo contando gli organismi ancora vivi. Sono stati considerati morti gli antipodi che, dopo una delicata stimolazione, non mostravano alcun movimento degli arti. La sensibilità degli organismi (96hLC50) è stata determinata tramite l'esposizione per 96 h alle concentrazioni di 0,8; 1,6; 3,2; e 6,4 mg l⁻¹ CdCl₂.

All'inizio e alla fine del saggio biologico sono stati misurati i seguenti parametri dell'acqua sovrastante il sedimento: pH, salinità, NH₄⁺ e ossigeno disciolto.

Elaborazione dei dati - Il saggio biologico è considerato valido quando la mortalità media all'interno del sedimento di controllo è ≤15% e la mortalità nella singola replica per l'intero periodo di esposizione è ≤20%. Sia nei campioni da testare che nel sedimento di controllo sono state calcolate le percentuali medie (± deviazione standard) degli anfipodi morti. La percentuale di mortalità rilevata in ogni campione è stata confrontata con quella nel sedimento di controllo. Il livello di tossicità è stato valutato prendendo in considerazione la percentuale di mortalità degli organismi osservata nei campioni da saggiare, corretta con la formula di Abbott (M). La scala adottata per la quantificazione della tossicità è riportata Tab. 2-V.

Tab. **2-V** – Scala di tossicità relativa al test con *C. orientale*.

Tossicità a lungo termine	Giudizio
M<15%	Assente
15% <m≤30%< td=""><td>Bassa</td></m≤30%<>	Bassa
30 <m≤60%< td=""><td>Media</td></m≤60%<>	Media
M>60%	Alta

2.2.2.4 Acartia tonsa

Il saggio di sviluppo larvale (LDR test) con il copepode *A. tonsa* è stato eseguito secondo la procedura di Kusk e Wollenberger (2007), modificata per renderla adatta all'impiego per la fase solida (Picone, 2006). Obiettivo del saggio è la determinazione di eventuali effetti stimolatori o inibitori sullo sviluppo larvale.

<u>Esecuzione del saggio</u> - Il saggio prevede l'esposizione di un numero variabile tra 50 e 80 uova di *A. tonsa* a 3.5 g di sedimento e 80 ml di acqua marina artificiale (S =

25), ricostituita secondo le specifiche riportate in Kusk e Wollenberger (1999). Il saggio è quindi condotto in condizioni statiche per 6 gg, a una temperatura di 20°C e in regime di fotoperiodo controllato (16:8 luce:buio) con illuminazione a bassa intensità mantenuta da lampade fluorescenti. Il giorno-0 e il giorno-2 in ognuna delle repliche sperimentali (6 per ogni campione e il controllo) è stato somministrato l'alimento (la criptoficea *Rhodomonas salina*) in aliquote adeguate a determinare una concentrazione finale di 6 x 10⁴ cell ml⁻¹ in ciascuno dei beaker in cui erano esposte le larve di *A. tonsa*.

Al termine dei 6 gg di esposizione è stata prelevata una replica del controllo che è stata fissata aggiungendo circa 1 ml della soluzione di Lugol. Dopo lieve agitazione la fase liquida è stata versata su un sistema filtrante ed è stata determinata la proporzione naupli:copepoditi recuperati sul filtro impiegando uno stereomicroscopio. Se il rapporto nauplii-copepoditi era di circa 50:50, si è proceduto al fissaggio del test anche negli altri beaker altrimenti, in caso di netta prevalenza di nauplii (>70%), si è lasciato procedere il test per alcune ore per ripetere poi la procedura.

QA-QC - La sensibilità di ogni coltura di *A. tonsa* è stata verificata mediante il test di controllo positivo con 3,5-DCP, il cui risultato deve essere compreso nell'intervallo 33-388 µg I⁻¹; ogni coltura viene mantenuta per un periodo non superiore a 7 settimane. Affinché il test possa essere considerato valido, la percentuale di copepoditi recuperata alla fine del test deve essere almeno il 30% del totale delle larve recuperate (nauplii + copepoditi).

Espressione e analisi dei dati – I risultati del saggio sono riportati come Larval Development Rate (LDR), ossia come rapporto tra numero di copepoditi e numero complessivo di forme giovanili recuperate a fine test (nauplii + copepoditi), e successivamente normalizzati rispetto al valore di LDR rilevato nel controllo per determinare la percentuale di inibizione (In%). Valori negativi di In(%) indicano effetto biostimolante.

La significatività statistica delle risposte tra campioni e nei confronti del controllo è stata valutata tramite analisi della varianza (ANOVA) a una via.

Ai risultati espressi come percentuale di inibizione è stato associato un giudizio qualitativo secondo lo schema riportato in Tab. 2-VI.

Tab 2-VI – Criteri di classificazione dei risultati del saggio con *A. tonsa*.

Criterio	Giudizio
$In(\%) \le -40$	Biostimolazione significativa
-40 < In(%) ≤ -25	Potenziale biostimolazione
-25 < In(%) < 25	Assenza di effetto
25 ≤ In(%) < 40	Potenziale tossicità
$In(\%) \ge 40$	Tossicità significativa

2.2.2.5 Crassostrea gigas

Il test di embriotossicità con *C. gigas* è stato eseguito in accordo con la linea guida standard ASTM E724-98 (2004b). Il saggio si basa sulla stima della percentuale di larve normoformate (larve D-shape) al termine delle 48 h di esposizione alla matrice di saggio, in questa circostanza rappresentata dall'elutriato.

<u>Preparazione degli elutriati</u> - L'elutriato è stato preparato secondo il metodo ICRAM (2001), utilizzando come acqua di lavorazione il medium preparato secondo le specifiche riportate nella guida ASTM E724-98 (2004b).

Esecuzione del saggio – Il test di embriotossicità è stato eseguito esponendo zigoti di *C. gigas* fecondati da meno di 4 h a diverse diluizioni del campione di elutriato da saggiare. Come acqua di diluizione si utilizza il medium ASTM a S = 34. Il saggio è stato condotto utilizzando delle piastre sterili in polistirene con 24 pozzetti da 3 ml come supporto, in cui sono stati inoculati 60-70 zigoti per ml. L'esposizione è stata quindi condotta in triplicato, in condizioni di temperatura controllata (20°C), al buio, per 48 h. Al termine del test, il contenuto di tutti i pozzetti è stato fissato con una goccia di formalina tamponata ed è stata determinata la percentuale di larve normoformate (larve D) impiegando un microscopio ottico invertito.

QA-QC - La sensibilità di ogni batch di *C. gigas* è stata valutata mediante l'esecuzione del test con sostanza di riferimento (Cu); i risultati di tale test devono rientrare nei limiti della carta di controllo intralaboratorio (5-33 µl⁻¹). La percentuale di larve normalmente sviluppate nel controllo con la sola acqua di diluizione deve inoltre essere superiore al 70%.

Espressione ed analisi dei dati – I risultati del saggio di embriotossicità possono

essere espressi sia in termini di percentuale di successo del test normalizzata (S%) rispetto alla risposta del controllo (acqua marina artificiale), sia in termini di EC_{50} , qualora la distribuzione dei dati relativi alle singole repliche ne consenta il calcolo tramite il software Trimmed Spearman Karber v3.1 messo a disposizione da USEPA nel proprio portale. I dati di EC_{50} sono successivamente trasformati in unità di tossicità (TU) secondo l'equazione $TU = 100/EC_{50}$.

Al dato di tossicità è stato associato un giudizio qualitativo secondo lo schema riportato in Tab. 2-VII.

Tab. 2-VII - Scala di tossicità per il saggio di embriotossicità con *C. gigas* (da Losso *et al.*, 2007).

Parametro	Giudizio di Tossicità						
S > TL	Assente	Semiscala	G. 5 0				
$50 < S \le TL$	Bassa	dell'effetto	S>50				
$1 \le TU \le 2$	Media						
$2 \le TU < 4$	Alta	Semiscala delle T.U.	S≤50				
$TU \geq 4$	Molto alta	1.0.					

Dove:

 $S = [(Sopravvisuti campione) / (Sopravvissuti controllo)] \cdot 100$

TL = Toxicity limit = Controllo \cdot 90% del controllo

2.2.2.6 Hediste diversicolor

L'accumulo dei metalli nel biota (fig. 2.5) può avvenire mediante l'assorbimento diretto dall'ambiente attraverso la parete corporea o le superfici respiratorie o del tratto digerente. Negli organismi acquatici è stato dimostrato che la via dominante di assorbimento dei metalli è la diffusione passiva attraverso la superficie corporea, le branchie o i polmoni, oppure per trasporto attivo con le pompe di calcio. Il bioaccumulo negli invertebrati attraverso l'alimentazione è stato dimostrato per Cr, Cd, Ag e Co. La concentrazione dei metalli nei tessuti dipende dalla quantità del metallo acquisito, dalla cinetica di assorbimento, dalla sua distribuzione nei tessuti, dai requisiti metabolici per i metalli e dai meccanismi di disintossicazione/escrezione.

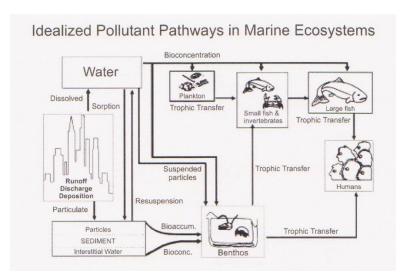


Fig. 2.5 - Schema idealizzato del percorso di un inquinante nel sistema marino (Lee, 1988).

Alluminio - L'alluminio è l'elemento metallico più abbondante nella litosfera. La sua biodisponibilità e la tossicità sono generalmente maggiori in ambiente acido. La forma predominante dell'alluminio in acqua di mare è insolubile [Al(OH)₃], quindi le sue concentrazioni nell'acqua marina sono basse. Le conoscenze riguardo la tossicità e l'assimilazione di questo metallo negli organismi acquatici sono limitate.

Arsenico - I sedimenti possono essere una fonte notevole di questo metallo per gli organismi marini bentonici (Bryan e Langston, 1992). Langston (1980; 1984) ha dimostrato che il polichete *Hediste diversicolor* (fig. 2.6) accumula questo elemento dalle particelle del sedimento ingerito e per contatto diretto dei palpi con il sedimento. Esiste un rapporto diretto tra la concentrazione del metallo nei tessuti degli invertebrati bentonici e la proporzione As/Fe nelle frazioni facilmente estraibili dei sedimenti nei quali gli invertebrati vivono. Le concentrazioni di arsenico disciolto nell'acqua interstiziale degli strati di sedimenti ossigenati e riducenti sono elevate e presenti nelle forme più biodisponibili (Reimer e Tompson, 1988).

Bario - Il bario è il quattordicesimo elemento più abbondante nella crosta terreste. Per la sua bassa solubilità nell'acqua, non è immediatamente accumulato nei tessuti duri o morbidi degli organismi marini (Neff, 2002). Se accumulato, il metallo rimane nei tessuti come calcoli insolubili e inerti (Jenkins *et al.*, 1989).

Cadmio - Questo metallo di per sé è insolubile in acqua, ma i suoi sali, sotto forma di cloriti e solfuri, sono liberamente solubili (Neff, 2002). Il cadmio è abbastanza mobile nei sedimenti marini per la sua speciazione in acqua marina e la sua tendenza

a legarsi facilmente alle particelle formando solfiti solubili in ambiente riducente. Questo metallo è accumulato dagli organismi marini sia disciolto che sotto forma di ioni principalmente attraverso le branchie. L'accumulo può essere passivo o attivo quando trasportato attraverso l'epitelio delle branchie. Il bioaccumulo del cadmio e di altri metalli (rame, mercurio e zinco) in alcuni invertebrati marini, pesci, uccelli e mammiferi può portare all'induzione di metallotioneine, proteine che si legano al metallo nei tessuti. Il cadmio tende ad accumularsi preferibilmente nei tessuti di alcuni organi, come il fegato, le ghiandole digestive e i reni, ma anche nei muscoli degli organismi marini.

Fig. 2.6 - Esemplari di H. diversicolor.

Cromo - Il cromo si presenta prevalentemente in due stati di ossidazione: trivalente ed esavalente. Il cromo trivalente, un micronutriente essenziale, è praticamente insolubile ai valori di pH dell'acqua marina e ha la tendenza a precipitare come idrossido insolubile concentrandosi nel sedimento (Richard e Bourg, 1991). Il cromo esavalente è solubile e potenzialmente molto disponibile. Le informazioni riguardo al bioaccumulo negli organismi marini sono minime.

Nichel - Il nichel in piccole quantità è essenziale per gli organismi poiché è utilizzato nella produzione delle cellule rosse del sangue. In ambiente acquatico si trova soprattutto sotto forma di ione bivalente che dà origine a complessi moderatamente forti con gli acidi umici e può essere adsorbito dal materiale particolato. Il metallo può passare in soluzione in condizioni di buona ossigenazione, mentre in condizioni

anossiche tende a precipitare sotto forma di solfuri insolubili e a concentrarsi nel sedimento.

Mercurio - Il mercurio si presenta principalmente in forma di ione bivalente, ma in condizioni di anossia si rinviene in forma metallica. Lo ione può essere soggetto alla metilazione per opera di batteri sia in condizioni aerobiche che anaerobiche, formando (CH₃)₂Hg e CH₃Hg⁺. Questi composti molto tossici tendono ad essere rilasciati rapidamente dalle particelle di sedimento passando in soluzione dove diventano disponibili per gli organismi che vivono nella colonna di acqua. A causa della sua alta affinità per la sostanza organica disciolta e particolata, il mercurio organico e inorganico forma facilmente complessi con la materia organica presente nell'acqua marina e nei sedimenti (Neff, 2002). L'assorbimento del mercurio disciolto è ridotto in seguito all'esposizione ad altri metalli come Ag, Cd, Cu e Zn.

Rame - Il rame si trova sotto forma di ione bivalente, idrossidi e carbonati e ha la tendenza a formare complessi con la materia organica e il materiale particolato. Quantità elevate di cloruri comportano un aumento della mobilità del rame in seguito alla formazione di ioni complessi e a un minor grado di assorbimento all'interno del sedimento (Bourg, 1988). Poiché il rame è un nutriente essenziale, diversi organismi marini hanno sviluppato meccanismi per controllare le concentrazioni degli ioni liberi nei tessuti in presenza di concentrazioni variabili nell'acqua, nel sedimento e nel cibo. Ad esempio, *H. diversicolor* regola la concentrazione di rame nei tessuti con il livello di concentrazione naturale del rame nell'acqua di mare, ma non a livelli alti, prossimi a quelli letali (Amiard *et al.*,1987). Tuttavia, alcuni policheti sono capaci di regolare i residui di rame nei tessuti in presenza di concentrazioni molto alte di rame nei sedimenti nei quali vivono (Bryan e Gibbs, 1987). Le concentrazioni del rame nei vari tessuti degli organismi marini variano stagionalmente, probabilmente in seguito a cambiamenti stagionali nella richiesta di questo micronutriente da parte dei vari tessuti.

Piombo - Il piombo è un componente naturale dell'ecosistema marino. Questo metallo tende a precipitare sotto forma di solfati e carbonati ed è in grado di formare complessi con la materia organica e il materiale particolato. Anche se gli intervertebrati e i pesci bioaccumulano questo metallo dall'acqua marina in proporzione alla sua concentrazione in soluzione (Amiard *et al.*,1987), il piombo

disciolto non è molto biodisponibile per gli organismi marini. Infatti, la biodisponibilità del piombo per gli organismi bentonici è proporzionale al rapporto piombo/ferro negli acidi deboli estratti dei sedimenti e il piombo che è assorbito sulle patine di ossido di ferro delle particelle di sedimento non è biodisponibile.

Vanadio - Questo metallo è largamente distribuito ed è un elemento sempre più tenuto in considerazione dal punto di vista ambientale, anche se non è stata ancora dimostrata la sua essenzialità per gli organismi. La maggior parte del vanadio presente nell'acqua marina si trova in sospensione o viene assorbito sui colloidi, passando meccanicamente attraverso l'acqua senza reagire. Solo una piccola parte si presenta in forma solubile, mentre tutto il resto tende a concentrarsi nei sedimenti. Il vanadio viene rimosso dall'acqua sia per assorbimento sul materiale particolato sia tramite i processi biochimici degli organismi.

Zinco - Lo zinco è un elemento essenziale per molti organismi viventi, essendo il costituente di diversi enzimi ed essendo coinvolto in varie reazioni metaboliche. Per questo motivo, numerose specie di organismi marini sembrano capaci di regolare questo metallo nei tessuti alle concentrazioni in cui si rinviene nell'acqua di mare e nei sedimenti, da livelli ambientali normali fino ai livelli prossimi a quelli letali (Luoma e Bryan, 1982). Gli organismi marini possono accumulare lo zinco dall'acqua, dal cibo e dai sedimenti. La forma tossica dello zinco è lo ione libero che nell'acqua marina rappresenta solo una piccola frazione dello zinco totale.

<u>Procedimento del test</u> - Il test di bioaccumulo è stato eseguito secondo i protocolli ASTM (1998; reapproved 2007) ed EPA (1993).

Gli organismi non maturi di *H. diversicolor* (taglia 6-10 cm) sono stati campionati manualmente dalle porzioni di un sedimento estuario. Dopo il trasporto in laboratorio, sono stati sottoposti a spurgo per 3 gg in sabbia quarzifera sommersa in acqua proveniente dal sito di campionamento, areata continuamente. La salinità dell'acqua sovrastante la sabbia quarzifera è stata gradualmente portata al 36±2‰, ovvero a un livello corrispondente alla salinità richiesta nel test.

Allestimento del test - Il test è stato allestito in tre repliche per ogni campione di sedimento da testare poste in barattoli di vetro da 1 lt. In ogni barattolo sono stati inseriti ~300 cm³ di sedimento da testare, ai quali sono stati aggiunti circa 600 ml di acqua di mare naturale filtrata (36±2‰). I barattoli sono stati quindi sistemati in

camera condizionata, coperti e areati in continuo. Dopo 24 h dall'introduzione dei sedimenti sono stati registrati i parametri d'inizio del test (pH, salinità, NH₄⁺ e ossigeno disciolto) e in ogni barattolo sono stati immessi 5 individui di *H. diversicolor*. Per l'intera durata del test i barattoli sono stati mantenuti alla temperatura di 16±2°C, aerati e illuminati senza alcun fotoperiodo. Come sedimento di controllo è stato utilizzato un sedimento nativo proveniente da un sito non contaminato. Il sedimento di controllo non contiene contaminanti o li contiene in concentrazioni molto basse. Il confronto tra il sedimento testato e il controllo consiste nella misura del livello di bioaccumulo. Il confronto degli organismi di controllo all'inizio e alla fine del periodo di esposizione indica se la contaminazione è avvenuta dall'acqua o dal sistema di esposizione. La mortalità degli organismi nel sedimento di controllo non dovrebbe superare il 10%.

Dopo 28 gg sono stati annotati i parametri finali del test e sono stati recuperati gli organismi dai singoli barattoli tramite setacciatura; gli individui vivi sono stati contati e reinseriti in barattoli contenenti sabbia quarzifera e acqua di mare filtrata. Dopo 3 gg i policheti spurgati sono stati recuperati e lavati in acqua distillata per 1 h per liberarli dal muco e dai residui della sabbia. Successivamente, sono stati congelati e sottoposti ad analisi chimica.

<u>Elaborazioni dei dati</u> - Per valutare l'eventuale bioaccumulo nei tessuti degli organismi è stata adottata la seguente formula:

$$D = (Ce - Cb)$$

dove:

D – variazione (riferita al bianco, ovvero alla quantità di metallo pesante presente nei tessuti degli organismi prima dell'inizio del test) della concentrazione dei metalli pesanti nei policheti a seguito dell'esposizione al sedimento da testare.

Cb - concentrazione del metallo nei tessuti degli organismi prima (bianco) della loro esposizione ai sedimenti testati;

Ce - concentrazione del metallo nei tessuti degli organismi dopo la loro esposizione ai sedimenti testati.

Al fine della valutazione del bioaccumulo si ritiene significativa una differenza del 20%.

2.2.3. INDAGINI SULLA COMUNITÀ BENTONICA

Durante le analisi di laboratorio le sei repliche prelevate in ciascuna stazione sono

state trattate separatamente. Il sorting è stato compiuto con l'ausilio di uno stereomicroscopio e di un microscopio ottico (All. A2-III e A2-IV) e l'identificazione degli organismi è stata effettuata al più basso livello sistematico possibile. Gli individui appartenenti allo stesso gruppo sono stati contati e pesati (All. A2-V) e i valori ottenuti sono stati rapportati a una superficie di 0,095 m² che, come già detto, corrisponde all'area di apertura della benna e, quindi, alla superficie di sedimento investigata dallo strumento; sono stati quindi calcolati numero e peso medi tra le repliche effettuate su una stessa stazione.

I valori così ottenuti sono stati utilizzati per calcolare i seguenti indici medi:

Abbondanza (N): $N ind 0,095 m^{-2}$

Biomassa (P): $gr \, 0.095 \, m^{-2}$

Indice di Dominanza (D; May, 1975): $D = n_i N^{-1}$

dove n_i = numero di individui della specie i-esima; N = numero totale di individui.

Ricchezza specifica totale (S; Pielou, 1974): Numero totale di specie presenti

nelle sei repliche

Ricchezza specifica media (S_m): Numero medio di specie presenti

nelle sei repliche

Diversità specifica di Shannon-Weaver (H'): $H' = -\sum p_i \cdot Log p_i$

dove: p_i = frequenza numerica della specie i-esima rispetto al totale degli individui (Pielou, 1974).

Le affinità biocenotiche o le preferenze ecologiche (Pérès e Picard, 1964; Bellan Santini e Ledoyer, 1972; Amouroux, 1974; Bourcier *et al.*, 1979; Bellan *et al.*, 1980; Nodot *et al.*, 1984; Salen-Picard, 1985; Augier, 1992; Bianchi *et al.*, 1993; Poppe e Goto; 1991; 1993; Rinelli e Spanò, 1997; Chimenz Gusso *et al.*, 2001) sono state ricercate per tutti i taxa determinati a livello di specie.

Sui dati di densità sono state calcolate le curve di dominanza cumulativa utilizzando il pacchetto software PRIMER (Clarke e Warwick, 1994). Sugli stessi dati di densità delle singole specie campionate dal pre-survey all'estate 2011, previa trasformazione in $\sqrt{2}$, è stato applicato anche il metodo del Multidimensional Scaling (MDS) per verificare eventuali differenze tra i survey e l'evoluzione temporale dei popolamenti. Infine, per valutare lo stato ecologico dell'area, sono stati confrontati i risultati di tre differenti indici (l'indice W di Clarke, l'indice AMBI e l'indice BENTIX; Clarke e Warwick, 1994; Borja *et al.* 2000; Simboura e Zenetos, 2002; Muxika *et al.*, 2007;

Borja e Mader, 2008), seguendo quanto suggerito da Teixeira *et al.* (2007). Questi Autori riportano infatti la possibilità di ottenere, attraverso la combinazione dei risultati derivati da più indici, un buon set di dati proprio per determinare lo stato della qualità ecologica di una determinata area. Si tratta di un approccio sperimentale poiché tutti gli indici utilizzati per questo scopo sono stati applicati quasi esclusivamente in aree marine costiere e, anche in questo caso, gli ambienti testati sono ancora troppo pochi per poter definire una corretta e universale classificazione dello stato ecologico ambientale (Texeira *et al.*, 2007). Tuttavia si ritiene che, essendo lo studio dell'eventuale impatto del sea-line Annamaria B - Brenda ancora nelle fasi iniziali e disponendo di un pre-survey (quindi della situazione ambientale "naturale"), l'applicazione di questa metodologia potrebbe rappresentare un utile strumento per il proseguo delle indagini.

Per quanto concerne i tre indici scelti per questo scopo, l'indice W prevede l'integrazione dei dati di abbondanza numerica e di biomassa delle singole specie. Tale metodo si basa sul presupposto che in aree stabili è favorita la presenza di specie con una "strategia di tipo k", con ciclo vitale lungo, grandi dimensioni corporee degli individui adulti, raramente dominanti numericamente, ma dominanti in termini di biomassa. Al contrario, nelle comunità disturbate, viene favorita la presenza di specie con "strategia di tipo r", dette anche opportuniste, caratterizzate da un ciclo vitale breve e piccola taglia corporea, che generalmente risultano dominanti numericamente (Pianka, 1970).

L'indice si basa sulla seguente formula:

$$\sum_{i}^{S} (B_{i} - A_{i}) / [50 (S - 1)]$$

dove: B_i e A_i = biomassa e abbondanza della specie i-esima; S = Ricchezza specifica totale.

Questo indice oscilla da -1 a +1 e indica nel primo caso la presenza di una comunità fortemente disturbata e, nel secondo, la presenza di un ambiente non perturbato. Nel caso in cui il valore sia vicino allo 0, l'ambiente è da considerare moderatamente perturbato (Craeymeersch, 1991). Per ottenere una classificazione della qualità dell'ambiente si è deciso di utilizzare gli intervalli di valori dell'indice W riportati in Tab. 2-VIII.

Tab. 2-VIII - Classificazione della qualità dell'ambiente in base al range di valori dell'indice W.

Environmental Classification	w	
Ambiente non inquinato	$1.0 \ge W \ge 0.7$	
Ambiente leggermente inquinato, di transizione	$0.7 > W \ge 0.4$	
Ambiente moderatamente inquinato	$0,4 > W \ge 0,0$	
Ambiente fortemente inquinato	$-0.0 > W \ge -0.5$	
Ambiente estremamente inquinato	$-0.5 > W \ge -1.0$	

L'indice AMBI è stato applicato da Muxika *et al.* (2005), oltre che in ambienti marino-costieri, anche in aree più profonde (costa occidentale svedese) o interessate dalla presenza di piattaforme petrolifere (Mare del Nord). Ha valori compresi tra 0 (ambiente non inquinato o disturbato) a 7 (ambiente estremamente inquinato o disturbato). Basandosi essenzialmente sul rapporto percentuale delle specie presenti nel campione, previamente suddivise in 5 gruppi ecologici in base al grado di tolleranza o sensibilità a un gradiente di stress ambientale, consente di classificare, come richiesto dalla Direttiva 2000/60/EC, gli ambienti marini costieri nelle seguenti categorie:

- 1. non disturbati (0≤AMBI≤1);
- 2. leggermente disturbati (1≤AMBI≤3,5);
- 3. moderatamente disturbati (3,5≤AMBI≤5);
- 4. molto disturbati (5≤AMBI≤6);
- 5. estremamente disturbati (6≤AMBI≤7).

I gruppi ecologici nei quali vengono raggruppate le specie (il cui elenco disponibile nel software AMBI 4.1 è aggiornato a febbraio 2010) sono identificati soprattutto in base alla loro sensibilità ad arricchimenti organici:

- gruppo I: Specie molto sensibili ad arricchimento organico e presenti solo in condizioni ambientali ottimali. Tale gruppo include i carnivori specialisti e alcuni policheti tubicoli detritivori.
- gruppo II: Specie indifferenti all'arricchimento organico, sempre presenti in basse densità senza particolari variazioni nel tempo. Esse includono sospensivori, alcuni carnivori poco selettivi e scavatori.
- gruppo III: Specie tolleranti a un eccessivo arricchimento organico nei sedimenti.

Queste specie possono essere presenti in condizioni normali, ma le loro popolazioni sono stimolate da un aumento di sostanza organica. Si tratta prevalentemente di detritivori superficiali.

gruppo IV: Specie opportuniste di secondo ordine; principalmente piccoli policheti detritivori sub-superficiali, come i cirratulidi.

gruppo V: Specie opportuniste di primo ordine; sono detritivori che proliferano in sedimenti poco ossigenati e ridotti.

Gli intervalli di valori dell'indice AMBI e la conseguente classificazione della qualità dell'ambiente sono riportati in Tab. 2-IX.

Tab. 2-IX - Classificazione della qualità dell'ambiente in base al range di valori dell'indice AMBI (Borja *et al.*, 2000).

Environmental Classification	AMBI	
Ambiente non inquinato	$0.0 < AMBI \le 1.2$	
Ambiente leggermente inquinato, di transizione	$1,2 < AMBI \le 3,3$	
Ambiente moderatamente inquinato	$3,3 < AMBI \le 5,0$	
Ambiente fortemente inquinato	$5,0 < AMBI \le 6,0$	
Ambiente estremamente inquinato	Azoico	

Infine, l'indice BENTIX è stato sviluppato per stabilire gli impatti causati da fattori di stress generalizzati e non discrimina tra disturbo di origine naturale o antropogenica. E' stato utilizzato con successo, tra l'altro, in aree soggette ad inquinamento organico (Simboura *et al.*, 2005), a sversamenti accidentali di petrolio (Zenetos *et al.*, 2004a) ed è attualmente utilizzato in diverse aree del Mediterraneo nell'ambito del framework del *WFD intercalibration exercise* (EC, 2003).

Questo indice si basa sulla suddivisione dei taxa di fondo mobile (per i quali è fornita una lista) in 3 principali gruppi ecologici:

- 1. gruppo 1 (GI): include specie sensibili a un disturbo in generale;
- 2. gruppo 2 (GII): include specie tolleranti a un disturbo o a uno stress. Le popolazioni possono rispondere a un arricchimento organico o a un'altra fonte di inquinamento attraverso un incremento delle densità;
- 3. gruppo 3 (GIII): include le specie opportuniste di primo ordine, quelle pioniere e le specie tolleranti a situazioni di ipossia.

Una volta composti i tre gruppi sopra citati, viene applicato il seguente algoritmo:

$$BENTIX = [(6 \times \%GI) + 2 \times (\%GII + \%GIII)] / 100$$

dove: %G = percentuale della somma delle densità di ciascun gruppo sulla densità totale registrata nella stazione di campionamento.

Sulla base dei risultati ottenuti, per ogni stazione di campionamento è possibile stilare una classifica della qualità dell'ambiente secondo i criteri riportati in Tab. 2-X. In Tab. 2-XI è infine riportata la classificazione dello stato ecologico dell'ambiente indicata in Bettencourt *et al.* (2004) sulla base della combinazione di tre differenti indici.

Tab. 2-X - Classificazione della qualità dell'ambiente in base al range di valori dell'indice BENTIX (Zenetos *et al.*, 2004b).

Environmental Classification	BENTIX	
Ambiente non inquinato	4,5 ≤ BENTIX < 6	
Ambiente leggermente inquinato, di transizione	$3,5 \le BENTIX < 4,5$	
Ambiente moderatamente inquinato	$2,5 \le BENTIX < 3,5$	
Ambiente fortemente inquinato	$2 \le BENTIX < 2,5$	
Ambiente estremamente inquinato	Azoico	

Tab. 2-XI - Classificazione dello stato ecologico derivata dalla combinazione di tre differenti indici (Bettencourt *et al.*, 2004).

Indice n. 1	Indice n. 2	Indice n. 3	Stato ecologico
non disturbato	non disturbato	non disturbato	alto
non disturbato	non disturbato	leggermente disturbato	alto/buono
non disturbato	leggermente disturbato	leggermente disturbato	buono
leggermente disturbato	leggermente disturbato	leggermente disturbato	buono
leggermente disturbato	leggermente disturbato	moderatamente disturbato	buono/moderato
leggermente disturbato	moderatamente disturbato	moderatamente disturbato	moderato
moderatamente disturbato	moderatamente disturbato	moderatamente disturbato	moderato
moderatamente disturbato	moderatamente disturbato	fortemente disturbato	moderato/povero
moderatamente disturbato	fortemente disturbato	fortemente disturbato	povero
fortemente disturbato	fortemente disturbato	fortemente disturbato	povero
estremamente disturbato	fortemente disturbato	fortemente disturbato	povero/pessimo
estremamente disturbato	estremamente disturbato	fortemente disturbato	pessimo
estremamente disturbato	estremamente disturbato	estremamente disturbato	pessimo

3. RISULTATI

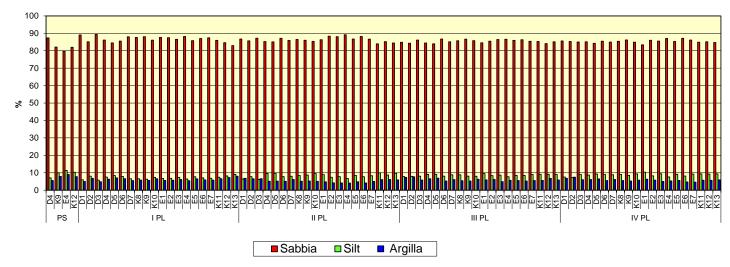
3.1. INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI

3.1.1. GRANULOMETRIA

All'analisi visiva i sedimenti prelevati nell'estate 2011 lungo i transetti D ed E sono risultati molto simili tra loro essendo costituiti in prevalenza dalla frazione sabbiosa, con un sottile strato superficiale ossidato color nocciola. Nel profilo sedimentario la componente a biodetrito conchifero è risultata sempre presente anche se in quantità variabile: il minimo assoluto registrato in E7 e il massimo in D2 (rispettivamente 4,4 g/campione e 8,52 g/campione). Questi valori sono apparsi in linea con quelli registrati nei 6 siti di controllo (All. B). Il colore dei sedimenti è risultato prevalentemente grigio.

Tutti i campioni sono risultati ascrivibili a "sabbia" secondo la classificazione di Shepard; questa frazione granulometrica ha infatti presentato percentuali sempre superiori all'83% (fig. 3.1; Tab. 3-I). Il silt è apparso sempre superiore al 7% e l'argilla al 4%.

La frazione sabbiosa ha raggiunto il massimo nella stazione E6 (87,13%) e il minimo in E1 (83,36%). Il valore più elevato di limo (silt) è stato osservato in E1 (10,31%) e il più basso in D2 (7,24%). Quest'ultima stazione ha presentato per contro la percentuale di argilla maggiore (7,47%), mentre quella minima è stata osservata in E7 (4,63%).


Mediamente (\pm dev.st.), non sono state riscontrate differenze per ciascuna delle componenti tra transetti e controlli, essendo la sabbia compresa tra 84,92 \pm 0,21% (K11-K13) e 85,80 \pm 0,67% (transetto E), il silt tra 8,52 \pm 0,79% (transetto D) e 9,31 \pm 0,09% (K11-K13) e l'argilla tra 5,52 \pm 30,25% (K8-K10) e 6,37 \pm 0,64% (transetto D).

I campioni analizzati nell'estate 2011 sono apparsi confrontabili con quelli analizzati nelle campagne precedent iessendo la componente sabbiosa sempre preponderante e pressoché costante nel tempo.

Rispetto all'inverno 2011 i campioni prelevati nell'ultimo survey hanno presentato piccole variazioni per tutte le componenti, senza un andamento ben definito. In particolare, la frazione sabbiosa è aumentata in 9 siti e si è ridotta in 11, con

differenze comunque tra un survey e l'altro molto piccole. Anche per silt e argilla non è stato riscontrato un trend comune tra gli ultimi due survey, essendo entrambi aumentati in alcune stazioni e diminuiti in altre, ma sempre con differenze piuttosto basse, così come quelle rilevate in tutto il periodo di studio.

Solo tra il pre-survey e il primo monitoraggio post lavori (inverno 2010) si era assistito a un aumento generale di sabbia, particolarmente evidente in E4. Tutte le variazioni osservate sono comunque modeste e riconducibili alla naturale variabilità dei sedimenti e non relazionabili alla presenza della condotta.

Fig. 3.1 - Percentuali delle principali frazioni granulometriche dei sedimenti campionati prima (PS) e dopo (PL) la realizzazione del sealine Annamaria B – Brenda. D4, E4 siti posti sul sea-line; K8-K13 = controlli.

Tab. 3-I - Percentuali delle principali frazioni granulometriche dei sedimenti campionati prima la realizzazione del sealine Annamaria B – Brenda (pre-survey; PS) e nei quattro survey successivi (post lavori; PL). In rosso le stazioni poste sulla condotta. I = inverno; E = estate.

	Pre	e-survey (I-	09)]	I PL (I-10)	I	I PL (E-10	0)		III PL (I-11)]	IV PL (E-11)	
	Sabbia	Silt	Argilla	Sabbia	Silt	Argilla	Sabbia	Silt	Argilla	Sabbia	Silt	Argilla	Sabbia	Silt	Argilla
D1				89,05	5,96	5,00	86,73	6,43	6,85	84,84	7,82	7,35	85,60	7,55	6,85
D2				85,13	8,08	6,78	85,68	7,76	6,56	84,31	7,96	7,73	85,29	7,24	7,47
D3				89,36	5,78	4,86	87,16	6,21	6,62	86,14	8,04	5,82	85,02	8,98	6,00
D4	87,37	7,06	5,57	86,12	7,54	6,33	85,26	9,61	5,14	84,44	9,03	6,53	85,16	8,72	6,12
D5				84,48	8,44	7,08	85,06	9,74	5,20	83,99	9,11	6,90	84,24	9,27	6,49
D6				85,55	7,86	6,60	87,11	7,80	5,09	86,72	8,03	5,25	85,48	9,00	5,53
D7				87,99	6,53	5,48	85,87	7,99	6,14	85,12	8,81	6,07	84,97	8,90	6,13
K8				87,65	6,54	5,8	86,47	8,42	5,12	85,73	8,85	5,42	85,41	9,04	5,55
К9	82,13	9,99	7,89	88,06	6,33	5,61	86,03	8,69	5,28	86,67	8,06	5,27	86,21	8,54	5,25
K10				86,07	7,38	6,55	85,36	9,54	5,10	85,75	7,98	6,27	84,88	9,37	5,75
E1				87,66	6,71	5,63	86,32	8,92	4,76	84,57	9,52	5,91	83,36	10,31	6,33
E2				87,45	6,82	5,73	88,32	7,44	4,23	85,52	8,33	6,15	86,03	8,21	5,76
E3				86,51	7,33	6,15	88,06	7,78	4,16	86,45	8,62	4,93	85,57	9,39	5,03
E4	79,68	11,35	8,96	88,15	6,44	5,41	89,19	6,72	4,08	86,62	7,71	5,67	87,08	7,59	5,32
E5				85,79	7,73	6,49	86,71	8,47	4,82	85,94	8,51	5,55	85,30	9,11	5,59
E6				87,03	7,05	5,92	88,16	7,72	4,13	86,28	8,47	5,25	87,13	8,14	4,73
E7				87,39	6,85	5,75	86,66	8,30	5,04	85,46	8,99	5,55	86,15	9,22	4,63
K11				85,95	7,44	6,60	83,95	9,98	6,07	85,30	9,09	5,62	84,91	9,35	5,74
K12	81,96	10,3	7,74	84,59	8,17	7,25	85,17	8,69	6,14	84,11	9,12	6,77	85,14	9,21	5,65
K13				82,92	9,05	8,03	84,45	9,67	5,88	85,14	8,99	5,86	84,72	9,37	5,91

3.1.2. IPA

Come osservato precedentemente, anche i dati dell'ultimo survey confermano la presenza di questi contaminanti in concentrazioni modeste, in molti casi al di sotto del limite di quantificazione (Tab. 3-II). Complessivamente, tranne poche eccezioni, i vari composti sono risultati presenti un po' ovunque. L'unico composto completamente assente è stato l'Acenaftene.

Anche i valori degli IPA totali sono risultati bassi ovunque e leggermente più elevati lungo il transetto E rispetto a D. I tenori più alti sono stati osservati in D7 (0,100 mg kg⁻¹) ed E2 (0,098 mg kg⁻¹), corrispondenti ai massimi dell'intero periodo di indagine. Tali valori, sebbene superiori rispetto ai controlli, sono comunque da considerare molto modesti essendo notevolmente inferiori all'LCB riportato nel manuale Icram-Apat del 2007 (0,900 mg kg⁻¹), analogamente a tutte le concentrazioni rilevate nell'intero periodo di monitoraggio.

Rispetto ai survey precedenti non è possibile identificare un andamento comune a tutte le stazioni.

Nell'inverno 2011 era stato osservato un graduale aumento in alcune stazioni (E3, E4, E6) che aveva portato a concentrazioni molto più elevate rispetto ai controlli. Questo dato, che avrebbe potuto indicare un incremento di contaminazione, è stato confermato nell'estate 2011 solo per la stazione E6. Negli altri due casi, infatti, è stato registrato un decremento.

Nell'estate 2011 è stato osservato un incremento generalizzato che non ha riguardato solo i siti D4, D7, E3, E4 e il controllo K12 caratterizzati da una riduzione e D2 rimasto praticamente invariato.

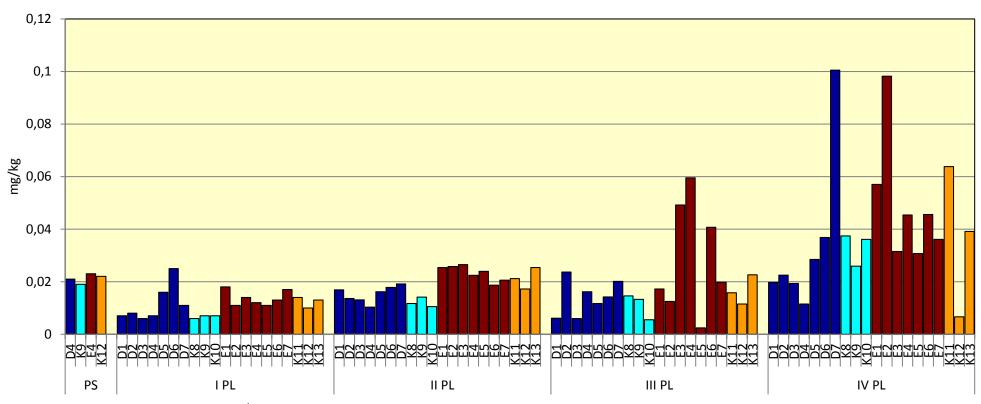
Il dato di maggiore interesse è che gli IPA sono incrementanti ovunque rispetto al pre-survey eccetto in D4, sebbene i tenori raggiunti siano ancora molto modesti.

Le variazioni temporali osservate e i picchi registrati nell'estate 2011 saranno meglio interpretati attraverso i monitoraggi futuri che potranno consentire di valutare se tali eventi siano inquadrabili nella naturale variabilità ambientale o se, invece, testimonino un effetto della condotta.

Tab. 3-II - Concentrazioni degli Idrocarburi Policiclici Aromatici (mg kg^{-1}) nei siti campionati prima (PS) e dopo (PL) la realizzazione del sealine Annamaria B – Brenda. In rosso le stazioni poste sulla condotta. K8-K13 = controlli. Sono riportati solo i valori superiori al limite di quantificazione (0,001 mg kg^{-1}).

	P	re surve	ey (I 2009))										I PL (I 2010)									
	D4	К 9	E4	K12	D1	D2	D3	D4	D5	D6	D7	К8	К9	K10	E1	E2	Е3	E4	E5	E6	E7	K11	K12	K13
Acenaftene																								
Acenaftilene																								
Antracene																								
Benzo(a)antracene			0,001	0,001						0,002														
Benzo(a)pirene			0,001	0,001						0,001											0,001			
Benzo(b)fluorantene	0,004	0,004	0,004	0,004	0,002	0,002	0,002	0,002	0,003	0,003	0,002	0,002	0,002	0,002	0,003	0,003	0,003	0,002	0,002	0,003	0,003	0,002	0,003	0,003
Benzo(g,h,i)perilene	0,002	0,003	0,002	0,002	0,002	0,002	0,001	0,001	0,003	0,002	0,001	0,001	0,001	0,001	0,003	0,002	0,002	0,002	0,002	0,002	0,002	0,001	0,002	0,002
Benzo(k)fluorantene										0,0010					0,001		0,001			0,001	0,001			
Crisene	0,002	0,002	0,002	0,002					0,001	0,002					0,001	0,001	0,001	0,001	0,001	0,001	0,001		0,001	0,001
Dibenzo(a,h)antracene																								
Fenantrene	0,002	0,001	0,002	0,002	0,001	0,001			0,001	0,004			0,001		0,002	0,001	0,001	0,001	0,001	0,001	0,002	0,001	0,001	0,001
Fluorantene	0,003	0,003	0,004	0,004	0,001	0,001	0,001	0,001	0,002	0,004			0,001		0,002	0,001	0,002	0,001	0,002	0,002	0,002	0,001	0,001	0,002
Fluorene									0,002		0,007	0,002		0,003				0,003				0,007		
Indeno(1,2,3-c,d)pirene	0,003	0,003	0,003	0,003	0,001	0,002	0,002	0,001	0,003	0,003	0,001	0,001	0,002	0,001	0,004	0,002	0,003	0,002	0,003	0,002	0,003	0,002	0,002	0,002
Naftalene	0,001	0,001	0,001	0,001				0,002																0,001
Pirene	0,002	0,002	0,003	0,002					0,001	0,003					0,002	0,001	0,001			0,001	0,002			0,001
Totali	0,090	0,019	0,023	0,022	0,007	0,008	0,006	0,007	0,016	0,025	0,011	0,006	0,007	0,007	0,018	0,011	0,014	0,012	0,011	0,013	0,017	0,014	0,010	0,013

Tab. 3-II – Continuo.


ab. 5-11 — Continuo.																				
										II PL (E 2010)									
	D1	D2	D3	D4	D5	D6	D7	К8	К9	K10	E1	E2	Е3	E4	E5	E6	E7	K11	K12	K13
Acenaftene																				
Acenaftilene																				
Antracene												0,001								
Benzo(a)antracene						0,001							0,001							
Benzo(a)pirene											0,001	0,001	0,001	0,001	0,001					0,001
Benzo(b)fluorantene	0,003	0,003	0,003	0,002	0,003	0,003	0,003	0,003	0,003	0,003	0,005	0,004	0,004	0,004	0,005	0,003	0,004	0,004	0,004	0,005
Benzo(g,h,i)perilene	0,001	0,001	0,001	0,002	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,002	0,001	0,002	0,002	0,002	0,001	0,002	0,001	0,002
Benzo(k)fluorantene	0,001	0,001	0,001		0,001	0,001	0,001	0,001	0,003		0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,001	0,002
Crisene					0,001	0,002	0,001				0,002	0,002	0,002	0,001	0,001	0,001	0,001	0,001	0,001	0,002
Dibenzo(a,h)antracene																				
Fenantrene	0,003	0,002	0,002	0,002	0,002	0,002	0,003	0,002	0,002	0,002	0,003	0,004	0,003	0,002	0,002	0,002	0,002	0,002	0,002	0,003
Fluorantene	0,002	0,001	0,002	0,001	0,002	0,003	0,003	0,001	0,002	0,001	0,003	0,003	0,003	0,002	0,002	0,002	0,002	0,002	0,002	0,003
Fluorene	0,002	0,001					0,001				0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001		0,001
Indeno(1,2,3-c,d)pirene	0,002	0,001	0,002	0,002	0,002	0,001	0,002	0,001	0,002	0,001	0,004	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002
Naftalene	0,003	0,002	0,003	0,002	0,003	0,002	0,002	0,003	0,002	0,002	0,003	0,002	0,003	0,003	0,003	0,003	0,002	0,003	0,003	0,003
Pirene	0,001				0,001	0,002	0,002				0,002	0,002	0,002	0,001	0,001	0,001	0,001	0,001	0,001	0,002
Totali	0,017	0,015	0,013	0,010	0,016	0,018	0,019	0,012	0,014	0,011	0,025	0,026	0,027	0,022	0,024	0,019	0,021	0,021	0,017	0,025

Tab. 3-II – Continuo.

ab. 5-11 – Commuo.																				
										III PL	(I 2011)									
	D1	D2	D3	D4	D5	D6	D7	К8	К9	K10	E1	E2	Е3	E4	E5	E6	E7	K11	K12	K13
Acenaftene																				
Acenaftilene													0,001							
Antracene														0,001						
Benzo(a)antracene		0,001											0,004	0,006		0,003	0,001			
Benzo(a)pirene											0,001		0,006	0,006		0,003				0,001
Benzo(b)fluorantene	0,001	0,003	0,001	0,003	0,002	0,002	0,003	0,002	0,002	0,001	0,003	0,003	0,009	0,008	0,001	0,007	0,003	0,003	0,002	0,004
Benzo(g,h,i)perilene		0,002		0,001	0,001	0,001	0,002	0,00	0,001		0,002	0,001	0,006	0,003		0,004	0,002	0,002	0,001	0,002
Benzo(k)fluorantene		0,002		0,001	0,001	0,001	0,002	0,001	0,001		0,002	0,001	0,006	0,005		0,004	0,002	0,002		0,002
Crisene		0,002		0,002		0,001	0,001	0,001	0,001		0,002	0,001	0,005	0,007		0,004	0,002	0,001	0,001	0,002
Dibenzo(a,h)antracene																				
Fenantrene	0,001	0,003	0,001	0,002	0,001	0,001	0,002	0,001	0,002	0,001	0,002	0,002	0,001	0,003		0,003	0,001	0,002	0,001	0,002
Fluorantene	0,001	0,004	0,001	0,002	0,002	0,002	0,002	0,002	0,002	0,001	0,002	0,002	0,003	0,009		0,004	0,003	0,002	0,002	0,003
Fluorene																				
Indeno(1,2,3-c,d)pirene		0,002		0,002	0,002	0,002	0,003	0,002	0,002		0,002	0,002	0,006	0,004	0,001	0,005	0,002	0,002	0,001	0,003
Naftalene	0,002	0,002	0,002	0,003	0,002	0,003	0,003	0,003	0,003	0,002	0,001			0,001		0,002	0,001	0,001	0,002	0,002
Pirene		0,003		0,001	0,001	0,001	0,001	0,001			0,002	0,001	0,002	0,007		0,003	0,002	0,001	0,001	0,002
Totali	0,006	0,024	0,006	0,016	0,012	0,014	0,020	0,015	0,013	0,006	0,017	0,013	0,049	0,060	0,002	0,041	0,020	0,016	0,012	0,023

Tab. 3-II – Continuo.

ab. 3-11 – Continuo.	1																			
										IV PL (E 2011)									
	D1	D2	D3	D4	D5	D6	D7	К8	К9	K10	E1	E2	Е3	E4	E5	E6	E7	K11	K12	K13
Acenaftene																				
Acenaftilene					0,002	0,002	0,004	0,002	0,001	0,001										
Antracene	0,001	0,001	0,001			0,001	0,002	0,001		0,001	0,001	0,003		0,001				0,002		0,001
Benzo(a)antracene						0,001	0,007	0,001			0,003	0,006		0,002		0,001	0,001	0,003		0,001
Benzo(a)pirene						0,001	0,005	0,001			0,003	0,007		0,002		0,002	0,001	0,004		0,001
Benzo(b)fluorantene	0,003	0,003	0,003	0,003	0,004	0,004	0,013	0,004	0,003	0,004	0,005	0,009	0,003	0,005	0,004	0,004	0,004	0,006	0,001	0,004
Benzo(g,h,i)perilene		0,001				0,001	0,004	0,001		0,001	0,003	0,006	0,002	0,003	0,002	0,004	0,002	0,004		0,002
Benzo(k)fluorantene	0,001	0,001	0,001	0,001	0,001	0,002	0,004	0,002	0,001	0,002	0,002	0,004	0,001	0,002	0,001	0,001	0,001	0,002		0,002
Crisene		0,001	0,001		0,001	0,001	0,009	0,001	0,001	0,001	0,004	0,006	0,001	0,002	0,002	0,002	0,002	0,004		0,002
Dibenzo(a,h)antracene												0,001								
Fenantrene	0,005	0,006	0,006	0,003	0,007	0,008	0,013	0,008	0,006	0,010	0,009	0,017	0,009	0,009	0,006	0,010	0,009	0,011	0,003	0,008
Fluorantene	0,002	0,002	0,002	0,002	0,002	0,003	0,014	0,003	0,002	0,002	0,007	0,011	0,002	0,004	0,002	0,004	0,003	0,006		0,003
Fluorene	0,003	0,002	0,002		0,004	0,005	0,005	0,005	0,004	0,006	0,004	0,008	0,005	0,005	0,004	0,006	0,005	0,006	0,002	0,005
Indeno(1,2,3-c,d)pirene	0,001	0,002	0,002	0,001	0,002	0,002	0,003	0,002	0,001	0,002	0,003	0,006	0,002	0,003	0,003	0,003	0,003	0,004	0,001	0,003
Naftalene	0,003	0,002			0,004	0,005	0,004	0,005	0,004	0,004	0,007	0,006	0,003	0,006	0,006	0,006	0,004	0,006		0,005
Pirene	0,001	0,001	0,002	0,002	0,001	0,002	0,015	0,002	0,001	0,002	0,007	0,009	0,002	0,003	0,002	0,004	0,002	0,006		0,002
Totali	0,020	0,023	0,019	0,012	0,029	0,037	0,10	0,037	0,026	0,036	0,057	0,098	0,032	0,045	0,031	0,046	0,036	0,064	0,007	0,039

Fig. 3.2 - Concentrazioni (mg kg^{-1} s.s.) degli Idrocarburi Policiclici Aromatici totali nei sedimenti prelevati prima (PS) e dopo (PL) la realizzazione del sea-line Annamaria B – Brenda. D4 e E4 siti posti sul sea-line; K8-K13 = controlli.

3.1.3. METALLI PESANTI

Alluminio – Le percentuali di questo metallo rilevate nell'estate 2011 sono risultate modeste ovunque (Tab. 3-III; fig. 3.3). Le concentrazioni medie (± dev. st.) sono apparse paragonabili tra transetti (D: 0,53±0,08%; E: 0,50±0,05%) e relativi controlli (K8-K10: 0,48±0,03%; K11-K13: 0,56±0,07%) e del tutto in linea con i survey precedenti. Le concentrazioni sono talmente basse che le differenze spaziali e temporali osservate non sono degne di nota.

Arsenico – Le concentrazioni dell'arsenico relative all'estate 2011 sono apparse modeste ovunque e paragonabili tra ciascun transetto (D: 4,31±0,50; E: 3,38±0,41 mg kg⁻¹) e relativi controlli (K8-K10: 4,32±0,86; K11-K13: 3,67±0,20 mg kg⁻¹). Le differenze tra transetto D, più contaminato, e transetto E, sono da ritenersi trascurabili dato il modesto valore assoluto delle concentrazioni rilevate.

Per tutto il periodo di indagine questo metallo ha conservato valori molto modesti senza particolari anomalie da segnalare (Tab. 3-III; fig. 3.3) a parte un graduale, seppur lieve incremento nelle stazioni D1 e D2 poste rispettivamente a 100 e 60 m di distanza dalla condotta in direzione NNW. Essendo un andamento simile stato riscontrato anche presso il controllo K8, si ritiene che tale trend rientri nella naturale variabilità del metallo nell'areale in esame.

Rispetto al pre-survey è stato osservato un incremento un po' ovunque, ma i valori raggiunti sono tuttavia troppo bassi per indicare uno stato di alterazione dell'area. Tale aumento, anche in questo caso, ha interessato anche i controlli, ad indicare l'estraneità della condotta nel determinare la dinamica temporale di questo metallo.

Bario – Anche le concentrazioni di bario rilevate nell'estate 2011 sono risultate modeste ovunque (Tab. 3-III; fig. 3.3), confermando i dati raccolti nei survey precedenti. Inoltre, mediamente non sono state riscontrate discrepanze tra transetti (D: 13,91±2,12; E: 11,90±1,47 mg kg⁻¹) e relativi controlli (K8-K10: 12,35±0,81; K11-K13: 12,45±2,67 mg kg⁻¹).

Per tutta la durata dello studio le variazioni sono state di lieve entità, proprio in virtù della modestia dei valori assoluti. Solo tra il pre-survey e l'inverno 2010 questo metallo era aumentato sia lungo i transetti sia ai controlli, seppure in questi ultimi in maniera leggermente più modesta. Infatti, l'inverno 2010 rappresenta l'unico caso in

cui i transetti sono risultati in media leggermente più contaminati dei controlli. Nei restanti survey le differenze tra gli uni e gli altri sono sempre apparse trascurabili. Complessivamente i dati confermano che la presenza della condotta non influenza la dinamica di questo metallo.

Cromo – Le concentrazioni di cromo rilevate nell'estate 2011 sono apparse modeste ovunque, pur con una tendenza ad essere leggermente più elevate lungo il transetto D e relativi controlli rispetto ad E (D: 23,06±1,96; K8-K10: 21,20±1,21; E: 18,43±1,58; K11-K13: 19,82±2,21 mg kg⁻¹), analogamente a quanto osservato nei campionamenti precedenti (Tab. 3-III; fig. 3.3). Non si sono riscontrate invece differenze tra transetti e relativi riferimenti, come indicato dalle medie.

Nell'intero periodo di indagine il cromo ha esibito oscillazioni che hanno interessato sia i transetti, sia i riferimenti. Rispetto al pre-survey questo metallo è incrementato un po' ovunque, senza tuttavia raggiungere tenori che indichino uno stato di contaminazione dell'area. Le variazioni osservate sono inquadrabili nella naturale dinamica ambientale e non sono imputabili alla presenza del sea-line.

Rame – Le concentrazioni di questo metallo rilevate nell'estate 2011 lungo i transetti sono risultate basse e mediamente confrontabili tra i due transetti sia tra questi e i relativi controlli (D: 2,99±0,36; K8-K10: 3,16±0,46; E: 3,31±0,22; K11-K13: 3,41±0,45 mg kg⁻¹). I valori, inoltre, sono apparsi inferiori a quelli registrati nel presurvey, ad indicare che la posa della condotta non ha modificato i tenori di rame nell'area interessata dai lavori (Tab. 3-III; fig. 3.3). Tali considerazioni erano già emerse dai dati raccolti nei survey precedenti. In nessun caso, infatti, questo metallo aveva esibito incrementi, ossia segnali di anomalie positive riconducibili al sea-line. L'unico incremento era stato osservato in K13 nell'inverno 2011, fatto comunque non imputabile alla condotta. Complessivamente pertanto, questo metallo non risulta influenzato dalla presenza della struttura.

Cadmio – Anche per il cadmio sono stati ottenuti valori bassi nell'estate 2011 e del tutto confrontabili tra transetti (D: 0.018 ± 0.001 ; E: 0.020 ± 0.002 mg kg⁻¹) e riferimenti (K8-K10: 0.020 ± 0.001 ; K11-K13: 0.021 ± 0.006 mg kg⁻¹).

Tutti i valori sono risultati inoltre inferiori a quelli rilevati nel pre-survey (Tab. 3-III; fig. 3.3), analogamente a quanto osservato in tutta la fase successiva alla posa della

condotta, indicando che la presenza del sea-line non ha comportato anomalie su questo metallo. I dati dell'ultimo survey, inoltre, corroborano quanto osservato in precedenza, ossia che gli andamenti temporali dei valori medi dei transetti e dei controlli non presentano discrepanze. Tra il pre-survey e l'inverno 2010 si era verificato una brusca riduzione di cadmio, seguita nell'estate 2010 da un incremento e da una nuova riduzione che è continuata sino all'ultimo survey. E' pertanto possibile affermare che la condotta non ha effetti su questo metallo.

Mercurio – Come già emerso precedentemente, anche nell'estate 2011 questo metallo era presente in bassissime concentrazioni nei sedimenti investigati, a volte inferiori al limite di quantificazione lungo il transetto D e relativi controlli, che sono pertanto risultati meno impattati rispetto al transetto e i controlli K11-K13 (Tab. 3-III; fig. 3.3). Per valori così bassi, comunque, le variazioni sia temporali che spaziali osservate non hanno alcun significato. Complessivamente, pertanto, i dati indicano l'assenza di un effetto del sea-line su questo metallo.

Nichel – Come tutti i metalli precedentemente descritti, anche le concentrazioni di nichel rilevate nell'estate 2011 sono risultate modeste ovunque e, pertanto, le differenze tra stazioni sono da ritenersi trascurabili (Tab. 3-III; fig. 3.3). Inoltre, le concentrazioni medie di transetti (D: 13,37±1,24; E: 11,81±0,58 mg kg⁻¹) e riferimenti (K8-K10: 12,51±0,75; K11-K13: 11,81±1,43 mg kg⁻¹) sono del tutto paragonabili.

Nell'intero periodo di indagine i valori di nichel sono sempre stati modesti e hanno subito solo piccole variazioni rimanendo quindi confrontabili con quelli del presurvey, ad indicare l'assenza di un effetto del sea-line su questo metallo. Anche i picchi registrati nell'estate 2010 erano troppo modesti per essere considerati un segno di contaminazione dell'area.

Piombo – Le concentrazioni di piombo rilevate nell'estate 2011 sono risultate basse ovunque e, come emerso anche dai survey precedenti, tendenzialmente più elevate lungo il transetto E rispetto a D come anche indicato dalle medie (D: 4,35±0,31; E: 5,39±0,27 mg kg⁻¹). Tuttavia, trattandosi di concentrazioni molto basse, le differenze tra siti devono essere considerate di poco conto. Mediamente i transetti sono risultati solo leggermente più impattati dei rispettivi controlli (K8-K10: 4,46±0,11; K11-K13:

4,68±0,41 mg kg⁻¹).

Rispetto al pre-survey sia i siti posti in corrispondenza della condotta che i controlli hanno esibito un leggero incremento, probabilmente legato alla dinamica naturale di questo metallo. Comunque, le concentrazioni sono rimaste in tutti i casi molto basse e pertanto anche le differenze non sono riconducibili alla condotta.

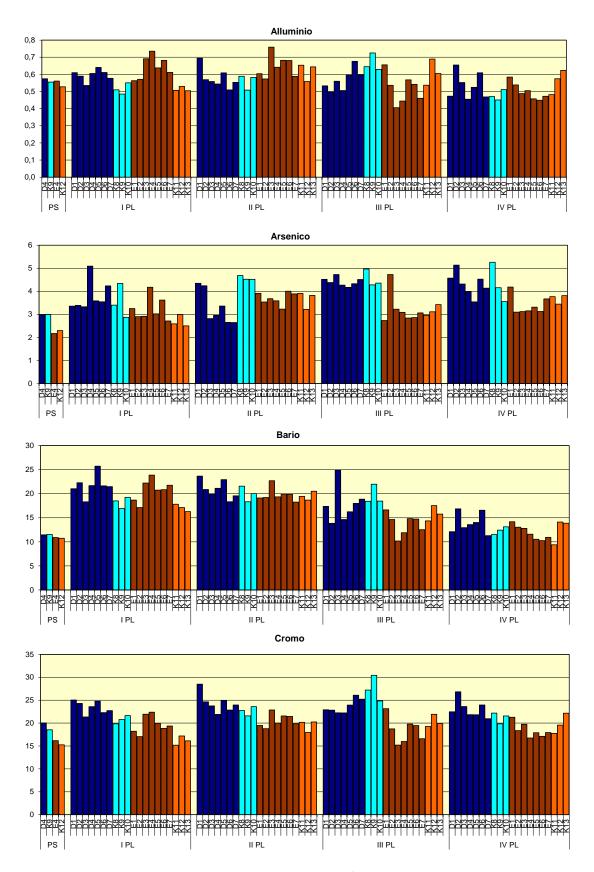
Vanadio – Anche le concentrazioni di vanadio rilevate nell'estate 2011 sono risultate modeste ovunque, con differenze tra i siti talmente basse da essere trascurabili. Inoltre, i tenori registrati lungo i transetti sono apparsi paragonabili a quelli dei controlli (D: 15,89±1,66; K8-K10: 14,50±0,27; E: 13,97±0,27; K11-K13: 14,64±1,58 mg kg⁻¹).

Nel tempo questo metallo ha conservato sempre concentrazioni basse e del tutto confrontabili con quelle del pre-survey (eccetto in K12 dove c'è stato un aumento), ad indicare che la condotta non influenza la dinamica del vanadio.

Zinco – Le concentrazioni di zinco rilevate nell'estate 2011 lungo i transetti sono apparse modeste e inferiori (D: 22,81±1,99; K8-K10: 47,77±10,35 mg kg⁻¹) o del tutto confrontabili (E: 24,57±5,82; K11-K13: 27,32±9,83 mg kg⁻¹) con i controlli (Tab. 3-III; fig. 3.3).

Rispetto alle campagne precedenti questo metallo ha mostrato un sensibile incremento in corrispondenza dei siti di riferimento del transetto D, dove ha raggiunto valori anche tripli rispetto al pre-survey. In termini assoluti, anche questi tenori sono comunque modesti e non riconducibili alla presenza del sea-line, sia per la distanza da esso, sia perché incrementi così evidenti non sono stati osservati lungo i transetti; anche i picchi in E3 ed E5 sono comunque inferiori al valore registrato nel corrispondente controllo K13. Complessivamente, la condotta non sembra avere effetti su questo metallo.

Tab. 3-III - Concentrazioni dei metalli in tracce (mg kg^{-1} s.s. ad eccezione di Al espresso in %) nei sedimenti campionati prima (PS) e dopo (PL) la realizzazione del sea-line Annamaria B – Brenda. In rosso le stazioni poste sulla condotta sottomarina. K8-K13 = controlli. LOQ = limite di quantificazione.


			Allumi	inio				Arsen	ico				Bario)				Crom	10	
	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL
D1		0,61	0,69	0,53	0,47		3,40	4,30	4,52	4,57		21,00	23,70	17,36	12,10		25,0	28,5	22,90	22,40
D2		0,59	0,57	0,50	0,65		3,40	4,20	4,38	5,13		22,30	20,90	13,85	16,90		24,3	24,6	22,82	26,80
D3		0,54	0,56	0,56	0,55		3,30	2,80	4,73	4,32		18,30	20,00	24,92	13,00		21,3	23,7	22,23	23,60
D4	0,57	0,61	0,54	0,51	0,45	3,00	5,10	3,00	4,26	3,98	11,50	21,70	21,10	14,64	13,60	20,00	23,6	21,9	22,22	21,80
D5		0,64	0,61	0,60	0,52		3,60	3,40	4,17	3,54		25,70	22,90	16,24	14,00		24,8	24,9	23,92	21,80
D6		0,61	0,51	0,68	0,61		3,50	2,60	4,33	4,53		21,60	18,30	17,99	16,60		22,3	22,8	26,09	23,90
D7		0,58	0,55	0,60	0,47		4,20	2,60	4,51	4,13		21,50	19,60	18,88	11,30		22,7	23,9	25,22	20,90
K8		0,51	0,59	0,64	0,47		3,40	4,70	4,97	5,26		18,50	21,60	18,44	11,50		19,8	22,7	27,20	22,20
K9	0,55	0,48	0,51	0,73	0,45	3,00	4,30	4,50	4,28	4,15	11,50	16,90	18,30	21,98	12,40	18,50	20,8	21,6	30,43	19,80
K10		0,55	0,58	0,63	0,51		2,90	4,50	4,35	3,55		19,30	20,00	18,47	13,10		21,6	23,6	24,83	21,60
E1		0,56	0,60	0,66	0,58		3,20	3,90	2,73	4,18		18,70	19,10	16,62	14,20		18,2	19,5	23,14	21,30
E2		0,57	0,57	0,54	0,54		2,90	3,50	4,73	3,10		17,10	19,20	14,63	13,00		17,0	18,8	18,74	18,40
E3		0,69	0,76	0,41	0,49		2,90	3,70	3,22	3,12		22,20	22,70	10,16	12,80		21,9	22,9	15,19	19,70
E4	0,56	0,74	0,64	0,44	0,50	2,20	4,20	3,60	3,09	3,15	10,90	23,90	19,30	11,90	11,60	16,20	22,4	20,0	15,98	16,70
E5		0,64	0,68	0,57	0,46		3,00	3,20	2,84	3,31		20,70	19,90	14,82	10,50		19,9	21,6	19,78	17,90
E6		0,68	0,68	0,54	0,45		3,60	4,00	2,86	3,12		20,80	19,90	14,72	10,20		18,8	21,4	19,46	17,10
E7		0,61	0,59	0,46	0,47		2,70	3,90	3,06	3,67		21,80	18,20	12,52	10,90		19,4	19,8	16,57	17,90
K11		0,51	0,65	0,54	0,48		2,60	3,90	2,96	3,77		17,80	19,40	14,35	9,40		15,2	20,2	19,26	17,80
K12	0,53	0,53	0,56	0,69	0,57	2,30	3,00	3,20	3,11	3,44	10,80	17,10	18,70	17,53	14,10	15,30	17,2	18,0	21,91	19,60
K13		0,50	0,64	0,61	0,62		2,50	3,80	3,42	3,81		16,30	20,50	15,76	13,90		16,1	20,2	19,88	22,10

Tab. 3-III - Continuo.

			Ram	ie				Cadmi	o			I	Mercurio)				Niche	1	
	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL
D1		1,60	3,80	3,08	3,11		0,016	0,041	0,022	0,016		< LOQ	< LOQ	0,010	< LOQ		10,80	16,20	10,76	14,20
D2		1,90	3,40	2,78	3,07		0,016	0,049	0,026	0,019		< LOQ	< LOQ	0,011	< LOQ		10,40	12,90	10,93	14,50
D3		1,50	3,30	3,50	2,76		0,016	0,038	0,021	0,019		< LOQ	< LOQ	0,011	< LOQ		8,00	12,70	10,74	12,60
D4	4,10	1,50	3,60	2,81	2,55	0,045	0,020	0,030	0,028	0,016	0,011	< LOQ	< LOQ	0,008	< LOQ	13,30	9,70	9,40	10,56	12,00
D5		2,80	3,70	3,16	3,22		0,012	0,032	0,024	0,019		< LOQ	0,016	0,010	< LOQ		11,30	14,70	12,29	14,80
D6		2,10	3,00	3,05	3,58		0,018	0,030	0,029	0,019		< LOQ	< LOQ	0,010	0,010		9,10	10,00	12,31	13,70
D7		2,20	3,10	3,37	2,66		0,015	0,035	0,024	0,017		< LOQ	< LOQ	0,010	0,010		12,00	12,30	14,38	11,80
K8		1,30	4,00	3,46	2,82		0,012	0,027	0,024	0,021		< LOQ	< LOQ	0,010	< LOQ		8,70	13,10	13,15	11,80
K9	4,10	1,50	3,50	3,41	2,98	0,046	0,017	0,027	0,027	0,020	< LOQ	< LOQ	< LOQ	0,012	< LOQ	12,10	10,50	12,80	12,68	13,30
K10		1,30	3,50	3,20	3,69		0,013	0,028	0,025	0,019		< LOQ	< LOQ	0,010	< LOQ		10,20	12,00	11,49	12,40
E1		2,00	4,20	3,43	3,31		0,018	0,036	0,037	0,018		< LOQ	0,014	0,015	0,012		8,00	12,10	10,23	11,60
E2		1,20	4,10	3,22	3,48		0,019	0,035	0,033	0,019		< LOQ	0,013	0,014	0,014		9,10	10,60	11,11	11,50
E3		2,40	4,10	2,49	3,65		0,017	0,039	0,028	0,022		< LOQ	0,014	0,011	0,013		10,20	15,90	6,99	12,20
E4	4,30	2,00	4,30	2,72	3,18	0,043	0,025	0,034	0,024	0,022	0,012	< LOQ	0,013	0,012	0,012	11,50	10,50	11,80	7,84	11,00
E5		2,10	3,80	3,55	3,35		0,016	0,039	0,028	0,021		< LOQ	0,014	0,015	0,013		9,50	11,30	9,41	11,40
E6		1,80	4,00	3,54	2,97		0,022	0,041	0,028	0,020		< LOQ	0,012	0,013	0,013		7,00	12,50	10,73	12,20
E7		3,40	3,80	3,25	3,25		0,012	0,034	0,026	0,019		< LOQ	0,013	0,022	0,013		8,20	10,00	9,73	12,70
K11		1,60	3,90	3,46	2,94		0,011	0,033	0,025	0,017		< LOQ	0,013	0,015	0,011		7,00	10,70	10,95	12,20
K12	4,40	2,30	3,80	3,63	3,84	0,047	0,017	0,035	0,040	0,017	0,013	< LOQ	0,013	0,014	0,014	11,40	8,70	10,90	10,15	15,00
K13		1,60	3,70	8,02	3,46		0,013	0,033	0,027	0,028		< LOQ	0,013	0,015	0,013		7,90	11,10	10,39	13,70

Tab. 3-III - Continuo.

			Piom	bo				Vanad	io				Zinco)	
	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL
D1		5,60	5,40	5,22	4,42		16,20	17,70	16,02	14,93		22,40	25,00	22,86	24,40
D2		6,40	5,10	4,71	4,63		15,50	16,00	15,54	18,71		24,00	22,80	23,81	24,90
D3		5,20	5,00	5,53	4,44		14,30	15,10	17,20	15,76		21,50	22,40	26,46	21,90
D4	3,30	4,20	4,70	4,34	3,85	15,10	16,00	14,70	15,46	14,19	23,10	26,40	22,00	24,85	20,60
D5		3,20	5,40	5,20	4,67		16,80	15,60	17,43	16,01		23,50	23,90	27,25	24,20
D6		4,70	4,50	4,82	4,45		15,40	14,30	18,81	17,35		22,60	20,60	26,83	23,70
D7		5,70	5,60	4,79	4,02		14,80	14,70	17,51	14,28		23,60	20,90	25,78	19,90
K8		6,10	4,30	5,13	4,33		14,10	14,60	19,29	14,49		19,30	25,00	27,69	42,10
K9	3,20	4,30	3,70	4,92	4,55	14,60	13,00	13,90	19,79	14,24	22,10	19,90	23,00	27,15	41,50
K10		6,30	4,00	4,82	4,49		14,40	14,50	17,52	14,79		19,80	23,20	25,38	59,70
E1		4,90	3,70	7,11	5,30		13,90	13,80	17,17	15,91		21,70	22,90	23,70	22,20
E2		5,60	3,70	6,94	5,72		12,90	12,50	14,77	13,86		20,60	22,30	21,53	21,10
E3		5,70	5,90	5,77	5,83		15,60	15,30	11,94	14,75		24,30	22,40	23,68	29,50
E4	4,20	5,30	5,40	5,98	5,19	13,40	17,20	13,60	12,55	13,37	19,70	22,70	25,10	20,94	19,80
E5		6,00	5,40	7,22	5,27		14,90	13,80	16,10	13,23		22,60	21,60	26,17	35,70
E6		5,20	5,80	6,96	5,22		15,00	15,20	15,22	12,83		21,50	23,30	25,33	21,60
E7		5,70	5,80	6,73	5,17		13,90	13,20	13,27	13,85		23,00	20,50	23,85	22,00
K11		6,50	4,20	6,61	4,21		11,60	14,20	15,17	12,86		25,60	21,50	23,75	20,00
K12	4,00	5,50	3,90	7,30	4,92	12,80	12,40	12,30	17,65	15,17	23,40	20,90	21,60	24,28	23,90
K13		7,00	3,80	7,68	4,91		11,60	13,00	16,15	15,89		21,20	24,60	27,15	38,10

Fig. 3.3 - Concentrazioni dei metalli in tracce (mg kg⁻¹ s.s. ad eccezione di Al espresso in %) nei sedimenti campionati prima (PS) e dopo (PL) la realizzazione del sea-line Annamaria B – Brenda. D4 ed E4 siti posti sul sea-line; K8-K13 = controlli.

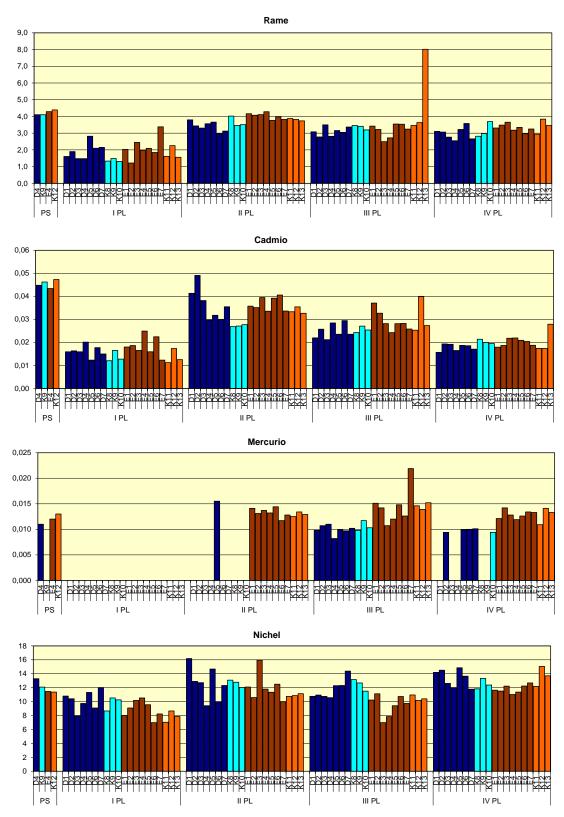


Fig. 3.3 - Continuo.

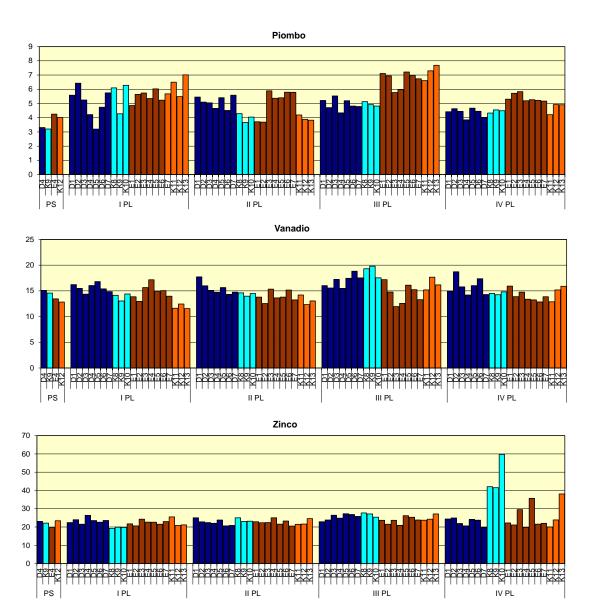
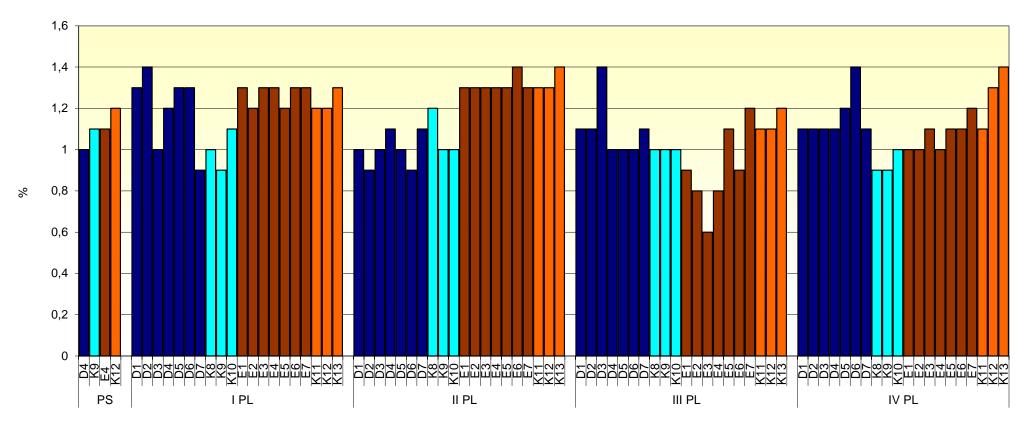


Fig. 3.3 - Continuo.

3.1.4. SOSTANZA ORGANICA

Le percentuali di sostanza organica rilevate nei sedimenti campionati nell'estate 2011 lungo il transetto D sono oscillate tra 1,1% e 1,4%, massimo riscontrato in D6 (Tab. 3-IV; fig. 3.4), con un valore medio lievemente superiore a quello dei riferimenti (D: 1,16±0,11%; K8-K10: 0,93±0,06%).


I tenori registrati lungo il transetto E, invece, compresi tra 1,0% e 1,2%, sono apparsi inferiori o paragonabili ai rispettivi controlli (E: 1,07±0,08%; K11-K13: 1,27±0,15%).

Durante il periodo analizzato le percentuali medie di sostanza organica sono rimaste pressoché invariate lungo entrambi i transetti, inquadrabili nella naturale variabilità ambientale. Solo lungo E si era assistito a una riduzione un po' più consistente tra l'estate 2010 (1,31±0,04%) e l'inverno successivo (0,90±0,20%), ma anch'essa era da attribuire alla variabilità ambientale. Una variazione simile, sebbene più lieve, era infatti avvenuta anche nei siti di controllo K11-K13 (estate 2010: 1,33±0,06%; inverno 2011: 1,13±0,06%). Nell'ultimo survey le concentrazioni sono aumentate di nuovo ritornando in linea con i valori registrati precedentemente.

Alla luce di quanto sinora osservato è possibile affermare che la presenza della condotta non influenza il comportamento della sostanza organica nei sedimenti.

Tab. 3-IV - Sostanza organica (% s.s.) rilevata nei sedimenti campionati prima (PS) e dopo (PL) la realizzazione del sea-line Annamaria B – Brenda. In rosso le stazioni poste sulla condotta. K8-K13 = controlli.

	PS	I PL	II PL	III PL	IV PL
D1		1,3	1,0	1,1	1,1
D2		1,4	0,9	1,1	1,1
D3		1,0	1,0	1,4	1,1
D4	1,0	1,2	1,1	1,0	1,1
D5		1,3	1,0	1,0	1,2
D6		1,3	0,9	1,0	1,4
D7		0,9	1,1	1,1	1,1
K8		1,0	1,2	1,0	0,9
K9	1,1	0,9	1,0	1,0	0,9
K10		1,1	1,0	1,0	1,0
E1		1,3	1,3	0,9	1,0
E2		1,2	1,3	0,8	1,0
E3		1,3	1,3	0,6	1,1
E4	1,1	1,3	1,3	0,8	1,0
E5		1,2	1,3	1,1	1,1
E6		1,3	1,4	0,9	1,1
E7		1,3	1,3	1,2	1,2
K11		1,2	1,3	1,1	1,1
K12	1,2	1,2	1,3	1,1	1,3
K13		1,3	1,4	1,2	1,4

Fig. 3.4 – Sostanza organica (% s.s.) rilevata nei sedimenti campionati prima (PS) e dopo (PL) la realizzazione del sea-line Annamaria B – Brenda. D4 ed E4 = siti posti sul sea-line; K8-K13 = controlli.

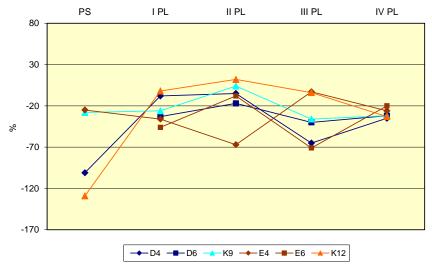
3.2. ECOTOSSICOLOGIA DEI SEDIMENTI

3.2.1. Dunaliella tertiolecta

QA-QC - Il test eseguito come controllo positivo con $K_2Cr_2O_7$ (8,9 mg 1^{-1} come cromo) è rientrato nei limiti della carta di controllo intralaboratorio (6,1–9,0 mg 1^{-1}); i coefficienti di variazione tra le repliche nei campioni non diluiti, alla massima concentrazione sono risultati conformi perché in tutti i casi inferiori al 15%. La crescita algale nei controlli è sempre stata superiore rispetto al limite minimo consentito (fattore ≥16).

<u>Risultati del saggio</u> - I risultati del saggio applicato ai campioni prelevati nell'estate 2011 sono riportati in Tab. 3-V, contestualmente ai principali parametri di contorno misurati. In tutti i campioni è stato evidenziato un effetto biostimolante (p<0,05) rispetto alla crescita misurata nei rispettivi controlli eseguiti con acqua marina artificiale. In nessun campione è stato evidenziato un effetto tossico. Nel complesso, i sedimenti sono quindi risultati privi di effetti tossici e caratterizzati da condizioni chimiche e fisiche favorevoli alla proliferazione algale.

Tab 3-V - Parametri di contorno e risultati relativi al saggio di tossicità con *D. tertiolecta* nei campioni prelevati nel primo monitoraggio condotto nell'estate 2011. In rosso sono indicate le stazioni poste sul sea-line. Valori negativi della percentuale di effetto indicano effetto stimolante.


campione	pН	S	% effetto/biostimolazione	EC ₅₀	Giudizio
D4	8,07	33,5	-35%	n.c.	Effetto eutrofizzante significativo
D6	8,11	33,1	-32%	n.c.	Effetto eutrofizzante significativo
K9	8,13	33,2	-32%	n.c	Effetto eutrofizzante significativo
E4	8,15	33,2	-26%	n.c	Effetto eutrofizzante significativo
E6	8,14	33,3	-20%	n.c	Effetto eutrofizzante significativo
K12	8,17	33,3	-33%	n.c	Effetto eutrofizzante significativo

<u>Confronto con i survey precedenti</u> - Dal confronto con le campagne precedenti si conferma l'assenza di effetti tossici, mai riscontrati né prima né dopo i lavori. Tutte

le stazioni hanno presentato un leggero effetto eutrofizzante, con piccole variazioni sui valori percentuali che non sono però collegate ai lavori o alla presenza della condotta essendosi verificate anche nei controlli. Questi risultati portano a concludere che la presenza del sea-line non ha indotto modifiche importanti per la proliferazione di *D. tertiolecta* (Tab. 3-VI e fig. 3.5).

Tab. 3-VI - Risultati relativi al saggio di tossicità con *D. tertiolecta* nei campioni prelevati durante il presurvey (PS) e dopo la posa della condotta sottomarina (PL). I siti D6 ed E6 non erano stati campionati durante il pre-survey. In rosso le stazioni poste sul sea-line.

campione	PS	I PL	II PL	III PL	IV PL
D4	Effetto eutrofizzante significativo	Assenza di effetto	Assenza di effetto	Effetto eutrofizzante significativo	Effetto eutrofizzante significativo
D6	-	Effetto eutrofizzante significativo	Effetto eutrofizzante significativo	Effetto eutrofizzante significativo	Effetto eutrofizzante significativo
K9	Effetto eutrofizzante significativo	Effetto eutrofizzante significativo	Assenza di effetto	Effetto eutrofizzante significativo	Effetto eutrofizzante significativo
E4	Effetto eutrofizzante significativo	Effetto eutrofizzante significativo	Effetto eutrofizzante significativo	Assenza di effetto	Effetto eutrofizzante significativo
E6	-	Effetto eutrofizzante significativo	Assenza di effetto	Effetto eutrofizzante significativo	Effetto eutrofizzante significativo
K12	Effetto eutrofizzante significativo	Assenza di effetto	Assenza di effetto	Assenza di effetto	Effetto eutrofizzante significativo

Fig. 3.5 - Percentuali di effetto per *D. tertiolecta* rilevate nel pre-survey (PS) e nei quattro monitoraggi condotti dopo i lavori di installazione della condotta (PL).

3.2.2. VIBRIO FISCHERI

QA-QC – Il test con sostanza di riferimento (Cu) ha prodotto una EC₅₀ di 0,86 mg l⁻¹ a 5' e di 0,29 mg l⁻¹ a 15'; entrambi questi risultati rientrano nel range di riferimento rilevato a seguito dell'intercalibrazione a livello nazionale relativa al test Microtox® $(0,42-1,16 \text{ mg l}^{-1} \text{ e } 0,03-0,75 \text{ mg l}^{-1} \text{ rispettivamente per il test a 5' e 15'; Onorati et al., 2007).}$

<u>Risultati del test</u> – In tutti i sedimenti testati nell'estate 2011 non è stata rilevata tossicità (Tab. 3-VII).

Tab. 3-VII - Risultati del saggio biologico *V. fischeri* applicato ai sedimenti prelevati nel secondo survey post lavori condotto nell'estate 2011. In rosso le stazioni situate in corrispondenza del sea-line.

campione	Sabbia < 1mm (%)	Pelite (%)	Soglia Tox Naturale (TU)	Tox Misurata (TU)	Range al confiden		R ² (%)	S.T.I.	тох
D4	87,08	12,91	45,34	5,2	3,3	10,2	90	0,11	Assente
D6	87,13	12,87	45,20	9,7	3,8	27,9	89	0,22	Assente
K9	85,14	14,86	52,14	4,2	3,1	7,8	90	0,08	Assente
E4	85,16	14,84	52,07	7,9	4,6	18,8	90	0,15	Assente
E6	85,48	14,53	50,99	6,3	4,0	11,7	91	0,12	Assente
K12	86,21	13,79	48,41	8,7	4,6	22,1	90	0,18	Assente

<u>Confronto con i survey precedenti</u> – Nell'estate 2011 non si sono riscontrate variazioni rispetto a quanto già evidenziato a partire dal pre-survey, dimostrando che i campioni dei sedimenti testati sono privi di tossicità acuta (Tab. 3-VIII).

Tab. 3-VIII - Confronto tra i risultati conseguiti con *V. fisheri* nel pre-survey (PS) e dopo i lavori di posa della condotta sottomarina (PL). I siti D6 ed E6 non erano stati campionati durante il pre-survey. In rosso le stazioni poste sul sea-line.

campione	PS	I PL	II PL	III PL	IV PL
D4	Assente	Assente	Assente	Assente	Assente
D6	-	Assente	Assente	Assente	Assente
K9	Assente	Assente	Assente	Assente	Assente
E4	Assente	Assente	Assente	Assente	Assente
E6	-	Assente	Assente	Assente	Assente
K12	Assente	Assente	Assente	Assente	Assente

3.2.3. COROPHIUM ORIENTALE

<u>QA-QC</u> - La sensibilità degli organismi verso il tossico di riferimento (CdCl₂) LC 50 = 3,95 (LC = 3,46 mg l⁻¹ e UC = 4,51 mg l⁻¹) è rientrata nella carta di controllo di laboratorio. In Tab. 3-IX sono indicati i principali parametri chimici e fisici misurati all'inizio e alla fine del saggio biologico eseguito dopo la posa del sea-line.

Tab. 3-IX – Parametri chimici e fisici dell'acqua sovrastante il sedimento testato osservati all'inizio e alla fine del test effettuato nel quarto survey post lavori (estate 2011). In rosso le stazioni situate in corrispondenza del sea-line.

		Inizio	del te	st		Fine del test				
campione	Temp. (°C)	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)	Temp. (°C)	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)
Controllo		36	8,25	0			35	8,14	2,0	
D4		38	8,17	1			38	8,14	0	
D6		38	8,20	0,5			36	8,16	0	
K9	16 ± 1°	38	8,19	0,5	95 ± 5	16 ± 1°	38	8,16	0	90 ± 5
E4		38	8,16	0,5			36	8,13	0,5	
E6		38	8,17	1			37	8,14	3,0	
K12		38	8,18	0-0,5			37	8,16	0,5	

<u>Risultati del test</u> - Le percentuali di mortalità osservate dopo la permanenza degli organismi per 10 gg in tutti i sedimenti testati non hanno superato il limite del 15%, confermando l'assenza di tossicità acuta (Tab. 3-X).

Tab. 3-X - Percentuali di mortalità degli organismi *C.orientale* osservati nel test di tossicità acuta relativo all'estate 2011. In rosso le stazioni situate in corrispondenza del sea-line.

campione	Numero degli organismi esposti	% degli organismi morti (± dev.st %)	% (corretta) degli organismi morti	Giudizio della tossicità
controllo	100	0 ± 0	0	Assente
D4	100	7 ± 3,83	7	Assente
D6	100	$10 \pm 2{,}31$	10	Assente
K9	100	$1 \pm 2,00$	1	Assente
E4	100	$10 \pm 2{,}31$	10	Assente
E6	100	10 ± 2,31	10	Assente
K12	100	$1 \pm 2,00$	1	Assente

Confronto con i survey precedenti - I risultati del test con *C. orientale* condotto nell'estate 2011 hanno confermato che i lavori di posa in opera della condotta non hanno modificato le proprietà ecotossicologiche dei sedimenti osservate nel presurvey (Tab. 3-XI).

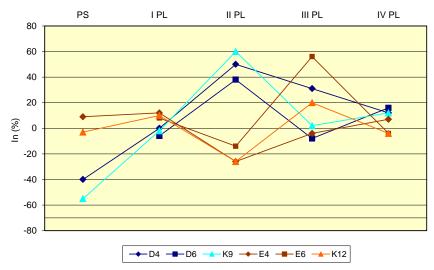
Tab. 3-XI - Confronto tra le tossicità stimate nel pre-survey (PS) e dopo i lavori di installazione (PL) con *C. orientale* (test "a breve termine"). I siti D6 ed E6 non erano stati campionati durante il pre-survey. In rosso le stazioni poste sul sea-line.

Campione	PS	I PL	II PL	III PL	IV PL
D4	Assente	Assente	Assente	Assente	Assente
D6		Assente	Assente	Assente	Assente
K9	Assente	Assente	Assente	Assente	Assente
E4	Assente	Assente	Assente	Assente	Assente
E6		Assente	Assente	Assente	Assente
K12	Bassa	Assente	Assente	Assente	Assente

3.2.4. ACARTIA TONSA

QA-QC - Il test eseguito come controllo positivo con 3,5-DCP (59 μ g l⁻¹) è risultato nei limiti della carta di controllo intralaboratorio (33–388 μ g l⁻¹); le percentuali di copepoditi nel campione di controllo (80±3%; 61±4%; 59±3%) sono apparse superiori al limite del 30%.

<u>Risultati del saggio</u> – Nell'estate 2011 non è stato riscontrato alcun effetto in nessuno dei campioni analizzati (Tab. 3-XII).


Tab 3-XII - Risultati relativi al saggio di tossicità con *A. tonsa* nei campioni prelevati nella campagna estiva del 2011. In rosso i siti posti in corrispondenza del sea-line.

campione	LDR	LDR In(%)	
D4	0.71 ± 0.34	12%	Assenza di effetto
D6	$0,67 \pm 0,15$	16%	Assenza di effetto
K9	$0,53 \pm 0,11$	12%	Assenza di effetto
E4	$0,57 \pm 0,14$	7%	Assenza di effetto
E6	$0,61 \pm 0,16$	-4%	Assenza di effetto
K12	$0,63 \pm 0,07$	-4%	Assenza di effetto

<u>Confronto con i survey precedenti</u> - La tossicità, in precedenza evidenziata in D4 e K9 (estate 2010) e in E6 (inverno 2011), è scomparsa lasciando spazio ad assenza di effetto (Tab. 3-XIII; fig. 3.6).

Tab. 3-XIII - Risultati relativi al saggio di tossicità con *A. tonsa* nei campioni prelevati durante il pre-survey (PS) e nei quattro monitoraggi condotti dopo la posa della condotta sottomarina (PL). I siti D6 ed E6 non erano stati campionati durante il pre-survey. In rosso le stazioni poste sul sea-line.

campione	PS	I PL	II PL	III PL	IV PL	
D4	Biostimolazione significativa	Assenza di effetto	Tossicità significativa	Potenziale tossicità	Assenza di effetto	
D6	-	Assenza di effetto	Potenziale tossicità	Assenza di effetto	Assenza di effetto	
K9	Biostimolazione significativa	Assenza di effetto	Tossicità significativa	Assenza di effetto	Assenza di effetto	
E4	Assenza di effetto	Assenza di effetto	Assenza di effetto	Assenza di effetto	Assenza di effetto	
E6	-	Assenza di effetto	Assenza di effetto	Tossicità significativa	Assenza di effetto	
K12	Assenza di effetto	Assenza di effetto	Assenza di effetto	Assenza di effetto	Assenza di effetto	

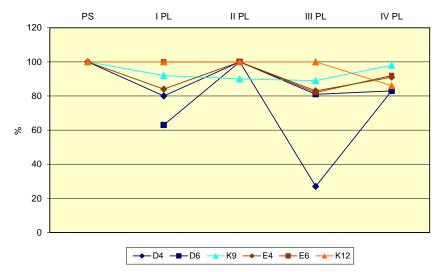
Fig. 3.6 - Percentuali di inibizione ottenute per *A. tonsa* nel corso del pre-survey (PS) e dei quattro campionamenti effettuati dopo la fine dei lavori di posa in opera della condotta sottomarina (PL).

3.2.5. Crassostrea gigas

 $\overline{QA-QC}$ - Il test eseguito con la sostanza di riferimento ha prodotto una EC_{50} di 7,6 $\mu g \ l^{-1}$ di Cu che rientra nei limiti della carta di controllo intralaboratorio (5-33 $\mu g \ l^{-1}$);

la percentuale di larve D-shape normalmente sviluppate nel campione di controllo (74±2%) è risultata conforme in quanto superiore al limite del 70%.

<u>Risultati del saggio</u> - Il saggio condotto nell'estate 2011 ha evidenziato l'assenza di tossicità in tutti campioni esaminati, caratterizzati da una percentuale di larve normalmente formate (percentuale di successo del test normalizzata S%) non marcatamente differente dal controllo (Tab. 3-XIV).


Tab. 3-XIV - Parametri di contorno e risultati relativi al saggio di tossicità con *C. gigas* nei campioni prelevati nell'estate 2011. In rosso i siti posti sulla condotta.

campione	% effetto grezzo	S(%)	EC_{50}	Giudizio
Controllo	26±2	-	-	-
D4	39±8	83	-	Assente
D6	39±2	83	-	Assente
K9	28±3	98	-	Assente
E4	33±4	91	-	Assente
E6	32±3	92	-	Assente
K12	36±4	86	-	Assente

Confronto con i survey precedenti - In tutte le stazioni i valori di tossicità sono risultati stabili nel tempo e confrontabili con il pre-survey, segno che non vi sono state significative variazioni delle caratteristiche del sedimento a seguito dei lavori di installazione del sea-line. Il peggioramento delle condizioni in D4 riscontrato nell'inverno 2011 non è stato confermato (Tab. 3-XV; fig. 3.7).

Tab. 3-XV - Risultati relativi al saggio di tossicità con *C. gigas* nei campioni prelevati durante il pre-survey (PS) e nei due monitoraggi condotti dopo la posa della condotta sottomarina (PL). I siti D6 ed E6 non erano stati campionati durante il pre-survey. In rosso le stazioni poste sul sea-line.

campione	PS	I PL	II PL	III PL	IV PL
D4	Assente	Assente	Assente	Bassa	Assente
D6	-	Assente	Assente	Assente	Assente
K9	Assente	Assente	Assente	Assente	Assente
E4	Assente	Assente	Assente	Assente	Assente
E6	-	Assente	Assente	Assente	Assente
K12	Assente	Assente	Assente	Assente	Assente

Fig. 3.7 - Percentuali di successo (S%) per *C. gigas* ottenute nel corso del pre-survey (PS) e dei quattro campionamenti effettuati dopo la fine dei lavori di posa in opera della condotta sottomarina (PL).

3.2.6. Hediste diversicolor

I parametri chimici e fisici dell'acqua sovrastante il sedimento, registrati all'inizio e al termine del test effettuato nell'estate 2011 sono riportati in Tab. 3-XVI, mentre in Tab. 3-XVII sono indicate le mortalità degli organismi osservate nel test di bioaccumulo.

Tab. 3-XVI - Parametri chimici e fisici dell'acqua sovrastante il sedimento, registrati all'inizio ed al termine del test di bioaccumulo condotto nell'estate 2011. In rosso le stazioni situate in corrispondenza del sea-line.

]	nizio del 1	test		Fine del test				
Campione	Temp.	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)	Temp.	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)
Controllo		34	8,26	0			35	8,17	0	
D4		38	8,18	2			38	8,20	2	
D6		38	8,21	1			37	8,09	0,5	
K9	16 ± 1°	38	8,20	1	95 ± 5	16 ± 1°	37	8,21	1	90 ± 5
E4		38	8,20	1			37	8,14	2	
E6		38	8,19	2			38	8,17	2	
K12		38	8,19	0,5			38	8,11	1	

La mortalità degli organismi osservata nel sedimento di controllo è risultata inferiore alle percentuali di mortalità degli organismi esposti al sedimento D6, indicando che tale sedimento può causare per gli organismi uno stress supplementare imposto dalle proprietà chimiche e/o granulometriche.

In Tab. 3-XVIII sono riportate le concentrazioni dei metalli pesanti nel bianco (tempo 0) e quelle rilevate nei tessuti di *H. diversicolor* esposti ai sedimenti testati, mentre la Tab. 3-XIX mostra le differenze tra le concentrazioni dei metalli pesanti rilevate nei tessuti di *H. diversicolor* dopo l'esposizione ai sedimenti testati e quelle determinate nel bianco (0').

Tab. 3-XVII - Percentuali di mortalità degli organismi *H. diversicolor* osservate nel test di bioaccumulo condotto nell'estate 2010. In rosso le stazioni situate in corrispondenza della condotta.

Campione	Numero degli organismi esposti	% organismi morti (± dev.st %)
controllo	15	7 ± 12
D4	15	13 ± 12
D6	15	40 ± 0
K9	15	7 ± 12
E4	15	20 ± 0
E6	15	13 ± 12
K12	15	13 ± 12

Tab. 3-XVIII - Concentrazioni dei metalli pesanti rilevate nei tessuti di *H. diversicolor* durante il survey condotto nell'estate 2011. bianco = tempo zero; controllo = organismi spurgati/non esposti ai sedimenti. In rosso le stazioni situate in corrispondenza del sea-line. n.r. = non rilevabile.

Campione	Al %	Ba mg kg ⁻¹	Cr mg kg ⁻¹	Cu mg kg ⁻¹	Ni mg kg ⁻¹	V mg kg ⁻¹	Zn mg kg ⁻¹	As mg kg ⁻¹	Cd mg kg ⁻¹	Pb mg kg ⁻¹	Hg mg kg ⁻¹
bianco	n.r.	4,60	n.r.	37,73	1,9	n.r.	121,54	1,37	0,159	0,56	0,090
controllo	n.r.	2,30	n.r.	25,56	2,99	n.r.	112,57	0,20	0,200	0,35	0,162
D4	n.r.	3,30	n.r.	29,83	n.r.	n.r.	121,98	1,38	0,143	0,40	0,101
D6	n.r.	2,40	n.r.	29,29	n.r.	n.r.	105,62	1,94	0,132	0,33	0,095
K9	n.r.	2,50	n.r.	29,96	n.r.	n.r.	113,25	1,33	0,125	0,39	0,090
E4	n.r.	2,00	n.r.	27,46	n.r.	n.r.	120,35	1,75	0,139	0,35	0,101
E6	n.r.	n.r.	n.r.	25,69	n.r.	n.r.	111,37	1,63	0,137	0,48	0,100
K12	n.r.	n.r.	n.r.	28,22	n.r.	n.r.	125,46	1,64	0,156	0,55	0,107

Tab. 3-XIX - Differenze tra le concentrazioni dei metalli pesanti rilevate nei tessuti di *H. diversicolor* esposti ai sedimenti da testare e il bianco (0'). In rosso le stazioni situate in corrispondenza del sea-line. n.c. = non calcolabile. In grassetto sono evidenziati i valori che indicano biodisponibilità del metallo.

Campione	Al %	Ba mg kg ⁻¹	Cr mg kg ⁻¹	Cu mg kg ⁻¹	Ni mg kg ⁻¹	V mg kg ⁻¹	Zn mg kg ⁻¹	As mg kg ⁻¹	Cd mg kg ⁻¹	Pb mg kg ⁻¹	Hg mg kg ⁻¹
controllo	n.c.	-2,30	n.c.	-12,17	1,1	n.c.	-8,97	-1,17	0,04	-0,21	0,07
D4	n.c.	-1,30	n.c.	-7,90	n.c.	n.c.	0,44	0,01	-0,02	-0,16	0,01
D6	n.c.	-2,20	n.c.	-8,44	n.c.	n.c.	-15,92	0,57	-0,03	-0,23	0,01
K9	n.c.	-2,10	n.c.	-7,77	n.c.	n.c.	-8,29	-0,04	-0,03	-0,17	0,00
E4	n.c.	-2,60	n.c.	-10,27	n.c.	n.c.	-1,19	0,38	-0,02	-0,21	0,01
E6	n.c.	n.c.	n.c.	-12,04	n.c.	n.c.	-10,17	0,26	-0,02	-0,08	0,01
K12	n.c.	n.c.	n.c.	-9,51	n.c.	n.c.	3,92	0,27	0,00	-0,01	0,02

Le concentrazioni di **alluminio**, **cromo** e **vanadio**, sempre sotto i limiti di rilevabilità, hanno dimostrato l'assenza di biodisponibilità di questi metalli.

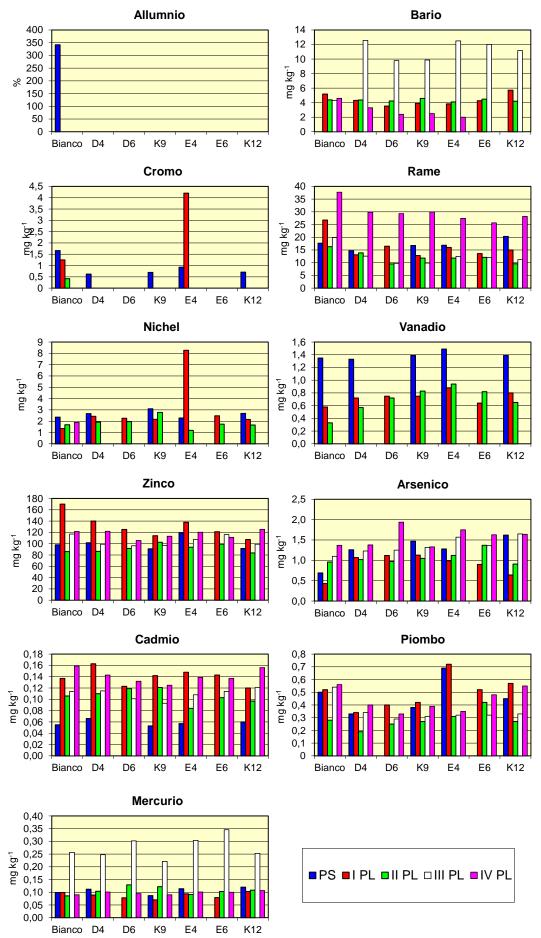
Il contenuto di **bario**, **rame**, **zinco** e **piombo** è risultato inferiore o confrontabile con quanto rilevato nel bianco.

Le concentrazioni di **nichel**, **cadmio** e **mercurio** sono risultate maggiori solo nel controllo, ovvero negli organismi spurgati e non esposti ai sedimenti da testare.

Infine, l'**arsenico** è risultato biodisponibile nei siti D6, E4 e K12. Gli aumenti delle concentrazioni osservati per le altre stazioni sono risultati irrilevanti.

<u>Confronto con i survey precedenti</u> – In Tab. 3-XX e in fig. 3.8 sono messi a confronto i dati del pre-survey (PS) e dei quattro monitoraggi condotti dopo i lavori (PL) relativamente alle stazioni comuni ai due campionamenti.

I risultati del test di bioaccumulo effettuato nell'estate 2011 hanno confermato le osservazioni acquisite nell'inverno precedente. La mobilità dei metalli in esame è risultata assente o molto scarsa. L'arsenico, l'unico metallo apparso leggermente biodisponibile in E4, K12 e D6, è stato comunque rilevato in concentrazioni che nel complesso hanno dimostrato una mobilità molto bassa e simile a quella del presurvey.


Tab. 3-XX - Confronto tra le concentrazioni dei metalli pesanti rilevate nei tessuti degli organismi costituenti i campioni di bianco e quelle relative ai policheti esposti ai sedimenti testati nel pre-survey (PS) e nei campionamenti condotti dopo la posa in opera del sea-line Annamaria B - Brenda (PL). In rosso sono indicate le stazioni campionate in corrispondenza della condotta. n.r. = non rilevabile.

campione	Al %						I	a mg kg	-1			Cr mg kg ⁻¹					Cu mg kg ⁻¹					
	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL		
Bianco	342,22	n.r.	n.r.	n.r	n.r	n.r	5,19	4,38	4,32	4,60	1,66	1,25	0,42	n.r	n.r	17,66	26,8	16,29	19,92	37,74		
D4	n.r	n.r.	n.r.	n.r	n.r	n.r	4,32	4,37	12,57	3,30	0,62	n.r.	n.r.	n.r	n.r	14,75	13,10	13,87	12,57	29,83		
D6		n.r.	n.r.	n.r	n.r		3,53	4,24	9,79	2,40		n.r.	n.r.	n.r	n.r		16,50	9,52	9,79	29,29		
K9	n.r	n.r.	n.r.	n.r	n.r	n.r	3,92	4,58	9,87	2,50	0,70	n.r.	n.r.	n.r	n.r	16,80	12,80	11,80	9,87	29,96		
E4	n.r	n.r.	n.r.	n.r	n.r	n.r	3,84	4,10	12,51	2,00	0,93	4,20	n.r.	n.r	n.r	16,87	16,00	11,81	12,51	27,46		
E6		n.r.	n.r.	n.r	n.r	-	4,27	4,49	12,02	n.r.		n.r.	n.r.	n.r	n.r		13,60	12,09	12,02	25,69		
K12	n.r	n.r.	n.r.	n.r	n.r	n.r	5,72	4,20	11,18	n.r.	0,71	n.r.	n.r.	n.r	n.r	20,36	15,00	9,59	11,18	28,22		

campione	Ni mg kg ⁻¹							V mg kg ⁻¹	I			7	Zn mg kg	1		As mg kg ⁻¹					
	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	
Bianco	2,36	1,35	0,92	n.r	1,9	1,35	0,58	0,33	n.r	n.r.	98,05	170,41	85,94	117,16	121,54	0,69	0,43	0,96	1,10	1,37	
D4	2,67	2,43	1,92	n.r	n.r.	1,33	0,72	0,57	n.r	n.r.	101,73	140,15	86,41	99,11	121,98	1,26	1,07	1,02	1,23	1,38	
D6		2,26	1,96	n.r	n.r.		0,75	0,72	n.r	n.r.		125,32	91,65	96,21	105,62		1,12	0,97	1,25	1,94	
K9	3,10	2,17	2,78	n.r	n.r.	1,39	0,75	0,83	n.r	n.r.	90,83	114,49	102,54	96,72	113,25	1,47	1,13	1,05	1,32	1,33	
E4	2,28	8,28	1,19	n.r	n.r.	1,49	0,88	0,94	n.r	n.r.	119,15	137,95	93,64	107,39	120,35	1,28	0,99	1,12	1,57	1,75	
E6		2,48	1,74	n.r	n.r.		0,64	0,82	n.r	n.r.		121,10	99,08	116,24	111,37		0,90	1,37	1,36	1,63	
K12	2,69	2,16	1,66	n.r	n.r.	1,39	0,80	0,65	n.r	n.r.	91,60	107,47	83,57	99,04	125,46	1,62	0,64	0,91	1,65	1,64	

Tab. 3-XX – Continuo.

campione		(C d mg kg	-1]	Pb mg kg	1		Hg mg kg⁻¹					
	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	
Bianco	0,055	0,137	0,106	0,114	0,159	0,50	0,519	0,28	0,54	0,56	0,099	0,099	0,086	0,257	0,090	
D4	0,066	0,148	0,110	0,115	0,143	0,33	0,342	0,19	0,34	0,40	0,112	0,089	0,104	0,248	0,101	
D6		0,143	0,119	0,101	0,132		0,396	0,25	0,29	0,33	-1	0,078	0,129	0,302	0,095	
K9	0,053	0,120	0,121	0,093	0,125	0,38	0,416	0,27	0,31	0,39	0,087	0,070	0,122	0,221	0,090	
E4	0,057	0,163	0,084	0,108	0,139	0,69	0,717	0,31	0,32	0,35	0,114	0,094	0,091	0,304	0,101	
E6		0,123	0,103	0,114	0,137		0,520	0,42	0,32	0,48		0,079	0,103	0,346	0,100	
K12	0,060	0,142	0,097	0,121	0,156	0,45	0,565	0,27	0,33	0,55	0,120	0,103	0,108	0,253	0,107	

Fig. 3.8 - Confronto tra le differenze delle concentrazioni di metalli pesanti rilevate nei tessuti degli organismi del bianco e quelli testati nel pre-survey (PS) e nei monitoraggi condotti dopo l'installazione del sea-line (PL).

3.3. INDAGINI SULLA COMUNITÀ BENTONICA

3.3.1. DENSITÀ

In generale la comunità bentonica rinvenuta nei siti investigati era risultata piuttosto ricca in termini di numero di individui già nel pre-survey (fig. 3.9). In quel campionamento era stata riscontrata una discreta similitudine tra E4 e il controllo K12 (116,2 \pm 8,9 ind 0,095 m⁻² e 129,8 \pm 24,0 ind 0,095 m⁻² rispettivamente), e tra D4 (89,2 \pm 15,0 ind 0,095 m⁻²) e K9 (128,1 \pm 23,9 ind 0,095 m⁻²).

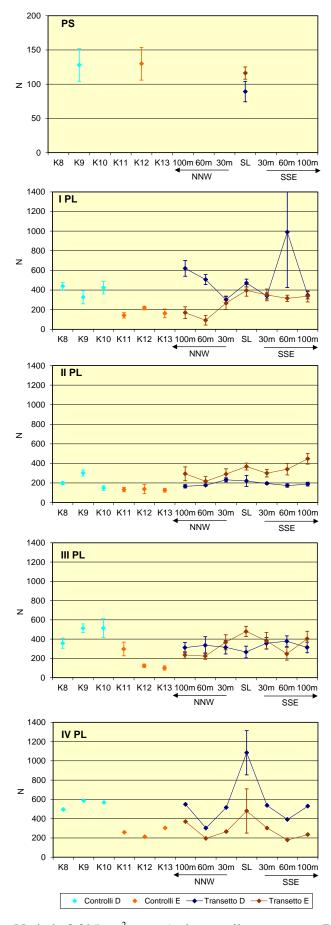
Nell'inverno 2010, dopo l'installazione della condotta, si era assistito a un notevole incremento delle densità, meno consistente in K12. I trend dei due transetti risultavano molto simili eccetto la riduzione a 60 m verso NNW in E2 e il picco a 60 m in D6, comunque associato ad un elevatissimo errore standard. A parità di distanza dal sea-line solo in 3 stazioni su 7 si registravano densità inferiori lungo E rispetto a D, risultato confrontabile con almeno uno dei rispettivi controlli da 60 m a NNW sino a 100 m a SSE. Il transetto E, invece, presentava densità superiori a quelle dei riferimenti K11-K13 a partire dal sea-line verso SSE.

Nell'estate successiva si era verificato un decremento generale lungo D e nei controlli corrispondenti, mentre lungo E e siti K11-K13 non erano avvenute variazioni eccetto un incremento in E2 ed E7. Di conseguenza, a differenza dell'inverno precedente, le densità a parità di distanza dalla condotta erano quasi lungo E. In ogni caso, mentre il sempre superiori range $(165,9\pm16,9\leq N\leq 232,4\pm 20,1)$ ind (0,095) m⁻²) risultava compreso nell'intervallo dei controlli K8-K10 (148,5±24,4≤N≤301,7±31,2 ind 0,095 m⁻²), tutti i valori del transetto E (217,0±48,4≤N≤447,0±54,2 ind 0,095 m⁻²) erano superiori a quelli dei riferimenti K11-K13.

Nell'inverno 2011 il transetto D è apparso abbastanza omogeneo a tutte le distanze a causa della variabilità tra le repliche, essendo la densità compresa tra 265,9±61,0 ind 0,095 m⁻² (D4) e 378,0±56,2 ind 0,095 m⁻² (D6); il trend è risultato speculare rispetto al sea-line e caratterizzato da un lieve incremento all'aumentare della distanza dalla condotta. La maggior parte delle stazioni del transetto ha presentato valori inferiori a quelli dei controlli K9 e K10 (513,5±44,1 e 514,6±98,4 ind 0,095 m⁻² rispettivamente) e simili a K8 (357,3±53,2 ind 0,095 m⁻²). I siti posizionati lungo E, invece, sono apparsi meno omogenei, essendo il massimo registrato in E4 pari a

479,8±52,8 ind 0,095 m⁻² e il minimo a 224,1±34,45 ind 0,095 m⁻² (E2). In questo caso, l'andamento è risultato opposto a quello di D presentando un incremento dai siti a 60 m di distanza a quello sul sea-line. Un'altra differenza rispetto al transetto D consiste nel fatto che tutti i valori sono risultati superiori a quelli dei controlli K12 e K13 (123,6±17,0 e 100,5±21,7 ind 0,095 m⁻² rispettivamente) e confrontabili con quello riscontrato in K11, eccetto la densità rinvenuta in E4 che è apparsa superiore. Nell'ultimo monitoraggio lungo D è avvenuto un sostanziale incremento delle densità che non ha riguardato solo i siti posti a 60 m dalla condotta. Il trend è risultato speculare, con il massimo in D4 (1084,0±567,7 ind 0,095 m⁻²), una riduzione sino a 60 m e un incremento a 100 m. I siti a 30 e a 100 m sono apparsi confrontabili tra loro e con i controlli K8-K10 (467,7±8,0≤N≤586,7±3,3 ind 0,095 m⁻ ²). Quelli a 60 m hanno presentato una densità inferiore a i controlli e D4 superiore. L'andamento lungo E è risultato del tutto simile a quello dell'altro transetto, ma con valori inferiori. Massimo e minimo sono stati registrati rispettivamente in E4 ed E6 (480,1±567,7 e 178,8±0,3 ind 0,095 m⁻²). Nei controlli corrispondenti la densità è oscillata tra 212,6±0,3 ind 0,095 m⁻² (K12) e 303,3±0,1 ind 0,095 m⁻² (K13), rientrando pertanto nel range del transetto con l'esclusione di D1 (369,2±1,7 ind 0.095 m^{-2}).

Per quanto concerne la descrizione dei popolamenti, le cui tabelle relative sono riportate in All. C, durante il pre-survey in D4 e nel controllo K9 le specie presenti con il maggior numero di individui erano stati il sipunculide *Aspidosiphon mulleri* e i policheti Sabellidae nd. Presso il controllo erano state anche rilevate discrete quantità di *Hyalinoecia tubicola* e *Minuspio cirrifera* (All. C-1). Quest'ultimo polichete era risultato la specie più abbondante negli altri due siti posti verso la piattaforma Brenda E4 e K12), assieme a *H. tubicola* in E4 e a *Glycera rouxi* e *Goniada maculata* al controllo.

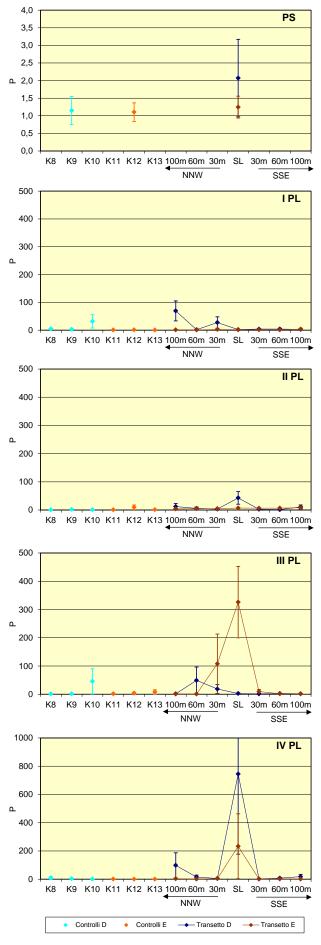

Dopo la posa della condotta sottomarina erano avvenuti alcuni cambiamenti (All. C-2). In particolare, in D4 *A. mulleri* diventava la terza specie più numerosa, preceduta dai policheti Paraonidae nd e Sabellidae nd, tutti notevolmente incrementati numericamente, mentre in K9 prevaleva il taxon Sipuncula nd. I paraonidi rappresentavano la prima specie anche in D1 e D4 e i sabellidi in D2. In D3 e D5 risultava più numeroso *A. mulleri*, mentre in D6 si registrava una notevole quantità

dell'anfipode *Orchomene grimaldi*, fatto poi non più avvenuto in seguito Il polichete *Ditrupa arietina* era invece la specie più abbondante in K8 e K10. In E4 e K12 le densità maggiori si registravano per *D. arietina*, non censito precedentemente. Questa specie presentava valori di abbondanza notevolmente elevati sia in questi due siti che in tutte le altre stazioni del transetto E e nei restanti controlli K11 e K13.

Nell'estate 2010 *D. arietina* ha continuato a rappresentare il taxon più abbondante in tutta l'area verso la piattaforma Brenda (transetto E e controlli K11-K13), mentre lungo D il mollusco *Falcidens gutturosus* era il primo o il secondo taxon più numeroso seppure con qualche eccezione come, ad esempio, D4 dove prevaleva l'ofiuroideo *Amphiura chiajei* (All. C-3).

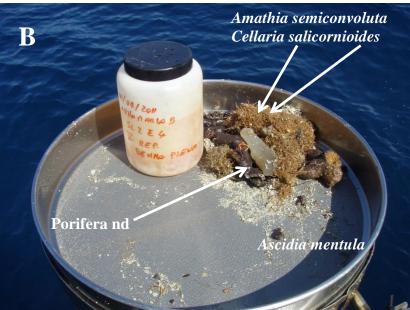
F. gutturosus ha continuato ad essere la specie più abbondante in alcune stazioni del transetto D anche nell'inverno 2011 (All. C-4). In D4, D6 e nei controlli K8-K10 sono risultati più abbondanti i policheti Paraonidae nd, ben rappresentati anche nelle altre stazioni del transetto. A conferma di quanto già osservato sin dalla posa della condotta sottomarina (inverno 2010), D. arietina è risultata la specie più numerosa lungo tutto E, sebbene con densità nettamente inferiori rispetto ai monitoraggi precedenti condotti nel 2010. Solo in E4 è apparso più abbondante il bivalve Anomia ephippium, rinvenuto adeso a frammenti di conchiglie. Ai controlli hanno prevalso i policheti Minuspio cirrifera in K11 e i paraonidi in K12 e K13.

Nell'ultimo survey *A. ephippium* è ancora risultata la specie meglio rappresentata in E4, con una densità quasi doppia rispetto a quella dell'inverno 2011, e lo è diventata in D4, seguito da *Modiolula phaseolina*. Queste due specie sono state le principali anche in D1, ma in ordine invertito. In D5 e D7 hanno prevalso rispettivamente i policheti *Owenia fusiformis* e Paraonidae nd, mentre nelle altre stazioni del transetto D e nei rispettivi controlli la maggior parte degli individui apparteneva a *Minuspio cirrifera*. Le densità di *D. arietina* hanno continuato a ridursi anche in questa stagione, pur rimanendo ancora la specie principale in quattro siti del transetto E, K11 e K9.


Fig. 3.9 – Densità (N. ind. $0.095~\text{m}^{-2} \pm \text{e.s.}$) durante il pre-survey (PS) e nei quattro campionamenti condotti dopo la posa del sea-line (PL).

3.3.2. BIOMASSA

Per la biomassa sono sempre stati ottenuti valori bassi (sempre inferiori a 20 gr 0,095 m⁻²) salvo, a partire dall'inverno 2010, qualche picco sempre caratterizzato da un elevato errore standard essendo le specie determinanti per la biomassa rinvenute solo in una o poche repliche di una stazione (fig. 3.10). In particolare, nell'inverno 2010 era stato registrato un massimo di 69,36±35,84 gr 0,095 m⁻² in corrispondenza del sito D1, a causa del rinvenimento in una replica dell'antozoo *Alcyonium palmatum* (fig. 3.11; All. D-2). In estate, invece, il massimo si registrava in D4 (42,88±27,47 gr 0,095 m⁻²) per la presenza di un esemplare di *Holothuria forskali* e di Porifera nd (All. D-3).


Nell'inverno 2011 sono stati evidenziati due picchi in D2 e D3 (49,3±47,1 e 18,6±15,5 gr 0,095 m⁻²) determinati dal rinvenimento in una replica del primo sito di *A. palmatum* e *Amathia semiconvoluta* e in una del secondo di *H. forskali* (All. D-4) Una biomassa elevata è stata riscontrata in K10 (46,0±44,4 gr 0,095 m⁻²) a causa della presenza in poche repliche di *A. palmatum* (fig. 3.11). Lungo E, invece, sono stati registrati due picchi in E3 ed E4 (108,0±105,1 e 326,11±126,5 gr 0,095 m⁻² rispettivamente) determinati da *A. semiconvoluta*, *Cellaria salicornioides*, *Ascidia mentula* e Porifera nd, anch'esse rinvenute in un numero limitato di repliche.

Nell'ultimo survey i valori maggiori sono stati registrati nei due siti posti sulla condotta (D4: 745,19±567,65 gr 0,095 m⁻²; E4: 233,14±229,59 gr 0,095 m⁻²) seguiti da D1 (98,11±88,91 gr 0,095 m⁻²), tutti determinati quasi esclusivamente dal briozoo *Amathia semiconvoluta* e dall'ascidiaceo *A. mentula* (All. D-5).

Fig. 3.10 – Biomassa (gr $0.095 \text{ m}^{-2} \pm \text{ e.s.}$) durante il pre-survey (PS) e nei quattro campionamenti condotti dopo la posa del sea-line (PL).

Fig. 3.11 – Campioni prelevati nell'inverno 2010 (A; stazione D1), nell'inverno 2011 (B; stazione E4) e nell'estate 2011 (C; stazione D4).

3.3.3. AFFINITÀ BIOCENOTICHE DELLE SPECIE RINVENUTE

I popolamenti rinvenuti nelle singole stazioni sia nel pre-survey che nei monitoraggi successivi sono risultati costituiti quasi esclusivamente da taxa di fondo mobile, con una predominanza di taxa limicoli (Lim) quasi ovunque (Tab. 3-XXIa). Le uniche eccezioni hanno riguardato l'estate 2010, quando in quattro siti di D e nei riferimenti K9 e K10 i limicoli sono stati superati in numero di specie (D1, D6 e controlli) o raggiunti (D3 e D4) dai misticoli (Mixt). Questi, i sabulicoli e gli indicatori di materia organica (MO) nei sedimenti hanno rappresentato gli altri tre gruppi ecologici importanti ovunque.

Considerando il numero di individui appartenenti a ciascuna categoria ecologica (Tab. 3-XXIb), i limicoli hanno costituito il secondo o terzo gruppo più importante in tutti i monitoraggi (eccetto in D3 e D6 inverno 2010, K11 estate 2010 e qualche caso nei due monitoraggi 2011 in cui hanno prevalso), preceduti quasi sempre dagli indicatori di materia organica nei sedimenti lungo D e nei controlli K8-K10. La Biocenosi dei fondi mobili instabili (MI), alla quale afferisce *D. aretina*, è risultata la più abbondante sino all'estate 2010 nella maggior parte delle stazioni posizionate lungo il transetto E, sostituita nei survey successivi, salvo qualche eccezione, dagli organismi MO.

Tab. 3-XXI – Affinità bionomica dei taxa determinati a livello di specie rinvenuti nel corso del pre-survey (PS) e dei monitoraggi condotto dopo i lavori di posa della condotta (PL). a = numero di specie; b = n. ind. 0,095 m⁻². In giallo è riportato il gruppo più numeroso in ogni stazione. Per la legenda delle biocenosi si rimanda all'Allegato C. D4 ed E4 = siti posti in corrispondenza del sea-line.

a)				D1					D2					D3					D4					D5				D	6				D7	-	
		PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	V PL F	S IP	_ IIP	L III PL	IV PL	PS	IPL	II PL	III PL	IV PL
0	Non riportato in letteratura (Sm)		3	1		1		1	1	1			3	2	1	1	1	1			2		3	1	1	1	1	1	1	1		2	1	1	1
i	Limicolo (Lim, VTC, VB)		16	11	11	19		11	13	16	17		21	14	15	17	11	10	12	14	19		17	15	19	18	13	7	17	20		18	16	17	19
2	Sabulicolo (Sab, SFBC)		12	6	5	10		10	7	10	9		13	10	10	11	4	7	8	11	10		12	9	7	10	7	8	11	10		10	7	13	13
0	Misticolo (Mixt, DC, DE, DL, SGCF, SVMC)		10	15	5	10		9	8	10	7		10	14	8	15	8	8	12	13	12		13	12	6	16	11	9	9	16		12	13	8	9
a t	Glareicolo		0						1	1				1				1		1										1					
st	Indicatore di fondi mobili instabili (MI)		1	2	2	1		1	2	1	3				1	3		1	2	3	1		1		1	2	1	1	1	1		1	1		2
3	Minuticolo			1												1			1							1		1		1			1	1	
Ø	Indicatore di materia organica (MO)		7	7	7	10		7	6	9	9		8	7	10	10	7	8	7	8	8		10	7	7	10	8	7	8	9		9	7	9	9
Substi	rato duro (Sd, AP, C)		2	2	2	5		1	3	6	4		3	1	3	7		2	2	3	9		5	3	2	4	2	2	2	4		4	3	4	4
Larga	ripartizione ecologica (Lre)		3	1	4	5		3	4	4	4		7	6	3	7	1	2	6	5	7		6	4	3	2	3	3	3	3		6	1	7	3
				K8					K9					K10																					

				K8					K9					K10		
		PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL
0	Non riportato in letteratura (Sm)		1	1			1	1	1		3		2	1		1
eje Bie	Limicolo (Lim, VTC, VB)		13	13	17	18	12	14	8	17	17		16	11	15	18
2	Sabulicolo (Sab, SFBC)		10	8	7	8	4	9	8	10	13		9	7	10	14
-	Misticolo (Mixt, DC, DE, DL, SGCF, SVMC)		11	10	8	14	9	11	9		10		10	13	11	11
_at	Glareicolo		1													
st	Indicatore di fondi mobili instabili (MI)		1	1	1	1	1	1	1	3	3		1	2	1	1
Suk	Minuticolo			1					1		1				1	1
Ø	Indicatore di materia organica (MO)		9	7	7	8	7	9	5	8	9		7	7	10	9
Substra	to duro (Sd, AP, C)		3	2	6	4		1	1	3	7		1	1	3	2
Larga r	partizione ecologica (Lre)		4	2	1	5	1	2	7	3	4		3	4	3	3

				E1					E2					E3					E4					E5					E6					E7		
		PS	IPL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL
ø	Non riportato in letteratura (Sm)		1			1			1	1					2	1	1	1	1	1	1		1		1				1	2			1			1
壹	Limicolo (Lim, VTC, VB)		15	16	26	20		13	12	22	22		15	15	22	20	16	20	9	22	20		11	14	23	15		13	13	21	16		11	14	22	22
2	Sabulicolo (Sab, SFBC)		6	11	11	12		8	6	13	14		6	6	11	11	5	11	8	13	10		5	11	13	10		6	7	14	9		8	9	9	13
	Misticolo (Mixt, DC, DE, DL, SGCF, SVMC)		9	9	10	10		4	10	8	10		9	6	11	11	4	8	4	14	14		8	7	9	10		8	10	12	7		8	9	8	11
at	Glareicolo					1										1	1				1		1	1				1						1		
st	Indicatore di fondi mobili instabili (MI)		1	2	2	3		1	3	1	3		1	2	2	3	1	2	2	2	2		1	2	1	2		2	2	2	1		1	2	1	3
3	Minuticolo			1	1	2			1		1		1		1	1	1	1		1	1			1	1					2	1		1	1	1	1
o	Indicatore di materia organica (MO)		8	7	10	8		6	9	8	9		8	7	9	9	8	9	8	10	10		7	8	9	11		8	8	9	10		9	8	8	11
	ato duro (Sd, AP, C)		1		4	3			2	1	3		2	1	7	3		2		10	8				3	4				3	1		1		2	5
Larga r	ipartizione ecologica (Lre)		3	1	3	3		1	1	2	3		2	3	4	1	2	4	1	6	7		2	2	2	3		1	3	1	2		2	1	4	3

				K11					K12					K13		
		PS	IPL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL
0	Non riportato in letteratura (Sm)		2		1	1	1	1		1			2		1	1
pie	Limicolo (Lim, VTC, VB)		15	12	20	17	17	18	13	19	20		18	13	24	22
٤	Sabulicolo (Sab, SFBC)		9	9	13	10	4	11	8	8	10		10	8	8	13
	Misticolo (Mixt, DC, DE, DL, SGCF, SVMC)		8	6	6	7	7	11	11	8	7		10	9	7	15
<u> </u>	Glareicolo				1		1								1	1
st	Indicatore di fondi mobili instabili (MI)		3	2	2	3		3	2	2	2		1	2	1	3
Suk	Minuticolo			1	1	2		1		1	1					1
٠,	Indicatore di materia organica (MO)		8	8	9	10	8	9	8	9	11		10	8	9	10
Substra	ato duro (Sd, AP, C)		2	2	4	3		2		1	5		1	1	2	5
Larga r	ipartizione ecologica (Lre)		2	2	2	2		1	4	2	2		3	1	2	2

Tab. 3-XXI – Continuo.

b)				D1				D2					D3					D4				D5					6				D7		
		PS	IPL	II PL	III PL	IV PL	PS I PI	. II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS IF	L II PI	. III PL	IV PL	PS IF	L IIP	_ III P	_ IV PL	PS	IPL	II PL	III PL	IV PL
ø.	Non riportato in letteratura (Sm)		6,9	19,3		1,2	0,8	1,0	2,0			4,2	1,3	0,7	2,3	2,8	4,2			2,0	5			0,8	0.	7 0,	0,8	1,5		8,3	0,5	0,8	1,3
<u>=</u>	Limicolo (Lim, VTC, VB)		85,3	12,4	40,0	92,6	51,	19,5	66,5	68,5		72,5	24,9	69,9	110,8	12,3	40,0	53,2	53,1	109,3	61	7 27,3	78,2	115,5	589	9,3 10	7 64,	99,3		55,8	27,3	69,7	106,7
2	Sabulicolo (Sab, SFBC)		84,3	23,2	30,7	30,8	45,0	17,3	42,8	28,1		38,3	20,2	35,1	56,3	2,8	40,0	21,4	34,6	35,3	30	8 16,0	41,2	83,2	49	,3 17	41,	29,4		30,0	15,7	30,6	48,0
-	Misticolo (Mixt, DC, DE, DL, SGCF, SVMC)		43,1		12,0	79,9	41,	21,7	11,5	17,9		28,3	28,4	19,0	45,2	10,8	42,5	22,2	25,5	283,3	43	3 32,0	20,8	58,0	31	,3 35,	3 14,	22,9		40,8	18,7	7,8	31,3
at	Glareicolo			1,0				0,5	0,7				0,5				0,8		0,7									0,5					
st	Indicatore di fondi mobili instabili (MI)		2,0	0,5	4,7	1,2	2,5	1,3	1,3	2,0				0,7	8,2		5,0	3,2	2,0	0,7	0	3	0,8	2,5	1,	3 0,	3,2	0,5		0,8	0,5		3,3
3	Minuticolo			32,6											0,7			1,3						1,7		0,		0,5			0,5	0,8	
Ø	Indicatore di materia organica (MO)		123,5	1,0	113,3	74,5	106.	7 37,6	90,3	88,4		45,8	53,7	86,6	122,0	33,0	115,0	35,6	56,4	66,8	63	3 35,3	101,3	119,0	69	.3 28.	101	91,6		57,5	43,9	88,9	119,3
Substra	ato duro (Sd, AP, C)		19,6	1,0	2,7	25,4	13,	1,8	7,2	5,4		5,0	1,3	3,3	10,0		5,0	1,8	4,5	164,7	10	0 2,0	3,2	9,5	4.	7 1,	4,3	19,0		3,3	2,5	8,5	21,3
Larga r	ipartizione ecologica (Lre)		8,8	9,8	3,3	70,2	8,3	5,4	6,5	6,5		9,2	7,2	3,2	8,8	0,7	3,3	5,5	5,0	121,4	8	6,7	4,2	2,5	8.	0 4,	4,5	16,7		8,3	1,5	8,0	6,0

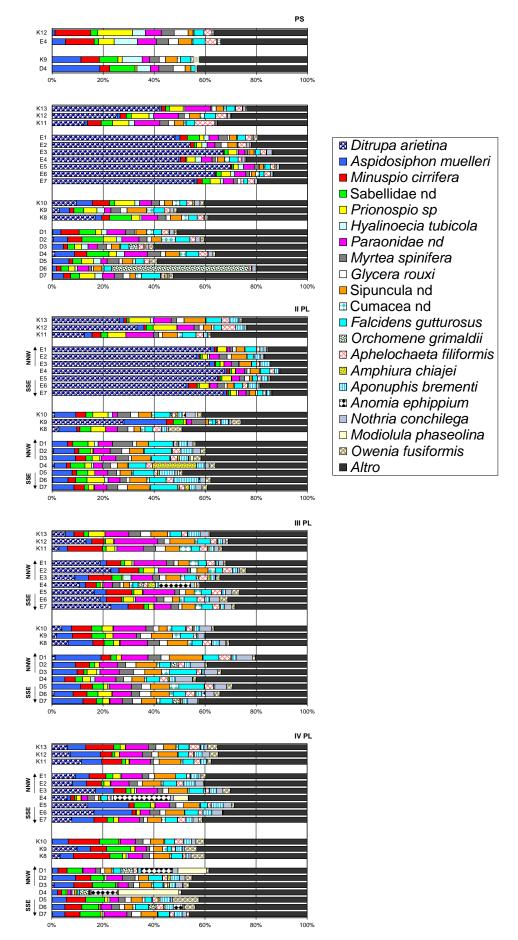
				K8					K9					K10		
		PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL
0	Non riportato in letteratura (Sm)		0,8	1,5			3,7	2,9	0,8		3,3		8,8	2,0		1,0
mobile	Limicolo (Lim, VTC, VB)		59,7	16,9	64,2	86,2	19,7	49,1	24,2	102,1	100,0		66,7	19,6	97,9	107,2
<u>و</u>	Sabulicolo (Sab, SFBC)		29,0	26,2	29,3	48,8	6,0	32,8	25,8	41,7	58,8		31,4	14,6	64,6	67,3
	Misticolo (Mixt, DC, DE, DL, SGCF, SVMC)		21,9	28,2	14,3	32,7	22,5	41,9	22,5	20,8	37,2		35,3	17,4	28,1	33,0
rato	Glareicolo		0,5													
st	Indicatore di fondi mobili instabili (MI)		74,1	5,4	22,7	16,3	0,7	9,1	85,0	13,5	59,8		40,2	2,0	19,8	1,3
Sub	Minuticolo			1,0					0,8		1,7				1,0	3,8
0)	Indicatore di materia organica (MO)		66,4	38,6	95,0	136,7	36,6	54,1	81,7	119,8	114,5		91,2	35,6	111,5	166,8
Substra	ato duro (Sd, AP, C)		8,0	3,8	8,3	17,8		2,5	4,2	5,2	15,5		1,0	1,0	5,2	9,5
Larga r	ipartizione ecologica (Lre)		5,5	1,3	0,8	5,8	1,8	2,0	5,8	13,5	10,5		3,9	4,2	6,3	10,1

				E1					E2					E3					E4					E5					E6					E7		
		PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	I PL	II PL	III PL	IV PL	PS I	PL	II PL II	IPL I	/ PL
0	Non riportato in letteratura (Sm)		0,3	19,5		1,0			0,2	0,3					0,6	0,5	0,5	1,0	0,3	1,5	0,2		0,3		0,8				0,5	0,9			0,8			0,3
<u>=</u>	Limicolo (Lim, VTC, VB)		14,6	13,0	41,4	82,3		8,8	14,2	36,7	51,0		12,9	18,4	78,5	49,5	21,2	35,3	17,1	74,6	51,7		18,3	18,7	56,3	55,5		19,9	29,3	42,8	38,9	2	2,3	26,5	57,8	48,5
2	Sabulicolo (Sab, SFBC)		4,5	12,8	15,0	28,8		5,3	9,8	14,9	19,9		11,3	6,9	14,7	26,2	5,1	21,7	9,7	23,5	20,0		7,7	14,2	33,5	25,4		7,4	11,7	31,9	14,9	1 1	2,8	9,7	32,2	24,2
	Misticolo (Mixt, DC, DE, DL, SGCF, SVMC)		6,7		7,1	18,2		4,5	11,6	7,4	9,8		4,5	15,2	27,3	16,1	13,6	23,9	11,4	16,8	36,9		12,3	10,9	10,0	7,7		10,6	20,8	9,4	6,3	1 1	0,2	20,8 1	15,9	11,9
컐	Glareicolo			183,6		0,5										0,5	0,5				0,3		0,3	0,3				0,3						0,3		
st	Indicatore di fondi mobili instabili (MI)		81,6	0,3	44,7	35,9		50,0	123,1	51,8	18,4		178,7	180,5	33,8	49,5	0,5	196,9	248,8	52,0	30,0	2	244,7	194,9	63,2	43,1		200,7	179,2	46,9	29,5	1	87,8	302,2	93,2	19,4
1 3	Minuticolo			19,3	0,8	5,6			0,9		2,3		0,3		0,5	4,0	1,5	0,5		0,7	4,2			1,7	0,3					0,8	4,3		0,3	1,5	0,3	1,3
0)	Indicatore di materia organica (MO)		22,0	0,0	46,5	82,8		9,9	17,3	45,8	42,9		14,8	21,8	90,5	51,3	37,4	31,7	24,0	64,8	47,9		16,3	20,2	99,0	86,4		22,3	39,5	53,1	49,0	3	3,6	22,7	92,5	59,1
Subst	rato duro (Sd, AP, C)		0,3	1,7	1,7	4,0			0,7	2,3	2,0		0,5	0,3	9,4	1,6		2,2		35,6	27,7				2,9	3,4				3,1	1,0		1,3		4,7	3,8
Larga	ripartizione ecologica (Lre)		2,4		3,7	3,5		1,3	1,6	3,3	2,0		7,1	4,0	2,7	3,2	1,5	4,2	1,0	78,3	116,4		3,0	1,8	2,2	2,6		2,7	4,5	1,0	2,8		2,8	1,3	9,8	1,8

				K11					K12					K13		
		PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL	PS	IPL	II PL	III PL	IV PL
ø	Non riportato in letteratura (Sm)		0,5		0,3	0,3	1,0	0,3		1,2			1,0		0,5	0,3
nobile	Limicolo (Lim, VTC, VB)		21,2	19,4	50,5	55,3	25,3	22,6	12,7	23,7	44,7		19,0	13,2	22,9	55,8
2	Sabulicolo (Sab, SFBC)		7,1	10,7	24,3	14,4	5,1	14,9	6,7	7,7	23,2		6,3	6,1	10,4	31,6
8	Misticolo (Mixt, DC, DE, DL, SGCF, SVMC)		7,6	10,0	14,4	12,4	12,1	10,9	9,6	5,3	8,6		5,0	10,8	6,2	15,2
rato	Glareicolo				0,2		0,5								0,2	0,5
bstı	Indicatore di fondi mobili instabili (MI)		18,7	17,4	9,1	33,8		56,2	46,2	16,7	17,4		68,2	33,6	5,4	20,7
SE	Minuticolo			1,0	0,2	2,3		0,3		0,2	2,0					1,0
0,	Indicatore di materia organica (MO)		30,6	18,2	93,4	63,4	45,5	31,9	19,6	21,4	58,6		15,2	15,0	21,7	94,7
Substr	ato duro (Sd, AP, C)		0,5	1,2	6,0	2,5		0,5		0,6	2,3		0,3	0,3	0,3	4,8
Larga r	ipartizione ecologica (Lre)		4,3	3,3	2,4	9,1		2,2	2,2	1,9	4,0		3,2	2,7	0,7	4,0

3.3.4. DOMINANZA

Per la rappresentazione grafica delle dominanze sono stati evidenziati i 20 taxa che complessivamente hanno costituito dal 60% (estate 2011) al 70% (estate 2010) delle comunità, includendo i rimanenti nella categoria "altro" (fig. 3.12).


Per quanto concerne il pre-survey è innanzitutto è da sottolineare che tutti i taxa considerati, pur essendo i principali, non erano risultati fortemente dominanti nelle varie stazioni. Infatti, A. mulleri, prima specie in D4 e K9, aveva rappresentato al massimo il 18,7% del popolamento in D4; analogamente, M. cirrifera era risultata la specie dominante nelle altre due stazioni (accanto a Prionospio sp in K12) con percentuali oscillanti tra 11,3% (E4) e 14,0% (K12). Da notare che, oltre alle specie principali sopra menzionate, i due siti posizionati sul tracciato del sea-line e i rispettivi controlli si erano differenziati anche per i taxa meno importanti. Ad esempio, nelle due stazioni più al largo (D4 e K9) erano state registrate percentuali di Sabellidae nd (9,9% e 7,3% rispettivamente) superiori rispetto a E4 (1,7%) e K12 (1,2%), mentre per *Prionospio* sp e Paraonidae nd era stata osservata una situazione opposta. Piuttosto simili nelle quattro stazioni erano invece apparsi i contributi del bivalve Myrtea spinifera (4,8-5,6%), del polichete Glycera rouxi (2,5-5,4%) e dei Sipuncula nd (2,0-5,2%). Particolarmente importante ovunque era risultata la categoria "altro", rappresentando dal 44,8% (K12) al 51,0% (K9) dei popolamenti. Dopo la posa della condotta sottomarina (inverno 2010) solo nel transetto D (eccetto D6) e rispettivi controlli i popolamenti continuavano ad essere ben differenziati, senza una forte predominanza da parte di una specie. Ad esempio, in D3 il taxon più importante (Sabellidae nd) aveva rappresentato solo il 4,4% della comunità. Faceva eccezione, come anticipato, la stazione D6 in cui O. grimaldi costituiva il 53,8%. Nonostante la maggior parte dei taxa fosse stato rappresentato da percentuali simili sia lungo il transetto che nei siti di controllo, K8 e K10 si differenziavano dalle stazioni D per la predominanza di *D. arietina* (16,9% e 9,5% rispettivamente).

Rispetto al pre-survey sia in D4 che in K9 erano avvenuti dei cambiamenti, consistenti in una perdita di importanza di *A. mulleri*, diventata in entrambe queste stazioni la terza specie: in D4 con il 7,8% dopo Paraonidae nd (9,0%) e Sabellidae nd (8,7%), in K9 (accanto ai Caudofoveati; 4,1%) dopo Sipuncula nd (7,6%) e Prionospio sp. (5,1%).

Il transetto E, invece, era caratterizzato da una netta dominanza di *D. arietina*, che rappresentava dal 48,2% in D1 al 69,8% in E5, con un trend speculare a partire da E4 e consistente in un incremento nei siti a 30 m e una riduzione graduale verso i 100 m di distanza dalla condotta. Anche nei controlli K11-K13 questo polichete costituiva il taxon dominante, ma con percentuali inferiori rispetto al transetto (da 12,8% a 41,9%). Dunque, in quest'area si era assistito a un forte mutamento delle comunità rispetto al pre-survey, avvenuto contemporaneamente sia in corrispondenza del sealine che nei controlli.

Nell'estate successiva veniva confermata la netta predominanza di *D. arietina* lungo E (dal 52,8% in E5 al 67,4% in E4). Questo polichete era diventato la specie principale anche ai controlli, incrementando la sua percentuale in K12 (33,3%) e riducendola in K13 (26,4%). *D. arietina* dominava anche in K9 (28,2%) mentre K8 e K10, come il transetto D, risultavano meglio diversificati delle restanti stazioni monitorate. Rispetto all'inverno era aumentata quasi ovunque l'importanza di *F. gutturosus*, taxon principale lungo il transetto eccetto in D3, D4 e D6 dove prevalevano rispettivamente *A. mulleri* (9,2%), *A. chiajei* (17,2%) e *Aponuphis brementi* (9,81%). *A. mulleri* rappresentava la specie dominante anche in K8 e K10, aumentando comunque anche lungo il transetto. Da segnalare la scomparsa di *O. grimaldi* in D6.

Nell'inverno 2011 il transetto D e controlli hanno continuato ad essere meglio diversificati delle altre stazioni. Infatti, *A. mulleri*, prima specie lungo D eccetto D3 e D4, ha rappresentato al massimo il 18,0% del popolamento in D1; analogamente, i paraonidi e *F. gutturosus*, dominanti rispettivamente in D4 e D3, hanno costituito l'8,3% e il 10,7% delle comunità presenti in quei siti. Paraonidae nd sono risultati anche il primo taxon nei controlli K8-K10, con percentuali tra il 9,1 (K9) e il 12,8% (K10). Il transetto E e rispettivi siti di riferimento hanno presentato le variazioni più eclatanti in questa stagione, a causa di una forte riduzione della dominanza di *D. arietina* rispetto ai due survey precedenti. Questa specie, infatti, pur continuando a dominare ovunque eccetto in E4 dove ha prevalso *A. ephippium* (12,5%), ha costituito al massimo il 23,1% dei popolamenti rinvenuti in E2 ed E7. Nel controllo K11 è risultato maggiormente rappresentato *M. cirrifera* con il 13,8%, sostituito dai paraonidi in K12 e K13 (17,1 e 9,3% rispettivamente).

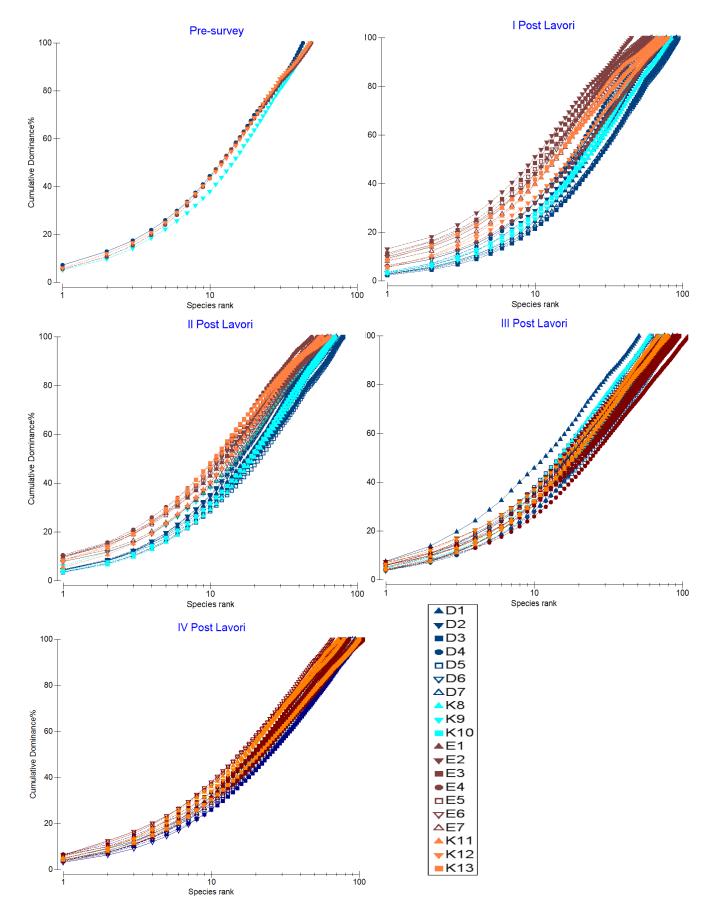


Fig. 3.12 - Valori percentuali di dominanza delle specie principali ottenuti nelle stazioni monitorate nel pre-survey (PS) e nei quattro monitoraggi condotti dopo la posa della condotta sottomarina (PL). D4 ed E4 = siti posti in corrispondenza del sea-line.

Nell'ultimo survey lungo E e controlli le percentuali di *D. arietina* hanno continuato a ridursi ovunque eccetto in E3 e K11 dove sono aumentate (da 9,0 a 17,1% e da 2,3 a 11,6% rispettivamente) e, dove è diventata prima specie. Anche in E1, E3 e K11 ha continuato a dominare, mentre nelle altre stazioni hanno prevalso *A. muelleri* (E5-E7, K12), *M. cirrifera* (K10; 11%) e *A. ephippium* (E4; 22,3%).

Lungo D *A. muelleri* si è ridotto in tutti i siti rispetto all'inverno tranne in D2, dove è risultato prima specie passando dall'8,7% dell'inverno al 9,1%, e K10 (dal 3,9% al 6,2%), dove comunque ha prevalso *M. cirrifera* come in K8, D5, D6; quest'ultima specie è stata comunque rappresentata da percentuali piuttosto basse (dal 6,7% al 12,3%). Negli altri siti sono risultati dominanti i paraonidi (D7; 8,9%), i sabellidi (D3; 9,1%), *A. ephippium* (D1; 12,3%) e *M. phaseolina* (D4; 23,6%).

Complessivamente, in ogni campionamento è stata riscontrata una discreta omogeneità tra i siti indipendentemente dalle specie dominanti, come indicato dalle curve di dominanza cumulativa riportate in fig. 3.13. Solo in inverno 2011 il sito D1 appare leggermente scostato dagli altri per la ridotta percentuale della categoria altro.

Fig. 3.13 - Curve di dominanza cumulativa ottenute nel pre-survey e nei monitoraggi effettuati dopo la posa della condotta sottomarina.

3.3.5. RICCHEZZA SPECIFICA TOTALE

Nel corso del pre-survey in tutta l'area indagata erano stati rinvenuti 95 taxa di cui 45 policheti, 22 crostacei, 19 molluschi, 4 echinodermi, 2 cnidari, 2 sipunculidi e 1 nemertino (All. C-1).

Tra i due siti più al largo (D4 e K9) la comunità presente nel controllo era apparsa più ricca in numero di specie, mentre E4 e K12 erano risultati molto simili (fig. 3.14).

Nell'inverno 2010 erano stati complessivamente censiti 174 taxa, soprattutto policheti (68), crostacei (46) e molluschi (40; All. C-2), e si registrava un notevole arricchimento delle comunità nelle stazioni monitorate anche nel pre-survey. Con la sola eccezione del sito D4, lungo il transetto D si registrava una Ricchezza specifica totale superiore rispetto al transetto E a parità di distanza dalla condotta, situazione questa non riscontrabile tra i due gruppi di controlli. I siti K8-K10 presentavano un numero di specie intermedio a quelli del transetto D, mentre in K11-K13 S risultava superiore a quella della maggior parte delle stazioni di E.

Nell'estate successiva il numero totale di taxa appariva diminuito rispetto all'inverno (166; All. C-3). Policheti, molluschi e crostacei continuavano a rappresentare i gruppi più numerosi rispettivamente con 60, 48 e 36 taxa, seguiti dagli echinodermi (10). Una riduzione generalizzata aveva riguardato anche il transetto D e controlli, eccetto D2 e K10 rimasti praticamente invariati e D4 in cui si osservava un incremento di S. I valori maggiori erano stati raggiunti entro 30 m dal sea-line e, eccetto D3 e D5, tutti i siti erano comparabili con un controllo o presentavano una Ricchezza specifica totale compresa nel range dei riferimenti K8-K10. Anche in K11-K13, in E3 ed E4 era avvenuta una riduzione rispetto all'inverno. Mentre E7 non mostrava variazioni, le altre quattro stazioni del transetto E presentavano incrementi. In quest'area, il valore minimo si registrava in corrispondenza del sealine (49); mentre verso NNW S aumentava gradualmente, verso SSE si verificava un netto aumento a 30 m dalla condotta senza ulteriori variazioni. Tutti i siti del transetto eccetto E3 ed E4 erano comparabili con i controlli. Anche in estate il transetto D presentava valori di S superiori rispetto a quelli di E, eccetto a 60 m a SSE (D6 ed E6).

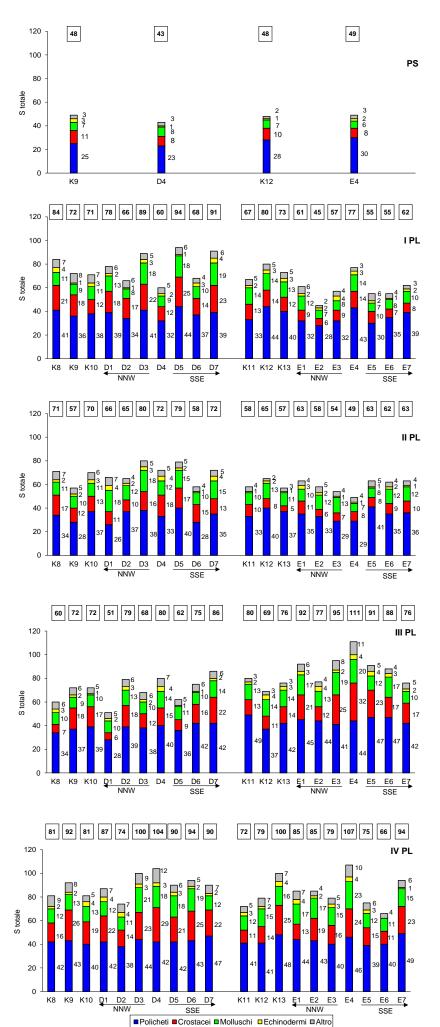
Nell'inverno 2011 è avvenuto un nuovo, generale incremento di S, essendo stati

censiti complessivamente 208 taxa, principalmente policheti (73), crostacei (64), molluschi (45) ed echinodermi (10; All. C-4). Il transetto D ha presentato alcune oscillazioni da D1 (51) a D4 (80), un decremento in D5 (62) e un aumento sino a D7, dove è stato registrato il massimo per questi siti (86). Ai controlli K8-K10 S è oscillata tra 60 e 72, risultando pertanto mediamente un po' inferiore rispetto al transetto. Anche lungo E si sono osservate alcune oscillazioni da E1 sino ad E4, dove è stato raggiunto il massimo assoluto stagionale (111), seguite da un decremento sino ad E7 (76). Presso K11-K13 sono state contate da 69 a 80 specie.

Contrariamente a quanto registrato dall'inverno 2010, eccetto i siti posti a 60 m verso NNW (D2 ed E2), a parità di distanza dalla condotta sottomarina i valori più elevati sono stati sempre registrati lungo E. Ciò è dovuto al fatto che, rispetto all'estate 2010, lungo D si è verificato un generale decremento che non ha riguardato solo D2, mentre lungo E si è assistito a un forte aumento dei valori di S, particolarmente importante in E4 (estate 2010: 49).

Nell'estate 2011 il numero totale di taxa ha continuato ad incrementare, essendone stati censiti 214 di cui 73 policheti, 63 crostacei, 50 molluschi e 10 echinodermi (All. C-5). L'aumento ha riguardato anche i singoli siti del transetto D e controlli (eccetto D2) e parte delle stazioni del transetto E e relativi riferimenti. Altrove si è assistito a una riduzione rispetto all'inverno.

Lungo D, dove il massimo (104) è stato ottenuto in corrispondenza del sea-line, i valori maggiori sono stati registrati a SSE, mentre lungo E sono stati osservati verso NNW eccetto a 100 m di distanza. Anche in questo transetto il massimo è stato registrato sopra la condotta (E4). I due gruppi di controlli hanno presentato valori simili a quelli più bassi di ciascun transetto.


In tutti i monitoraggi i policheti hanno rappresentato ovunque il gruppo principale, seguiti dai crostacei e/o molluschi (fig. 3.14), mentre gli echinodermi, pur essendo stati censiti quasi ovunque, sono stati rappresentati al massimo da 3 specie nel presurvey e da 4 nei campionamenti successivi.

Dal punto di vista qualitativo nel pre-survey i popolamenti rinvenuti presso ciascun sito posizionato sul tracciato della condotta non era risultato particolarmente omogeneo con quello del controllo corrispondente: infatti, il 33% delle specie registrate in K9 non era stato rilevato in D4 e il 13% dei taxa presenti in K12 non era

stato censito in E4 (All. C-1).

Dopo la posa del sea-line (inverno 2010; All. C-2) questa disomogeneità era aumentata ulteriormente. Infatti, ben il 40% delle specie presenti in K9 e il 34% di quelle rinvenute in K12 non è stato osservato rispettivamente in D4 ed E4. Prendendo invece in considerazione tutte le 20 stazioni campionate (transetti e controlli), i popolamenti erano molto omogenei, essendo stati censiti al massimo 5 taxa esclusivi in K8. Una buona omogeneità si riscontrava anche nell'estate 2010, quando erano stati censiti al massimo 5 taxa esclusivi in D1 (All. C-3).

Tale similitudine tra i popolamenti è stata osservata anche nel 2011. Infatti, in inverno il numero maggiore di specie esclusive (13) registrato in E4 ha costituito solo il 13% della comunità osservata in quel sito (All. C-4), mentre in estate sono state censite al massimo 6 specie esclusivamente in K13 (6%; All. C-5).

Fig. 3.14 - Ripartizione secondo il phylum di appartenenza delle specie rinvenute nelle singole stazioni campionate nel pre-survey (PS) e dopo la posa della condotta (PL). Sono anche riportati i valori della Ricchezza specifica totale ottenuti per i vari siti (riquadri). D4 ed E4 = siti posti sul sealine.

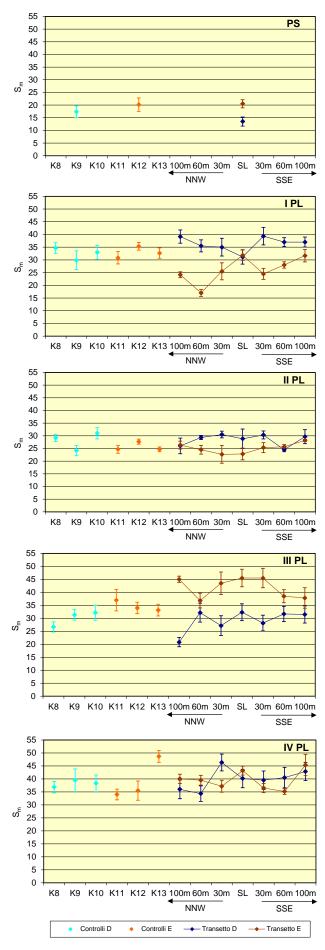
3.3.6. RICCHEZZA SPECIFICA MEDIA

Nel pre-survey il minimo della Ricchezza specifica media era stato ottenuto in D4 (13,5 \pm 1,8) valore non confrontabile con il controllo K9 (17,3 \pm 2,4) che era invece apparso simile agli altri due siti più costieri (E4: 20,5 \pm 1,6 e K12: 20,2 \pm 2,6; fig. 3.15).

Dopo l'installazione del sea-line era avvenuto un incremento generalizzato di S_m , più consistente in D4 (31,2±2,8). Mentre i due gruppi di controlli presentavano valori simili tra loro, compresi tra 29,8±3,7 (K9) e 35,3±1,5 (K12), i due transetti avevano trend opposti, con un unico punto di congiunzione in corrispondenza della condotta e con i restanti valori inferiori lungo E. La maggior parte delle stazioni appartenenti a D era confrontabile con almeno un controllo corrispondente, mentre lungo E solo E4 (31,8±2,0), E6 ed E7 (28,0±1,3 e 31,7±2,4 rispettivamente) mostravano valori simili a quelli dei propri siti di riferimento.

Nell'estate 2010 le stazioni del transetto D e i relativi controlli erano rimasti praticamente invariati o mostravano un decremento (K8, D1, D2, D5-D7). Anche in K11-K13 S_m era inferiore rispetto all'inverno, analogamente a E6 ed E7. Solo in E2 era avvenuto un incremento, mentre altrove non vi erano state variazioni. Le differenze tra i due transetti a parità di distanza dalla condotta apparivano attenuate, anche se a 30 e 60 m a NNW e a 30 m a SSE l'indice continuava ad essere superiore lungo D. I trend di entrambi i transetti erano più lineari rispetto a quelli invernali. Inoltre, la maggior parte delle stazioni di D e di E risultava confrontabile con i rispettivi controlli.

Nell'inverno 2011 è avvenuto un cambiamento rispetto al 2010, in quanto la maggior parte delle stazioni posizionate lungo il transetto D ha mostrato una Ricchezza specifica media inferiore rispetto alle corrispondenti di E, a causa di un aumento generalizzato lungo E e controlli rispetto all'estate 2010. Il trend è risultato eterogeneo ma, a causa della variabilità, tutti i siti eccetto D1 (20,8±1,8) sono apparsi comparabili tra loro, essendo S_m compresa tra 27,2±3,8 (D3) e 32,3±3,3 (D4), e con i controlli K8-K10 (26,7±1,9 \le S_m \le 32,2±2,9).


Lungo il transetto E il trend, dopo aver presentato un decremento da E1 $(45,0\pm1,2)$ a E2 $(36,8\pm2,9)$ e un aumento in E3 $(43,5\pm4,2)$, si è mantenuto pressoché stabile sino a E5 $(45,5\pm3,7)$, per poi decrescere in E6. Solo E1 e, in misura minore, E4 ed E5

hanno presentato valori superiori rispetto al range osservato presso i controlli K11-K13 (33,2 \pm 2,2 \leq S_m \leq 37,0 \pm 4,2).

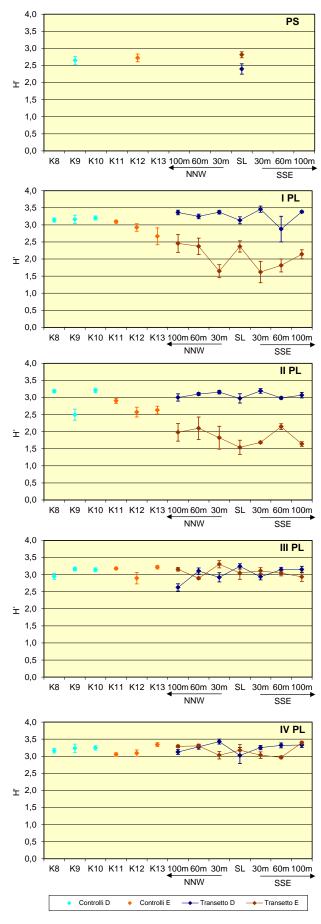
Nell'ultimo survey non sono avvenuti cambiamenti importanti lungo E eccetto un decremento in E1 $(40,0\pm1,8)$ ed E5 $(36,5\pm1,8)$, mentre lungo D S_m è aumentata quasi ovunque. Ciò ha comportato una notevole similitudine di valori tra i due transetti tranne a 30 m a NNW dove è stata registrata una S_m superiore in D3 $(46,3\pm3,2)$ rispetto a E3 $(37,2\pm2,3)$.

In D è stata riscontrata una discreta omogeneità da D3 a D7 (42,8 \pm 3,5), mentre D1 e D2 hanno presentato valori inferiori (36,0 \pm 3,6 e 34,3 \pm 3,0 rispettivamente) e confrontabili tra loro. Comunque, l'intervallo dei controlli K8-K10 (36,8 \pm 2,2 \leq S_m \leq 39,5 \pm 4,4) ha compreso tutte le stazioni del transetto.

E si è presentato meno omogeneo di D, essendo i valori oscillanti tra 35,2 \pm 1,1 (E6) e 45,3 \pm 4,1 (E7), comunque compresi nell'ampio intervallo dei controlli K11-K13 (34,0 \pm 2,1 \leq S_m \leq 48,7 \pm 2,3).

Fig. 3.15 – Ricchezza specifica media (\pm e.s.) registrata presso i siti monitorati nel corso del pre-survey (PS) e nei quattro campionamenti condotti dopo la posa del sea-line (PL).

3.3.7. DIVERSITÀ SPECIFICA


Già nel pre-survey i valori della Diversità specifica erano risultati molto elevati ovunque, confermando la presenza di un popolamento piuttosto diversificato in tutte le stazioni, caratterizzato da un buon numero di specie e una ripartizione delle abbondanze tra i taxa molto equilibrata (fig. 3.16).

Analogamente agli indici precedentemente descritti, il minimo era stato registrato in D4 (2,40 \pm 0,15), valore comunque confrontabile a quello del controllo K9 (2,65 \pm 0,11) risultato molto simile a quelli di E4 (2,81 \pm 0,09) e K12 (2,72 \pm 0,11).

Nell'inverno 2010 era avvenuto un incremento generale dell'indice che non riguardava solo E4 (2,37±0,16) a causa della forte dominanza di D. aretina,. La predominanza di questa specie aveva influito anche sulle altre stazioni del transetto E e sul controllo K13, dove i valori di H' erano inferiori a quelli degli altri siti di riferimento e di D. Il range di H' relativo a quest'ultimo transetto era piuttosto ristretto, essendo compreso tra 2,89±0,37 (D6) e 3,46±0,09 (D5), e con valori per la lievemente superiori dei controlli maggior parte quelli K8-K10 (3,14±0,006≤H'≤3,20±0,06). Il trend del transetto E appariva meno lineare. Solo i siti E1, E2 ed E4 erano confrontabili con K13, mentre gli altri presentavano valori inferiori.

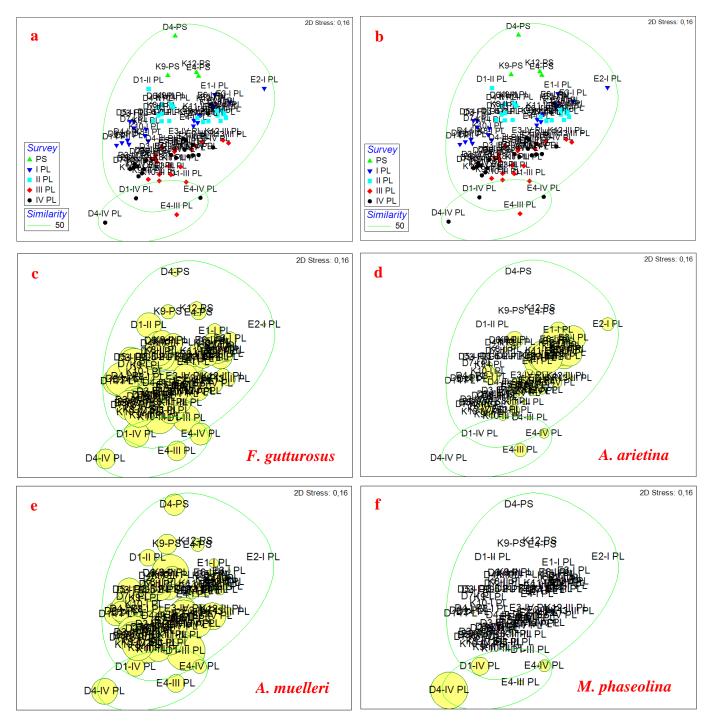
In estate H' si era lievemente ridotto lungo il transetto D eccetto in D4 e D6. Più consistente era il decremento in K9 per la predominanza di *D. arietina*. Nessuna differenza tra valori invernali ed estivi si riscontrava invece lungo E, tranne in E4 ed E7 in cui si era verificato un decremento (1,54±0,21 e 1,64±0,07 rispettivamente) per l'aumentata importanza di *D. arietina* e in E6 in cui invece era avvenuto un lieve aumento a causa della minore dominanza del polichete rispetto all'inverno. Anche K11 e K13 erano praticamente invariati, mentre in K12 H' si era ridotto, sempre a causa delle variazioni della stessa specie. Analogamente all'inverno, i valori maggiori si registravano lungo D, essendo compresi tra 2,97±0,04 (D4) e 3,19±0,07 (D5), rispetto ad E (1,54±0,21≤H'≤2,15±0,08). Inoltre, mentre D era comparabile con i rispettivi controlli, il transetto E appariva meno diversificato anche rispetto ai suoi controlli.

Nell'inverno 2011 rispetto al 2010 è avvenuto un notevole incremento di H' lungo il transetto E, diventato per la prima volta comparabile con i suoi siti di riferimento.

Fig. 3.16 - Diversità specifica (\pm e.s.) registrata presso i siti monitorati nel corso del presurvey (PS) e nei quattro campionamenti condotti dopo la posa del sea-line (PL).

Tale aumento è stato determinato dalla forte riduzione di *D. arietina*. D non ha invece mostrato nel tempo variazioni degne di nota.

I due transetti hanno presentato trend opposti lungo quasi tutto il loro percorso, ma valori sempre confrontabili eccetto a 100 e 30 m a NNW rispetto alla condotta, dove H' è risultato più elevato lungo E (D1: 2,63±0,11; E1: 3,15±0,05; D3: 2,92±0,14; E3: 3,30±0,10; fig. 3.11). Salvo D1, tutti i restanti siti dei due transetti sono risultati paragonabili a rispettivi controlli.


Anche nell'estate successiva i valori di H' registrati lungo i transetti e nei rispettivi controlli sono risultati quasi tutti confrontabili tra loro e compresi in range ristretti (D: 3,02±0,23≥H'≥3,43±0,07; K8-K10: 3,16±0,07≥H'≥3,25±0,06; E: 2,97±0,04≥H' ≥3,39±0,05; K11-K13: 3,05±0,05≥H'≥3,34±0,06).

Rispetto al survey precedente è avvenuto un incremento dell'indice in K8 e lungo tutto il transetto D per una riduzione di importanza di *A. muelleri* rispetto all'inverno che non ha riguardato solo D4. Lungo E, invece, si sono avuti cambiamenti solo in E2 ed E7, consistenti in un aumento, e in E3 (riduzione), tutti determinati dalle variazioni di importanza di *D. arietina*. Il transetto D ha mostrato un incremento sino a D3, dove è stato raggiunto il massimo stagionale $(3,43\pm0,07)$ e una riduzione in D4. Le successive variazioni verso SSE non sono degne di nota. Lungo E, invece, sono da sottolineare il decremento in E3 $(3,03\pm0,11)$ e l'aumento in E7 $(3,39\pm0,05)$.

3.3.8. MULTIDIMENSIONAL SCALING

Il MultiDimensional Scaling applicato ai dati di densità delle singole specie rinvenute nel corso dei cinque monitoraggi ha suddiviso i siti in due cluster parzialmente sovrapposti (figg. 3.17a e 3.15b), di cui uno principale contenente la maggior parte delle stazioni. All'interno di questo cluster appare evidente un'evoluzione temporale avvenuta sino all'inverno 2011, essendo i siti posizionati dall'alto verso in basso a partire dal pre-survey, senza distinzioni particolari tra transetti e controlli, determinata dall'incremento di alcuni taxa nel tempo, come ad esempio *F. gutturosus* (fig. 3.17c), o dal rinvenimento di altri (es.: *D. arietina*; fig. 3.17d) a partire da un certo survey in poi. La parziale sovrapposizione dei due raggruppamenti è stata determinata dalla comune presenza, in quantitativi simili, di alcuni dei taxa principali come *F. gutturosus* e *A. muelleri* e (fig. 3.17e), mentre la

loro distinzione è una conseguenza della maggiore o esclusiva presenza di altre specie (es. *D. arietina*, *M. phaseolina*; fig. 3.17g).

Fig. 3.17 — Rappresentazione bidimensionale dei siti campionati nel pre-survey (PS) e nei quattro monitoraggi condotti dopo la posa in opera della condotta (PL) tramite il metodo del MultiDimensional Scaling. I cerchi gialli indicano i quantitativi in termini di densità delle singole specie.

3.3.9. VALUTAZIONE DELLO STATO DI STRESS DELLE COMUNITÀ

3.3.9.1 Indice W di Clarke

Il calcolo dell'indice W di Clarke ha evidenziato la presenza di una comunità moderatamente disturbata nella maggior parte dei siti campionati nell'intero periodo di indagine (Tab. 3-XXII). E' però da evidenziare nell'ultimo survey un miglioramento (leggermente disturbato) nelle due stazioni poste sulla condotta (D4 ed E4) e in due siti del transetto D.

3.3.9.2 Indice AMBI

Nella maggior parte dei casi in cui l'indice W di Clarke ha evidenziato la presenza di una ambiente moderatamente disturbato, l'AMBI ha invece sottolineato una condizione di non disturbo, a causa della preponderanza di taxa appartenenti al gruppo ecologico I, in cui è inserito il polichete *D. arietina* risultato fortemente dominante in quelle stazioni (Tab. 3-XXIII). Tutti gli altri siti sono invece risultati leggermente disturbati a causa dell'importanza dei gruppi ecologici II, III e IV. Anche in questo caso l'indice evidenzia un miglioramento in D4 nell'ultimo survey.

3.3.9.3 Indice BENTIX

Il BENTIX è risultato più coerente con l'indice W di Clarke per quanto concerne le stazioni del transetto E, K13 e/o K12 campionati in inverno ed estate 2010 e, parzialmente, in inverno 2011, indicando uno stato di disturbo moderato. Per l'altro transetto è stata riscontrata, salvo qualche eccezione, una buona omogeneità con l'indice AMBI (per lo più ambiente leggermente disturbato o non disturbato; Tab. 3-XXIV).

Tab. 3-XXII - Valori dell'indice di W di Clarke ottenuti per il pre-survey (PS) e per i monitoraggi condotti dopo la posa della condotta sottomarina (PL).

	Siti	W	Classificazione del disturbo
	D4	0,327	Moderatamente disturbato
PS	K9	0,276	Moderatamente disturbato
FS	E4	0,278	Moderatamente disturbato
	K12	0,225	Moderatamente disturbato
	D1	0,268	Moderatamente disturbato
	D2	0,255	Moderatamente disturbato
	D3	0,493	Leggermente disturbato
	D4	0,274	Moderatamente disturbato
	D5	0,348	Moderatamente disturbato
	D6	0,100	Moderatamente disturbato
	D7	0,320	Moderatamente disturbato
	K8	0,280	Moderatamente disturbato
	K9	0,367	Moderatamente disturbato
I PL	K10	0,401	Leggermente disturbato
11.	E1	0,101	Moderatamente disturbato
	E2	0,080	Moderatamente disturbato
	E3	0,075	Moderatamente disturbato
	E4	0,059	Moderatamente disturbato
	E5	0,056	Moderatamente disturbato
	E6	0,031	Moderatamente disturbato
	E7	0,140	Moderatamente disturbato
	K11	0,213	Moderatamente disturbato
	K12	0,122	Moderatamente disturbato
	K13	0,030	Moderatamente disturbato
	D1	0,404	Leggermente disturbato
	D2	0,368	Moderatamente disturbato
	D3	0,315	Moderatamente disturbato
	D4	0,373	Moderatamente disturbato
	D5	0,356	Moderatamente disturbato
	D6	0,307	Moderatamente disturbato
	D7	0,359	Moderatamente disturbato
	K8	0,226	Moderatamente disturbato
	K9	0,190	Moderatamente disturbato
II PL	K10	0,300	Moderatamente disturbato
	E1	0,090	Moderatamente disturbato
	E2	0,134	Moderatamente disturbato
	E3	0,112	Moderatamente disturbato
	E4	0,107	Moderatamente disturbato
	E5	0,126	Moderatamente disturbato
	E6	1,610	Non disturbato
	E7	0,128	Moderatamente disturbato
	K11	0,205	Moderatamente disturbato
	K12	0,225	Moderatamente disturbato
	K13	0,140	Moderatamente disturbato

	Siti	W	Classificazione del disturbo
	D1	0,165	Moderatamente disturbato
	D2	0,359	Moderatamente disturbato
	D3	0,331	Moderatamente disturbato
	D4	0,281	Moderatamente disturbato
	D5	0,188	Moderatamente disturbato
	D6	0,265	Moderatamente disturbato
	D7	0,216	Moderatamente disturbato
	K8	0,182	Moderatamente disturbato
	K9	0,166	Moderatamente disturbato
III PL	K10	0,382	Moderatamente disturbato
	E1	0,108	Moderatamente disturbato
	E2	0,110	Moderatamente disturbato
	E3	0,299	Moderatamente disturbato
	E4	0,295	Moderatamente disturbato
	E5	0,219	Moderatamente disturbato
	E6	0,173	Moderatamente disturbato
	E7	0,136	Moderatamente disturbato
	K11	0,233	Moderatamente disturbato
	K12	0,272	Moderatamente disturbato
	K13	0,346	Moderatamente disturbato
	D1	0,431	Leggermente disturbato
	D2	0,431	Leggermente disturbato
	D3	0,306	Moderatamente disturbato
	D4	0,484	Leggermente disturbato
	D5	0,221	Moderatamente disturbato
	D6	0,313	Moderatamente disturbato
	D7	0,349	Moderatamente disturbato
	K8	0,351	Moderatamente disturbato
	K9	0,277	Moderatamente disturbato
IV PL	K10	0,163	Moderatamente disturbato
	E1	0,237	Moderatamente disturbato
	E2	0,226	Moderatamente disturbato
	E3	0,251	Moderatamente disturbato
	E4	0,411	Leggermente disturbato
	E5	0,215	Moderatamente disturbato
	E6	0,262	Moderatamente disturbato
	E7 K11	0,229	Moderatamente disturbato
		0,214	Moderatamente disturbato
	K12	0,179	Moderatamente disturbato
	K13	0,125	Moderatamente disturbato

Tab. 3-XXIII - Suddivisione percentuale delle specie rinvenute in ciascun sito di campionamento nei cinque periodi di indagine suddivise nei 5 gruppi ecologici (I = specie molto sensibili; II = specie indifferenti all'arricchimento organico; III = specie tolleranti; IV = specie opportuniste di II ordine; V = specie opportuniste di I ordine) e classificazione del disturbo ambientale secondo l'indice AMBI. In giallo è riportato il gruppo ecologico più rappresentativo in ciascuna stazione.

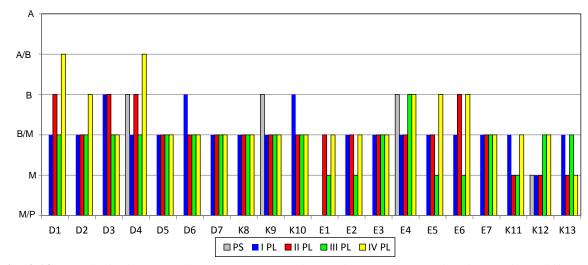
1	C:4:	1/0/ \	11/0/ \	111/0/ \	11//0/ 1	1//0/ 1	Madia AMDI	Classifications del disturb
	Siti D4	I(%)	II(%)	III(%)	IV(%)	V(%)	Media AMBI	Classificazione del disturbo
	K9	42,2 15,9	42,7 40,0	7,6 13,1	7,5 31,0	0	1,206 2,388	Leggermente disturbato Leggermente disturbato
PS	E4	19,8	40,0	18,9	21,2	0	2,366	Leggermente disturbato
	K12	32,9	48,5	7,1	11,5	0	1,456	Leggermente disturbato
	D1	29,7	37,2	20,6	12,5	0	1,74	Leggermente disturbato
	D2	36,5	35,1	15,2	13,2	0	1,577	Leggermente disturbato
	D3	35,7	44,5	11,4	8,4	0	1,388	Leggermente disturbato
	D3	39,5	32,3	18,8	9,5	0	1,473	Leggermente disturbato
	D5	34,5	40,9	15,2	9,4	0	1,492	Leggermente disturbato
	D6	34,7	33,6	19,4	12,3	0	1,639	Leggermente disturbato
	D7	30,9	41,8	14,6	12,6	0	1,633	Leggermente disturbato
	K8	46,6	30,6	14,6	8,1	0	1,264	Leggermente disturbato
	K9	36,9	44,6	9,2	9,2	0	1,361	Leggermente disturbato
IPL	K10	37,2	34,1	10,1	18,6	0	1,651	Leggermente disturbato
IFL	E1	65,7	20,2	9,1	5,0	0	0,803	Non disturbato
	E2	64,8	22,2	8,4	4,6	0	0,792	Non disturbato
	E3	78,7	10,9	5,9	4,5	0	0,543	Non disturbato
	E4	63,3	21,8	7,2	7,7	0	0,889	Non disturbato
	E5	78,8	11,7	6,6	2,9	0	0,504	Non disturbato
	E6	73,8	13,0	8,4	4,9	0	0,666	Non disturbato
	E7	69,9	15,1	8,0	7,0	0	0,781	Non disturbato
	K11	39,1	26,2	20,7	14,0	0	1,642	Leggermente disturbato
	K12	46,4	22,0	18,2	13,4	0	1,479	Leggermente disturbato
	K13	58,3	17,2	15,7	8,7	0	1,122	Non disturbato
	D1	35,7	47,9	10,1	6,3	0	1,305	Leggermente disturbato
	D2	34,4	49,4	12,8	3,4	0	1,278	Leggermente disturbato
	D3 D4	37,4 27,1	41,7 57,0	12,4 9,4	8,5 6,5	0	1,381 1,431	Leggermente disturbato
	D4 D5	33,9	57,0 48,6	9,4 10,1	6,5 7,4	0	1,431	Leggermente disturbato Leggermente disturbato
	D5	32,4	44,0	12,2	11,3	0	1,535	Leggermente disturbato
	D7	33,7	44,0	12,2	9,2	0	1,462	Leggermente disturbato
	K8	28,8	46,5	16,7	8,0	0	1,558	Leggermente disturbato
	K9	55,5	33,7	6,1	4,7	0	0,898	Non disturbato
	K10	26,9	51,1	8,0	14,0	0	1,635	Leggermente disturbato
II PL	E1	73,2	16,1	4,6	6,1	0	0,655	Non disturbato
	E2	69,5	19,4	7,2	3,9	0	0,682	Non disturbato
	E3	74,0	17,2	5,3	3,5	0	0,574	Non disturbato
	E4	77,3	12,5	6,6	3,6	0	0,547	Non disturbato
	E5	71,2	16,4	6,9	5,5	0	0,700	Non disturbato
	E6	62,1	21,7	6,2	10,0	0	0,962	Non disturbato
	E7	76,7	13,4	5,6	4,3	0	0,562	Non disturbato
	K11	34,0	34,0	18,0	13,9	0	1,678	Leggermente disturbato
	K12	47,2	27,9	13,2	11,7	0	1,340	Leggermente disturbato
	K13	46,5	29,7	11,8	12,0	0	1,341	Leggermente disturbato
	D1	44,2	32,5	15,9	7,4	0	1,297	Leggermente disturbato
	D2	40,2	39,8	11,0	9,0	0	1,330	Leggermente disturbato
	D3	40,5	39,8	11,7	8,0	0	1,307	Leggermente disturbato
	D4 D5	33,9 37,5	44,7 40,3	12,9 14,4	8,5 7,7	0	1,440 1,386	Leggermente disturbato Leggermente disturbato
	D6	32,5	39,2	14,1	14,1	0	1,649	Leggermente disturbato
	D7	40,4	40,9	9,3	9,5	0	1,318	Leggermente disturbato
	K8	40,3	35,6	15,7	8,4	0	1,382	Leggermente disturbato
	K9	39,3	34,0	13,2	13,6	0	1,516	Leggermente disturbato
	K10	28.9	36.4	19.0	15.7	0	1.823	Leggermente disturbato
III PL	E1	40,9	26,8	19,8	12,5	0	1,558	Leggermente disturbato
	E2	42,2	24,3	19,3	14,2	0	1,583	Leggermente disturbato
	E3	37,5	36,1	14,8	11,6	0	1,509	Leggermente disturbato
	E4	51,5	34,9	6,7	6,9	0	1,035	Non disturbato
	E5	38,2	25,8	19,5	16,4	0	1,711	Leggermente disturbato
	_							
	E6	39,2	31,8	14,6	14,4	0	1,564	Leggermente disturbato
	E7	39,2 49,8	25,4	11,6	13,3	0	1,564 1,324	Leggermente disturbato Leggermente disturbato
	E7 K11	39,2 49,8 24,0	25,4 38,2	11,6 17,5	13,3 20,3	0 0	1,564 1,324 2,012	Leggermente disturbato Leggermente disturbato Leggermente disturbato
	E7 K11 K12	39,2 49,8 24,0 39,6	25,4 38,2 25,5	11,6 17,5 24,5	13,3 20,3 10,4	0 0 0	1,564 1,324 2,012 1,587	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato
	E7 K11 K12 K13	39,2 49,8 24,0 39,6 31,2	25,4 38,2 25,5 41,7	11,6 17,5 24,5 13,7	13,3 20,3 10,4 13,4	0 0 0 0	1,564 1,324 2,012 1,587 1,640	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato
	E7 K11 K12 K13	39,2 49,8 24,0 39,6 31,2 49,3	25,4 38,2 25,5 41,7 36,1	11,6 17,5 24,5 13,7 8,2	13,3 20,3 10,4 13,4 6,4	0 0 0 0	1,564 1,324 2,012 1,587 1,640	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato
	E7 K11 K12 K13 D1 D2	39,2 49,8 24,0 39,6 31,2 49,3 40,4	25,4 38,2 25,5 41,7 36,1 39,5	11,6 17,5 24,5 13,7 8,2 10,4	13,3 20,3 10,4 13,4 6,4 9,7	0 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato Leggermente disturbato
	E7 K11 K12 K13 D1 D2 D3	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7	25,4 38,2 25,5 41,7 36,1 39,5 43,8	11,6 17,5 24,5 13,7 8,2 10,4 7,3	13,3 20,3 10,4 13,4 6,4 9,7 12,2	0 0 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato Leggermente disturbato Leggermente disturbato
	E7 K11 K12 K13 D1 D2 D3 D4	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2	0 0 0 0 0 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato Leggermente disturbato Leggermente disturbato Non disturbato Non disturbato
	E7 K11 K12 K13 D1 D2 D3 D4 D5	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2 10,6	0 0 0 0 0 0 0 0 0,2	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato Leggermente disturbato Leggermente disturbato Non disturbato Leggermente disturbato
	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2 40,5	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2 10,6 9,6	0 0 0 0 0 0 0 0,2 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato
	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6 D7	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3 32,3	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2 40,5 41,3	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6 14,7	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2 10,6 9,6 11,7	0 0 0 0 0 0 0 0,2 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418 1,589	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato Leggermente disturbato Leggermente disturbato Non disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato
	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6 D7 K8	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3 32,3 34	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2 40,5 41,3 36,6	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6 14,7 10,9	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2 10,6 9,6 11,7 18,5	0 0 0 0 0 0 0 0,2 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418 1,589 1,709	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato Leggermente disturbato
	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6 D7 K8 K9	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3 32,3 34 40,5	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2 40,5 41,3 36,6 40,0	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6 14,7 10,9 9,6	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2 10,6 9,6 11,7 18,5 9,8	0 0 0 0 0 0 0,2 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418 1,589 1,709 1,332	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato Leggermente disturbato Leggermente disturbato Non disturbato Leggermente disturbato
IV PL	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6 D7 K8 K9 K10	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3 32,3 34 40,5 32,8	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2 40,5 41,3 36,6 40,0 39,1	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6 14,7 10,9 9,6 13,5	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2 10,6 9,6 11,7 18,5 9,8 14,7	0 0 0 0 0 0 0 0,2 0 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418 1,589 1,709 1,332 1,651	Leggermente disturbato Non disturbato Leggermente disturbato
IV PL	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6 D7 K8 K9 K10	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3 32,3 34 40,5 32,8	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2 40,5 41,3 36,6 40,0 39,1 33,9	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6 14,7 10,9 9,6 13,5	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2 10,6 9,6 11,7 18,5 9,8 14,7	0 0 0 0 0 0 0 0,2 0 0 0 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418 1,589 1,709 1,332 1,651 1,397	Leggermente disturbato
IV PL	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6 D7 K8 K9 K10 E1 E2	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3 32,3 34 40,5 32,8 42	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2 40,5 41,3 36,6 40,0 39,1 33,9 34,5	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6 14,7 10,9 9,6 13,5 13,2 13,9	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2 10,6 9,6 11,7 18,5 9,8 14,7 10,9 10,7	0 0 0 0 0 0 0 0,2 0 0 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418 1,589 1,709 1,332 1,651 1,397	Leggermente disturbato
IV PL	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6 D7 K8 K9 K10	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3 32,3 34 40,5 32,8 42 40,9 48,7	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2 40,5 41,3 36,6 40,0 39,1 33,9 34,5 29,7	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6 14,7 10,9 9,6 13,5 13,2 13,9 13,2	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2 10,6 9,6 11,7 18,5 9,8 14,7 10,9 10,7 8,4	0 0 0 0 0 0 0 0,2 0 0 0 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418 1,589 1,709 1,332 1,651 1,397 1,416 1,221	Leggermente disturbato
IV PL	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6 D7 K8 K9 K10 E1 E2 E3	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3 32,3 40,5 32,8 42 40,5 32,8 42 40,5 33,8	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2 40,5 41,3 36,6 40,0 39,1 33,5 29,7 35	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6 14,7 10,9 9,6 13,5 13,2 13,9 13,2 7,9	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2 10,6 9,6 11,7 18,5 9,8 14,7 10,9 10,7 8,4 3,2	0 0 0 0 0 0 0 0 0,2 0 0 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418 1,589 1,709 1,332 1,651 1,397 1,416 1,221 0,909	Leggermente disturbato
IV PL	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6 D7 K8 K9 K10 E1 E2 E3 E4	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3 32,3 34 40,5 32,8 42 40,9 48,7	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 40,5 41,3 36,6 40,0 39,1 33,9 34,5 29,7 35 34,6	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6 14,7 10,9 9,6 13,5 13,2 13,9 13,2	13,3 20,3 10,4 13,4 9,7 12,2 2,2 2,2 10,6 9,6 11,7 18,5 9,8 14,7 10,9 10,7 8,4 3,2 5,7	0 0 0 0 0 0 0 0,2 0 0 0 0 0 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418 1,589 1,709 1,332 1,651 1,397 1,416 1,221 0,909 1,059	Leggermente disturbato Non disturbato Leggermente disturbato
IV PL	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6 D7 K8 K9 K10 E1 E2 E3 E4 E5	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3 32,3 34 40,5 32,8 42 40,9 48,7 53,8 50,2	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2 40,5 41,3 36,6 40,0 39,1 33,5 29,7 35	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6 14,7 10,9 9,6 13,5 13,2 13,9 13,2 7,9 9,4	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2 10,6 9,6 11,7 18,5 9,8 14,7 10,9 10,7 8,4 3,2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418 1,589 1,709 1,332 1,651 1,397 1,416 1,221 0,909 1,059 0,928	Leggermente disturbato Non disturbato Non disturbato Non disturbato
IV PL	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6 D7 K8 K9 K10 E1 E2 E3 E4 E5 E6	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3 32,3 34 40,5 32,8 42 40,9 48,7 53,8 50,2 55,8	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2 40,5 41,3 36,6 40,0 39,1 33,9 34,5 29,7 35 34,6 30,2	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6 14,7 10,9 9,6 13,5 13,2 13,9 13,2 7,9 9,4 10,4	13,3 20,3 10,4 13,4 9,7 12,2 2,2 10,6 9,6 11,7 18,5 9,8 14,7 10,9 10,7 8,4 3,2 5,7 3,6	0 0 0 0 0 0 0 0 0,2 0 0 0 0 0 0 0 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418 1,589 1,709 1,332 1,651 1,397 1,416 1,221 0,909 1,059	Leggermente disturbato Non disturbato Non disturbato
IV PL	E7 K11 K12 K13 D1 D2 D3 D4 D5 D6 D7 K8 K9 K10 E1 E2 E3 E4 E5 E6 E7	39,2 49,8 24,0 39,6 31,2 49,3 40,4 36,7 63,1 29,5 37,3 32,3 34 40,5 32,8 42 40,9 48,7 53,8 50,2 55,8 41	25,4 38,2 25,5 41,7 36,1 39,5 43,8 29,9 49,2 40,5 41,3 36,6 40,0 39,1 33,9 34,5 29,7 35 34,6 30,2 29,7	11,6 17,5 24,5 13,7 8,2 10,4 7,3 4,6 10,7 12,6 14,7 10,9 9,6 13,5 13,2 13,9 13,2 7,9 9,4 10,4 16,5	13,3 20,3 10,4 13,4 6,4 9,7 12,2 2,2 10,6 11,7 18,5 9,8 14,7 10,9 10,7 8,4 3,2 5,7 3,6 12,7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,564 1,324 2,012 1,587 1,640 1,075 1,341 1,426 0,696 1,537 1,418 1,589 1,709 1,332 1,651 1,397 1,416 1,221 0,909 1,059 0,928 1,515	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato Leggermente disturbato Non disturbato Non disturbato Non disturbato Non disturbato Non disturbato

Tab. 3-XXIV - Valori dell'indice Bentix ottenuti per il pre-survey (PS) e per i monitoraggi condotti dopo la posa della condotta sottomarina (PL).

	Siti	Bentix	Classificazione del disturbo			
	D4	4,8	Non inquinato			
	K9	4,5	Non inquinato			
PS	E4	3,9	Leggermente inquinato			
	K12	3,4	Moderatamente inquinato		Siti	Be
	D1	4,0	Leggermente inquinato		D1	4
	D2	4,3	Leggermente inquinato		D2	2
	D3	4,4	Leggermente inquinato		D3	2
	D4	4,2	Leggermente inquinato		D4	2
	D5	4,3	Leggermente inquinato		D5	2
	D6	5,2	Non inquinato		D6	_
	D7	4,1	Leggermente inquinato		D7	_
	K8	3,8	Leggermente inquinato		K8	3
	K9	4,3	Leggermente inquinato		K9	_
	K10	4,0	Leggermente inquinato		K10	3
I PL	E1	3,1	Moderatamente inquinato	III PL	E1	3
	E2	2,9	Moderatamente inquinato		E2	3
	E3	2,6	Moderatamente inquinato		E3	_
	E4	3,0	Moderatamente inquinato		E4	_
	E5	2,6	Moderatamente inquinato		E5	3
	E6	2,7	Moderatamente inquinato		E6	3
	E7	2,8	Moderatamente inquinato		E7	3
	K11	3,5	Leggermente inquinato		K11	3
	K12	3,3	Moderatamente inquinato		K12	3
	K13	3,0	Moderatamente inquinato		K13	3
	D1	4,5	Non inquinato		D1	4
	D2	4,2	Leggermente inquinato		D2	3
	D3	4,6	Non inquinato		D3	3
	D4	4,6	Non inquinato		D4	4
	D5 D6	4,2	Leggermente inquinato		D5	4
	D6 D7	4,3 4,1	Leggermente inquinato Leggermente inquinato		D6 D7	3
	K8	3,8	Leggermente inquinato		K8	3
	K9	3,1	Moderatamente inquinato		K9	3
II PL	K10	3,9	Leggermente inquinato	IV PL	K10	3
"'-	E1	2,8	Moderatamente inquinato	'*'-	E1	3
	E2	2,9	Moderatamente inquinato		E2	3
	E3 E4	2,8 2,7	Moderatamente inquinato Moderatamente inquinato		E3 E4	3 4
	E5	2,7	Moderatamente inquinato		E5	3
	E6	2,8	Moderatamente inquinato		E6	4
	E7	2,7	Moderatamente inquinato		E7	3
	K11	3,4	Moderatamente inquinato		K11	3
	K12	3,0	Moderatamente inquinato		K12	3
	K13	3,3	Moderatamente inquinato		K13	3

	Siti	Bentix	Classificazione del disturbo			
III PL	D1	4,3	Leggermente inquinato			
	D2	4,3	Leggermente inquinato			
	D3	4,2	Leggermente inquinato			
	D4	4,1	Leggermente inquinato			
	D5	4,3	Leggermente inquinato			
	D6	4,0	Leggermente inquinato			
	D7	4,4	Leggermente inquinato			
	K8	3,9	Leggermente inquinato			
	K9	4,0	Leggermente inquinato			
	K10	3,7	Leggermente inquinato			
	E1	3,3	Moderatamente inquinato			
	E2	3,3	Moderatamente inquinato			
	E3	4,0	Leggermente inquinato			
	E4	4,5	Non inquinato			
	E5	3,3	Moderatamente inquinato			
	E6	3,4	Moderatamente inquinato			
	E7	3,5	Leggermente inquinato			
	K11	3,4	Moderatamente inquinato			
	K12	3,5	Leggermente inquinato			
	K13	3,7	Leggermente inquinato			
	D1	4,61	Non inquinato			
	D2	3,90	Leggermente inquinato			
	D3	3,91	Leggermente inquinato			
IV PL	D4	4,99	Non inquinato			
	D5	4,02	Leggermente inquinato			
	D6	4,16	Leggermente inquinato			
	D7	3,86	Leggermente inquinato			
	K8 K9	3,80	Leggermente inquinato			
	K9 K10	3,76 3,78	Leggermente inquinato			
	F1	3,78	Leggermente inquinato Leggermente inquinato			
	E2	3,76	Leggermente inquinato			
	E3	3,71	Leggermente inquinato			
	E4	4,44	Leggermente inquinato			
	E5	3,92	Leggermente inquinato			
	E6	4,00	Leggermente inquinato			
	E7	3,77	Leggermente inquinato			
	K11	3,69	Leggermente inquinato			
	K12	3,91	Leggermente inquinato			
	K13	3,48	Moderatamente inquinato			

3.3.9.4 Stato ecologico


In Tab. 3-XXV è riportato lo stato ecologico relativo alle diverse stazioni derivato dalla combinazione dei tre indici, riassunto in fig. 3.18. Nella maggior parte dei casi è stato riscontrato uno stato ecologico tra il buono e il buono/moderato.

In particolare, nel pre-survey (eccetto K12), era presente uno stato ecologico buono. Tale stato era leggermente peggiorato nell'inverno 2010 (eccetto in K12 rimasto invariato). In estate, salvo qualche eccezione, non erano state avvertite variazioni nella maggior parte dei siti. Nell'inverno 2011 nell'area del transetto D è stato riscontrato un lieve peggioramento in D1, D3 e D4. I rispettivi controlli hanno presentato uno stato ecologico compatibile con quello del transetto. In quattro siti di E lo stato ecologico è passato da buono/moderato a moderato per la riduzione di *D. arietina*, che ha inciso soprattutto sui risultati dell'indice AMBI. Un miglioramento ha invece riguardato E4 (buono) e i controlli K12 e K13 (buono/moderato).

L'estate 2011 è stata invece caratterizzata da un miglioramento in tre siti del transetto D dove, in D1 e D3, è stato raggiunto per la prima volta uno stato ecologico alto/buono. Lungo E, invece, è stato evidenziato uno stato buono/moderato in 4 siti, indice questo di un miglioramento in E1 ed E2, ed è stato confermato lo stato buono in corrispondenza del sea-line; un netto miglioramento è infine avvenuto in E5 ed E6. Tutti i controlli hanno mostrato uno stato buono/moderato eccetto K13, in cui è stato raggiunto il peggior risultato di questo survey (moderato).

Tab. 3-XXV - Classificazione dello stato ecologico derivata dalla combinazione dei tre differenti indici.

ſ		w	BENTIX	AMBI	
	Siti	Classificazione del disturbo	Classificazione del disturbo	Classificazione del disturbo	Stato ecologico
PS -	D4	Moderatamente disturbato	Non inquinato	Leggermente disturbato	Buono
	K9	Moderatamente disturbato	Non inquinato	Leggermente disturbato	Buono
	E4 K12	Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato Moderatamente inquinato	Leggermente disturbato Leggermente disturbato	Buono Moderato
	D1	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	D2	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	D3	Leggermente disturbato	Leggermente inquinato	Leggermente disturbato	Buono
	D4 D5	Moderatamente disturbato	Leggermente inquinato Leggermente inquinato	Leggermente disturbato Leggermente disturbato	Buono/Moderato Buono/Moderato
	D6	Moderatamente disturbato Moderatamente disturbato	Non inquinato	Leggermente disturbato	Buono
	D7	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	K8	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	K9	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato Buono
I PL	K10 E1	Leggermente disturbato Moderatamente disturbato	Leggermente inquinato Moderatamente inquinato	Leggermente disturbato Non disturbato	Buono/Moderato
	E2	Moderatamente disturbato	Moderatamente inquinato	Non disturbato	Buono/Moderato
	E3	Moderatamente disturbato	Moderatamente inquinato	Non disturbato	Buono/Moderato
	E4	Moderatamente disturbato	Moderatamente inquinato	Non disturbato	Buono/Moderato
	E5 E6	Moderatamente disturbato Moderatamente disturbato	Moderatamente inquinato Moderatamente inquinato	Non disturbato Non disturbato	Buono/Moderato Buono/Moderato
	E7	Moderatamente disturbato	Moderatamente inquinato	Non disturbato	Buono/Moderato
	K11	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	K12	Moderatamente disturbato	Moderatamente inquinato	Leggermente disturbato	Moderato
	K13 D1	Moderatamente disturbato Leggermente disturbato	Moderatamente inquinato Non inquinato	Non disturbato Leggermente disturbato	Buono/Moderato Buono
	D1 D2	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato Leggermente disturbato	Buono/Moderato
	D3	Moderatamente disturbato	Non inquinato	Leggermente disturbato	Buono
	D4	Moderatamente disturbato	Non inquinato	Leggermente disturbato	Buono
	D5 D6	Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato Leggermente inquinato	Leggermente disturbato Leggermente disturbato	Buono/Moderato Buono/Moderato
	D7	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	K8	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	K9	Moderatamente disturbato	Moderatamente inquinato	Non disturbato	Buono/Moderato
II PL	K10 E1	Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato Moderatamente inquinato	Leggermente disturbato Non disturbato	Buono/Moderato Buono/Moderato
	E2	Moderatamente disturbato	Moderatamente inquinato	Non disturbato	Buono/Moderato
	E3	Moderatamente disturbato	Moderatamente inquinato	Non disturbato	Buono/Moderato
	E4 E5	Moderatamente disturbato Moderatamente disturbato	Moderatamente inquinato	Non disturbato Non disturbato	Buono/Moderato Buono/Moderato
	E6	Non disturbato	Moderatamente inquinato Moderatamente inquinato	Non disturbato	Buono
	E7	Moderatamente disturbato	Moderatamente inquinato	Non disturbato	Buono/Moderato
	K11	Moderatamente disturbato	Moderatamente inquinato	Leggermente disturbato	Moderato
	K12 K13	Moderatamente disturbato Moderatamente disturbato	Moderatamente inquinato Moderatamente inquinato	Leggermente disturbato Leggermente disturbato	Moderato Moderato
	D1	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	D2	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	D3 D4	Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato Leggermente inquinato	Leggermente disturbato Leggermente disturbato	Buono/Moderato Buono/Moderato
	D5	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	D6	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	D7 K8	Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato Leggermente inquinato	Leggermente disturbato Leggermente disturbato	Buono/Moderato Buono/Moderato
	K9	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
III PL	K10	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	E1 E2	Moderatamente disturbato Moderatamente disturbato	Moderatamente inquinato	Leggermente disturbato Leggermente disturbato	Moderato Moderato
	E2	Moderatamente disturbato	Moderatamente inquinato Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	E4	Moderatamente disturbato	Non inquinato	Non disturbato	Buono
	E5 E6	Moderatamente disturbato	Moderatamente inquinato	Leggermente disturbato	Moderato Moderato
	E6	Moderatamente disturbato Moderatamente disturbato	Moderatamente inquinato Leggermente inquinato	Leggermente disturbato Leggermente disturbato	Noderato Buono/Moderato
	K11	Moderatamente disturbato	Moderatamente inquinato	Leggermente disturbato	Moderato
	K12	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
D1	K13	Moderatamente disturbato Leggermente disturbato	Leggermente inquinato Non inquinato	Leggermente disturbato Non disturbato	Buono/Moderato Alto/Buono
	D2	Leggermente disturbato	Leggermente inquinato	Leggermente disturbato	Buono
	D3	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato
	D4	Leggermente disturbato	Non inquinato	Non disturbato	Alto/Buono
		Moderatamento disturbata		Leggermento disturbato	Rugno/Modorato
	D5 D6	Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato Leggermente inquinato	Leggermente disturbato Leggermente disturbato	Buono/Moderato Buono/Moderato
	D5 D6 D7	Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato Leggermente inquinato Leggermente inquinato	Leggermente disturbato Leggermente disturbato	Buono/Moderato Buono/Moderato
	D5 D6 D7 K8	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato Leggermente inquinato Leggermente inquinato Leggermente inquinato	Leggermente disturbato Leggermente disturbato Leggermente disturbato	Buono/Moderato Buono/Moderato Buono/Moderato
	D5 D6 D7 K8 K9	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato Leggermente inquinato Leggermente inquinato Leggermente inquinato Leggermente inquinato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato
IV PL	D5 D6 D7 K8	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato Leggermente inquinato Leggermente inquinato Leggermente inquinato	Leggermente disturbato Leggermente disturbato Leggermente disturbato	Buono/Moderato Buono/Moderato Buono/Moderato
IV PL	D5 D6 D7 K8 K9 K10 E1	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato
IV PL	D5 D6 D7 K8 K9 K10 E1 E2 E3	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato
IV PL	D5 D6 D7 K8 K9 K10 E1	Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato	Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato
IV PL	D5 D6 D7 K8 K9 K10 E1 E2 E3 E4 E5 E6	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato Non disturbato Non disturbato Non disturbato	Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono Buono Buono Buono
IV PL	D5 D6 D7 K8 K9 K10 E1 E2 E3 E4 E5 E6 E7	Moderatamente disturbato Leggermente disturbato Loggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato Non disturbato Non disturbato Non disturbato Leggermente disturbato	Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono Moderato Buono Buono Buono Buono Buono Buono
IV PL	D5 D6 D7 K8 K9 K10 E1 E2 E3 E4 E5 E6	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato	Leggermente inquinato	Leggermente disturbato Non disturbato Non disturbato Non disturbato	Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono/Moderato Buono Buono Buono Buono

Fig. 3.18 – Variazioni temporali dello stato ecologico derivato dalla combinazione dei tre differenti indici W, Ambi e Bentix. PS = pre-survey; PL: survey effettuati dopo la fine dei lavori di posa in opera del sea-line. M/P = moderato/povero; M = moderato; B/M = buono/moderato; B = buono; A/B = alto/buono; A = alto.

3.4. AVVISTAMENTI DI CETACEI E TARTARUGHE MARINE

Dal pre-survey al dicembre 2011 non sono stati avvistati né cetacei, né tartarughe marine nell'area interessata dal sea-line Annamaria B - Brenda.

4. CONCLUSIONI

In riferimento al GAB-DEC-2008-0000271 del 12/12/2008 emesso dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare il CNR-ISMAR Sede di Ancona è stato incaricato da ENI S.p.A. – Divisione E&P di effettuare un monitoraggio volto a valutare il potenziale impatto ambientale conseguente l'installazione della piattaforma Annamaria B e delle condotte sottomarine colleganti le piattaforme Annamaria B – Annamaria A e Annamaria B - Brenda.

Per quanto concerne i due sea-line, in base alle caratteristiche dell'area in cui essi sono stati installati e a quanto richiesto nella Specifica Tecnica SAOP 09/02 Rev. 1, si è ritenuto opportuno proporre un programma di monitoraggio volto a valutare gli impatti indotti dalle operazioni di posa in opera delle strutture comprendente lo studio delle caratteristiche sedimentologiche (fisiche, chimiche ed ecotossicologiche) e della comunità bentonica.

Al fine di ottenere un quadro esaustivo degli effetti indotti dall'installazione delle condotte sottomarine, sulla base della tempistica delle operazioni di posa in opera fornite da ENI Divisione E&P, nel programma di monitoraggio erano stati previsti due survey precedenti la posa in opera (pre-survey) e sei survey, da svolgersi durante le stagioni invernali ed estive nei tre anni di indagini successivi alla loro installazione. Non è stato possibile condurre il secondo pre-survey sulle aree destinate ad accogliere i sea-line previsto nell'estate 2009, poiché in quella stagione è avvenuta la posa delle condotte, ma soltanto uno che è stato effettuato nell'inverno 2009. Di conseguenza, i monitoraggi da eseguire dopo la fine dei lavori di posa in opera delle due condotte sottomarine sono iniziati nell'inverno 2010 (e non nell'estate 2010 come previsto inizialmente) e termineranno nell'estate 2012 anziché nell'inverno 2013. Il piano di campionamento ha previsto due transetti perpendicolari alla condotta sottomarina lungo ciascuno dei quali sono state posizionate 7 stazioni a distanze crescenti dal sea-line, oltre a 3 stazioni di controllo per ciascun transetto poste a una distanza tale da non esserne influenzate. Tutti i siti sono stati campionati per determinare le caratteristiche fisiche e chimiche dei sedimenti e per la descrizione dei popolamenti macrozoobentonici. Le analisi tossicologiche sono invece state effettuate su un numero limitato di stazioni.

Nel presente rapporto sono descritti i risultati relativi alle indagini sedimentologiche,

ecotossicologiche e sulla comunità bentonica conseguiti dal pre-survey (inverno 2009) al quarto monitoraggio condotto dopo l'installazione del sea-line Annamaria B - Brenda (estate 2011).

Caratteristiche sedimentologiche - Il sea-line Annamaria B - Brenda è collocato su un substrato costituito prevalentemente da sabbia che rappresenta oltre l'80% del sedimento. Nell'intero periodo di osservazione le caratteristiche granulometriche dei sedimenti non hanno subito sostanziali cambiamenti. La variazione maggiore era stata osservata nell'inverno 2010, ossia dopo le operazioni di posa in opera della condotta. In quella stagione era stato registrato un incremento di sabbia in corrispondenza del sea-line pari a circa l'8%, bilanciato da un decremento di silt e argilla. Nei restanti survey le variazioni sono sempre state di magnitudine inferiore a questa. Complessivamente, pertanto, la posa della condotta non ha modificato la tessitura dei sedimenti.

Per quanto riguarda il livello dei contaminanti (IPA e metalli pesanti) e la percentuale di sostanza organica, i dati suggeriscono che nell'area essi sono generalmente presenti in concentrazioni molto modeste. Le operazioni di posa in opera non sembrano aver modificato questa situazione. Inoltre, le poche variazioni osservate hanno interessato parallelamente transetti e siti di controllo, ad indicare che la condotta non ha effetti sulle loro dinamiche. Solo relativamente agli IPA, comunque presenti in quantitativi ben al di sotto dell'LCB, nell'estate 2011 è stato osservato un incremento che verrà meglio interpretato nei monitoraggi futuri.

Ecotossicologia –Nel quarto monitoraggio condotto dopo l'installazione del sea-line non sono stati evidenziati segnali di tossicità da parte di tutti i saggi ecotossicologici utilizzati. Anche i pochi effetti riscontrati nell'inverno precedente (*Acartia tonsa*, *Crassostrea gigas*) sono scomparsi. Il test di bioaccumulo con gli organismi appartenenti alla specie *Hediste diversicolor* ha comprovato che anche nell'estate 2011 la mobilità dei metalli nei sedimenti appartenenti all'area del sea-line è stata irrilevante e/o assente. L'unica eccezione riguarda l'arsenico, che è apparso ancora biodisponibile nei siti D6 (60 m a SSE), E4 (in corrispondenza della condotta) e nel controllo K12, anche se nuovamente in concentrazioni molto simili a quelle rilevate nel pre-survey. E' probabile che questo fenomeno sia legato alla naturale presenza di arsenico organico nei detriti che compongono il sedimento.

Comunità bentonica – In tutto il periodo di indagine, dal pre-survey al IV monitoraggio effettuato dopo la posa della condotta sottomarina (estate 2011), le comunità rinvenute sono risultate costituite prevalentemente da specie di fondo mobile, per lo più limicole, sabulicole, misticole o indicatrici della presenza di materia organica nei sedimenti, la maggior parte delle quali appartenente a policheti, crostacei e molluschi.

Nel pre-survey la comunità bentonica era in generale apparsa piuttosto ricca in termini di numero di individui e di specie e ben diversificata, non essendo presenti taxa preponderanti sugli altri (Fabi et al., 2009). La situazione si è mantenuta tale anche nel periodo post lavori, quando si è assistito sin dall'inizio, seppure con delle eccezioni, a un incremento di tutti gli indici biotici considerati. Tuttavia, nel primo anno successivo alla posa della struttura, lungo il transetto D e relativi controlli i popolamenti, salvo qualche rara eccezione, avevano continuato a essere caratterizzati dall'assenza di una specie fortemente dominante sulle altre, mentre lungo il transetto E e nei controlli corrispondenti è stato rinvenuto in quantità molto elevate il polichete Ditrupa arietina non censito precedentemente. D. arietina è un serpuloideo rivenibile su vari tipi di fondali (da sabbiosi a fangosi a granulometria mista) e a profondità comprese tra 0 e 150 m (Gambi e Giangrande, 1985; Ten Hove e Smith, 1990). La popolazione di questa specie, che appartiene alla Biocenosi dei fondi mobili instabili (Pèrés e Picard, 1964), è molto abbondante durante lo sviluppo di comunità di transizione che avviene a seguito di cambiamenti ambientali. La comparsa di questo polichete e le sue elevate quantità nella porzione del sea-line più prossima alla piattaforma Brenda erano molto probabilmente correlate, oltre ai lavori di posa della condotta, anche a una particolare e spazialmente limitata situazione ambientale presente in tale area, visto che questa specie era stata censita abbondantemente anche nei siti di riferimento corrispondenti e che non era stata rinvenuta o era risultata presente solo in quantità molto modeste nell'area del transetto D. La presenza di un maggiore disturbo attorno al transetto E e controlli era stata anche evidenziata dagli indici univariati utilizzati, che avevano quasi sempre presentato valori inferiori in quest'area. Secondo Pérès e Picard (1975), la presenza di specie associate ai sedimenti instabili è limitata sia spazialmente che temporalmente. In effetti, nel corso del secondo anno post lavori (2011) lungo E e nei suoi controlli si è verificato un notevole decremento di *D. arietina*.

Analogamente a quanto osservato lungo il sea-line Annamaria B – Annamaria A (Fabi et al., 2012), anche nell'area interessata dalla condotta Annamaria B – Brenda a partire dall'inverno 2011 è stata registrata per la prima volta la presenza di alcune specie coloniali, pertanto estremamente difficili da quantificare in termini di densità, ma particolarmente importanti dal punto di vista ponderale. Tra queste destano un certo interesse due briozoi, Cellaria salicornioides e, soprattutto, Amathia semiconvoluta, rinvenuti in inverno lungo tutto il transetto D eccetto a 100 m a SSE, nei controlli corrispondenti e, in quantitativi importanti, in E3 ed E4 lungo l'altro transetto posto verso Brenda. La loro presenza si è poi estesa nell'estate 2011 a tutta l'area indagata inclusi i controlli, pertanto non è imputabile alla presenza del sealine. Si tratta di organismi presenti a partire dalla batimetrica dei 25 m, con profondità ottimali tra 50 e 80 m (Moissette, 2000), che colonizzano generalmente conchiglie morte e fondi detritici (Cebrian e Ballesteros, 2004). Sono di piccole dimensioni (McKinney e Jaklin, 2001), ma spesso particolarmente abbondanti. Un aspetto interessante di queste praterie è che spesso presentano un'elevata biodiversità in termini di taxa associati (Cocito, 2004). Per quanto concerne l'Adriatico, esse sono presenti in Croazia, e nella letteratura scientifica non vi sono altre informazioni concernenti questo bacino. Tuttavia, dati provenienti da survey condotti dal CNR-ISMAR Ancona a partire dal 2005 nell'Adriatico centro-settentrionale, indicano la presenza di entrambe le specie anche in altre aree tra cui una zona nei pressi di Brenda e del sea-line per quanto concerne *C. salicornioides*.

La combinazione degli indici W, AMBI e BENTIX ha sottolineato nell'estate 2011 un miglioramento nella maggior parte del transetto D e in alcuni del transetto E tra cui la stazione sul sea-line dove è stato raggiunto uno stato ecologico buono. E' importante notare che è stata quasi sempre riscontrata una notevole omogeneità con i siti di controllo, suggerendo una scarsa o nulla influenza da parte della condotta sottomarina sulla qualità dell'ambiente biotico.

Avvistamenti di cetacei e tartarughe marine – A partire dal periodo di pre-survey sino al dicembre 2011 non si sono verificati avvistamenti di cetacei o tartarughe marine nell'area interessata dalla presenza del sea-line Annamaria B - Brenda.

5. BIBLIOGRAFIA

- Amiard J.C., C. Amiard-Triquet, B. Berthet, C. Mètaer. 1987. Comparative study of the patterns of bioaccumulation of essential (Cu, Zn) and non-essential (Cd, Pb) trace metals in various estuarine and costal organisms. *J. Exp. Mar. Biol. Ecol.*, 106: 73-89.
- Amouroux J.M. 1974. Etude des peuplements infralittoraux de la côte du Roussillon. *Vie Milieu*, 24 (1) sèr. B: 209-222.
- ASTM. 1998. Standard guide for determination of the bioaccumulation of sedimentassociated contaminants by benthic invertebrates. Standard ASTM E1688-97a. American Society for testing and materials, Philadelphia, PA.
- ASTM. 2004a. Standard guide for conducting static toxitcity tests with microalghe. ASTM E1218-04-E1.
- ASTM. 2004b. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs. ASTM E724 98.
- Augier H. 1992. *Inventaire et classification des biocenoses marines benthique de la Méditerranée*. Conseil de l'Europe. U.E.R. Des Sciences de la Mer et de l'Environnement de Luminy Marseille. 59 pp.
- Azur Environmental. 1994. Microtox® M500 manual (A toxicity testing handbook).
- Bellan Santini D., Ledoyer M. 1972. Inventaire des amphipodes gammariens récoltés dans la Région de Marseille. *Tethys*, 4 (4): 899-934.
- Bellan G., Bellan Santini D., Picard J. 1980. Mise en évidence de modèles eco-biologiques dans des zones soumises à perturbations par matières organiques. *Oceanol. Acta*, 3: 383-390.
- Bettencourt A., Bricker S.B., Ferriera J.G., Franco A., Marques J.C., Melo J.J., Nobre A., Ramos L., Reis C.S., Salas F., Silva M.C., Simas T., Wolff W. 2004. *Typology and reference conditions for Portuguese transitional and coastal waters*. Instituto da Agua. Instituto do Mar, Lisbon. 98 pp.
- Bianchi C.N., Ceppodomo I., Galli C., Sgorbini S., Dell'Amico F., Morri C. 1993. Benthos dei mari toscani. I: Livorno Isola d'Elba (Crociera ENEA 1985). *ENEA Arcipelago Toscano Serie Studi Ambientali*: 263-291.
- Borja A., Franco J., Pérez V. 2000. A narine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environment. *Mar. Poll. Bull.*, 40 (12): 1100-1114.
- Borja A., Mader J. 2008. *Instructions for the use of the AMBI index software (version 4.1)*. AZTI-Tecnalia. 13 pp.
- Bourcier M., Nodot C., Jeudy De Grissac A., Tine J. 1979. Répartition des biocénoses benthiques en fonction des substrats sédimentaires de la rade de Toulon (France). *Tethys*, 9: 103-112.
- Bourg A.C.M. 1988. Metal in aquatic and terrestrial systems: Sorption, speciation, and mobilization. Pagg. 3-32, *in*: Salomons W., Forstner U. (Eds.), *Chemistry and biology of solid waste*. Berlin, Springer-Verlag.
- Bryan G.W., Gibbs P.E. 1987. Polychaetes as indicators of heavymetal availability in marine deposits. Pagg 37-49, *in*: Capuzzo J.M. Kester D.R. (Eds.), *Oceanic Processes in Marine Pollution*, Krieger Publishing Company, Malabar, FL.

- Bryan G.W., Langston W.J. 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special references to UK estuaries: a review. *Environ. Pollut.*, 76: 89-131.
- Cebrian E., Ballesteros E. 2004. Zonation patterns of benthic communities in an upwelling area from the western Mediterranean (La Herradura, Alboran Sea). *Sci. Mar.*, 68 (1): 69-84.
- Chimenz Gusso C., Gravina M.F., Maggiore F.R. 2001. Temporal variations in soft bottom benthic communities in Central Tyrrhenian Sea (Italy). *Archo Oceanogr. Limnol.*, 22: 175-182.
- Christensen E.R., Kusk K.O., Nyholm N. 2009. Dose-response regressions for algal growth and similar continuous endpoints: calculation of effective concentrations. *Environ. Toxicol. Chem.*, 28: 826-835.
- Clarke K.R., Warwick R.M. 1994. Change in marine communities: an approach to statistical analysis and interpretation. *Natural Environment Research Council*, 140 (2). 144 pp.
- Cocito S. 2004. Bioconstruction and biodiversity: their mutual influence. *Sci. Mar.*, 68 (1): 137-144.
- Craeymeersch J.A. 1991. Applicability of the abundance/biomass comparison method to detect pollution effects on intertidal macrobenthic communities. *Hydrobiol. Bull.*, 24 (2): 133-140.
- EC. 2003. Towards a guidance on establishment of the intercalibration network and the processes on the intercalibration exercise. CIS Working Group 2.5 (Intercalibration), Common Implementation Strategy of the Water Framework Directive, European Commission. 54 pp.
- EPA. 1993. Guidance manual, Bedded sediment Bioaccumulation Tests. EPA/600/R-93/183. 246 pp.
- EPA. 1995. Short term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms. EPA/600/R-95-136. 15 pp.
- EPA. 2007a. Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. EPA METHOD 7473. 15 pp.
- EPA. 2007b. *Graphite furnace atomic absorption spectrophotometry*. EPA METHOD 7010. 24 pp.
- EPA. 2007c. *Inductively coupled plasma-atomic emission spectrometry*. EPA METHOD 6010C. 34 pp.
- Fabi G., De Ranieri S., Nasci C., Spagnolo A. 2009. Servizi di monitoraggio ambientale Campo Annamaria B. Monitoraggio dell'area interessata dall'installazione del sealine Annamaria A Brenda Pre-survey (gennaio-febbraio 2009). Indagini fisiche e chimiche dei sedimenti, ecotossicologia e indagini sulla comunità bentonica. Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 53 + XII pp.
- Fabi G., De Ranieri S., Nasci C., Spagnolo A. 2012. Servizi di monitoraggio ambientale Campo Annamaria B. Monitoraggio dell'area interessata dall'installazione del sealine Annamaria B Annamaria A IV survey dopo i lavori di installazione (II semestre 2011). Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 120 + XX pp.
- Gambi M.C., Giangrande A. 1985. Caratterizzazione e distribuzione delle categorie trofiche dei policheti nei fondi mobili del Golfo di Salerno. *Oebalia*, 11: 223-240.
- ICRAM. 2001. Metodologie analitiche di riferimento. Programma di monitoraggio per il

- controllo dell'ambiente marino-costiero (triennio 2001-2003).
- ICRAM-APAT. 2007. Manuale per la movimentazione dei sedimenti marini. 72 pp.
- ISO. 2005. Water quality determination of acute toxicity of marine or estuarine sediment to amphipods. ISO 16712:2005(E). 15 pp.
- Jenkins K.D., Howe S., Sanders B.M., Norwood C. 1989. Sediment deposition, biological accumulation and subcellular distribution of barium following drilling of an exploratory well. Pagg. 587-608, *in*: Engelhardt F.R., Ray J.P., Gillam A.H. (Eds.), *Drilling Wastes*. Eselvier Applied Sciences, London.
- Kusk, K.O., Wollenberger L. 1999. Fully defined saltwater medium for cultivation of and toxicity testing with the marine copepod *Acartia tonsa*. *Environ*. *Toxicol*. *Chem.*, 18: 1564-1567.
- Kusk, K.O., Wollenberger L. 2007. Towards an internationally harmonized test method for reproductive and developmental effects of endocrine disrupters in marine copepods. *Ecotoxicology*, 16: 183-195.
- Langston W.J. 1980. Arsenic in U.K. estuarine sediments and its availability to benthonic organisms. *J. Mar. Biol. Ass. U.K.*, 60: 869-881.
- Langston W.J. 1984. Availability of arsenic to estuarine and marine organisms: A field and laboratory evaluation. *Mar Bio1*., 80: 143-154.
- Lee H. 1998. Methods for Assessing Sediment Bioaccumulation in Marine/Estuarine Benthic Organisms. Proceedings of National Sediment Bioaccumulation Conference. U.S. EPA. 10 pp.
- Losso C., Picone M., Arizzi Novelli A., Delaney E., Ghetti P.F., Volpi Ghirardini A. 2007. Developing toxicity scores for embryotoxicity tests on elutriates with the sea urchin *Paracentrotus lividus*, the oyster *Crassostrea gigas* and the mussel *Mytilus galloprovincialis*. *Arch. Environ. Contam. Toxicol.*, 53: 220–226.
- Luoma S.N., Bryan G.W. 1982. A statistical study of environmental factors controlling concentrations of heavy metals in the burrowing bivalve *Scrobicularia plana* and the polychaete *Nereis diversicolor. Esuar. Coast Shelf S.*, 15: 95-108.
- May R.M. 1979. Patterns of Species Abundance and Diversity. *In* Cody M.L. and Diamond J.M. (Eds). *Ecology and Evolution of Communities*, 4: 81-120.
- McKinney F., Jaklin A. 2001. Sediment accumulation in a shallow-water meadow carpeted by a small erect bryozoan. *Sedim. Geol.*, 145: 397-410.
- Moissette P. 2000. Changes in bryozoan assemblages and bathymetric variations. Examples form Messinian of northwest Algeria. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 155: 305-326.
- Muxika I., Borja A., Bonne W. 2005. The suitability of the marine biotic incex (AMBI) to new impact sources along European coasts. *Ecological Indicators*, 5: 19-31.
- Muxika I., Borja A., Bald J. 2007. Using historical data, export judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Framework Directive. *Mar. Poll. Bull.*, 55: 13-29.
- Neff J.M. 2002. Bioaccumulation in marine organisms. Effect of Contaminants from Oil Well Produced Water. Elsevier Ltd.Oxford UK. 452 pp.
- Nodot C., Bourcier M., Juedy De Grissac A., Hursner S., Regis J., Tine J. 1984. Répartition des biocenoses benthiques en fonction des substrats sédimentaires de la rade de Toulon (France). 2. La Grande Rade. *Tethys*, 11: 141-153.

- Onorati F. 1999. Valutazione della tossicità naturale nel saggio Microtox in fase solida. La normalizzazione pelitica. *Acqua&Aria*, 83-89.
- Onorati F, Bandini F., Brilli L., Bellaria V., Castiglioni S., Celetti A.M., Comin S., Di Gioia E., Fabbri S., Facchini L., Ferrara M., Guerra R., Leoni T., Lo Re R., Manzo S., Martini P., Mascilongo G., Meloni P., Meineri V., Milani S., Molina M., Rossi E., Ruggiero G., Sanguinetti M.S., Tamberlich F., Traldi D., Trichilo S. 2007. Interconfronto nazionale sul test di inibizione della bioluminescenza mediante *Vibrio fischeri. Biol. Mar. Medit.*, 14(1): 87-91
- Pérès J.M., Picard J. 1964. Nouveau Manuel de Bionomie benthique de la Mer Mediterranée. *Recl. Trav. St. Mar. Endoume*, 31 (47). 137 pp.
- Pérès J.M., Picard J. 1975. Note préliminaire sur une communauté bentique récemment mise en évidence : la biocénose à *Dentalium rubescens* Desh. et *Lucina (Miltha) borealis* Lin. *Recl. Trav. St. Mar. Endoume.*, 52: 1-160.
- Pianka E.R. 1970. On r- and k-selection. Amer. Nat., 104: 592-597.
- Picone M. 2006. *Using a set of bioassays for monitoring sediment quality in the Lagoon of Venice*. Ph.D. thesis, Ca' Foscari Università di Venezia. 197 pp.
- Pielou E.C. 1974. *Population and Community Ecology: Principles and Methods*. Gordon and Breach Sci. Pubbl., New York. 424 pp.
- Poppe G.T., Goto Y. 1991. European Seashells (Polyplacophora, Caudofoveata, Solenogastra, Gastropoda). Vol. 1. Pubbl. by V.C. Hemmen, Grillparzerstr. 22, D-6200 Wiesbaden, Federal Republic of Germany. 352 pp.
- Poppe G.T., Goto Y. 1993. European seashells. Vol. II (Scaphopoda, Bivalvia, Cephalopoda). Hemmen V.C. (Ed.), Germany. 221 pp.
- Richard F. C. and Bourg A. C. M. (1991) Aqueous geochemistry of chromium: a review. *Wat. Res.*, 25, 807-816.
- Rinelli P., Spanò N. 1997. Distribuzione di crostacei decapodi ed echinodermi di ambienti detritici insulari. *Biol. Mar. Medit.*, 4: 440-442.
- Reimer K.J., Thompson J.A. 1988. Arsenic speciation in marine interstitial water. The occurrence of organoarsenicals. *Biochem.*, 6: 211-237.
- Richard F.C., Bourg A.C.M. 1991. Aqueous geochemistry of chromium: a review. *Water Res.*, 25: 807-816.
- Salen-Picard C. 1985. Indicateurs biologiques et sedimentation en milieu circalitoral Mediterraneen. *Rapp. p. v. Réu. Comm. Int. pour l'Explor. Sci. Mer Médit.*, 29: 5.
- Simboura N., Zenetos A. 2002. Benthic indicators to use in ecological quality classification of Mediterranean soft bottom marine ecosystem, including a new biotic index. *Mediterr. Mar. Sci.*, 3: 77-111.
- Simboura N., Panayitudus P., Papathanassiou E. 2005. A synthesis of the biological quality elements for the implementation of the European Water Framework Directive in the Mediterranean Ecoregion: the case of Saronikos Gulf. *Ecol. Ind.*, 5: 253-266.
- Ten Hove H.A., Smith R.S. 1990. A redescription of *Ditrupa gracillina* Grube, 1878 (Polychaeta, Serpulidae) from Indo-Pacific, with a discussion of the genus. *Records of Australian Museum*, 42: 101-118.
- Teixeira H., Salas F., Pardal M.A., Marques J.C. 2007. Applicability of ecological evaluation tools in estuarine ecosystem: a case of the lower Mondego estuary (Portugal). *Hydrobiologia*, 587: 101-112.

- UNI EN ISO. 2000. Saggio di inibizione della crescita di alghe marine con Skeletonema costatum e Phaeodactylum tricornutum. UNI EN ISO 10253:2000. 14 pp.
- USEPA. 1991. Short-term methods for estimating the cronic toxicity of effluents and receiving waters to freshwater organisms -Section 14- Green alga Selenastrum capricornutum growth test Method 1003.0. EPA/600/4-91/002. 370 pp.
- USEPA. 1995. Short-term methods for estimating the chronic toxicity of effluent and receiving waters to west coast marine and estuarine organisms. EPA/600/R-95/136. 15 pp.
- Zenetos A., Chadjianestis I., Lantzoumi M., Simboura M., Sklivagou E., Arvanitakis G. 2004a. The Eurobulker oil spill: mid-term changes of some ecosystem indicators. *Mar. Poll. Bull.*, 48: 12-131.
- Zenetos A., Bellou N., Abousamra F. 2004b. The use of BENTIX in Assessing Ecological Quality of coastal waters across the Mediterranean. *Proceedings of an international workshop on the promotion and use of benthic tools for assessing the healt of coastal marine ecosystems. Intergovernmental Oceanographic Commission. Workshop Report n. 195.*: 19-22.

ALLEGATO A

SCHEDE TECNICHE DELLA STRUMENTAZIONE UTILIZZATA NELLE INDAGINI

<u>A1</u>

INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI

A1-I BOX-CORER per il prelievo dei campioni

Materiale	Dimensione scatola campionatore (cm)	
Ferro zincato	17x10x24,5h	

A1-II BILANCIA ELETTRONICA

Strumento Costruttore		Modello	Sensibilità	Capacità
Bilancia elettronica	Gibertini Elettronica S.r.l.	EU 2000	±0,01 g	1000 g

Le bilance elettroniche sono sensibili all'accelerazione di gravità; pertanto, in accordo con la direttiva 90/384, devono essere calibrate nel luogo di utilizzo con masse tarate in classe F1 che corrispondono a un peso di 200 g.

A1-III STUFA TERMOSTATA "HIGH PERFORMANCE"

Strumento	Costruttore	Modello	Capacità (litri)	Temperatura (°C)	Precisione (°C)
Stufa termostata	F.lli Galli G&P	2100	96	50 – 300	±2

Ogni sei mesi viene inserito un termometro per verificare che la temperatura della stufa resti costante. La lettura del termometro viene eseguita ogni 45 minuti per una durata totale della prova di 3 ore. E' accettata una variazione di 2°C rispetto alla temperatura iniziale.

A1-IV SETACCI

Strumento	Costruttore	Serie	Materiale	Diametro (mm)	Dimensione delle maglie (μ)
Setacci normalizzati	Giuliani Teconologie S.r.l.	ASTM	acciaio inox	100 - 200	63, 125, 250, 500, 1000, 2000, 4000

Periodicamente si verifica che le maglie abbiano mantenuto le dimensioni e la forma originaria e si testa la regolarità delle saldature.

A1-V DENSIMETRO

Strumento	Costruttore	Serie	Scala (ml)	Divisione (ml)	Zavorra	Taratura (°F)
Densimetro per terreni	Vetrotecnica	Normale ASTM	0,995 – 1,040	0,001	piombo	68/68

Lo strumento non necessita di verifica e taratura. Viene sostituito quando la scala graduata non è più visibile.

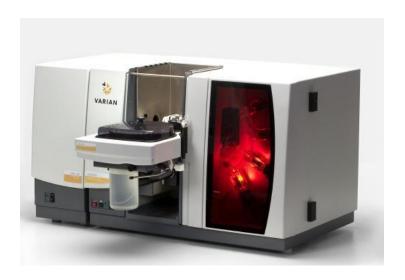
A1-VI GAS-CROMATOGRAFO DOPPIA COLONNA, RIVELATORE FID - PERKIN ELMER SIGMA3B – DUAL FID

Il controllo interno della taratura dello strumento viene effettuato preliminarmente all'avvio di ogni indagine commissionata. Il controllo esterno e l'eventuale taratura ordinaria sono condotti annualmente da un Tecnico incaricato dalla Ditta costruttrice, quando il controllo interno risulta sfavorevole. L'ultimo controllo ordinario da parte di un Tecnico Perkin Elmer è avvenuto nel giugno 2004.

QUANTIFICAZIONE DEI METALLI PESANTI NEI SEDIMENTI

Prima dell'analisi di ogni metallo viene eseguita una retta di calibrazione (ottenuta per diluizioni successive), idonea alle concentrazioni dei campioni da determinare, mediante l'impiego di soluzioni standard mono o multielemento a concentrazione nota.

Tutti i parametri strumentali sono inoltre ottimizzati tramite una risposta tipica strumentale conforme a quella fornita dalla casa costruttrice.


A1-VII DMA 80 per la misurazione del MERCURIO

Consente di effettuare analisi per la determinazione diretta del contenuto di mercurio su matrici di varia natura, senza che si rendano necessari trattamenti chimici del campione.

A1-VIII VARIAN SPECTRA AA-240 Z per la misurazione di CADMIO e PIOMBO E ARSENICO

Spettrofotometro ad assorbimento atomico usato mediante l'impiego del fornetto di grafite con piattaforma pirolitica. La correzione del rumore di fondo è assicurata dalla correzione di background transversa "Zeeman" e dall'interpolazione polinomiale per la correzione delle interferenze. Al fine di ridurre il rumore di fondo e il limite di rivelabilità e di incrementare la sensibilità vengono utilizzate lampade monoelemento a catodo cavo.

A1-IX VARIAN ICP-720ES per la misurazione di ALLUMINIO, BARIO, CROMO, NICHEL, RAME, VANADIO e ZINCO

Spettrofotometro ad emissione atomica al plasma ad accoppiamento induttivo (ICP) e lettura sequenziale. Il sistema di raccolta della radiazione emessa dal plasma è di tipo assiale. Il generatore di radiofrequenze è 40 MHz. Per il raffreddamento del plasma viene impiegato argon ultrapuro.

A2 INDAGINI SULLA COMUNITA' BENTONICA

A2-I BENNA VAN VEEN

Materiale	superficie di sedimento campionata (m²)
Acciaio	0,095

A2-II SETACCIO

Materiale	Lato maglia (mm)	
Acciaio inox	0,5	

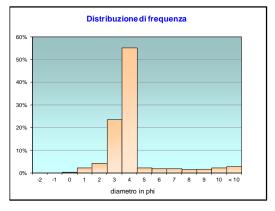
A2-III MICROSCOPIO STEREO ZEISS STEMI 2000-C

Range dello zoom: 0,65x...5,0x.

A2-IV MICROSCOPIO OTTICO ZEISS AXIOLAB

Obiettivi in dotazione: 10x, 40x, 100x.

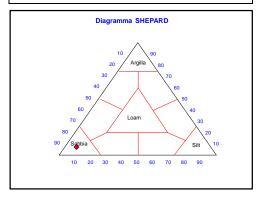
A2-V BILANCIA ANALITICA

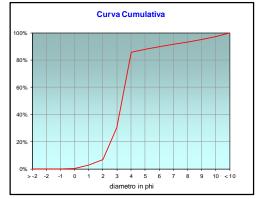

Strumento	Strumento Costruttore		Risoluzione	Capacità
Bilancia elettronica	Mettler Toledo	ML204	0,0001 g	220 g

Parametri Fisici		
Peso secco (g)	Ps	178,49
Peso umido (g)	Pu	231,04
Peso specifico	G	n.d.
Peso di volume (g/cm3)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,65	0	1000	0,37%	0,37%
	4,13	1	500	2,32%	2,68%
Sabbia	7,60	2	250	4,26%	6,94%
	42,00	3	125	23,53%	30,47%
	98,41	4	62,5	55,13%	85,60%
	4,15	5	31	2,32%	87,93%
Limo	3,38	6	15,6	1,89%	89,82%
LIIIO	3,39	7	7,8	1,90%	91,72%
	2,55	8	3,9	1,43%	93,15%
	3,15	9	2,0	1,76%	94,92%
Argilla	3,94	10	0,98	2,21%	97,13%
	5,13	< 10	< 0,98	2,87%	######

	Classificazione				
Shepard SABBIA					
Wentworth SA - FI - MA					
Classazione	moderatamente classato				
Asimmetria	asimmetrica negativa				
Appuntimento molto leptocurtica					

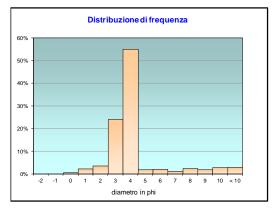



Parametri Statistici						
Media	M_{ϕ}	3,24				
Classazione	σ_{φ}	0,79				
Asimmetria	$S_{k\phi}$	-0,11				
Appuntimento	K _G	2,96				
Mediana	Md	3,35				

Percentile	•
5°	1,54
16°	2,39
25°	2,77
50°	3,35
75°	3,81
84°	3,97
95°	9,05

Classe granulometrica						
Ghiaia Sabbia Limo Argilla						
0,00% 85,60% 7,55% 6,85%						

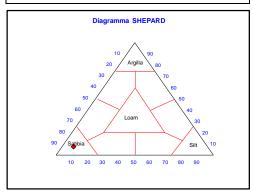
Note	
7,84 g di materiale organogeno (conchiglie)	

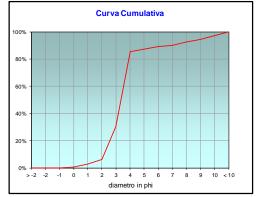


Parametri Fisici			
Peso secco (g)	Ps	175,70	
Peso umido (g)	Pu	222,03	
Peso specifico	G	n.d.	
Peso di volume (g/cm³)	γ	n.d.	
Peso di vol. secco (g/cm3)	γd	n.d.	
Umidità (%)	W	n.d.	

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,92	0	1000	0,52%	0,52%
	3,80	1	500	2,16%	2,69%
Sabbia	6,28	2	250	3,58%	6,26%
	42,30	3	125	24,08%	30,34%
	96,55	4	62,5	54,95%	85,29%
	3,29	5	31	1,87%	87,16%
Limo	3,44	6	15,6	1,96%	89,12%
Liiio	1,89	7	7,8	1,08%	90,19%
	4,10	8	3,9	2,34%	92,53%
	3,18	9	2,0	1,81%	94,34%
Argilla	4,79	10	0,98	2,72%	97,06%
	5,16	< 10	< 0,98	2,94%	######

Classificazione		
Shepard	SABBIA	
Wentworth SA - FI - MA		
Classazione	moderatamente classato	
Asimmetria	asimmetrica negativa	
Appuntimento	estremamente leptocurtica	

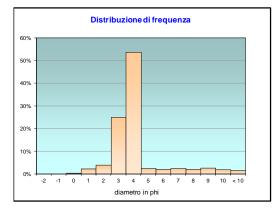



Parametri Statistici		
Media	M_{ϕ}	3,25
Classazione	σ_{φ}	0,79
Asimmetria	$S_{k\phi}$	-0,11
Appuntimento	K _G	3,06
Mediana	Md	3,36

Percentile	ф
5°	1,65
16°	2,40
25°	2,78
50°	3,36
75°	3,81
84°	3,98
95°	9,37

Classe granulometrica				
Ghiaia	Sabbia	Limo	Argilla	
0,00%	85,29%	7,24%	7,47%	

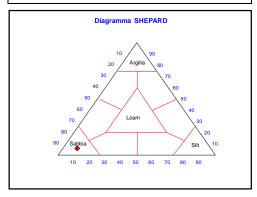
Note	
8,52 g di materiale organogeno (conchiglie)	

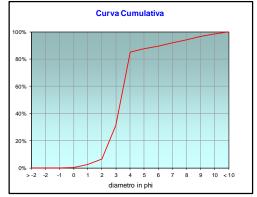


Parametri Fisici			
Peso secco (g)	Ps	178,65	
Peso umido (g)	Pu	223,55	
Peso specifico	G	n.d.	
Peso di volume (g/cm ³)	γ	n.d.	
Peso di vol. secco (g/cm3)	γd	n.d.	
Umidità (%)	W	n.d.	
· · · · · · · · · · · · · · · · · · ·	I -		

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,61	0	1000	0,34%	0,34%
	3,93	1	500	2,20%	2,54%
Sabbia	6,84	2	250	3,83%	6,37%
	44,60	3	125	24,97%	31,34%
	95,91	4	62,5	53,69%	85,02%
	4,32	5	31	2,42%	87,44%
Limo	3,52	6	15,6	1,97%	89,41%
Liiio	4,47	7	7,8	2,50%	91,91%
	3,74	8	3,9	2,09%	94,00%
	4,62	9	2,0	2,58%	96,59%
Argilla	3,35	10	0,98	1,88%	98,46%
	2,74	< 10	< 0,98	1,54%	######

Classificazione	
Shepard	SABBIA
Wentworth	SA - FI - MA
Classazione	moderatamente classato
Asimmetria	asimmetrica negativa
Appuntimento	molto leptocurtica

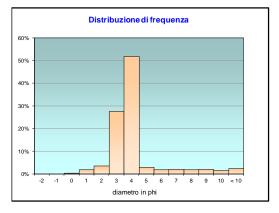



Parametri Statistici		
Media	M_{ϕ}	3,24
Classazione	σ_{φ}	0,80
Asimmetria	$S_{k\phi}$	-0,10
Appuntimento	K _G	2,59
Mediana	Md	3,35
-		

Percentile	ф
5°	1,64
16°	2,39
25°	2,75
50°	3,35
75°	3,81
84°	3,98
95°	8,39

	Classe gran	ulometrica	
Ghiaia	Sabbia	Limo	Argilla
0,00%	85,02%	8,98%	6,00%

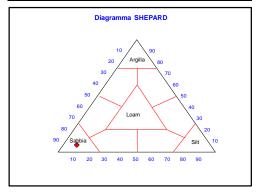
Note	
6,57 g di materiale organogeno (conchiglie)	

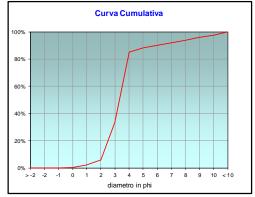


Parametri Fisici		
Peso secco (g)	Ps	174,73
Peso umido (g)	Pu	218,51
Peso specifico	G	n.d.
Peso di volume (g/cm ³)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,66	0	1000	0,38%	0,38%
	3,26	1	500	1,87%	2,24%
Sabbia	6,22	2	250	3,56%	5,80%
	48,22	3	125	27,60%	33,40%
	90,44	4	62,5	51,76%	85,16%
	5,06	5	31	2,90%	88,06%
Limo	3,38	6	15,6	1,93%	89,99%
Liiio	3,49	7	7,8	2,00%	91,99%
	3,32	8	3,9	1,90%	93,88%
Argilla	3,70	9	2,0	2,12%	96,00%
	2,70	10	0,98	1,55%	97,55%
	4,28	< 10	< 0,98	2,45%	######

Classificazione	
Shepard	SABBIA
Wentworth	SA - FI - MA
Classazione	moderatamente classato
Asimmetria	simmetrica
Appuntimento	molto leptocurtica

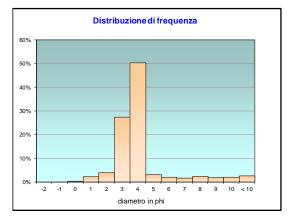



Parametri Statistici		
Media	M_{ϕ}	3,22
Classazione	σ_{φ}	0,80
Asimmetria	$S_{k\phi}$	-0,09
Appuntimento	K _G	2,50
Mediana	Md	3,32
-		

Percentile	ф
5°	1,77
16°	2,37
25°	2,70
50°	3,32
75°	3,80
84°	3,98
95°	8,53

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	85,16%	8,72%	6,12%

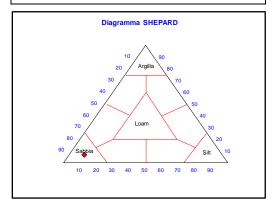
Note
6,82 g di materiale organogeno (conchiglie)

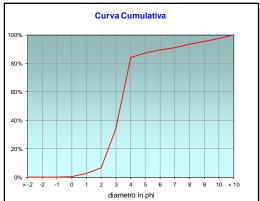


Parametri Fisici		
Peso secco (g)	Ps	179,51
Peso umido (g)	Pu	224,22
Peso specifico	G	n.d.
Peso di volume (g/cm ³)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,58	0	1000	0,32%	0,32%
	4,07	1	500	2,27%	2,59%
Sabbia	6,92	2	250	3,86%	6,44%
	49,20	3	125	27,41%	33,85%
	90,45	4	62,5	50,39%	84,24%
	5,52	5	31	3,08%	87,32%
Limo	3,68	6	15,6	2,05%	89,37%
Lillo	2,93	7	7,8	1,63%	91,00%
	4,49	8	3,9	2,50%	93,51%
	3,45	9	2,0	1,92%	95,43%
Argilla	3,54	10	0,98	1,97%	97,40%
	4,67	< 10	< 0,98	2,60%	######

Classificazione		
Shepard	SABBIA	
Wentworth	SA - FI - MA	
Classazione	moderatamente classato	
Asimmetria	simmetrica	
Appuntimento	molto leptocurtica	

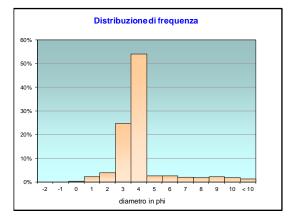



Parametri Statistici		
Media	M _φ	3,22
Classazione	σ_{φ}	0,82
Asimmetria	$S_{k\phi}$	-0,09
Appuntimento	K _G	2,57
Mediana	Md	3,32

Percentile	•
5°	1,63
16°	2,35
25°	2,68
50°	3,32
75°	3,82
84°	4,00
95°	8,78

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	84,24%	9,27%	6,49%

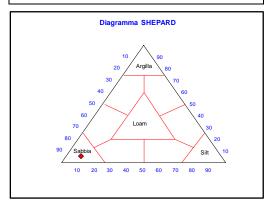
Note
7 g di materiale organogeno (conchiglie)

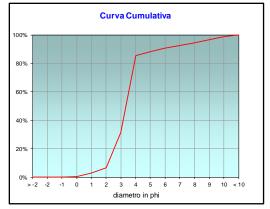


Parametri Fi	sici	
Peso secco (g)	Ps	177,84
Peso umido (g)	Pu	217,78
Peso specifico	G	n.d.
Peso di volume (g/cm3)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,73	0	1000	0,41%	0,41%
	4,13	1	500	2,32%	2,73%
Sabbia	6,80	2	250	3,82%	6,55%
	44,12	3	125	24,81%	31,36%
	96,23	4	62,5	54,11%	85,48%
	4,61	5	31	2,59%	88,07%
Limo	4,63	6	15,6	2,60%	90,67%
Lillo	3,48	7	7,8	1,96%	92,63%
	3,29	8	3,9	1,85%	94,47%
	3,94	9	2,0	2,22%	96,69%
Argilla	3,43	10	0,98	1,93%	98,62%
	2,45	< 10	< 0,98	1,38%	######

Classificazione		
Shepard	SABBIA	
Wentworth	SA - FI - MA	
Classazione	moderatamente classato	
Asimmetria	asimmetrica negativa	
Appuntimento	molto leptocurtica	

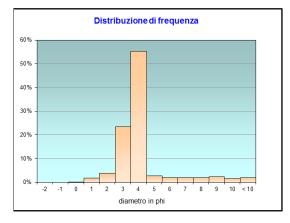



Parametri Statistici		
Media	Mφ	3,23
Classazione	σ_{φ}	0,80
Asimmetria	$S_{k\phi}$	-0,11
Appuntimento	K _G	2,56
Mediana	Md	3,34

Percentile	ф
5°	1,59
16°	2,38
25°	2,74
50°	3,34
75°	3,81
84°	3,97
95°	8,24

Classe granulometrica				
Ghiaia	Sabbia	Limo	Argilla	
0,00%	85,48%	9,00%	5,53%	

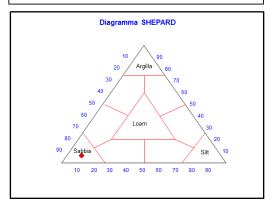
Note
7,77 g di materiale organogeno (conchiglie)

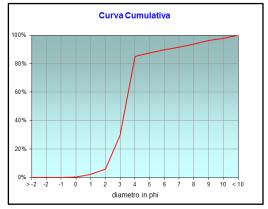


Parametri Fisici				
Peso secco (g)	Ps	172,29		
Peso umido (g)	Pu	222,72		
Peso specifico	G	n.d.		
Peso di volume (g/cm³)	γ	n.d.		
Peso di vol. secco (g/cm ³)	γd	n.d.		
Umidità (%)	W	n.d.		

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,42	0	1000	0,25%	0,25%
	3,27	1	500	1,90%	2,14%
Sabbia	6,71	2	250	3,89%	6,04%
	40,55	3	125	23,54%	29,57%
	95,44	4	62,5	55,40%	84,97%
	4,67	5	31	2,71%	87,68%
Limo	3,43	6	15,6	1,99%	89,67%
Limo	3,55	7	7,8	2,06%	91,73%
	3,68	8	3,9	2,14%	93,87%
Argilla	4,26	9	2,0	2,47%	96,34%
	2,73	10	0,98	1,59%	97,93%
	3,57	< 10	< 0,98	2,07%	######

Classificazione		
Shepard	SABBIA	
Wentworth	SA - FI - MA	
Classazione	moderatamente classato	
Asimmetria	asimmetrica negativa	
Appuntimento	molto leptocurtica	

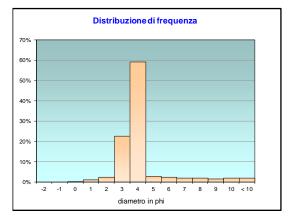



Parametri Statistici			
Media	M _φ	3,26	
Classazione	σ_{φ}	0,78	
Asimmetria	$S_{k\phi}$	-0,11	
Appuntimento	K _G	2,72	
Mediana	Md	3,37	

Percentile	ф
5°	1,73
16°	2,42
25°	2,81
50°	3,37
75°	3,82
84°	3,98
95°	8,46

Classe granulometrica				
Ghiaia	Sabbia	Limo	Argilla	
0,00%	84,97%	8,90%	6,13%	

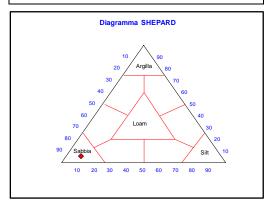
Note
5,94 g di materiale organogeno (conchiglie)

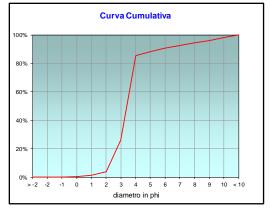


Parametri Fisici		
Peso secco (g)	Ps	180,00
Peso umido (g)	Pu	220,76
Peso specifico	G	n.d.
Peso di volume (g/cm ³)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,38	0	1000	0,21%	0,21%
	1,97	1	500	1,09%	1,30%
Sabbia	4,24	2	250	2,36%	3,66%
	40,59	3	125	22,55%	26,21%
	106,56	4	62,5	59,20%	85,41%
	5,13	5	31	2,85%	88,26%
Limo	4,14	6	15,6	2,30%	90,56%
Lillo	3,66	7	7,8	2,03%	92,59%
	3,34	8	3,9	1,86%	94,45%
	2,92	9	2,0	1,62%	96,07%
Argilla	3,66	10	0,98	2,03%	98,11%
	3,41	< 10	< 0,98	1,89%	######

Classificazione		
Shepard	SABBIA	
Wentworth	SA - FI - MA	
Classazione	moderatamente classato	
Asimmetria	simmetrica	
Appuntimento	to molto leptocurtica	

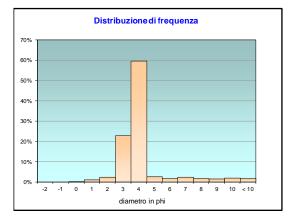



Parametri Statistici		
Media	M _φ	3,31
Classazione	σ_{φ}	0,71
Asimmetria	$S_{k\phi}$	-0,10
Appuntimento	K _G	2,93
Mediana	Md	3,40

Percentile	ф
5°	2,06
16°	2,55
25°	2,95
50°	3,40
75°	3,82
84°	3,98
95°	8,34

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	85,41%	9,04%	5,55%

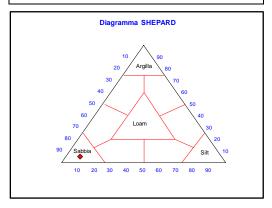
Note
4,57 g di materiale organogeno (conchiglie)

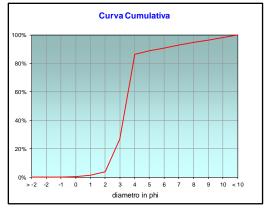


Parametri Fisici		
Peso secco (g)	Ps	182,89
Peso umido (g)	Pu	224,29
Peso specifico	G	n.d.
Peso di volume (g/cm ³)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,36	0	1000	0,19%	0,19%
	2,13	1	500	1,16%	1,36%
Sabbia	4,40	2	250	2,41%	3,77%
	41,88	3	125	22,90%	26,67%
	108,90	4	62,5	59,54%	86,21%
	4,92	5	31	2,69%	88,90%
Limo	3,28	6	15,6	1,80%	90,70%
Lillo	4,21	7	7,8	2,30%	93,00%
	3,21	8	3,9	1,75%	94,75%
Argilla	2,81	9	2,0	1,53%	96,29%
	3,52	10	0,98	1,92%	98,21%
	3,27	< 10	< 0,98	1,79%	######

Classificazione		
SABBIA		
SA - FI - MA		
moderatamente classato		
asimmetrica negativa		
molto leptocurtica		

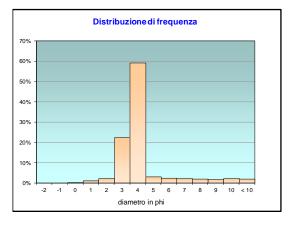



Parametri Statistici		
Media	M _φ	3,30
Classazione	σ_{φ}	0,71
Asimmetria	$S_{k\phi}$	-0,10
Appuntimento	K _G	2,83
Mediana	Md	3,39

Percentile	φ
5°	2,05
16°	2,53
25°	2,93
50°	3,39
75°	3,81
84°	3,96
95°	8,16

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	86,21%	8,54%	5,25%

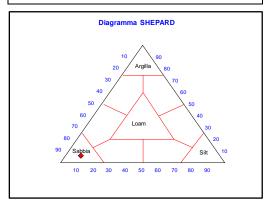
Note
4,34 g di materiale organogeno (conchiglie)

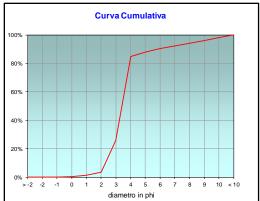


Parametri F	isici	
Peso secco (g)	Ps	176,66
Peso umido (g)	Pu	217,51
Peso specifico	G	n.d.
Peso di volume (g/cm3)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,35	0	1000	0,20%	0,20%
	1,91	1	500	1,08%	1,28%
Sabbia	3,90	2	250	2,21%	3,48%
	39,50	3	125	22,36%	25,84%
	104,30	4	62,5	59,04%	84,88%
	5,21	5	31	2,95%	87,83%
Limo	4,22	6	15,6	2,39%	90,22%
	3,72	7	7,8	2,11%	92,32%
	3,40	8	3,9	1,92%	94,25%
Argilla	2,97	9	2,0	1,68%	95,93%
	3,72	10	0,98	2,11%	98,04%
	3,47	< 10	< 0,98	1,96%	######

Classificazione			
Shepard SABBIA			
Wentworth	SA - FI - MA		
Classazione	moderatamente classato		
Asimmetria	simmetrica		
Appuntimento estremamente leptocurtica			

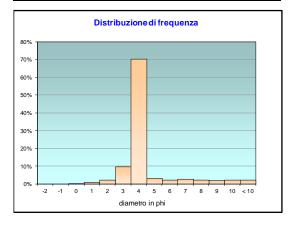



Parametri Statistici				
Media	M _φ	3,32		
Classazione	σ_{φ}	0,71		
Asimmetria	$S_{k\phi}$	-0,10		
Appuntimento	K _G	3,00		
Mediana	Md	3,41		

Percentile	ф
5°	2,07
16°	2,56
25°	2,96
50°	3,41
75°	3,83
84°	3,99
95°	8,45

Classe granulometrica					
Ghiaia	Sabbia	Limo	Argilla		
0,00%	84,88%	9,37%	5,75%		

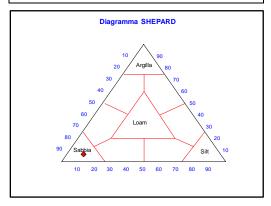
Note
4,04 g di materiale organogeno (conchiglie)

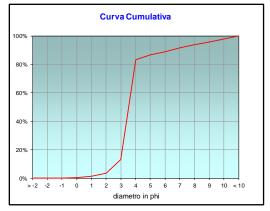


Parametri Fisici				
Peso secco (g)	Ps	171,57		
Peso umido (g)	Pu	216,91		
Peso specifico	G	n.d.		
Peso di volume (g/cm ³)	γ	n.d.		
Peso di vol. secco (g/cm3)	γd	n.d.		
Umidità (%)	W	n.d.		

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,42	0	1000	0,25%	0,25%
	1,72	1	500	1,00%	1,25%
Sabbia	3,81	2	250	2,22%	3,47%
	16,50	3	125	9,62%	13,09%
	120,57	4	62,5	70,27%	83,36%
	5,57	5	31	3,25%	86,61%
Limo	3,72	6	15,6	2,17%	88,77%
	4,77	7	7,8	2,78%	91,55%
	3,63	8	3,9	2,12%	93,67%
Argilla	3,47	9	2,0	2,02%	95,69%
	3,69	10	0,98	2,15%	97,84%
	3,71	< 10	< 0,98	2,16%	######

Classificazione			
Shepard SABBIA			
Wentworth	SA - FI - MA		
Classazione	moderatamente classato		
Asimmetria simmetrica			
Appuntimento estremamente leptocurtica			

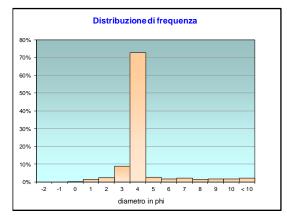



Parametri Statistici				
Media	M _φ	3,59		
Classazione	σ_{φ}	0,58		
Asimmetria	$S_{k\phi}$	0,08		
Appuntimento	K _G	3,74		
Mediana	Md	3,53		

Percentile	ф
5°	2,16
16°	3,04
25°	3,17
50°	3,53
75°	3,88
84°	4,20
95°	8,66

Classe granulometrica				
Ghiaia	Sabbia	Limo	Argilla	
0,00%	83,36%	10,31%	6,33%	

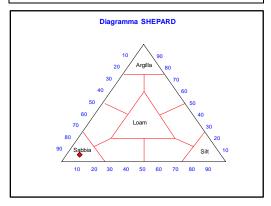
Note
4,42 g di materiale organogeno (conchiglie)

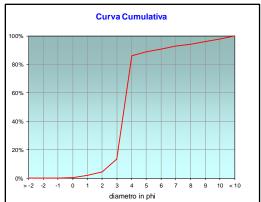


Parametri Fi	sici	
Peso secco (g)	Ps	178,92
Peso umido (g)	Pu	225,59
Peso specifico	G	n.d.
Peso di volume (g/cm3)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,61	0	1000	0,34%	0,34%
	2,48	1	500	1,38%	1,73%
Sabbia	4,55	2	250	2,54%	4,27%
	16,10	3	125	9,00%	13,26%
	130,20	4	62,5	72,77%	86,03%
	4,88	5	31	2,73%	88,76%
Limo	3,25	6	15,6	1,82%	90,58%
Lillo	4,01	7	7,8	2,24%	92,82%
	2,55	8	3,9	1,42%	94,24%
Argilla	3,04	9	2,0	1,70%	95,95%
	3,22	10	0,98	1,80%	97,74%
	4,04	< 10	< 0,98	2,26%	######

Classificazione			
SABBIA			
SA - FI - MA			
ben classato			
simmetrica			
estremamente leptocurtica			

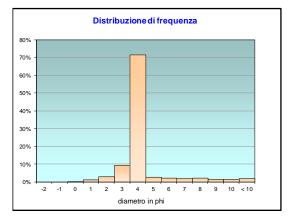



Parametri Statistici			
Media	M _φ	3,50	
Classazione	σ_{φ}	0,47	
Asimmetria	$S_{k\phi}$	0,00	
Appuntimento	K _G	3,79	
Mediana	Md	3,50	

Percentile	ф
5°	2,08
16°	3,04
25°	3,16
50°	3,50
75°	3,85
84°	3,97
95°	8,44

Classe granulometrica				
Ghiaia	Sabbia	Limo	Argilla	
0,00%	86,03%	8,21%	5,76%	

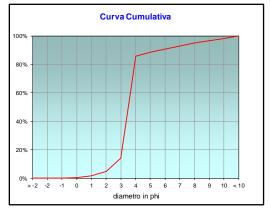
Note
5,63 g di materiale organogeno (conchiglie)



Parametri Fisici		
Peso secco (g)	Ps	176,91
Peso umido (g)	Pu	216,58
Peso specifico	G	n.d.
Peso di volume (g/cm³)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,62	0	1000	0,35%	0,35%
	2,20	1	500	1,24%	1,59%
Sabbia	5,29	2	250	2,99%	4,58%
	16,84	3	125	9,52%	14,10%
	126,44	4	62,5	71,47%	85,57%
	4,98	5	31	2,82%	88,39%
Limo	4,03	6	15,6	2,28%	90,67%
Lillo	3,73	7	7,8	2,11%	92,77%
	3,88	8	3,9	2,19%	94,97%
	2,81	9	2,0	1,59%	96,55%
Argilla	2,78	10	0,98	1,57%	98,13%
	3,31	< 10	< 0,98	1,87%	######

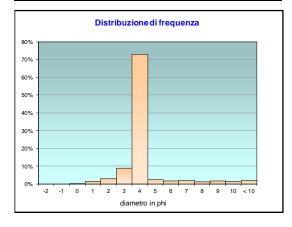
Classificazione			
Shepard	SABBIA		
Wentworth	SA - FI - MA		
Classazione	ben classato		
Asimmetria	simmetrica		
Appuntimento	estremamente leptocurtica		


Parametri Statistici			
Media	M _φ	3,50	
Classazione	σ_{φ}	0,48	
Asimmetria	$S_{k\phi}$	0,00	
Appuntimento	K _G	3,50	
Mediana	Md	3,50	

Percentile	•
5°	2,04
16°	3,03
25°	3,15
50°	3,50
75°	3,85
84°	3,98
95°	8,02

Classe granulometrica				
Ghiaia	Sabbia	Limo	Argilla	
0,00%	85,57%	9,39%	5,03%	

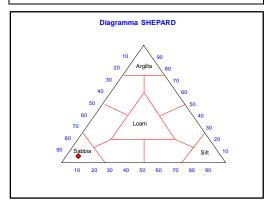
Note
5,75 g di materiale organogeno (conchiglie)

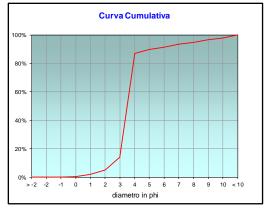


Parametri Fisici			
Peso secco (g)	Ps	177,61	
Peso umido (g)	Pu	224,55	
Peso specifico	G	n.d.	
Peso di volume (g/cm³)	γ	n.d.	
Peso di vol. secco (g/cm3)	γd	n.d.	
Umidità (%)	W	n.d.	

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,64	0	1000	0,36%	0,36%
	2,73	1	500	1,54%	1,90%
Sabbia	5,39	2	250	3,04%	4,94%
	16,02	3	125	9,02%	13,96%
	129,88	4	62,5	73,13%	87,08%
	4,48	5	31	2,52%	89,60%
Limo	2,99	6	15,6	1,68%	91,29%
LIIIO	3,69	7	7,8	2,07%	93,36%
	2,34	8	3,9	1,32%	94,68%
	3,28	9	2,0	1,84%	96,52%
Argilla	2,47	10	0,98	1,39%	97,91%
	3,71	< 10	< 0,98	2,09%	######

Classificazione		
Shepard SABBIA		
Wentworth SA - FI - MA		
Classazione	ben classato	
Asimmetria	simmetrica	
Appuntimento	estremamente leptocurtica	

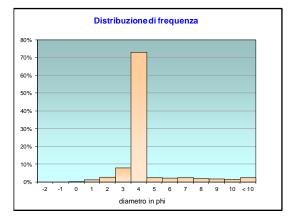



Parametri Statistici			
Media	M _φ	3,49	
Classazione	σ_{φ}	0,46	
Asimmetria	$S_{k\phi}$	0,00	
Appuntimento	K _G	3,70	
Mediana	Md	3,49	

Percentile	ф
5°	2,01
16°	3,03
25°	3,15
50°	3,49
75°	3,83
84°	3,96
95°	8,17

Classe granulometrica				
Ghiaia	Sabbia	Limo	Argilla	
0,00%	87,08%	7,59%	5,32%	

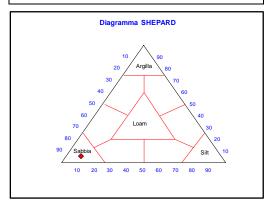
Note	
8 g di materiale organogeno (conchiglie)	

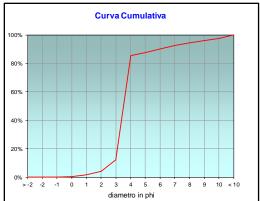


Parametri Fisici			
Peso secco (g)	Ps	175,43	
Peso umido (g)	Pu	218,73	
Peso specifico	G	n.d.	
Peso di volume (g/cm³)	γ	n.d.	
Peso di vol. secco (g/cm3)	γd	n.d.	
Umidità (%)	W	n.d.	

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,51	0	1000	0,29%	0,29%
	1,97	1	500	1,13%	1,42%
Sabbia	4,80	2	250	2,73%	4,15%
	14,06	3	125	8,01%	12,17%
	128,30	4	62,5	73,13%	85,30%
	4,16	5	31	2,37%	87,67%
Limo	4,06	6	15,6	2,31%	89,98%
Lillo	4,48	7	7,8	2,55%	92,54%
	3,28	8	3,9	1,87%	94,41%
	2,87	9	2,0	1,64%	96,04%
Argilla	2,69	10	0,98	1,53%	97,57%
	4,25	< 10	< 0,98	2,43%	######

Classificazione		
Shepard	SABBIA	
Wentworth	SA - FI - MA	
Classazione	ben classato	
Asimmetria	simmetrica	
Appuntimento	estremamente leptocurtica	

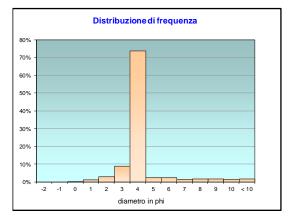



Parametri Statistici		
Media	Mφ	3,52
Classazione	σ_{φ}	0,46
Asimmetria	$S_{k\phi}$	0,00
Appuntimento K _G 3,75		3,75
Mediana	Md	3,52

Percentile	•
5°	2,11
16°	3,05
25°	3,18
50°	3,52
75°	3,86
84°	3,98
95°	8,36

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	85,30%	9,11%	5,59%

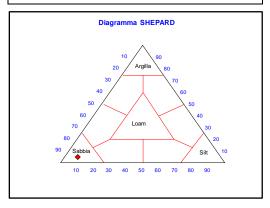
Note
4,77 g di materiale organogeno (conchiglie)

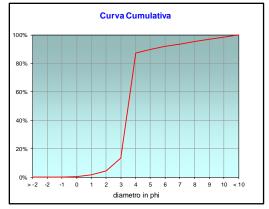


Parametri Fi	sici	
Peso secco (g)	Ps	177,12
Peso umido (g)	Pu	223,48
Peso specifico	G	n.d.
Peso di volume (g/cm3)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,51	0	1000	0,29%	0,29%
	2,11	1	500	1,19%	1,48%
Sabbia	5,28	2	250	2,98%	4,46%
	15,88	3	125	8,97%	13,43%
	130,55	4	62,5	73,71%	87,13%
	4,45	5	31	2,51%	89,64%
Limo	4,21	6	15,6	2,37%	92,02%
Lillo	2,56	7	7,8	1,45%	93,47%
	3,20	8	3,9	1,81%	95,27%
	2,93	9	2,0	1,65%	96,93%
Argilla	2,48	10	0,98	1,40%	98,33%
	2,96	< 10	< 0,98	1,67%	######

Classificazione		
Shepard	SABBIA	
Wentworth	SA - FI - MA	
Classazione	ben classato	
Asimmetria	simmetrica	
Appuntimento	estremamente leptocurtica	

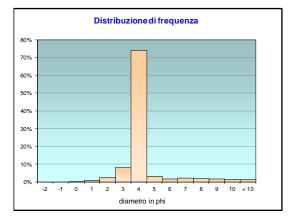



Parametri Statistici		
Media	M _φ	3,50
Classazione	σ_{φ}	0,46
Asimmetria	$S_{k\phi}$	0,00
Appuntimento K _G 3,5		3,50
Mediana	Md	3,50

Percentile	ф
5°	2,06
16°	3,03
25°	3,16
50°	3,50
75°	3,84
84°	3,96
95°	7,85

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	87,13%	8,14%	4,73%

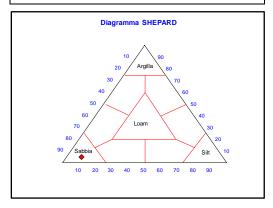
Note
5,18 g di materiale organogeno (conchiglie)

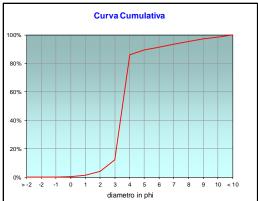


Parametri Fis	sici	
Peso secco (g)	Ps	177,97
Peso umido (g)	Pu	221,26
Peso specifico	G	n.d.
Peso di volume (g/cm3)	γ	n.d.
Peso di vol. secco (g/cm3)	γd	n.d.
Umidità (%)	W	n.d.

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,49	0	1000	0,27%	0,27%
	1,97	1	500	1,11%	1,38%
Sabbia	4,47	2	250	2,51%	3,90%
	14,61	3	125	8,21%	12,11%
	131,77	4	62,5	74,04%	86,15%
	5,63	5	31	3,16%	89,31%
Limo	3,28	6	15,6	1,84%	91,15%
Lillo	4,02	7	7,8	2,26%	93,41%
	3,48	8	3,9	1,96%	95,37%
	3,10	9	2,0	1,74%	97,11%
Argilla	2,61	10	0,98	1,47%	98,58%
	2,53	< 10	< 0,98	1,42%	######

Classificazione		
Shepard	SABBIA	
Wentworth	SA - FI - MA	
Classazione	ben classato	
Asimmetria	simmetrica	
Appuntimento	estremamente leptocurtica	

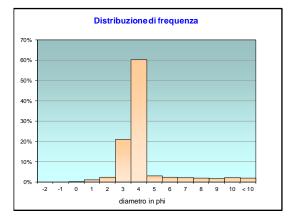



Parametri Statistici		
Media	M _φ	3,51
Classazione	σ_{φ}	0,46
Asimmetria	$S_{k\phi}$	0,00
Appuntimento	K _G	3,45
Mediana	Md	3,51

Percentile	•
5°	2,13
16°	3,05
25°	3,17
50°	3,51
75°	3,85
84°	3,97
95°	7,81

Classe granulometrica				
Ghiaia	Sabbia	Limo	Argilla	
0,00%	86,15%	9,22%	4,63%	

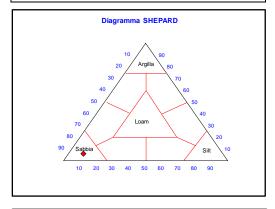
Note
4,4 g di materiale organogeno (conchiglie)



Parametri Fisici			
Peso secco (g)	Ps	177,22	
Peso umido (g)	Pu	219,55	
Peso specifico	G	n.d.	
Peso di volume (g/cm3)	γ	n.d.	
Peso di vol. secco (g/cm3)	γd	n.d.	
Umidità (%)	W	n.d.	

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,37	0	1000	0,21%	0,21%
	1,97	1	500	1,11%	1,32%
Sabbia	4,10	2	250	2,31%	3,63%
	37,25	3	125	21,02%	24,65%
	106,80	4	62,5	60,26%	84,91%
	5,22	5	31	2,95%	87,86%
Limo	4,22	6	15,6	2,38%	90,24%
Lillo	3,72	7	7,8	2,10%	92,34%
	3,40	8	3,9	1,92%	94,26%
	2,97	9	2,0	1,68%	95,94%
Argilla	3,73	10	0,98	2,10%	98,04%
	3,47	< 10	< 0,98	1,96%	######

Classificazione		
Shepard	SABBIA	
Wentworth	SA - FI - MA	
Classazione	moderatamente classato	
Asimmetria	simmetrica	
Appuntimento	estremamente leptocurtica	

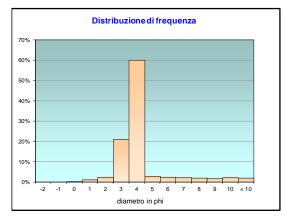



Parametri Statistici		
Media	M _φ	3,33
Classazione	σ_{φ}	0,70
Asimmetria	$S_{k\phi}$	-0,10
Appuntimento	K _G	3,15
Mediana	Md	3,42

Percentile	ф
5°	2,07
16°	2,59
25°	3,01
50°	3,42
75°	3,84
84°	3,98
95°	8,44

Classe granulometrica			
Ghiaia	Sabbia	Limo	Argilla
0,00%	84,91%	9,35%	5,74%

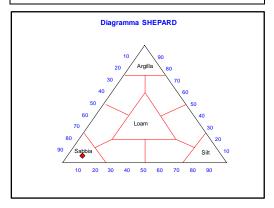
Note	
4 g di materiale organogeno (conchiglie)	

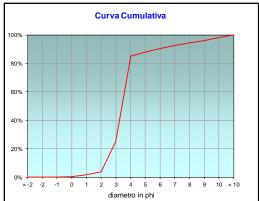


Parametri Fisici				
Peso secco (g)	Ps	179,40		
Peso umido (g)	Pu	222,19		
Peso specifico	G	n.d.		
Peso di volume (g/cm ³)	γ	n.d.		
Peso di vol. secco (g/cm3)	γd	n.d.		
Umidità (%)	W	n.d.		

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,41	0	1000	0,23%	0,23%
	2,14	1	500	1,19%	1,42%
Sabbia	4,39	2	250	2,45%	3,87%
	38,00	3	125	21,18%	25,05%
	107,80	4	62,5	60,09%	85,14%
	5,20	5	31	2,90%	88,04%
Limo	4,21	6	15,6	2,35%	90,39%
	3,71	7	7,8	2,07%	92,45%
	3,39	8	3,9	1,89%	94,35%
Argilla	2,97	9	2,0	1,65%	96,00%
	3,72	10	0,98	2,07%	98,07%
	3,46	< 10	< 0,98	1,93%	######

Classificazione		
SABBIA		
SA - FI - MA		
moderatamente classato		
simmetrica		
estremamente leptocurtica		

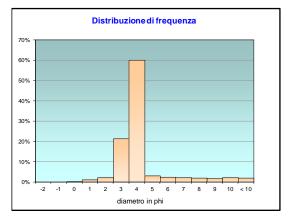



Parametri Statistici			
Media	Mφ	3,32	
Classazione	σ_{φ}	0,70	
Asimmetria	$S_{k\phi}$	-0,10	
Appuntimento	K _G	3,12	
Mediana	Md	3,42	

Percentile	ф
5°	2,05
16°	2,57
25°	3,00
50°	3,42
75°	3,83
84°	3,98
95°	8,40

Classe granulometrica				
Ghiaia	Sabbia	Limo	Argilla	
0,00%	85,14%	9,21%	5,65%	

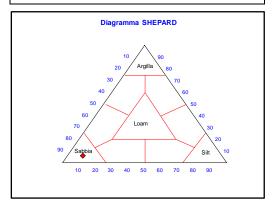
Note
4,11 g di materiale organogeno (conchiglie)

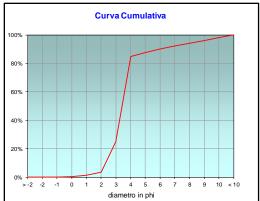


Parametri Fisici				
Peso secco (g)	Ps	176,26		
Peso umido (g)	Pu	220,25		
Peso specifico	G	n.d.		
Peso di volume (g/cm3)	γ	n.d.		
Peso di vol. secco (g/cm3)	γd	n.d.		
Umidità (%)	W	n.d.		

	g	phi	micron	%	Freq. Cumul.
	0,00	> -2	> 4000	0,00%	0,00%
Ghiaia	0,00	-2	4000	0,00%	0,00%
	0,00	-1	2000	0,00%	0,00%
	0,39	0	1000	0,22%	0,22%
	1,87	1	500	1,06%	1,28%
Sabbia	3,86	2	250	2,19%	3,47%
	37,55	3	125	21,30%	24,78%
	105,66	4	62,5	59,94%	84,72%
	5,26	5	31	2,98%	87,70%
Limo	4,25	6	15,6	2,41%	90,12%
LIIIO	3,75	7	7,8	2,13%	92,24%
	3,26	8	3,9	1,85%	94,09%
Argilla	3,16	9	2,0	1,80%	95,89%
	3,75	10	0,98	2,13%	98,02%
	3,50	< 10	< 0,98	1,98%	######

Classificazione		
Shepard	SABBIA	
Wentworth	orth SA - FI - MA	
Classazione	moderatamente classato	
Asimmetria	simmetrica	
Appuntimento	estremamente leptocurtica	




Parametri Statistici				
Media	Mφ	3,33		
Classazione	σ_{φ}	0,70		
Asimmetria	$S_{k\phi}$	-0,09		
Appuntimento	K _G	3,16		
Mediana	Md	3,42		

Percentile	•
5°	2,07
16°	2,59
25°	3,00
50°	3,42
75°	3,84
84°	3,99
95°	8,51

Classe granulometrica					
Ghiaia	Sabbia	Limo	Argilla		
0,00%	84,72%	9,37%	5,91%		

Note
3,97 g di materiale organogeno (conchiglie)

ALLEGATO C

COMUNITÀ BENTONICA

LISTA E DENSITÀ (n. ind. 0,095 m⁻²) DELLE SPECIE RINVENUTE

LEGENDA

DC = Biocenosi del detritico costiero

DE = Bioc. del detritico infangato

DL = Bioc. del detritico del largo

Glar = glareicolo

Lim = limicolo

Lre = larga ripartizione ecologica

MI = Bioc. dei fondi mobili instabili

Minut = minuticolo

Mixt = misticolo

MO = indicatori della materia organica

Sab = sabulicolo

Sd = substrato duro

SFBC = Bioc. delle sabbie fini ben calibrate

SGCF = Bioc. delle ghiaie fini sotto l'influsso delle correnti di fondo

Sm = substrato mobile

SVMC = Bioc. delle sabbie infangate di moda calma

VB = Bioc. dei fanghi batiali

VTC = Bioc. dei fanghi terrigeni costieri

C-1 PRE-SURVEY

Stazioni			D4	К9	E4	K12
Dsistanza dal fu	turo sea-line (m)		0	926	0	926
Crostacei						
Anfipodi	Ampelisca diadema	DE	2,00	3,84	0,51	2,02
	Ampelisca intermedia	SFBC				0,51
	Corophium sp					
	Eusirus longipes	VTC			0,51	
	Hyperiidae nd				0,51	0,51
	Monoculodes carinatus	DE	0,67	0,83		
	Photis longicaudata	VTC		0,83		0,51
Copepodi	Copepoda nd			0,83		
Cumacei	Cumacea nd			1,67	0,51	0,51
Decapodi	Alpheus glaber	VTC		0,67		
	Callianassa subterranea	VTC	0,67	0,51	1,01	1,52
	Ebalia deshayesi	DC	0,67	0,83	0,51	0,51
	Ethusa mascarone	SFBC	0,67			
	Galathea sp	\	0,67			4.04
	Goneplax rhomboides	VTC		0.00	0.54	1,01
	Liocarcinus depurator	VB	2.02	0,83	0,51	0,51
	Paguridae nd		2,83	0,83		
	Processa sp Solenocera membranacea	VB	0,67			0.51
Misidiacei	Misidiacea nd	VD		0.67		0,51
Ostracodi	Ostracoda nd			0,67		
Tanaidacei	Apseudes latreillei	Minut			1,52	
Echinodermi	Apseudes lattelliel	wiiiut			1,52	
Asteroidei	Astropecten irregularis	DC		0,51		
Ofiuroidei	Amphiura chiajei	VTC		0,51	0,51	
Olluloldel	Ophiura albida	DC	0,67	0,83	0,51	0,51
Oloturoidei	Trachythyone tergestina	VTC	0,07	0,51	1,01	0,51
Molluschi	Tracity triyone tergestina	V 10		0,51	1,01	
liionasom	Cardiomya costellata	DL	0,67	0,83		0,51
	Clausinella brognartii	SGCF	0,67	0,00		0,0.
	Corbula gibba	MI	0,0.		0,51	
	Myrtea spinifera	MO	5,00	4,85	5,56	6,57
	Nucula nitidosa	Lim	-,	0,83	5,55	0,51
	Phaxas adriaticus	Sab		1,67		-,-
	Plagiocardium papillosum	DC	0,83	, -		1,52
	Tellina distorta	MI	,	0,67		,
	Thyasira flexuosa	Lim		,		
	Timoclea ovata	Lre				
Caudofoveati	Falcidens gutturosus	Lim	1,50	5,18	5,56	5,05
Gasteropodi	Calyptraea chinensis	Lre	0,67		0,51	
·	Cylichna cylindracea	SFBC				
	Hyala vitrea	VTC				0,51
	Mangelia coarctata	Sm	2,00	3,67	0,51	1,01
	Polinices nitida	Sab				
Scafopodi	Anthalis inaequicostata	VTC	1,50		0,51	
Nemertini	•					
	Nemertea nd		0,67	0,83	1,01	

C-1 (continuo)

Stazioni			D4	К9	E4	K12
Dsistanza dal fu	ituro sea-line (m)		0	926	0	926
Policheti						
	Ampharete acutifrons	VTC	0,67	1,52	0,51	2,53
	Amphicteis gunneri	Lim	0,67	1,50	2,02	0,51
	Aphelochaeta filiformis	MO		1,34	5,05	4,04
	Aphrodita aculeata	VTC	0,67			
	Arabella geniculata	Glar			0,51	0,51
	Caulleriella caputesocis	Lim	0,67	2,17	2,53	2,02
	Drilonereis filum	Lim				0,51
	Eunice vittata	Lre		1,84	1,01	
	Glycera rouxii	MO	4,17	3,18	4,55	7,07
	Goniada maculata	VTC	3,33	3,17	4,55	7,07
	Harmothoe antilopes	Mixt		0,67		
	Hyalinoecia tubicola	DC	4,67	10,03	10,61	6,57
	Labioleanira yhleni	VTC			0,51	1,52
	Levinsenia oculata	MO			0,51	
	Lumbrinereis gracilis	Sab		0,83	1,01	3,03
	Magelona alleni	VTC			1,52	2,02
	Maldanidae nd				0,51	1,01
	Marphysa bellii	VTC		0,51		
	Minuspio cirrifera	MO	3,50	9,19	13,13	18,18
	Nephtys hombergi	SFBC			1,01	
	Nephtys hystricis	VTC	2,17	3,33	3,54	2,53
	Notomastus aberans	MO	1,50			2,02
	Nothria conchilega	Sab			1,52	1,01
	Ophelina cilindricaudata	Lim	0,67	1,67	1,01	1,01
	Ophiodromus flexuosus	Sab			0,51	0,51
	Owenia fusiformis	SFBC	0,67	3,00		
	Paralacydonia paradoxa	MO	0,67	2,35	1,01	3,03
	Paraonidae nd		3,00	3,69	8,59	8,08
	Pectinaria koreni	Sab	1,50			
	Phyllodoce lineata	Sab	0,83			
	Pista cristata	Lim	0,67		0,51	0,51
	Prionospio sp		0,67	2,17	7,07	17,68
	Sabellidae nd		8,83	9,34	2,02	3,54
	Scoletoma impatiens	Mixt		4,17	2,02	
	Sigambra tentaculata	Mixt				0,51
	Spiophanes bombyx	SFBC		0,51	1,01	
	Sthenelais boa	Lim	0,67	3,01	0,51	0,51
	Syllis sp		3,83	3,01	2,53	1,01
	Terebellidae nd		2,00	1,67		
	Terebellides stroemi	MO	1,50	1,17	1,52	3,03
Sipunculidi						
	Aspidosiphon mulleri	MO	16,67	14,53	6,06	1,52
	Sipuncula nd		2,00	5,83	6,06	2,53
DENSITA' TOTA			89,17	128,08	116,16	129,80
RICCHEZZA SPE	CIFICA TOTALE		43	49	49	48

C-2 INVERNO 2010 (I SURVEY POST LAVORI)

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal s	sea-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Briozoi																						
	Briozoa nd				0,83						0,83	0,98										
Cnidari																						
Antozoi	Alcyonium palmatum	DE	2,94				0,83			0,83		2,94					0,33					
	Anthozoa nd		12,75	1,67		0,83				1,67												
	Epizoanthus sp						0,83		6,67		2,94		0,92		0,17		1,00				4,04	0,33
	Madreporaria nd								0,83													
Idrozoi	Hydroidea nd		4,90	3,33	3,33	1,67	3,33	2,00	2,50	2,17	4,61	5,88	0,25							0,25	0,51	0,17
Crostacei																						
Anfipodi	Ampelisca diadema	DE	3,92	5,00	7,50	7,50	5,83	5,33	7,50	5,51	5,74	3,92	0,33		0,25	2,18	1,00	1,42	1,51	0,76	0,92	0,50
	Ampelisca intermedia	SFBC	3,92	2,50	4,17		0,83		0,83			0,98		0,33		0,67				0,25		0,33
	Caprella sp				5,83					1,01												
	Caprellidae nd									0,83												
	Corophium sp		0,98		2,50	5,83	9,17	10,67	5,00	3,86	3,77		0,25				0,33	0,51			0,25	
	Eusirus longipes	VTC			0,83				0.00	0.00						0.54						
	Harpinia dellavallei	VTC			0,83				0,83	0,83						0,51						
	Lepidepecreum longicome	SFBC		0.00	0,83	0.00	0.00		0.00			0.00	0.54									
	Leucothoe sp	CEDO	4.00	0,83	0.50	0,83	0,83		0,83	4.07	0.50	0,98	0,51		0.00		0.00	0.00		0.05	4.00	0.47
	Metaphoxus simplex	SFBC SFBC	4,90	1,67	2,50	0.00	0,83 0,83		1,67	1,67 2,50	2,50	0,98		0,33	0,33		0,33	0,33	0.05	0,25	1,60	0,17
	Microprotopus maculatus Monoculodes carinatus	DE	1,96 0,98	6,67	2,50	0,83 4,17	5,00	4,00	1,67	3,33	3,63	6,86	0,25	0,33	0,59	1,17	0,33		0,25 1.59	0,25	0,25	
	Orchomene grimaldii	VTC	0,96	6,67	10,83	4,17	5,00	532,67	0,83	3,33	3,03	0,00	0,25		0,59	1,17	0,33		1,59	0,25	0,25	0,33
	Photis longicaudata	VTC	6.86	9,17	5,83		0,83	332,07	0,63	3.33	8,77	0,98				1,01	0,33			0,51	0,25	0,33
	Phtisica marina	Sm	4.90	0,83	1,67	4,17	1,67	0,67	5,83	3,33	2,94	0,98				1,01	0,33			0,31	0,23	0,17
	Pseudoprotella phasma	Lre	4,90	0,63	1,07	4,17	0,83	0,67	2,50		0,98	0,96					0,33			0,23		0,33
	Stenothoe sp	Lre				0,83	0,83		2,50		0,50											0,00
	Synchelidium sp	Lic				0,00	0,03														0,51	
	Westwoodilla rectirostris	Sab		1,67			1,67				0,98										0,33	
Cirripedi	Scalpellum scalpellum	Sd		.,0.			3,33				2,50										0,00	
Copepodi	Copepoda nd		2,94	2,50			0,00	2,00	0,83	1,84	2,00		0,25	0,67	0,17	0,51	0,67		0,25	1,52		
Cumacei	Cumacea nd		16,67	28,33	0,83	12,50	3,33	8,67	8,33	12,17	9,36	11,76	0,59	-,	1,67	7,37	2,00	2,69	3,68	1,26	3,61	2,00
	Iphinoe serrata	DE	-,-	0,83	-,	2,50	0,83	0,67	2,50	0,83	5,88	, -	-,		,-	, -	,	,	-,	0,25	0,25	,
Decapodi	Alpheus glaber	VTC		0,83	0,83	0,83	0,83	-,-	,	-,	-,			0,25		0,51				0,51	-, -	0,33
	Callianassa subterranea	Lim							0,83		0,83					0,51		0,51		0,25	0,92	0,67
	Ebalia deshayesi	DC	0,98	2,50	2,50		3,33	0,67		0,83	0,98	2,94	0,25	0,59		0,51					0,76	
	Ebalia edwardsii	DC																0,25				
	Eurynome aspera	DC					0,83															
	Galathea sp				3,33				0,83			0,98										
	Goneplax rhomboides	VTC							0,83				0,33									0,17
	Inachus dorsettensis	Lre			0,83				0,83													
	Liocarcinus maculatus	Sab								0,83												
	Liocarcinus sp						0,83															
	Macropodia rostrata	Lre	0,98																			
	Paguridae nd		2,94		0,83		1,67	0,67	0,83	2,50	3,77		0,84	0,33	0,25	2,18			0,59		0,51	
1	Philocheras sculptus	SGCF						0,67														
	Processa sp	1 1																0,84				
	Solenocera membranacea	VB													0,25							

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal se	a-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Crostacei																						
Isopodi	Cirolana sp						1,67		0,83	0,83												'
	Gnathia sp		1,96	0,83	0,83	4,17	0,83	1,33	1,67	0,51	0,98										0,25	0,33
	Isopoda nd		0,98		0,83					1,67												ĺ
Misidacei	Misidiacea nd		0,98	1,67	1,67		4,17		2,50	0,83	0,98	0,98					0,33					ĺ
Ostracodi	Ostracoda nd		4,90	0,83	5,00		1,67	2,00	3,33	0,83	0,98					3,19	1,00				0,25	0,50
Tanaidacei	Apseudes latreillii	Minut													0,25	0,51			0,25			ĺ
	Leptochelia savignyi	С	18,63	13,33		4,17		4,00		6,67					0,17	1,52			1,25	0,25		ĺ
	Tanaidacea nd						0,83		0,83		3,77	0,98								0,25		ĺ
Echinodermi																						ĺ
Asteroidei	Astropecten irregularis	DC													0,17							
Ofiuroidei	Amphiura chiajei	VTC	0,98	40.00	0,83	0,83	0.00	2,00	3,33	1,67	7.55	2,94	0.05		0,25	4 74	2,00	0.00	4.05	0,25	0,51	0,33
01.4	Ophiura albida	DC	14,71	10,00	1,67	9,17	8,33	5,33	5,00	2,35	7,55	2,94	0,25		0,67	4,71	0,33	2,00	1,25	0,76	0,33	0,83
Oloturoidei	Holothuria forskali	Lre			0,83				4.07			0,98									0.05	0.00
	Holothurioidea nd	VITO							1,67				0.00	0.00		0.54					0,25	0,33
	Labidoplax digitata Thyone fusus	VTC DE						0.67	0,83	0.83			0,33	0,33 0,25		0,51			0,51			ĺ
	Trachythyone elongata	VTC						0,67		0,03				0,25	0,25	0,51			0,51			ĺ
	Trachythyone tergestina	VTC								0,83					0,23	0,51						ĺ
Molluschi	rracriytriyone tergestiria	VIC								0,63												ĺ
Bivalvi	Abra alba	Lim	0,98				0,83		0,83													ĺ
Divaivi	Abra prismatica	DC	0,30		0,83		0,83		0,03				0,25									0.17
	Anadara inaequivalvis	Lre			0,83		0,83						0,20									0,17
	Anomia ephippium	Lre			1,67		0,00						0,25			0,67						ĺ
	Cardiomya costellata	DL	0,98		1,07							0,98	0,20			0,01		0,33	0,25		0,76	0,17
	Clausinella brogniartii	SGCF	0,00						1,67	0.83	0,98	0,00						0,00	0,20		0,70	0,17
	Corbula gibba	MI							.,0.	0,00	0,00					0.51				0,25	0,51	ĺ
	Gari fervensis	DC					1,67		0,83		0,98					0,0.				0,20	0,01	ĺ
	Hiatella arctica	Sd			1,67		0,83		0,83		-,											ĺ
	Hiatella rugosa	Sd			, -	0,83	-,	0,67	0,83													ĺ
	Modiolarca subpicta	AP			2,50	.,	0,83	-,-	.,						0,33					0,25		ĺ
	Modiolula phaseolina	DC	0,98	1,67				0,67							,					,		ĺ
	Myrtea spinifera	MO	21,57	15,83	10,83	25,00	15,83	11,33	11,67	14,19	12,01	13,73	5,97	2,26	2,76	5,05	5,67	4,71	5,11	4,80	4,79	0,83
	Mysia undata	Mixt			0,83								0,25			1,01	,		0,33	0,25		1
	Mytilus galloprovincialis	Lre							0,83													ĺ
	Nucula nitidosa	Lim	0,98		3,33		0,83		1,67	1,01		0,98		0,33	0,42		0,33		0,33	0,51	0,92	0,33
	Phaxas adriaticus	Sab	2,94	0,83	3,33		2,50		1,67		2,79	1,96	0,51	0,33		0,51				0,25		0,50
	Plagiocardium papillosum	DC		2,50	0,83	3,33	1,67		1,67			0,98					0,33	0,25		0,25	1,09	0,50
	Saccella commutata	Mixt							1,67				0,25		0,25							0,17
	Similpecten similis	-					0,83			0,51												ĺ
	Tellina distorta	MI																0,33		0,25	0,51	ĺ
	Tellina nitida	SFBC	0,98																			1
	Tellina serrata	DE			0,83	0,83		0,67							0,17			0,25			0,25	1
	Thyasira flexuosa	Lim	0,98		0,83	4,17	2,50	2,00	4,17		0,98	0,98	0,84	0,67	0,33	0,67		0,59			0,59	ĺ
	Timoclea ovata	Lre	5,88	4,17	2,50	2,50	3,33	5,33	1,67	0,83	0,98		1,93	1,25	6,27	2,02	2,33	2,68	2,17	4,04	2,18	2,50
Caudofoveati	Falcidens gutturosus	Lim	19,61	28,33	10,00	23,33	11,67	28,67	25,83	14,52	13,24	11,76	5,20	0,33	4,76	13,45	7,33	5,45	5,18	4,80	9,48	5,33
Gasteropodi	Aclis minor	Sab				0,83																ĺ
	Calyptraea chinensis	Lre		2,50	0,83		1,67	2,00	0,83	3,01		0,98				0,51	0,67			0,25		0,33
	Cylichna cylindracea	SFBC	1,96	3,33	0,83	0,83	1	1,33	3,33	0,83	1,81	0,98	0,25	1		1,17	0,33	I	0,92	0,76	0,25	0,33

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	К9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea	anza dal sea-line (m)			60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Molluschi Gasteropodi	Epitonium sp Eulima bilineata	MO			0.02		0,83		0,83													
	Hadriania oretea Hyala vitrea Mangelia coarctata Nassarius lima	Lim VTC Sm Sm	0,98		0,83		2,50	0,67	2,50			7,84	0,33	0,33		0,51			0,76	0,25	0,25	0,83
	Nudibranchia nd Polinices nitida Pseudotorinia architae	Sab DC HP	0,98				1,67		0,83	0,83			0,25			0,51 1,52			0,59	0,25	1,09	0,17
Scafopodi Nemertini	Solemya togata Antalis inaequicostata	VTC								0,83 0,83	0,83	1,96				0,51			0,59		0,33	
Picnogonidi	Nemertea nd		4,90	2,50	3,33	4.07	2,50	1,33	2,50	1,34	0,98	1,96	0,59	1,00	0,25	4.04	1,00	0,84	1,17	1,26	1,85	0,67
Platelminti	Pycnogonida nd Platelminta nd			1,67		1,67				3,33	3,77 0,83	1,96	0,33			1,01	0.33	0,33		0,25		
Policheti	Ampharete acutifrons	VTC	15,69	12,50	7,50	7,50	9,17	6,67	10,83	18,33	10,34	5,88	2,94	0,67	1,17	6,89	4,00	2,77	2,93	1,26	3,36	3,17
	Ampharetidae nd Amphicteis gunneri	Lim	15,69	10,83	8,33 0,83	9,17	9,17 0,83	20,00	5,83	3,84	7,84	10,78	0,33				0,33	0,25	0,67	1,77	1,76	0,50
	Ancystrosyllis groenlandica Aphelochaeta filiformis Aphelochaeta marioni Aphroditidae nd	VB MO MO	18,63	10,83	6,67	16,67	7,50 0,83	10,00	5,00 0,83	11,69 2,50 1,67	7,40 2,65	9,80 3,92	0,25 4,19	3,17 0,25	6,43	5,37 2,34	6,33	0,25 7,98	9,18 0,76 0,33	11,11 0,25	0,51 9,57 2,35	4,33 1,00
	Arabella geniculata Chaetozone caputesocis Cirratulidae nd	Glar Lim	0,98 0,98	0,83	3,33	0,83 2,50	4,17	0,67	2,50 0,83	0,51	0,83	2,94 1,96	0,51	0,33 0,33	0,50	2,69	0,33 1,33	0,25 1,59	0,59	0,51	1,25 0,51	0,67
	Ditrupa arietina Drilonereis filum Eteone picta	MI Lim Sab	1,96 0,98	2,50		5,00	0,83 1,67	1,33	0,83	74,09	9,07	40,20	81,56	50,02 0,33	178,69 0,25 0,33	196,36 0,51	244,67	200,35 0,76	187,80	18,18 0,25	55,23 0,33	68,17 0,33
	Eunice vittata Flabelligeridae nd	Lre	1,96 4,90 3,92	1,67 5,00 9,17	1,67 1,67 5,83	8,33	0,83 5,00 4,17	0,67 3,33 6,67	1,67 2,50 9,17	0,83 2,68 7,50	0.52	1,96 3,92 7,84	0,25	2,42	0,84	1,01 3,03	4.22	2,10	0,67 0,59	2.20	0,33 4,54	0,17 2,67
	Glycera rouxii Goniada maculata Harmothoe sp	VTC	14,71	1,67 0,83	11,67 1,67	1,67 0,83	8,33 0,83	11,33 0,67	7,50	4,34 0,83	8,53 9,22 1,96	9,80 1,96	1,34 3,94 0,33	3,42 0,25	3,59	6,73 1,01	1,33 4,33	4,69	4,78 6,87	3,28 3,54 0,51	3,95 0,25	5,17
	Hyalinoecia tubicola Hydroides norvegicus Labioleanira yhleni	DC Sd VTC	12,75 3,92	10,83	7,50 2,50	14,17	10,00 4,17 3,33	10,00 2,67	10,00	3,18 0,51	9,61 0,83	7,84 0,98 0,98	3,35 1,26	1,92 0,25	1,51 1,26	9,76 0,67 2,69	7,33 1,33	4,87 2,68	3,77 1,25	3,03 2,02	3,86 1,51	1,00 0,33 2,17
	Lumbrineris gracilis Lumbrineris latreilli	Sab MO AP	23,53	14,17	8,33	20,83	8,33	23,33	9,17	10,35	13,28	7,84	1,60	1,00	3,10	6,73	2,67	2,61	5,27	3,54	4,11 0,25	1,50 0,17
	Lysidice ninetta Macroclymene santanderensis Magelona alleni Maldanidae nd Marphysa bellii	Sab VTC	7,84 2,94 0.98	9,17 5,00 0,83	2,50 2,50 0,83	11,67 8,33	0,83 1,67 1,67	1,33 8,00 6,00 0,67	2,50 0,83 1,67	7,68 1,67 1,67	1,81 0,98 1,67 1,81	1,96 1,96 1,96	0,25 1,26 0,51	0,33 0,67 0,33	2,67 2,68	0,67 3,35 2,53 1.01	2,00 0,67	2,85 0,51	0,51 2,76 1,00 0,25	3,28 1,26	0,25 0,59 2,77 1,01 0,59	0,50 1,17 0,83 0,33
	Melinna palmata	Minut	0,50	0,00	0,00			0,01		1,07	1,01	1,50	0,01	0,55		1,01			0,20		0,33	0,55

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea-lin	e (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
٨	Minuspio cirrifera	MO	44,12	28,33	5,00	22,50	5,00	18,00	9,17	13,33	5,59	28,43	4,79	1,42	0,92	7,72	1,33	1,26	6,86	7,58	5,28	2,67
٨	Vematonereis unicornis	Mixt								0,83	0,83	0,98			0,25							0,33
٨	Vephtys hombergi	SFBC			0,83		0,83				0,98					1,52					2,35	0,33
٨	Vephtys hystricis	VTC	9,80	3,33	3,33	1,67	5,00	2,67	6,67	7,68	3,63	5,88	1,09	1,17	0,59	3,54	1,33	1,42	2,84	3,28	2,52	1,33
N	Vereididae nd					0,83	0,83					0,98			0,25	0,51	0,67	0,25	2,25	1,01	0,84	
٨	Vinoe sp															0,51			0,25			0,17
٨	Nothria conchilega	Sab	10,78	8,33	3,33	8,33		15,33	2,50	3,84	4,75	8,82	1,01	1,09	5,69	4,71	4,00	3,10	3,42	1,01	2,68	1,83
٨	Votomastus aberans	MO			0,83	0,83	1,67	0,67	2,50	1,34	0,98		1,67		0,75	1,01		0,33	0,25		1,01	1,00
	Ophelina cilindricaudata	Lim	8,82	8,33	5,83	7,50	10,83	17,33	5,00	3,01	2,79	16,67	1,01	0,33	0,59	1,17	0,67	1,01	2,93	4,55	1,26	1,83
	Ophiodromus flexuosus	Sab			0,83									0,33		1,52						
	Owenia fusiformis	SFBC	6,86	8,33	5,83	5,00	10,00	3,33	5,83	2,50	3,92	6,86	0,92	1,51	0,84	1,68		0,51	1,01	0,25	0,67	0,67
F	Paralacydonia paradoxa	MO	3,92	2,50	2,50	1,67	2,50	0,67	2,50	2,17	1,81		0,25	0,33	0,59	1,84	0,33	1,76	1,09	0,25	1,34	0,67
	Paraonidae nd		45,10	34,17	10,83	42,50	8,33	43,33	16,67	27,70	8,38	19,61	6,20	2,84	6,77	16,46	14,67	13,83	13,63	14,14	21,23	16,50
F	Pectinaria koreni	Sab	5,88	0,83	4,17	,		2,67	1,67	1,52		,	,		1,01	1,01	0,33	0,25	0,84	0,51	1,01	,
F	Phyllodoce lineata	Sm	0,98		1,67		0,83		,	0,83						,	,			0,25	,	0,17
	Phyllodoce sp		.,	5,83	0,83	5,83	0,83	2.00	2,50	1,34	3,92	2,94				0,51			0,84	0,25		- /
	Phyllodocidae nd		0,98	-,	-,	-,	-,	,	0.83	,-	-,-	,-				-,-		0.25	0,67	-, -	0,51	
	Phylo foetida	SVMC	0,98						-,									-, -	-,-		-,-	
	Pista cristata	Lim	1,96	0,83	0,83		4.17		3.33		2,65	1,96			0,33					0,25	0,33	
	Pista sp		.,	-,	-,		.,		-,		_,	.,			-,	0,51				-,	-,	
	Poecilochetus serpens	VTC			1.67											0,51					0.67	0.17
	Polydora ciliata	SFBC			.,		0,83									-,					0,25	-,
	Pomatoceros triqueter	Sd	0,98				0,83		0,83				0,25								-, -	
	Prionospio sp		14,71	25,83	8,33	14,17	15,83	25,33	20,83	14,39	16,76	33,33	2,94	1,84	9,28	12,95	6,33	11,83	13,46	9,09	15,12	8,83
	Sabella pavonina	Lre	<i>'</i>	-,	-,	,	-,	-,	-,	0,83	-, -	,	,-	, -	-, -	,	-,	,	-, -	-,	-,	-,
	Sabellidae nd		40,20	42,50	8,33	40,83	11,67	28,67	12,50	37,88	12,60	8,82	8,14	0,92	4,02	2,02	2,33	5,88	10,53	6,31	4,20	2,33
-	Scalibregma inflatum	Lim	,	,	1,67	,	1,67		0,83	,	,-,	3,92	-,	-,	.,	_,	_,	-,	,	-,	.,	_,-,-
	Scoletoma impatiens	Mixt	3.92	1,67	3,33	0.83	3,33	2.67	6,67	2.50	4,75	4.90	1,51	1,76	0.67	3.54	2,33	1,26	1.00	2.02	1,93	1.17
	Serpula vermicularis	AP	-,	.,	0.83	-,	-,	_, -, -	0,83	_,	.,	.,	.,	.,	-,	-,	_,	.,	.,	_,	0,25	.,
	Sigambra tentaculata	Mixt			0,00		0,83		0.83		0,98					1,01	0,33				0,51	0,17
	Sphaerodoridae nd			0,83		1,67	0,00	1,33	0,00	0,83	0,00					.,	0,00	0,33			0,0.	0,
	Sphaerosyllis claparedii	Sm		0,00		.,0.		.,00		0,00						1,01		0,00				
	Spiophanes bombyx	SFBC	19,61	3.33	0,83	3.33	1,67	2.00	0.83	4.17		0.98				.,		0,59				
	Stemaspis scutata	VTC	,.,	0,00	0,00	0,00	.,	_,00	0,00	.,		0,00	0,25					0,00				
	Sthenelais boa	Lim	8,82	4.17	7,50	1.67	5,00	2,00	4.17	8,51	4,61	6,86	0,76		0.42	1,01	0,67	0,51	0,92			0,33
-	Syllidae juv		16,67	5,83	.,00	10,83	0,00	8,00	.,	4,02	.,	0,00	0,0		0,	.,	1,33	,,,,,	0,92	1,26		0,00
	Syllis sp		3,92	8,33	5,00	4.17	2,50	6,00	4,17	3,51	1,81	6,86	3,54	0,25	1,33	1,01	0,67	1,85	0,33	1,01	0,84	0,50
	Terebellidae nd		0,98	0,00	1,67	',	1,67	0,67	.,	3,01	0,98	1,96	0,0.	0,20	.,55	1,01	0,67	1,01	0,59	.,	0,0.	0,33
	Terebellides stroemi	МО	11,76	11,67	0,83	3,33	3,33	6,67	1,67	2,50	1,96	0,98	0,51		1,42	2,53	0,67	2,69	1,76	1,77	0,51	0,33
Sipunculidi	2.222	15	1,. 5	,07	0,00	0,00	0,00	0,0.	.,	_,00	.,	0,00	0,0.		.,	_,55	0,0.	_,00	.,. 0	.,	0,0.	0,00
•	Aspidosiphon muelleri	МО	19,61	28,33	13,33	36,67	21,67	15,33	15,00	11,19	13,14	26,47	3,27		0,33	2,85	0,67	1,42	3,77	1,52	2,52	1,50
	Sipuncula nd	1410	25,49	19,17	10,00	25,83	14,17	32,67	7,50	19,19	24,90	13,73	4,79	3,34	5,26	11,43	5,67	5,46	8,94	5,30	8,97	4,67
DENSITA' TOTALE			620,59	506,67	301,67	471,67	340,00	989,33	347,50	438,96	326,08	423,53	169,34	92,46	266,91	396,02	350,33	315,62	337,58	141,92	216,88	162,67
RICCHEZZA SPECIFIC	CA TOTALE		78	66	89	60	94	68	91	84	72	71	61	45	57	77	55	55	62	67	80	73

C-3 ESTATE 2010 (II SURVEY POST LAVORI)

Stazioni			D1	D2	D3	D4	D5	D6	D7	К8	К9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal se	a-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Briozoi																						
	Briozoa nd													0,33								
Cnidari																						
Antozoi	Actiniaria nd										1,67											
	Alcyonium palmatum	DE	0,51	0,51					0,51	0,51												
	<i>Epizoanthus</i> sp		4,04		2,00					4,55												
Idrozoi	Hydroidea nd		2,02	0,33	1,84	2,67	1,33	2,68	3,03	1,84	5,00	2,52		0,67	0,51	0,51	0,33	0,51		0,84		
Crostacei																						
Anfipodi	Ampelisca diadema	DE	2,53	3,54	4,67	1,84	6,00	5,03	5,05	10,53	8,33	5,37	4,34	1,22	0,67	1,84	1,17	0,84	3,67	2,67	1,18	1,01
	Ampelisca intermedia	SFBC																		0,67		
	Caprellidae nd														0,51			0,51				
	Corophium sp		1,52	0,51	0,67	1,68	0,67	2,02	2,53	4,85	0,83	3,35			0,51				0,33			
	Harpinia dellavallei	VTC								0,51												
	Hippomedon massiliensis	Sab	1,52		0,67	0,67	0,67	0,83								0,84						
	<i>Iphimedia</i> sp						0,67															
	Leucothoe sp				0,67	4,55										0,33	0,33				0,51	
	Metaphoxus simplex	SFBC					0,67											0,33	0,33			0,25
	Microprotopus maculatus	SFBC	1,52	0,51	2,51	1,17	0,67	0,83		2,67	0,83		0,33									
	Monoculodes carinatus	DE					1,33										0,33		2,00	0,67		
	Orchomene grimaldii	VTC	0,51	0,51	0,67				1,52		1,67	1,17										
	Othomaera schmidtii	VB											0,33									
	Photis longicaudata	VTC	2,18		0,67	0,51	0,67	1,01		1,33				0,33				0,33				
	Phtisica marina	Lre		2,02	1,33	0,67	1,33	2,50	1,52		0,83	1,51					0,33				0,17	
	Westwoodilla rectirostris	Sab							0,51	1,68	1,67		0,33									
Copepodi	Copepoda nd				1,33		0,67								0,33		0,33	1,01	1,00	0,51		
Cumacei	Cumacea nd			0,51	1,33	0,67	1,33	1,68	1,01	3,33	4,17	1,52	0,33		0,33	1,51	0,33	0,67	2,83	2,51	1,34	0,25
	Iphinoe serrata	DE				0,51		1,01		1,84	0,83	0,67	0,51									
Decapodi	Alpheus glaber	VTC											0,33		0,33	0,33						
	Callianassa subterranea	Lim											2,61	0,67			0,51		0,67	0,33		0,25
	Ebalia deshayesi	DC			2,00	1,17	0,67	2,17	1,01	1,33		0,33						0,51	0,83			
	Galathea sp		0,51		2,67	3,03		0,83		0,51												
	Goneplax rhomboides	VTC						0,67													0,17	
	Liocarcinus depurator	VB				0,67			0,51						0,33							
	Liocarcinus sp								1,01	1,01												
	Paguridae nd		2,02	1,34	1,33		0,67	0,51	1,01							0,33				0,84	0,17	
	Pilumnus spinifer	Sd				0,51																
	Processa sp					0,51						0,84		0,33						0,33		0,25
Isopodi	Cirolana sp								0,51			0,33										
	Eurydice sp				0,67		0,67			0,67	1,67	1,01										
	Gnathia sp		1,01	0,51	0,67	1,17	0,67	0,67	0,51	0,67	0.00	1,01	0 = 1			0,51		0,51			0,17	
Misidacei	Misidiacea nd			0.54		0,67	0.00	0.00		1,84	0,83	0,33	0,51			0.07		4.07	0.00		0.00	
Ostracodi	Ostracoda nd		0.54	0,51	1,17	1,17	3,33	0,83	0.54	3,33	1,67	0,51	0,33	0.00		0,67	4.00	1,67	0,33	4.00	0,33	
Tanaidacei	Apseudes latreillii	Minut	0,51	0.54		1,33	0.07	0,51	0,51	1,01	0,83		0,33	0,89			1,68		1,50	1,00		
	Leptochelia savignyi	С	0,51	0,51			0,67			0,67				0,33						1,01		
Echinodermi		_{B0}	4.00																			
Asteroidei	Astropecten irregularis	DC	1,33																		0.47	
Echinoidei	Brissopsis lyrifera	VB																			0,17	

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	К9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea	a-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Ofiuroidei	Amphiura chiajei	VTC	1,01		2,00	38,04	1,33		3,54		0,83	1,17	0,25		0,84			1,33	1,00	0,17		
	Ophiura albida	DC	3,19	3,54	5,84	3,17	2,67	4,02	2,02	5,33	0,83	0,51	0,33	0,67				3,87			0,51	
Oloturoidei	Holothuria forskali	Lre				0,67																
	Holothurioidea nd			0,51	0,67	0,67				0,67				0,22								
	Labidoplax digitata	VTC											0,33				0,67					0,67
	Thyone fusus	DE							0,51			0,33										
	Trachythyone juv		0,51						0,51													
	Trachythyone tergestina	VTC														0,33						
Molluschi																						
Bivalvi	Abra alba	Lim			0,67					0,67				0,67							0,17	
	Abra prismatica	DC					1,33		0,51													
	Anomia ephippium	Lre			0,67	0,51		0,83			0,83	2,02										
	Arca tetragona	Sm			0,67																	
	Cardiomya costellata	DL										0,33						0,33			0,67	
	Chlamys varia	DC	0,51		0,67																	
	Clausinella brogniartii	SGCF			0,51	0,67	1,33		0,51				0,33									
	Corbula gibba	MI	0,51			1,17			0,51			0,51	0,67	0,33	0,84	0,67	0,51	0,51	1,50		0,33	0,59
	Cuspidaria rostrata	DL	0,51			0,67																
	Ensis ensis	DC							0,51													
	Gari fervensis	DC	0,51				0,67															0,25
	Hiatella arctica	Sd		0,51				0,67	0,51													0,25
	Limaria hians	DC			0,67																	
	Lucinella divaricata	SFBC																	0,67			0,25
	Lyonsia norwegica	Mixt				0,51	0,67	1,34			0,83			0,67								
	Modiolarca subpicta	AP							0,51											0,17		
	Modiolula phaseolina	DC	0,67		1,33		0,67				0,83											
	Myrtea spinifera	MO	13,11	8,06	11,37	7,03	6,67	4,36	8,08	8,18	16,67	7,73	2,84	6,78	8,05	3,33	5,85	9,37	3,67	2,69	2,67	2,60
	Mysia undata	Mixt																			0,17	
	Mytilus galloprovincialis	Lre			0,67																	
	Nucula nitidosa	Lim	0,51	0,51		0,51			0,51				0,33		1,34			0,51				
	Phaxas adriaticus	Sab		1,01	1,17	2,51	2,67	2,17	1,01	2,34	2,50	0,33	1,00	0,22		0,33	0,84		0,33		0,17	
	Pitar rudis	DC										0,67										
	Plagiocardium papillosum	DC	3,03	2,69	0,51	1,84	2,67	1,34		1,01	0,83	1,17		0,22	0,84			0,33		1,00	0,33	0,59
	Saccella commutata	Mixt	0,51						0,51								0,67			0,33	0,33	
	Saccella illirica	Lre								0,67												
	Scapharca demiri	Mixt	0,51				0.07		0.54													
	Similpecten similis		0.54				0,67		0,51													
	Tellina balaustina	Mixt	0,51	0.00										0.00						0.07		
	Tellina distorta	MI	0,51	0,33										0,33						0,67		0.47
	Tellina nitida	SFBC			0.07	0.00			4.04				0.00		0.54			0.00	0.00			0,17
	Tellina serrata	DE		0.54	0,67	2,00			1,01	0.07			0,33		0,51			0,33	0,33			0.05
	Thyasira flexuosa	Lim		0,51	0,51	4 00	4.00	0.00		0,67	0.50		4.07	4.50	0,33	4.00	4.54	0.50	0,33	0.04	4.00	0,25
0	Timoclea ovata	Lre	45.00	2,02	0,67	1,33	4,00	0,83	40.70	0,67	2,50	0.00	1,67	1,56	3,36	1,00	1,51	3,53	1,33	2,84	1,33	2,69
Caudofoveati	Falcidens gutturosus	Lim	15,96	18,82	16,53	15,03	16,00	11,39	19,70	6,20	4,17	9,22	13,31	5,22	5,36	13,54	5,84	11,04	10,00	7,17	4,03	7,56
Gasteropodi	Acteon tornatilis	SFBC	0,67	4.04	0.54		0.07	0,51			0.00	0.00			0.00			0.54		0.54	0.00	
	Calyptraea chinensis	Lre	1,01	1,01	2,51		0,67	0.54			0,83	0,33	0.00		0,33	0.07	4.00	0,51	4.50	0,51	0,33	0.05
	Cylichna cylindracea	SFBC			0,51			0,51				0,51	0,33		0,67	0,67	1,00		1,50	0,84	0,33	0,25
	Epitonium commune	Mixt								0,51									0,33			
i	Eulima bilineata	MO	I	I	I	I	I	1	I	1	I	I		0,33	1	ĺ	1	1		1	l	1

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal se	ea-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
	Hyala vitrea	VTC													0,33				0,33			
	Mangelia coarctata	Sm	2,02	1,01	0,67		1,33		0,51	1,52	0,83	2,02		0,22		0,33		0,51				
	Odostomia sp																		0,33		0,17	
	Polinices nitida	Sab					0,67								0,67		0,33	0,51				
	Pseudotorinia architae	DC								0,51												
	Trophonopsis muricatus	Sd	0,51																			
	Turritella communis	VTC												0,33						0,33		
Scafopodi	Antalis inaequicostata	VTC	0,51	1,01			0,67		1,01				0,33		0,33			1,52				
Nemertini																						
	Nemertea nd				2,00	0,67	0,67	2,50	1,01	1,84	1,67	0,33	1,76	1,33	0,67	1,00	0,33	0,84	1,00	0,67		0,33
Pantopodi																						
Picnogonidi	Pycnogonida nd		1,68							0,67		0,67	0,33				0,33		0,33			
Platelminti																						
	Platelminta nd						0,67					0,84										
Policheti																						
	Ampharete acutifrons	VTC	3,54	3,86	3,01	3,17	5,33	2,01	6,06	3,68	4,17	2,35	1,84	2,22	3,34	2,17	1,33	7,70	5,83	5,68	5,37	2,60
	Ampharetidae nd		5,05	7,23	5,68	1,33	3,33	4,70	2,53	2,02	0,83	0,84		0,33	1,33			0,51	1,50	1,67	0,33	0,51
	Amphicteis gunneri	Lim				0,67			1,01	0,67		1,01	0,51	1,00	1,17	0,67	2,34	1,68	0,67			
	Ancystrosyllis groenlandica	VB					0,67															
	Aphelochaeta filiformis	MO	2,02	5,88	6,34	5,52	2,67	5,20	4,04	6,69	4,17	2,18	3,85	1,33	3,67	6,35	4,34	6,37	5,17	3,83	7,70	3,86
	Aphelochaeta marioni	MO							0,51													
	Aphrodita aculeata	VTC			0,67																	
	Aphroditidae nd															0,33	0,33					
	Aponuphis brementi	DC	5,86	8,40	7,70	7,17	12,00	17,06	4,55	3,68	8,33	2,52	4,35	4,56	11,21	6,33	7,70	10,90	6,33	2,00	4,53	4,61
	Arabella geniculata	Glar		0,51	0,51												0,33		0,33			
	Chaetozone caputesocis	Lim	0,51			1,84	2,00		1,52	0,67	0,83	2,52	0,67	0,89	1,51	0,67	1,51	3,84	1,00	1,50	0,50	1,01
	Cirratulidae nd		0,51		0,51		2,00	0,83					0,84									
	Ditrupa arietina	MI		1,01		2,00		0,51		5,35	85,00	1,51	182,92	122,44	179,69	248,15	194,39	178,68	300,67	16,72	45,86	33,04
	Drilonereis filum	Lim		1,01	0,67	0,51	0,67		0,51			1,85	0,67		1,01	1,51	0,33	0,67		0,33	0,33	0,51
	Eunice vittata	Lre		0,33	1,33	1,33	0,67				0,83	0,33			0,33			0,51			0,33	
	Flabelligeridae nd			2,53			0,67		3,54	0,51	1,67	1,34	0,33				0,33	0,51	0,33	0,33		
	Glycera rouxii	MO	2,53	5,20	2,67	6,00	2,67	2,35	7,07	4,69		4,70	4,10	3,56	1,17	4,51	5,52	3,84	2,33	1,84	2,35	3,70
	Goniada maculata	VTC	6,06	4,88	4,85	2,00	5,33	4,02	5,56	3,68	2,50	4,20	7,88	4,56	5,02	7,85	6,84	7,56	8,33	6,68	3,52	5,70
	Harmothoe sp			0,51	0,67	0,51	0,67		0,51	1,33		0,67									0,17	0,17
	Hyalinoecia tubicola	DC	2,53	0,51	1,33	2,00		2,50	0,51		0,83	2,52	0,59	1,56		0,33	0,33	1,01	3,17		0,17	1,43
	Hydroides norvegicus	Sd		0,84	1,33	1,33	0,67	0,67	1,52	3,17	4,17	1,01										
1	Labioleanira yhleni	VTC		0,33			1,33			0,67			0,67				0,33		1,17	0,67	0,17	0,25
	Lumbrineris gracilis	Sab	4,53	5,88	5,17	4,51	4,67	5,20	3,03	6,02	4,17	4,53	3,34	4,56	2,68	3,00	4,34	2,00	1,33	4,01	2,51	3,35
	Macroclymene santanderensis	Sab		0,51	1,33	1,84	1,33		2,02	0,67	1,67	0,51	1,00	0,67			0,51			0,33	1,00	
	Magelona alleni	VTC		0,51	0,67		1,33			1,33	0,83			1,33	1,52		1,00	0,51	2,67	1,68	1,01	0,33
1	Maldanidae nd		2,02	1,34	1,33		1,33	2,34	1,01		0,83			0,67		0,67			1,67	0,67	0,67	1,26
1	Marphysa bellii	Lim					0,67		0,51			0,84					0,67	1,52	0,67		0,17	0,59
1	Minuspio cirrifera	MO	3,35	2,86	9,33	3,33	3,33	5,19	7,58	2,34	8,33	5,88	2,67	1,00	1,33	4,01	1,67	11,72	3,00	4,67	1,33	1,52
	Nematonereis unicornis	Mixt	0,51	0,51	0,67							0,33		0,33			0,33				0,17	0,51
	Nephtys hombergi	SFBC															1,33	0,84		1,33	1,01	
	Nephtys hystricis	VTC	1,84	1,01	4,51	2,67	3,33	0,67	0,51	1,17	2,50	3,36	1,67	1,56	0,67	2,02	1,52	1,17	2,00	1,33	0,67	0,51
	Nereididae nd								0,51	1,33	0,83		0,25		1,84	1,00	0,33	0,67			0,33	0,76
	Ninoe sp											0,51	0,33				1,01					
	Nothria conchilega	Sab	3,03	5,38	1,17	3,33	2,00	3,67	4,55	1,68	2,50	5,55	3,00	2,89	1,00	1,33	1,33	3,36	2,17	0,17	1,34	0,59
	Notomastus aberans	MO												0,67		1,33	0,33	1,34	0,33	0,17	0,17	0,25
	Ophelina cilindricaudata	Lim	2,18	2,02	3,33	2,00	1,33	1,84	2,02	0,67		0,51		0,33	0,33	1,51	0,67	1,00	1,00	0,33	0,33	0,25

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea	a-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
	Ophiodromus flexuosus	Sab											0,25				0,33					
	Owenia fusiformis	SFBC	1,17	3,54	6,67	5,52	2,67	3,69	4,04	10,69	11,67	2,68	1,77	0,56	0,84	0,67	1,84	1,52	1,33	1,50	0,17	1,01
	Paralacydonia paradoxa	MO	1,01	1,01	1,33	2,00	2,67	0,67		1,33	2,50	1,00	1,25	0,56	0,33	0,33	0,33	1,01	1,00	0,67	0,51	0,76
	Paraonidae nd		9,41	11,41	13,37	7,52	10,00	8,05	9,09	9,19	5,83	2,85	3,42	8,33	8,68	13,17	9,52	9,90	13,50	14,37	9,20	8,82
	Pectinaria koreni	Sab		0,51	0,51	1,84			0,51		0,83	0,51	1,42	0,89	1,01	2,17	1,33	3,17	1,17	1,33	0,17	0,25
	Phyllodoce lineata	Sm						0,51														
	Phyllodoce sp			1,01			0,67			1,52										0,33	0,67	0,42
	Phyllodocidae nd		0,67	0,33	0,67	0,67	0,67	1,17	2,02	0,67		0,51	0,33						0,33			
	Phylo foetida	SVMC												0,33								0,33
	Pista cristata	Lim			0,67				1,01			0,67										
	Poecilochetus serpens	VTC	0,51	0,84			0,67		0,51				0,59	0,33			0,33		0,83	0,33	0,17	
	Prionospio sp		4,04	1,85	6,85	4,85	5,33	11,89	4,04	11,37	3,33	8,88	10,47	4,44	4,52	5,17	11,02	12,90	10,67	9,37	12,74	10,41
	Sabellidae nd		9,92	7,91	5,84	12,53	8,67	7,70	3,03	8,71	11,67	4,03	1,17	1,67	5,19	3,01	2,17	3,01	3,83	3,51	3,69	1,09
	Scalibregma inflatum	Lim						0,51														
	Scoletoma impatiens	Mixt		2,01	1,17	0,67	2,00	1,17	1,52	3,01	0,83	2,18	1,67	1,33	1,33	2,85	0,33	2,18	3,00	3,33	1,34	1,85
	Serpula vermicularis	AP					0,67							0,33	0,33							
	Sigambra tentaculata	Mixt			0,67							0,51	0,33	0,67	0,67			0,51	1,17		0,17	0,25
	Sphaerodoridae nd						0,67											0,67				
	Spiophanes bombyx	SFBC			0,51					0,51			0,25			0,67	1,00		0,83	0,51		
	Sthenelais boa	Lim		2,53	2,00	0,67	2,00		1,01	1,17	10,83		0,51				0,67					0,25
	Syllidae juv					0,51	0,67														0,17	
	Syllis sp		2,18	2,35	6,51	6,20	2,67	1,68	3,54	0,51	0,83	1,51	0,51	0,89	1,00	0,67	0,33	1,17	3,00		1,01	0,84
	Terebellidae nd		1,01	1,01	2,67	0,67	0,67	1,34		1,33		0,84					1,17	0,33	0,33	0,33	0,84	0,25
	Terebellides stroemi	MO	0,51		1,33	1,17	2,00	0,51	0,51	1,52		1,85	0,59	0,56	1,84	0,33	0,67	2,51	2,17	0,33	1,17	0,25
Poriferi																						
	Porifera nd	Lre				1,01																
Sipunculidi																						
	Aspidosiphon muelleri	MO	10,08	14,63	21,35	10,51	15,33	10,37	16,16	13,88	50,00	12,26	4,03	2,56	5,37	3,84	1,51	3,34	5,00	4,01	3,68	2,10
	Sipuncula nd		7,72	9,92	17,21	9,01	8,67	11,70	16,16	5,19	3,33	7,55	9,87	13,22	13,24	13,36	3,33	8,90	10,67	7,85	4,35	10,49
Tunicati																						
Ascidiacei	Ascidiacea nd		1,01																			
DENSITA' TOTAL	E		165,88	176,67	232,36	220,46	195,33	173,90	188,38	198,67	301,67	148,48	294,35	217,00	291,16	368,04	300,12	340,87	447,00	132,46	137,78	125,13
RICCHEZZA SPEC	CIFICA TOTALE		66	65	80	72	79	58	72	71	57	70	63	58	54	49	63	62	63	58	65	57
					1	1		1		1							1					

C-4 INVERNO 2011 (III SURVEY POST LAVORI)

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal s	ea-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Briozoi																						
	Amathia semiconvoluta	Sd	2,00	0,67	2,00	3,17	2,33	1,50		2,50	1,04	3,13			0,67	2,84		0,51				
Out do at	Cellaria salicornioides	Mixt				0,67									0,33	1,34						
Cnidari Antozoi	Actiniaria nd				2,67	2,67		2,50		2,33	1,04						0,22					
ATILOZOI	Alcyonium palmatum	DE		0,67	2,07	2,07		2,30		0,83	1,04	1,04			0,51	0,67	0,22					
	Epizoanthus sp	DL		5,33		1,52				0,03		1,04	2,02		0,51	1,51		2,53				
	Madreporaria nd		0,67	0,00	0,67	.,02							2,02			.,		2,00				
	Pennatula sp		-,-		-,-								0,17									
Idrozoi	Hydroidea nd							0,83	0,67					0,17			0,47		0,51			
Crostacei																						
Anfipodi	Ampelisca diadema	DE		1,84	5,01	5,84	3,00	3,83	1,50	1,67	6,25	3,13	0,83	1,17	4,02	2,52	2,88	1,90	1,92	4,03	0,56	1,17
	Ampelisca intermedia	SFBC														0,51						
	Caprella equilibra	AP													1,33							
	Caprella sp				0.07	4.04		4 00	0.00				0.05		0.00	13,05	0.05	0.54	0.54	0.54		
	Corophium sp Ericthonius brasiliensis	Sd			0,67	1,01		1,33	0,83				0,25		0,33	1,33	0,25	0,51	0,51	0,51		
	Eusirus longipes	VTC						0,83								1,33						
	Gammaropsis sp	V 10						0,00			3,13	3,13								0,33	0,17	
	Harpinia dellavallei	VTC		2,51							2,08	5,21	0,25	1,00	0,50	1,18	0,92			0,00	0,17	0,17
	Hippomedon massiliensis	Sab		_,-,					0,51		_,-,	-,	-,	.,	-,	.,	-,				•,	-,
	., <i>Iphimedia</i> sp			1,33					1,50			2,08				1,17						
	Lepidepecreum longicorne	SFBC													0,33							
	Leucothoe incisa	SFBC																0,51				
	Leucothoe lilljeborgi	MO			0,67							1,04				1,00		0,51				
	Leucothoe sp							0,67					0,25		0,33	3,67	0,22					
	Maera grossimana	Sd							2,50						0.00							
	Melita gladiosa	Sm SFBC		0,51	0,67	1,01			0,83				0.25		0,33		0.25		2,00		0,33	
	Metaphoxus simplex Microprotopus maculatus	SFBC		0,51	0,67	1,01			2,56				0,25		0,33	0,33	0,25	0,51	2,00		0,33	
	Monoculodes carinatus	DE, MI		1.84	2,00				2,30		1,04	2,08	0,59	0.33	1,84	1,01	0.44	0,51	1,34			0,17
	Orchomene grimaldii	VTC		10,00	2,00		0,67		8,84		.,	2,08	0,25	0,00	4,00	10,69	0,	0,0.	.,0.			0,
	Perioculodes longimanus	SFBC		-,	0,67	0,67	1,34		-,-		1,04	,	.,		,	-,	0,25	0,51		0,22		
	Photis Iongicaudata	VTC		0,67	2,51		0,83		0,83	0,67	3,13	1,04				0,67				0,51		
	Phtisica marina	Lre	0,67	0,67		2,00	2,01	0,67	1,33	0,83	9,38		0,17		0,33	1,01			0,22			0,17
	Pseudolyrius kroyerii	SFBC												0,17								
	Pseudoprotella phasma	Lre		0,51					1,67		2,08	3,13										
	Stenothoe sp							0,83	0,67					0,17			0,22					
	Synchelidium haplocheles	Mixt	0.07		0.07			0.00	0.00	4.50	0.40			0.47	0.04		0.05	0.54	0.54	0,51		
Conenadi	Westwoodilla rectirostris Copepoda nd	Sab	0,67 4,00	1,68	0,67	1,01		0,83 1,33	0,83 4,05	1,50 3,17	3,13 1,04	3,13	1,09	0,17 1,00	2,01 4,67	0,17	0,25 2,40	0,51	0,51 2,68	0,51 0,73	0,50	0,17
Copepodi Cumacei	Cumacea nd		0,67	3,17	9,33	2,00	13,17	5,83	4,05	5,83	15,63	9,38	8,22	6,42	6,45	6,04	10,63	4,59	10,60	13,84	1,39	1,00
Julilacei	Iphinoe serrata	DE	0,07	3,17	9,55	2,00	13,17	0,67	4,20	3,03	1,04	9,50	0,50	0,42	0,50	0,33	0,95	4,58	10,00	13,04	1,59	1,00
Decapodi	Achaeus gracilis	AP		0,67				0,07			1,0-7		0,00		0,00	0,00	0,00					
	Alpheus glaber	VTC						0,83					0,42			0,33			0,51			0,17
ĺ	Anapagurus bicorniger	Lim											0,17									,

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	К9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal se	ea-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Decapodi																						
	Anapagurus sp		0,67			0,67							0,17								0,33	0,33
	Callianassa subterranea	Lim						0,67					0,67	2,26	1,51		1,68	0,39	0,84	0,44	1,33	0,33
	Ebalia deshayesi	DC				1,17					1,04	2,08					0,22	0,17	0,33			0,84
	Ebalia edwardsii	DC															0,51					
	Ethusa mascarone	SFBC														0,67						
	Eurynome aspera	DC				0,67										0,33						
	Galathea sp			4,67		0,67			0,83			10,42			2,33	16,04	0,73					
	Goneplax rhomboides	VTC											0,42				0,22		0,33			
	Heterocripta maltzami	Lim		0,67																		
	Inachus dorsettensis	Lre				0,51																
	Liocarcinus maculatus	Sab						1,67			1,04	2,08			0,67	1,00						0,17
	Macropodia rostrata	Lre							0,83							0,33						
	<i>Macropodia</i> sp								0,67													
	Paguridae nd												0,17			0,51						
	Pagurus cuanensis	Lre							0,83													
	Pagurus sp																0,25		0,51			
	Parthenope massena	Glar		0,67																		
	Pilumnus hirtellus	Lre														0,33						
	Processa sp															0,67						
	Solenocera membranacea	VB									1,04					2,67						
Isopodi	Anthura gracilis	Lim													0,33				0,22			
	Cirolana sp																	0,51				
	Eurydice sp												0,17			0,51						
	Gnathia sp			1,33	0,67	1,17	0,51	0,83	1,01				0,42	0,59	3,33		0,25	0,17	0,84	0,22		0,33
	Jaeropsis sp														1,00	1,33						
Misidacei	Misidiacea nd				0,67		0,67	0,83			1,04				0,59	1,84	0,51	0,51				0,17
Ostracodi	Ostracoda nd			0,67		0,67					1,04	2,08		1,00	2,67	5,69	1,62	0,22		0,84	0,17	0,17
Tanaidacei	Apseudes latreillii	Minut							0,83			1,04	0,76		0,50	0,67	0,25	0,67	0,33		0,17	
L	Leptochelia savignyi	С	0,67	1,17	0,67	0,67	0,83	2,83	1,34	0,83	2,08	1,04	0,67	2,25	2,09	0,51	2,24	1,90	2,44	2,73	0,61	
Echinodermi																						
Asteroidei	Astropecten irregularis	DC		0,51																		
Echinoidei	Brissopsis lyrifera	VB																			0,17	0,17
	Schizaster canaliferus	Lim toll															0,25					
Ofiuroidei	Amphiura chiajei	VTC	1,33	3,33	0,67	1,68		1,50	2,00	0,83		3,13	0,83	0,17	3,33	14,34	0,47	0,17	2,26	1,74	0,39	0,17
	Ophiotrix fragilis	Lre	4.00	0.07		4.00	4.50		0.00	0.00	0.00		0.47	0.00	0.04	16,13	0.70	0.47	0.00		0.47	
01.4	Ophiura albida	DC	1,33	0,67	0.54	1,33	1,50		0,83	0,83	2,08		0,17	0,33	2,01	2,35	0,70	0,17	3,92		0,17	
Oloturoidei	Holothuria forskali	Lre			0,51	0.54											0.05					
	Holothurioidea nd	\ /TO				0,51								0.47			0,25			0.54		0.47
	Labidoplax digitata	VTC				4.04				0.00	4.04		0.05	0,17		0.00		0.54		0,51	0.00	0,17
Mallarah:	Trachythyone tergestina	VTC				1,84				0,83	1,04		0,25	0,50		0,33		0,51			0,22	
Molluschi	Abra priamatica	DC											I					0.00				
Bivalvi	Abra prismatica	_		4.67									I		0.67	60.04		0,22				
	Anomia ephippium	Lre DL		4,67		0.67		0.67	0.00			1.04	0.40		0,67	60,04						
	Cardiomya costellata	SGCF		1,33 0.67		0,67		0,67	0,83			1,04 1.04	0,42									
	Clausinella brogniartii		0.67	0,67		0.67		1,33	0,83		2.12	1,04	0.25		0.67	0.51		0.17		1.01		
	Corbula gibba	MI SFBC	0,67			0,67		0.03			3,13		0,25		0,67	0,51		0,17		1,01		
	Ensis minor	DC			0,67			0,83					I							0.22		
1	Gari fervensis		1	1	0,67	1	1	1		1	1	1]	1		1	1	1	1	0,22	I	1 l

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea	a-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Bivalvi																						ĺ
	Hiatella arctica	Sd								1,67						0,51						ľ
	Hiatella rugosa	Sd														0,17	0,25					l
	Kurtiella bidentata	VTC												0,17		0,51				0,51		l
	Lucinella divaricata	SFBC											0,42							0,51		l
	Lyonsia norwegica	Mixt					0,83					1,04									0,17	l
	Modiolarca subpicta	AP		3,33					3,00						0,33	11,33						l
	Modiolula phaseolina	DC		1,33		0,67				1,67					0,33	4,01						l
	Myrtea spinifera	MO	16,00	10,34	17,68	7,86	13,85	12,33	12,60	17,00	8,33	14,58	7,12	3,00	9,88	14,28	7,09	6,94	12,34	14,39	3,11	4,68
	Mysia undata	Mixt			0,67			0,67		0,67	2,08		0,17					0,17	0,76		0,22	l
	Nucula nitidosa	Lim	1,33		1,33		1,50			0,67	3,13		0,75	0,50	2,01	1,52	0,95	1,18	1,25	1,45	0,56	0,50
	Pandora pinna	Lim																				0,17
	Parvicardium minimum	Mixt														0,33						1
	Phaxas adriaticus	Sab		0,51		0,51		1,67	1,04	0,83	2,08	1,04	0,17	0,50	0,67	0,51	0,73	1,23			0,22	0,67
	Pitar rudis	DC										1,04		0,25				0,17				1
	Plagiocardium papillosum	DC				1,01							0,50		0,33		0,70	0,67	1,17		0,17	l
	Saccella commutata	Mixt				0,67			0,83				0,17									0,17
	Similpecten similis	Sm			0,67													0,17				l
	Tellina distorta	MI				0,67	0,83				1,04										0,17	1
	Tellina serrata	DE	0,67			0,67		0,67														1
	Thyasira flexuosa	Lim					0,67		0,67	0,83	2,08		0,25	0,50	0,50	0,51	0,22	0,51		0,33	l	l '
	Timoclea ovata	Lre	0,67			0,67	0,83	0,67	1,67		2,08	2,08	2,01	2,51	1,33		1,90	1,01	2,56	2,02	1,44	0,50
Caudofoveati	Falcidens gutturosus	Lim	19,33	14,91	33,54	14,02	35,50	18,00	15,77	14,83	26,04	27,08	7,46	6,18	16,51	9,75	15,11	12,69	17,42	10,12	6,06	4,52
Gasteropodi	Calyptraea chinensis	Lre	1,33	0,67	2,00	1,33	1,34	3,17	0,83			1,04		0,83	0,33				0,33		0,44	Í '
	Cylichna cylindracea	SFBC	0,67	1,01		0,67	0,67		1,50				1,09	0,17	0,84	1,18	1,23	1,01		0,84	0,17	0,67
	Epitonium commune	Mixt																				0,17
	Epitonium sp																0,22	1,01				1
	Eulima bilineata	MO														0,67						
	Hyala vitrea	VTC											0,33		0,51				0,51	0,22	0,33	0,33
	Mangelia coarctata	Sm					2,00							0,33	0,25	1,52	0,76	0,73		0,33	1,17	0,50
	Mangelia sp	D0		0.07	0,67										0.00	0.00						1
	Melanella polita	DC		0,67											0,33	0,33						l
	Nudibranchia nd			0,67										0.47		0,51						l
	Odostomia sp	0.1		0.54					4.07			4.04	0.05	0,17	4.00			0.47	0.00			0.47
	Polinices nitida	Sab		0,51	0.07				1,67			1,04	0,25		1,68			0,17	0,33			0,17
	Pseudotorinia architae	DC			0,67				0,51	0.00			0.40							0.44		l
	Trophonopsis muricatus	Sd VTC	0.07		0,67					0,83			0,42	0.40	0.00	0.54	0.70	0.70	0.07	0,44		0.50
0 1:	Turritella communis		0,67			0.54	0.07		0.00	0.00			0,59	0,42	0,33	0,51	0,76	0,73	0,67		0.00	0,50
Scafodi	Antalis inaequicostata	VTC	0,67			0,51	0,67		0,83	0,83					0,33	0,33					0,39	0,17
Nemertini	Nomorton nd			1 17	2.00	0.67	1.50	1 02	2.01	0.02	2 12	1 17	0.50	0.00	0.22	0.50	1 74		1 42		0.67	0.17
Pantanadi	Nemertea nd			1,17	2,00	0,67	1,50	4,83	2,01	0,83	3,13	4,17	0,59	0,83	0,33	0,50	1,74		1,42		0,67	0,17
Pantopodi	Byonogonida nd						0.51		0.00		2 12				1 17	0.51			0.94	0.51		Í
Picnogonidi	Pycnogonida nd						0,51		0,83		3,13				1,17	0,51			0,84	0,51		Í
Platelminti	Platalminta nd															0,50						ł
1	Platelminta nd	1		l	1	l	1	l	l	1	l	I	I	I	1	0,50	I	1	1	ı	I	

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	К9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal se	ea-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Policheti																						
	Ampharete acutifrons	VTC	5,33	7,35	7,33	6,85	8,01	6,83	11,69	12,00	13,54	6,25	5,11	5,51	4,27	0,67	2,85	3,30	3,18	7,22	0,94	1,34
	Ampharetidae nd		2,00	8,85	12,00	9,52	2,50	12,50	6,93	14,17	17,71	2,08	0,59	0,17	1,01		3,28	1,17	1,33	2,53	0,22	0,67
	Amphicteis gunneri	Lim					1,17				1,04	4,17	0,25	0,67			0,44	1,45		2,68	0,78	1,00
	Aphelochaeta filiformis	MO	14,67	8,02	6,34	8,69	12,34	14,00	1,01	12,17	6,25	12,50	7,95	8,70	12,64	7,74	15,28	6,96	10,32	9,10	3,22	2,34
	Aphelochaeta marioni	MO	4,00	3,33	2,67	0,67	3,33	4,50	3,67	2,50	4,17	4,17	4,10	2,00	4,01	2,18	5,15	6,76	9,18	2,40	1,67	2,01
	Aphrodita aculeata	VTC															0,25					
	Aphroditidae nd														0,67	0,17						0,17
	Aponuphis brementi	Lim	5,33	8,36	3,17	5,68	2,01	9,00	6,08	10,50	3,13	11,46	2,34	4,51	7,21	6,06	5,44	4,86	5,94	5,81	2,33	4,85
	Arabella geniculata	Glar																				0,17
	Chaetozone caputesocis	Lim			0,67	1,01	1,67	3,00		0,83	4,17	8,33	1,59	0,83		3,03	1,62	0,89	1,84	0,67	0,72	0,50
	Chirimia biceps	MO											0,83									0,17
	Cirratulidae nd							2,50			1,04	2,08				0,51		0,95		1,62		0,17
	Ditrupa arietina	MI	4,00	1,33	0,67	0,67		3,17		22,67	9,38	19,79	44,46	51,80	33,15	51,54	63,24	46,72	93,21	8,04	16,50	5,35
	Drilonereis filum	Lim						0,83	0,67					0,76	1,18	0,33	0,44	0,39	0,33			0,33
	Eteone picta	Sab												0,17								
	Eunice vittata	Lre	0,67		0,67	0,51			0,83								0,25			0,33		
	Filograna sp															3,36						
	Flabelligeridae nd		0,67	0,67		2,00		1,67	2,92		2,08		0,33	0,33	1,09	1,52	1,71	1,51	2,60	0,56	0,33	0,17
	Glycera rouxii	MO	10,00	13,72	13,86	8,67	12,51	16,50	10,72	10,50	21,88	11,46	3,85	5,51	9,13	6,20	9,14	8,11	5,05	11,24	2,72	4,01
	Goniada maculata	VTC	2,67	7,01	7,68	6,18	5,69	7,50	9,26	4,17	11,46	11,46	7,45	3,59	13,96	9,07	8,58	8,12	7,72	8,12	4,39	3,18
	Harmothoe sp			0,67			0,67		2,33	0,83	1,04		0,25	0,17	3,67	14,87	0,70	0,73				ĺ
	Hyalinoecia tubicola	DC			4,00	4,67	2,50	0,83	0,83	0,83		1,04	1,85	3,77	11,72	2,53	0,92	1,57	2,00	2,40	0,22	ĺ
	Hydroides elegans	Sd		0,67		0,67									1,00	0,50				0,51		ĺ
	Hydroides norvegicus	Sd								0,83			0,42			1,33						0,17
	Labioleanira yhleni	VTC		2,67	2,00	3,68	0,83	0,67		1,67				0,17	0,33		0,73	0,67	0,33		0,17	0,33
	Lumbrineris gracilis	Sab	6,00	15,03	9,35	6,85	10,67	10,00	5,04	11,67	15,63	21,88	4,53	4,35	1,67	2,52	6,74	4,93	7,03	4,24	3,28	4,52
	Macroclymene santanderensis	Sab		2,00	1,33	1,17		1,67	1,34		2,08	2,08	0,59	0,75			0,76	2,02		0,44		
	Magelona alleni	VTC	2,00	2,00	2,00	3,33	6,51	2,00	3,33	5,50	10,42	4,17	6,12	6,84	13,22	9,41	10,06	3,46	6,65	5,53	2,78	1,00
	Maldanidae nd		1,33	1,68		2,00	0,67	2,17	4,00			2,08	1,51		3,01		1,99	0,33	4,61	0,67	0,50	1,01
	Malmgreniella lunulata	DE														0,33						
	Marphysa bellii	Lim	0,67	0,67	0,67		0,51	1,67	0,67								0,25	0,73	1,67	0,22		
	Melinna palmata	Minut																0,17		0,22		ĺ
	Micronephtys sphaerocirrata	Sab			0,67	1,33	2,17	0,83		1,50	1,04			0,25		1,01	0,47	1,51	2,68	3,70		ĺ
	Minuspio cirrifera	MO	12,00	18,69	8,34	10,85	16,52	20,50	16,38	15,67	38,54	40,63	13,46	17,55	33,90	20,13	38,75	14,74	25,15	41,14	5,94	3,84
	Nematonereis unicornis	Mixt	0,67							0,83						0,51						
	Nephtys hombergi	SFBC		1,33								5,21				1,01				1,74		
	Nephtys hystricis	VTC	0,67	0,51	3,17	2,00	6,17	6,67	4,05	5,00	5,21	3,13	1,93	0,33	4,26	0,84	1,93	0,17	1,06	1,17	1,28	1,01
	Nereididae nd								0,83			1,04	1,59	0,17	0,83	0,83		0,50	1,42	0,73	0,33	0,17
	Ninoe sp													0,17			0,25					0,51
	Nothria conchilega	Sab	20,00	18,57	15,86	17,86	16,37	12,83	12,61	8,33	12,50	23,96	4,43	1,83	0,33	6,68	9,32	9,44	10,79	5,70	1,56	3,52
1	Notomastus aberans	MO		0,51	1,33	l .		_	0,51	1	_	1,04	0,42	l .	0,25	0,51	1,17		l _	0,51	0,78	1 .
1	Ophelina cilindricaudata	Lim		1,84	2,00	4,51	1,50	2,50	2,50	0,83	7,29	4,17	1,51	1,17	0,33		0,95	1,18	3,76	2,01	0,56	1,01
	Ophiodromus flexuosus	Sab				0,51		1,33						0,17			0,25			1,74		
	Owenia fusiformis	SFBC	3,33	2,00	4,67	3,33	8,34	8,83	1,67	3,83	2,08	5,21	2,35	5,69	5,54	6,21	11,61	8,31	5,93	3,75	1,28	0,50
	Paralacydonia paradoxa	MO	0,67	4,34	4,00	4,51	2,50	1,67	4,00	2,50	6,25	5,21	1,01	1,25	0,67	0,51	2,37	1,85	2,34	4,14	1,00	0,84
	Paraonidae nd		32,67	24,36	23,70	22,02	31,37	28,17	15,41	38,33	46,88	65,63	29,81	25,26	31,21	16,48	47,55	20,76	26,03	30,74	21,17	9,36

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea	-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
	Pectinaria koreni	Sab		1,33	0,67	0,67		0,83	0,51	1,67		1,04	0,59	0,33		1,17	1,39	0,39	1,39		0,39	0,17
	Pelogenia arenosa	Glar				0,67														0,22		
	Phyllodoce lineata	Sm		2,00				0,83	0,83													
	Phyllodoce mucosa	SFBC			0,51																	
	Phyllodoce sp			0,67			2,17	0,67	1,04		2,08	2,08	0,33	0,17	1,84				0,33		0,33	0,17
	Phyllodocidae nd				1,33	1,84			0,83						1,17	4,34	0,25	0,51	0,22	1,01		
	Phylo norvegica	Lim							0,83				0,67	0,33	1,00		1,14	0,67	0,51			
	Pilargis verrucosa	Sab																		0,51		
	Pista brevibranchia	Lim			0,67		0,51	0,67			2,08		0,17									
	Pista cristata	Lim		0,67												0,51			0,33			
	Poecilochetus serpens	VTC				0,67	0,67					1,04	0,17					0,22				0,17
	Pomatoceros triqueter	Sd													1,00	12,91						
	Prionospio sp		6,00	5,86	11,86	8,02	5,00	20,50	7,85	8,50	15,63	21,88	6,61	9,51	2,09	4,19	12,78	10,07	7,22	10,27	3,89	6,53
	Prionospio steenstrupi	Lre											1,50						6,67			
	Sabellidae nd		6,67	7,03	4,00	7,17	15,69	16,33	7,96	13,17	27,08	20,83	3,60	3,92	13,71	7,34	2,94	1,90	7,46	4,07	0,78	1,84
	Scalibregma inflatum	Lim							0,83	0,83			0,42		0,50					0,33	0,17	
	Scoletoma impatiens	Mixt	5,33	2,00	4,00	6,85	9,67	3,33	1,67	7,00	4,17	9,38	1,92	0,67	5,37	0,17	2,69	2,85	4,44	5,20	3,61	1,84
	Serpula vermicularis	AP		0,67					1,71	1,67	2,08	1,04	0,17		3,00	4,17	0,44	0,67	2,27	2,29		0,17
	Sigambra tentaculata	Mixt												0,33				0,51				
	Sphaerodoridae nd							1,67									0,25			0,51		
	Spiophanes bombyx	SFBC					1,67		0,51		1,04	1,04	0,33	0,33	0,67	0,67	0,25	0,84	1,52	0,44	0,50	
	Sthenelais boa	Lim		3,33	2,51	1,17	3,17	1,50	0,83	3,33	5,21	5,21	1,01	0,17	2,34	1,34	1,01	0,51	0,51	0,95		0,84
	Syllidae juv		3,33	2,00	0,67	2,00	0,67	2,50	0,83	0,83	1,04	4,17	1,59	0,50	2,92	3,00	4,62	0,67	1,17	8,46	0,78	0,50
	Syllis cornuta	Mixt	4,00		2,00	0,67	3,33	2,50			3,13	5,21		0,50				0,51		2,01	0,22	1,84
	Syllis sp		3,33	3,01	1,33	1,33	2,17	2,33	4,00	3,17	1,04		1,84	1,09	1,67	6,67	2,63	0,17	3,76	0,22	0,50	
	Terebellidae nd		2,00	5,17	3,33	2,67	1,50	4,83	6,17	2,50	9,38	7,29	2,35	0,17		1,50	2,12	1,85	2,61	2,46	0,78	2,17
	Terebellides stroemi	MO		2,00	1,33	2,51		4,17	1,88		2,08	1,04	2,17	0,75	0,76		2,34	1,17	0,89	0,51	0,17	0,50
Poriferi																						
	Porifera nd												0,42		0,67	1,17						
Sipunculidi																						
1	Aspidosiphon muelleri	MO	56,00	29,37	30,34	12,69	40,21	28,17	38,16	34,67	32,29	19,79	5,62	7,01	19,26	11,59	17,74	6,02	27,28	9,96	2,78	3,34
	Sipuncula nd		40,67	27,56	20,85	13,01	26,68	27,17	18,45	29,00	42,71	16,67	10,14	9,67	20,57	11,92	12,66	6,83	20,77	16,45	12,11	6,53
Tunicati	•					·	ĺ ,				,		,							,	'	
Ascidiacei	Ascidia mentula															0,50						
	Ascidiacea nd		0,67						1,34													
DENSITA' TOTAL	E	•	312,00	336,32	314,77	265,94	357,15	378,00	313,48	357,33	513,54	514,58	235,28	224,10	367,30	479,78	381,89	247,74	403,89	298,04	123,61	100,47
RICCHEZZA SPEC	CIFICA TOTALE		51	79	68	80	62	75	86	60	72	72	92	77	95	111	91	88	76	80	69	76
JOHLLER OF LO			٠.		- 55		V-		- 00	- 00			V-	L	- 00	L	٠.					

C-5 ESTATE 2011 (IV SURVEY POST LAVORI)

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	К9	K10	E1	E2	E3	E4	E 5	E 6	E7	K11	K12	K13
Dsistanza dal s	ea-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Biozoi																						
	Amathia semiconvoluta	Sd	3,02	2,67	3,33	3,04	4,00	2,18	2,67	3,83	3,33	3,21	0,51	0,76	1,01	0,89	0,84	1,01	1,01	1,26	0,51	1,26
	Cellaria salicornioides	Mixt	0,51		0,67	2,38					0,83											0,51
Cnidari																						
Antozoi	Actiniaria nd			0,67	1,50												1,01		0,25		0,25	0,51
	Alcyonacea nd	DE	0.54			0.00				0,83						0.47						
	Alcyonium palmatum	DE	0,51			2,00			0,67	0,67 0,67			1,52			0,17 10,50						
Idrozoi	<i>Epizoanthus</i> sp Hydroidea nd			1,17	2,67		0.83		3.33	0,67	0.83		0.51		0,22	10,50						
Crostacei	nydroidea nd			1,17	2,07		0,63		3,33	0,67	0,63		0,51		0,22							
Anfipodi	Ampelisca diadema	DE	2,67	1,01	13,33	2,67	7,17	3,35	6,00	4,33	7,50	5,00	0,51	0,76	3,07	1,95	0,25		1,52	1,01	1,77	3,28
7 timpoui	Amphipoda nd	DL	2,07	1,01	10,00	2,01	7,17	0,00	0,67	4,00	7,00	0,00	0,01	0,70	0,07	1,00	0,20		1,02	1,01	.,,,,	0,20
	Apherusa sp					1,71		1,01	0,0.													
	Caprella rapax	AP				,		, -								5,17						
	Caprella sp		15,15			2,00										1,17						
	Caprellidae nd														0,51							
	Corophium sp		0,67			0,67	0,83	1,52		0,83	1,67	0,67							0,25			
	Deflexilodes griseus	Sm				0,67																
	Harpinia dellavallei	VTC	0,67					0,51	2,67		3,33	0,67	0,51	0,25		1,28			0,25	1,01	0,25	0,25
	Hippomedon massiliensis	Sab										1,04										
	Iphimedia sp	-	0.54	1,17	0.07	1,33		6,22	2,00	0,67	0,83								0,25		0.05	0.05
	Leucothoe lilljeborgi	MO	0,51	0,67	0,67		2,00									1.17			0,76		0,25	0,25
	Lysianassa sp Metaphoxus simplex	SFBC			1,33		2,00				0,83			0,25		1,17	0,51			0,25	0,51	0,25
	Monoculodes carinatus	DE			1,50	0,67	2,50				1,67			0,23			0,51		0,25	0,23	0,51	0,23
	Orchomene grimaldii	VTC	26,26	0,51	2,00	39,71	1,50	11,62	1,33	0,83	1,07				2.02				0,25			0,25
	Othomaera schmidtii	VB	20,20	0,01	2,00	00,71	1,00	0,51	0,67	0,00					2,02				0,20			0,20
	Pariambus typicus	SFBC						-,	-,											0,76		0,25
	Peltocoxa sp								0,67													,
	Perioculodes longimanus	SFBC	1,52		0,67	4,00	1,67	0,51	4,00	4,50	3,33	8,17		0,25					0,25			0,76
	Photis longicaudata	VTC	2,69	3,52	3,50	20,21	2,50	4,71	1,33	3,33	6,33	2,17	2,53		0,33						0,25	1,26
	Phtisica marina	Lre	1,17	4,69	2,83	3,79	1,67	1,52	2,00	0,67	4,17	3,50		0,25		0,33						
	Pseudolyrius kroyerii	SFBC											0,51	0,76								
	Pseudoprotella phasma	Lre	0,51	0,51	1,33	1,33		1,52			2,50											
	Stenothoe sp		0,83		2,00					0,83	0,83											0,25
	Synchelidium haplocheles	Mixt	0.54			0.07						0.07										0,25
	Urothoe sp Westwoodilla rectirostris	Sab	0,51 0,67	0,67	0,67	0,67 1,33	0,67				0,83	0,67		0,25					0,25			
Copepodi	Copepoda nd	Sab	5,68	6,35	7,67	1,33	4,00	4,20	18,67	24,83	22,67	25,79	5,56	1,77	2,22	1,11	4,20	0,76	3,79	2,02	3,03	2,27
Cumacei	Bodotria scorpioides	SGCF	3,00	0,33	7,07	0,67	0,83	0,51	10,07	0,67	22,07	23,19	3,30	0,51	2,22	0,22	0,25	0,76	1,01	2,02	3,03	0,51
Janiacoi	Cumacea nd	5551	3,34		3,33	0,67	5,83	3,86	1,33	3,67	10.83	2,00		1,52	1,57	0,56	1,60	0,25	3,54	2,02	0,51	3,03
	Diastylis sp		-,		1,33	4,00	3,17		2,00	3,17	12,25	1,67		0,25	.,		1,01	-,_5			-,	
	Eudorella truncatula	Mixt	1,67	5,35	8,33	4,67	8,33	3,70	9,33	7,17	14,83	9,92	2,02	1	0,73	0,44	0,92	0,25	2,02	1,01		1,01
	Iphinoe serrata	DE	,-	-,	1,50	,-	0,83	-, -	0,67		1,67	0,67	0,51		0,44	0,22	0,51	0,25	0,51	1		0,51
	<i>Iphin</i> oe sp												0,51	0,25		0,22						
	Leucon mediterraneus	С			1,33				0,67		0,83								0,51			0,76

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	К9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea	a-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Crostacei																						
Decapodi	Alpheus glaber	VTC													0,73			0,25		0,51	0,25	
	Anapagurus bicorniger	Lim	1,01											0,25								
	Anapagurus sp	_			0,67		0,83	1,52		0,83			0,51			0,33	0,25	0,25				0,25
	Athanas nitescens	С				1,04										0,50						
	Callianassa subterranea	Lim						4.04	0.07	0,83	4.07	0,83		0,76		0,89	0,25	1,01	1,26		1,01	0,76
	Ebalia deshayesi	DC					0.00	1,01	0,67		1,67	0,67			0.51				0,25			0,25
	Ebalia edwardsii	DC DC			0,67		0,83								0,51				1,01			
	Eurynome aspera Galathea sp	DC	5,05		0,67	7,04		2,02	1,33							2,00						
	Galatriea sp Goneplax rhomboides	VTC	5,05			7,04		2,02	1,33						0,51	2,00						
	Heterocripta maltzani	Lim				0,67									0,51							
	Liocarcinus depurator	VB	0.51	0,67		1,04					0,83		0,51									
	Liocarcinus maculatus	Sab	0,51	0,07		1,04		0,51	1,33		0,67		0,51		0,33						0,25	
	Pagurus cuanensis	Lre						0,01	1,00		0,01				0,00		0,25				0,20	
	Pilumnus hirtellus	Lre				1,04										0,33	0,20					
	Processa sp	2.0	4.04	0,67		1,33		2,02			2,50	1,50		0,25	0,51	1,90	0,25	0,25	1,26		0,25	0,51
Isopodi	Anthura gracilis	Lim	.,	0,0.		.,00		2,02			0,67	1,04		0,20	0,0.	.,00	0,20	0,20	.,20		0,20	0,0.
	Cirolana sp										-,	.,										0,25
	Eurydice sp															0,22						-, -
	Gnathia sp		0,67	0,67	1,33	0,67	1,33	2,02			2,50		1,52	0,25	0,22	1,68	0,76		1,01			1,26
Leptostraci	Nebalia sp		·		·	1,04		,					,		,	0,17	,		,			·
Misidacei	Misidiacea nd		1,52		0,67	2,75	2,50	0,51	0,67							0,17			0,25			
Ostracodi	Ostracoda nd				2,00	2,67		1,68	2,67		2,33			0,25	0,51	0,33	0,59	0,25		0,51		0,51
Stomatopodi	Squilla desmaresti	HP		0,51																		
	Squilla mantis	Lim																			0,25	
Tanaidacei	Apseudes latreillii	Minut			0,67		1,67	0,51			1,67	3,79	5,05	2,27	3,96	4,18		4,29	1,26	2,02	2,02	1,01
	Leptochelia savignyi	С					4,17	5,72	3,33	5,17	5,00	6,33	1,52	0,76			1,01		1,52	1,01	0,76	1,77
Echinodermi																						
Asteroidei	Astropecten spinulosus	HP			0,67	0,67	0,67															
Echinoidei	Brissopsis atlantica mediterranea	VB														0,22						
Ofiuroidei	Amphiura chiajei	VTC	1,01	3,17	4,33	1,71	4,17	2,69	4,00		0,83	2,38	1,01		0,33	0,67	0,25			0,25	0,76	0,76
	Ophiotrix fragilis	Lre	0,51							0,67			0,51			5,33						
	Ophiura albida	DC	3,19	1,67	5,00	6,67	7,33	3,54	2,67	6,33	4,00	2,38	2,53	1,26	2,68	2,89	1,17			0,76	0,25	1,26
Oloturoidei	Holothuria forskali	Lre		0,67																		
	Holothurioidea nd																					0,25
	Labidoplax digitata	VTC										0,67		1,26	0,51		1,42		0,25			0,25
	Thyone fusus	DE	0,51	0.07								4.04	0.54							0,25		
M - II I- :	Trachythyone tergestina	VTC		0,67								1,04	0,51									
Molluschi	Ab i ti	БО.	0.54				0.47		4.00	0.07			4.04	4.00	0.54	0.50			0.70		0.70	0.54
Bivalvi	Abra prismatica	DC	0,51 67,17			111,54	3,17	13,64	1,33	0,67			1,01	1,26	0,51	0,56 107,17			0,76		0,76	0,51
	Anomia ephippium	Lre Sm	67,17			111,54		13,04								0,17						
	Arca tetragona		0,51				0,83									0,17						
	Azorinus chamasolen Cardiomya costellata	Mixt DL	0,51		0,67		0,03	0,51				0,67		1,01		0,22						
	Cardiornya costellata Chlamys varia	DC			0,07	0,67		0,51				0,67		1,01		0,22						
	Cliamys varia Clausinella brogniartii	SGCF			0,67	0,07	0,67	0,51		0,83						0,17						
	Corbula gibba	MI		0,83	2,00		1,67	0,01		0,03	0,83		1,01	2,27	3,70	1,17	0,51		0,76	3,54	2,02	1,77
	Gari fervensis	DC		0,00	2,00		1,67				0,00		0,51	2,21	0,51	1,17	0,51		0,70	5,54	2,02	0,25

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	К9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal se	a-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Molluschi																						ĺ
Bivalvi	Hiatella arctica	Sd			1,33											0,33						i l
	Hiatella rugosa	Sd				14,21																1
	Kellia suborbicularis	DC		0,67	0,83	0,67		0,51					0,51			0,51						i I
	Kelliella abyssicola	Sm									1,67	1,04										0,25
	Kurtiella bidentata	VTC						0,51							1,17	0,17						1
	Laevicardium crassum	SGCF										0,83										1
	Modiolarca subpicta	AP	16,16	1,17	1,33	29,42		10,61	14,67	8,00	2,50					10,83						1
	Modiolula phaseolina	DC	60,61		1,33	255,58		0,51								27,00		0,25				1
	Myrtea spinifera	MO	10,41	14,87	11,00	5,33	14,17	11,60	10,00	13,00	7,33	16,63	9,60	6,31	5,79	13,32	7,30	7,07	3,79	3,03	7,83	9,09
	Mysia undata	Mixt			1,33		0,83					0,67		0,25	0,22		0,33					0,25
	Nucula nitidosa	Lim	0,51	1,17	0,67	3,33		0,51	0,67	0,83		1,04		1,01		1,06	0,51	0,76		0,76	1,01	1,52
	Nucula nucleus	Mixt																0,76				1
	Parvicardium minimum	Mixt		1,17	2,67	1,33	6,50	1,01	2,67	1,67	0,83	4,00	5,05	2,27	3,01	0,78		2,53	1,77	3,54	2,27	2,78
	Phaxas adriaticus	Sab		2,17	1,33	0,67	0,83					2,38	1,52	1,52	1,51	0,89	0,51		1,01	0,25		1,01
	Pitar rudis	DC						1,52														1
	Plagiocardium papillosum	DC						0,51														1
	Saccella commutata	Mixt						0,51						0,25			0,33				0,25	1
	Saccella illirica	Lre																				0,25
	Similpecten similis	Sm				1,33	0,83															1
	Solecurtus scopula	Sab																	0,25			1
	Tellina balaustina	Mixt								0,67											0,51	i I
	Tellina distorta	MI		0,51	1,33				1,33		0,83		0,51	0,25	0,51				0,25	0,51		0,25
	Tellina serrata	DE					1,50	0,51											0,25			i I
	Thyasira flexuosa	Lim		1,68		1,33	0,67		0,67	3,17			0,51			1,11			1,01	0,51	0,51	0,51
	Timoclea ovata	Lre			2,00	0,67	0,83				0,83	5,13	2,53	0,25	3,18	2,62	2,10	2,53	1,26	8,33	3,79	3,79
Caudofoveati	Falcidens gutturosus	Lim	16,42	16,03	19,50	10,00	14,33	20,16	23,33	20,67	10,00	21,54	15,66	10,35	15,22	12,15	8,31	9,34	11,11	11,11	8,59	12,63
Gasteropodi	Calyptraea chinensis	Lre			0,67					0,67								0,25	0,25			1
	Cylichna cylindracea	SFBC	0,67				0,83	0,51	0,67	0,67	0,83	1,33	0,51		1,23	0,56	0,59	0,51		0,25	0,76	1
	Emarginula sp								0,67													1
	Eulima bilineata	MO			0,67		0,83									0,17						1
	Hyala vitrea	VTC	6,04		0.00			4.50	4.00		0.00		4.04		0.54				0,25	0.05	0,25	1
	Mangelia coarctata	Sm	1,17		2,33			1,52	1,33		0,83		1,01		0,51					0,25		1
	Nudibranchia nd					1,04		1,52			0.07	0.07		0.05		0,17					0.05	1
	Odostomia sp	\ /TO			0.07	14,21	0.00				0,67	0,67		0,25							0,25	1
	Philine aperta	VTC		0.07	0,67	0,67	0,83		0.07			0,83	4.50	0.70			4.00	0.70				0.05
	Polinices nitida	Sab		0,67					0,67				1,52	0,76			1,68	0,76			0.70	0,25
	Raphitoma sp	<u> </u>	0.54		0.07	40.54	0.07	0.54			0.47		0.00	0.54	0.00		0.54		0.54		0,76	0.54
	Trophonopsis muricatus	Sd	0,51		0,67	13,54	0,67	0,51			2,17		2,02	0,51	0,22		0,51		0,51		0,25	0,51
	Turbonilla rufa	Lre			0,67					0.00			4.04	0.54	0.00	4.45		4.04	4.50	4.04		i I
0	Turritella communis	VTC								0,83	0.00		1,01	0,51	0,22	1,45		1,01	1,52	1,01		i I
Scafopodi	Antalis inaequicostata	VTC									0,83		0,51	0,76		1,11						i I
Nemertini	Name and a series		4.50	0.04	4.00	0.00	7.00	4.00	4.00	0.07	0.50	4.50	4.04	0.70	0.70	0.04	0.70	0.70	4.04		0.05	0.05
Dantan adi	Nemertea nd		4,53	3,01	4,00	2,00	7,83	4,20	4,00	0,67	2,50	1,50	1,01	0,76	0,73	2,01	0,76	0,76	1,01		0,25	0,25
Pantopodi	December 1		40.04	0.07	0.07	0.07	0.00	0.54			0.50	0.07	0.54			04.50	0.54			0.54		0.05
Picnogonidi	Pycnogonida nd		13,64	0,67	0,67	8,67	3,00	0,51	l		2,50	0,67	0,51	l	1	21,56	0,51	I	I	0,51		0,25

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	К9	K10	E1	E2	E3	E4	E 5	E 6	E7	K11	K12	K13
Dsistanza dal se	ea-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Platelminti																						
	Platelminta nd					0,67																
Policheti																						
	Ampharete acutifrons	VTC	6,68	5,18	12,50	8,67	17,00	12,08	16,67	18,67	17,17	17,75	17,68	7,83	5,80	6,46	8,32	4,55	5,81	7,07	8,84	8,84
	Ampharetidae nd		3,52	9,69	8,00	2,00	4,83	4,04	3,33	3,33	5,00	3,42	1,01	0,51	0,22	1,95	1,60	1,52		1,77	0,51	1,52
	Amphicteis gunneri	Lim VB	0,51				2,50	2,02 1,01	2,00	2,33			1,52	0,25	0,51	0.20	1,34	0,25	0,25	0.54	0,25	0,25
	Ancystrosyllis groenlandica Aphelochaeta filiformis	MO	9.05	5,86	6.67	3.33	11.83	11,01	8.67	5,83	8,00	20.08	5,05	5,05	3.63	0,39 6,48	4,04	3,28	7,58	0,51 6,57	4,04	12,63
	Aphelochaeta marioni	MO	9,51	8,84	7,33	3,33	3,50	7,39	12,00	3,33	6,67	5,17	10,10	3,03	1,79	3,50	8,49	2,02	9,34	4,55	3,79	6,06
	Aphredita aculeata	VTC	9,51	0,04	0,67		3,50	7,39	12,00	3,33	0,07	5,17	10,10	3,03	1,79	3,50	0,49	2,02	9,34	4,55	3,79	6,06
	Aphroditidae nd	VIC	0,67		0,67						1,67							0,51		0,51	0,51	0,51
	Aponuphis brementi	Lim	7,06	11,03	12,33	4,67	22,17	13,11	18,00	5,83	15,83	17,71	10,61	9,09	7,53	4,63	14,19	6,31	6,57	6,31	7,07	4,04
	Arabella geniculata	Glar	7,00	11,00	12,00	4,07	22,17	0,51	10,00	3,03	13,03	17,71	0,51	3,03	0,51	0,33	14,13	0,51	0,07	0,51	7,07	0,51
	Chaetozone caputesocis	Lim	1,17		5,00	2,00	4,00	2,02	7,33	0,67	0,83	1,04	0,51	1,01	1,34	0,55		0,25	2,78	1,77	0,76	2,27
	Chirimia biceps	MO	.,		0,00	2,00	4,00	2,02	7,00	0,07	0,00	1,04	0,01	1,01	1,04		0,25	0,20	2,70	1,77	1,01	0,51
	Cirratulidae nd						0,83	0,51	2,00	1,50			0,51	0,25			0,20				.,	0,01
	Ditrupa arietina	MI	1,17	0,67	4,83	0,67	0,83	0,51	2,00	16,33	58,17	1,33	34,34	15,91	45,34	28,79	42,64	29,55	18,43	29,80	15,40	18,69
	Drilonereis filum	Lim	1,34	-,	.,	-,	0,83	-,	_,	,	,	.,	0,51	0,25	,	0,84	,-	0.76	0,25	,	0,25	0,51
	Eunice vittata	Lre	.,		0.67		-,						0,51	-,		-,	0,25	-,	-,		-,	-,-:
	Eusyllis sp				-,				0,67	0,83			-,				-,					
	Filograna sp		15,82			28,13		3,35	,	,			0,51					0,25			0,25	
	Flabelligeridae nd		2,33	0,67	2,00	6,67	1,67	2,02	3,33	2,17		1,04				1,01			0,51	0,25		0,25
	Glycera rouxii	MO	9,05	3,84	11,83	9,04	12,50	7,90	19,33	7,83	9,00	16,33	8,08	3,79	5,75	7,59	9,24	4,04	3,54	5,81	5,30	9,09
	Goniada maculata	VTC	5,19	4,18	12,50	2,67	14,33	6,89	7,33	4,83	8,67	8,25	14,65	6,82	5,52	6,98	7,40	6,82	6,06	5,81	5,05	7,32
	Harmothoe sp		9,09	0,67	1,33	19,13	2,17	2,02	2,00	0,83			0,51		0,33	17,67	0,25		0,25			0,25
	Hyalinoecia tubicola	DC		2,34	2,00		4,17	1,52	4,00	3,83	0,83	0,67	2,02	0,51	2,02	0,51	0,25			0,51		0,25
	Hydroides norvegicus	Sd			0,67	0,67					0,83				0,33	7,17	1,01		0,25		0,51	0,51
	LabioLabioleanira yhleni	VTC												0,25	0,22					0,25		
	Levinsenia oculata	MO					0,67				1,67	0,67		0,76			0,25	0,25	0,25	0,76		0,25
	Lumbrineris gracilis	Sab	3,70	4,18	15,00	4,67	9,83	4,71	12,67	5,50	8,83	11,38	6,57	6,82	3,34	1,62	4,36	2,27	4,80	2,78	4,55	6,06
	Macroclymene santanderensis	Sab	1,67	1,17	0,67				4,00		3,33	1,50	1,52	0,76	1,00	0,95	0,51	0,25	1,52	0,25	0,76	2,02
	Magelona alleni	VTC	4,53	6,19	7,33	2,67	11,33	1,68	0,67	4,00	9,17	11,83	2,53	2,78	2,62	1,84	2,18	1,77	3,54	3,79	3,03	4,55
	Maldanidae nd		4,37	1,33	3,33	3,33	5,00	2,02	1,33	2,50	3,33	5,42	3,03	2,27	4,03	4,79	2,94	0,76	3,79	1,01	2,27	3,79
	Marphysa bellii	Lim		0,67					0,67	2,50			0,51	0,76	0,51		0,59	0,25	0,51	0,25		
	Melinna palmata	Minut											0,51							0,25		
	Micronephtys sphaerocirrata	Sab		1,84				0,51	2,67		1,67	3,04		0,25	0,22				0,25			0,25
	Minuspio cirrifera	МО	19,38	18,07	37,83	17,33	40,67	26,04	31,33	70,67	37,33	69,83	24,24	11,36	12,57	7,58	6,22	2,53	12,12	20,20	9,60	33,33
	Nematonereis unicornis	Mixt																	4.00			0,25
	Nephtys hombergi	SFBC		0.04	0.07	0.07	4.00		0,67	4.0=	0.50	0,67		0.70	4.00	0.00	4.04	0.00	1,26	0.76	0.05	4.00
	Nephtys hystricis	VTC		2,34	6,67	0,67	1,33	1,01	0.07	1,67	2,50	1,04		0,76	1,23	6,00	1,01	2,02	1,26	0,76	0,25	1,26
	Nereididae nd			0,67	1,33	3,33	0,83		0,67	1,33	0,83		0.54			0,17	0,84		1,01			0,25
	Ninoe sp	0-1	44.70	0.54	40.00	4.07	4.47	0.40	0.00	4.47	F 47	0.07	0,51	0.04	0.00	0.50	0.40	7.00	4.00	0.54	5.04	0,25
	Nothria conchilega	Sab	11,70	6,51	13,83	4,67	4,17	2,18	8,00	4,17	5,17	9,67	4,04	6,31	6,36	6,53	9,49	7,32	4,80	0,51	5,81	4,04
	Notomastus aberans	MO	0,67	0.00	16.00	0,67	0,83	0,51	2,67	10.00	10.67	10.07	0.00	F 20	0,84	1,01	0,51	1,52	0,25	0,25	0,76	6.06
	Ophelina cilindricaudata	Lim	9,38	8,86	16,83	3,33	12,33	15,78	17,33	12,83	19,67	16,67	9,60	5,30	2,69	3,62	8,40	3,03	3,03	13,64	5,81	6,06

Stazioni			D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E 5	E6	E7	K11	K12	K13
Dsistanza dal se	a-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Policheti																						
	Ophiodromus flexuosus	Sab	1,17			1,33		1,17			0,83	0,67		0,25		5,17		0,25	0,51		0,51	1,77
	Owenia fusiformis	SFBC	6,21	8,20	12,17	12,00	55,67	16,65	6,00	26,67	27,67	19,33	7,07	0,76	7,58	0,67	3,79	0,51	3,79	4,29	7,07	12,12
	Paralacydonia paradoxa	MO	2,34	6,86	3,33	5,33	4,00	5,37	4,00	6,33	5,83	2,17	4,55	1,52	0,67	1,11	1,09	1,26	0,76	0,76	0,25	1,77
	Paraonidae nd		27,16	18,72	20,67	13,33	18,00	16,46	47,33	28,33	26,17	34,00	29,80	13,89	21,64	11,09	17,31	6,82	19,19	20,96	19,19	27,02
	Pectinaria koreni	Sab	3,02		7,83	2,00	4,17		2,00	6,00	4,00	1,04	2,02	0,51	2,18	2,44	1,34	1,52	2,78	2,78	1,52	2,02
	Phyllodoce lineata	Sm									0,83								0,25			
	Phyllodoce sp		0,51	1,84	1,33	0,67	0,83	1,01	4,00	1,67	1,67	2,67	2,02	0,76		0,22	0,59	0,76	0,25	1,77	0,25	
	Phyllodocidae nd				2,00		2,33	1,01	1,33		4,00	0,67		0,25	0,33	0,17		0,76		1,01	0,25	1,01
	Phylo norvegica	Lim												0,25								
	Pilargis verrucosa	Sab											0,51									
	Pista brevibranchia	Lim toll	0,51					0,51			0,83						0,59		0,51			
	Pista cristata	Lim		1,17	1,33		1,67		0,67			0,67							0,51			0,25
	Poecilochetus serpens	VTC	1,17	1,52	4,33	3,33	2,33	0,51	0,67	0,83	0,83		0,51	0,25	0,51	0,51		0,51	1,26		0,25	1,77
	Pomatoceros triqueter	Sd	5,21	1,01	0,67	28,79				0,83	0,83					1,67						
	Praxillella gracilis	Lim																	0,25			0,25
	Prionospio sp		1,52	1,17	2,67	6,67	7,17	2,18	4,00	6,83	9,33	3,42	10,61	4,80	3,58	8,62	5,20	2,53	4,55	3,54	3,79	6,06
	Prionospio steenstrupi	Lre	0,83	0,67	0,67	2,00			3,33	2,33	3,00	1,50		1,52					0,25			
	Sabella pavonina	Lre								1,50						0,33						
	Sabellidae nd		32,73	15,36	46,67	18,67	39,50	25,70	42,00	24,67	55,50	41,96	10,10	2,02	5,19	3,29	19,38	0,51	5,81	3,79	2,27	7,58
	Scalibregma inflatum	Lim				1,33																0,25
	Scoletoma impatiens	Mixt	9,21	5,69	4,67	5,33	10,83	3,19	4,00	5,83	3,33	7,58	3,54	1,77	2,40	1,28	3,11	1,77	2,53	5,30	2,78	3,28
	Serpula vermicularis	AP	0,51			73,33										1,17				0,25	0,25	
	Sphaerodoridae nd								0,67				0,51		0,56				0,76	0,51	0,25	0,25
	Spionidae nd																		0,25			
	Spiophanes bombyx	SFBC			0,67	0,67	2,33	2,18	1,33	0,67	0,83	4,00	0,51		0,51	1,00						
	Sthenelais boa	Lim			0,67	1,33	1,67	1,52	0,67	1,50	1,67		1,01	0,25		0,33	0,76					
	Syllidae juv		1,34	4,02	5,00	2,67	3,83		2,00	4,00	2,50	4,08				0,78		0,25	0,76	1,26	0,25	0,76
	Syllis parapari	SFBC	0,51	2,68	2,17	4,00	3,00	0,51	4,00	0,67		3,04	2,53	0,51	1,95	0,22	2,61	1,52	2,78	2,27	1,52	0,76
	Syllis sp		0,51	1,68	1,33	88,46	0,67	2,69	4,67	2,33		0,67	1,52	0,76		38,72		0,51	1,01	0,76	0,25	
	Terebellidae nd		1,84	3,17	2,67	7,33	1,50	0,51	0,67	4.00	2,33	5,38	3,54	1,26	0,22	0,84	0,84	1,26	1,26	0.70	0.54	1,01
Dovidovi	Terebellides stroemi	МО	1,17	1,84	2,83	1,33		2,18	6,00	4,00	8,17	0,67	1,52	0,51	1,17	0,22	0,25	0,25	0,25	0,76	0,51	
Poriferi	Davidson and				0.07	0.07				0.07	4.07					F 07			0.54		0.05	
	Porifera nd1				0,67	0,67				0,67	1,67					5,67			0,51		0,25	
Sipunculidi	Porifera nd2					2,00										0,17						
Sipuliculiui	Aspidosiphon muelleri	МО	12,41	27,56	39,83	24,38	30,00	19,49	25,33	25,67	30,50	35,29	19,70	10,61	19,12	6,89	48,79	26,77	20,45	20,71	25,25	21,72
	' '	Lre	12,41	21,30	39,03	24,30	30,00	19,49	25,55	25,67	30,30	35,29	19,70	10,61	19,12	0,09	40,79	20,77	20,43		0,25	21,72
	Phascolion strombus Sipuncula nd	Lie	14,94	12.24	24,67	11 71	22.22	10 77	24.00	21.67	20.67	20.17	20.04	14 20	19,86	1 25	18,42	12.12	12.00	0,76		14,65
Tunicati	Sipuricula nu		14,54	12,21	24,07	11,71	23,33	12,77	34,00	31,67	20,67	30,17	30,81	14,39	19,00	4,35	10,42	13,13	12,88	21,97	16,16	14,00
Ascidiacei	Ascidia mentula	Lre				1,04			0,67													
Ascidiacei	Ascidia riiginea	Lre				1,04			0,07							0,33						
	Ascidia virginea Ascidiacea nd	Lie				18,00										0,33						
DENSITA' TOTAL			547,71	302,37	515,83	1084,04	537,33	390,95	530,00	494,67	586,67	568,13	369,19	195,20	264,81	480,08	302,48	178,79	234,60	257,58	212,63	303,28
RICCHEZZA SPE			87	74	100	104	90	94	90	81	92	81	85	85	79	107	75	66	94	72	79	100
SOITEZZA SEL	OIL TO A TO TALL		0,	_ ,-	100	10-7	30	7	30	0.	32	U .	3	3		107	,,,	00	37	12	, ,	100

ALLEGATO D

COMUNITÀ BENTONICA

LISTA E BIOMASSA (gr 0,095 m⁻²) DELLE SPECIE RINVENUTE

* = < 0,001 gr

D-1 PRE-SURVEY

Stazioni		D4	K9	E4	K12
Dsistanza dal fut	turo sea-line (m)	0	926	0	926
Crostacei	• •				
Anfipodi	Ampelisca diadema Ampelisca intermedia	0,009	0,003	*	0,002 0,007
	Eusirus longipes			0,002	3,33.
	Hyperiidae nd			*	0,001
	Monoculodes carinatus	0,001	*		2,001
	Photis longicaudata	-,	*		*
Copepodi	Copepoda nd		*		
Cumacei	Cumacea nd		0,001	0,001	*
Decapodi	Alpheus glaber		0,093	,	
	Callianassa subterranea	0,001	0,003	0,000	0,001
	Ebalia deshayesi	0,003	0,001	0,015	0,008
	Ethusa mascarone	0,016	·		,
	Galathea sp	0,001			
	Goneplax rhomboides				0,005
	Liocarcinus depurator		0,004	0,025	0,002
	Paguridae nd	0,020	0,002		
	Processa sp	0,046			
	Solenocera membranacea				0,096
Misidiacei	Misidiacea nd		0,002		
Tanaidacei	Apseudes latreillei			0,003	
Echinodermi					
Asteroidei	Astropecten irregularis		0,002		
Ofiuroidei	Amphiura chiajei			0,021	
	Ophiura albida	0,001	0,001		0,002
Oloturoidei	Trachythyone tergestina		0,024	0,385	
Molluschi					
Bivalvi	Cardiomya costellata	0,012	0,011		0,006
	Clausinella brognartii	0,145			
	Corbula gibba			0,006	
	Myrtea spinifera	0,213	0,130	0,302	0,268
	Nucula nitidosa		0,002		0,016
	Phaxas adriaticus		0,082		
	Plagiocardium papillosum	0,006			0,028
	Tellina distorta		0,090		
Caudofoveati	Falcidens gutturosus	0,006	0,006	0,011	0,013
Gasteropodi	Calyptraea chinensis	0,006		0,007	
	Hyala vitrea				*
	Mangelia coarctata	0,028	0,042	0,003	0,005
Scafopodi	Anthalis inaequicostata	0,029		0,026	
Nemertini					
	Nemertea nd	0,002	0,001	0,021	

D-1 (continuo)

Stazioni		D4	K9	E4	K12
Dsistanza dal fut	turo sea-line (m)	0	926	0	926
Policheti					
	Ampharete acutifrons	0,010	0,005	0,002	0,005
	Amphicteis gunneri	0,004	0,005	0,003	0,001
	Aphelochaeta filiformis		0,006	0,001	0,001
	Aphrodita aculeata	1,112			
	Arabella geniculata			0,008	0,007
	Caulleriella caputesocis	0,003	0,009	0,011	0,004
	Drilonereis filum				0,003
	Eunice vittata		0,001	0,003	
	Glycera rouxii	0,025	0,032	0,051	0,270
	Goniada maculata	0,017	0,021	0,008	0,006
	Harmothoe antilopes		0,002		
	Hyalinoecia tubicola	0,020	0,053	0,040	0,022
	Labioleanira yhleni			*	0,008
	Levinsenia oculata			*	
	Lumbrinereis gracilis		0,004	0,002	0,007
	Magelona alleni			0,003	*
	Maldanidae nd			0,005	0,009
	Marphysa bellii		0,007		
	Minuspio cirrifera	0,006	0,009	0,002	0,002
	Nephtys hombergi			0,004	
	Nephtys hystricis	0,035	0,307	0,118	0,129
	Nothria conchilega			0,000	0,002
	Notomastus aberans	0,012			0,054
	Ophelina cilindricaudata	0,000	0,001	0,001	0,001
	Ophiodromus flexuosus			0,001	0,001
	Owenia fusiformis	0,004	0,001		
	Paralacydonia paradoxa	*	0,002	0,002	0,004
	Paraonidae nd	0,003	0,004	0,002	0,006
	Pectinaria koreni	0,010			
	Phyllodoce lineata	0,022			
	Pista cristata	0,004		0,001	0,002
	Prionospio sp	0,002	0,007	0,007	0,038
	Sabellidae nd	0,022	0,013	0,001	0,007
	Scoletoma impatiens		0,006	0,013	
	Sigambra tentaculata				0,001
	Spiophanes bombyx		0,001	0,003	
	Sthenelais boa	0,002	0,003	*	0,001
	Syllis sp	0,009	0,005	0,004	*
	Terebellidae nd	0,010	0,002		
	Terebellides stroemi	0,039	0,022	0,004	0,025
Sipunculidi				=	
	Aspidosiphon muelleri	0,157	0,116	0,115	0,031
DENOITAL TOTAL	Sipuncula nd	0,001	0,004	0,007	0,001
DENSITA' TOTAL		2,072	1,149	1,248	1,106
RICCHEZZA SPE	CIFICA TOTALE	43	49	49	48

D-2 INVERNO 2010 (I SURVEY POST LAVORI)

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal s	ea-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Briozoi																					
	Briozoa nd			0,141						0,074	0,008										
Cnidari																					
Antozoi	Alcyonium palmatum	66,225				0,013			2,374		6,011					0,002					
	Anthozoa nd	0,128	0,005		0,011				0,021												
	Epizoanthus sp					0,006		0,041		0,022		0,002		0,004		0,007				0,032	0,011
	Madreporaria nd							0,651													
Idrozoi	Hydroidea nd	1,253	0,201	4,693	0,046	0,164	0,127	0,547	0,131	1,146	0,398	0,009							0,003	0,002	0,001
Crostacei																					
Anfipodi	Ampelisca diadema	*	0,004	0,006	0,007	0,005	0,004	0,006	0,005	0,007	0,003	0,001		*	0,003	0,001	0,002	0,001	0,001	*	0,002
	Ampelisca intermedia	0,003	0,003	0,002		0,008		*			*		0,001		0,004				*		0,002
	Caprella sp			0,002					*												
	Caprellidae nd								*												
	Corophium sp	*		0,001	0,017	0,001	0,001	0,006	0,006	0,002		*				*	*			*	
	Eusirus longipes			*																	
	Harpinia dellavallei			*				0,001	0,002						*						
	Lepidepecreum longicorne			0,004																	
	Leucothoe sp		0,001		0,003	*		*			0,001	*									
	Metaphoxus simplex	0,002	0,001	0,001		*		0,002	*	0,005	*			*		*	*		*	0,001	*
	Microprotopus maculatus	*			*	*			*				*					*			
	Monoculodes carinatus	*	0,001	*	0,001	0,001	*	*	*	*	*	*		*	*	*		*	*	*	
	Orchomene grimaldii			0,098			2,477	*													*
	Photis longicaudata	0,001	0,004	0,001		*			*	0,003	*				*	*			0,001	*	*
	Phtisica marina	0,003	*	*	0,001	*	0,001	0,002		0,002	*					*			*		
	Pseudoprotella phasma					*		*		*											*
	Stenothoe sp				*	*															
	Synchelidium sp																			*	
	Westwoodilla rectirostris		0,001			*				0,004										0,001	
Cirripedi	Scalpellum scalpellum					0,222				0,087											
Copepodi	Copepoda nd	*	*				*	*	*			*	*	*	*	*		*	*		
Cumacei	Cumacea nd	0,001	0,006	*	0,001	0,001	0,004	0,003	0,001	0,001	0,001	*		*	0,001	*	*	*	*	0,001	*
	Iphinoe serrata		0,001		*	*	0,001	*	*	*									*	*	
Decapodi	Alpheus glaber		0,029	0,048	0,010	0,026							0,004		0,026				0,073		0,021
	Callianassa subterranea							0,002		*					*		0,007		0,005	0,005	0,001
	Ebalia deshayesi	0,024	0,060	0,018		0,037	0,003		0,016	0,003	0,069	0,002	0,017		*					0,008	
	Ebalia edwardsii																0,004				
	Eurynome aspera					0,060															
	Galathea sp			0,124				0,008			0,004										
	Goneplax rhomboides							0,005				0,006									0,002
	Inachus dorsettensis			0,001				0,005													
	Liocarcinus maculatus								0,006												
	Liocarcinus sp					0,004															
	Macropodia rostrata	0,005		0.555		0.5:-															
	Paguridae nd	0,009		0,003		0,016	*	0,001	0,017	0,067		0,009	0,005	0,001	0,020			0,017		0,014	
	Philocheras sculptus						0,042										l				
	Processa sp																0,074				
	Solenocera membranacea	1												0,242							

azioni		D1	D2	D3	D4	D5	D6	D7	K8	К9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
istanza dal se	a-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
ostacei																					
Isopodi	Cirolana sp					0,003		0,002	0,005												
	Gnathia sp	*	*	*	0,002	*	*	0,001	*	*										*	*
	Isopoda nd	0,004		0,007					0,014												
Misidacei	Misidiacea nd	*	0,006	0,027		0,008		0,002	0,003	0,002	*					0,001					
Ostracodi	Ostracoda nd	*	*	0,006		*	0,001	*	0,001	*					0,002	*				*	0,001
Tanaidacei	Apseudes latreillii													0,001	0,001			*			
	Leptochelia savignyi	0,001	*		*		*		*					*	*			*	*		
	Tanaidacea nd					*		*		*	*								*		
hinodermi																					
Asteroidei	Astropecten irregularis								*					1,737							
Ofiuroidei	Amphiura chiajei	0,001		0,005	*		0,001	0,049			0,096			0,001		0,015		*	0,010	*	*
	Ophiura albida	0,003	0,002	*	0,007	0,021	0,001	0,001	0,001	0,002	0,001	*		*	0,003	*	*	*	*	*	*
Oloturoidei	Holothuria forskali			21,092				0.000			23,962									_	0.000
	Holothurioidea nd							0,003				0.044	0.400		0.040					•	0,000
	Labidoplax digitata						0.044	0,003	0.000			0,011	0,126		0,016			0.774			
	Thyone fusus						0,011		0,033				0,032	0.000	0.004			2,774			
	Trachythyone elongata								0.005					0,002	0,001						
Musehi	Trachythyone tergestina								0,005												
olluschi Bivalvi	Abra alba	0,272				0,002		0,001													
Divaivi	Abra prismatica	0,212		0,025		0,002		0,001				0,001									*
	Anadara inaequivalvis			0,023		0,001						0,001									
	Anomia ephippium			0,003		0,010						*			0,001						
	Cardiomya costellata	0,009		0,012							0,005				0,001		0,004	*		0,005	0,001
	Clausinella brogniartii	0,000						0,448	1,366	0,580	0,000						0,00.			0,000	0,00.
	Corbula gibba							,	.,	5,555					0,001				*	*	
	Gari fervensis					0,042		0,002		0.054					.,						
	Hiatella arctica			0,001		0,045		0,022		-,											
	Hiatella rugosa			-,	0,011	-,-	0,003	0,013													
	Modiolarca subpicta			0,007	,	*	,							0,001					0,001		
	Modiolula phaseolina	*	0,004				0,001												·		
	Myrtea spinifera	0,136	0,242	0,080	0,412	0,390	0,290	0,371	0,316	0,429	0,327	0,231	0,087	0,081	0,247	0,281	0,305	0,200	0,141	0,146	0,017
	Mysia undata			*								0,000			*			*	*		
	Mytilus galloprovincialis							*													
	Nucula nitidosa	0,016		0,074		0,003		0,007	0,038		0,029		0,005	0,010		0,055		*	0,004	0,020	0,004
	Phaxas adriaticus	0,126	0,034	0,086		0,066		0,046		0,153	0,038	0,014	0,006		0,018				0,007		0,008
	Plagiocardium papillosum		0,006	0,002	0,011	0,010		0,003			0,007					0,005	*		0,001	0,001	0,002
	Saccella commutata							0,023				0,006		0,007							0,025
	Similpecten similis					0,008			0,002												
	Tellina distorta	*															0,022		0,001	0,025	
	Tellina nitida	*															*				
	Tellina serrata			0,003	0,845		0,001							0,019						0,003	
	Thyasira flexuosa	*	0.00:	0,008	0,002	0,017	0,002	0,007	*	0,002	*	0,003	*	*	0,001	0.005	0,003	0.005		*	0.000
0 17	Timoclea ovata	0,022	0,081	0,074	0,002	0,042	0,273	0,008		0,036	0.04-	0,245	0,103	0,072	0,006	0,032	0,089	0,080	0,065	0,050	0,068
Caudofoveati	Falcidens gutturosus	0,016	0,022	0,011	0,026	0,017	0,023	0,037	0,031	0,016	0,015	0,011	*	0,008	0,027	0,008	0,011	0,008	0,006	0,018	0,008
Gasteropodi	Aclis minor		0.00=	0.000	0,006			0.000			0.045				0.005						0.005
	Calyptraea chinensis	0.00-	0,097	0,029		0,039	0,038	0,028	0,037	0.00-	0,013	0.00-			0,003	0,002			*		0,003
	Cylichna cylindracea	0,008	0,015	0,009	0,006		0,015	0,016	0,009	0,026	0,001	0,002	1	1	0,003	*	I	0,001	0,003	*	0,001

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea	-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Molluschi																					
Gasteropodi	Epitonium sp							0,014													
	Eulima bilineata					0,001															
	Hadriania oretea			0,024																	
	Hyala vitrea						*						*		*				*		
	Mangelia coarctata			0,015		0,031		0,011			0,023	*						0,011		*	0,002
	Nassarius lima	0,006																			
	Nudibranchia nd														*						
	Polinices nitida	0,029				0,044			0,006			0,002			0,037			0,012	0,002	0,008	0,001
	Pseudotorinia architae							0,014													
	Solemya togata								*												
Scafopodi	Antalis inaequicostata								0,002	0,104	0,152				0,018			0,005		0,030	
Nemertini																					
	Nemertea nd	0,036	0,007	0,017		0,011	0,016	0,022	0,002	*	0,002	0,004	0,082	0,002		0,004	0,021	0,001	0,003	0,288	0,001
Picnogonidi																					
	Pycnogonida nd		*		*				*	*	*				*		*				
Platelminti																					
	Platelminta nd									0,002		0,001				*			0,004		
Policheti																					
	Ampharete acutifrons	0,024	0,011	0,010	0,006	0,014	0,007	0,010	0,038	0,016	0,005	0,003	0,001	0,002	0,012	0,006	0,004	0,003	0,001	0,007	0,010
	Ampharetidae nd	0,028	0,013	0,014	0,006	0,026	0,033	0,006	0,006	0,011	0,012					*		0,002	0,009	0,002	0,001
	Amphicteis gunneri			0,002		*						0,001					*				
	Ancystrosyllis groenlandica											*					*			0,000	
	Aphelochaeta filiformis	0,008	0,003	0,005	0,005	0,004	0,006	0,001	0,010	0,004	0,004	0,003	0,002	0,003	0,002	0,003	0,004	0,003	0,011	0,004	0,001
	Aphelochaeta marioni					*		0,001	*	0,003	0,003		0,001		0,002			0,002	0,000	0,001	0,001
	Aphroditidae nd								0,003									*			
	Arabella geniculata				0,011				0,011							*	0,003				
	Chaetozone caputesocis	*	*	0,011	0,006	0,005	*	0,015		0,002	0,009	*	0,001	0,002	0,007	0,006	0,008	0,008	0,007	0,006	0,001
	Cirratulidae nd	0,004						*			0,001		*							0,000	
	Ditrupa arietina	*	0,002		0,003	0,005	*	0,002	0,285	0,003	0,017	0,198	0,117	0,371	0,464	0,710	0,443	0,342	0,022	0,056	0,110
	Drilonereis filum	0,074				0,009							0,002	0,001	0,041		0,002		*	0,001	0,012
	Eteone picta													*							
	Eunice vittata	0,039	0,004	0,011		0,001	0,064	0,005	0,005		0,012	*		0,006	0,001			0,002			
	Flabelligeridae nd	*	0,005	0,002		0,016	0,003	0,003	0,002		0,005							0,002		0,001	*
	Glycera rouxii	0,138	0,550	0,007	0,026	0,003	0,348	0,019	0,026	0,003	0,014	0,417	0,226	0,050	0,150	0,307	0,084	0,284	0,458	0,103	0,049
	Goniada maculata	0,037	0,005	0,030	0,002	0,012	0,020	0,013	0,015	0,019	0,020	0,013	0,014	0,005	0,027	0,006	0,006	0,008	0,008	0,006	0,010
	Harmothoe sp		0,005	0,002	0,001	0,001	0,004		0,000	0,007	0,006	*	*		0,003				0,000	*	
	Hyalinoecia tubicola	0,049	0,038	0,045	0,073	0,073	0,037	0,081	0,012	0,053	0,055	0,022	0,016	0,006	0,064	0,032	0,027	0,032	0,013	0,022	0,006
	Hydroides norvegicus					0,004			0,001		0,001				*						*
	Labioleanira yhleni	0,026		0,005		0,002	0,004			0,000	0,002	0,019	0,001	0,002	0,023	0,003	0,058	0,017	0,008	0,002	0,092
	Lumbrineris gracilis	0,014	0,003	0,015	0,016	0,039	0,013	0,016	0,009	0,016	0,013	0,004	0,001	0,002	0,020	0,007	0,004	0,008	0,006	0,004	0,003
	Lumbrineris latreilli																				0,001
	Lysidice ninetta																			*	
	Macroclymene santanderensis			0,118		0,003	0,027	0,016		0,007	0,012		0,001		*			0,001		0,008	0,004
	Magelona alleni	*	0,001		*	*	*	*	0,001	*	*	*		*	*	*	0,001	0,001	0,001	0,001	*
	Maldanidae nd	0,003	0,025	0,053	0,283	0,008	0,023	0,001	0,009	0,014		0,004	0,004	0,013	0,033	0,003	0,001	0,004	0,006	0,002	0,005
	Marphysa bellii	0,001	0,004	0,052			0,000		*	0,013	0,003	0,001	*		0,001			*		0,001	*
	Melinna palmata																			0,002	

Stazioni	D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Minuspio cirrifera	0,003	0,002	0,002	0,001	*	0,001	0,001	0,002	0,001	0,003	0,002	0,002	*	0,001	*	*	*	0,003	0,001	*
Nematonereis unicornis								0,001	0,000	0,006			*							0,002
Nephtys hombergi			0,017		0,108				0,048					0,063					0,069	0,006
Nephtys hystricis	0,097	0,026	0,028	0,055	0,014	0,057	0,008	0,125	0,036	0,023	0,087	0,051	0,030	0,121	0,012	0,161	0,070	0,152	0,063	0,032
Nereididae nd		,		*	*					*			0,002	0,003	0,006	0,000	*	*	*	
Ninoe sp														0,004			0,002			*
Nothria conchilega	0,012	0,017	0,004	0,036		0,031	0,005	0,008	0,005	0,021	0,001	0,001	0,020	0,006	0,006	0,008	0,010	0,001	0,004	0,002
Notomastus aberans		,	0,007	0,001	0,006	*	0,006	0,001	0,002	,	0,076	,	0,029	0,006	,	0,002	0,009	,	0,074	0,060
Ophelina cilindricaudata	0,002	0,003	0,002	0,004	0,005	0,008	0,005	0,003	0,002	0,007	0,001	*	*	*	*	0,001	0,001	0,002	0,001	0,001
Ophiodromus flexuosus	-,	.,	0,001	.,	-,	.,	-,	.,	-,	-,	-,	0,001		*		-,	-,	-,	-,	-,
Owenia fusiformis	0,011	0,015	0,045	0,002	0,078	0.002	0.014	0,001	0.002	0,033	0,006	0.007	0.001	0,010		0.002	0,001	*	0,002	0,001
Paralacydonia paradoxa	0,007	0,002	0,001	0,001	0,004	0,001	0,005	0,002	0,001	-,	*	0,001	0.001	0,001	*	0.002	0,003	0.003	0,001	*
Paraonidae nd	0,004	0,003	0,001	0,004	0,001	0,006	0,006	0,003	0,003	0,002	0,002	0,002	0,003	0,005	0,003	0,003	0,003	0,003	0,009	0,004
Pectinaria koreni	0,015	0,001	0,019	-,	-,	0,016	0,005	0,005	-,	-,	-,	-,	0,010	0,004	*	*	0,008	0,001	0,009	.,
Phyllodoce lineata	0,002	0,00.	0,001		*	0,0.0	0,000	*					0,0.0	0,00.			0,000	0,007	0,000	0,001
Phyllodoce sp	0,002	0,002	0,001	0.006	*	*	0,001	*	0,003	0,003				*			0,002	*		0,001
Phyllodocidae nd	*	0,002	0,001	0,000			*		0,000	0,000						*	*		*	
Phylo foetida	0,080																			
Pista cristata	0,002	0,005	*		0,010		0,040		0,012	0,003			0,006					0.002	*	
Pista sp	0,002	0,003			0,010		0,040		0,012	0,003			0,000	0,003				0,002		
Poecilochetus serpens			0.001											*					0,001	*
Polydora ciliata			0,001		0,001														*	
Pomatoceros triqueter	*				0,001		*				*									
·	0.014	0,033	0.015	0.014	,	0.022	0.025	0.010	0,029	0.047	0.000	0.000	0.000	0.000	0.005	0.012	0.000	0,008	0.010	0.000
Prionospio sp	0,014	0,033	0,015	0,014	0,024	0,023	0,025	0,019	0,029	0,047	0,008	0,002	0,008	0,022	0,005	0,013	0,020	0,006	0,019	0,009
Sabella pavonina Sabellidae nd	0.027	0,011	0.002	0,025	0,021	0,024	0.044	0,021	0,013	0.010	0.010	0.004	0.004	0.006	0.001	0,004	0,010	0,012	0.004	0,001
	0,027	0,011	0,003	0,025		0,024	0,044	0,024	0,013	0,010	0,010	0,001	0,004	0,086	0,001	0,004	0,010	0,012	0,004	0,001
Scalibregma inflatum	0.000	0.001	0,001	0.004	0,001	0.000	0.050	0.000	0.044	0,002 0.006	0.000	0.007	0.004	0.040	0.005	0.000	0.000	0.000	0.000	0.000
Scoletoma impatiens	0,002	0,001	0,007	0,004	0,005	0,003	0,056	0,003	0,011	0,006	0,003	0,007	0,004	0,010	0,005	0,003	0,003	0,003	0,009	0,002
Serpula vermicularis			0,000		0.004		0,002													
Sigambra tentaculata		*		0.004	0,001	*										*			-	-
Sphaerodoridae nd				0,001				-												
Sphaerosyllis claparedii	0.040	0.000	0.000	0.005	0.000	0.004	*	0.000		*				-		0.004				
Spiophanes bombyx	0,013	0,002	0,002	0,005	0,003	0,001		0,002			0.000					0,001				
Sternaspis scutata	0.040	0.040	0.044		0.045	0.000	0.010	0.000	0.044	0.040	0,006		*	0.004	0.004	*	0.000			0.004
Sthenelais boa	0,013	0,042	0,014		2,045	0,003	0,013	0,026	0,011	0,046	0,001		-	0,001	0,001	-	0,008	*		0,001
Syllidae juv	0,001	0.00-	0.004		0.000	0.000	0.004	0.000	*	0.046	0.000			0.000	*	0.004	*	*		
Syllis sp	0,006	0,007	0,001	0,007	0,003	0,002	0,001	0,003	1	0,010	0,003	_	· *	0,003		0,001			•	
Terebellidae nd			0,007	l	0,003	0,000		0,007	0,005	0,032				0,004	0,002	0,002	0,002			0,002
Terebellides stroemi	0,012	0,040	0,000	0,051	0,007	0,016	0,002	0,005	0,006	0,002	0,001		0,004	0,020	0,003	0,004	0,002	0,007	0,003	0,003
Sipunculidi	:-	0.555					0.5						*		*		0.6	0.6:-		
Aspidosiphon muelleri	0,247	0,308	0,116	0,134	0,136	0,085	0,056	0,043	0,025	0,142	0,040			0,080		0,031	0,023	0,017	0,022	0,012
Sipuncula nd	0,009	0,005	0,011	0,009	0,007	0,013	0,003	0,005	0,018	0,004	0,007	0,007	0,003	0,007	0,001	0,002	0,004	0,011	0,003	0,002
DENSITA' TOTALE	3,13784	2,02675	27,5185	2,221	4,091	4,223	2,919	5,191	3,232	31,764	1,497	0,937	2,778	1,752	1,546	1,428	4,015	1,112	1,181	0,632
RICCHEZZA SPECIFICA TOTALE	78	66	89	60	94	68	91	84	72	71	61	45	57	77	55	55	62	67	80	73

D-3 ESTATE 2010 (II SURVEY POST LAVORI)

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea	a-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Briozoi																					1
	Briozoa nd												0,004								1
Cnidari																					l '
Antozoi	Actiniaria nd									0,011											1
	Alcyonium palmatum	6,350	5,067					6,726	0,002												ĺ
	Epizoanthus sp	0,166		0,016					0,049												ĺ
Idrozoi	Hydroidea nd	4,439	0,003	0,305	1,086	0,063	0,252	0,232	0,104	0,132	0,224		1,221	0,001	0,027	0,002	0,003		0,005		ĺ
Crostacei						0.040								0.004			*			0.004	
Anfipodi	Ampelisca diadema	0,001	0,006	0,004	0,001	0,013	0,008	0,006	0,009	0,014	0,008	0,004	0,001	0,001	0,002	0,001	•	0,005	0,006	0,001	0,002
	Ampelisca intermedia																*		_		1
	Caprellidae nd	0.004	*	*	0.004	*	*	0.000	0.000	*	0.000			*							1
	Corophium sp	0,001			0,001	_		0,002	0,009		0,003										l
	Harpinia dellavallei	0,003		*	*	*	0,001		0,001						0,003						ĺ
	Hippomedon massiliensis Iphimedia sp	0,003				*	0,001								0,003						1
	Leucothoe sp			0,001	0,011										*	0,001				*	1
	Metaphoxus simplex			0,001	0,011	*										0,001	*	*			*
	Microprotopus maculatus	*	*	0,001	*	*	*		0,002	*		0.001									ĺ
	Monoculodes carinatus			0,001		*			0,002			0,001				*		*	*		ĺ
	Orchomene grimaldii	0,001	0,002	*				0,001		0,005	0,002										ĺ
	Othomaera schmidtii	0,001	0,002					0,001		0,000	0,002	0,002									1
	Photis longicaudata	0,000		*	*	*	0,001		*			0,002	*				*				l '
	Phtisica marina	0,000	*	*	*	*	*	*		*	*					*				*	l '
	Westwoodilla rectirostris							*	0,003	0,002		*									l '
Copepodi	Copepoda nd			*		*			.,	-,				*		*	*	*	*		l '
Cumacei	Cumacea nd		*	*	0,004	*	0,001	*	0,002	0,003	*	*		*	*	*	*	*	0,001	*	*
	Iphinoe serrata				0,000		*		*	*	*	*									ĺ
Decapodi	Alpheus glaber											0,039		0,100	0,071						ĺ
	Callianassa subterranea											0,046	0,009			0,003		0,012	0,002		0,002
	Ebalia deshayesi			0,006	0,038	0,022	0,063	0,020	0,032		0,001						0,015	0,002			1
	Galathea sp	0,005		0,014	0,279		0,001		0,001												1
	Goneplax rhomboides						0,090													0,310	l
	Liocarcinus depurator				4,116			2,473						0,614							l
	Liocarcinus sp							0,019	0,016												l
	Paguridae nd	0,005	0,008	0,004		0,002	*	0,019							0,003				0,001	0,005	ĺ
	Pilumnus spinifer				0,691						*										1
la an a d'	Processa sp				0,001			0.007					0,001						0,032		0,065
Isopodi	Cirolana sp			*		*		0,037	*	*	0,019										1
	Eurydice sp Gnathia sp	*	*	*	0,002	*	*	*	*		*				*		*			*	i
Misidacei	Misidiacea nd				*				0,003	0,001	*	*									i
Ostracodi	Ostracoda nd		*	0,002	0,001	0,005	*		0,003	0,001	*	*			*		*	*		*	i
Tanaidacei	Apseudes latreillii	*		0,002	0,001	0,003	*	*	0,008	0,002		0,001	0,004			0,006		0,003	0,002		i
Tarialdacci	Leptochelia savignyi	*	*		0,001	*			*	0,001		0,001	*			0,000		0,000	*		i
Echinodermi	Laptooniona davigniyi																				i
Asteroidei	Astropecten irregularis	0,001																			i
Echinoidei	Brissopsis lyrifera	0,001																		8,296	í

Deliant and all sever-line (m) 190 90 30 0 30 0 30 0 30 0	Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Collution Collination Co	Dsistanza dal sea	a-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Philothunidean and Labiriques digitate 1,000 0,0	Ofiuroidei	Amphiura chiajei	0,020		0,002	0,520	0,006		0,018		*	*	0,025		0,066			0,098	0,019	0,001		
Holofuncipides and Lucidings and Egisters Thyrone fugues in a Country of Coun		•	0,011	0,026	0,022		0,002	0,019	0,005	0,046	0,001	0,003	*	0,002				0,005			*	
Labitophase digitation Labitophase digitation Trygoring floats Transpring floa	Oloturoidei					19,479																
Thypocan Issues Throughputypone lay Transhiptypone lay Transhipt				0,002	0,002	*				0,002				0,002								
Transphytopen law Tran													0,002				0,003					0,015
Moltuschi Sheeki		•										0,132										
Bleaky Abor a aba Abor primatical Abor p			0,000						0,007							0.000						
Bheaki Abar alba Abar alba Abar alba Abar alba Abar albar alba Abar albar al	Molluschi	racriytnyone tergestina														0,028						
Abra prismelica Anomia epiloplum Area tetragona Cardiomyae costellata Chiamya varia Caudiomyae costellata Chiamya varia Caudiomyae costellata Chiamya varia Caudiomyae costellata Chiamya varia Coudus globa Conspiration restrato a Caudiomyae costellata Chiamya varia Coudus globa Conspiration restrato a Caudiomyae costellata Chiamya varia Coudus globa Conspiration restrato a Caudiomyae costellata Chiamya varia Coudus globa Conspiration restrato a Conspiration restrato a Caudiomyae Conspiration restrato a Caudiomyae Conspiration restrato a Conspiration restrator a Conspir		Ahra alha			0.004					0.008				0.004							*	
Anomia polipipium Anom	Divaivi				0,004		0.010		0.007	0,008				0,004								
Acre tetragene Carlionye osstellate Chlamys varia Corbus globa 0,007 0,061 0,061 0,061 0,002 0,001 0,0		•			0.009	0.019	0,010	0.001	0,007		*	*										
Cardemya costellata Chiamys varia Chiamy						0,013		0,001														
Chlomys varia		•			0,020							0.001						0.008			0.011	
Causinelle brognierii Corbula gibba Cuspidaria restrate Corbula gibba Cuspidaria restrate Corbula gibba Cuspidaria restrate Cuspidaria res		-	0.007		0.075							-,						-,			-,	
Corbula glibha Cuspidam asstrata Cuspida		•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1 '	0.635	1.324		0.258				0.213									
Ensis ensis Gari frenewis Hatella excitca Limana plains Lucinella divaricata Lyorsia nonwegica Modiolura phaseelira Myries spinifiera Myri		•	0,001		-,-		,-					0,001		*	0,001	0,002	*	0,001	0,004		*	0,001
Garl fevensis Histolia article Limaria hians Lucirella divaricata Lyonsia normagica Modicilarea subpicita Modicilarea Modicilarea subpicita Modicilarea subpicita Modicilarea Modicilarea subpicita Modicilarea		Cuspidaria rostrata	0,068			0,011												-				
Hiatella arctice Limaria hians Lucinalia divaricata Lyonsia nonvegica Modiculare subjecta Modiculare subje		Ensis ensis							0,024													
Process of the proc		Gari fervensis	0,058				0,046															0,003
Lucinella divaricata Lucinella divarica Modicilula phaseolina Modicilula pha		Hiatella arctica		*				0,001	*													0,005
Lyonsia noneegica Modiolarca subpicta Modiolarca Modiolarca subpicta Modiolarca subpicta Modiolarca					0,024																	
Modiciolar phaseoline Noticiolar phaseoline																			0,001			0,004
Modifical subjection Modifical phaseolina						0,001	0,220	0,345			0,101			0,020								
Myrtea spinifera Mysia undata Myrtius galloprovincialis Nucula nitidosa Phaxas adriaticus Pitar rudis Plagiocardium papillosum Saccella illinica Saccella illinica Saccella illinica Similipecten similis Tellina balaustina Tellina serrata Timociea ovata Timociea ovata Timociea ovata Gasteropodi Gasteropodi Falciforns gutturosus Gasteropodi Falciforns gutturosus Gasteropodi Falciforns gutturosus Galptrae delinensiis O,002 O,003 O,004 O,005 O,007 O,0		•							*											*		
Mysia undata Mytilus galloprovincialis Nucula Intidosa Phaxas adriaticus Plagicardium papillosum Saccella commutata Saccella commutata Saccella commutata Saccella commutata Saccella silinica Scapharca demini Tellina distoria Tellina sirata Trellina serrata Trypasira flexuosa Trypasira flexuosa Trypasira flexuosa Timoclea ovata Caudofoveati Gasteropodi Gasteropodi Gasteropodi Cayloptraea chinensis O,002 O,002 O,002 O,003 O,003 O,003 O,005 O,		•					*				,											
Mytilus galloprovincialis Nuculia nitidosa Phasas adriaticus Phasas adriaticus Plagiocardium papillosum Saccella illinica Scapharca demiri Similpecten similis Tellina distorta Tellina starta Thylasira flexuosa Thylasira flexuosa Thylasira flexuosa Thylasira flexuosa Thylasira flexuosa Gasteropodi Acteon formalitis Gasteropodi Acteon formalitis Gasteropodi Acteon formalitis Gasteropodi Acteon formalitis Calyptraea chinensis Calabata Calado Calybtr			0,374	0,185	0,236	0,228	0,204	0,107	0,314	0,169	0,367	0,096	0,149	0,220	0,254	0,106	0,403	0,561	0,103	0,017	,	0,105
Nucula nitidosa Phaxas adrialicus Phaxas adrialicus Phaxas adrialicus Pitar rudis Plagiocardium papillosum O,007 O,006 O,001 O,006 O,001 O,006 O,001		•			0.000																0,003	
Phaxas adriaticus Phaxas adriaticus Phatr rudis Plagiocardium papillosum Saccella communata Saccella communata Saccella communata Saccella communata Similpecten similis Tellina balaustina Tellina serrata Thysaira flexuosa Thysaira flexuosa Thysaira flexuosa Caudofoveati Falcidens gutturosus Gasteropodi Acteon tomatilis Calyptraea chinerisis Calyptr			0.021	0.004	0,002	0.022			0.022				0.005		0.005			0.003				
Pitar rudis Pitar rudis Plagiocardium papillosum Saccella commutata O,001 O,006 O,001 O,006 O,001 O,006 O,001 O,001 O,002 O,002 O,002 O,001			0,031		0.052		0.105	0.070		0.112	0.088	*		0.003	0,005	0.012	0.004	0,003	0.007		0.004	
Plagiocardium papillosum Saccella commutata S				0,044	0,032	0,100	0,103	0,070	0,017	0,112	0,000		0,030	0,003		0,012	0,004		0,007		0,004	
Saccella commutata Saccell			0.007	0.006	0.001	0.006	0.012	0.002		0.002	0.002			0.001	*			0.001		0.001	*	*
Saccella illinica Scapharca demiri Scapharca demiri Similpecten similis Tellina balaustina O,002 O,001 O,001 O,001 O,002 O,002 O,004 O,005 O,006 O,005				0,000	0,00.	0,000	0,0.2	0,002	0.003	0,002	0,002	0,00.		0,00.			0.017	0,001			0.004	
Scapharca demiri Similpecten similis Tellina balaustina Tellina distorta Tellina serrata T			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						-,	0.002							-,			-,	-,	
Tellina balaustina Tellina distorta Tellina nitida Tellina nitida Tellina serrata Tellina		Scapharca demiri	0,042							.,												
Tellina distorta Tellina nitida Tellina serrata Thysira flexuosa Timoclea ovata Gasteropodi Acteon tomatilis Calyptraea chinensis Cylichna cylindracea Epitonium commune Tellina distorta 0,005 * 0,005 * 0,001 0,007 0,001 0,007 0,001 0,002 0,002 0,002 0,002 0,002 0,003 0,002 0,001 0,001 0,002 0,002 0,003 0,002 0,001 0,002 0,001 0,002 0,001 0,002 0,001 0,002 0,003 0,002 0,001 0,002 0,001 0,002 0,001 0,002 0,001 0,002 0,001 0,002 0,003 0,003 0,002 0,001 0,002 0,001 0,002 0,001 0,002 0,003 0,0		•					0,001		0,002													
Tellina nitida Tellina serrata Thyasira flexuosa Thyasira flexuosa Timoclea ovata Gasteropodi Tellina nitida Tellina serrata Thyasira flexuosa Timoclea ovata Tellina serrata Tellina serrata Thyasira flexuosa Timoclea ovata Tellina serrata Thyasira flexuosa Thyasira flexuosa Tollina serrata Thyasira flexuosa Timoclea ovata Tellina serrata Thyasira flexuosa Thyasira flexuosa Tollina serrata Thyasira flexuosa Tollina serrata Thyasira flexuosa Thyasi		Tellina balaustina	0,103																			
Tellina serrata Tellina serrat		Tellina distorta	0,005	*										*						0,006		
Thyasira flexuosa Timoclea ovata Caudofoveati Gasteropodi Acteon tomatilis Calyptraea chinensis Cylichna cylindracea Epitonium commune 0,000		Tellina nitida																				*
Timoclea ovata Caudofoveati Gasteropodi Cayptraea chinensis Cylichna cylindracea Epitonium commune Caudofoveati Falcidens gutturosus Caybraea chinensis Caybraea chinens					1 '	0,007			0,001				0,188					0,232				
Caudofoveati Falcidens gutturosus Gasteropodi Acteon tomatilis Calyptraea chinensis Cylinchna cylindracea Epitonium commune		•		-,						,					-,							-,
Gasteropodi Acteon tomatilis Calyptraea chinensis Cylichna cylindracea Epitonium commune 0,002 0,001 0,002 0,004 0,002 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,006 0,007											,											,
Calyptraea chinensis		S .		0,027	0,023	0,020	0,016	0,017	0,023	0,005	0,006	0,012	0,018	0,007	0,004	0,027	0,011	0,026	0,017	0,012	0,008	0,018
Cylichna cylindracea Epitonium commune	Gasteropodi			0.000	0.001		0.050	*			0.00-	_			0.000			_		0.000	0.000	
Cylichina cylindracea			0,001	0,002	1 '		0,052	0.000			0,005		0.000		-,	0.000	0.000	*	0.000	,	-,	
					0,002			0,003		0.004		0,002	0,002		0,001	0,002	0,003			0,001	0,001	
		Epitonium commune Eulima bilineata								0,001				*					0,003			

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal se	a-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
	Hyala vitrea Mangelia coarctata Odostomia sp Polinices nitida	0,008	0,010	0,005		0,004		0,001	0,003	0,003	0,008		0,001	0,001	*	0,012	0,003	*		*	
	Pseudotorinia architae Trophonopsis muricatus	0,012				0,010			0,020					0,001		0,012	0,000				
Scafopodi Nemertini	Turritella communis Antalis inaequicostata	0,022	0,010			0,147		0,027				0,001	0,023	0,023			0,211		0,045		
- Territorium	Nemertea nd			0,014	0,008	0,012	0,035	0,014	0,008	0,003	0,005	0,024	0,347	0,007	0,037	0,002	0,005	0,008	0,005		0,013
Pantopodi Picnogonidi PlateIminti	Pycnogonida nd	*							0,001		*	*				*		*			
Policheti	Platelminta nd					0,000					0,005										
r ondieu	Ampharete acutifrons Ampharetidae nd Amphicteis gunneri	0,007 0,006	0,008 0,016	0,004 0,015	0,002 0,001 *	0,013 0,005	0,004 0,006	0,007 0,007 0,002	0,017 0,004 0,002	0,006	0,010 0,001 0,003	0,004 0,001	0,017 0,001 0,001	0,004 0,003 0,001	0,005	0,001 0,005	0,010 0,001 0,001	0,007 0,003 0,001	0,005 0,009	0,014 0,001	0,006
	Ancystrosyllis groenlandica Aphelochaeta filiformis Aphelochaeta marioni Aphrodita aculeata	*	0,003	0,002	0,002	0,001 0,001	0,002	0,003	0,002	0,003	0,001	0,002	0,001	*	0,002	0,001	0,003	0,007	0,002	0,004	0,001
	Aphroditidae nd Aponuphis brementi Arabella geniculata	0,019	0,033 0,001	0,054 0,005	0,035	0,071	0,121	0,060	0,035	0,057	0,007	0,015	0,013	0,039	0,007 0,029	* 0,022 0,020	0,041	0,021 0,000	0,009	0,028	0,015
	Chaetozone caputesocis Cirratulidae nd	*		*	0,001	0,004	*	0,005	*	0,001	0,002	0,003 0,007	0,012	0,002	0,005	0,005	0,025	0,001	0,003	0,002	0,007
	Ditrupa arietina Drilonereis filum Eunice vittata		0,008 0,004 0,000	0,002 0,012	0,011 0,006 0,001	0,002 0,001	0,006	0,005	0,026	0,657	0,017 0,010 *	2,739 0,023	2,308	3,033 0,099 0,001	6,399 0,012	5,599 0,014	5,109 0,013 0,004	7,097	0,223 0,005	0,805 0,006 0,003	0,627 0,005
	Flabelligeridae nd Glycera rouxii Goniada maculata	0,126 0,005	0,033 0,054 0,007	0,139 0,006	0,059 0,003	0,004 0,069 0,007	0,008 0,004	0,005 0,071 0,005	* 0,044 0,008	0,005	0,001 0,040 0,008	* 0,118 0,010	0,019 0,008	0,427 0,006	0,048 0,007	0,001 0,280 0,011	0,002 0,076 0,008	0,005 0,486 0,005	0,001 0,085 0,003	0,041 0,003	0,082 0,007
	Harmothoe sp Hyalinoecia tubicola Hydroides norvegicus	0,003	* 0,002 0,001	0,001 0,010 0,002	0,002 0,022 *	0,003	0,002	0,001 0,002 0,003	0,001	* 0,012	0,007 0,002	0,001	0,003		*	*	0,002	0,003		0,000 0,001	0,001 0,005
	Labioleanira yhleni Lumbrineris gracilis Macroclymene santanderensis	0,001	0,001 0,007 0,001	0,004 0,010	0,001 0,005	0,013 0,005 0,003	0,005	0,001 0,133	0,007 0,006 0,025	0,002 0,008	0,005 0,000	0,006 0,008 0,001	0,005 0,002	0,001	0,002	0,003 0,008 0,010	0,001	0,004	0,001 0,003 *	0,000 0,006 0,002	0,025 0,005
	Magelona alleni Maldanidae nd Marphysa bellii	0,007	0,008	0,001		0,001	0,005	0,003	•	0,001	0,001		0,002 0,004		0,006	0,003	0,003	0,003 0,016 0,005	0,006	0,001 0,003 *	0,025 0,001
	Minuspio cirrifera Nematonereis unicornis Nephtys hombergi	0,003	0,000 0,002	0,001 0,001	*	*	0,001	0,002	0,001	0,001	0,001	0,001	0,001	*	*	* *	0,002	*	0,060	* 0,001 0,042	0,002
	Nephtys hystricis Nereididae nd Ninoe sp	0,001	0,007	0,001	0,008	0,067	*	0,051 0,003	0,014 0,003	0,004 0,001	0,067	0,060 *	0,032	0,020 0,001	0,031 0,000	0,005 * 0,001	0,021 0,000	0,068	0,000	0,042 0,099 0,000	0,018 0,000
	Nothria conchilega Notomastus aberans Ophelina cilindricaudata	*	0,006	0,001	0,002	0,004	0,004	0,007	0,001	0,001	0,006	0,003	0,002 0,030 0,001	0,001	0,001 0,056 *	0,001 0,006 *	0,002 0,103 *	0,001 0,019 *	* 0,011 *	0,001 0,005 *	0,001 0,044 0.001

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea	a-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
	Ophiodromus flexuosus											*				0,001					
	Owenia fusiformis	0,008	0,009	0,014	0,007	0,003	0,026	0,034	0,023	0,042	0,005	0,011	0,001	0,001	0,006	0,026	0,002	0,004	0,036	0,001	0,001
	Paralacydonia paradoxa	*	0,001	0,002	0,005	0,002	*		0,002	0,004	0,002	0,001	*	*	*	*	0,002	0,001	0,002	*	*
	Paraonidae nd	0,001	0,001	0,001	0,017	*	0,005	0,001	0,001	*	*	*	0,002	0,002	0,006	0,002	0,002	0,002	0,003	0,003	0,003
	Pectinaria koreni		0,003	*	0,025			0,001		*	0,002	0,028	0,002	*	0,003	0,006	0,030	*	0,001	0,001	*
	Phyllodoce lineata						*														
	Phyllodoce sp		*			*			*										*	*	*
	Phyllodocidae nd	*	*	*	*	*	*	0,004	*		*	*						*			
	Phylo foetida												0,011								0,030
	Pista cristata			0,003				0,002			0,001										
	Poecilochetus serpens	*	*			*		0.000				*	*			0,001		*	*	*	
	Prionospio sp	0,002	0,002	0,004	0,003	0,002	0.012	0,004	0,015	0,003	0,008	0,015	0,012	0,003	0,006	0,018	0,019	0,015	0.009	0,025	0,015
	Sabellidae nd	0.010	0,024	0,001	0,014	0,010	0.006	0.006	0,011	0,017	0,040	0,001	0,003	0,006	0,004	0,001	0,009	0,003	0,001	0,003	0,028
	Scalibregma inflatum	- ,	-,-	-,	-,-	-,-	0.000	-,	-,-	-,-	-,-	.,	-,	-,	-,	.,	-,	.,	-,	-,	-,
	Scoletoma impatiens		0.003	0,003	0.003	0.001	0.006	0,001	0,001	*	0,007	0.001	0.008	0.006	0.005	*	0.004	0.004	0.019	0,001	0,007
	Serpula vermicularis		.,	.,	-,	*	-,	-,	-,		-,	.,	0,000	0,001	-,		-,	.,	-,	-,	.,
	Sigambra tentaculata			*							*	*	*	*			*	*		*	*
	Sphaerodoridae nd					*											*				
	Spiophanes bombyx			0,000					0,001			*			0.002	*		0.003	0,011		
	Sthenelais boa		0.031	0,009	0,011	0,009		0.002	0,010	0.083		0.002			-,	0.004		.,	- , -		*
	Syllidae juv		-,	.,	*	*		-,	-,-	-,		.,				.,				*	
	Syllis sp	0.002	0,007	0,004	0,015	0,004	0,001	0,007	0,002	*	0,001	0.001	0,001	0,002	0,002	*	*	0,002		*	*
	Terebellidae nd	0,002	0,006	0,004	0,000	0,001	0.001	-,	0,005		0,002	,,,,,,	-,	-,	-,	0,010	0,003	0,001	0,002	0,004	0,003
	Terebellides stroemi	0,002	-,	0.002	0,000	0,005	0,000	0,130	0,005		0,021	0,002	0,001	0,017	0,020	0,002	0,017	0,007	0,001	0,011	0,001
Poriferi		-,		-,	.,,,,,	-,,,	-,,,	-,	-,,,,,,,		-,	.,	-,,,-	-,,,,,,,	-,,	-,,,,	.,	.,,,,,	.,,,,	.,,,	.,
	Porifera nd				15.095																
Sipunculidi					12,000																
	Aspidosiphon muelleri	0.089	0,076	0,126	0,081	0,083	0.143	0.092	0,049	0,370	0,063	0.024	0.021	0,017	0,025	0,049	0,029	0,049	0,004	0,007	0,002
	Sipuncula nd	0.002	0,001	0,018	0,020	0,004	0.003	0,006	0,002	0,002	0,002	0,007	0,009	0,006	0,014	0,012	0,008	0,011	0,001	0,002	0,007
Tunicati	C.pa. 15 a.a. 1.a	5,002	3,301	5,510	3,320	5,501	5,500	5,500	5,502	5,502	3,302	3,307	3,300	5,500	5,511	3,312	3,300	3,311	3,301	0,302	0,507
Ascidiacei	Ascidiacea nd	0,123																			
DENSITA' TOTAL		12,187	5,787	3,229	42,883	2,734	1,399	10,961	0,962	2,064	0,997	3,965	4,534	4,955	7,133	6,649	6,793	8,154	0,950	9,864	1,241
RICCHEZZA SPEC	CIFICA TOTALE	66	65	80	72	79	58	72	71	57	70	63	58	54	49	63	62	63	58	65	57

D-4 INVERNO 2011 (III SURVEY POST LAVORI)

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal s	sea-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Briozoi																					
	Amathia semiconvoluta Cellaria salicornioides	0,055	7,542	0,047	0,471 0,047	0,079	0,181		0,062	0,003	6,943			17,825 3,721	245,779 1,674		0,001				
Cnidari														,							
Antozoi	Actiniaria nd			0,134	0,327		0,128		0,295	0,015						0,001					
	Alcyonium palmatum		39,531						0,058		37,556			1,501	2,209						
	<i>Epizoanthus</i> sp		0,137		0,002							0,007			0,060		0,034				!
	Madreporaria nd	0,354		0,739																	
	Pennatula sp							*				0,026									
Idrozoi	Hydroidea nd						0,231	*					*			0,003		0,001			
Crostacei																					!
Anfipodi	Ampelisca diadema Ampelisca intermedia		0,003	0,003	0,004	0,002	0,002	0,001	0,001	0,008	0,007	0,001	0,001	0,005	0,002 0,002	0,004	0,007	0,002	0,002	0,001	0,002
	Caprella equilibra													*							
	Caprella sp														0,005						
	Corophium sp			*	*		0,001	*				*		*		*	*	*	*		
	Ericthonius brasiliensis														*						
	Eusirus longipes						0,002														
	Gammaropsis sp									*	0,001								*	*	
	Harpinia dellavallei		0,003							0,002	0,003	*	*	*	*	*				*	*
	Hippomedon massiliensis							*													
	Iphimedia sp		0,001					0,001			0,002			*	0,004						
	Lepidepecreum longicorne													_			*				
	Leucothoe incisa			*							*				*		*				
	Leucothoe lilljeborgi Leucothoe sp						*					*		*	0,001	*					
	Maera grossimana							0,006							0,001						
	Melita gladiosa							0,000						0,001							
	Metaphoxus simplex		*	*	*			*				*		*		*		*		*	!
	Microprotopus maculatus							*							*		0,002				
	Monoculodes carinatus		*	*						*	*	*	*	*	*	*	*	*			*
	Orchomene grimaldii		0.080			0,002		0,064			0,002	*		0,017	0,050						
	Perioculodes longimanus		.,	*	*	*		.,		*	-,			-,-	-,	*	*		*		
	Photis longicaudata		*	0,001		*		0,001	*	*	*				*				*		
	Phtisica marina	*	*		*	0,003	0,001	0,001	*	0,003		*		*	*			*			*
	Pseudolyrius kroyerii												*								
	Pseudoprotella phasma		*					0,002		0,003	0,004										
	Stenothoe sp						*	*					*			0,000					
	Synchelidium haplocheles																		*		
	Westwoodilla rectirostris	*		*			*	0,001	0,001	0,001			*	0,002		*	*	0,001	*		/
Copepodi	Copepoda nd	*	*		*		*	0,001	0,001	*	*	*	*	*	*	*		0,014	*	*	*
Cumacei	Cumacea nd	*	*	0,001	*	0,001	0,004	0,001	*	0,001	0,001	0,001	0,001	0,001	*	0,002	*	0,002	0,002	*	*
	Iphinoe serrata						0,001			0,002		*		*	*	*					
Decapodi	Achaeus gracilis		0,008																		1 /
	Alpheus glaber						0,034					0,223			0,004			0,012			0,001
	Anapagurus bicorniger	I	1		l						I	0,001	I		l				l	l	1 /

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal se	ea-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Decapodi																					
	Anapagurus sp	0,001			0,006		*					0,002	0.040	0.040		0.040	0.005	0.000	0.004	0,002	0,005
	Callianassa subterranea				0.040					0.007	0.000	0,002	0,018	0,012		0,019	0,005	0,006	0,004	0,010	0.000
	Ebalia deshayesi				0,010					0,007	0,022					0,001	0,010	0,002			0,006
	Ebalia edwardsii														0.050	0,003					
	Ethusa mascarone				0,029										0,052 0,018						
	Eurynome aspera		0,020		0,029			0,015			0,018			0,041	0,016	0,004					
	Galathea sp Goneplax rhomboides		0,020		0,011			0,015			0,016	0,006		0,041	0,364	0,004		0,035			
	•		0,061									0,006				0, 126		0,035			
	Heterocripta maltzami		0,061		0.007																
	Inachus dorsettensis				0,007		0,005			0.005	0,013			0.006	0.000						0.001
	Liocarcinus maculatus Macropodia rostrata						0,005	0,005		0,005	0,013			0,006	0,008						0,001
	Macropodia sp							0,003													
	Paguridae nd							0,002				*			0,003						
	Pagurus cuanensis							0,005							0,003						
	Pagurus cuarierisis Pagurus sp							0,003								0,001		0,046			
	Parthenope massena		0,010													0,001		0,040			
	Pilumnus hirtellus		0,010												0,330						
	Processa sp														0,008						
	Solenocera membranacea									0,094					0,008						
Isopodi	Anthura gracilis									0,034				*	0,030			*			
Isopoul	Cirolana sp																0,085				
	Eurydice sp											*			0,005		0,000				
	Gnathia sp		*	*	*	*	*	*				*	*	0,001	0,003	*	*	*	*		*
	Jaeropsis sp													0,001	0,002						
Misidacei	Misidiacea nd			0,001		*	*			0,001				0,001	0,014	0,001	*				0,001
Ostracodi	Ostracoda nd		*	0,001	*					*	*		*	0,002	0,002	*	*		*	*	*
Tanaidacei	Apseudes latreillii							0,002			0,001	0,001		0,001	*	0,001	*	*		*	
Tariaracoi	Leptochelia savignyi	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
Echinodermi																					
Asteroidei	Astropecten irregularis		0,318																		
Echinoidei	Brissopsis lyrifera		-,																	3,288	7,474
	Schizaster canaliferus															0,133				-,	,
Ofiuroidei	Amphiura chiajei	*	0,003	*	*		*	0,003	0,001		0,002	*	*	0,005	0,031	*	*	0,002	0,010	*	*
	Ophiotrix fragilis		,						,		,				0,022			· ·	,		
	Ophiura albida	*	0,001		*	*		*	*	0,028		*	*	*	*	*	*	*		*	
Oloturoidei	Holothuria forskali			15,977																	
	Holothurioidea nd				0,007											*					
	Labidoplax digitata												0,001						0,001		0,001
	Trachythyone tergestina				0,072				0,016	0,084		0,004	*		0,014		0,012			0,004	
Molluschi	, , ,																				
Bivalvi	Abra prismatica																0,001				
	Anomia ephippium		0,001									I		*	0,168						
	Cardiomya costellata		0,021		0,002		0,002	0,003			0,006	0,001									
	Clausinella brogniartii		0,710				1,173	0,324			0,091	I									
	Corbula gibba	0,002			0,006					0,438		*		*	*		*		0,001		
	Ensis minor						0,096														
	Gari fervensis	1		0,006															0,003		

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea	a-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Bivalvi	Hiatella arctica Hiatella rugosa Kurtiella bidentata Lucinella divaricata Lyonsia norwegica					0,034			0,022		0,026	*	*		0,030 0,001 *	*			*	0,007	
	Modiolarca subpicta Modiolula phaseolina Myrtea spinifera Mysia undata	0,292	0,001 0,004 0,238	0,286 0,004	0,002 0,388	0,337	0,334	0,001	0,001 0,371 0,007	0,056 0,006	0,419	0,101 0,002	0,039	* * 0,123	0,005 0,025 0,252	0,097	0,110	0,274	0,545	0,034 0,009	0,122
	Nucula nitidosa Pandora pinna Parvicardium minimum Phaxas adriaticus	0,026	0,030	0,009	0,033	0,029	0,009	0,041	0,002	0,029	0,121	0,001	0,001	0,001	0,017 * 0,001	0,005	0,004	*	0,002	0,021	0,024 0,003 0,010
	Pitar rudis Plagiocardium papillosum Saccella commutata Similpecten similis		,,,,,,,	0,003	0,014 0,018		,,,,,,	0,026	-,-	,,,	0,062	* 0,004	0,233	*	,,,,,	*	0,010 0,001 *	0,006		0,001	0,009
	Tellina distorta Tellina serrata Thyasira flexuosa	0,003		0,003	0,010 0,012	0,168	0,031	0,001	*	0,121 0,013		*	*	0,001	*	*	0,001		0,001	0,005	
Caudofoveati Gasteropodi	Timoclea ovata Falcidens gutturosus Calyptraea chinensis Cylichna cylindracea Epitonium commune Epitonium sp Eulima bilineata	0,195 0,017 0,028 *	0,021 0,014 0,002	0,048 0,046	0,170 0,018 0,015 0,012	* 0,033 0,029 0,004	0,003 0,020 0,054	0,284 0,022 0,003 0,007	0,026	0,029 0,049	0,004 0,034 0,009	0,008 0,015 0,004	0,131 0,012 0,010 *	0,002 0,025 0,001 0,001	0,014	0,009 0,022 0,007	0,119 0,019 0,005 0,010	0,177 0,021 0,001	0,339 0,021 0,002	0,057 0,010 0,004 *	0,002 0,007 0,002 0,002
	Hyala vitrea Hyala vitrea Mangelia coarctata Mangelia sp Melanella polita Nudibranchia nd Odostomia sp		0,010 0,007	0,012		0,021						*	0,001	0,001 0,001 *	0,042 * 0,004	0,002	0,013	*	* 0,003	* 0,003	* 0,002
	Polinices nitida Pseudotorinia architae Trophonopsis muricatus Turritella communis	0,026	0,002	0,031 0,062				0,006 0,003	0,015		0,004	0,001 0,019 0,012	0,015	0,021	0,016	0,004	0,005 0,259	0,014	0,001		0,001
Scafodi Nemertini	Antalis inaequicostata Nemertea nd	0,067	0,004	0,007	0,020	0,060	0,022	0,014	0,011	0,015	0,007	0,007	0,005	0,002	0,001	0,020		0,027		0,005	0,023
Pantopodi Picnogonidi Platelminti	Pycnogonida nd					0,000		0,002		0,001				*	*			*	*		
	Platelminta nd														0,001						

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal s	sea-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Policheti																					
	Ampharete acutifrons	0,005	0,010	0,019	0,007	0,012	0,006	0,027	0,026	0,017	0,005	0,009	0,010	0,013	0,001	0,007	0,007	0,007	0,012	0,002	0,003
	Ampharetidae nd	0,003	0,012	0,015	0,005	0,001	0,013	0,008	0,017	0,020	0,002	0,001	0,001	0,001		0,003	0,003	0,003	0,001	*	*
	Amphicteis gunneri					0,005				0,003	0,011	*	0,001			*	0,002		0,003	0,001	0,002
	Aphelochaeta filiformis	0,003	0,004	0,007	0,004	0,003	0,003	*	0,002	0,042	0,005	0,003	0,003	0,004	0,002	0,006	0,003	0,004	0,003	0,001	0,001
	Aphelochaeta marioni Aphrodita aculeata	0,001	0,002	0,002	*	*	0,001	0,002	0,001	*	0,006	0,003	0,002	0,003	0,001	0,004 7,828	0,005	0,006	0,001	*	0,001
	Aphroditidae nd													0,001	0,001						*
	Aponuphis brementi	0,032	0,041	0,011	0,044	0,019	0,058	0,048	0,041	0,006	0,068	0,010	0,018	0,038	0,046	0,024	0,013	0,020	0,032	0,010	0,023
	Arabella geniculata																				0,004
	Chaetozone caputesocis			*	0,015	0,005	0,015		*	0,004	0,016	0,018	0,006		0,023	0,015	0,017	0,016	0,005	0,005	0,003
	Chirimia biceps											0,003									0,001
	Cirratulidae nd						0,001			*	0,001				0,001		0,001		0,002		*
	Ditrupa arietina	0,001	*	*	*		0,002		0,007	0,006	0,005	0,172	0,046	0,486	0,254	0,530	0,691	0,522	0,001	0,024	0,004
	Drilonereis filum						*	*					0,007	0,041	0,001	0,015	0,001	0,003			0,015
	Eteone picta												*								
	Eunice vittata	0,004		0,001	0,006			0,012								0,005			0,007		
	Filograna sp														0,001						
	Flabelligeridae nd	*	*		0,002		0,007	0,003		0,001		0,000	0,000	0,002	0,001	0,002	0,002	0,003	0,001	*	*
	Glycera rouxii	0,006	0,026	0,265	0,004	0,004	0,041	0,087	0,008	0,088	0,061	0,106	0,182	0,053	0,017	0,023	0,216	0,018	0,206	0,054	0,510
	Goniada maculata	0,002	0,017	0,029	0,018	0,004	0,015	0,021	0,005	0,020	0,021	0,013	0,007	0,015	0,014	0,013	0,016	0,010	0,011	0,004	0,009
	Harmothoe sp		*			*		0,011	0,005	*		*	0,001	0,037	0,238	0,001	*				
	Hyalinoecia tubicola			0,010	0,001	0,003	0,002	0,024	0,001		0,001	0,008	0,008	0,025	0,007	0,001	0,003	0,006	0,003	0,001	
	Hydroides elegans		*		*									0,001	*				*		
	Hydroides norvegicus								*			0,002			0,001						*
	Labioleanira yhleni		0,004	0,008	0,005	0,001	*		0,015				0,004	0,001		0,001	0,004	0,001		0,010	*
	Lumbrineris gracilis	0,003	0,004	0,012	0,006	0,006	0,016	0,009	0,006	0,007	0,026	0,011	0,009	0,003	0,009	0,005	0,010	0,009	0,007	0,005	0,004
	Macroclymene santanderensis		0,010	0,003	0,001		0,001	0,024		0,003	0,011	*	0,002			0,002	0,010		0,002		
	Magelona alleni	*	*	*	0,006	0,001	*	*	0,001	*	*	0,001	0,001	0,007	0,003	0,001	0,002	0,002	*	0,001	*
	Maldanidae nd	0,002	0,002		0,035	*	0,004	0,006			0,002	0,009		0,009		0,014	*	0,020	0,004	0,005	0,026
	Malmgreniella lunulata														0,066						
	Marphysa bellii	*	0,001	0,003		*	0,001	*								0,001	*	0,007	0,001		
	Melinna palmata																*		*		
	Micronephtys sphaerocirrata			*	*	0,003	*		*	*			*		*	*	*	0,001	0,001		
	Minuspio cirrifera	0,002	0,001	0,002	0,001	*	0,002	0,001	0,002	0,001	0,012	0,001	0,003	0,004	0,002	0,003	0,001	0,001	0,003	*	0,001
	Nematonereis unicornis	0,001							0,003						*						
	Nephtys hombergi		0,007								0,029				0,365				0,032		
	Nephtys hystricis	0,005	0,111	0,228	0,093	0,021	0,066	0,020	0,020	0,045	0,031	0,035	0,001	0,008	0,013	0,106	*	0,107	0,011	0,121	0,014
	Nereididae nd							*			0,000	0,001	0,003	*	0,003		*	*	*	*	*
	Ninoe sp												0,001			0,001					0,001
	Nothria conchilega	0,009	0,024	0,015	0,017	0,020	0,018	0,020	0,006	0,017	0,036	0,012	0,004	*	0,005	0,009	0,025	0,015	0,006	0,004	0,004
	Notomastus aberans		0,003	0,165	1			0,002			0,003	0,041		0,003	0,006	0,174			0,000	0,011	
	Ophelina cilindricaudata		0,001	0,001	0,002	*	0,002	0,002	0,001	0,006	0,002	0,001	0,001	*		0,001	0,001	0,002	0,002	0,001	0,001
1	Ophiodromus flexuosus				*		0,000						*			*			0,001		
	Owenia fusiformis	0,009	0,003	0,006	0,001	0,005	0,007	0,001	0,005	0,001	0,029	0,003	0,013	0,009	0,014	0,011	0,020	0,010	0,007	0,004	0,001
	Paralacydonia paradoxa	*	0,004	0,004	0,005	0,002	0,003	0,007	0,003	0,009	0,003	0,001	0,004	0,001	*	0,003	0,002	0,003	0,005	0,002	0,001
	Paraonidae nd	0,004	0,002	0,002	0,002	0,002	0,003	0,001	0,007	0,005	0,008	0,011	0,007	0,007	0,002	0,011	0,007	0,004	0,005	0,005	0,003

Stazioni	D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E 6	E7	K11	K12	K13
Dsistanza dal sea-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Pectinaria koreni		0,018	*	*		0,009	*	0,001		0,003	0,006	0,008		0,026	0,009	0,001	0,024		0,007	0,002
Pelogenia arenosa				0,665														0,344		
Phyllodoce lineata		0,002				*	0,001													
Phyllodoce mucos	а		0,003																	
Phyllodoce sp		*			0,002	*	*		*	0,001	0,001	*	0,001				*		*	*
Phyllodocidae nd			*	0,001			0,001						*	0,013	0,001	0,022	*	*		
Phylo norvegica							*				0,002	0,001	0,002		0,004	0,001	*			
Pilargis verrucosa																		*		
Pista brevibranchi	а		0,004		*	0,007			0,013		0,003									
Pista cristata		*												0,002			0,004			
Poecilochetus ser	oens			*	*					*	*					*				*
Pomatoceros triqu	eter												0,001	0,008						
Prionospio sp	0,004	0,004	0,014	0,008	0,005	0,023	0,013	0,007	0,014	0,047	0,013	0,013	0,001	0,001	0,018	0,013	0,010	0,014	0,006	0,008
Prionospio steens	rupi										0,003						0,018			
Sabellidae nd	0,002	0,007	0,132	0,006	0,030	0,004	0,011	0,022	0,023	0,021	0,002	0,002	0,016	0,007	0,001	0,004	0,011	0,002	*	0,002
Scalibregma inflat	um						0,002	*			0,003		0,002					0,001	*	
Scoletoma impatie	ns 0,005	0,007	0,004	0,009	0,014	0,010	0,027	0,011	0,010	0,019	0,005	0,003	0,017	0,001	0,008	0,007	0,004	0,011	0,003	0,005
Serpula vermiculai	is	*					*	0,002	*	*	*		0,001	0,003	*	*	0,001	0,001		*
Sigambra tentacui	ata											*				0,008				
Sphaerodoridae no						*									*			*		
Spiophanes bomb	yx				0,001		*		*	0,001	*	*	*	0,001	*	0,007	*	0,001	0,001	
Sthenelais boa		0,039	0,003	*	0,014	*	*	0,002	0,018	0,008	*	*	0,004	0,003	0,002	*	*	*		0,001
Syllidae juv	0,001	*	*	*	*	*	*	*	*	*	*	*	*	0,003	*	*	*	*	*	*
Syllis cornuta	0,001		0,003	*	0,015	0,005			0,008	0,011		*				0,001		0,004	0,001	0,002
Syllis sp	0,007	0,001	*	*	0,001	0,001	0,010	0,001	*		0,002	0,001	0,001	0,006	0,001	0,001	0,003	*	0,001	
Terebellidae nd	0,012	0,032	0,020	0,005	0,006	0,011	0,058	0,049	0,008	0,007	0,010	*		0,014	0,007	0,012	0,006	0,007	0,002	0,010
Terebellides stroe	mi	0,011	*	0,008		0,009	0,003		0,004	*	0,007	0,011	*		0,029	0,002	0,006	*	0,001	0,012
Poriferi																				
Porifera nd											0,114		83,820	69,597						
Sipunculidi																				
Aspidosiphon mue	lleri 0,350	0,056	0,169	0,057	0,320	0,127	0,242	0,049	0,134	0,168	0,030	0,038	0,018	0,009	0,024	0,023	0,073	0,135	0,036	0,024
Sipuncula nd	0,013	0,020	0,010	0,005	0,007	0,008	0,005	0,009	0,013	0,007	0,003	0,004	0,015	0,002	0,009	0,007	0,006	0,005	0,005	0,004
Tunicati																				
Ascidiacei Ascidia mentula														4,019						
Ascidiacea nd	0,046						0,056													
BIOMASSA TOTALE	1,602	49,273	18,592	2,761	1,358	2,838	1,743	1,264	1,569	46,045	1,133	0,895	107,999	326,106	9,401	1,891	1,660	1,843	3,806	8,407
RICCHEZZA SPECIFICA TOTALE	51	79	68	80	62	75	86	60	72	72	92	77	95	111	91	88	76	80	69	76

D-5 ESTATE 2011 (IV SURVEY POST LAVORI)

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal s	sea-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Biozoi																					
	Amathia semiconvoluta Cellaria salicomioides	87,238 1,598	0,589	0,463 0,050	524,739 5,500	0,292	6,264	0,396	0,945	0,437 0,013	0,246	0,101	0,015	0,025	222,713	0,022	0,012	0,019	0,026	0,007	0,048 0,013
Cnidari																					
Antozoi	Actiniaria nd		0,002	0,001												*		*		*	*
	Alcyonacea nd								0,009												
	Alcyonium palmatum	6,828			25,849				6,564						0,109						
	Epizoanthus sp							0,037	0,001			0,005			0,021						
Idrozoi	Hydroidea nd		0,131	0,488		0,045		0,524	0,102	0,057		0,006		0,001							
Crostacei													*			l .		l			
Anfipodi	<i>Ampelisca diadema</i> Amphipoda nd	0,006	0,002	0,029	0,005	0,011	0,005	0,018	0,005	0,007	0,014	*	*	0,001	0,002	*		0,001	0,001	0,001	0,006
	Apherusa sp				0,002		0,001														
	Caprella rapax														0,001						
	Caprella sp	0,003			*										*						
	Caprellidae nd													*							
	Corophium sp	*			*	*	0,001		*	*	*							*			
	Deflexilodes griseus				0,001		*	*				*						*		*	*
	Harpinia dellavallei	*					*	*		0,002	*	*	*		0,001			*	*	*	*
	Hippomedon massiliensis		_		*				*		0,007										
	Iphimedia sp	0.000	*	*	*		0,004	0,002	*	*											
	Leucothoe lilljeborgi	0,002				0.000									0.007					-	
	Lysianassa sp Metaphoxus simplex			*		0,006				*			*		0,007	*			*	*	*
	Monoculodes carinatus			*	*	0,002				*								*			
	Orchomene grimaldii	0,119	*	0,003	0,135	0,002	0,057	0,002	0,001					0,002				*			*
	Othomaera schmidtii	0,113		0,000	0,100	0,001	*	*	0,001					0,002							
	Pariambus typicus																		*		*
	Peltocoxa sp							0,001													
	Perioculodes longimanus	*		*	*	*	*	0,001	*	0,001	0,001		*					*			*
	Photis longicaudata	*	0,001	*	0,002	*	0,001	*	*	*	*	*		*						*	*
	Phtisica marina	*	0,001	0,001	*	*	0,001	*	*	*	*		*		*						
	Pseudolyrius kroyerii		,				,					*	*								
	Pseudoprotella phasma	*	*	*	*		0,002			0,001											
	Stenothoe sp	*		*					*	*											*
	Synchelidium haplocheles																				*
	Urothoe sp	*			*						*										
	Westwoodilla rectirostris	*	0,001	*	0,001	*				*			*					*			
Copepodi	Copepoda nd	*	0,001	*	0,001	*	*	0,001	0,001	*	0,001	*	*	*	*	*	*	0,001	*	*	*
Cumacei	Bodotria scorpioides				*	0,001	*		*				*		*	*	*	*			*
	Cumacea nd	*		*	*	0,001	0,002	*	*	0,002	*		*	*	*	*	*	0,001	*	*	*
	Diastylis sp	1		0,009	0,007	0,028		0,007	0,001		0,010		*	l .		*		l .			
	Eudorella truncatula	*	*	0,001	*	0,001	*	0,001	0,001	0,001	0,001	*		. *	*	*	*	*	*		*
	Iphinoe serrata	I		0,001		0,001		*		*	0,001		*	*	*	*	*	*			*
	Iphinoe sp	I		_				_				*	*		*			١			_
	Leucon mediterraneus			*				*		×								*			*

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea	a-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Crostacei																		_			
Decapodi	Alpheus glaber												*	0,062			0,188		0,173	0,040	
	Anapagurus bicorniger	0,002		*					*				*								
	Anapagurus sp			•	0.007	0,001	0,007		_			0,003			0,000	0,010	0,001				0,002
	Athanas nitescens				0,027				*				0,002		0,010	0.000	0.000	0.040		0,007	0.004
	Callianassa subterranea Ebalia deshayesi						0,011	0,016		0,023	0,020		0,002		0,011	0,002	0,003	0,013 0,002		0,007	0,001 0,009
	Ebalia desnayesi Ebalia edwardsii					0,023	0,011	0,010		0,023	0,020			0,019				0,002			0,009
	Eurynome aspera			0.003		0,023								0,019				0,023			
	Galathea sp	0,249		0,000	0,175		0,015	0,109							0,135						
	Goneplax rhomboides	0,210			0,110		0,010	0,100						2,381	0,100						
	Heterocripta maltzani				0,014									2,00							
	Liocarcinus depurator	0,008	1,871		6,188					2,891		1,688									
	Liocarcinus maculatus	.,	,-		-,		0,002	0,013		0,028		,		0,016						0,004	
	Pagurus cuanensis						-,	-,		-,				.,.		0,014				.,	
	Pilumnus hirtellus				0,078										0,101						
	Processa sp	0,013	0,005		0,008		0,008			0,010	0,002		0,003	0,006	0,054	*	0,017	0,002		0,019	0,002
Isopodi	Anthura gracilis									*	*										
	Cirolana sp																				0,002
	Eurydice sp														0,011						
	Gnathia sp	*	*	*	*	*	*			*		*	*	*	*	*		*			*
Leptostraci	<i>Nebalia</i> sp				0,005										0,001						
Misidacei	Misidiacea nd	0,001		0,001	0,005	0,004	0,001	0,001							0,001			*			
Ostracodi	Ostracoda nd			0,003	0,001		*	*		*			*	*	*	*	*		*		*
Stomatopodi	Squilla desmaresti		0,022																		
	Squilla mantis																			0,004	
Tanaidacei	Apseudes latreillii			*		0,001	*			*	0,012	0,011	0,006	0,010	0,012		0,009	0,003	0,006	0,006	0,002
	Leptochelia savignyi					*	*	*	*	*	*	*	*			*		*	*	*	*
Echinodermi																					
Asteroidei	Astropecten spinulosus			0,001	0,001	0,002									4 707						
Echinoidei	Brissopsis atlantica mediterranea	*	0.000	0.004	0.004	0.004	0.005	0.000		0.000	0.000	*		*	1,727				*	0.004	0.004
Ofiuroidei	Amphiura chiajei	*	0,008	0,004	0,004	0,001	0,005	0,006	*	0,002	0,002	*			0,013				-	0,001	0,001
	Ophiotrix fragilis Ophiura albida	0,001	0,001	0,005	0,001	0,007	0,003	0,000	0,002	0,002	0,001	0,001	0,001	*	0,002 0,001	*			*	*	0,001
Oloturoidei	Opriiura aibida Holothuria forskali	0,001	11,939	0,005	0,001	0,007	0,003	0,000	0,002	0,002	0,001	0,001	0,001		0,001						0,001
Olotuloidei	Holothurioidea nd		11,939																		0,001
	Labidoplax digitata										0,001		0,085	0,020		0,009		0,002			0,003
	Thyone fusus	0,001									0,001		0,000	0,020		0,000		0,002	*		0,003
	Trachythyone tergestina	0,00.	0,001								0,160	*									
Molluschi	nacryulyone tergecuna		0,001								0,.00										
Bivalvi	Abra prismatica	0,001				0,020		0,003	*			0,001	0,008	0,003	*			0,005		0,002	0,001
	Anomia ephippium	0,036			0,048	· ·	0,004	,				,	,		0,028			,		,	,
	Arca tetragona				,										*						
	Azorinus chamasolen	0,077				*															
	Cardiomya costellata			0,001			0,011				*		0,007		*						
	Chlamys varia				0,001										0,007						
	Clausinella brogniartii			0,026		0,460	0,373		1,235												
	Corbula gibba		0,005	*		0,002				0,002		0,003	0,003	0,004	*	0,001		*	0,006	0,001	0,001
	Gari fervensis			1	I	0,001	1					0,031	I	0,048		0,054		l		l	0,001

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea	a-line (m)	100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Molluschi																					
Bivalvi	Hiatella arctica Hiatella rugosa Kellia suborbicularis Kelliella abyssicola		*	0,004	0,062		*			*	*	*			*						*
	Kurtiella bidentata Laevicardium crassum		*	*			*				0,010			*	*						
	Modiolarca subpicta Modiolula phaseolina	0,005 0,268	*	*	0,015 1,440		0,012 0,000	1,080	0,002	*					0,001 0,065		0,003				
	Myrtea spinifera Mysia undata	0,145	0,167	0,118	0,055	0,057	0,258	0,150	0,126	0,061	0,159 0,002	0,209	0,092	0,132	0,129	0,169	0,182	0,115	0,059	0,143	0,104 0,006
	Nucula nitidosa Nucula nucleus	*	*	*	0,007		*	*	0,015		0,003		0,001		0,003	0,001	0,010 0,004		*	0,002	0,004
	Parvicardium minimum Phaxas adriaticus Pitar rudis		0,002 0,026	0,004 0,031	0,003	0,005	0,001	0,003	0,001	0,001	0,007 0,058	0,008 0,047	0,001 0,046	0,003 0,045	0,001 0,021	0,011	0,002	0,001 0,039	0,005 0,011	0,001	0,002 0,017
	Plagiocardium papillosum Saccella commutata Saccella illirica				*	0,004	0,001 0,024						0,023			0,042				*	0,004
	Similpecten similis Solecurtus scopula Tellina balaustina					0,004		*	0,506									0,034		0,198	
	Tellina distorta Tellina serrata Thyasira flexuosa		0,001	0,007	*	0,249 0,004	0,002	*	0,001	0,097		0,009	0,008	0,002	0,002			0,027 0.004	0,004	*	0,001
Caudofoveati	Timoclea ovata Falcidens gutturosus	0,017	0,025	0,002 0,048	0,010 0,017	0,004	0,035	0,039	0,001	0,001 0,021	0,007 0,032	0,008 0,031	* 0,023	0,079 0,033	0,002 0,025 0,028	0,003 0,017	0,012 0,016	0,004 0,010 0,020	0,040 0,026	0,004 0,021	0,021 0,025
Gasteropodi	Calyptraea chinensis Cylichna cylindracea	0,005		0,005		0,001	0,004	0,006	0,022 0,004	0,007	0,001	0,001		0,003	0,001	0,002	0,000 0,001	0,001	0,008	0,002	ŕ
	Emarginula sp Eulima bilineata			*		0,017		0,001							*						
	Hyala vitrea Mangelia coarctata	0,006 0,017		0,006			0,010	0,026		0,003		0,019		0,004	_			*	0,002	*	
	Nudibranchia nd Odostomia sp Philine aperta			*	0,003 0,003 *	*	0,002			*	0,001		*		_					*	
	Prilline aperta Polinices nitida Raphitoma sp		0,013					0,013				0,075	0,011			0,025	0,010			0,002	0,014
	Trophonopsis muricatus Turbonilla rufa	0,070		0,002 0,001	0,116	0,006	0,001			0,029		0,030	*	*		0,002		0,001		0,002	0,031
Scafopodi	Turritella communis Antalis inaequicostata								0,030	0,021		0,002 0,006	0,019 0,007	*	0,016 0,042		0,090	0,118	0,006		
Nemertini Pantopodi	Nemertea nd	0,034	0,018	0,012	0,002	0,043	0,037	0,009	*	*	*	0,001	0,001	0,003	0,033	0,033	0,002	0,101		0,005	0,010
Picnogonidi	Pycnogonida nd	0,049	*	0,001	0,013	*	*			0,002	*	*			0,051	*			*		*

Stazioni		D1	D2	D3	D4	D5	D6	D7	K8	K9	K10	E1	E2	E3	E4	E5	E6	E7	K11	K12	K13
Dsistanza dal sea-line (m)		100	60	30	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Platelminti																					
Daliahasi	Platelminta nd				0,002																
Policheti	A	0.000	0.000	0.000	0.006	0.022	0.000	0.040	0.010	0.000	0.040	0.018	0.040	0.005	0.000	0.002	0.004	0.004	0.005	0.000	0.040
	Ampharete acutifrons Ampharetidae nd	0,009 0,007	0,002 0,005	0,003 0,021	0,006	0,022	0,009 0,015	0,013 0,009	0,010	0,009 0,005	0,012	0,018	0,012 0,000	0,005 0,001	0,006 0,009	0,002	0,004 0,002	0,004	0,005 0,001	0,009 0,001	0,019 0,004
	Amphicteis gunneri	0,007	0,003	0,021	0,002	*	*	*	0,004	0,005		0,004	*	*	0,009	0,003	*		0,001	0,001	0,004
	Ancystrosyllis groenlandica	0,001					0.001		0,001			0,011			*	*		*	*	*	*
	Aphelochaeta filiformis	0.003	0,001	0.002	0.001	0,010	0,010	0,004	0,001	0.004	0,005	0.001	0,002	0.001	0,003	0,001	0,001	0,006	0,001	0.001	0,004
	Aphelochaeta marioni	0.003	0,003	0,002	0,001	*	0,002	0,003	*	0.004	0,003	0.004	0,002	0.001	0,002	0,002	0,001	0.002	0,001	0,001	0,003
	Aphrodita aculeata	0,000	0,000	3,108			0,002	0,000		0,001	0,001	0,001	0,001	0,001	0,002	0,002	0,002	0,002	0,001	0,001	0,000
	Aphroditidae nd	*		0,.00						0,001							*		*	*	*
	Aponuphis brementi	0.019	0.060	0.073	0,013	0.041	0,055	0.086	0,017	0,048	0,110	0.040	0,048	0.035	0.012	0,077	0.035	0,057	0,033	0.039	0,021
	Arabella geniculata	.,.	.,	-,	-,-	-,-	0,003	.,	-,-	-,	-, -	*	-,-	0,001	0,003		-,	-,	.,	.,	0,015
	Chaetozone caputesocis	0,006		0,005	0,005	0,010	0,004	0,025	0,000	0,002	0,001	*	0,012	0,006			0,001	0,016	0,006	0,001	0,010
	Chirimia biceps			-												0,001			,	0,002	0,003
	Cirratulidae nd					*	*	0,001	*			*	0,001								
	Ditrupa arietina	0,007	0,011	0,018	0,001	0,010	*	0,005	0,048	0,201	0,023	0,254	0,140	0,710	0,252	0,430	0,231	0,139	0,177	0,068	0,093
	Drilonereis filum	0,032				0,001						0,003	*		0,015		0,009	*		0,007	0,007
	Eunice vittata			0,003								0,004				*					
	Eusyllis sp							0,003	0,005												
	Filograna sp	0,003			0,001		*					0,001					*			*	
	Flabelligeridae nd	0,002	*	0,004	0,004	0,002	0,004	0,001	0,002		*				0,001			*	*		0,001
	Glycera rouxii	0,503	0,012	0,072	0,050	0,288	0,028	0,086	0,092	0,030	0,060	0,140	0,306	0,038	0,030	0,271	0,340	0,120	0,090	0,164	0,125
	Goniada maculata	0,008	0,008	0,016	0,001	0,009	0,014	0,008	0,007	0,013	0,029	0,010	0,004	0,004	0,007	0,005	0,003	0,002	0,003	0,005	0,008
	Harmothoe sp	0,491	*	*	0,270	0,002	0,001	0,015	*			0,000		0,000	0,105	*		*			*
	Hyalinoecia tubicola		0,024	0,020		0,056	0,001	0,051	0,148	*	0,022	0,004	*	0,002	0,001	*			0,001		*
	Hydroides norvegicus			*	*					0,003				*	0,001	*		0,002		*	*
	LabioLabioleanira yhleni					_				_	*		0,002	0,011		*	*	_	0,098		_
	Levinsenia oculata	0.000	0.000	0.005	0.000	*	0.000	0.040	0.004	*		0.007	*	0.000	0.004			*	*	0.044	*
	Lumbrineris gracilis	0,003	0,002	0,005	0,002	0,004	0,002	0,010	0,004	0,108	0,004	0,007	0,003	0,003	0,001	0,006	0,002	0,006	0,003	0,011	0,011
	Macroclymene santanderensis	0,014	0,001	0,001	*	*	*	0,008	*	0,006	0,005	0,003 0,001	0,001	*	0,001	*	0,001	0,004 0,002	0,001	0,002 0,001	0,005 0,001
	<i>M</i> agelona alleni Maldanidae nd	0,006	0.000	0,005	0.010	0,014	0,003	0,002	0,003	0.001	0,001 0,008	0,001	0,002 0,004	0,030	0,001	0,008	0.001	0,002	0,001	0,001	0,001
	Marphysa bellii	0,006	0,002	0,005	0,010	0,014	0,003	0,002	0,003	0,001	0,006	0,008	0,004	0,030	0,017	0,008	0,001	0,017	0,001	0,009	0,017
	Melinna palmata							0,000	0,004			0,002	0,004	0,011		0,001	0,000	0,002	0,002		
	Micronephtys sphaerocirrata		*				*	*		*	0,002	0,000	*	*				*	0,000		*
	Minuspio cirrifera	0,002	0,001	0,002	0,002	0,003	0,003	0,002	0,010	*	0,007	0,001	0,001	0,001	0,001	*	*	0,001	0,001	0,001	0,003
	Nematonereis unicornis	0,002	0,001	0,002	0,002	0,000	0,000	0,002	0,0.0		0,007	0,00.	0,00.	0,001	0,00.			0,00.	0,00.	0,00.	0,004
	Nephtys hombergi							0,013			0,025							0,196			.,
	Nephtys hystricis		0,092	0,654	0,004	0,016	0,010	.,	0,038	0,032	0,051		0,039	0,014	0,308	0,008	0,244	0,011	0,003	0,003	0,104
	Nereididae nd		*	0,001	0,002	0,001		0,002	0,001	*					0,003	0,001		*			*
	Ninoe sp											0,140									*
	Nothria conchilega	0,014	0,003	0,018	0,003	0,005	0,001	0,005	0,008	0,006	0,016	0,012	0,010	0,005	0,014	0,027	0,009	0,012	*	0,006	0,008
	Notomastus aberans	0,007			0,062	0,006	*	0,005						0,116	0,006	0,090	0,151	0,002	0,017	0,007	
	Ophelina cilindricaudata	0,001	0,001	0,001	*	0,002	0,002	0,001	0,001	0,001	0,001	*	0,001	0,001	*	0,001	*	*	0,001	*	0,001

Owenia Paralac Paraoni Pectina Phyllod Phyllod	dromus flexuosus a fusiformis cydonia paradoxa nidae nd aria koreni doce lineata doce sp	0,001 0,009 0,001 0,002 0,007	0,006 0,005 0,002	0,012	0	30	60	100	926	926	926	100	60	30	0	30	60	100	926	926	926
Ophiodi Owenia Paralac Paraoni Pectina Phyllodi Phyllodi	a fusiformis cydonia paradoxa nidae nd aria koreni doce lineata doce sp	0,009 0,001 0,002	0,005	- , -	*																920
Owenia Paralac Paraoni Pectina Phyllod Phyllod	a fusiformis cydonia paradoxa nidae nd aria koreni doce lineata doce sp	0,009 0,001 0,002	0,005	- , -	*																
Paralac Paraoni Pectina Phyllod Phyllod	cydonia paradoxa nidae nd aria koreni doce lineata doce sp	0,001 0,002	0,005	- , -			*			*	*		*		0,011		*	*		0,001	0,002
Paraoni Pectina Phyllod Phyllod	nidae nd aria koreni doce lineata doce sp	0,002		0.000	0,005	0,110	0,019	0,009	0,083	0,020	0,021	0,016	0,002	0,012	0,001	0,005	*	0,003	0,002	0,009	0,024
Pectina Phyllod Phyllod	aria koreni doce lineata doce sp	,	0,002	0,003	0,009	0,005	0,006	0,002	0,002	0,006	0,002	0,002	0,001	*	*	*	0,001	*	*	*	0,001
Phyllod Phyllod	doce lineata doce sp	0,007		0,002	0,001	0,003	0,002	0,004	0,003	0,002	0,003	0,006	0,004	0,006	0,003	0,001	0,001	0,007	0,002	0,003	0,007
Phyllod	doce sp			0,005	0,002	0,002		0,001	0,005	0,004	0,002	0,001	0,000	0,001	0,009	0,001	0,001	0,009	0,002	0,004	0,002
-										*								0,010			
Phyllod		*	0,002	*	*	*	0,001	0,008	*	*	0,001	0,001	*		*	*	0,002	*	0,005	*	
i ilyilou	docidae nd			0,001		0,006	*	0,001		0,001	0,001		*	0,001	*		*		*	*	*
Phylo n	norvegica												0,001								
Pilargis	s verrucosa											*									
Pista b	brevibranchia	0,004					*			*						0,000		0,003			
Pista cı	cristata		0,001	*		0,002		0,001			0,002							0,002			*
Poecilo	ochetus serpens	*	*	0,001	0,001	*	*	*	*	*		*	*	*	*		0,001	*		*	0,002
Pomato	oceros triqueter	0,001	*	*	0,007				*	0,003					0,001						
Praxille	ella gracilis																	0,015			0,004
Prionos	s <i>pio</i> sp	0,001	*	0,003	0,006	0,016	0,002	0,004	0,015	0,013	0,002	0,009	0,009	0,007	0,005	0,009	0,001	0,007	0,003	0,004	0,006
Prionos	spio steenstrupi	*	*	*	0,004			0,007	0,007	0,008	0,001		0,005					0,001			
Sabella	a pavonina								0,007						0,082						
Sabellio	idae nd	0,046	0,004	0,022	0,009	0,061	0,025	0,025	0,014	0,026	0,010	0,014	0,001	0,009	0,002	0,042	*	0,003	0,001	0,001	0,005
Scalibre	regma inflatum				0,000																0,002
Scoleto	oma impatiens	0,017	0,001	0,001	0,002	0,027	0,003	0,004	0,002	0,003	0,007	0,008	0,002	0,005	0,010	0,006	0,010	0,007	0,014	0,006	0,004
Serpula	a vermicularis	*			0,009										*				0,001	*	
Sphaero	rodoridae nd							*				*		*				*	*	*	*
Spionid	dae nd																	*			
Spiopha	nanes bombyx			0,002	*	0,002	0,001	*	*	*	*	*		*	0,001						
Sthenel	elais boa			0,008	0,017	0,022	0,006	0,006	0,026	0,013		0,015	0,003		0,003	0,003					
Syllidae	ie juv	*	*	0,001	*	*		*	*	*	*				*		*	*	*	*	*
Syllis pa	parapari	0,002	0,001	0,007	0,011	0,012	0,001	0,011	0,001		0,005	0,004	*	0,006	*	0,001	0,004	0,002	0,005	0,003	0,001
Syllis s	sp	0,000	0,002	*	0,594	*	*	0,003	0,002		*	*	*		0,088		*	*	*	*	
Terebell	ellidae nd	0,003	0,006	0,018	0,012	0,003	0,001	0,003		0,009	0,009	0,018	0,004	0,006	0,002	0,010	0,005	0,012			0,004
Terebel	ellides stroemi	0,001	0,003	0,025	0,001		0,016	0,021	0,008	0,006	0,006	0,002	0,004	0,021	*	*	0,001	0,001	0,013	0,004	
Poriferi																					
Porifera				0,002	1,936				0,193	0,037					1,209			0,000		*	
Porifera	a nd2				2,479										0,274						
Sipunculidi	1																				
Aspidos	osiphon muelleri	0,061	0,065	0,156	0,185	0,139	0,057	0,112	0,042	0,044	0,106	0,089	0,029	0,049	0,008	0,071	0,098	0,110	0,070	0,061	0,034
	olion strombus																		0,001	*	
Sipuncu	cula nd	0,008	0,004	0,010	0,006	0,008	0,014	0,011	0,016	0,007	0,007	0,012	0,007	0,014	0,001	0,009	0,005	0,008	0,008	0,006	0,010
Tunicati	1																				
	a mentula				174,669			15,080													
Ascidia	a virginea														5,241						
Ascidia	acea nd				0,244																
DENSITA' TOTALE		98,107	15,166	5,648	745,195	2,270	7,491	18,139	10,448	4,408	1,328	3,165	1,029	4,039	233,137	1,512	1,729	1,352	0,947	0,913	0,909
RICCHEZZA SPECIFICA TOTALE		87	74	100	104	90	94	90	81	92	81	85	85	79	107	75	66	94	72	79	100