

01	Luglio 2015	Aggiornamento a seguito del parere n.4/2015 del CSLLPP	S.J.S. Engineering s.r.l.
00	Novembre 2014	PRIMA EMISSIONE	S.J.S. Engineering s.r.l.
revisione	DATA	MOTIVAZIONE	proponente

Stazione appaltante

AUTORITA' PORTUALE DI TRIESTE

Incarico

PORTO DI TRIESTE - TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m

Livello progettuale

PROGETTO DEFINITIVO

Titolo Soggetto attuatore Area code 0129 TST (Trieste Marine Terminal 01009-01 **RELAZIONE TECNICA** Check **IMPIANTI ELETTRICI R03** C-01 Progettazione Il Responsabile del Procedimento Il Direttore Tecnico Progettisti Ing. Michelangelo Lentini Ing. B. Lentini S.J.S. Engineering s.r.l. Ing. A. Porretti *Roma (00187) Ing. R. Isola Ing. M. Filippone Taranto (74123) Dott. Geol. G. Cardinali P.zza Castel S.Angelo,n.1

Certified office*
COMPANY WITH
QUALITY SYSTEM
CERTIFIED BY DNV
= ISO 9001=

Mosca (123242)

Krasnaya Presnayo NG s.r.l. st. 22 - Ufficio 3

B. Lentini

Checked

ML

Luglio 2015

Ing. L. Drago

Ing. V. Colosimo

Ing. P. Semeraro

Filename

0129TST01009-01-R03.doc

Edited

INDICE

1.	PRE	MESSA	· · · · · · · · · · · · · · · · · · ·	4
2.	DES	CRIZIO	NE DELL'IMPIANTO ESISTENTE	5
	2.1	LA RE	TE ELETTRICA ESISTENTE	5
	2.2	ANAI	LISI DELLA POTENZA DISPONIBILE	6
	2.3	LA DI	STRIBUZIONE E LA VIA CAVI IN BANCHINA	8
3.	DES	CRIZIO	NE DELL'INTERVENTO	10
	3.1	ANAI	LISI DEI CARICHI	10
	3.2	CABI	NE DI TRASFORMAZIONE	13
	3.3	LA C	ABINA SSP	14
	3.4	LA C	ABINA C	18
	3.5	LA C	ABINA NORD2	21
	3.6	LE CA	ABINE NORD1, A E B	23
4.	CAL	COLI D	I DIMENSIONAMENTO DELL'IMPIANTO	24
	4.1	DATI	ALLA BASE DEL CALCOLO	24
	4.2	CONI	FIGURAZIONI DI CALCOLO	26
	4.3	PROF	FILO DI TENSIONE	27
5.			DI MESSA A TERRA DEL CENTRO STELLA DEI TRASFORMATORI MT/MT	
	5.1	RETE	MT 6 kV CON NEUTRO A TERRA TRAMITE RESISTENZA	30
	5.2	CARA	ATTERISTICHE DEI SISTEMI DI PROTEZIONE DELLE RETI MT	32
	5.3	RELE	[,] DI PROTEZIONE	32
		5.3.1	Scomparti partenza trasformatore MT/MT	32
		5.3.2	Scomparti partenza trasformatore MT/BT e congiuntore Sbarre	33
		5.3.3	Scomparti misure	33
		5.3.4	Scomparti linee Gru, arrivo trafo MT e arrivo/partenza anello	33
	5.4	CALC	COLO DELLE CAPACITA' DELLE LINEE IN CAVO A 6kV	34

	5.5		NSIONAMENTO DEI RESISTORI DI MESSA A TERRA DEL CENTRO .A, LATO 6kV, DEI TRASFORMATORI MT/MT 27,5/6kV	35
		5.5.1	Dimensionamento dei resistori monofasi della CABINA SSP	35
6.	DIMI	ENSION	NAMENTO DELLE CONDUTTURE ELETTRICHE	38
7.	CAL		DELLE CORRENTI DI CORTO CIRCUITO	41
8.	CAV	I E VIE (CAVI	44
9.	STUI	DIO DI	SELETTIVITA'	45
10.	coo	RDINA	MENTO DELLE PROTEZIONI	46
			duzione	
			na di protezione associato al Dispositivo Generale	
			linamento selettivo delle protezioni	
			MI DI FUNZIONAMENTO BLOCCHI LOGICI	
11.	LINE	A BASS	SA TENSIONE	54
	11.1	Alime	ntazione	54
		11.1.1	Dati generali di impianto	54
		11.1.2	Alimentazione principale:Trasformatore	54
	11.2	Strutt	ura quadri	54
		11.2.1	QBT-NORD2 - Quadro Generale	54
	11.3	Calco	li e verifiche	57
		11.3.1	Quadro: [QBT-NORD2] Quadro Generale	57
12.	INTE	RFERE	NZE	72
13.	IMPI	ANTO I	DI TERRA	73
14.	IMPI	ANTO I	DI ILLUMINAZIONE	76
	14.1	Carat	teristiche tecniche delle torri faro	77
15.	FASI	DI LAV	ORO – ALIMENTAZIONE DELLE GRU	80
16.	CON	CLUSIC	ONI	82
17.	NOR	MATIV	A DI RIFERIMENTO	83
12	ΔΙΙΕ	GΔTI		85

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T	-	09-01	I-R02
	PROGETTO DEFINITIVO	Data Lug	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	-	D:	111
	IMPIANTI ELETTRICI	Pagina	3	וט	111

INDICE TABELLE

Tabella 1 Analisi dei carichi – stato di fatto	6
Tabella 2 Analisi dei carichi – Layout di progetto	11

S Expineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TS		09-01	-R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	Л	Di	111
	IMPIANTI ELETTRICI	ragilia	4	וט	111

1. PREMESSA

Il progetto definitivo "Terminal Container Molo VII – Allungamento 100m" del porto di Trieste è stato trasmesso dalla TMT SpA, concessionaria dell'area, all'Autorità Portuale di Trieste, il 19 gennaio 2015, con Nota Prot. N.:P09/01/2015,

L'Autorità Portuale con Nota Prot. N. 0000385 del 19 genaio 2015, ha trasmesso poi il progetto al C.S.LL.PP, che lo ha ricevuto il 21 gennaio 2015.

In riscontro alla Nota Prot. N. 0000385, il Consiglio Superiore dei Lavori Pubblici ha trasmesso all'Autorità Portuale di Trieste con nota Prot. N. U.0005718.23-07-2015, il *Parere n.4/2015 reso nell'Adunanza del 3 Luglio 2015 con le prescrizioni, oesservazioni e raccomandazioni in esso esposte.*

La presente relazione è stata redatta per ottemperate alle osservazioni/integrazioni richieste col fine di chiarire e meglio argomentare le scelte progettuali adottate.

C(((C Engineering s.n.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	0129T		09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lug	jlio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Danina	_	D:	111
	IMPIANTI ELETTRICI	Pagina	Pagina 5	Di 1	111

2. DESCRIZIONE DELL'IMPIANTO ESISTENTE

2.1 LA RETE ELETTRICA ESISTENTE

Il Molo VII è infrastrutturato con una rete MT a 27,5 KV che si attesta in una cabina di smistamento e consegna, denominata cabina "SSP",e più cabine di distribuzione che consentono l'alimentazione di n.3 linee ad anello.

Nella cabina principale SSP avviene la trasformazione da 27,5 a 6 kV, la distribuzione primaria su tre collegamenti ad anello nonché la trasformazione da 6 kV a 400 V per tutti gli utilizzatori.

La linea a 6 kV alimenta le cabine:

- Nord 1 Nord 2, primo anello verso la banchina Nord;
- Sud, secondo anello verso la zona centrale del molo;
- A B C, terzo anello verso la banchina Sud

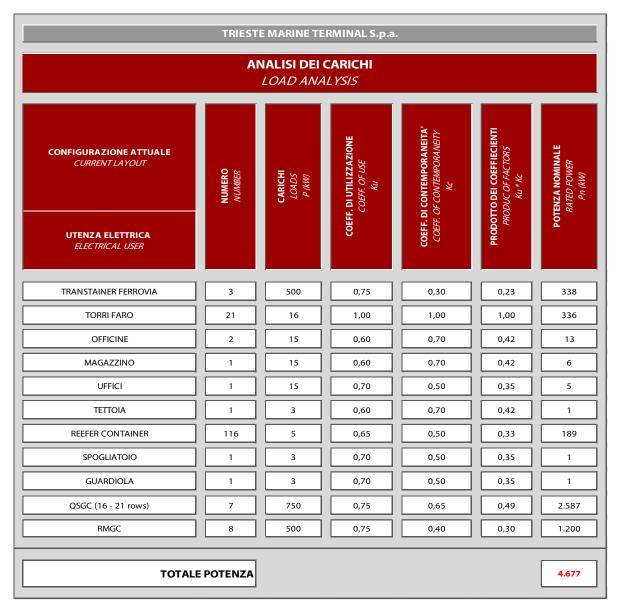
La configurazione ad anello chiuso assicura la massima continuità di esercizio delle cabine ed è la migliore soluzione percorribile per ottenere, in caso di guasto su uno dei tratti di cavo, la garanzia dell'alimentazione mediante il funzionamento ad anello aperto, fino al ripristino del guasto e delle normali condizioni di esercizio.

Le cabine Nord 1 e Nord 2 sono finalizzate alla distribuzione in bassa tensione destinata all'alimentazione delle torri faro e delle transtainer di ferrovia posizionate lungo la banchina Nord, a servizio del fascio binari ivi presente.

La cabina Sud è destinata all'alimentazione della palazzina uffici, dell'officina e del magazzino 74 che presto sarà dismesso, nonchè di una parte del parco reefer allestito in prossimità della radice del molo, per un totale di 60 prese.

Le cabine A, B e C sono essenzialmente finalizzate alla distribuzione a 6 kV verso le gru di banchina e di piazzale nonchè alla distribuzione in bassa tensione per l'alimentazione delle torri faro e della restante parte di reefer, per un totale di 56 prese.

L'impianto elettrico conserverà la sua origine nel punto di consegna dell'energia elettrica da parte dell'Ente Distributore. Il sistema di distribuzione ad anello a 6 kV verrà conservato perché ben si presta all'alimentazione di grossi carichi concentrati per i quali è basilare mantenere la continuità del servizio lungo i tratti non coinvolti in caso guasto.


S) 111 J	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m			09-0 1	0129TST01009-01-R02 Data Luglio 2015		
	PROGETTO DEFINITIVO	Data Lu g	jlio 20	15			
Trieste Marine Terminal	RELAZIONE TECNICA	Desire	_	D:	111		
	IMPIANTI ELETTRICI	ragina	Pagina 6	וט ז	111		

2.2 ANALISI DELLA POTENZA DISPONIBILE

Per la redazione del progetto dell'impianto è stata condotta l'analisi dei carichi sulla base dell'attuale dotazione impiantistica.

La tabella che segue sintetizza i carichi attuali che insistono sulla linea. Sono elencate le varie utenze, specificate per tipologia e quantità, il valore del singolo carico e i corrispondenti Coefficienti di utilizzazione K_u e di Contemporaneità K_c ad essi assiociati, considerati per la determinazione della Potenza Nominale P_n dell'impianto.

Tabella 1 Analisi dei carichi – stato di fatto

211113	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Document	to		
Engineering s.a.l.	ALLUNGAMENTO 100m	0129T	ST010	09-0°	1-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	-	Di	111
	IMPIANTI ELETTRICI	Pagina	,	וט	111

Il valore della Potenza nominale ottenuto è stato nuovamente "corretto" mediante il prodotto di questo con i fattori K_u (coefficiente di utilizzazione) e K_c (coefficiente di contemporaneità) applicati all'intero impianto e che hanno condotto ad un valore di Potenza pari a:

$$P_{eff} = P_n \times K_u \times K_c = 4.677 \text{ (kW)} \times 0.9 \times 0.6 = 2.526 \text{ kW}$$

Nonostante il valore di potenza calcolato, la potenza contrattuale, o impegnativa con l'Ente Distributore (ACEGAS), è pari a 1.600 kW.

La rete generalmente alimenta, durante il normale esercizio, un carico pari al valore della potenza contrattuale maggiorato del 10%, quindi nel caso specifico pari a 1.760 kW.

Per tempi più brevi, pari a circa 3 ore, la rete concede un prelievo di potenza pari al 27% in più rispetto a quella contrattuale, quindi nel caso specifico pari a circa 2.000 kW.

Per l'alimentazione di tutte le utenze che insistono sul terminal, la concessionaria TMT è costretta ad un'attenta gestione dei carichi che comporta un attento coordinamento di tutte le attività.

Nonostante questo, spesso si verificano disservizi e rallentamenti che compromettono l'operatività del terminal.

Per ovviare al problema, la TMT ha fatto richiesta all'Ente Distributore di aumentare il valore della fornitura.

L'ACEGAS, finora, ha rimandato a data da destinarsi, l'adeguamento del contratto di fornitura perchè subordinato a interventi di adeguamento della linea; questa, infatti, con le attuali dotazioni, non può alimentare un carico di pari valore.

I lavori di adeguamento della linea, pur essendo previsti, non sono stati ancora avviati.

In fase di progettazione, tuttavia, si è tenuto conto della effettiva potenza necessaria all'alimentazione dei carichi futuri, confidando nell'intervento, previsto dall'Ente, di adeguamento della rete a favore dell'utente finale.

S C Explorering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02			
	PROGETTO DEFINITIVO	Data Lug	Data Luglio 2015		
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina		Di	111
	IMPIANTI ELETTRICI	ragilia	Pagina 8	וט [

2.3 LA DISTRIBUZIONE E LA VIA CAVI IN BANCHINA

Per quel che attiene la distribuzione in banchina, si è potuto constatare che l'impianto esistente non si presta ad ospitare gli apprestamenti necessari all'alimentazione delle nuove gru.

In particolare, i cunicoli degli anelli sono stati tutti realizzati nella pavimentazione di circa 50cm e ricoperti con plotte di vario materiale: gli anelli 1 e 3 presentano plotte in metallo, mentre quelli dell'anello 2 plotte in calcestruzzo che rendono difficile l'intercettazione e qualsivoglia intervento su di essi.

I tubi in PVC interrati, di dimensioni massime pari a Ø150, sono destinati ad ospitare i cavi aventi diverse tensioni di esercizio, limitando i livelli di disturbo relativi di ciascun conduttore.

L'andamento delle linee MT, BT, della fibra ottica e dell'impianto di terra esistenti è riportato negli elaborati di progetto allegati: 0129TST01152, 0129TST01153 0129TST01154 e 0129TST01155.

La distribuzione primaria avviene nei suddetti cunicoli interrati, secondo i seguenti collegamenti:

ANELLO 1

- Da SSP a Cabina Nord1:
 1 cavo tipo RG5H1OZR 6/10 kV sez.3x240mmq
- Da Nord 1 a Cabina Nord2:

1 cavo tipo RG5H1OZR 6/10 kV sez.3x240mmq

Da Nord 2 a Cabina SSP:

1 cavo tipo RG5H1OZR 6/10 kV sez.3x240mmq

ANELLO 2

Da SSP a Cabina Sud:
 2 cavi tipo RG5H1OZR 6/10 kV sez.3x240mmq

ANELLO 3

Da SSP a Cabina A:2 cavi tipo RG7H1OZR 6/10 kV sez.3x300mmq

1111 July	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Document	:0		
Engineering s.n.l.	ALLUNGAMENTO 100m	0129T	ST010	09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	•	Di	111
	IMPIANTI ELETTRICI	rayılla	9	וט	

Da SSP a Cabina B:2 cavi tipo RG7H1OZR 6/10 kV sez.3x300mmq

- Da B a Cabina C:2 cavi tipo RG7H1OZR 6/10 kV sez.3x300mmq
- Da A a Cabina B:
 2 cavi tipo RG7H1OZR 6/10 kVsez.1x300mmq
- Da A a Cabina C:2 cavi tipo RG7H1OZR 6/10 kV sez.3x300mmq

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T		09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	ST01009-01-R02 glio 2015		
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	10	D:	111
	IMPIANTI ELETTRICI	Pagina	Pagina 10	DI	111

3. DESCRIZIONE DELL'INTERVENTO

I carichi previsti dal progetto, come comunicato in quantità e caratteristiche dalla società concessionaria e di gestione del Molo VII, sono i seguenti:

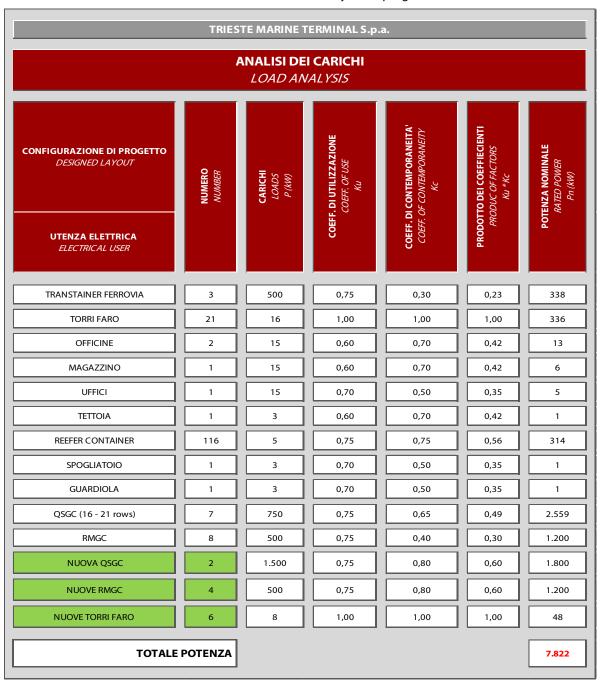
- n.1(fino ad un massimo di2) gru di banchina da 24 rows a 6kV;
- n.4 gru di piazzale a 6kV;
- tutte le utenze esistenti.

Il nuovo layout prevede quindi che la nuova banchina sia dotata delle seguenti attrezzature:

- N.1 gru da 24 rows;
- N.3 gru da 21 rows (ex 17 rows revampate);
- N.2 gru da 20 rows;
- N.2 gru da 16 rows.

Tutte le gru da 21, 20 e 16 rows sono esistenti, perfettamente funzionanti, mentre la gru da 24 rows sarà di nuova fornitura.

L'intervento di adeguamento dell'impianto riguarderà le apparecchiature di cabina e tutti i collegamenti con i punti di erogazione d'energia dedicati alle nuove utenze.


L'alimentazione della nuova gru da 24 rows sarà affidata alla cabina C già dedicata all'alimentazione di una parte dei carichi in banchina;mentre le n.4 nuove gru in piazzale saranno derivate dalla cabina Nord2 così come l'alimentazione delle n.3 torri faro di nuova fornitura.

3.1 ANALISI DEI CARICHI

Rispetto al nuovo assetto, è stata elaborata una nuova analisi dei carichi che tiene conto di quelli precedenti e di tutti quelli implementati. I risultati dello studio sono riportati nella tabella che segue, in cui si sono sintetizzati i calcoli ottenuti dall'analisi dell'intera linea, allegati alla presente relazione (pagina 8 dell'ALLEGATO 1).

S C Explorering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T	-	09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	0129TST01009-01-R02 Data Luglio 2015 Pagina 11 Di 111		
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	11	Di	111
	IMPIANTI ELETTRICI	Fayilla		DI	

Tabella 2 Analisi dei carichi – Layout di progetto

Anche in questo caso, il valore della Potenza nominale, è stato "corretto" mediante il prodotto di questo con i fattori correttivi K_u (coefficiente di utilizzazione) e K_c (coefficiente di contemporaneità) che hanno condotto ad un valore di Potenza pari a:

 $P_{eff} = P_n x K_u x K_c = 7.822 \text{ (kW)} x 0.9 x 0.6 = 4.224 \text{ kW}$

S COULT Excitering and	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 01291	to 'ST010	09-0 1	I- R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	12	Di	111
	IMPIANTI ELETTRICI	Pagina	12	DI	111

Diverse sono le esigenze operative che conducono all'utilizzo di n.2 Trasformatori, uno in parallelo all'altro. Fra le più importanti si annoverano:

- la garanzia della continuità del servizio: qualora un trasformatore debba essere disinserito perché guasto o per ordinaria manutenzione, il carico connesso al secondario può continuare ad essere alimentato senza alcuna interruzione o disservizio;
- la necessità di potenziamento dell'impianto utilizzatore: in tal caso, quando un solo trasformatore non è più sufficiente ad alimentare il carico, l'aggiunta dell'altro trasformatore in parallelo risolve il problema.

La prima condizione è quella che, al momento, vuole essere traguardata con l'inserimento del secondo trasformatore.

Per quanto riguarda invece la necessità di potenziamento dell'impianto utilizzatore, essendo previsto nel nuovo PRP un allungamento del molo fino a 800m, ed essendo in animo alla TMT l'allungamento del Molo VII fino ad un massimo di 400m, anch'essa verrebbe traguardata evitando, nel prossimo futuro, ulteriori interventi e investimenti sull'impianto.

Inoltre, affinchè due trasformatori possano funzionare in parallelo, è necessario che essi abbiano:

- uguale valore del rapporto di trasformazione;
- uguale tensione di corto circuito in valore relativo (separatamente: vr1=vr2; vx1=vx2);
- nel caso di trasformatori trifase, uguale indice orario.

Le suddette caratteristiche, variano a seconda della marca e del modello della macchina, nonchè dal tipo di isolante utilizzato. Segue che, risulta impossibile associare un trasformatore di nuova generazione con quell'unico trasformatore presente e funzionante nell'impianto.

Risulta pertanto necessario prevedere la sostituzione di 2 trasformatori.

La scelta della taglia dei trasformatori, pari a quella del trasformatore presente nell'impianto, 5 MVA, è legata a due fattori:

- 1. la richiesta di potenza stimata;
- 2. l'estensione futura del molo fino a 400m. Questa comporta l'installazione di altre n.2 gru di banchina, il potenziamento del sistema di illuminazione e l'incremento di altri carichi per un totale stimato superiore ai 6.800 kW (pagina 8 dell'Allegato 2).

Non ultima, è la salvaguardia della stabilità dell'impianto, nonchè dell'intera linea, per la quale è consigliato un utilizzo dei trasformatori non a pieno della loro potenzialità.

Riassumendo, si è deciso di sostituire n.2 dei vecchi trasformatori con macchine aventi fra loro stesse caratteristiche col fine di garantire oggi la continuità del servizio e domani l'aumento della

31113	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Documen	to		
Engineering s.a.l.	ALLUNGAMENTO 100m	01291	ST010	09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	12	Di	111
	IMPIANTI ELETTRICI	Pagina	13	DI	111

potenza necessaria all'alimentazione di tutti i nuovi carichi, bilanciati su n.2 macchine funzionanti in parallelo.

3.2 CABINE DI TRASFORMAZIONE

Il Molo VII è alimentato dall'Ente Distributore attraverso la consegna sulla cabina denominata SSP. Da questa, attraverso vie cavi interrate, vengono alimentate tutte le cabine secondo una distribuzione su n.3 anelli:

- Anello 1: cabine Nord1 Nord2;
- Anello 2: cabina Sud;
- Anello 3: cabine A B C.

Il progetto prevede esclusivamente interventi di adeguamento nella cabina di consegna SSP e nelle cabine Nord2 e C, preposte alla distribuzione a 6 kV a servizio delle gru di banchina e di piazzale nonchè dell'impianto di illuminazione di nuova realizzazione. Verifiche e interventi di manutenzione andranno poi effettuati sulle cabine Nord1, A e B, specificate nel seguito.

Di seguito si riportano gli interventi mirati all'alimentazione dei nuovi carichi, quindi dettagliate le caratteristiche funzionali e prestazionali delle apparecchiature che si andranno ad installare nelle cabine SSP, Nord2 e C.

I quadri di Media Tensione a 27,5kV e 6kV dovranno essere del tipo a tenuta d'arco interno secondo Norma CEI EN 62271-200 (quadro di tipo IAC Internal Arc Classified) con la possibilità di ampliamento alle estremità. Saranno realizzati mediante l'affiancamento ed il collegamento di unità funzionali prefabbricate, ognuna atta a esplicitare una funzione specifica all'interno del quadro (arrivo, partenza, congiuntore, misure, etc.) in modo da realizzare lo schema previsto. Ogni scomparto dovrà essere suddiviso in celle dedicate a circuiti di media e bassa tensione, metallicamente segregate fra loro e facilmente accessibili a mezzo di porte o pannelli di facile asportazione per consentire operazioni di ispezione o di manutenzione.

Gli scomparti dovranno essere accessibili dal fronte e dal retro a mezzo porte in lamiera, incernierate in un lato ed apribili con maniglia con serratura speciale a chiave. Le unità funzionali dovranno essere equipaggiate con tutti i componenti necessari per un corretto funzionamento e muniti di blocchi elettrici ed elettromeccanici per garantire una corretta sequenza delle manovre.

Per la protezione delle linee MT a 27,5 kV saranno installati degli interruttori in esafluoruro di zolfo (SF6), noti per le loro caratteristiche di non infiammabilità, stabilità ed elevata rigidità dielettrica. Per la protezione delle linee MT a 6 kV saranno invece installati degli interruttori in sottovuoto. La cella cavi M.T., isolata in aria, sarà posizionata nella parte inferiore dell'unità e sarà accessibile dal

S Comments and Com	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 01291	to ST010	09-0°	1-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	1.4	Di	111
	IMPIANTI ELETTRICI	Pagina	14	DI	111

fronte quadro mediante lo sbullonamento del pannello frontale di chiusura. Le unità funzionali saranno complete di relè di protezione, strumenti di misura, spie di segnalazione, trasformatori di corrente e tensione, trasduttori di corrente e potenza con segnale uscita 4÷20 mA, relè a cartellino e di ogni altro componente come riportato negli elaborati di progetto.

3.3 LA CABINA SSP

La Cabina SSP, che si trova in radice al Molo, è equipaggiata con:

- n° 1 quadro generale di media tensione a 27,5 kV, con funzione di protezione generale e di protezione primaria dei trasformatori 27,5/6 kV installati;
- n° 3 trasformatori ad olio dielettrico 27,5/6 kV da 5 MVA che, con l'ausilio della ventilazione forzata, sono in grado di fornire una potenza di 6,5 MVA;
- n° 1 quadro generale di media tensione con tre sistemi di sbarre a 6 kV (uno per ciascun arrivo dai trasformatori), con le seguenti funzioni:
 - a. protezione secondaria dei trasformatori 27,5/6 kV;
 - b. misure sulle sbarre 1 e 3;
 - c. disgiunzioni della sbarra 1 dalla 2 e della sbarra 2 dalla 3;
 - d. messa a terra, tramite resistenze, del centro stella dei tre trasformatori 27,5/6 kV;
 - e. protezione dei tre collegamenti ad anello verso le cabine secondarie attuata mediante relè direzionali con logica a "filo pilota" (funzionante solo per il primo anello relativo alle cabine A B C e predisposto in termini di collegamenti e junction box per gli altri due anelli);
 - f. protezione primaria dei trasformatori 6/0,4 kV installati;
- n° 2 trasformatori di servizio 6/0,4 kV da 250 kVA;
- n° 1 quadro generale di bassa tensione a 400 V con funzione di protezione secondaria dei due trasformatori 6/0,4 kV e di protezione dei seguenti utilizzatori:
 - a. illuminazione normale, di sicurezza e prese di forza motrice;
 - b. ausiliari a 230 Vca in genere;
 - c. soccorritore di cabina a 110 Vcc;
 - d. ventilatori di raffreddamento dei tre trasformatori da 5-6,5 MVA;
 - e. torre faro 2 posta nelle vicinanze della cabina;

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 01291	to 'ST010	09-0 1	I- R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	15	Di	111
	IMPIANTI ELETTRICI	Pagina	15	DI	111

- n° 1 soccorritore di cabina a 110 Vcc;
- n° 1 impianto per il controllo centralizzato di:
 - a. stati e comandi degli interruttori principali;
 - b. stati e allarmi dai trasformatori e dalle apparecchiature ausiliarie;
 - c. misure di grandezze elettriche di vario genere nelle sezioni a 27,5 kV, in quelle a 6 kV ed infine in quelle a 400 V;
- n° 1 impianto di illuminazione normale e di sicurezza comprendente plafoniere normali ed autoalimentate equipaggiate con lampade fluorescenti;
- n° 1 impianto di forza motrice costituito da prese di servizio e da punti di alimentazione vari.

Nella sala canaline è stata realizzata una complessa rete di vie di posa, differenziata per altezza di installazione e per capacità di contenimento dei conduttori, finalizzata all'alloggiamento separato dei cavi secondo le seguenti categorie:

- media tensione a 27,5 kV;
- media tensione a 6 kV;
- bassa tensione in genere;
- ausiliari e di segnale;
- terra e di equipotenzialità.

La rete della sala canaline risulta altresì integrata con altre due canaline (bassa tensione in genere, ausiliari e segnali) che risalgono in sala quadri a lato dei quadri generali di media tensione a 27,5 ed a 6 kV e sono installate sul tetto di questi ultimi.

La cabina è dotata di un impianto di terra e di equipotenzialità particolarmente complesso ed articolato, obbligatoriamente comune alle due utenze (Molo VII ed APT) per prescrizioni normative, comprendente:

- collettori in sbarre di rame elettrolitico forate;
- collegamenti di terra e di equipotenzialità in cavo isolato di colore giallo/verde;
- collegamenti di terra e di equipotenzialità in corda, piatto e treccia di rame nudo;
- rete collettrice in piatto di rame ed in piatto di acciaio zincato;
- nodi equipotenziali di interfacciamento fra la rete collettrice ed il dispersore di terra;

S COULT Engineering and	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T		09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	16	Di	111
	IMPIANTI ELETTRICI	Pagina	16	DI	111

• dispersore di terra esterno (non rilevabile, presumibilmente comprendente un conduttore nudo interrato ma non chiuso ad anello, integrato da collegamenti ai ferri di armatura per costituire un dispersore "di fatto").

Alcune delle apparecchiature descritte si presentano in uno stato di conservazione buono ed altrettanto può dirsi per la struttura muraria destinata a contenerli.

Altre apparecchiature invece risultano obsolete: rispetto a queste è stato prevista una rivisitazione, spiegata di seguito.

In generale, l'intervento prevede l'adeguamento della potenza contrattuale impegnata che da 1,6 MW passa a 5MW. Inoltre si prevede:

- Smantellamento e smaltimento delle apparecchiature elettriche da dismettere nei locali interessati dall'intervento (quadro MT a 6 kV, nr.1 scomparto MT 27,5 kV e trasformatori MT/MT 27,5 kV/6 kV);
- Adeguamento di quadro di Media tensione a 27,5 kV;
- Realizzazione di nuovo quadro di Media tensione a 6kV per l'alimentazione delle esistenti e nuove utenze sottese alla cabina;
- Installazione di nr. 2 nuovi trasformatori ONAN/ONAF 5/6,5 MVA con isolamento in olio;
- Adeguamento e revisione dell'impianto di terra esistente;
- Collegamento tramite terminali del nuovo quadro MT 6 kV alle linee esistenti di arrivo degli anelli n.1, n.2 e n.3.

Per il quadro a 27,5 kV, denominato QMT27,5kV_SSP, in dettaglio verranno installati:

- Nuovo scomparto di adattamento sbarre;
- Nr. 3 nuovi scomparti protezione trasformatori TR1, TR2 e TR3 da 27,5 / 6 kV;
- Taratura delle protezioni sulla base di nuovo studio di selettività.

I n.3 trasformatori presenti nella Cabina di consegna SSP, ognuno di potenza pari a 5MVA, consentirebbero di utilizzare 15 MVA fino ad un massimo di 19,5 MVA (utilizzando l'ONAF o ventilazione forzata), condizione questa mai verificata.

Allo stato attuale, n.2 trasformatori sono in disuso; ne viene utilizzato solo uno, il Trasformatore n.2, pertanto l'effettiva potenza disponibile è pari a 5 MVA.

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 01291	to 'ST010	09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	17	Di	111
	IMPIANTI ELETTRICI	Pagina	17	DI	111

I nuovi 2 trasformatori MT/MT saranno a perdite ridotte con isolamento in olio dielettrico, raffreddamento naturale e forzato. I trasformatori MT/BT saranno a perdite ridotte con isolamento in resina con raffreddamento naturale.

Il quadro a 6 kV in cabina, denominato QMT6kV_SSP, sarà sostituito intergralmente, recuperando solo le celle di contenimento delle resistenze di atterramento dei centri stella dei trasformatori TR1, TR2 e TR3.

Tutta la parte nuova del quadro prevede in dettaglio, come riportato sugli schemi unifilari:

- Nuovo scomparto Arrivo da trasformatore TR1
- Nuovo scomparto Riserva
- Nuovo scomparto per trasformatore TR7
- Nuovo scomparto partenza Ramo verso cabina Nord1
- Nuovo scomparto per trasformatore TR6
- Nuovo scomparto partenza Ramo verso cabina Nord2
- Nuovo scomparto partenza Ramo verso cabina Sud cavo 2
- Nuovo scomparto partenza Ramo verso cabina Sud cavo 1
- Nuovo scomparto Congiuntore Sbarra
- Nuovo scomparto risalita/misure
- Nuovo scomparto Arrivo da trasformatore TR2
- Nuovo scomparto Riserva
- Nuovo scomparto partenza Ramo verso cabina A
- Nuovo scomparto partenza Ramo verso cabina B
- Nuovo scomparto Congiuntore Sbarra
- Nuovo scomparto risalita/misure
- Nuovo scomparto Arrivo da trasformatore TR3
- Nuovi n.3 scomparti Riserva
- Taratura delle protezioni sulla base di nuovo studio di selettività.

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T		09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	ST01009-01-R02 glio 2015		
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	10	D:	111
	IMPIANTI ELETTRICI	Pagina	Pagina 18	DI	111

3.4 LA CABINA C

La cabina C, che si trova a sud, nei pressi della testata del molo, è organizzata su un piano rialzato al cui interno sono presenti la sala quadri ed i locali trasformatori e su un piano terra comprendente la sala canaline ed il locale disimpegno cavi.

Nella sala quadri e negli adiacenti locali trasformatori sono presenti le seguenti apparecchiature:

- n° 1 quadro generale di media tensione con le seguenti funzioni:
 - a. protezione di arrivo e di partenza anello rispettivamente da cabina SSP e verso cabina C;
 - b. protezione primaria del trasformatore 6/0,4 kV installato;
 - c. protezione linee alimentazione del punto fisso P8 e delle gru S1, S2, T12, T13, T14, T21, T22, T2;
- n° 1 trasformatore 6/0,4 kV da 800 kVA (scollegato);
- n° 1 trasformatore di servizio 6/0,4 kV da 250 kVA;
- n° 1 quadro generale di bassa tensione a 400 V con funzione di protezione secondaria del trasformatore 6/0,4 kV e di protezione dei seguenti utilizzatori:
 - a. illuminazione normale, di sicurezza e prese di forza motrice;
 - b. ausiliari a 230 Vca in genere;
 - c. soccorritore di cabina a 110 Vcc;
 - d. armadio PLC;
 - e. torri faro 24, 25;
 - f. alimentazioni varie relative alle antenne ed all'armadio dell'impianto "LXE";
- n° 1 impianto di rifasamento variabile da 265 kVAR (spento);
- n° 1 soccorritore di cabina a 110 Vcc:
- n° 1 impianto per il controllo centralizzato di:
 - a. stati e comandi degli interruttori principali;
 - b. stati e allarmi dai trasformatori e dalle apparecchiature ausiliarie;
 - c. misure di grandezze elettriche di vario genere nelle sezioni a 6 kV ed in quelle a 400 V;
- n° 1 armadio a rack per il contenimento degli apparati attivi dell'impianto dati a fibre ottiche "LXE";

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T		09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	5T01009-01-R02 Ilio 2015		
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	10	D:	111
	IMPIANTI ELETTRICI	Pagina	Pagina 19	DI	111

- n° 1 impianto di estrazione forzata dell'aria dalla sala quadri;
- n° 1 impianto di illuminazione normale e di sicurezza comprendente plafoniere normali ed autoalimentate equipaggiate con lampade fluorescenti;
- n° 1 impianto di forza motrice costituito da prese di servizio e da punti di alimentazione vari.

Nella sala canaline è stata realizzata una complessa rete di vie di posa, differenziata per altezza di installazione e per capacità di contenimento dei conduttori, finalizzata all'alloggiamento separato dei cavi secondo le seguenti categorie:

- media tensione a 6 kV;
- bassa tensione in genere;
- ausiliari e di segnale;
- terra e di equipotenzialità.

La cabina è dotata di un impianto di terra e di equipotenzialità comprendente:

- collettori in sbarre di rame elettrolitico forate;
- collegamenti di terra e di equipotenzialità in cavo isolato di colore giallo/verde;
- rete collettrice in piatto di acciaio zincato;
- rete equipotenziale annegata nel massetto a pavimento sia del piano rialzato che del piano terra (non rilevabile, presumibilmente comprendente piatto di acciaio zincato deposto "a maglia").

L'intervento in cabina C prevede:

- Smantellamento e smaltimento delle apparecchiature elettriche da dismettere nei locali interessati dall'intervento (quadro MT a 6 kV);
- Sezionamento, scollegamento e rimozione delle linee non più utilizzate dai quadri elettrici compresa la verifica del ripristino della totale funzionalità degli impianti ad essi asserviti;
- Realizzazione di nuovo quadro di Media tensione a tenuta d'arco interno 16 kA per 1s, per l'alimentazione delle esistenti e nuove utenze sottese alla cabina;
- Collegamento tramite terminali del nuovo quadro MT alle linee esistenti di arrivo anello n.1;
- Adequamento e revisione dell'impianto di terra esistente;

S Expiretaing and	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 01291	to 'ST010	09-0°	1-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Domino	20	D:	444
	IMPIANTI ELETTRICI	Pagina	20	Di	111

- Taratura dei sistemi di protezione;
- Adequamento e revisione del Quadro Generale di Bassa Tensione;
- Ristrutturazione struttura muraria e pavimentazione, nonché controllo ed eventuale sostituzione delle strutture di protezione, reti, cancelli, plexiglas e tappeti isolanti;
- N.2 nuove linee in cavo MT 6/10 kV per il collegamento delle nuove gru QSGC;
- Realizzazione di sistema di cavidotti diam.200mm per il contenimento delle nuove linee in cavo a partire dalla terminazione del cunicolo impianti esistente fino all'allacciamento delle nuove utenze in MT.

Il quadro a 6 kV in cabina, denominato QMT6kV_C, prevede in dettaglio, come riportato sugli schemi unifilari:

- Nuovi n.2 scomparti Riserva
- Nuovi n.2 scomparti per punti fissi Gru 24 Rows
- Nuovo scomparto punto fisso P8 Riserva
- Nuovo scomparto punto fisso P5 GRU T23
- Nuovo scomparto punto fisso P7 GRU T21
- Nuovo scomparto partenza Ramo verso cabina B
- Nuovo scomparto punto fisso P1 GRU T14
- Nuovo scomparto Trasformatore TR CT2
- Nuovo scomparto punto fisso P2 GRU T13
- Nuovo scomparto punto fisso P3 GRU T12
- Nuovo scomparto punto fisso S1 GRU S1
- Nuovo scomparto punto fisso P6 GRU T22
- Nuovo scomparto punto fisso S2 GRU S2
- Nuovo scomparto partenza Ramo verso cabina A
- Nuovo scomparto misure
- Taratura delle protezioni sulla base di nuovo studio di selettività.

S S Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T		09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	9TST01009-01-R02 .uglio 2015 21 Di 111		
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	21	D:	111
	IMPIANTI ELETTRICI	rayina	Pagina 21	וט	111

3.5 LA CABINA NORD2

La cabina è organizzata su un piano rialzato al cui interno sono presenti la sala quadri ed i locali trasformatori e su un piano terra comprendente la sala cavi e le fosse di contenimento olio sottostanti ai locali trasformatori.

La cabina provvede soltanto all'alimentazione di5 torri faro e di alcuni utilizzatori di servizio;

ha perso di importanza da quando sono state eliminate le prese "carboniere" el'alimentazione di tutte le gru della banchina Nord è stata integralmente spostata sulla cabina Nord 1.

Nella sala quadri e negli adiacenti locali trasformatori sono presenti le seguenti apparecchiature:

- n° 1 quadro generale di media tensione con le seguenti funzioni:
 - a. protezione di arrivo e di partenza anello rispettivamente da cabina SSP e verso cabina Nord 1;
 - b. misure di sbarra;
 - c. protezione primaria dei trasformatori 6/0,5 kV installati;
 - d. protezione primaria del trasformatore 6/0,4 kV installato;
 - e. celle di riserva varie;
- n° 2 trasformatori 6/0,5 kV da 1.250-1.600 kVA (spenti);
- n° 1 trasformatore di emergenza 500/400 V da 250 kVA (spento);
- n° 1 trasformatore di servizio 6/0,4 kV da 250 kVA;
- n° 1 quadro generale di bassa tensione parzialmente dismesso la cui unica sezione in esercizio è quella a 400 V con funzione di arrivo e sezionamento del trasformatore6/0,4 kV e di protezione dei seguenti utilizzatori:
 - a. illuminazione normale e prese di forza motrice;
 - b. ausiliari a 230 Vca in genere;
 - c. torri faro 7, 8, 9, 10, 11;
 - d. alimentazione antenne impianto LXE su torri faro;
- n° 1 quadro generale di distribuzione a 110 Vcc parzialmente in esercizio e destinato alla protezione dei seguenti utilizzatori:
 - a. ausiliari del quadro generale di media tensione;
 - b. ausiliari del quadro generale di bassa tensione;

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T	to ST010	09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	22	D:	111
	IMPIANTI ELETTRICI	Pagina	22	וט	111

- c. illuminazione di sicurezza;
- n° 1 soccorritore di cabina a 110 Vcc;
- n° 1 impianto (solo predisposto) per il controllo centralizzato di:
 - a. stati e comandi degli interruttori principali;
 - b. stati e allarmi dai trasformatori e dalle apparecchiature ausiliarie;
 - c. misure di grandezze elettriche di vario genere nelle sezioni a 6 kV ed in quelle a 400 V;
- n° 1 impianto di estrazione forzata dell'aria dalla sala quadri;
- n° 1 impianto di illuminazione normale comprendente plafoniere con lampade fluorescenti a "trave luminosa";
- n° 1 impianto di illuminazione di sicurezza comprendente tartarughe con lampade ad incandescenza;
- n° 1 impianto di forza motrice costituito da prese di servizio e da punti di alimentazione vari.

La sala cavi è suddivisa nella zona di media ed in quella di bassa tensione e presenta i conduttori appoggiati direttamente a pavimento; i collegamenti di media tensione che attraversano la zona di bassa tensione risultano installati all'interno di cunicoli prefabbricati in calcestruzzo dotati di lastre di copertura.

L'intervento in cabina Nord2 prevede:

- Ristrutturazione struttura muraria (evidente stato di conservazione carente);
- Smantellamento e smaltimento delle apparecchiature elettriche da dismettere nei locali interessati dall'intervento (quadro MT a 6 kV, n.2 trasformatori 6/0.4 kV e quadro BT);
- Sezionamento, scollegamento e rimozione delle linee non più utilizzate dai quadri elettrici compresa la verifica del ripristino della totale funzionalità degli impianti ad essi asserviti;
- Realizzazione di nuovo quadro di Media tensione a tenuta d'arco interno 16 kA per 1s, per l'alimentazione delle esistenti e nuove utenze sottese alla cabina;
- Collegamento tramite terminali del nuovo quadro MT alle linee esistenti di arrivo anello n.1;
- Installazione di nr. 2 trasformatori MT/BT 6/0.4 kV in resina da 630 kVA;

S Expineraing s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 01291	to ST010	09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	22	Di	111
	IMPIANTI ELETTRICI	Pagilia	23	DI	111

- Realizzazione di nuovo quadro Power Center BT di cabina con due linee di arrivo da trasformatori e congiuntore sbarre, per l'alimentazione delle esistenti e nuove utenze sottese alla cabina;
- Realizzazione di nuovo impianto di illuminazione esterno con nr. 8 torri faro a corona mobile;
- Adequamento e revisione dell'impianto di terra esistente;
- Taratura dei nuovi sistemi di protezione;
- N.3 nuove linee in cavo MT 6/10 kV per il collegamento delle nuove gru RMGC;
- Nuove linee in cavo BT per il collegamento delle nuove torri faro;
- Realizzazione di sistema di cavidotti diam.200mm per il contenimento delle nuove linee in cavo a partire dalla terminazione del cunicolo impianti esistente fino all'allacciamento delle nuove utenze in MT e BT.

Il quadro a 6 kV in cabina, denominato QMT6kV_Nord2, prevede in dettaglio, come riportato sugli schemi unifilari:

- Nuovi n.2 scomparti Riserva
- Nuovi n.2 scomparti per Nuovi Trasformatori TF14 e TF15
- Nuovo scomparto partenza Ramo verso cabina Nord1
- Nuovi n.2 scomparti Disponibile per gru RMGC
- Nuovo scomparto partenza Ramo verso cabina SSP
- Nuovo scomparto misure
- Taratura delle protezioni sulla base di nuovo studio di selettività.

3.6 LE CABINE NORD1, A E B

Gli interventi sulle altre cabine e cioè sulla Nord1, A e B riguarderanno la revisione dei quadri MT ed in particolare la pulizia delle parti interne ed esterne, il lavaggio degli isolatori e delle apparecchiature e di tutta la bulloneria nonchè la pulizia generale degli interruttori in esafluoruro di zolfo (SF6) con asportazione dei polvere e grasso e la sostituzione dei vecchi lubrificanti. Andrà poi effettuata la verifica del funzionamento delle protezioni dirette ed indirette.

C((C Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T	to 'ST010	09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Danina	24	D:	111
	IMPIANTI ELETTRICI	Pagina	24	DI	111

4. CALCOLI DI DIMENSIONAMENTO DELL'IMPIANTO

4.1 DATI ALLA BASE DEL CALCOLO

Tutte le informazioni di seguito riportate, sono state ricavate dagli elaborati as-built del progetto originario e dai documenti messi a disposizione dal Concessionario e dell'Autorità Portuale, redatti in occasione di interventi manutentivi ordinari e straordinari eseguiti sull'impianto.

Laddove i dati non sono risultati disponibili, si è fatto riferimento ai valori tipici, indicati dalla normativa vigente e/o dalla bibliografia, legati ad apparecchiature ed applicazioni analoghe.

Di seguito si riportano i dati utilizzati per i calcoli relativi ai principali elementi della rete.

Rete di alimentazione esterna

L'impianto è alimentato da Distributore locale (ACEGAS), con i dati di seguito riportati:

•	Tensione nominale:	27,5 kV
•	Frequenza nominale:	50 Hz
•	Stato del neutro:	isolato
•	Potenza massima di corto circuito trifase:	360 MVA
•	Corrente di guasto a terra:	$I_{\scriptscriptstyle F}=178\;A$
•	Tempo di eliminazione del guasto:	$t_F = 0.5 \text{ s}$

Cautelativamente nello sviluppo dei calcoli si è inoltre assunto:

Sezione cavo di alimentazione:

Potenza minima di corto circuito:
 100 MVA

150 mmq

S Company of the Control of the Cont	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T	to ST010	09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	25	D:	111
	IMPIANTI ELETTRICI	Pagina	25	DI	111

Trasformatori

Sono indicati di seguito le caratteristiche principali dei trasformatori e lo stato nei vari assetti operativi.

TRASFORMATORE	Tensione V1n/V2n	Potenza	% Tap	Stato di Fatto	PROGETTO
	kV	kVA		Stato	Stato
TR1	27,5/6	5000 (ONAN)	-2,5	Fuori servizio	In esercizio
TR2	27,5/6	5000 (ONAN)	-2,5	In esercizio	In esercizio
TR3	27,5/6	5000 (ONAN)	0	Fuori servizio	Fuori servizio
TR-AT1	6/0,4	250	-2,5	In esercizio	In esercizio
TR-BT1	6/0,4	1000	0	In esercizio	In esercizio
TR-BT2	6/0,4	1000	0	Fuori servizio	In esercizio
TR-BT3	6/0,4	250	0	Fuori servizio	In esercizio
TR4	6/0,4	250	0	In esercizio	In esercizio
TR6	6/0,4	250	0	In esercizio	In esercizio

<u>Cavi</u>

L'alimentazione dei nuovi carichi, quali le gru di banchina e di piazzale, nonchè l'alimentazione delle torri faro, alimentati rispettivamente dalla Cabina C e dalla Cabina Nord2, è stata eseguita mediante nuovi collegamenti. Nei fogli di calcolo allegati (ALLEGATO 3 e ALLEGATO 4) sono indicate le caratteristiche elettriche dei cavi utilizzati nell'impianto.

Carichi di bassa tensione

I carichi di bassa tensione si sono considerati come un motore equivalente rappresentativo del carico assorbito.

Inoltre, si sono tralasciati i motori che, a causa dello schema del circuito (interblocchi) o del processo di lavorazione, non svolgono un servizio contemporaneamente.

S COULT Excitering and	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 01291	to 'ST010	09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	26	Di	111
	IMPIANTI ELETTRICI	Pagina	26	DI	

Come consigliato dalla norma IEC 60909, per i motori equivalenti di bassa tensione è stato assunto il **rapporto X/R uguale a 2,40**.

Per i calcoli associati alla linea di bassa tensione si rimanda al Capitolo 11 della presente relazione

4.2 CONFIGURAZIONI DI CALCOLO

Le configurazioni analizzate nello studio sono le seguenti:

Configurazione di Progetto

La rete è esercita in stato di funzionamento normale e a regime, con un solo trasformatore primario 27,5/6 kV in esercizio e nelle condizioni più sfavorevoli di esercizio (anelli di rete aperti e massima lunghezza dei cavi di alimentazione delle cabine periferiche).

Configurazione Futura

Tale configurazione consente di verificare l'idoneità della rete per futuri sviluppi e prevedibili incrementi della operatività del Terminal. L'assetto considera un incremento della potenza impegnata e l'alimentazione del sistema con due trasformatori primari da 27,5/6 kV.

Oltre alle configurazioni sopra descritte, limitatamente allo sviluppo dei calcoli di corto circuito, sono stati considerati due ulteriori assetti di funzionamento:

Configurazione "CC-MAX"

Tale configurazione consente di verificare che le apparecchiature elettriche siano correttamente dimensionate (quadri ed interruttori) nei riguardi delle correnti di corto circuito massime. L'assetto considera l'alimentazione del sistema con due trasformatori primari da 27,5/6 kV in parallelo, massimo contributo della rete esterna, tutti gli anelli di rete chiusi e massimo numero ipotizzabile di motori in servizio.

Configurazione "CC-MIN"

Tale configurazione consente di determinare le correnti di cortocircuito minime nel sistema. L'assetto considera l'alimentazione del sistema con un solo trasformatore primario da 27,5/6 kV, minimo contributo della rete esterna, tutti gli anelli di rete aperti e nessun motore in servizio.

S COULT Excitering and	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129 1	to ST010	09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	27	Di	111
	IMPIANTI ELETTRICI	Pagina	27	DI	

4.3 PROFILO DI TENSIONE

La tensione nei vari nodi del sistema (profilo di tensione) è stata valutata mediante una *analisi di load-flow* su un modello di rete semplificato che tiene conto dei dati resi disponibili dal Committente.

In dettaglio, il calcolo di load flow determina i valori di potenza attiva e reattiva nei vari rami della rete, le cadute di tensione ai nodi e le perdite totali nelle diverse configurazioni di esercizio.

Il calcolo viene utilizzato per verificare il corretto dimensionamento delle apparecchiature e per verificare che le cadute di tensione siano adeguate ad un corretto esercizio della rete.

Il calcolo dei flussi di potenza della rete è stato effettuato utilizzando il metodo iterativo di Newton Rapson, con accuratezza fissata a 0,0001 p.u..

Come riferimento, il valore della tensione (swing-bus) è stato considerato pari a quello nel nodo di riferimento cioè fisso a 27,5 kV, coincidente con la tensione di fornitura da parte dell'Ente Distributore.

Le caratteristiche dei trasformatori, dei cavi e dei carichi utilizzati sono indicati in dettaglio nell' ALLEGATO 1 e nell'ALLEGATO 2 al presente documento.

Dal calcolo si sono ricavati i risultati riassunti nella tabella che segue:

TRASFORMATORE	Tensione V1n/V2n	Potenza nominale (ONAN)	CONFIGURAZIONE DI PROGETTO Carico		CONFIGURAZIONE FUTURA Carico		Note
	kV	kVA	kVA	%	kVA	kVA %	
TR1	27,5/6	5000	4881	75,1	3994	79,9	Adeguato
TR2	27,5/6	5000	-	-	3994	79,9	Adeguato
TR3	27,5/6	5000	-	-	-	-	Adeguato
TR-AT1	6/0,4	250	168	67,0	168	67,2	Adeguato
TR-BT1	6/0,4	1000	107	10,7	107	10,7	Adeguato
TR-BT2	6/0,4	1000	-	-	98	9,8	Adeguato
TR-BT3	6/0,4	250	-	-	29	11,8	Adeguato
TR4	6/0,4	250	49	19,7	50		
TR6	6/0,4	250	49	19,7	50 19,9		Adeguato

SBARI	SBARRA			CONFIGURAZIONE DI PROGETTO			CONFIGURAZIONE FUTURA Carico totale		
ID	kV	А	Атр	% L	% PF	Атр	% L	% PF	
SSP-27,5 kV	27,5	800	102,5	12,8	86,5	167,7	21	86,2	Idonea
SSP-6kV (A)	6	1250	458,4	36,7	88,7	375,1	30	88	Idonea
SSP-6kV (B)	6	1250	358,2	28,7	88,8	563,9	45,1	88,1	Idonea
A-6kV	6	1250	73,8	5,9	87,4	73,8	5,9	87,4	Idonea
B-6kV	6	1250	358,5	28,7	88,8	564,3	45,1	88,2	Idonea
C-6kV	6	1250	293,5	23,5	89,1	382,6	30,6	88,1	Idonea
SUD-6kV	6	1250	16,2	1,3	89,6	27,3	2,2	89	Idonea
Nord1-6kV	6	1250	23,5	2	87,1	46,6	3,7	87,5	Idonea
Nord2-6kV	6	1250	75,1	6	87,1	103,4	8,3	87,3	Idonea

SBARRA	Vn		AZIONE DI SETTO		IRAZIONE URA	Note
	V	V	% Vd	V	% Vd	
SSP-27,5 kV	27,5	27499	100	27498	100	Accettabile
SSP-6kV (A)	6	5971	99,5	6001	100	Accettabile
SSP-6kV (B)	6	5971	99,5	6001 100		Accettabile
A-6kV	6	5917	98,6	5925	98,7	Accettabile
B-6kV	6	5946	99,1	5962	99,4	Accettabile
C-6kV	6	5922	98,7	5930	98,8	Accettabile
SUD-6kV	6	5970	98,8	5999	99,9	Accettabile
Nord1-6kV	6	5948	99,1	5994	99,9	Accettabile
Nord2-6kV	6	5950	99,2	5972	99,5	Accettabile

I risultati dei calcoli confermano che le apparecchiature elettriche sono correttamente dimensionate in funzione del carico e che le cadute di tensione su tutti i nodi sono contenute all'interno dell'intervallo del +/- 4 % rispetto al valore di Tensione Nominale Vn, in tutte le configurazioni previste nel calcolo.

S C Explorering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T	to ST010	09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	30	Di	111
	IMPIANTI ELETTRICI	Fagilia	30	DI	

5. RESISTORI DI MESSA A TERRA DEL CENTRO STELLA DEI TRASFORMATORI MT/MT – 27,5/6 KV DI CABINA SSP

Prima di illustrare il calcolo effettuato per il dimensionamento dei resistori di messa a terra del centro stella dei trasformatori MT/MT delle cabine coinvolte dall'intervento, è opportuno, seppure brevemente, richiamare in forma propedeutica, alcuni concetti circa lo stato del neutro e la conseguente necessità di atterramento del centro stella dei trasformatori.

In generale, lo stato del neutro non ha alcun effetto ai fini del trasporto di potenza nelle condizioni normali di esercizio ma in presenza di cause dissimmetrizzanti, quali guasti monofase a terra, determina il comportamento dell'intero sistema elettrico.

Poiché il guasto monofase a terra è il guasto più frequente che si verifica sulle reti (dal 70% al 90%) ed è spesso "evolutivo" poiché coinvolge l'intero sistema, si deve dare molta importanza allo stato del neutro soprattutto per le conseguenze che questo ha sui parametri della qualità e della continuità di esercizio. In particolare nel caso di guasti verso terra, coinvolge sempre la rete alla sequenza omopolare.

Lo stato del neutro può essere:

- Neutro isolato:
- Neutro francamente a terra;
- Neutro a terra tramite resistenza;
- Neutro a terra tramite reattanza (bobina di Petersen);
- Neutro a terra tramite impedenza (bobina di Petersen + resistenza).

Lo stato del neutro della rete a 6kV sarà con neutro a terra tramite resistenza.

5.1 RETE MT 6 kV CON NEUTRO A TERRA TRAMITE RESISTENZA

Negli ultimi anni questo sistema ha trovato crescente impiego negli impianti MT sia di distribuzione pubblica che negli impianti industriali.

La realizzazione è alquanto semplice, non è eccessivamente invasiva e nemmeno onerosa.

Il collegamento tra il centro stella dell'avvolgimento MT del trasformatore che alimenta la rete con l'impianto di terra della cabina di trasformazione, è realizzato con un opportuno resistore contenuto in uno scomparto metallico dedicato.

S C C Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m		Documento 0129TST01009-01-R02				
Trieste Marine Terminal	PROGETTO DEFINITIVO	Data Luglio 2015					
	RELAZIONE TECNICA	Danina	24	D:	444		
	IMPIANTI ELETTRICI	Pagina	31	וט	111		

Il valore del resistore R è almeno di un ordine di grandezza maggiore dell'impedenza omopolare dei trasformatori e delle linee, per cui la corrente di guasto monofase a terra viene limitata a una piccola frazione della corrente di cortocircuito trifase, generalmente non superiore al 5-10%.

Nel caso di guasto a terra, la corrente di guasto Ig comprende una componente Ir, che si richiude attraverso la R, ed una componente Ic che si richiude attraverso le capacità Co.

In genere si sceglie il valore della R in modo tale che sia verificata la condizione Ir >> Ic

Una linea affetta da un guasto è pertanto attraversata da una corrente omopolare poco maggiore di Ir/3.

Una linea non affetta da guasto è invece attraversata dalla corrente omopolare dovuta alla sola capacità verso terra della linea stessa; questa corrente è piccola rispetto alla Ic/3 (contributo di tutte le linee) e quindi, a pari valori della resistenza di guasto Rg, risulta più piccola rispetto alla Ir/3.

È possibile scegliere la R in modo tale che la diversità degli ordini di grandezza tra le correnti omopolari, in una linea affetta o non affetta da guasto, sussista anche nelle condizioni più sfavorevoli.

In tali condizioni è possibile realizzare, come si vedrà più avanti, una protezione selettiva contro i guasti a terra nelle reti radiali per mezzo di relè di massima corrente omopolare (ANSI 50N/51N).

Per un sistema con neutro messo a terra mediante resistore, le caratteristiche principali sono:

- La semplicità di esercizio;
- L'intervento selettivo delle protezioni;
- L'autoestinzione dei guasti possibile nel caso di reti di limitate dimensioni;
- L'assenza del fenomeno degli archi a terra intermittenti;
- Le sovratensioni di origine interna di modesto valore;
- Il coinvolgimento della sola linea affetta da guasto, che risulta univocamente interessata da una componente attiva della corrente omopolare dovuta alla resistenza di messa a terra;
- La riduzione della probabilità di evoluzione dei guasti da monofase a polifase.

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02				
Trieste Marine Terminal	PROGETTO DEFINITIVO	Data Luglio 2015				
	RELAZIONE TECNICA	Dagina	22	D:	111	
	IMPIANTI ELETTRICI	Pagina	32	וט	111	

5.2 CARATTERISTICHE DEI SISTEMI DI PROTEZIONE DELLE RETI MT

I sistemi di protezione sono strettamente correlati alle modalità con cui la rete elettrica MT è esercita.

Un sistema di protezione è generalmente costituito da:

- Riduttori di misura e relativa cavetteria;
- Relè di protezione e misura;
- Circuiti di alimentazione ausiliaria;
- Circuiti di comando;
- Dispositivi di interruzione e di manovra.

I requisiti principali che un sistema di protezione deve avere, sono:

- Intervento selettivo (disalimentazione solo del tratto affetto da guasto);
- Affidabilità (certezza dell'intervento del relè quando è chiamato ad intervenire);
- Sicurezza di intervento (anche dopo un lungo periodo di inattività);
- Sensibilità (nei confronti della grandezza controllata);
- Tempestività (nel rispetto dei tempi di intervento imposti).

5.3 RELE' DI PROTEZIONE

Sulle reti MT a 27,5kV e 6kV sono installate protezioni di tipo dedicato con funzioni differenziate a seconda del loro punto di installazione.

Le protezioni che si andranno ad installare sui quadri MT 6kV nelle Cabine SSP, C e NORD2, sono di seguito riportate.

5.3.1 Scomparti partenza trasformatore MT/MT

Questi scomparti sono attrezzati con apparecchiature multifunzione THYTRONIC NT10 che consentono le funzioni ANSI:

- 50/51 massima corrente di fase;
- 50N/51N massima corrente residua;

S COULT Excitering and	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m		Documento 0129TST01009-01-R02			
	PROGETTO DEFINITIVO	Data Lu	Data Luglio 2015			1
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	22	Di	111	1
	IMPIANTI ELETTRICI	Pagina	33	וט	111	

64REF terra ristretta;

• 87T differenziale per trasformatori a due avvolgimenti.

5.3.2 Scomparti partenza trasformatore MT/BT e congiuntore Sbarre

Questi scomparti sono attrezzati con apparecchiature multifunzione THYTRONICNA30che consentono le funzioni ANSI:

50/51 massima corrente di fase;
 50N/51N massima corrente residua;

26 protezione termica da sonde termometriche;

• 59N massima tensione residua;

• 49 immagine termica.

5.3.3 Scomparti misure

Gli scomparti misure sono dotati di apparecchiatura multifunzione THYTRONIC NV10Bche consente le funzioni ANSI:

• 27 minima tensione;

59 massima tensione:

• 59N massima tensione residua.

5.3.4 Scomparti linee Gru, arrivo trafo MT e arrivo/partenza anello

Gli scomparti di protezione per queste linee sono corredate di relè di protezione THYTRONIC NA60 che consentono le funzioni ANSI:

• 50/51 massima corrente di fase;

50N/51N massima corrente residua;

27 minima tensione;

59 massima tensione;

49 immagine termica;

67 massima corrente direzionale;

• 67N massima corrente direzionale di terra.

Nell'Allegato n.9, sono riportate le composizioni di tutti i quadri MT-27,5kV e 6kV esistenti, unitamente alle tipologie dei relè di protezione previsti per ciascun scomparto.

PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII		Documento					
Engineering s.a.l.	ALLUNGAMENTO 100m	0129TST01009-01-R02					
	PROGETTO DEFINITIVO	Data Luglio 2015					
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	24	Di	111		
	IMPIANTI ELETTRICI	rayilla	34	וט	111		

5.4 CALCOLO DELLE CAPACITA' DELLE LINEE IN CAVO A 6kV

Per il corretto dimensionamento dei resistori di atterramento del centro stella di ciascun trasformatore 27,5/6 kVin Cabina SPP, è di fondamentale importanza il calcolo delle capacità equivalenti di tutte le linee a 6kV afferenti a ciascuna cabina.

La capacità equivalente dei trasformatori è considerata trascurabile.

Negli Allegati 10-11-12-13, sono riportati i calcoli effettuati rispetto alle diverse tipologie delle linee e delle gru alimentate, la sezione dei cavi, la lunghezza di ciascuna linea, la capacità di ciascuna fase, nonché la capacità della singola linea.

Nell'elenco delle gru sono comprese, ovviamente, tutte le gru di nuova installazione alimentate dalle Cabine C e NORD2.

Le tipologie di cavo e formazioni sono:

- Tipo RG7H1OZR 3x1x50mmq;
- Tipo RG7H1OZR 3x120mmq;
- Tipo RG7H1OZR 3x240mmq;
- Tipo RG7H1OZR 3x300mmg.

Dalle caratteristiche tecniche dei cavi si evincono le seguenti capacità per fase verso terra:

- Per cavi S=50mmq C= 0,26μF/km;
- Per cavi S=120mmq $C=0,37\mu F/km$.
- Per cavi S=240mmq $C=0,49\mu F/km$.
- Per cavi S=120mmq C= 0,54μF/km.

Nelle succitate tabelle sono indicate, per ciascuna tratto, la lunghezza della linea di alimentazione (computata dallo scomparto di pertinenza del quadro MT), nonché la lunghezza totale della linea.

La capacità totale di ciascuna linea è stata calcolata considerando le singole capacità di fase, tutte in parallelo tra loro, e la lunghezza totale effettiva della linea.

Le capacità totali delle linee a 6kV di ciascuna cabina, ai fini di calcolo, delle componenti omopolari risultano tutte in parallelo e , quindi, pari alla somma aritmetica di tutte le capacità delle linee in cavo.

31113	PORTO DI TRIFETTE TERMINAL CONTAINER MOLO VII	Documento						
Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	0129TST	0129TST01009-01-R02					
	PROGETTO DEFINITIVO	Data Lugli	Data Luglio 2015					
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	25	Di	111			
	IMPIANTI ELETTRICI	rayılla	35	Di	111			

In tal modo si sono ottenuti i seguenti valori della capacità equivalente delle linee alimentate a 6 kV dalle cabine:

Cabina SSP Ceq= 10,950μF;
 Cabina NORD2 Ceq= 1,760μF;
 Cabina C Ceq = 5,814μF;
 Cabine A, B e NORD1 Ceq = 4,498 μF.

5.5 DIMENSIONAMENTO DEI RESISTORI DI MESSA A TERRA DEL CENTRO STELLA, LATO 6kV, DEI TRASFORMATORI MT/MT 27,5/6kV

Di seguito sono indicati i dimensionamenti dei resistori di messa a terra del centro stella dei trasformatori abbassatori 27,5/6kV in cabina SSP.

5.5.1 Dimensionamento dei resistori monofasi della CABINA SSP

La Cabina SSP, lato 6kV, alimenterà le linee in cavo dedicate:

- Anello 1 (Nord1 e Nord2) con linee in cavo dedicate del tipo RG7H1OZR 3x240mmq.
 Sviluppo totale 2.010 mt.
- Anello 2 (Sud) con linee in cavo dedicate del tipo RG7H1OZR 3x240mmq.
 Sviluppo totale 573 mt.
- Anello 3 (A B- C) con linee in cavo dedicate del tipo RG7H1OZR 2// 3x300mmq.
 Sviluppo totale 2.197 mt.

La rete di distribuzione a 6kV alimenterà inoltre:

• N° 1nuova gru da 24 ROWS con linee in cavo dedicate del tipo RG7H1OZR – 3x1x120mmq.

Sviluppo totale 601 mt.

• N° 7 gru di banchina con linee in cavo dedicate del tipo RG7H1OZR – 3x1x95 mmq e 3x1x50mmq.

Sviluppo totale 5.004 mt.

• N° 4 nuove gru di piazzale con linee in cavo dedicate del tipo RG7H1OZR – 3x1x50mmq.

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02			I-R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	26	D:	111
	IMPIANTI ELETTRICI	Pagina 36	30	DI	111

Sviluppo totale 2.257 mt.

- N° 8 gru di piazzale (RMGC) con linee in cavo dedicate del tipo RG7H1OZR 3x1x50mmq.
 Sviluppo totale 5.549 mt.
- N° 3 gru di ferrovia con linee in cavo dedicate del tipo RG7H1OZR 3x50mmq.
 Sviluppo totale 1.586 mt.

Negli allegati succitati, sono indicate, per ciascuna linea, la lunghezza della linea di alimentazione (computata dallo scomparto di pertinenza del quadro MT – 6kV fino alla gru), nonché la lunghezza totale della linea che tiene conto anche della lunghezza del cavo avvolto sul tamburo della gru.

Sono state considerate le seguenti lunghezze di cavo avvolto sul tamburo:

Per le gru di banchina L=450mt;

• Per le gru di piazzale L=350mt.

La capacità totale equivalente verso terra risulta essere pari a:

 $Ceq = 23,02 \mu F$

La reattanza capacitiva equivalente verso terra Xc sarà:

 $Xc = 1/\omega C = 1/2\pi f \cdot 21,49\mu F = 138,3 \text{ ohm +/-10}\%$

La tensione sul resistore sarà:

 $Vr = 6000/\sqrt{3} \text{ Volt} = 3468 \text{ Volt}$

La corrente capacitiva totale sarà:

Ic = Vr/Xc = 3468/138,3 = 25,07 A

Per quanto detto, nel resistore dovrà circolare per 10 secondi una corrente pari a 5 volte quella capacitiva, cioè:

 $Ir = 5Ic = 5 \cdot 25,07 = 125,4A$

11111 January	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Documento			
Engineering s.n.l.	ALLUNGAMENTO 100m	0129TST01009-01-R02		I-R02	
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	27	Di	111
	IMPIANTI ELETTRICI	ragilla	37	DI	

Di conseguenza il valore della resistenza del resistore sarà 5 volte più piccolo di quello della reattanza capacitiva di terra Xc, cioè:

$$R = Xc/5 = 138,3/5 = 27,7 \text{ ohm +/- } 10\%$$

Quindi il resistore avrà le seguenti caratteristiche tecniche:

Valore ohmico a 20°C	27,7 ohm +/- 10%;
Corrente di terra iniziale	125,4 A;
Durata della corrente di terra	10 sec;
Materiale della resistenza	AISI 430;
Coefficiente della temperatura	0,0013 [1/°C]
Natura del materiale	magnetico;
Sovratemperatura massima del punto più caldo	≤ 450° C;
Classe di isolamento	Vn = 7,2 kV;
Tensione di prova per 60 sec	20 kV.
	Corrente di terra iniziale Durata della corrente di terra Materiale della resistenza Coefficiente della temperatura Natura del materiale Sovratemperatura massima del punto più caldo Classe di isolamento

Il resistore dovrà essere contenuto all'interno della cella resistore esistente, previa rimozione del resistore esistente e adattamento/manutenzione delle apparecchiature in essa comprese, con particolare riferimento al sezionatore monofase di linea, al trasformatore toroidale e al relè di protezione.

211113	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Documento			
Engineering s.a.l.	ALLUNGAMENTO 100m	01291	0129TST01009-01-R02		
	PROGETTO DEFINITIVO	Data Lu	Data Luglio 2015		
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	20	D:	111
	IMPIANTI ELETTRICI	rayına	Pagina 38	Di	111

6. DIMENSIONAMENTO DELLE CONDUTTURE ELETTRICHE

La progettazione, l'esecuzione, le verifiche e l'esercizio delle linee in cavo sono guidate dalle istruzioni contenute nelle norme CEI 11-17, CEI 64-8, CEI 20-11, CEI 20-13, CEI 20-21 e CEI 20-38.

La scelta dei cavi è stata fatta sulla base dei valori di tensione nominale e massima del sistema elettrico e delle tensioni di isolamento dei cavi stabilite nelle norme di riferimento.

La scelta dei cavi, in relazione alle tensioni MT, è stata effettuata in base al tipo di messa a terra del neutro e alla massima durata di funzionamento con una fase a terra.

La scelta dei cavi in relazione alle correnti tiene invece conto della portata dei cavi, della massima caduta di tensione ammissibile e della verifica della relazione per il calcolo della massima corrente ammissibile sul cavo.

$$S \ge \frac{\sqrt{I c^2 c \cdot t}}{K}$$

Sono stati scelti, di conseguenza, cavi tripolari in EPR tipo RG7H1OZR 6/10 kV con conduttori in rame da 120 mmq dai quadri di media tensione a 6kV (cabina C) alle nuova gru in banchina da 24 rows e da 50 mmq dai quadri di media tensione a 6kV (cabina C e Nord2) alle nuove gru di piazzale. Questa stessa tipologia di cavo verrà utilizzata per lo spostamento del Punto Fisso P1, cioè l'alimentazione della gru di piazzale già alimentata dalla cabina C.

Per un corretto dimensionamento delle condutture e per la scelta e il coordinamento degli apparecchi di manovra e protezione si è valutata la "corrente d'impiego" (Ib) cioè la quantità di corrente che la linea è destinata a trasportare per soddisfare le necessità dei carichi.

Nel determinare la corrente d'impiego si sono considerati:

- la potenza del carico in W [P];
- il fattore di potenza del carico [cos]
- la tensione nominale del sistema [V];
- il coefficiente di utilizzazione [Ku].

La corrente di impiego circolante è quindi data da:

$$Ib = \frac{Ku \cdot P}{c \cdot V \cdot \cos \phi}$$

S CONTRACTOR S. A.L.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m		Documento 0129TST01009-01-R02		
	PROGETTO DEFINITIVO	Data Lu	Data Luglio 2015		
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	20	D:	111
	IMPIANTI ELETTRICI	Pagina	Pagina 39	Di	

 $c = \sqrt{3}$ per i sistemi trifasi

c = 1 per sistemi monofase

Una volta ricavata la corrente d'impiego lb si è determinata la sezione dal punto di vista termico verificando la relazione :

 $Ib \leq Iz$

dove Iz è la portata della conduttura.

In effetti tale valore di portata risulta influenzato, oltre dalla sezione e isolante del cavo, da altri fattori quali:

- a) tipo di posa del cavo,
- b) temperatura ambiente,
- c) presenza di altri conduttori nelle vicinanze.

Le portate nominali dei cavi sono quelle ricavate dalle tabelle CEI-UNEL, e tengono conto del valore di massima temperatura ambiente di progetto e delle effettive condizioni di posa (tipo di condotti portacavi e vicinanza tra cavi diversi).

Il dimensionamento delle condutture tiene conto anche del:

- valore della caduta di tensione;
- coordinamento tra le caratteristiche della conduttura e quelle del relativo dispositivo di protezione, in termine di correnti di cortocircuito massime e minime e di energia specifica passante, in tutte le configurazioni di esercizio previste per la rete.

La protezione contro il sovraccarico e contro il corto circuito in bassa tensione è garantita dall'utilizzo di interruttori magnetotermici.

Come stabilito dalla norme, la protezione dal sovraccarico è garantita con il soddisfacimento delle due condizioni :

 $lb \le ln \le lz$

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02			-R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	40	Di	111
	IMPIANTI ELETTRICI	Pagina 40	ы	111	

If $\leq 1,30 \, \text{lz}$

dove lz ed lb sono rispettivamente la portata e la corrente di impiego della linea protetta, In è la corrente nominale del dispositivo di protezione e If è la corrente che assicura l'effettivo funzionamento del dispositivo di protezione entro il tempo convenzionale in condizioni definite.

La protezione dai corto circuiti è garantita dalla verifica che ogni dispositivo di protezione contro i corto circuiti risponda alle due seguenti condizioni :

- il potere di interruzione non deve essere inferiore alla corrente di corto-circuito presunta nel punto di installazione;
- deve essere in grado di interrompere il corto circuito in un tempo tale da evitare al conduttore il funzionamento a temperature elevate, ossia verificando la relazione:

$$(I^2t) \leq K^2 \cdot S^2$$

con il valore di K scelto a seconda del tipo di cavo come indicato dalla normativa.

Si è mantenuta una caduta di tensione tra l'origine dell'impianto e un qualsiasi altro punto non superiore al 4 % della tensione nominale dell'impianto.

La caduta di tensione percentuale nelle reali condizioni di esercizio è stata calcolata applicando le relazione semplificata, valida per le linee trifasi:

$$\Delta V\% = \frac{1 \quad L7(R\,d3\,\,\phi\text{o+}\,X\,\text{s}\quad\dot{\phi})}{V}$$

C(((C Encistening s.n.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m		Documento 0129TST01009-01-R02			
and wrong the	PROGETTO DEFINITIVO	Data Luglio 2015				
Trieste Marine Terminal	RELAZIONE TECNICA	Danina	44	D:	111	
	IMPIANTI ELETTRICI	Pagina	41	DI	111	

7. CALCOLO DELLE CORRENTI DI CORTO CIRCUITO

I calcoli di corto circuito hanno permesso di individuare le condizioni più gravose per i circuiti protetti e di verificare che le apparecchiature elettriche fossero correttamente dimensionate; in particolare, lo scopo del calcolo è stata la determinazione delle correnti di corto circuito massime e minime nei vari nodi dell'impianto. Queste informazioni sono risultate necessarie per la verifica delle caratteristiche dei componenti elettrici (quadri, interruttori e cavi) e per la progettazione di un adequato sistema di protezione (scelta delle unità di protezione e regolazione).

In accordo alla Norma IEC 60909, si sono adottate le seguenti semplificazioni:

- per tutta la durata del corto circuito si suppone che il tipo di guasto non cambi;
- le prese dei variatori di tensione dei trasformatori si considerano nella posizione centrale;
- le resistenze d'arco non sono messe in conto;
- sono trascurate le capacità delle linee e le ammettenze derivate rappresentative dei carichi statici, tranne quelle alla sequenza omopolare.

Il calcolo delle correnti di corto circuito è stato condotto tramite il metodo dei componenti simmetrici: i circuiti di sequenza diretta, inversa e omopolare di ciascun elemento della rete, collegati tra di loro secondo la configurazione della rete stessa, ne determinano le reti di sequenza.

In particolare, per tenere conto di quelle che possono essere le più gravose condizioni di carico preesistenti, la Norma assegna alla tensione del generatore equivalente un fattore moltiplicativo C, detto fattore di tensione.

Il valore di C, poiché dipende dal peggiore valore di tensione che in condizioni di normale funzionamento può determinare la corrente di corto circuito massima o minima, è diverso a seconda del livello di tensione della rete (Tabella I, CEI 11-25).

Per il livello di media tensione si assumono i due fattori:

Cmax = 1,10

Cmin = 1,00

Si sono calcolate le correnti di corto circuito simmetriche e dissimmetriche nei punti significativi a valle del punto di consegna seguendo il metodo di calcolo proposto dalla norma CEI 11.25 e utilizzando le relazioni:

$$I_{k}^{"} = \frac{c \cdot U_{n}}{\sqrt{3} \cdot Z_{k}^{(1)}} \qquad I_{k1}^{"} = \frac{c \cdot U_{n} \cdot \sqrt{3}}{\left| Z_{k}^{(1)} + Z_{k}^{(2)} + Z_{k}^{(o)} \right|} \qquad I_{k2}^{"} = \frac{c \cdot U_{n}}{\left| Z_{k}^{(1)} + Z_{k}^{(2)} \right|}$$

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m		0129TST01009-01-R02		
	PROGETTO DEFINITIVO	Data Lu	Data Luglio 2015		
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	42	Di	111
	IMPIANTI ELETTRICI	Pagina	42	DI	111

valide rispettivamente per il corto circuito trifase, il corto circuito monofase e il corto circuito bifase isolato dove:

Zk(1) = impedenza di cortocircuito di sequenza diretta

Zk(2) = impedenza di cortocircuito di sequenza inversa

Zk(o) = impedenza di cortocircuito di sequenza omopolare

Un = tensione nominale

c = fattore di tensione

I calcoli sono riportati in dettaglio nell'ALLEGATO 5 e nell'ALLEGATO 6.

Oltre ad aver individuato le correnti di corto circuito nelle configurazioni analizzate per lo studio del profilo delle tensioni (Configurazione di Progetto e Configurazione Futura), sono state determinate le correnti di corto circuito massime e minime, considerando la Configurazione CCMax e la Configurazione CCMin.

Per il calcolo delle correnti di corto circuito massimo, si è analizzata la seguente configurazione:

- Massimo contributo della rete esterna;
- Rete MT a 6 kV con anelli chiusi;
- Tutti i motori in servizio.

Per il calcolo delle correnti di corto circuito minimo, il cui studio è utile per la taratura delle protezioni, si è analizzata la seguente configurazione:

- Minimo contributo della rete esterna;
- Rete MT a 6 kV con anelli aperti;
- Motori fuori servizio.

Dai risultati del calcolo, riassunti in tabella, ma meglio specificati all'interno dell'ALLEGATO 7 e dell'ALLEGATO 8, si evince che le sollecitazioni massime ammissibili su quadri ed interruttori non vengono superate in nessun nodo della rete; si riportano di seguito i valori delle correnti di corto circuito, nel rispetto della simbologia indicata nel par. 4.1 della Norma CEI 11.25 nei punti più significativi e critici della rete.

S S Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02			
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	42	D:	111
	IMPIANTI ELETTRICI	Pagina 43	DI	111	

Bus	Tensione	Corto-circuito trifase				
ID	kV	l"k	ip	lk		
QMT27,5_SSP	27,5	7,9 kA	19,3 kA	7,6 kA		
QMT6KV_SSP	6,00	13,5 kA	33,2 kA	11,9 kA		
QMT6KV_C	6,00	12,0 kA	27,6 kA	10,7 kA		
QMT6KV_NORD2	6,00	11,4 kA	24,8 kA	10,0 kA		
QMT6KV_A	6,00	12,6 kA	29,5 kA	11,1 kA		
QMT6KV_B	6,00	12,3 kA	28,5 kA	10,9 kA		
QMT6KV_NORD1	6,00	11,6 kA	25,8 kA	10,3 kA		
QMT6KV_SUD	6,00	12,7 kA	29,9 kA	11,3 kA		

Pertanto, le apparecchiature utilizzate sono risultate in grado di sopportare e interrompere le correnti di cortocircuito riportate nella tabella di riepilogo.

S S Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02			-R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	44	D:	111
	IMPIANTI ELETTRICI	Pagina 44	וט	111	

8. CAVI E VIE CAVI

Le vie cavi per la distribuzione in banchina sono state realizzate mediante cavidotti interrati. Verranno infilati nuovi cavi per alimentare le linee di progetto,ove previsto, all'interno di nuovi cunicoli.

I cavidotti conterranno le sole condutture elettriche in media tensione (6 kV) e la fibra ottica.

Partendo dalla cabina C si avranno:

- n.1 tubo in HDPE> 750N (1250N) Φ 200, per il passaggio della linea a 6kV di alimentazione della nuova gru di banchina S8– cavi RG7H1OZR 3x120mmq;
- n.1 tubo in HDPE> 750N (1250N)Φ200, disponibile per l'alimentazione di una seconda gru di banchina da 24 rows (S9);
- n.1 tubo in HDPE> 750N(1250N) Φ 160 per l'alimentazione del punto fisso P1 della gru di piazzale esistente;
- n. 2 tubi in HDPE > 750N (1250N) Φ 50, per il passaggio della fibra ottica sulle gru.

Per quanto riguarda invece l'alimentazione dei nuovi punti fissi per le nuove gru di piazzale, verrà interessata la cabina Nord2 rispetto alla quale si avranno in partenza:

- n.4 tubi in HDPE > 750N (1250N) Φ 160, per il passaggio della linea a 6kV verso i punti fissi P09, P10, P11 e P12 delle RMGC cavi RG7H1R 6/10 kV 3x1x50mmq;
- n. 2 tubi in HDPE > 750N (1250N) Φ 50, per il passaggio della fibra ottica sulle gru.

Sempre partendo dalla cabina Nord2, per l'alimentazione in bassa tensione delle torri faro installate sul nuovo tratto e per il futuro ampliamento di ulteriori 100m, si avranno in partenza:

- n.3 tubi in HDPE > 750N (1250N) Φ 110, per la linea bt di alimentazione delle torri faro TF26 TF27 TF28 cavi FG7OR 3x50mmg;
- n.3 tubi in HDPE > 750N (1250N) Φ 110, disponibili per la linea bt di alimentazione delle torri faro TF29 TF30 TF31;
- n.1 tubi in HDPE > 750N (1250N) Φ 110, per il passaggio della linea bt per l'alimentazione della torre faro TF09 esistente cavi FG7OR 3x50mmq.

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R		I-R02	
	PROGETTO DEFINITIVO	Data Luglio 2015			
(Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	ΔE	Di	111
	IMPIANTI ELETTRICI	rayılla	Pagina 45	וט	111

9. STUDIO DI SELETTIVITA'

Lo studio di selettività ha come obiettivo la definizione delle regolazioni relative alle protezioni installate su tutta la rete distribuita sul Molo.

Lo studio risulta suddiviso in più parti e cioè:

- Un documento generale di tutto l'impianto a 27,5 kV e 6 kV e a 400/230 V, limitatamente agli interruttori generali dei trasformatori MT/BT;
- più documenti singoli di cabina, relativi alle protezioni appartenenti ad ogni singola Cabina

Il documento generale deve contenere:

La descrizione del sistema elettrico

- Modalità di funzionamento dell'impianto e delle condizioni di esercizio;
- Gestione del neutro e del sistema di messa a terra;
- Correnti di corto circuito;
- Caratteristiche principali delle apparecchiature elettriche.

Le caratteristiche del sistema di Protezione

- Criteri di coordinamento delle protezioni;
- Caratteristiche delle protezioni esistenti

Ogni singolo documento di cabina deve contenere:

Schemi unifilari con indicazione delle protezioni esistenti, il codice numerico della funzione di protezione (ANSI) ed le altre informazione di pertinenza, quali caratteristiche TA-TV, cavi, ecc.

Curve di taratura, ossia grafici contenenti le curve di intervento delle protezioni di fase e di terra, dei fusibili e degli interruttori di bassa tensione (limitatamente agli interruttori generali dei trasformatori) e altre curve quali quelle di inserzione dei trasformatori e di avviamento motori.

Tabelle di regolazione per ciascuna protezione in cui andranno la posizione sul quadro di pertinenza, le regolazioni da implementare e le curve di selettività.

Prima di effettuare lo studio di selettività, si dovranno richiedere all'ENEL i dati aggiornati circa:

- Lo stato del neutro lato 27,5 kV;
- La corrente di cortocircuito simmetrica trifase;
- La corrente di guasto monofase a terra lato 27,5 kV.

S S Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T		09-01	- R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	46	D:	111
	IMPIANTI ELETTRICI	Pagina	Pagina 46	DI	111

10. COORDINAMENTO DELLE PROTEZIONI

10.1 Introduzione

Le protezioni hanno lo scopo primario di impedire che il corretto funzionamento e integrità del circuito protetto possano essere compromessi da situazioni anomale quali le correnti di sovraccarico e di corto circuito e che di conseguenza possano crearsi situazioni di pericolo anche per le persone e le cose.

Nell'impianto in questione, esistono diversi livelli di circuiti, per cui è necessario evitare che numerosi circuiti vengano interrotti in seguito al difetto di uno di loro per sovraccarico o cortocircuito. In particolare, la distribuzione viene effettuata tramite dispositivi di protezione, sezionamento e comando installati in serie tra di loro per una migliore gestione dell'energia.

- Il cavo che collega il punto di prelievo dell'energia elettrica quadro MT è di proprietà dell'utente, ma è protetto dai dispositivi di protezione del distributore.
- Nel quadro MT dell'utente è installato un sezionatore e, a valle di questo, l'interruttore generale con le protezioni di sovracorrente di seguito indicate, in modo da garantire la necessaria selettività con le protezioni di linea del Distributore.

C((C Excistering s.n.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-		I-R02	
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Danina	47	D:	111
	IMPIANTI ELETTRICI	Pagina	Pagina 47	Di 111	111

10.2 Sistema di protezione associato al Dispositivo Generale

Il Sistema di Protezione Generale (SPG) è costituito da opportuni TA di fase, TO e TV che forniscono grandezze ridotte a un relè (protezione generale PG) che comprende:

- Una protezione di massima corrente sino a quattro soglie;
- Una protezione direzionale di terra a due soglie e massima corrente omopolare sino a quattro soglie.
- Una protezione di minima tensione a due soglie;
- Protezioni di massima e minima frequenza, di massima tensione e massima potenza attiva direzionale.

I valori di regolazione della protezione generale sono impostati sulla base di quanto comunicato dal Distributore. Il sistema di protezione sarà per quanto possibile selettivo con l'ente erogatore.

Le protezioni delle linee di alimentazione sono distinguibili in:

- Protezioni dalle sovracorrenti;
- Protezioni contro i guasti a terra.

Protezioni dalle sovracorrenti

Secondo norma CEI 0-16, l'SPG deve essere costituito da opportuni TA e TV che forniscono grandezze ridotte a un relè di protezione generale (PG) che comprende la protezione di massima corrente di fase almeno bipolare a tre soglie:

- I> (51) soglia a tempo dipendente, destinata alla protezione contro sovraccarico;
- l>> (51) soglia a tempo indipendente, con ritardo intenzionale, che deve garantire l'estinzione del quasto entro 500ms;
- l>>> (50) soglia a tempo indipendente, senza ritardo intenzionale, che deve garantire l'estinzione del guasto entro 120 ms.

I valori di regolazione impostati circa la protezione di massima corrente di fase non possono superare quelli di seguito riportati, comunicati dal Distributore locale con lettera ACEGAS APS prot. 51480 datata 30/06/2010:

- Prima soglia l>, con attivazione opzionale,
- Seconda soglia (I>>): valore 250 A e tempo di eliminazione del guasto di 500 ms,

S Evaluation and	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	0129TST01009-01		I-R02	
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	40	D:	111
	IMPIANTI ELETTRICI	Pagina	48	Di	111

- Terza soglia (I>>>): valore 600 A e tempo di eliminazione del guasto di 120 ms.
- Per tempo di estinzione della sovracorrente si intende la somma del tempo di intervento della protezione, del tempo di apertura dell'interruttore sino alla completa estinzione della corrente.

Protezioni contro i guasti a terra

Il calcolo del contributo alla corrente di guasto monofase a terra della rete MT a 27,5 kV è trascurabile considerando con la formula empirica indicata dalla norma CEI 0-16:

$$I_F = U \cdot (0.003 \cdot L_1 + 0.2 \cdot L_2)$$

Dove

U = tensione nominale tra le fasi in kV;

L1 = somma delle lunghezze in km delle linee aeree;

L2 = somma delle lunghezze in km delle linee in cavo, ordinariamente collegate metallicamente fra loro durante il funzionamento della rete in condizioni normali.

I valori di regolazione minimi della protezione di massima corrente di terra comunicati dal Distributore sono di seguito riportati:

- Seconda soglia (lo>>): valore inferiore a 249 A e tempo di estinzione del guasto di 170 ms.
- I valori di regolazione della protezione direzionale di terra sono di seguito riportati:
- Prima soglia (67N-S1 selezione guasti a terra in regime di neutro isolato): Io = 2 A, Uo = 2 V, settore di intervento tra 60° e 120° e tempo di eliminazione del guasto di 170 ms;
- Seconda soglia (67N-S2 selezione guasti a terra in regime di neutro compensato): lo = 2 A, Uo = 5 V, settore di intervento tra 60° e 250° e tempo di eliminazione del guasto di 450 ms.

Regolazioni del sistema di protezione MT

Le caratteristiche di intervento del relè di protezione accoppiato all'interruttore generale dovranno, per quanto possibile, soddisfare le seguenti condizioni:

- essere selettive con le protezioni del trasformatore;
- non intervenire all'atto della messa in tensione dei trasformatori dovuta alla richiusura dell'alimentazione del Distributore;

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01		I-R02	
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	40	D:	111
	IMPIANTI ELETTRICI	Pagina	Pagina 49	Di 1 1	

soddisfare le prescrizioni della norma CEI 0-16.

Dalle impostazioni effettuate è possibile affermare che la portata del cavo è superiore alla prima soglia di corrente, inoltre l'energia massima lasciata passare in caso di corto circuito è inferiore all'energia sopportabile dal cavo: pertanto il cavo è idoneo a sopportare la corrente di corto circuito quand'anche si manifestasse al massimo ipotizzabile.

Le regolazioni dei relè sono basate sui dati disponibili delle apparecchiature e delle caratteristiche delle rete allo stato attuale. Se durante la fase di commissioning dell'impianto, nuovi dati, più aggiornati o differenti fossero disponibili, questo documento dovrà essere revisionato.

10.3 Coordinamento selettivo delle protezioni

L'obiettivo primario della selettività è quello di separare dalla rete elettrica le sole partenze soggette al guasto ed ottenere il massimo livello di continuità di esercizio.

Le principale perturbazioni possono essere dovute a:

- Sovraccarico:
- Cortocircuito;
- Guasti verso terra.

La selettività è assicurata verificando sulle utenze primarie che il tempo di non intervento del dispositivo a monte sia superiore al tempo massimo di interruzione del dispositivo a valle per qualunque corrente di sovraccarico.

La selettività in cortocircuito è realizzata principalmente con le seguenti tecniche:

- Selettività amperometrica;
- Selettività cronometrica.

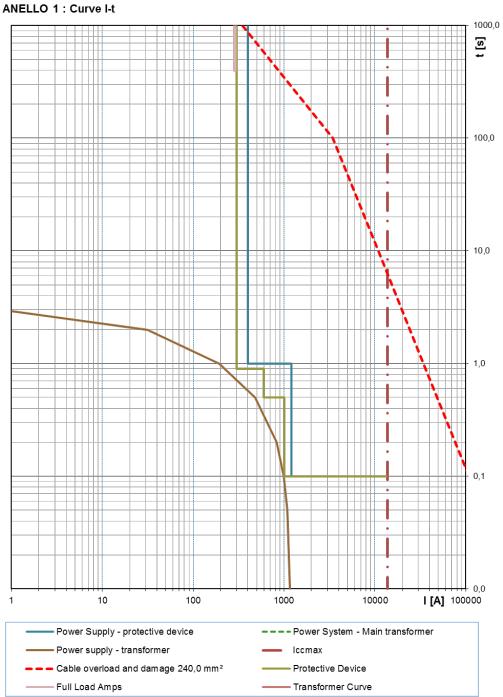
La tecnica di selettività amperometrica consiste nello distanziare le soglie di intervento istantaneo o di corto ritardo degli interruttori installati in serie. Il coordinamento è parzialmente selettivo, in quanto non è possibile aprire solo e soltanto l'interruttore subito a monte del guasto per tutte le correnti di guasto.

La tecnica di selettività cronometrica consiste nel differenziare i tempi di intervento dei dispositivi di protezione, verificando, in particolare, che il tempo totale di interruzione dell'interruttore posto a valle sia inferiore al tempo di ritardo allo sgancio del dispositivo posto a monte.

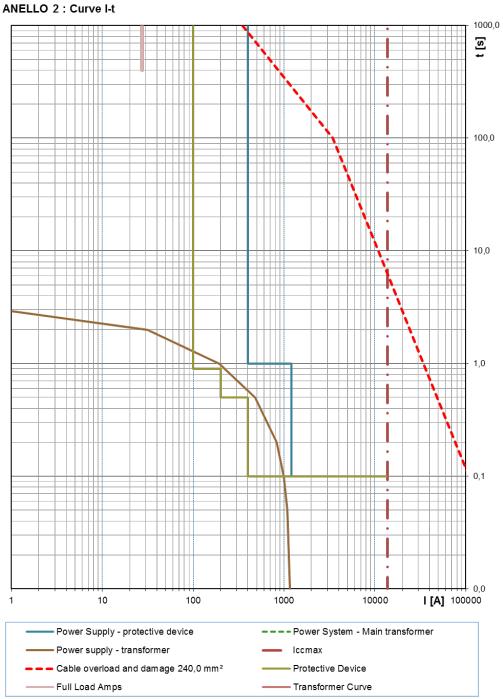
Inoltre, la selettività in questo impianto è di tipo logico, per cui non è rappresentabile solo disponendo delle curve di taratura dei relè.

S CONTRACTOR S. A.L.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01		I-R02	
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	F0	Di	111
	IMPIANTI ELETTRICI	Pagina	Pagina 50	וט וו	

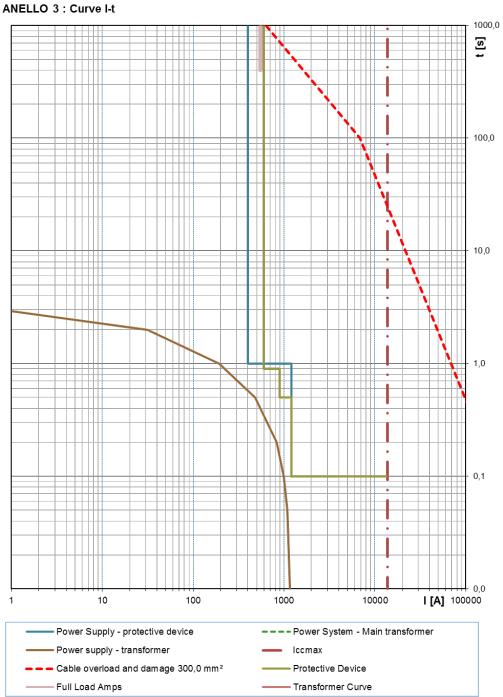

Si evidenzia che costituisce onere dell'appaltatore fornire uno studio dettaglio della selettività, coordinamento e taratura protezioni. La selettività sarà assicurata verificando sulle utenze primarie che il tempo di non intervento del dispositivo a monte sia superiore al tempo massimo di interruzione del dispositivo a valle per qualunque corrente di sovraccarico. Lo studio dovrà in considerazione tutte le protezioni delle utenze dell'impianto media tensione dei Quadri MT. Per le protezioni installate nella parte di impianto bassa tensione (400V), lo studio si limiterà a quelle degli interruttori generali, lato secondario trasformatori, di distribuzione.


I diagrammi di seguito rappresentati illustrano le curve d'intervento dei principali relè presenti in cabina di consegna SSP.

A titolo esemplificativo, sono rappresentate di seguito le curve appartenenti ai relè di protezione degli anelli della rete e ai relè d'arrivo dai trasformatori primari 27,5/6 kV da 5000 kVA lato 6 kVA.


Inoltre si possono vedere la curva d'inserzione del trasformatore da 5000 kVA e la curva di tenuta del cavo. Oltre a queste curve si trova indicato il limite rappresentato dalla corrente di corto circuito.

S C C Expineering s.n.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T		09-01	I-R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	F1	Di	111
	IMPIANTI ELETTRICI	Pagina	Pagina 51	DI	111



\$1111 Jan	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Documento)		
Engineering s.r.l.	ALLUNGAMENTO 100m	0129TS	ST010	09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	52	Di	111
	IMPIANTI ELETTRICI	Pagina 52	וט	111	

31111	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Documen	to		
Engineering s.n.l.	ALLUNGAMENTO 100m	01291	ST010	09-01	1-R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	F2	Di	111
	IMPIANTI ELETTRICI	rayilla	Pagina 53	DI II	111

S S Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T	to ST010	09-01	I-R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	F.4	D:	111
	IMPIANTI ELETTRICI	Pagina	Pagina 54	DI	111

10.4 SCHEMI DI FUNZIONAMENTO BLOCCHI LOGICI

Per ciascun quadro dovranno essere prodotti gli schemi che evidenziano il funzionamento della selettività logica. Su ciascun relè si dovranno indicare, mediante frecce, i blocchi logici in ingresso ed in uscita. I segnali di blocco impediranno l'apertura, per un certo tempo, di tutti i relè non interessati dal guasto.

11. LINEA BASSA TENSIONE

11.1 Alimentazione

11.1.1 Dati generali di impianto

Tensione Nominale [V]	Sistema di Neutro	Distribuzione	P. Contrattuale [kW]	Frequenza [Hz]
400	TNS	3 Fasi + Neutro	-	50

11.1.2 Alimentazione principale:Trasformatore

n° trafo	n° rami attivi	S _{cc} a monte [MVA]	S _n [kVA]	I _{n Trafo} [A]	V _{cc} [%]	P _{cu} [kW]
1	1	120	630	909,33	6	7,8

11.2 Struttura quadri

11.2.1 QBT-NORD2 - Quadro Generale

11.2.1.1 Linee

Utenza	Siglatura	Ph/N/PE Derivazione	P [kW]	Cos φ	Tensione [V]	I _ь [А]
	Quadro: [QBT-NO	RD2] Quadro G	Senerale			
TORRE FARO 7	U0.1.1	3F+N+PE	12	0,90	400	19,2
TORRE FARO 8	U0.1.2	3F+N+PE	12	0,90	400	19,2
TORRE FARO 9	U0.1.3	3F+N+PE	12	0,90	400	19,2

Utenza	Siglatura	Ph/N/PE Derivazione	P [kW]	Cos φ	Tensione [V]	Ι _b [A]
TORRE FARO 10	U0.1.4	3F+N+PE	12	0,90	400	19,2
TORRE FARO 11	U0.1.5	3F+N+PE	12	0,90	400	19,2
TORRE FARO 26	U0.1.6	3F+N+PE	8	0,90	400	12,8
TORRE FARO 27	U0.1.7	3F+N+PE	7	0,90	400	11,2
TORRE FARO 28	U0.1.8	3F+N+PE	8	0,90	400	12,8
DISPONIBILE		3F+N+PE	0		400	0
DISPONIBILE		3F+N+PE	0		400	0
DISPONIBILE		3F+N+PE	0		400	0
LUCE CABINA	U0.1.12	3F+N+PE	3	0,90	400	4,8
VENTILAZIONE	U0.1.13	3F+N+PE	6	0,90	400	9,6
PRESA CABINA	U0.1.14	3F+N+PE	9	0,90	400	14,4
ANTENNA TF7	U0.1.15	F+N+PE	1	0,90	230	4,8
ANTENNA TF8	U0.1.16	F+N+PE	1	0,90	230	4,8

11.2.1.2 Regolazioni

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _∆ n [A]	T _∆ n [ms]
		Quadr	o: [QBT-NORD2] Quadro	Generale			
ARRIVO TRAFO	NS1000 N	4	MicroL2.0	1000	1000 x1	8	6 x6	6
Q1	-	-	-	-				
TORRE FARO 7	NG125 N	4	С	25	25	-	0,25	0,25
Q0.1.1	-	-	-	-	RH99M	А	0,3	60
TORRE FARO 8	NG125 N	4	С	25	25	-	0,25	0,25
Q0.1.2	-	-	-	-	RH99M	А	0,3	60
TORRE FARO 9	NG125 N	4	С	25	25	-	0,25	0,25
Q0.1.3	-	-	-	-	RH99M	А	0,3	60
TORRE FARO 10	NG125 N	4	С	25	25	-	0,25	0,25

PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m

Documento

0129TST01009-01-R02

PROGETTO DEFINITIVO

RELAZIONE TECNICA IMPIANTI ELETTRICI

Pagina

56

Di

Data Luglio 2015

111

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _Δ n [A]	T _∆ n [ms]
Q0.1.4	-	-	-	-	RH99M	Α	0,3	60
TORRE FARO 11	NG125 N	4	С	25	25	-	0,25	0,25
Q0.1.5	-	-	-	-	RH99M	А	0,3	60
TORRE FARO 26	NS160 NE	4	STR22SE	100	40 0,5x0,8	-	0,24 x6	0,24
Q0.1.6	-	-	-	-	RH99M	Α	0,3	60
TORRE FARO 27	NS160 NE	4	STR22SE	100	40 0,5x0,8	-	0,24 x6	0,24
Q0.1.7	-	-	-	-	RH99M	Α	0,3	60
TORRE FARO 28	NS160 NE	4	STR22SE	100	40 0,5x0,8	-	0,24 x6	0,24
Q0.1.8	-	-	-	-	RH99M	А	0,3	60
DISPONIBILE	NS160 NE	4	STR22SE	100	40 0,5x0,8	-	0,24 x6	0,24
Q0.1.9	-	-	-	-	RH99M	Α	0,3	60
DISPONIBILE	NS160 NE	4	STR22SE	100	40 0,5x0,8	-	0,24 x6	0,24
Q0.1.10	-	-	-	-	RH99M	Α	0,3	60
DISPONIBILE	NS160 NE	4	STR22SE	100	40 0,5x0,8	-	0,24 x6	0,24
Q0.1.11	-	-	-	-	RH99M	А	0,3	60
LUCE CABINA	NG125 N	4	С	16	16	-	0,16	0,16
Q0.1.12	-	-	-	-	RH21M	Α	0,3	60
VENTILAZIONE	NG125 N	4	С	16	16	-	0,16	0,16
Q0.1.13	-	-	-	-	RH21M	Α	0,03	lst.
PRESA CABINA	NG125 N	4	С	16	16	-	0,16	0,16
Q0.1.14	-	-	-	-	RH21M	Α	0,03	lst.
ANTENNA TF7	NG125 N	2	С	16	16	-	0,16	0,16
Q0.1.15	-	-	-	-	RH21M	Α	0,3	lst.
ANTENNA TF8	NG125 N	2	С	16	16	-	0,16	0,16
Q0.1.16	-	-	-	-	RH21M	А	0,3	lst.

S C C Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T	-	09-01	-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Danina		D:	
	IMPIANTI ELETTRICI	Pagina	57	וט	111

11.3 Calcoli e verifiche

11.3.1 Quadro:[QBT-NORD2] Quadro Generale

11.3.1.1 Linea: ARRIVO TRAFO

11.3.1.1.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
103	172,31	172,31	162,66	162,66	0,90		1,00	

11.3.1.1.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L1	3F+N+PE	uni	13	13	30	1		-	ravv.	1	1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
3x240	2x240	2x240	FG7R/Cu	0,325	0,3909	3,6694	16,6192	0,04	0,04	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
172,3	1464,5	13,94	13,57	11,94	11,94

11.3.1.1.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _Δ n [A]	T _∆ n [ms]
ARRIVO TRAFO	NS1000 N	4	MicroL2.0	1000	1000	8	6	6
Q1	-	-	-	-				

11.3.1.1.4 Verifiche protezioni

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	-	-	-

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T	to ST010	09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	F0	D:	111
	IMPIANTI ELETTRICI	Pagina	58	וט	111

11.3.1.2 Linea: TORRE FARO 7

11.3.1.2.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	Kutilizzo	K _{contemp} .	η
12	19,24	19,24	19,24	19,24	0,90	1,00		

11.3.1.2.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.1	3F+N+PE	multi	137	61	30		1,06	0,8	ravv.		1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R _{tot} [mΩ]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
1x 10	1x 10	1x 10	FG7OR/Cu	246,6	11,7957	250,2694	28,4149	2,37	2,41	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
19,2	54,5	13,57	0,92	0,29	0,29

11.3.1.2.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _Δ n [A]	T _∆ n [ms]
TORRE FARO 7	NG125 N	4	С	25	25	-	0,25	0,25
Q0.1.1	-	-	-	-	RH99M	А	0,3	60

11.3.1.2.4 Verifiche protezioni

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m		O129TST01009-01-R02			
	PROGETTO DEFINITIVO	Data Luglio 2015				
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	F0	D:	111	
	IMPIANTI ELETTRICI	Pagina	59	DI	111	

11.3.1.3 Linea: TORRE FARO 8

11.3.1.3.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	Kutilizzo	K _{contemp} .	η
12	19,24	19,24	19,24	19,24	0,90	1,00		

11.3.1.3.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.2	3F+N+PE	multi	40	61	30		1,06	0,8	ravv.		1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R _{tot} [mΩ]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
1x 6	1x 6	1x 6	FG7OR/Cu	120,0	3,82	123,6694	20,4392	1,15	1,19	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
19,2	40,6	13,57	1,84	0,6	0,6

11.3.1.3.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	Ir [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	Ι _g [xΙ _n - A]	T _g [s]	Differenz.	Classe	I _Δ n [A]	T _∆ n [ms]
TORRE FARO 8	NG125 N	4	С	25	25	-	0,25	0,25
Q0.1.2	-	-	-	-	RH99M	Α	0,3	60

11.3.1.3.4 Verifiche protezioni

Sovraccarico	Corto Circuito massimo Verificata	Corto Circuito minimo	Persone
Verificata	Verificata Verificata		Verificata

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T		09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	60	D:	111
	IMPIANTI ELETTRICI	Pagina	60	DI	111

11.3.1.4 Linea: TORRE FARO 9

11.3.1.4.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	Kutilizzo	K _{contemp} .	η
12	19,24	19,24	19,24	19,24	0,90	1,00		

11.3.1.4.2 Cavo

Siglatura	a Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.3	3F+N+PE	multi	136	61	30		1,06	0,8	ravv.		1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R _{tot} [mΩ]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
1x 10	1x 10	1x 10	FG7OR/Cu	244,8	11,7096	248,4694	28,3288	2,36	2,4	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
19,2	54,5	13,57	0,92	0,29	0,29

11.3.1.4.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	Ir [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _∆ n [A]	T _∆ n [ms]
TORRE FARO 9	NG125 N	4	С	25	25	-	0,25	0,25
Q0.1.3	-	-	-	-	RH99M	А	0,3	60

11.3.1.4.4 Verifiche protezioni

Sovraccarico	Corto Circuito massimo Verificata	Corto Circuito minimo	Persone
Verificata	Verificata Verificata		Verificata

S S Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T		09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	61	D:	111
	IMPIANTI ELETTRICI	Pagina	61	DI	

11.3.1.5 Linea: TORRE FARO 10

11.3.1.5.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	Kutilizzo	K _{contemp} .	η
12	19,24	19,24	19,24	19,24	0,90	1,00		

11.3.1.5.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.4	3F+N+PE	multi	273	61	30		1,06	0,8	ravv.		1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R _{tot} [mΩ]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
1x 25	1x 25	1x 25	FG7OR/Cu	196,56	22,1949	200,2294	38,8141	1,94	1,98	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
19,2	92,1	13,57	1,13	0,36	0,36

11.3.1.5.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	Ir [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _∆ n [A]	T _∆ n [ms]
TORRE FARO 10	NG125 N	4	С	25	25	-	0,25	0,25
Q0.1.4	-	-	-	-	RH99M	А	0,3	60

11.3.1.5.4 Verifiche protezioni

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

S S Engineering s.al.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen	to ST010	09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	63	D:	111
	IMPIANTI ELETTRICI	Pagina	62	וט	111

11.3.1.6 Linea: TORRE FARO 11

11.3.1.6.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	Kutilizzo	K _{contemp} .	η
12	19,24	19,24	19,24	19,24	0,90	1,00		

11.3.1.6.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.5	3F+N+PE	multi	370	61	30		1,06	0,8	ravv.		1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R _{tot} [mΩ]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
1x 25	1x 25	1x 25	FG7OR/Cu	266,4	30,081	270,0694	46,7002	2,63	2,67	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
19,2	92,1	13,57	0,84	0,27	0,27

11.3.1.6.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	Ι, [Δ]		T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _∆ n [A]	T _∆ n [ms]
TORRE FARO 11	NG125 N	4	С	25	25	-	0,25	0,25
Q0.1.5	-	-	-	-	RH99M	А	0,3	60

11.3.1.6.4 Verifiche protezioni

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

S S Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m		Documento 0129TST01009-01-R02			
	PROGETTO DEFINITIVO	Data Lu	glio 20	15		
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	63	D:	111	
	IMPIANTI ELETTRICI	Pagina	63	DI	111	

11.3.1.7 Linea: TORRE FARO 26

11.3.1.7.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
8	12,83	12,83	12,83	12,83	0,90	1,00		

11.3.1.7.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.6	3F+N+PE	multi	202	61	30		1,06	0,8	ravv.		1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R _{tot} [mΩ]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
1x 50	1x 50	1x 25	FG7OR/Cu	72,72	15,7358	76,3894	32,355	0,53	0,57	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
12,8	139,6	13,57	2,78	0,95	0,65

11.3.1.7.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	Ir [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _∆ n [A]	T _∆ n [ms]
TORRE FARO 26	NS160 NE	4	STR22SE	100	40	-	0,24	0,24
Q0.1.6	-	-	-	-	RH99M	А	0,3	60

11.3.1.7.4 Verifiche protezioni

Sovraccarico	Sovraccarico Corto Circuito massimo		Persone
Verificata	Verificata	Verificata	Verificata

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T		09-01	- R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	6.0	D:	111
	IMPIANTI ELETTRICI	Pagina	64	DI	111

11.3.1.8 Linea: TORRE FARO 27

11.3.1.8.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
7	11,23	11,23	11,23	11,23	0,90	1,00		

11.3.1.8.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.7	3F+N+PE	multi	323	61	30		1,06	0,8	ravv.		1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
1x 50	1x 50	1x 25	FG7OR/Cu	116,28	25,1617	119,9494	41,7809	0,74	0,78	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
11,2	139,6	13,57	1,82	0,6	0,41

11.3.1.8.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	Ir [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _Δ n [A]	T _∆ n [ms]
TORRE FARO 27	NS160 NE	4	STR22SE	100	40	-	0,24	0,24
Q0.1.7	-	-	-	-	RH99M	Α	0,3	60

11.3.1.8.4 Verifiche protezioni

Sovraccarico	Sovraccarico Corto Circuito massimo		Persone
Verificata	Verificata	Verificata	Verificata

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T		09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	65	D:	111
	IMPIANTI ELETTRICI	Pagina	65	DI	

11.3.1.9 Linea: TORRE FARO 28

11.3.1.9.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
8	12,83	12,83	12,83	12,83	0,90	1,00		

11.3.1.9.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.8	3F+N+PE	multi	447	61	30		1,06	0,8	ravv.		1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
1x 50	1x 50	1x 25	FG7OR/Cu	160,92	34,8213	164,5894	51,4405	1,16	1,2	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
12,8	139,6	13,57	1,34	0,44	0,3

11.3.1.9.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	Ir [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	Ι _g [xΙ _n - A]	T _g [s]	Differenz.	Classe	I _∆ n [A]	T _∆ n [ms]
TORRE FARO 28	NS160 NE	4	STR22SE	100	40	-	0,24	0,24
Q0.1.8	-	-	-	-	RH99M	Α	0,3	60

11.3.1.9.4 Verifiche protezioni

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

STS CONTROL SERVING S.A.L.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T		09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina		D:	111
	IMPIANTI ELETTRICI	rayilla	66	וט	111

11.3.1.10 Linea: DISPONIBILE

11.3.1.10.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	Kutilizzo	K _{contemp} .	η
0	0	0	0	0				

11.3.1.10.2 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _Δ n [A]	T _∆ n [ms]
DISPONIBILE	NS160 NE	4	STR22SE	100	40	-	0,24	0,24
Q0.1.9	-	-	-	-	RH99M	А	0,3	60

11.3.1.11 Linea: DISPONIBILE

11.3.1.11.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
0	0	0	0	0				

11.3.1.11.2 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	I _g [xI _n - A]	T _g [s]	Differenz.	Classe	I _Δ n [A]	T _∆ n [ms]
DISPONIBILE	NS160 NE	4	STR22SE	100	40	-	0,24	0,24
Q0.1.10	-	-	-	-	RH99M	А	0,3	60

11.3.1.12 Linea: DISPONIBILE

11.3.1.12.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
0	0	0	0	0				

S S Engineering s.al.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen		09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	67	D:	111
	IMPIANTI ELETTRICI	Pagina	67	וט	111

11.3.1.12.2 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	Ι _g [xΙ _n - Α]	T _g [s]	Differenz.	Classe	I _∆ n [A]	T _∆ n [ms]
DISPONIBILE	NS160 NE	4	STR22SE	100	40	-	0,24	0,24
Q0.1.11	-	-	-	-	RH99M	Α	0,3	60

11.3.1.13 Linea: LUCE CABINA

11.3.1.13.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
3	4,81	4,81	4,81	4,81	0,90	1,00		

11.3.1.13.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.12	3F+N+PE	uni	30	3	30			-	ravv.		1,0

Sezione Conduttori [mm²] fase neutro PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
1x 2,5 1x 2,5 1x 2,	N07V-K/Cu	216,0	4,68	219,6694	21,2992	0,51	0,55	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
4,8	21	13,57	1,05	0,33	0,33

11.3.1.13.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	I _g [xI _n - A]	T _g [s]	Differenz.	Classe	I _Δ n [A]	T _∆ n [ms]
LUCE CABINA	NG125 N	4	С	16	16	-	0,16	0,16
Q0.1.12	-	-	-	-	RH21M	А	0,3	60

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T		09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	60	D:	111
	IMPIANTI ELETTRICI	Pagina	68	וט	111

11.3.1.13.4 Verifiche protezioni

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

11.3.1.14 Linea: VENTILAZIONE

11.3.1.14.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
6	9,63	9,63	9,63	9,63	0,90	1,00		

11.3.1.14.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.13	3F+N+PE	multi	30	2	30			-	ravv.		1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R _{tot} [mΩ]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
1x 4	1x 4	1x 4	FG7OR/Cu	135,0	3,03	138,6694	19,6492	0,65	0,69	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
9,6	30	13,57	1,65	0,53	0,53

11.3.1.14.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	Ir [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	I _i	I _g [xI _n - A]	T _g [s]	Differenz.	Classe	I _∆ n [A]	T _∆ n [ms]
VENTILAZIONE	NG125 N	4	С	16	16	-	0,16	0,16
Q0.1.13	-	-	-	-	RH21M	А	0,03	lst.

11.3.1.14.4 Verifiche protezioni

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

S Control of the Cont	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T	-	09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lug	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	60	Di	111
	IMPIANTI ELETTRICI	Pagina	69	DI	111

11.3.1.15 Linea: PRESA CABINA

11.3.1.15.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	Kutilizzo	K _{contemp} .	η
9	14,43	14,43	14,43	14,43	0,90	1,00		

11.3.1.15.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.14	3F+N+PE	multi	20	2	30			-	ravv.		1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R _{tot} [mΩ]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot}	ΔV _{max} prog [%]
1x 4	1x 4	1x 4	FG7OR/Cu	90,0	2,02	93,6694	18,6392	0,64	0,68	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
14,4	30	13,57	2,42	0,79	0,79

11.3.1.15.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _Δ n [A]	T _∆ n [ms]
PRESA CABINA	NG125 N	4	С	16	16	-	0,16	0,16
Q0.1.14	-	-	-	-	RH21M	А	0,03	lst.

11.3.1.15.4 Verifiche protezioni

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen	to ST010	09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	70	D:	111
	IMPIANTI ELETTRICI	Pagina	70	DI	

11.3.1.16 Linea: ANTENNA TF7

11.3.1.16.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	Ι _τ [A]	cos φ _b	Kutilizzo	K _{contemp} .	η
1	4,82	4,82	0	0	0,90	1,00		

11.3.1.16.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.15	F+N+PE	multi	165	61	30		1,06	0,8	ravv.		1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R _{tot} [mΩ]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
1x 4	1x 4	1x 4	FG7OR/Cu	742,5	16,665	746,1694	33,2842	3,57	3,61	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
4,8	38,6	12,94	0,15	0,1	0,1

11.3.1.16.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	Ir [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _Δ n [A]	T _∆ n [ms]
ANTENNA TF7	NG125 N	2	С	16	16	-	0,16	0,16
Q0.1.15	-	-	-	-	RH21M	А	0,3	lst.

11.3.1.16.4 Verifiche protezioni

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone	
Verificata	Verificata	Verificata	Verificata	

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02			I-R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	71	D:	111
	IMPIANTI ELETTRICI	Pagina	71	וט	111

11.3.1.17 Linea: ANTENNA TF8

11.3.1.17.1 Caratteristiche generali della linea

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	Kutilizzo	K _{contemp} .	η
1	4,82	4,82	0	0	0,90	1,00		

11.3.1.17.2 Cavo

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.16	F+N+PE	multi	65	61	30		1,06	0,8	ravv.		1,0

Sezione fase	Conduttor neutro	i [mm²] PE	Designazione / Conduttore	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R _{tot} [mΩ]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max} prog [%]
1x 4	1x 4	1x 4	FG7OR/Cu	292,5	6,565	296,1694	23,1842	1,4	1,44	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
4,8	38,6	12,94	0,38	0,25	0,25

11.3.1.17.3 Interruttore

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	Ir [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	l _g [xl _n - A]	T _g [s]	Differenz.	Classe	I _Δ n [A]	T _∆ n [ms]
ANTENNA TF8	NG125 N	2	С	16	16	-	0,16	0,16
Q0.1.16	-	-	-	-	RH21M	Α	0,3	lst.

11.3.1.17.4 Verifiche protezioni

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m		Documento 0129TST01009-01-R02		
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	72	Di	111
	IMPIANTI ELETTRICI	ragilia	12	DI	

12. INTERFERENZE

Sul nuovo tratto di 100m, sono stati progettati tutti i sottoservizi quali la rete elettrica per l'alimentazione dei nuovi carichi, la rete di drenaggio delle acque meteoriche e quella antincendio. Rispetto a queste, sono state analizzate e risolte le interferenze che si sono generate, come riportato negli elaborati di progetto 0129TST01250-0129TST01251 e 0129TST01252.

I punti di conflitto tra la nuova rete elettrica e la nuova rete di drenaggio delle acque meteoriche sono stati risolti realizzando la via cavi sul molo esistente, ad una distanza dall'attuale testata che va da un minimo di circa 4,6m ad un massimo di circa 6,4m. Questa traslazione del tracciato,ha consentito di evitare incroci con il sistema di drenaggio costituito da un unico collettore e da n. 27 canalette trasversali rispetto allo sviluppo del molo.

Tra la rete elettrica e quella antincendio, invece, si sono verificati n.2 punti di conflitto: in corrispondenza di questi incroci, è stato previsto un cambiamento di quota della rete antincendio. In particolare, si è prevista una curva discendente della rete antincendio, che si abbasserà fino alla soletta e protetta poi con un getto di calcestruzzo di qualche centimetro al di sopra della quale verrà fatto passare il fascio di tubi delle reti di media e bassa tensione, opportunamente dimensionati e aventi un coefficiente di resistenza allo schiacciamento >750 N.

Per tutti i dettagli si rimanda alla "Relazione tecnica superamento interferenze" (0129TST01008-00).

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m		Documento 0129TST01009-01-R02		
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	72	Г:	111
	IMPIANTI ELETTRICI	Pagina 73	/3	DI	

13. IMPIANTO DI TERRA

Poiché la distribuzione e l'alimentazione prevista delle apparecchiature è effettuata parte in BT e parte in MT, si è seguita la regola generale consigliata dalle norme di installare un unico impianto di terra. La separazione degli impianti di terra dà infatti luogo ai seguenti inconvenienti:

- difficoltà pratica di realizzazione di impianti di terra indipendenti;
- possibilità di tensioni pericolose sull'impianto di terra lato MT per un guasto sulla parte BT;
- situazioni di pericolo dovute a parti metalliche collegate agli impianti di terra separati e contemporaneamente accessibili.

In base alla norma CEI EN50522 (CEI 99-3) in vigore, relativa agli impianti utilizzatori a tensione nominale maggiore di 1000 V, l'impianto di terra deve essere tale che non occorrano tensioni di contatto e di passo pericolose per le persone.

Per la determinazione del valore della resistenza di terra RE è necessario conoscere lo stato del neutro, il valore della corrente di guasto monofase a terra *IE* ed il tempo di intervento delle protezioni per guasti a terra sul lato di consegna MT.

Il sistema di alimentazione in questione è a neutro isolato con corrente di guasto verso terra pari a If=178A e tempo di intervento delle protezioni pari a 0,5 sec, come da comunicazione ACEGAS APS prot. 51480 del 30/06/2010.

Il sistema di collegamento a terra del neutro in bassa tensione è del tipo TN-S.

Le formule usate per il dimensionamento dell'impianto di terra sono quelle di letteratura, ossia:

• Resistenza di terra di un dispersore a picchetto

$$R = t \frac{\rho}{2 \cdot \pi \cdot l} \cdot \left[1 \quad \frac{8l}{n} - 1 \right]$$

 ρ = resistività media del terreno

I = lunghezza della parte interrata del picchetto

d = diametro del picchetto.

• Resistenza di terra di un dispersore orizzontale in terreno omogeneo:

$$Rt = \frac{\rho}{\pi \cdot L} \cdot \left[\ln \frac{2L}{d} \right]$$

L = lunghezza del conduttore lineare;

1111 July	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Documento				
Engineering s.n.l.	ALLUNGAMENTO 100m	0129TST01009-01-R02		I-R02		
	PROGETTO DEFINITIVO	Data Lu	glio 20	15		
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	74	Di	111	
	IMPIANTI ELETTRICI	ragilla	74	וט		

d = diametro del dispersore in corda.

Resistenza rete magliata

$$Rt = \frac{2\rho}{P} + \frac{\rho}{L}$$

P = perimetro della maglia

L = lunghezza totale della maglia.

I dispersori, dimensionati in base a queste formule, sono stati collegati fra di loro come riportato nelle tavole di progetto.

All'impianto di terra ("dispersore intenzionale") così realizzato risultano collegati:

- tutti i sistemi di tubazioni metalliche accessibili nonché tutte le masse estranee metalliche accessibili di notevole estensione esistenti nell'area dell'impianto utilizzatore;
- gli impianti di terra già esistenti nel Molo;
- i nuovi impianti di terra delle rotaie.

Particolare cura si dovrà avere nel collegare a terra i binari delle gru, indipendentemente dalla messa a terra dei motori di azionamento, collegando i tronchi di rotaie fra loro mediante ponticelli che ne garantiscano la continuità metallica.

Questi collegamenti consentono di realizzare un unico dispersore molto esteso che, per le sue condizioni, garantisce un valore di resistenza di terra sicuramente basso e capace di equipotenzializzare l'area in caso di dispersione della corrente del fulmine nel terreno senza provocare sovratensioni pericolose.

Le sezioni dei dispersori sono state calcolate secondo la formula:

$$A = \frac{1}{K} \cdot \sqrt{I^2 t}$$

dove / è la quota parte della corrente /t che percorre l'elemento di dispersione considerato (si è supposto che ogni picchetto possa essere chiamato a disperdere l'intera corrente di guasto), t è il tempo di eliminazione del guasto in secondi e K il coefficiente che tiene conto delle caratteristiche del materiale e delle temperature iniziali e finali.

La rete MT a 27,5 kV interna non si estende al di fuori della cabina di distribuzione e smistamento SSP edi conseguenza il contributo alla corrente di guasto a terra risulta trascurabile.

211113	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Documento				
Engineering s.a.l.	ALLUNGAMENTO 100m	01291	0129TST01009-01-R02		I-R02	
	PROGETTO DEFINITIVO	Data Lu	glio 20	15		
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	75	Di	111	
	IMPIANTI ELETTRICI	rayına	75	וט	111	

Con un tempo massimo di intervento da parte delle apparecchiature di protezione inferiore a 0,5 secondi, il valore massimo della tensione di contatto ammissibile $U\tau p$, desunto dalla tabella B.3 della norma CEI EN 50522, è pari a 220 V.

A favore di sicurezza, non sono state prese in considerazione le resistenze addizionali, pertanto il fattore di riduzione rè assunto pari all'unità.

Considerando il parallelo tra tutti i dispersori presenti nell'area e facendo riferimento al documento redatto dal Servizio Sanitario Regionale A.S.S. N.1 TRIESTINA – Servizio Verifiche Periodiche, in data 02 maggio 2013, si considera una resistenza di terra R_E pari a 0,3 ohm, effettivamente misurata con il metodo volt-amperometrico.

Si è calcolato il valore delle tensione totale di terra EPR (U_E)

$U_E = R_E x If = 0.3x 178 = 53V$

un valore nettamente inferiore al valore limite della tensione di contatto ammissibile *Utp*.

Inoltre, il valore misurato della resistenza di terra è inferiore al valore limite (massimo) della resistenza pari a 2,4 ohm, che richiederebbe l'adozione di provvedimenti per la riduzione delle tensioni di passo e di contatto.

Dai risultati sopra esposti, l'impianto di terra risulta correttamente dimensionato e non si devono adottare ulteriori provvedimenti.

In ogni caso, prima della messa in servizio dell'impianto, dovrà essere effettuata la misura della resistenza di terra dell'intero complesso; nel caso in cui la resistenza di terra risultasse superiore al limite di 2,4 ohm, si dovranno eseguire le misure di passo e contatto e verificare che in nessun punto dell'impianto siano superati i valori imposti dalla norma CEI EN 50522.

In particolare le tensioni di contatto misurate non dovranno superare la tensione di contatto ammissibile UTp e le tensioni di passo non dovranno superare il valore di Us.

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02			
	PROGETTO DEFINITIVO	Data Luglio 2015		15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	76	Di	111
	IMPIANTI ELETTRICI	rayilla	76	וט	111

14. IMPIANTO DI ILLUMINAZIONE

L'impianto di illuminazione dell'ambiente portuale deve rispondere alle esigenze imposte dalle attività svolte nelle singole aree nonchè alla <u>Legge Regionale 18/06/2007, n.105</u> "Misure urgenti in tema di contenimento dell'inquinamento luminoso, per il risparmio energetico nelle illuminazioni per esterni e per la tutela dell'ambiente e dell'attività svolta dagli osservatori astronomici".

Il livello di visibilità e di confort richiesti, nella maggior parte dei posti di lavoro esterni, dipendono dal tipo e dalla durata dell'attività. Nell'area in questione, insiste un impianto di illuminazione con torri faro a piattaforma porta-proiettori, mobile, con altezza pari a 35 metri, provvisti di proiettori, dotati di lampade ai vapori di sodio ad alta pressione da 1000 W.

Le lampade a vapori di sodio ad alta pressione, sono ampiamente utilizzate per l'illuminazione delle aree esterne, poiché presentano i seguenti vantaggi:

- elevata efficienza luminosa;
- lunga durata;
- accettabile resa dei colori;
- ridotte dimensioni.

I proiettori saranno del tipo asimmetrici, in numero di 8 montati sulle torri faro esterne, cioè lato nord e lato sud, e poi n.7 montati sulla torre faro centrale.

Il Molo è impegnato da grosse quantità di container impilati su più livelli, che ne condizionano l'illuminamento; per rendere l'area fruibile in orari notturni e/o in condizioni di scarsa visibilità, limitando il più possibile le zone d'ombra, si sono di fatto privilegiate le zone dedicate alla movimentazione tra i vari blocchi di deposito, posizionando, in corrispondenza di questi punti, le torri faro, dotandole di proiettori a puntamento che privilegiano la percorribilità longitudinale delle aree piuttosto che le aree di stoccaggio.

Per la verifica illuminotecnica dell'impianto d'illuminazione esistente sulla nuova struttura, quindi del molo allungato di 100m a partire dalla testata, si è fatto riferimento alla norma UNI EN 12464-2 (Gennaio 2008) "Illuminazione dei posti di lavoro. Parte 2: Posti di lavoro in esterno" utilizzando il software messo a disposizione dei costruttori dei proiettori e degli apparecchi di illuminazione.

La Norma specifica i requisiti illuminotecnici necessari a garantire sufficienti livelli di comfort visivo e prestazione visiva ai lavoratori che svolgono la loro attività in ambienti esterni.

I requisiti di illuminazione per l'illuminazione generale dei porti, come riportato nella Appendice A della sopracitata norma, sono in dettaglio:

Illuminamento medio mantenuto Em = 30 lux;

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R0			
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	77	Di	111
	IMPIANTI ELETTRICI	Pagina	Pagina 77	וט	111

- Uniformità di illuminamento Uo = 0,25
- Indice di abbagliamento GRL = 50
- Indice della resa di colore Ra = 20
- Zona di vento = 8
- Categoria di esposizione = 2

L'esistente distribuzione dei punti illuminanti realizza un livello di illuminamento sufficientemente uniforme.

Si allega il calcolo illuminotecnico (**Allegato 14**), condotto utilizzando proiettori con caratteristiche analoghe a quelle installate, senza considerare il contributo degli apparecchi illuminanti installati a bordo delle gru di piazzale e di banchina.

Infatti è necessario considerare che nella pratica, sia pure rispettando il valore medio di illuminamento consigliato dalla normativa vigente, i valori di riferimento per i terminal container sono di 50 lux per la necessità di identificare senza errori il numero dei contenitori e sigilli e di 100 lux per le zone operative e di manovra (banchine), valori che sono raggiungibili con l'ausilio dell'illuminazione a bordo degli apparecchi di sollevamento.

In ogni caso, come prescritto dalla norma UNI EN 13032-2 (valida sia per i posti di lavoro in interni che in esterno) a completamento dei lavori di adeguamento, si dovranno effettuare le verifiche dell'impianto di illuminazione attraverso misurazioni e calcoli, da riportare su relazione redatta da professionista abilitato.

La verifica del livello di illuminamento e di uniformità, riferiti a specifici compiti di lavoro, deve essere effettuata sul piano del compito visivo e i punti di misura scelti dovranno coincidere con la griglia di illuminamento utilizzata durante il progetto.

L'illuminamento medio, l'uniformità di illuminamento e l'indice di abbagliamento misurati dovranno rientrare nei valori consigliati dalla normativa vigente.

14.1 Caratteristiche tecniche delle torri faro

Le n.3 Torri faro saranno del tipo carrellate avente le seguenti dimensioni:

- Diametro alla base 910 mm
- Spessore alla base 5 mm
- Diametro in sommità 240 mm
- Spessore in sommità 4 mm

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R0			
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	70	Di	111
	IMPIANTI ELETTRICI	Pagina	78	וט	111

Altezza 35000 mm

Il fusto è di forma tronco-conica, a sezione poligonale, realizzato in tronchi da accoppiare in sito mediante sovrapposizione ad incastro (metodica dello Slip on Joint). I tronchi sono ottenuti da lamiera pressopiegata e saldata longitudinalmente.

La testa di trascinamento, realizzata in acciaio zincato a caldo, è montata in sommità del fusto, incorpora le carrucole di rinvio del cavo di alimentazione proiettori e delle funi di sospensione della corona mobile.

La corona mobile è realizzata in profilati di acciaio, dimensionata per sostenere il numero di projettori, previsti nel progetto, unitamente alla cassetta di derivazione.

Le n.3 funi di sospensione della corona mobile sono realizzate in acciaio inossidabile e piombate alle estremità a terminali filettati, sempre in acciaio inossidabile. Le funi sono fissate da una parte sulla corona mobile e dall'altra ad un dispositivo di raccolta (distributore).

Il fusto e la piastra di base sono realizzati in acciaio S355JR (FE 510B) in conformità alla norma UNI EN 10025, i tirafondi in acciaio S355JR (FE 510B) in conformità alla norma UNI EN 10025, le carpenterie in acciaio S235JR (FE 360B) in conformità alla norma UNIEN 10025 e la bulloneria, classe 6.8, in acciaio zincato.

La protezione superficiale, interna/esterna, è assicurata mediante zincatura a caldo realizzata in conformità alla norma UNI EN ISO 1461.

Sono previsti i seguenti sistemi di sicurezza attivi e passivi:

- aggancio meccanico che consente di rendere solidale la corona mobile con la testa di trascinamento al fine di sgravare le funi di sospensione della corona mobile in fase di normale esercizio della torre;
- sistema di antirotazione, sul piano orizzontale, della corona mobile;
- catena di aggancio del distributore (delle funi e del cavo elettrico) al fusto, in fase di normale esercizio della torre;
- sistema di finecorsa, posizionato all'interno della portella, costituito da un sensore ad induzione, comandato elettricamente, per la corretta definizione delle operazioni di aggancio e sgancio della corona mobile;
- bracci di appoggio della corona mobile, per scaricare le funi quando la corona stessa è in posizione di manutenzione, costituiti da tre staffe in acciaio, smontabili, da inserire nelle apposite sedi ricavate sopra la portella.

L'equipaggiamento elettrico è composto da una spina con interruttore di blocco montata sulla portella e da una cassetta di derivazione/distribuzione in IP 65, posta sulla coronamobile. Detta

71111 F	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Document	to		
Engineering s.a.l.	ALLUNGAMENTO 100m	0129T	ST010	09-01	I-R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Domino	70	D:	
	IMPIANTI ELETTRICI	Pagina	79	Di	111

cassetta è provvista di presa per la prova di accensione a terra dei proiettori. L'alimentazione elettrica dei proiettori è assicurata da un cavo, di sezione adeguata alla potenza da installare, del tipo NSHTOU-J 06/1 Kv, autoportante, antitorsionale ed inestensibile grazie ad un rinforzo centrale in Kevlar. Detto cavo è collegato, a base torre, alla presa interbloccata mediante una spina CEE a 5 poli mentre, in sommità, è collegato alla morsettiera posta all'interno della cassetta di derivazione.

Il sistema di movimentazione del prodotto oggetto della presente offerta è compatibile esclusivamente con la nuova unità elettrica carrellata, tipo Trolley mov.

L'unità elettrica carrellata è costituita da un telaio verniciato munito di ruote, facilmente trasportabile, sul quale sono montati il gruppo motoriduttore con grado di protezione IP55 ed alimentazione trifase 380V 50Hz incorporata, la catena calibrata della lunghezza necessaria per la movimentazione della corona mobile, il relativo contenitore, un vano porta attrezzi, la pulsantiera con prolunga per il comando a distanza di sicurezza, un cavo elettrico munito di spine per la prova di accensione a terra dei corpi illuminanti. Una sola unità elettrica può servire tutte le torrifaro installate nell'impianto e consente l'eliminazione delle apparecchiature elettromeccaniche all'interno di ogni singolo fusto.

I proiettori saranno del tipo asimmetrici, n.8 montati sulle torri faro esterne, cioè lato nord e lato sud e poi n.7 montati sulla torre faro centrale

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R0			
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	00	Di	111
	IMPIANTI ELETTRICI	Pagina	80	וט	

15. FASI DI LAVORO – ALIMENTAZIONE DELLE GRU

L'allungamento del molo di 100m e la riqualificazione della banchina sud per un tratto di circa 300m, saranno realizzate in più fasi, suddivise con lo scopo di garantire la sicurezza delle persone e la continuità delle operazioni sul terminal.

Da un punto di vista elettrico, la garanzia dell'alimentazione dei mezzi di banchina e di piazzale, per il regolare svolgimento delle operazioni di imbarco e di sbarco container lungo i tratti non interessati dai lavori, è stata attentamente valutata e traguardata.

Le fasi di lavoro sono state suddivise come segue:

- Fase 1 : allestimento dell'area di cantiere e definizione della nuova viabilità;
- Fase 2: riqualificazione del primo tratto della banchina Sud, demolizione della trave di bordo lungo la testata del molo e realizzazione del nuovo impalcato, per un totale di circa 200 pali;
- Fase 3: riqualificazione del secondo tratto della banchina Sud, demolizione del pacchetto stradale, degli impianti e di tutti i sottoservizi lungo testata dalla progressiva 758,5m alla progressiva 768,50m, realizzazione nuovi allacci alle reti esistenti e prime installazioni impiantistiche lungo il nuovo tratto a mare, realizzazione della restante parte di impalcato per un totale di circa 262 pali;
- Fase 4: messa in servizio della banchina sud, completamento delle installazioni impiantistiche e realizzazione della pavimentazione lungo il nuovo tratto;
- Fase 5: installazione nuovo equipment layout finale.

Durante la seconda e la terza fase, oltre alle opere a mare, verrà riqualificato il tratto di banchina sud e la testata. Lungo questi tratti, si trovano i cavidotti di alimentazione delle n.2 gru S1 ed S2 e quelli delle n.3 gru di piazzale 721, T21 e T23 (punti fissi P5-P6-P7)tutti serviti dalla cabina C.

Durante la fase 2 dovranno essere disalimentate le n.2 gru di banchina, collegate all'esistente quadro di media tensione di cabina C; in particolare, le celle n.8 e n.6 verranno interdette cioè disalimentati i carichi e sfilati i cavi passanti nel cunicolo. Non vi sarà bisogno di alimentare le gru da un altra partenza poichè, sui restanti 470m circa di banchina, opereranno tutte le altre n.5 gru alimentate dalle cabine A e B, sufficienti a coprire le operazioni di carico e scarico di una nave..

Durante la fase 3, invece, verrà demolita la pavimentazione in testata, per una larghezza di circa 10m, in cui viaggiano i vari sottoservizi fra cui quello elettrico di alimentazione al secondo ordine di transtainer. Dovranno pertanto essere disalimentate le celle A, B, C e la n.7 del quadro MT di cabina C, di partenza alle transtainer, e sfilati i cavi per consentire la demolizione di una parte del

S Expineraing and	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R0			
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	01	Di	111
	IMPIANTI ELETTRICI	Pagilla	81	DI	111

cavedio composto da n.4 tubi ø150. Le n.3 RMGC verranno fatte sostare in un'area verso radice fino al termine delle opere di questa fase.

Non appena verrà realizzato il nuovo cavedio, che andrà a intercettare quello esistente, e non appena verrà ultimata l'installazione del nuovo quadro MT di cabina C, descritto nei capitoli precedenti, verranno ripristinate tutte le condizioni di alimentazione.

Sempre per la perfetta operatività del terminal, il punto fisso P1 di alimentazione della transtainer di piazzale T22, verrà spostato dalla sua posizione attuale ad una più prossima alla testata per consentire alla transtainer esistente, il transito anche sul nuovo tratto di molo.

Al termine della Fase 4, tutte le gru di banchina e di piazzale saranno alimentate dai nuovi quadri MT di cabina C e Nord2. In particolare dallo scomparto C-SC14 il punto fisso S8, da C-SC5 e C-SC3 i punti fissi S1 ed S2, da C-SC13, C-SC12,C-SC11 eC-SC4 i punti fissi P5-P6-P7-P8 e C-SC9 il punto fisso P1; dalla cabina Nord2 invece i nuovi punti fissi P9-P10-P11 saranno alimentati dagli scomparti N2-SC9, N2-SC5,N2-SC4 eN2-SC3.

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R0			
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	00	D:	111
	IMPIANTI ELETTRICI	Pagina 82	וט	111	

16. CONCLUSIONI

Nelle pagine precedenti si sono riportati gli interventi previsti sulla rete elettrica connessi prevalentemente alla nuova dotazione di banchina e di piazzale relativa all'allungamento del molo per 100m.

I carichi previsti sono i seguenti:

- n.1 gru di banchina da 24rows di nuova fornitura (fino a 2);
- n. 3 gru di banchina da 21 rows-ex 17 rows esistenti;
- n. 2 gru di banchina da 20 rows esistenti;
- n.2 gru di banchina da 16 rows esistenti;
- n.7 gru di piazzale esistenti;
- n.4 gru di piazzale di nuova fornitura.

L'impianto elettrico conserverà la sua origine nel punto di consegna dell'energia da parte dell'Ente Distributore – cabina SSP. Il sistema di distribuzione ad anello a 6 kV non verrà modificato perché ben si presta all'alimentazione di grossi carichi concentrati per i quali è basilare garantire la continuità del servizio lungo i tratti non coinvolti dal guasto.

Dalla cabina SSP continueranno ad essere alimentati i n.3anelliche interconnettono le cabine Nord1 e Nord2, la cabina Sud e le cabine A, B e C.

Il progetto ha previsto interventi di adeguamento nelle cabine preposte alla distribuzione a 6 kV a servizio delle gru di banchina e di piazzale, ossia nelle cabine denominate SSP, Nord 2 e C.

Gli interventi previsti riguarderanno quindi:

- L'adequamento del guadro MT da 27,5 kV della cabina SSP;
- La sostituzione dei n.2 trasformatori 27,5/6kV in cabina SSP;
- La sostituzione del quadro MT da 6 kV nella cabina SSP;
- l'adeguamento dei quadri a 6kV delle cabine C e Nord2;
- la sostituzione di n.2 trasformatori 6/0,4 kV in cabina Nord2;
- l'adeguamento del quadro di bassa tensione della cabina Nord2 per l'alimentazione del nuove torri faro.

Il sistema così progettato ha rispettato, oltre che le normativa vigente e i livelli di sicurezza stabiliti, il criterio del bilanciamento dei carichi sulla rete, scongiurando così la possibilità di sovraccarichi e fuori servizi di utenze prioritarie alla corretta operatività del terminal.

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02			
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	02	D:	111
	IMPIANTI ELETTRICI	Pagina 83	וט	111	

17. NORMATIVA DI RIFERIMENTO

Questo documento è stato elaborato con riferimento alle seguenti norme CEI:

- CEI 0-2 "Guida per la definizione della documentazione di progetto degli impianti elettrici";
- CEI EN 61936-1 (Class. CEI 99-2 Fascicolo 11373 Anno 2011) "Impianti elettrici con tensione superiore a 1 kV in c.a. Parte 1: Prescrizioni comuni";
- CEI EN 50522 (Class. CEI 99-3 Fascicolo 11372 Anno 2011) "Messa a terra degli impianti elettrici a tensione superiore a 1 kV in c.a.";
- norma CEI 11-15 "Esecuzione di lavori sotto tensione";
- norma CEI 11-17 "Impianti di produzione, trasporto e distribuzione dell'energia elettrica. Linee in cavo";
- norma CEI 11-25 "Calcolo delle correnti di cortocircuito nelle reti trifasi a corrente alternata";
- norma CEI 11-26 "Calcolo degli effetti delle correnti di cortocircuito";
- norma CEI 11-35 "Guida all'esecuzione delle cabine elettriche d'utente";
- norma CEI 11-37 "Guida all'esecuzione degli impianti di terra nei sistemi utilizzatori di energia alimentati a tensione maggiore di 1 kV";
- norma CEI 14-4 "Trasformatori di potenza";
- norma CEI 17-6 (EN 60271-200) "Apparecchiatura prefabbricata con involucro metallico per tensioni da 1 kV a 52 kV";
- norma CEI 17-9/1 (EN 60295-1) "Interruttori di manovra e interruttori di manovra-sezionatori per alta tensione. Parte I: Interruttori di manovra e interruttori di manovra-sezionatori per tensioni nominali superiori a 1 kV e inferiori a 52 kV";
- norma CEI 20-48 "Cavi da distribuzione per tensioni nominali 0.6/1 kV";
- norma CEI 20-27 "Cavi per energia e segnalamento. Sistema di designazione";
- norma CEI 20-13 "Cavi con isolamento estruso in gomma per tensioni nominali da 1 a 30 kV";
- norma CEI 20-14 "Cavi isolati con polivinicloruro di qualità R2 con grado di isolamento superiore a 3 (per sistemi elettrici con tensione nominale da 1 a 20 KV)";
- norma CEI 20-40 "Guida per l'uso di cavi a bassa tensione";
- norma CEI 20-48 "Cavi da distribuzione per tensioni nominali 0.6/1 kV";
- norma CEI 32-3: "Fusibili a tensioni superiori a 1000 V";
- norma CEI 38-1 (EN 60044-1): "Trasformatori di misura: Parte 1: Trasformatori di corrente";

211113	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Documen	to		
Engineering s.a.l.	ALLUNGAMENTO 100m	0129TST01009-01-R0			
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	0.4	D:	111
	IMPIANTI ELETTRICI	rayına	84	Di	111

- norma CEI 38-2 (EN 60044-2): "Trasformatori di misura: Parte 1: Trasformatori di tensione induttivi";
- norma CEI EN 60947-1/2/3/4/5/6/7 "Apparecchiatura a bassa tensione";
- CEI EN 60529 "Gradi di protezione degli involucri";
- Norma IEC 60617 "Segni grafici per schemi";
- norma CEI 64-8 "Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V c.a. e a 1500 V c.c.";
- norma CEI 64-14 "Guida alle verifiche degli impianti elettrici utilizzatori";
- CEI 81-10/1 (EN 62305-1) "Protezione contro i fulmini Principi generali";
- CEI 81-10/2 (EN 62305-2) "Protezione contro i fulmini Analisi del rischio";
- CEI 81-10/3 (EN 62305-3) "Protezione contro i fulmini Danno materiale alle strutture e pericolo per le persone";
- CEI 81-10/4 (EN 62305-4) "Protezione contro i fulmini Impianti elettrici ed elettronici nelle strutture";

Roma, Luglio 2015

Il Direttore Tecnico Dott. Ing. Michelangelo Lentini

71111	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Documen	to		
Engineering s.n.l.	ALLUNGAMENTO 100m	0129TST01009-01-R			
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	0.5	D:	111
	IMPIANTI ELETTRICI	Pagina	85	וט	111

18. ALLEGATI

ALLEGATO 1	PROFILO DI TENSIONE (CONFIGURAZIONE DI PROGETTO)
ALLEGATO 2	PROFILO DI TENSIONE (CONFIGURAZIONE FUTURA)
ALLEGATO 3	TABELLA DI CALCOLO CAVI MEDIA TENSIONE GRU 24 ROWS – CABINA C
ALLEGATO 4	TABELLA DI CALCOLO CAVI MEDIA TENSIONE TRANSTAINER – CABINA NORD 2
ALLEGATO 5	CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE DI PROGETTO)
ALLEGATO 6	CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI APERTI)
ALLEGATO 7	CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)
ALLEGATO 8	CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)
ALLEGATO 9	COMPOSIZIONE QUADRI MT 27,5 kV e 6kV – PROTEZIONI
ALLEGATO 10	CAPACITA' DELLA LINEA - CABINA SSP
ALLEGATO 11	CAPACITA' DELLA LINEA - CABINA NORD2
ALLEGATO 12	CAPACITA' DELLA LINEA - CABINA C
ALLEGATO 13	CAPACITA' DELLA LINEA - CABINE A - B e NORD1
ALLEGATO 14	CALCOLO ILLUMINOTECNICO

S COLUMN SAL	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-Re			-R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	96	Di	111
	IMPIANTI ELETTRICI	Pagina 86	DI	111	

ALLEGATO 1 - PROFILO DI TENSIONE (CONFIGURAZIONE DI PROGETTO)

ALLEGATO 1

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 1 PROFILO DI TENSIONE (CONFIGURAZIONE DI PROGETTO)

Load Flow Analysis

Method of Solution: Newton-Raphson Method

Maximum No. of Iteration: 99
Precision of Solution: 0.0001000

System Frequency: 50.00 Hz
Unit System: Metric
Project Filename: TriesteMoloVII

				<u>Bus</u>	Input Data							
								Load				
Bus			Initial V	oltage	Cons	tant kVA		stant Z	Cor	nstant l		Generic
ID	kV	Sub-sys	kV	Ang.	MW	Mvar	MW	Mvar	MW	Mvar	MW	Mvar
Bus-TR1	0,400	1	0,400	0,0			0,045	0,022				
Bus-TR6	0,400	1	0,400	0,0			0,045	0,022				
Bus01_SSP	6,000	1	6,000	0,0								
Bus02_SSP	6,000	1	6,000	0,0								
Bus3_Sccmax	27,500	1	27,500	0,0								
Bus03_SSP	6,000	1	6,000	0,0								
Bus8	6,000	1	6,000	0,0								
Bus9	0,575	1	0,575	0,0								
Bus10	0,400	1	0,400	0,0	0,044	0,025	0,044	0,025				
Bus47	0,400	1	0,400	0,0			0,098	0,048				
Bus86	0,575	1	0,575	0,0								
Bus87	0,400	1	0,400	0,0	0,028	0,016	0,028	0,016				
Bus88	6,000	1	6,000	0,0								
Bus115	0,400	1	0,400	0,0			0,198	0,096				
Bus125	6,000	1	6,000	0,0			1,	.,				
Bus126	0,575	1	0,575	0,0								
Bus127	0,400	1	0,400	0,0	0,044	0,025	0,044	0,025				
Bus220	27,500	1	27,500	0,0	0,011	0,023	0,011	0,023				
Bus222	0,400	1	0,400	0,0	-		0,153	0,074				
Bus235	6,000	1	6,000	0,0	-		0,133	0,074				
Bus236	0,575	1										
			0,575	0,0	0.000	0.020	0.002	0.020				
Bus237	0,400	1	0,400	0,0	0,092	0,039	0,092	0,039				
Bus277	6,000	1	6,000	0,0	-							
Bus279	27,500	1	27,500	0,0								
Bus282	6,000	1	6,000	0,0			_					
Bus284	6,000	1	6,000	0,0			_					
Bus294	6,000	1	6,000	0,0								
Bus319	6,000	1	6,000	0,0								
Bus320	0,575	1	0,575	0,0								
Bus321	0,400	1	0,400	0,0	0,028	0,016	0,028	0,016				
Bus367	6,000	1	6,000	0,0								
Bus368	0,575	1	0,575	0,0								
Bus369	0,400	1	0,400	0,0	0,054	0,031	0,054	0,031				
BusA_6KV	6,000	1	6,000	0,0								
BusB_6kV	6,000	1	6,000	0,0								
BusC_6kV	6,000	1	6,000	0,0								
Bus_arrivo27,5kV	27,500	1	27,500	0,0								
Bus_Sccmin	27,500	2	27,500	0,0								
Bus_SSP	27,500	1	27,500	0,0								
CAB-SUD	6,000	1	6,000	0,0	0,082	0,044	0,067	0,033				
NORD1	6,000	1	6,000	0,0	0,169	0,095	0,042	0,024				
NORD2	6,000	1	6,000	0,0	0,374	0,210	0,093	0,053				
Mtr1~	0,575	3	0,575	0,0	0,397	0,225						
Mtr25~	0,575	4	0,575	0,0	0,142	0,080						
Mtr36~	0,575	5	0,575	0,0	0,397	0,225						
Mtr70~	0,575	6	0,575	0,0	0,748	0,311						
Mtr89~	0,575	7	0,575	0,0	0,142	0,080						
Mtr105~	0,575	8	0,575	0,0	0,397	0,225						
Cavo-SSP-A~	6,000	6	0,000	1 3,0	-,557	-,225						
CavoTR2_6kV~	6,000	6	0,000	-			\vdash		-			
Cavo-SSP-SUD-1~	6,000	6	0,000	-			\vdash					
Cavo-SSP-Nord1~	6,000	6	0,000	-	-		\vdash		-			-

PORTO DI TRIESTE - TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m

ALLEGATO 1

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

	ALLEGATO 1 <u>Line/Cable Input Data</u>										
	Ohms or Siemens/1000 m per Conductor (Cable) or per Phase (Line)										
Line/Cable	Line/Cable Length										
ID	Library	Size	Adj	. (m)	#/Phase	T (°C)	R	X	Υ		
Cable5	11NCUN3	50	645,0	0,0	1	75	0,471165	0,138000	0,0000817		
Cable29	11NCUN3	50	360,0	0,0	1	75	0,471165	0,138000	0,0000817		
Cable42	11NCUN3	50	790,0	0,0	1	75	0,471165	0,138000	0,0000817		
Cable75	11NCUN3	120	600,0	0,0	1	75	0,186940	0,118000	0,0001147		
Cable120	11NCUN3	50	360,0	0,0	1	75	0,471165	0,138000	0,0000817		
Cable136	11NCUN3	50	790,0	0,0	1	75	0,471165	0,138000	0,0000817		
Cavo-A-C	11NCUN3	300	626,0	0,0	2	75	0,076302	0,105000	0,0001646		
Cavo-B-C	11NCUN3	300	415,0	0,0	1	75	0,076302	0,105000	0,0001646		
Cavo-Nord1-Nord2	11NCUN3	240	244,0	0,0	1	75	0,093470	0,109000	0,0001495		
Cavo-SSP-B	11NCUN3	300	680,0	0,0	2	75	0,076302	0,105000	0,0001646		
Cavo-SSP-Nord2	11NCUN3	240	1202,0	0,0	1	75	0,093470	0,109000	0,0001495		
Cavo-SSP-SUD-2	11NCUN3	240	285,0	0,0	1	75	0,093470	0,109000	0,0001495		
Cavo-TR1	11NCUN3	95	20,0	0,0	1	75	0,236536	0,123000	0,0001049		
Cavo-TR6	11NCUN3	95	20,0	0,0	1	75	0,236536	0,123000	0,0001049		
CavoTR1_6kV	11NCUN3	185	20,0	0,0	2	75	0,122083	0,112000	0,0001351		
CavoTR1_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,236536	0,143000	0,0000637		
CavoTR2_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,236536	0,143000	0,0000637		
Cavo_arrivo27,5kV	33NCUN1	150	20,0	0,0	1	75	0,151650	0,135000	0,0000609		
Cavo-SSP-A	11NCUN3	300	478,0	0,0	2	75	0,076302	0,105000	0,0001646		
CavoTR2_6kV	11NCUN3	185	20,0	0,0	2	75	0,122083	0,112000	0,0001351		
Cavo-SSP-SUD-1	11NCUN3	240	288,0	0,0	1	75	0,093470	0,109000	0,0001495		
Cavo-SSP-Nord1	11NCUN3	240	583,0	0,0	1	75	0,093470	0,109000	0,0001495		

2-Winding Transformer Input Data														
Transformer		Rati	ng		Z Variation				% Tap Setting			Adjusted	Phase Shift	
ID	Phase	MVA	Prim. kV	Sec. kV	% Z1	X1/R1	+ 5%	- 5%	% Tol.	Prim.	Sec.	% Z	Туре	Angle
TR-AT1	3-Phase	0,250	6,000	0,400	6,00	1,50	0	0	0	0	2,500	6,0000	Dyn	0,000
TR-BT1	3-Phase	1,000	6,000	0,400	6,00	5,79	0	0	0	0	0	6,0000	Dyn	0,000
TR-CT2	3-Phase	0,250	6,000	0,400	6,00	1,50	0	0	0	0	2,500	6,0000	Dyn	0,000
TR1	3-Phase	6,500	27,500	6,000	7,00	13,00	0	0	0	0	2,500	7,0000	Dyn	0,000
TR2	3-Phase	6,500	27,500	6,000	7,00	13,00	0	0	0	0	2,500	7,0000	Dyn	0,000
TR4	3-Phase	0,250	6,000	0,400	4,00	1,50	0	0	0	0	0	4,0000	Dyn	0,000
TR6	3-Phase	0,250	6,000	0,400	4,00	1,50	0	0	0	0	0	4,0000	Dyn	0,000

ALLEGATO 1

RELAZIONE TECNICA IMPIANTI ELETTRICI

ALLEGATO 1 <u>Branch Connections</u>									
CKT/Brar	ıch	Conne	cted Bus ID	% Impo	edance, Pos	. Seq., 100 <i>l</i>	NVA Base		
ID	Type	From Bus	To Bus	R	X	Z	Y		
TR-AT1	2W XFMR	BusA_6KV	Bus222	1364,56	2046,84	2460,00			
TR-BT1	2W XFMR	BusB_6kV	Bus47	102,12	591,25	600,00			
TR-CT2	2W XFMR	BusC_6kV	Bus115	1364,56	2046,84	2460,00			
TR1	2W XFMR	Bus220	Bus282	8,47	110,06	110,38			
TR2	2W XFMR	Bus279	Bus284	8,47	110,06	110,38			
TR4	2W XFMR	Bus277	Bus-TR1	887,52	1331,28	1600,00			
TR6	2W XFMR	Bus294	Bus-TR6	887,52	1331,28	1600,00			
Cable5	Cable	BusB_6kV	Bus8	84,42	24,73	87,97	0,001897074		
Cable29	Cable	BusC_6kV	Bus88	47,12	13,80	49,10	0,001058832		
Cable42	Cable	BusC_6kV	Bus125	103,39	30,28	107,73	0,002323548		
Cable75	Cable	BusC_6kV	Bus235	31,16	19,67	36,85	0,00247752		
Cable120	Cable	BusC_6kV	Bus319	47,12	13,80	49,10	0,001058832		
Cable136	Cable	BusA_6KV	Bus367	103,39	30,28	107,73	0,002323548		
Cavo-A-C	Cable	BusA_6KV	BusC_6kV	6,63	9,13	11,28	0,007418851		
Cavo-B-C	Cable	BusB_6kV	BusC_6kV	8,80	12,10	14,96	0,002459124		
Cavo-Nord1-Nord2	Cable	NORD2	NORD1	6,34	7,39	9,74	0,001313208		
Cavo-SSP-B	Cable	Bus02_SSP	BusB_6kV	7,21	9,92	12,26	0,008058816		
Cavo-SSP-Nord2	Cable	Bus01_SSP	NORD2	31,21	36,39	47,94	0,006469164		
Cavo-SSP-SUD-2	Cable	Bus01_SSP	CAB-SUD	7,40	8,63	11,37	0,00153387		
Cavo-TR1	Cable	Bus01_SSP	Bus277	1,31	0,68	1,48	0,000075528		
Cavo-TR6	Cable	Bus01_SSP	Bus294	1,31	0,68	1,48	0,000075528		
CavoTR1_6kV	Cable	Bus282	Bus01_SSP	0,34	0,31	0,46	0,000194544		
CavoTR1_27,5kV	Cable	Bus_SSP	Bus220	0,06	0,04	0,07	0,000963463		
CavoTR2_27,5kV	Cable	Bus_SSP	Bus279	0,06	0,04	0,07	0,000963463		
Cavo_arrivo27,5kV	Cable	Bus_arrivo27,5kV	Bus_SSP	0,04	0,04	0,05	0,000921113		
Cavo-SSP-A	Cable	Cavo-SSP-A~	BusA_6KV	5,07	6,97	8,62	0,005664874		
CavoTR2_6kV	Cable	Bus284	CavoTR2_6kV~	0,34	0,31	0,46	0,000194544		
Cavo-SSP-SUD-1	Cable	Cavo-SSP-SUD-1~	CAB-SUD	7,48	8,72	11,49	0,001550016		
Cavo-SSP-Nord1	Cable	Cavo-SSP-Nord1~	NORD1	15,14	17,65	23,26	0,003137706		

ALLEGATO 1

RELAZIONE TECNICA IMPIANTI ELETTRICI

ALLEGATO 1 LOAD FLOW REPORT													
Bus	Volt	tage	Gene	ration	L	.oad		Load Flow			XFMR		
ID	kV	kV	Ang.	MW	Mvar	MW	Mvar	ID	MW	Mvar	Amp	%PF	%Тар
Bus-TR1	0,400	0,395	-2,8	0	0	0,044	0,021	Bus277	-0,044	-0,021	71,3	90,0	
Bus-TR6	0,400	0,395	-2,8	0	0	0,044	0,021	Bus294	-0,044	-0,021	71,3	90,0	
Bus01_SSP	6,000	5,971	-2,6	0	0	0	0	NORD2	0,678	0,372	74,8	87,7	
								CAB-SUD	0,148	0,073	16,0	89,6	
								Bus277	0,044	0,022	4,8	89,9	
								Bus294	0,044	0,022	4,8	89,9	
								Bus282	-4,203	-2,193	458,4	88,7	
								Bus02_SSP	3,289	1,704	358,2	88,8	
Bus02_SSP	6,000	5,971	-2,6	0	0	0	0	BusB_6kV	3,289	1,704	358,2	88,8	
								Bus01_SSP	-3,289	-1,704	358,2	88,8	
								Bus03_SSP	0,000	0,000	0,0	0,0	
* Bus3_Sccmax	27,500	27,500	0,0	4,224	2,446	0	0	Bus_arrivo27,5kV	4,224	2,446	102,5	86,5	
Bus03 SSP	6,000	5,971	-2,6	0	0	0	0	Bus02 SSP	0,000	0,000	0,0	0,0	
_								Bus127	-0,401	-0,225	474,9	87,2	
					&			Bus368					
BusA_6KV	6,000	5,918	-2,8	0	0	0	0	Bus367	0,512	0,292	57,5	86,9	
								BusC_6kV	-0,661	-0,362	73,6	87,7	
								Cavo-SSP-A~	0,000	-0,006	0,5	0,0	
								Bus222	0,149	0,076	16,3	89,1	
BusB_6kV	6,000	5,947	-2,7	0	0	0	0	Bus8	0,490	0,280	54,8	86,9	
								BusC_6kV	2,693	1,372	293,4	89,1	
								Bus02_SSP	-3,279	-1,698	358,5	88,8	
								Bus47	0,096	0,047	10,4	89,8	
BusC_6kV	6,000	5,922	-2,8	0	0	0	0	Bus88	0,200	0,113	22,4	87,0	
								Bus125	0,491	0,279	55,0	86,9	
								Bus235	0,942	0,403	99,9	91,9	
								Bus319	0,200	0,113	22,4	87,0	
								BusA 6KV	0,662	0,356	73,2	88,1	
								BusB 6kV	-2,684	-1,363	293,5	89,2	
								Bus115	0,191	0.099	20.9	88,8	
Bus_arrivo27,5kV	27,500	27,500	0,0	0	0	0	0	Bus SSP	4,224	2,446	102,5	86,5	
1	,	,,,,,	.,.					Bus3_Sccmax	-4,224	-2,446	102,5	86,5	
Bus SSP	27,500	27,499	0,0	0	0	0	0	Bus220	4,224	2,448	102,5	86,5	
1	,	' '	.,.					Bus279	0,000	-0,001	0,0	0,0	
								Bus_arrivo27,5kV	-4,224	-2,447	102,5	86,5	
CAB-SUD	6,000	5,970	-2,6	0	0	0,148	0,076	Bus01_SSP	-0,148	-0,075	16,1	89,3	
1	-,		_,-	•	-		-,	Cavo-SSP-SUD-1~	0,000	-0,002	0,148	0,000	
NORD1	6,000	5,949	-2,6	0	0	0,210	0,119	NORD2	-0,210	-0,116	23,3	87,6	
1	-,		_,-	•	-		.,	Cavo-SSP-Nord1~	0,000	-0,003	0,3	0,0	
NORD2	6,000	5,950	-2,6	0	0	0,465	0,262	NORD1	0,210	0,114	23,2	87,9	
	-,	-,	_,-	•	-		-,	Bus01 SSP	-0,676	-0.376	75,1	87,4	
Cavo-SSP-A~	6.000	5,918	-2.8	0	0	0	0	BusA 6KV	0.000	0.000	0,0	0,0	
CavoTR2_6kV~	6,000	6,150	0,0	0	0	0	0	Bus284	0,000	0,000	0,0	0,0	
Cavo-SSP-SUD-1~	6,000	5,970	-2,6	0	0	0	0	CAB-SUD	0,000	0,000	0,0	0,0	
Cavo-SSP-Nord1~	6,000	5,949	-2,6	0	0	0	0	NORD1	0,000	0,000	0,0	0,0	
	.,	.,		_			-		.,		.,-	- /-	

ALLEGATO 1

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 1 Bus Loading Summary Report Directly Connected Load Total Bus Load Bus Constant kVA Constant Z Constant I Generic Percent MW % PF Loading ID kV Rated Amp MW Myar MW Mvar MW Mvar Myar MVA Amp Bus-TR1 0,400 -0,000 0,000 0,044 0,021 0 0 0 0 0,049 90,0 71,3 Bus-TR6 0,400 -0,000 0,000 0,044 0,049 71,3 0,021 0 0 0 0 90,0 1250,000 4,741 458,4 36,7 Bus01 SSP 6,000 0 0 0 0 0 0 0 0 88,7 1250,000 Bus02 SSP 6,000 0 0 0 0 0 0 0 0 3,704 88,8 358,2 28,7 Bus3_Sccmax 27,500 0 0 0 0 0 0 0 0 4,881 86,5 102,5 6,000 1250,000 0 0 0 0 0 0 0 0 0,0 Bus03_SSP 0 0,0 BusA 6KV 1250,000 0.000 -0.000 0.757 5.9 6.000 0 0 0 0 0 0 87.4 73.8 1250,000 BusB_6kV 6,000 -0,000 -0,000 0 0 0 0 0 0 3,693 88,8 358,5 28,7 BusC_6kV 6,000 0,000 -0,000 0 0 0 0 0 0 3,011 89,2 293,5 Bus_arrivo27,5kV 27,500 0 0 0 0 0 0 0 0 4,881 86,5 102,5 800,000 Bus SSP 27,500 -0.000 -0.000 0 0 0 0 0 4.882 86.5 102,5 12,8 0 CAB-SUD 0,082 6,000 0.044 0.067 0.032 0 0 0 0 0,167 88,9 16,1 NORD1 6,000 0,169 0,095 0,041 0,023 0 0 0 0 0,241 87,1 23,4 NORD2 6,000 0,374 0,210 0,092 0,052 0 0 0 0 0,774 87,4 75,1

ALLEGATO 1

RELAZIONE TECNICA IMPIANTI ELETTRICI

ALLEGATO 1 Branch Loading Summary Report									
CKT / Branch		Cal	ble & Reacto	r			Transforme	r	
ID	Type	Ampacity	Loading	%	Capability	Loadir	ıg (input)	Loading	(output)
ID.	Type	(Amp)	Amp	70	(MVA)	MVA	%	MVA	%
Cavo-A-C	Cable	641,00	73,57	11,48					
Cavo-B-C	Cable	641,00	293,50	45,79					
Cavo-SSP-B	Cable	641,00	358,51	55,93					
Cavo-SSP-Nord2	Cable	252,72	75,06	29,70					
Cavo-SSP-SUD-2	Cable	352,00	16,07	4,57					
Cavo-TR1	Cable	152,99	4,76	3,11					
Cavo-TR6	Cable	152,99	4,76	3,11					
CavoTR1_6kV	Cable	818,29	458,39	56,02					
CavoTR1_27,5kV	Cable	262,31	102,51	39,08					
CavoTR2_27,5kV	Cable	262,31	0,02	0,01					
Cavo_arrivo27,5kV	Cable	346,55	102,49	29,57					
Cavo-SSP-A	Cable	641,00	0,54	0,08					
CavoTR2_6kV	Cable	818,29	0,02	0,00					
Cavo-SSP-SUD-1	Cable	352,00	0,15	0,04					
Cavo-SSP-Nord1	Cable	252,72	0,30	0,12					
TR-AT1	Transformer				0,250	0,1675051	67,00204	0,1615014	64,60057
TR-BT1	Transformer				1,000	0,1066608	10,66608	0,1062543	10,62543
TR-CT2	Transformer				0,800	0,2148311	26,85389	0,2049543	25,61929
TR1	Transformer				6,500	4,882424	75,11421	4,741694	72,94913
TR2	Transformer				5,000	0,000204383	0,004087664	0,000204383	0,004087655
TR4	Transformer				0,250	0,0491792	19,67168	0,04884203	19,53681
TR6	Transformer				0,250	0,0491792	19,67168	0,04884203	19,53681

Branch Losses Summary Report										
CKT / Branch	From-To E	us Flow	To-From	Bus Flow	Lo	sses	% Bus Voltage			
ID	MW	Mvar	MW	Mvar	kW	kvar	From	То	% Drop Vmag	
TR4	-0,044	-0,021	0,044	0,022	0,2	0,3	98,8	99,5	0,68	
TR6	-0,044	-0,021	0,044	0,022	0,2	0,3	98,8	99,5	0,68	
Cavo-SSP-Nord2	0,678	0,372	-0,676	-0,376	1,9	-4,2	99,5	99,2	0,35	
Cavo-SSP-SUD-2	0,148	0,073	-0,148	-0,075	0,0	-1,5	99,5	99,5	0,02	
Cavo-TR1	0,044	0,022	-0,044	-0,022	0,0	-0,1	99,5	99,5	0,00	
Cavo-TR6	0,044	0,022	-0,044	-0,022	0,0	-0,1	99,5	99,5	0,00	
CavoTR1_6kV	-4,203	-2,193	4,204	2,193	0,8	0,5	99,5	99,5	0,02	
Cavo-SSP-B	3,289	1,704	-3,279	-1,698	10,0	5,8	99,5	99,1	0,41	
Cable5	-0,488	-0,281	0,490	0,280	2,7	-1,1	98,6	99,1	0,49	
TR-BT1	-0,096	-0,046	0,096	0,047	0,1	0,7	98,7	99,1	0,38	
Cable29	-0,199	-0,114	0,200	0,113	0,3	-1,0	98,6	98,7	0,11	
TR-CT2	-0,184	-0,089	0,191	0,099	6,3	9,5	96,5	98,7	2,18	
Cable42	-0,487	-0,280	0,491	0,279	3,4	-1,3	98,1	98,7	0,60	
CavoTR1_27,5kV	-4,224	-2,449	4,224	2,448	0,1	-0,9	100,0	100,0	0,00	
TR1	4,224	2,449	-4,204	-2,193	19,7	256,0	100,0	99,5	0,45	
TR-AT1	-0,145	-0,070	0,149	0,076	3,8	5,8	97,5	98,6	1,16	
Cable75	-0,939	-0,403	0,942	0,403	3,4	-0,3	98,3	98,7	0,38	
CavoTR2_27,5kV	0,000	0,000	0,000	-0,001	0,0	-1,0	100,0	100,0	0,00	
TR2	0,000	0,000	0,000	0,000	0,0	0,0	100,0	102,5	2,50	
CavoTR2_6kV	0,000	0,000	0,000	0,000	0,0	-0,2	102,5	102,5	0,00	
Cable120	-0,199	-0,114	0,200	0,113	0,3	-1,0	98,6	98,7	0,11	
Cable136	-0,508	-0,293	0,512	0,292	3,7	-1,2	98,0	98,6	0,63	
Cavo-A-C	-0,661	-0,362	0,662	0,356	0,4	-6,7	98,6	98,7	0,08	
Cavo-SSP-A	0,000	-0,006	0,000	0,000	0,0	-5,5	98,6	98,6	0,00	
Cavo-B-C	2,693	1,372	-2,684	-1,363	8,2	8,9	99,1	98,7	0,41	
Cavo_arrivo27,5kV	4,224	2,446	-4,224	-2,447	0,1	-0,8	100,0	100,0	0,00	
Cavo-SSP-SUD-1	0,000	-0,002	0,000	0,000	0,0	-1,5	99,5	99,5	0,00	
Cavo-Nord1-Nord2	-0,210	-0,116	0,210	0,114	0,0	-1,2	99,1	99,2	0,02	
Cavo-SSP-Nord1	0,000	-0,003	0,000	0,000	0,0	-3,1	99,1	99,1	0,00	

SUMMARY OF TOTAL GENERATION, LOADING & DEMAND										
MW Mvar MVA % PF										
Source (Swing Buses):	4,224	2,446	4,881	86,53	Lagging					
Source (Non-Swing Buses):	0,000	0,000	0,000							
Total Demand:	4,224	2,446	4,881	86,53	Lagging					
Total Motor Load:	3,137	1,648	3,543	88,53	Lagging					
Total Static Load:	0,990	0,501	1,110	89,24	Lagging					
Total Constant I Load:	0,000	0,000	0,000							
Total Generic Load:	0,000	0,000	0,000							
Apparent Losses:	0,097	0,298								
System Mismatch:	0,000	0,000								

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen		09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	07	D:	111
	IMPIANTI ELETTRICI	Pagina	87	DI	111

ALLEGATO 2 - PROFILO DI TENSIONE (CONFIGURAZIONE FUTURA)

ALLEGATO 2

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 2 PROFILO DI TENSIONE (CONFIGURAZIONE FUTURA)

Load Flow Analysis

 Method of Solution:
 Newton-Raphson Method

 Maximum No. of Iteration:
 99

 Precision of Solution:
 0.0001000

 System Frequency:
 50.00 Hz

Unit System: Metric
Project Filename: TriesteMoloVII

				<u>Bu</u>	<u>ıs Input Data</u>							
					·				Load			
Bus			Initial Vo	ltage	Consta	nt kVA	Const	ant Z		nstant I		Generic
ID	kV	Sub-sys	kV	Ang.	MW	Mvar	MW	Mvar	MW	Mvar	MW	Mvar
Bus-TR1	0,400	1	0,400	0,0			0,045	0,022				
Bus-TR6	0,400	1	0,400	0,0			0,045	0,022				
Bus01 SSP	6,000	1	6,000	0,0								
Bus02 SSP	6,000	1	6,000	0,0								
Bus3 Sccmax	27,500	1	27,500	0,0								
Bus03 SSP	6,000	1	6,000	0,0								
Bus8	6,000	1	6,000	0,0							-	
Bus9	0,575	1	0,575	0,0	0.044	0.025	0.044	0.025			-	
Bus10	0,400 6,000	1	0,400 6,000	0,0	0,044	0,025	0,044	0,025				
Bus11	0,575	1	0,575	0,0		-	-			-	-	
Bus12	0,400	1	0,400	0,0	0,033	0,018	0,033	0,018		-	-	
Bus13 Bus47	0,400	i	0,400	0,0	0,033	0,018	0,033	0,048		-	-	
Bus86	0,575	1	0,575	0,0			0,050	0,010				
Bus87	0,400	i	0,400	0,0	0,028	0,016	0,028	0,016				
Bus88	6,000	1	6,000	0,0		-,						
Bus115	0,400	1	0,400	0,0			0,198	0,096				
Bus125	6,000	1	6,000	0,0								
Bus126	0,575	1	0,575	0,0								
Bus127	0,400	1	0,400	0,0	0,044	0,025	0,044	0,025				
Bus220	27,500	1	27,500	0,0								
Bus222	0,400	1	0,400	0,0			0,153	0,074				
Bus235	6,000	1	6,000	0,0		-				-		
Bus236	0,575	1	0,575	0,0	0.000	0.000	0.000	0.000		-		
Bus237	0,400	1	0,400	0,0	0,092	0,039	0,092	0,039		-		
Bus277	6,000	1	6,000	0,0		-	-			-		
Bus279	27,500 27,500	1	27,500 27,500	0,0	-	-	-			-	-	
Bus280	6,000	1	6,000	0,0	-	-	-			-	-	
Bus282 Bus284	6,000	1	6,000	0,0							-	
Bus285	6,000	1	6,000	0,0						-	-	
Bus294	6,000	i	6,000	0,0								
Bus310	6,000	1	6,000	0,0								
Bus311	0,575	1	0,575	0,0								
Bus312	0,400	1	0,400	0,0	0,033	0,018	0,033	0,018				
Bus319	6,000	1	6,000	0,0								
Bus320	0,575	1	0,575	0,0								
Bus321	0,400	1	0,400	0,0	0,028	0,016	0,028	0,016				
Bus322	6,000	1	6,000	0,0								
Bus323	0,575	1	0,575	0,0								
Bus324	0,400	1	0,400	0,0	0,028	0,016	0,028	0,016				
Bus337	6,000	1	6,000	0,0								
Bus338	0,575	1	0,575	0,0	0.020	0.016	0.020	0.016			-	
Bus339	0,400	1	0,400	0,0	0,028	0,016	0,028	0,016				
Bus352	6,000 0,575	1	6,000 0,575	0,0		-	-			-	-	
Bus353 Bus354	0,400	1	0,400	0,0	0,028	0,016	0,028	0,016		-	-	
Bus355	6,000	1	6,000	0,0	0,020	0,010	0,020	0,010		-	-	
Bus356	0,575	i i	0,575	0,0								
Bus357	0,400	1	0,400	0,0	0,028	0,016	0,028	0,016				
Bus367	6,000	1	6,000	0,0		1						
Bus368	0,575	1	0,575	0,0								
Bus369	0,400	1	0,400	0,0	0,054	0,031	0,054	0,031				
Bus371	0,400	1	0,400	0,0			0,090	0,044				
Bus373	0,400	1	0,400	0,0			0,027	0,013				
BusA 6KV	6,000	1	6,000	0,0		-				-		
BusB_6kV	6,000	1	6,000	0,0		-	-			-		
BusC 6kV	6,000	1	6,000	0,0		-	-			-		
Bus arrivo27,5kV	27,500 27,500	2	27,500 27,500	0,0	-	-	-			-	-	
Bus Scemin	27,500	1	27,500	0,0	-	-	-			-	-	
Bus SSP CAB-SUD	6,000	1	6,000	0,0	0,163	0,088	0,088	0,044		-	-	
NORD1	6,000	i	6,000	0,0	0,103	0,190	0,088	0,048				
NORD2	6,000	1	6,000	0,0	0,747	0,421	0,187	0,105		1		
Mtr1~	0,575	3	0,575	0,0	0,397	0,225						
Mtr3~	0,575	4	0,575	0,0	0,397	0,225						
Mtr25~	0,575	6	0,575	0,0	0,142	0,080						
Mtr36~	0,575	7	0,575	0,0	0,397	0,225						
Mtr70~	0,575	8	0,575	0,0	0,748	0,311						
Mtr86~	0,575	5	0,575	0,0	0,397	0,225						
Mtr89~	0,575	9	0,575	0,0	0,142	0,080						
Mtr90~	0,575	10	0,575	0,0	0,142	0,080						
Mtr95~	0,575	11	0,575	0,0	0,142	0,080	-					
Mtr100~	0,575	12	0,575	0,0	0,142	0,080				-		
Mtr101~	0,575	13	0,575	0,0	0,142	0,080	-			-		
Mtr105~	0,575	14	0,575	0,0	0,397	0,225	-			-		
Cavo-SSP-A~	6,000	6,000	0,000	-	-	-	-			-		
CavoTR3_6kV~ Cavo-SSP-SUD-1~	6,000 6,000	6,000	0,000	-	-	-	-			-	-	
		0,000	0,000	1			II.				II.	1

ALLEGATO 2

RELAZIONE TECNICA IMPIANTI ELETTRICI

				EGATO 2					
			<u>Line/Cab</u>	ole Input D	<u>ata</u>				
		Ohms or Sieme	ns/1000 m per (Conductor (Cable) or per	Phase (Line	e)		
Line/Cable			Len	gth					
ID	Library	Size	Adj.	. (m)	#/Phase	T (°C)	R	X	Υ
Cable5	11NCUN3	50	645,0	0,0	1	75	0,471165	0,138000	0,000082
Cable7	11NCUN3	50	440,0	0,0	1	75	0,471165	0,138000	0,000082
Cable29	11NCUN3	50	360,0	0,0	1	75	0,471165	0,138000	0,000082
Cable42	11NCUN3	50	790,0	0,0	1	75	0,471165	0,138000	0,000082
Cable75	11NCUN3	120	600,0	0,0	1	75	0,186940	0,118000	0,000115
Cable117	11NCUN3	50	440,0	0,0	1	75	0,471165	0,138000	0,000082
Cable120	11NCUN3	50	360,0	0,0	1	75	0,471165	0,138000	0,000082
Cable121	11NCUN3	50	360,0	0,0	1	75	0,471165	0,138000	0,000082
Cable126	11NCUN3	50	360,0	0,0	1	75	0,471165	0,138000	0,000082
Cable131	11NCUN3	50	360,0	0,0	1	75	0,471165	0,138000	0,000082
Cable132	11NCUN3	50	360,0	0,0	1	75	0,471165	0,138000	0,000082
Cable136	11NCUN3	50	790,0	0,0	1	75	0,471165	0,138000	0,000082
Cavo-A-C	11NCUN3	300	626,0	0,0	2	75	0,076302	0,105000	0,000165
Cavo-B-C	11NCUN3	300	415,0	0,0	1	75	0,076302	0,105000	0,000165
Cavo-SSP-B	11NCUN3	300	680,0	0,0	2	75	0,076302	0,105000	0,000165
Cavo-SSP-Nord1	11NCUN3	240	583,0	0,0	1	75	0,093470	0,109000	0,000150
Cavo-SSP-Nord2	11NCUN3	240	1202,0	0,0	1	75	0,093470	0,109000	0,000150
Cavo-SSP-SUD-2	11NCUN3	240	285,0	0,0	1	75	0,093470	0,109000	0,000150
Cavo-TR1	11NCUN3	95	20,0	0,0	1	75	0,236536	0,123000	0,000105
Cavo-TR6	11NCUN3	95	20,0	0,0	1	75	0,236536	0,123000	0,000105
CavoTR1_6kV	11NCUN3	185	20,0	0,0	2	75	0,122083	0,112000	0,000135
CavoTR1_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,236536	0,143000	0,000064
CavoTR2_6kV	11NCUN3	185	20,0	0,0	2	75	0,122083	0,112000	0,000135
CavoTR2_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,236536	0,143000	0,000064
CavoTR3_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,236536	0,143000	0,000064
Cavo_arrivo27,5kV	33NCUN1	150	20,0	0,0	1	75	0,151650	0,135000	0,000061
Cavo-SSP-A	11NCUN3	300	478,0	0,0	2	75	0,076302	0,105000	0,000165
CavoTR3_6kV	11NCUN3	185	20,0	0,0	2	75	0,122083	0,112000	0,000135
Cavo-SSP-SUD-1	11NCUN3	240	288,0	0,0	1	75	0,093470	0,109000	0,000150
Cavo-Nord1-Nord2	11NCUN3	240	244.0	0,0	1	75	0,093470	0,109000	0,000150

2-Winding Transformer Input Data														
Transformer		Ratin	ıg			Z	Variation				% Tap Settin	g	Adjusted	Phase Shift
ID	Phase	MVA	Prim. kV	Sec. kV	% Z1	X1/R1	+ 5%	- 5%	% Tol.	Prim.	Sec.	% Z	Туре	Angle
TR-AT1	3-Phase	0,250	6,000	0,400	6,00	1,50	0	0	0	0	2,500	6,0000	Dyn	0,000
TR-BT1	3-Phase	1,000	6,000	0,400	6,00	5,79	0	0	0	0	0	6,0000	Dyn	0,000
TR-BT2	3-Phase	1,000	6,000	0,400	6,00	5,79	0	0	0	0	0	6,0000	Dyn	0,000
TR-BT3	3-Phase	0,250	6,000	0,400	6,00	4,70	0	0	0	0	0	6,0000	Dyn	0,000
TR-CT2	3-Phase	0,250	6,000	0,400	6,00	1,50	0	0	0	0	2,500	6,0000	Dyn	0,000
TR1	3-Phase	6,500	27,500	6,000	7,00	13,00	0	0	0	0	2,500	7,0000	Dyn	0,000
TR2	3-Phase	6,500	27,500	6,000	7,00	13,00	0	0	0	0	2,500	7,0000	Dyn	0,000
TR3	3-Phase	6,500	27,500	6,000	7,00	13,00	0	0	0	0	0	7,0000	Dyn	0,000
TR4	3-Phase	0,250	6,000	0,400	4,00	1,50	0	0	0	0	0	4,0000	Dyn	0,000
TR6	3-Phase	0,250	6,000	0,400	4,00	1,50	0	0	0	0	0	4,0000	Dyn	0,000

ALLEGATO 2

RELAZIONE TECNICA IMPIANTI ELETTRICI

		ALLEGATO <u>Branch Conne</u>					
CKT/Br	anch	Connected	Bus ID	% Impeda	nce, Pos. Se	q., 100 MV	A Base
	Type	From Bus	To Bus	R	X	Z	Y
TR-AT1	2W XFMR	BusA_6KV	Bus222	1364,56	2046,84	2460,00	
TR-BT1	2W XFMR	BusB_6kV	Bus47	102,12	591,25	600,00	
TR-BT2	2W XFMR	BusB_6kV	Bus371	102,12	591,25	600,00	
TR-BT3	2W XFMR	BusB_6kV	Bus373	499,46	2347,45	2400,00	
TR-CT2	2W XFMR	BusC_6kV	Bus115	1364,56	2046,84	2460,00	
TR1	2W XFMR	Bus220	Bus282	8,47	110,06	110,38	
TR2	2W XFMR	Bus279	Bus284	8,47	110,06	110,38	
TR3	2W XFMR	Bus280	Bus285	8,26	107,38	107,69	
TR4	2W XFMR	Bus277	Bus-TR1	887,52	1331,28	1600,00	
TR6	2W XFMR	Bus294	Bus-TR6	887,52	1331,28	1600,00	
Cable5	Cable	BusB_6kV	Bus8	84,42	24,73	87,96	0,00189
Cable7	Cable	BusB_6kV	Bus11	57,59	16,87	60,01	0,00129
Cable29	Cable	BusC_6kV	Bus88	47,12	13,80	49,10	0,0010
Cable42	Cable	BusC_6kV	Bus125	103,39	30,28	107,74	0,0023
Cable75	Cable	BusC_6kV	Bus235	31,16	19,67	36,84	0,0024
Cable117	Cable	BusB_6kV	Bus310	57,59	16,87	60,01	0,00129
Cable120	Cable	BusC_6kV	Bus319	47,12	13,80	49,10	0,0010
Cable121	Cable	BusC_6kV	Bus322	47,12	13,80	49,10	0,0010
Cable126	Cable	BusC_6kV	Bus337	47,12	13,80	49,10	0,0010
Cable131	Cable	BusC_6kV	Bus352	47,12	13,80	49,10	0,0010
Cable132	Cable	BusC_6kV	Bus355	47,12	13,80	49,10	0,0010
Cable136	Cable	BusA_6KV	Bus367	103,39	30,28	107,74	0,0023
Cavo-A-C	Cable	BusA_6KV	BusC 6kV	6,63	9,13	11,29	0,0074
Cavo-B-C	Cable	BusB 6kV	BusC 6kV	8,80	12,10	14,96	0,0024
Cavo-SSP-B	Cable	Bus02_SSP	BusB_6kV	7,21	9,92	12,26	0,0080
Cavo-SSP-Nord1	Cable	Bus01_SSP	NORD1	15,14	17,65	23,25	0,0031
Cavo-SSP-Nord2	Cable	Bus01 SSP	NORD2	31,21	36,39	47,94	0,0064
Cavo-SSP-SUD-2	Cable	Bus01_SSP	CAB-SUD	7,40	8,63	11,37	0,0015
Cavo-TR1	Cable	Bus01_SSP	Bus277	1,31	0,68	1,48	0,0000
Cavo-TR6	Cable	Bus01_SSP	Bus294	1,31	0,68	1,48	0,0000
CavoTR1_6kV	Cable	Bus282	Bus01_SSP	0,34	0,31	0,46	0,00019
CavoTR1_27,5kV	Cable	Bus_SSP	Bus220	0,06	0,04	0,07	0,0009
CavoTR2_6kV	Cable	Bus284	Bus02_SSP	0,34	0,31	0,46	0,00019
CavoTR2_27,5kV	Cable	Bus_SSP	Bus279	0,06	0,04	0,07	0,00096
CavoTR3_27,5kV	Cable	Bus_SSP	Bus280	0,06	0,04	0,07	0,00096
Cavo_arrivo27,5kV	Cable	Bus_arrivo27,5kV	Bus_SSP	0,04	0,04	0,05	0,00092
Cavo-SSP-A	Cable	Cavo-SSP-A~	BusA_6KV	5,07	6,97	8,62	0,00566
CavoTR3 6kV	Cable	Bus285	CavoTR3 6kV~	0,34	0,31	0,46	0,00019
Cavo-SSP-SUD-1	Cable	Cavo-SSP-SUD-1~	CAB-SUD	7,48	8,72	11,49	0,0015
Cavo-Nord1-Nord2	Cable	Cavo-Nord1-Nord2~	NORD1	6,34	7,39	9,73	0,001

ALLEGATO 2

Trieste Marine Terminal

RELAZIONE TECNICA IMPIANTI ELETTRICI

D ₁₁ -	11.1	200		novation.			D FLOW REPORT	1	Ele:			VES
Bus	kV	age Ang.	MW	neration Mvar	Loa MW	Mvar	ID	Load MW	Flow Mvar	Amp	%PF	XFMI %Tap
Bus-TR1	0,400	0,397	-2,3	0,044	0,022	IVIVAI	Bus277	-0,044	-0,022	71,7	90,0	701 a j
Bus-TR6	0,400	0,397	-2,3	0,044	0,022		Bus294	-0,044	-0,022	71,7	90,0	
2220	6,000	6,001	-2,1	0,044	0,022	0	NORD1	0,422	0,234	46,4	87,5	
	0,000	0,001	2,1			"	NORD2	0,936	0,523	103,1	87,3	
							CAB-SUD	0,251	0,129	27,1	89,0	
Bus01_SSP							Bus277	0,045	0,022	4,8	89,9	
Duso1_33F							Bus294	0,045	0,022	4,8	89,9	
							Bus282	-3,430	-1,853	375,1	88,0	
							Bus02_SSP	1,732	0,924	188,8	88,2	
	6,000	6,001	-2,1	0	0		BusB_6kV	5,162	2,777	563,9	88,1	
	0,000	0,001	-2,1	U	"		Bus284	-3,430	-1,853	375,1	88,0	
Bus02_SSP							Bus01_SSP	-1,732	-0,924	188,8	88,2	
							Bus03_SSP	0,000	0,000	0,0	0,0	
* Bus3 Sccmax	27,500	27,500	0,0	6,888	4,046		Bus_arrivo27,5kV	6,888	4,046	167,7	86,2	
Bus03_SSP	6,000	6,001	-2,1	0	0		Bus02_SSP	0,000	0,000	0,0	0,0	
Du303_331	6,000	5,933	-2,2	0	0		BusB_6kV	-0,488	-0,281	54,8	86,7	
Bus8	0,000	3,555	2,2				Bus9	0,488	0,281	54,8	86,7	
Duso							Bus10	0,400	0,201	54,0	00,7	
	0,575	0,563	-2,8	0	0,401	0,225	VFD1	0,401	0,225	471,1	87,2	
Bus9	0,3/3	0,363	-2,0	U	0,401	0,223	Bus10	-0,401	-0,225	471,1	87,2 87,2	
D437							Bus8	-0,401	-0,223	7/1,1	07,2	
	0,400	0,393	-2,6	0	0,086	0,048	Bus8	-0,086	-0,048	144,4	87,0	
Bus10	0,400	0,393	-2,0	U	0,000	0,048	Bus9	-0,080	-0,048	1 77,4	07,0	
	6,000	5,943	-2.2	0	0	-	BusB_6kV	-0,467	-0,268	52,3	86,7	
Bus11	0,000	3,943	-2,2	U	"		Bus12	11 '	0,268	52,3 52,3	86,7	
DUSTI							Bus 12 Bus 13	0,467	0,208	32,3	00,/	
	0,575	0,564	-2,8	0	0,401	0,225	VFD3	0,401	0,225	470,2	87,2	
Bus12	0,3/3	0,304	-2,0	U	0,401	0,223	Bus13	-0,401	-0,225	470,2 470,2	87,2 87,2	
DUS 12								-0,401	-0,223	4/0,2	07,2	
	0.400	0.304	- 26		0.004	10036	Bus11 Bus11	0001	0.036	108,3	97.0	
Bus13	0,400	0,394	-2,6	0	0,064	0,036		-0,064	-0,036	100,3	87,0	
Duc47	0.400	0.300	- 26		0.000	0.047	Bus12	0.000	0.047	155,7	00.0	
Bus47	0,400	0,396	-2,6 -2,9	0	0,096 0,143	0,047	BusB_6kV VFD25	-0,096 0,143	-0,047 0,080		90,0 87,2	
D06	0,575	0,564	-2,9	U	0,143	0,080		11 '		168,5		
Bus86							Bus87	-0,143	-0,080	168,5	87,2	
	0.400	0.202	2.7		0.056	0.031	Bus88				_	
	0,400	0,393	-2,7	0	0,056	0,031	Bus88	0.056	0.031	03.0	07.0	
Bus87								-0,056	-0,031	93,8	87,0	
							D.1606					
	6000	5.024	- 2.4		-		Bus86					
D00	6,000	5,924	-2,4	0	0		BusC_6kV	0.100		22.4	000	
Bus88							Bus86 Bus87	-0,199	-0,114	22,4	86,8	
Bus115	0,400	0.207	20	0	0.105	10000	BusC 6kV	22,4	86,8	306,9	90,0	2,5
Dus I I D		0,387	-3,9	0	0,185	0,090	BusC_6kV	-0,185	-0,090	55,1		2,5
Bus125	6,000	5,894	-2,3	U	0		BusC_6KV Bus126	-0,487	-0,280		86,7 86.7	
Dus 123								0,487	0,280	55,1	86,7	
	0.575	0.560	.20		0.401	0.225	Bus127	0.401	0.225	474.2	97.3	
Bus126	0,575	0,560	-2,9	0	0,401	0,225	VFD36	0,401	0,225 -0,225	474,3 474,3	87,2 87,2	
DU3120							Bus127 Bus125	-0,401	-0,223	4/4,3	07,2	
	0.400	0.201	2.7		0.005	0.040		0.005	0.040	1/1/1	970	
Bus127	0,400	0,391	-2,7	0	0,085	0,048	Bus125 Bus126	-0,085	-0,048	144,4	87,0	
	27.500	27.400			-		Bus_SSP	2444	2.025	02.0	963	
Bus220	27,500	27,498	0,0	0	0			-3,444	-2,025	83,9	86,2	
D222		0.300	3.6		0.1	0.071	Bus282	3,444	2,025	83,9	86,2	2.5
Bus222	0,400	0,390	-3,6	0	0,146	0,071	BusA_6KV	-0,146	-0,071	239,5	90,0	2,5
Pue 225	6,000	5,908	-2,4	0	0		BusC_6kV	-0,939	-0,403	99,9	91,9	
Bus235							D227	0,939	0,403	99,9	91,9	
	0.575	0.561			0.754	0.211	Bus237	0.754	0.211	041.3	02.5	
Pur 226	0,575	0,561	-3,2	0	0,756	0,311	VFD70	0,756	0,311	841,3	92,5	
Bus236							Bus237	-0,756	-0,311	841,3	92,5	
		0.201				0.77	Bus235		0.0==	200 =		
Bus237	0,400	0,391	-3,0	0	0,180	0,077	Bus235	-0,180	-0,077	288,7	92,0	
		6.00:		_	-		Bus236		0.00-	4.0		
Bus277	6,000	6,001	-2,1	0	0		Bus01_SSP	-0,045	-0,022	4,8	89,8	
					-		Bus-TR1	0,045	0,022	4,8	89,8	
Bus279	27,500	27,498	0,0	0	0		Bus_SSP	-3,444	-2,025	83,9	86,2	
•					-	\square	Bus284	3,444	2,025	83,9	86,2	
Bus280	27,500	27,499	0,0	0	0		Bus_SSP	0,000	0,000	0,0	0,0	
					-	\square	Bus285	0,000	0,000	0,0	0,0	
	6,000	6,002	-2,1	0	0	0	Bus01_SSP	3,431	1,853	375,1	88,0	
Bus282					-	\square	Bus220	-3,431	-1,853	375,1	88,0	2,5
Bus282		6,002	-2,1	0	0		Bus02_SSP	3,431	1,853	375,1	88,0	
	6,000				II	1 1	Bus279	-3,431	-1,853	375,1	88,0	2,5
Bus282 Bus284												
Bus284	6,000	6,000	0,0	0	0		CavoTR3_6kV~	0,000	0,000	0,0	0,0	
		6,000	0,0	0	0		Bus280	0,000	0,000	0,0	0,0	
Bus284 Bus285		6,000	0,0	0	0		Bus280 Bus01_SSP					
Bus284	6,000						Bus280	0,000	0,000	0,0	0,0	

ALLEGATO 2

Trieste Marine Terminal

RELAZIONE TECNICA IMPIANTI ELETTRICI

						<u>LO</u>	ALLEGATO 2 D FLOW REPORT					
Bus	_	tage		neration	Loa			Load				XFMR
ID	kV	Ang.	MW	Mvar	MW	Mvar	ID Bug313	MW	Mvar	Amp	%PF	%Тар
	0.575	0.564	2.0		0.401	0.225	Bus312	0.401	0.225	470.2	973	
D244	0,575	0,564	-2,8	0	0,401	0,225	VFD86	0,401	0,225	470,2	87,2	
Bus311							Bus312	-0,401	-0,225	470,2	87,2	
							Bus310					
Bus312	0,400	0,394	-2,6	0	0,064	0,036	Bus310	-0,064	-0,036	108,3	87,0	
							Bus311					
	6,000	5,924	-2,4	0	0		BusC_6kV	-0,199	-0,114	22,4	86,8	
Bus319							Bus320	0,199	0,114	22,4	86,8	
							Bus321					
	0,575	0,564	-2,9	0	0,143	0,080	VFD89	0,143	0,080	168,5	87,2	
Bus320							Bus321	-0,143	-0,080	168,5	87,2	
							Bus319					
Bus321	0,400	0,393	-2,7	0	0,056	0,031	Bus319	-0,056	-0,031	93,8	87,0	
Dusszi							Bus320					
	6,000	5,924	-2,4	0	0		BusC_6kV	-0,199	-0,114	22,4	86,8	
Bus322							Bus323	0,199	0,114	22,4	86,8	
							Bus324					
	0,575	0,564	-2,9	0	0,143	0,080	VFD90	0,143	0,080	168,5	87,2	
Bus323							Bus324	-0,143	-0,080	168,5	87,2	
							Bus322					
D22.5	0,400	0,393	-2,7	0	0,056	0,031	Bus322	-0,056	-0,031	93,8	87,0	
Bus324							Bus323					
	6,000	5,924	-2,4	0	0		BusC_6kV	-0,199	-0,114	22,4	86,8	
Bus337		1	'				Bus338	0,199	0,114	22,4	86,8	
							Bus339	.,	' '	• •		
	0,575	0,564	-2,9	0	0,143	0,080	VFD95	0,143	0,080	168,5	87,2	
Bus338	0,5,5	3,504	-,,		3,143	5,500	Bus339	-0,143	-0,080	168,5	87,2	
_ 33334							Bus337	0,173	3,000	. 55,5	07,2	
	0,400	0,393	-2,7	0	0,056	0,031	Bus337	-0,056	-0,031	93,8	87,0	
Bus339	0,.00	0,555			0,050	0,05.	Bus338	0,030	0,031	,-	0,70	
	6,000	5,924	-2,4	0	0		BusC_6kV	-0,199	-0,114	22,4	86,8	
Bus352	0,000	3,52					5450_511	0,199	0,114	22,4	86,8	
543552							Bus354	0,133	",	/-	00,0	
	0,575	0,564	-2,9	0	0,143	0,080	VFD100	0,143	0,080	168,5	87,2	
Bus353	0,575	0,504	2,5		0,145	0,000	Bus354	-0,143	-0,080	168,5	87,2	
Du3333							Bus352	-0,143	-0,000	100,5	07,2	
	0,400	0,393	-2,7	0	0,056	0,031	Bus352	-0,056	-0,031	93,8	87,0	
Bus354	0,400	0,393	-2,/	0	0,030	0,031	Bus353	-0,030	-0,031	93,0	87,0	
	6,000	5.024	24	0	0		BusC_6kV	0.100	0.114	22,4	06.0	
D255	6,000	5,924	-2,4	0	0			-0,199	-0,114		86,8	
Bus355							Bus356	0,199	0,114	22,4	86,8	
	0,575	0.564	20	0	0,143	0,080	Bus357 VFD101	0,143	0.000	160 5	97.2	
Bus356	0,575	0,564	-2,9	U	0,143	0,080			0,080	168,5	87,2 87,2	
DUSSOO							Bus357 Bus355	-0,143	-0,080	168,5	67,2	
	0,400	0,393	-2,7	0	0,056	0,031	Bus355	-0,056	-0,031	93,8	87,0	
Bus357	0,400	0,393	-2,/	0	0,030	0,031	Bus356	-0,030	-0,031	93,0	87,0	
	6,000	5,888	-2,3	0	0		BusA 6KV	-0,509	-0,293	57,5	86,7	
Bus367	0,000	3,000	-2,5	0	0		Bus368	ll l				
DU330/								0,509	0,293	57,5	86,7	
	0.575	0.550	- 20		0.401	0.225	Bus369	0.401	0.225	474.0	07.3	
D.,-260	0,575	0,559	-3,0	0	0,401	0,225	VFD105	0,401	0,225	474,9 474.9	87,2	
Bus368							Bus369	-0,401	-0,225	474,9	87,2	
		0.25				0000	Bus367		0.000			
Bus369	0,400	0,390	-2,8	0	0,106	0,060	Bus367	-0,106	-0,060	180,5	87,0	
		0.25				001	Bus368		0000	440.5		
Bus371	0,400	0,396	-2,5	0	0,088	0,043	BusB_6kV	-0,088	-0,043	142,9	90,0	
Bus373	0,400	0,396	-2,6	0	0,026	0,013	BusB_6kV	-0,026	-0,013	42,8	90,0	
	6,000	5,926	-2,4	0	0		Bus367	0,512	0,292	57,4	86,9	
BusA_6KV							BusC_6kV	-0,662	-0,363	73,5	87,7	
-· ·							Cavo-SSP-A~	0,000	-0,006	0,5	0,0	
							Bus222	0,150	0,076	16,4	89,1	
	6,000	5,962	-2,3	0	0		Bus8	0,491	0,280	54,7	86,9	
							Bus11	0,468	0,267	52,2	86,8	
							Bus310	0,468	0,267	52,2	86,8	
BusB_6kV							BusC_6kV	3,499	1,833	382,5	88,6	
Du3D_UKV							Bus02_SSP	-5,137	-2,751	564,3	88,2	
							Bus47	0,096	0,047	10,4	89,8	
							Bus371	0,088	0,043	9,5	89,8	
							Bus373	0,026	0,013	2,9	89,8	
	6,000	5,930	-2,4	0	0		Bus88	0,200	0,113	22,4	87,0	
							Bus125	0,491	0,279	55,0	86,9	
							Bus235	0,942	0,403	99,8	91,9	
							Bus319	0,200	0,113	22,4	87,0	
							Bus322	0,200	0,113	22,4	87,0	
BusC_6kV							Bus337	0,200	0,113	22,4	87,0	
							Bus352	0,200	0,113	22,4	87,0	
							Bus355	0,200	0,113	22,4	87,0	
							BusA_6KV	0,200	0,113	73,2	88,1	
					14							

ALLEGATO 2

RELAZIONE TECNICA IMPIANTI ELETTRICI

	ALLEGATO 2 LOAD FLOW REPORT											
Bus	Volt	age	Gei	neration	Loa	ıd		Load	Flow			XFMR
ID	kV	Ang.	MW	Mvar	MW	Mvar	ID	MW	Mvar	Amp	%PF	%Тар
							Bus115	0,191	0,099	21,0	88,8	
Bus surius 27 ElsV	27,500	27,500	0,0	0	0		Bus_SSP	6,888	4,046	167,7	86,2	
Bus_arrivo27,5kV							Bus3_Sccmax	-6,888	-4,046	167,7	86,2	
	27,500	27,499	0,0	0	0		Bus220	3,444	2,024	83,9	86,2	
D CCD							Bus279	3,444	2,024	83,9	86,2	
Bus_SSP							Bus280	0,000	-0,001	0,0	0,0	
							Bus_arrivo27,5kV	-6,888	-4,047	167,7	86,2	
CAB-SUD	6,000	5,999	-2,1	0	0,251	0,132	Bus01_SSP	-0,251	-0,130	27,2	88,8	
CAB-20D							Cavo-SSP-SUD-1~	0,000	-0,002	0,1	0,0	
NORDA	6,000	5,995	-2,1	0	0,422	0,238	Bus01_SSP	-0,422	-0,237	46,6	87,2	
NORD1							Cavo-Nord1-Nord2~	0,000	-0,001	0,1	0,0	
NORD2	6,000	5,972	-2,2	0	0,932	0,525	Bus01_SSP	-0,932	-0,525	103,4	87,1	
Cavo-SSP-A~	6,000	5,926	-2,4	0	0		BusA_6KV	0,000	0,000	0,0	0,0	
CavoTR3_6kV~	6,000	6,000	0,0	0	0		Bus285	0,000	0,000	0,0	0,0	
Cavo-SSP-SUD-1~	6,000	5,999	-2,1	0	0		CAB-SUD	0,000	0,000	0,0	0,0	
Cavo-Nord1-Nord2~	6,000	5,995	-2,1	0	0		NORD1	0,000	0,000	0,0	0,0	
VFD1	0,575	0,575	0,0	0,397	0,225		Mtr1~	0,397	0,225	458,1	87,0	
VFD3	0,575	0,575	0,0	0,397	0,225		Mtr3~	0,397	0,225	458,1	87,0	
VFD25	0,575	0,575	0,0	0,142	0,080		Mtr25~	0,142	0,080	163,9	87,0	
VFD36	0,575	0,575	0,0	0,397	0,225		Mtr36~	0,397	0,225	458,1	87,0	
VFD70	0,575	0,575	0,0	0,748	0,311		Mtr70~	0,748	0,311	813,6	92,3	
VFD86	0,575	0,575	0,0	0,397	0,225		Mtr86~	0,397	0,225	458,1	87,0	
VFD89	0,575	0,575	0,0	0,142	0,080		Mtr89~	0,142	0,080	163,9	87,0	
VFD90	0,575	0,575	0,0	0,142	0,080		Mtr90~	0,142	0,080	163,9	87,0	
VFD95	0,575	0,575	0,0	0,142	0,080		Mtr95∼	0,142	0,080	163,9	87,0	
VFD100	0,575	0,575	0,0	0,142	0,080		Mtr100~	0,142	0,080	163,9	87,0	
VFD101	0,575	0,575	0,0	0,142	0,080		Mtr101~	0,142	0,080	163,9	87,0	
VFD105	0,575	0,575	0,0	0,397	0,225		Mtr105~	0,397	0,225	458,1	87,0	

ALLEGATO 2

RELAZIONE TECNICA IMPIANTI ELETTRICI

	ALLEGATO 2 <u>Bus Loading Summary Report</u>													
	Directly Connected Load Total Bus Load													
Bus	Bus Constant kVA Constant Z Constant I Generic												ent	
ID	kV	Rated Amp	MW	Mvar	MW	Mvar	MW	Mvar	MW	Mvar	MVA	% PF	Amp	Loading
Bus-TR1	0,400	-0,000	-0,000	0,044	0,022	0	0	0	0	0,049	90,0	71,7		
Bus-TR6	0,400	-0,000	-0,000	0,044	0,022	0	0	0	0	0,049	90,0	71,7		
Bus01_SSP	6,000	1250,000	0	0	0	0	0	0	0	0	3,899	88,0	375,1	30,0
Bus02_SSP	6,000	1250,000	0	0	0	0	0	0	0	0	5,862	88,1	563,9	45,1
Bus3_Sccmax	27,500	0	0	0	0	0	0	0	0	7,988	86,2	167,7		
Bus03_SSP	6,000	1250,000	0	0	0	0	0	0	0	0	0	0,0	0,0	
BusA_6KV	6,000	1250,000	-0,000	-0,000	0	0	0	0	0	0	0,757	87,4	73,8	5,9
BusB_6kV	6,000	1250,000	0,000	0,000	0	0	0	0	0	0	5,827	88,2	564,3	45,1
BusC_6kV	6,000	-0,000	0,000	0	0	0	0	0	0	3,930	88,7	382,6		
Bus_arrivo27,5kV	27,500	0	0	0	0	0	0	0	0	7,988	86,2	167,7		
Bus_SSP	27,500	800,000	0,000	0,000	0	0	0	0	0	0	7,989	86,2	167,7	21,0
CAB-SUD	6,000	0,163	0,088	0,088	0,044	0	0	0	0	0,283	88,5	27,3		
NORD1	6,000	0,338	0,190	0,084	0,048	0	0	0	0	0,484	87,1	46,6		
NORD2	6,000	0,747	0,421	0,185	0,104	0	0	0	0	1,070	87,1	103,4		

ALLEGATO 2

RELAZIONE TECNICA IMPIANTI ELETTRICI

				D	ALLEGATO 2	Descript					
				Branch	Loading Summar	<u>y keport</u>					
CKT / Branch			le & Reactor				Transformer				
ID	Type	Ampacity	Loading	%	Capability	Loading		Loading (o			
	.,,,,	(Amp)	Amp	_~	(MVA)	MVA	%	MVA	%		
Cavo-A-C	Cable	641,00	73,52	11,47							
Cavo-B-C	Cable	641,00	382,59	59,69							
Cavo-SSP-B	Cable	641,00	564,28	88,03							
Cavo-SSP-Nord1	Cable	252,72	46,58	18,43							
Cavo-SSP-Nord2	Cable	252,72	103,43	40,93							
Cavo-SSP-SUD-2	Cable	352,00	27,21	7,73							
Cavo-TR1	Cable	152,99	4,78	3,12							
Cavo-TR6	Cable	152,99	4,78	3,12							
CavoTR1_6kV	Cable	818,29	375,07	45,84							
CavoTR1 27,5kV	Cable	262,31	83,88	31,98							
CavoTR2_6kV	Cable	818,29	375,07	45,84							
CavoTR2 27,5kV	Cable	262,31	83,88	31,98							
CavoTR3_27,5kV	Cable	262,31	0,02	0,01							
Cavo_arrivo27,5kV	Cable	346,55	167,72	48,40							
Cavo-SSP-A	Cable	641,00	0,54	0,08							
CavoTR3_6kV	Cable	818,29	0,02	0,00							
Cavo-SSP-SUD-1	Cable	352,00	0,15	0,04							
TR-AT1	Transformer				0,25	0,1679707	67,18826	0,1619503	64,78012		
TR-BT1	Transformer				1	0,1072282	10,72282	0,1068196	10,68196		
TR-BT2	Transformer				1	0,09840555	9,840555	0,09806155	9,806155		
TR-BT3	Transformer				0,25	0,02949444	11,79778	0,02936423	11,74569		
TR-CT2	Transformer				0,8	0,2154276	26,92844	0,2055233	25,69041		
TR1	Transformer				6,5	3,994903	61,46004	3,899224	59,98807		
TR2	Transformer				5	3,994903	79,89805	3,899224	77,98449		
TR3	Transformer				5	0,000194528	0,003890569	0,000194528	0,003890561		
TR4	Transformer				0,25	0,04967692	19,87077	0,04933633	19,73453		
TR6	Transformer				0,25	0,04967692	19,87077	0,04933633	19,73453		

				Branch	Losses Summary I	Report			
CKT / Branch	From-To E	Bus Flow	To-From B	us Flow	Lo	sses	% E	us Voltage	Vd
ID	MW	Mvar	MW	Mvar	kW	kvar	From	% Drop To	in Vmag
TR4	-0,044	-0,022	0,045	0,022	0,2	0,3	99,3	100,0	0,69
TR6	-0,044	-0,022	0,045	0,022	0,2	0,3	99,3	100,0	0,69
Cavo-SSP-Nord1	0,422	0,234	-0,422	-0,237	0,4	-2,7	100,0	99,9	0,11
Cavo-SSP-Nord2	0,936	0,523	-0,932	-0,525	3,6	-2,2	100,0	99,5	0,48
Cavo-SSP-SUD-2	0,251	0,129	-0,251	-0,130	0,1	-1,5	100,0	100,0	0,03
Cavo-TR1	0,045	0.022	-0.045	-0.022	0,0	-0,1	100,0	100,0	0,00
Cavo-TR6	0,045	0,022	-0,045	-0,022	0,0	-0,1	100,0	100,0	0,00
CavoTR1 6kV	-3,430	-1,853	3,431	1,853	0,5	0,3	100.0	100,0	0,02
Cavo-SSP-B	5,162	2,777	-5,137	-2,751	24,8	26,1	100,0	99,4	0,65
CavoTR2 6kV	-3,430	-1.853	3,431	1,853	0,5	0,3	100,0	100,0	0,02
Cable5	-0,488	-0,281	0,491	0,280	2,7	-1,1	98,9	99.4	0,49
Cable7	-0,467	-0,268	0,468	0,267	1,7	-0,8	99,1	99.4	0,32
TR-BT1	-0.096	-0.047	0,096	0.047	0,1	0,7	99,0	99.4	0,38
Cable29	-0,199	-0.114	0,200	0,113	0,3	-1,0	98,7	98,8	0,11
TR-CT2	-0,185	-0.090	0,191	0.099	6,3	9.5	96.7	98.8	2,19
Cable42	-0,487	-0,280	0,491	0,279	3,4	-1,3	98,2	98,8	0,60
CavoTR1 27,5kV	-3,444	-2.025	3,444	2.024	0,1	-0.9	100,0	100.0	0,00
TR1	3,444	2,025	-3,431	-1.853	13,2	171,4	100.0	100,0	0,05
TR-AT1	-0,146	-0,071	0,150	0,076	3,9	5,8	97,6	98.8	1,16
Cable 75	-0.939	-0,403	0,130	0,403	3,4	-0,3	98.5	98.8	0,38
CavoTR2 27,5kV	-3,444	-2,025	3,444	2.024	0.1	-0,9	100.0	100.0	0,00
	3,444	2,025	-3,431	-1,853	13.2	171.4	100,0	100,0	0,05
TR2	0.000	0,000	0,000	-0,001	0,0	-1,0	100,0	100,0	0,00
CavoTR3 27.5kV	0,000	0,000	0,000	0,000	0,0	0.0	100,0	100,0	0,00
TR3	0,000	0,000	0,000	0,000	0,0	-0.2	100,0	100,0	0,00
CavoTR3 6kV	-0,467	-0,268	0,000	0,000	1,7	-0,2	99,1	99,4	0,00
Cable117	-0,467	-0,208	0,468	0,267	0,3	-1,0	98,7	98,8	0,32
Cable 120	-0,199				0,3	-1,0	98,7	98,8	0,11
Cable 121	-0,199	-0,114	0,200	0,113	0,3	-1,0	98,7	98,8	0,11
Cable 126		-0,114	0,200	0,113					
Cable131	-0,199	-0,114	0,200	0,113	0,3	-1,0	98,7	98,8	0,11
Cable 132	-0,199	-0,114	0,200	0,113	0,3	-1,0	98,7	98,8	0,11
Cable136	-0,509	-0,293	0,512	0,292	3,7	-1,2	98,1	98,8	0,63
TR-BT2	-0,088	-0,043	0,088	0,043	0,1	0,6	99,0	99,4	0,35
TR-BT3	-0,026	-0,013	0,026	0,013	0,0	0,2	98,9	99,4	0,44
Cavo-A-C	-0,662	-0,363	0,662	0,356	0,4	-6,7	98,8	98,8	0,08
Cavo-SSP-A	0,000	-0,006	0,000	0,000	0,0	-5,5	98,8	98,8	0,00
Cavo-B-C	3,499	1,833	-3,485	-1,817	13,9	16,7	99,4	98,8	0,53
Cavo arrivo27.5kV	6,888	4,046	-6,888	-4,047	0,3	-0,7	100,0	100,0	0,00
Cavo-SSP-SUD-1	0,000	-0,002	0,000	0,000	0,0	-1,5	100,0	100,0	0,00
Cavo-Nord1-Nord2	0,000	-0,001	0,000	0,000	0,0	-1,3	99,9	99,9	0,00

SUMMARY OF TOTAL GENERATION, LOADING & DEMAND											
	MW	Mvar	MVA		% PF						
Source (Swing Buses):	6,888	4,046	7,988	86,23	Lagging						
Source (Non-Swing Buses):	0,000	0,000	0,000								
Total Demand:	6,888	4,046	7,988	86,23	Lagging						
Total Motor Load:	5,301	2,870	6,028	87,94	Lagging						
Total Static Load:	1,438	0,744	1,619	88,82	Lagging						
Total Constant I Load:	0,000	0,000	0,000								
Total Generic Load:	0,000	0,000	0,000								
Apparent Losses:	0,149	0,432									
System Mismatch:	0,000	0,000									

S Control of the Cont	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02		-R02	
	PROGETTO DEFINITIVO	Data Lug	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	88	Di	111
	IMPIANTI ELETTRICI	rayına	00	כ	111

ALLEGATO 3 - TABELLA DI CALCOLO CAVI MEDIA TENSIONE GRU 24 ROWS – CABINA C

ALLEGATO 3

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 3 TABELLA DI CALCOLO CAVI MEDIA TENSIONE GRU 24 ROWS – CABINA C

DATI UTENZA MT

Cabina	CAB-C
Pozzetto/Pit	Punti Fissi 8-9
Potenza Nominale Massima Pn	1500 kW
Tensione Nominale Vn	6000 V
Frequenza f	50 Hz
Fattore di potenza cos φ	0,95
Corrente Nominale In	152 A
Corrente di cortocircuito Icc	12,4 kA

Dati trasformatore a bordo macchina				
Tensione primario 6 kV				
Tensione secondario	0,575 kV			
Potenza nominale	2300 kVA			

APPARECCHIATURE DI COMANDO E MISURA

Cabina elettrica	CAB-C
Quadro elettrico di alimentazione	QMT6kV_C
Scomparto n.	C-SC.14/15
Unità di protezione	THYTRONIC NA60
Sensore di corrente TA	400/5 A
Toroide	diam. 200 mm

CARATTERISTICHE PROTEZIONE UTENZA

Unità di protezione

PROTEZIONE 50/51			
Regolazione 51	VIT	225 A	1 s
Regolazione 50-1S	DT	600 A	0,3 s
Regolazione 50-2S	DT	1200 A	0,05 s
PROTEZIONE 50N/51N			
Regolazione	DT	1 A	100 ms
PROTEZIONE 59			
Regolazione 1°s U21		6,6 kV	100 ms
Regolazione 2°s U21		7,2 kV	100 ms
PROTEZIONE 27			
Regolazione U13		1,2 kV	100 ms
Regolazione U21		1,2 kV	100 ms
Regolazione U32		1,2 kV	100 ms

ALLEGATO 3

NA ms

Regolazione U32

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 3 TABELLA DI CALCOLO CAVI MEDIA TENSIONE GRU 24 ROWS – CABINA C

CARATTERISTICHE PROTEZIONE ARRIVO DA TRAFO

Unità di protezione				
PROTEZIONE 50/51				
Regolazione 51	VIT	400 A	1 s	
Regolazione 50-1S	DT	700 A	0,7 s	
Regolazione 50-2S	DT	1200 A	0,05 s	
PROTEZIONE 50N/51N				
Regolazione	DT	2,5 A	100 ms	
PROTEZIONE 59				
Regolazione 1°s U21		6,6 kV	100 ms	
Regolazione 2°s U21		7,2 kV	100 ms	
PROTEZIONE 27				
Regolazione U13		NA kV	NA ms	
Regolazione U21		NA kV	NA ms	

CAVO DI ALIMENTAZIONE UTENZA

NA kV

Tipo		RG7H1OZR 6/10 kV
Isolante		EPR
No. di cavi per fase		1
Sezione fase		120 mm ²
Tensione nominale U		6/10 kV
Formazione	Cavo	3x1x120 mm ²
Lunghezza della conduttura		591 m
Portata nominale posa interrata		275 A
Portata nominale posa in aria		459 A
Tmax cto cto (per sez. ≤ 240 mm2)		250 °C
Resistenza del cavo		0,161 Ω / km
Reattanza per fase a 50Hz		0,08 Ω / km
Tipo di posa		Interrato in tubo
K1 Coefficiente di temperatura		0,94
K2 Coefficiente profondità di interramento		0,98
K3 Coefficiente resistività termica del terreno		1,00
Coefficiente totale		0,92
Portata effettiva		253 A

ALLEGATO 3

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 3 TABELLA DI CALCOLO CAVI MEDIA TENSIONE GRU 24 ROWS – CABINA C

VERIFICA CADUTA DI TENSIONE			
$DV = K \cdot Ib \cdot L \cdot (R \cdot \cos \varphi + X \cdot \sin \varphi)$ $46,62 \text{ V}$			
$DV\% = (\Delta V / Vn) \cdot 100$	0,78 %		

VERIFICA DELLA ENERGIA SPECIFICA PASSANTE			
Sezione effettiva del cavo		120 mm ²	
Energia specifica del cavo (K ² xS ²)		2,94E+08 A ² S	
Valore efficace corrente ctocto		12400 A	
Costante cavo EPR		143	
Tempo settaggio protezione		0,05 sec	
Tempo apertura interruttore		0,08 sec	
Tempo totale di apertura		0,13 sec	
Energia specifica passante interruttore		2,00E+07 A ² s	
Verifica	<i>12 t</i> ≤ <i>K2S2</i>	POSITIVO	

VERIFICA PROTEZIONE SOVRACCARICO				
Corrente impiego circuito		152 A		
Corrente taratura protezione		225 A		
Portata conduttura		253 A		
Verifica	lb ≤ ln ≤ lz	POSITIVO		

S COULT Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02			
Trieste Marine Terminal	PROGETTO DEFINITIVO	Data Luglio 2015			
	RELAZIONE TECNICA	Pagina	90	Di	111
	IMPIANTI ELETTRICI	rayilla	89	וט	111

ALLEGATO 4 - TABELLA DI CALCOLO CAVI MEDIA TENSIONE TRANSTAINER – CABINA NORD 2

ALLEGATO 4

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 4 TABELLA DI CALCOLO CAVI MEDIA TENSIONE TRANSTAINER – CABINA NORD 2

DATI UTENZA MT

Cabina	CAB-NORD2
Pozzetto/Pit	PIT 9-10-11
Potenza Nominale Massima Pn	500 kW
Tensione Nominale Vn	6000 V
Frequenza f	50 Hz
Fattore di potenza cos φ	0,95
Corrente Nominale In	51 A
Corrente di cortocircuito Icc	11,8 kA

Dati trasformatore a bordo macchina

Tensione primario	6 kV
Tensione secondario	0,575 kV
Potenza nominale	750 kVA

APPARECCHIATURE DI COMANDO E MISURA

Cabina elettrica	CAB-NORD2
Quadro elettrico di alimentazione	QMT6kV_NORD2
Scomparto n.	N2-SC.03/04/05
Unità di protezione	THYTRONIC NA60
Sensore di corrente TA	200/5 A
Toroide	diam. 200 mm

CARATTERISTICHE PROTEZIONE UTENZA

Unità di protezione

PROTEZIONE 50/51			
Regolazione 51	VIT	80 A	1 s
Regolazione 50-1S	DT	200 A	0,3 s
Regolazione 50-2S	DT	500 A	0,05 s
PROTEZIONE 50N/51N			
Regolazione	DT	1 A	100 ms
PROTEZIONE 59			
Regolazione 1°s U21		6,6 kV	100 ms
Regolazione 2°s U21		7,2 kV	100 ms
PROTEZIONE 27			
Regolazione U13		1,2 kV	100 ms
Regolazione U21		1,2 kV	100 ms
Regolazione U32		1,2 kV	100 ms

ALLEGATO 4

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 4 TABELLA DI CALCOLO CAVI MEDIA TENSIONE TRANSTAINER – CABINA NORD 2

CARATTERISTICHE PROTEZIONE ARRIVO DA TRAFO

Unità di protezione							
PROTEZIONE 50/51	PROTEZIONE 50/51						
Regolazione 51	VIT	400 A	1 s				
Regolazione 50-1S	DT	700 A	0,7 s				
Regolazione 50-2S	DT	1200 A	0,05 s				
PROTEZIONE 50N/51N							
Regolazione	DT	2,5 A	100 ms				
PROTEZIONE 59							
Regolazione 1°s U21		6,6 kV	100 ms				
Regolazione 2°s U21		7,2 kV	100 ms				
PROTEZIONE 27							
Regolazione U13		NA kV	NA ms				
Regolazione U21		NA kV	NA ms				
Regolazione U32		NA kV	NA ms				

CAVO DI ALIMENTAZIONE UTENZA

		D C = 114 O = D
Tipo		RG7H1OZR 6/10 kV
Isolante		EPR
No. di cavi per fase		1
Sezione fase		50 mm ²
Tensione nominale U		6 kV
Formazione	Cavo	3x50 mm ²
Lunghezza della conduttura		567 m
Portata nominale posa interrata		148 A
Portata nominale posa in aria		206 A
Tmax cto cto (per sez. ≤ 240 mm2)		250 ℃
Resistenza del cavo		0,386 Ω/km
Reattanza per fase a 50Hz		0,08 Ω / km
Tipo di posa		Interrato in tubo
K1 Coefficiente di temperatura		0,94
K2 Coefficiente profondità di interramento		0,98
K3 Coefficiente resistività termica del terreno		1,00
Coefficiente totale		0,92
Portata effettiva		136 A

ALLEGATO 4

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 4 TABELLA DI CALCOLO CAVI MEDIA TENSIONE TRANSTAINER – CABINA NORD 2

VERIFICA CADUTA DI TENSIO	ONE
$DV = K \cdot Ib \cdot L \cdot (R \cdot \cos \varphi + X \cdot \sin \varphi)$	51,18 V
$DV\% = (\Delta V / Vn) \cdot 100$	0,85 %

VERIFICA DELLA ENERGIA SPECIFICA PASSANTE			
Sezione effettiva del cavo		50 mm ²	
Energia specifica del cavo (K ² xS ²)		5,11E+07 A ² s	
Valore efficace corrente ctocto		11800 A	
Costante cavo EPR		143	
Tempo settaggio protezione		0,05 sec	
Tempo apertura interruttore		0,08 sec	
Tempo totale di apertura		0,13 sec	
Energia specifica passante interruttore		1,81E+07 A ² s	
Verifica	12 t ≤ K2S2	POSITIVO	

VERIFICA PROTEZIONE SOVRACCARICO				
Corrente impiego circuito		51 A		
Corrente taratura protezione		80 A		
Portata conduttura		136 A		
Verifica	lb ≤ ln ≤ lz	POSITIVO		

S Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T		09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	00	D:	111
	IMPIANTI ELETTRICI	Pagina	90	DI	111

ALLEGATO 5 - CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE DI PROGETTO)

ALLEGATO 5

Data Luglio 2015

RELAZIONE TECNICA IMPIANTI ELETTRICI

Trieste Marine Terminal

ALLEGATO 5
CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE DI PROGETTO)

SHORT- CIRCUIT ANALYSIS

IEC 60909 Standard 3-Phase, LG, LL, & LLG Fault Currents

			Bus Input Data								
	Bus			Initial Voltage							
ID	Type	Nom. kV	Base kV	Sub-sys	%Mag.	Ang.					
Bus-TR1	Load	0,400	0,410	1	100,00	60,00					
Bus-TR6	Load	0,400	0,410	1	100,00	60,00					
Bus01_SSP	Load	6,000	6,150	1	100,00	30,00					
Bus02_SSP	Load	6,000	6,150	1	100,00	30,00					
Bus3_Sccmax	SWNG	27,500	27,500	1	100,00	0,00					
Bus03_SSP	Load	6,000	6,150	1	100,00	30,00					
BusA_6KV	Load	6,000	6,150	1	100,00	30,00					
BusB_6kV	Load	6,000	6,150	1	100,00	30,00					
BusC_6kV	Load	6,000	6,150	1	100,00	30,00					
Bus_arrivo27,5kV	Load	27,500	27,500	1	100,00	0,00					
Bus_SSP	Load	27,500	27,500	1	100,00	0,00					
CAB-SUD	Load	6,000	6,150	1	100,00	30,00					
NORD1	Load	6,000	6,150	1	100,00	30,00					
NORD2	Load	6,000	6,150	1	100,00	30,00					

Line/Cable Input Data														
		Ohr	ns or Siemens per	1000 m p	er Conducto	or (Cable)	or per Phase	e (Line)						
Line/Cable ID Library Size Length Adi. (m) % Tol. #/Phase T (°C) R1 X1 Y1 R0 X0 Y0														
ID Library Size Length Adj. (m) % Tol. #/Phase T (°C) R1 X1 Y1 R0 X0														
CableS 11NCUN3 50 645,0 0,0 1 75 0,4711649 0,1380000 0,0000817 0,7534823 0,2900000														
Cable29														
Cable42														
Cable75	11NCUN3	120	600,0	0,0	1	75	0,1869399	0,1180000	0,0001147	0,2956703	0,2500000			
Cable120	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cable136	11NCUN3	50	790,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cavo-A-C	11NCUN3	300	626,0	0,0	2	75	0,0763020	0,1050000	0,0001646	0,1239908	0,2200000			
Cavo-B-C	11NCUN3	300	415,0	0,0	1	75	0,0763020	0,1050000	0,0001646	0,1239908	0,2200000			
Cavo-Nord1-Nord2	11NCUN3	240	244,0	0,0	1	75	0,0934700	0,1090000	0,0001495	0,1526040	0,2300000			
Cavo-SSP-B	11NCUN3	300	680,0	0,0	2	75	0,0763020	0,1050000	0,0001646	0,1239908	0,2200000			
Cavo-SSP-Nord2	11NCUN3	240	1202,0	0,0	1	75	0,0934700	0,1090000	0,0001495	0,1526040	0,2300000			
Cavo-SSP-SUD-2	11NCUN3	240	285,0	0,0	1	75	0,0934700	0,1090000	0,0001495	0,1526040	0,2300000			
Cavo-TR1	11NCUN3	95	20,0	0,0	1	75	0,2365362	0,1230000	0,0001049	0,3719723	0,2600000			
Cavo-TR6	11NCUN3	95	20,0	0,0	1	75	0,2365362	0,1230000	0,0001049	0,3719723	0,2600000			
CavoTR1_6kV	11NCUN3	185	20,0	0,0	2	75	0,1220832	0,1120000	0,0001351	0,1907550	0,2400000			
CavoTR1_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,2365362	0,1430000	0,0000637	0,3760926	0,3632200			
CavoTR2_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,2365362	0,1430000	0,0000637	0,3760926	0,3632200			
Cavo_arrivo27,5kV	33NCUN1	150	20,0	0,0	1	75	0,1516502	0,1350000	0,0000609	0,2384438	0,3400000			

	2-Winding Transformer Input Data													
Transformer		Rating				Z Variation			9/	Tap Setting		Adjusted	Phase Shift	
ID	MVA	Prim. kV	Sec. kV	% Z	X/R	+ 5%	- 5%	% Tot%	Prim	Sec.	% Z	Туре	Angle	
TR-AT1	0,2500	6,0000	0,4000	6,00	1,50	0	0	0		2,500	6,0000	Dyn	-30,0000	
TR-BT1	1,0000	6,0000	0,4000	6,00	5,79	0	0	0		0	6,0000	Dyn	-30,0000	
TR-CT2	0,2500	6,0000	0,4000	6,00	1,50	0	0	0		2,500	6,0000	Dyn	-30,0000	
TR1	6,5000	27,5000	6,0000	7,00	13,00	0	0	0		2,500	7,0000	Dyn	-30,0000	
TR2	6,5000	27,5000	6,0000	7,00	13,00	0	0	0		2,500	7,0000	Dyn	-30,0000	
TR4	0,2500	6,0000	0,4000	4,00	1,50	0	0	0		0	4,0000	Dyn	-30,0000	
TR6	0,2500	6,0000	0,4000	4,00	1,50	0	0	0		0	4,0000	Dyn	-30,0000	

2-Winding Transformer Grounding Input Data														
	Grounding													
Transformer		Rating		Conn.		P	rimary			Seco	ndary			
ID	MVA	Prim. kV	Sec. kV	Type	Type	kV	Amp	Ohm	Type	kV	Amp	Ohm		
TR-AT1	0,250	6,000	0,400	D/Y					Solid					
TR-BT1	1,000	6,000	0,400	D/Y					Solid					
TR-CT2	0,250	6,000	0,400	D/Y					Solid					
TR1	6,500	27,500	6,000	D/Y					Resistor		125,1	27,70000		
TR2	6,500	27,500	6,000	D/Y					Resistor		125,1	27,70000		
TR4	0,250	6,000	0,400	D/Y					Solid					
TR6	0,250	6,000	0,400	D/Y					Solid					

ALLEGATO 5

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 5 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE DI PROGETTO)

			Branch Connections	i			
CKT/Branch			Connected Bus ID		% Im	pedance, Pos. Seq., 100	MVAb
ID	Type	From Bus	To Bus	R	X	Z	Υ
TR-AT1	2W XFMR	BusA_6KV	Bus222	1227,21	1840,81	2212,38	
TR-BT1	2W XFMR	BusB_6kV	Bus47	93,63	542,12	550,14	
TR-CT2	2W XFMR	BusC_6kV	Bus115	1227,21	1840,81	2212,38	
TR1	2W XFMR	Bus220	Bus282	8,28	107,70	108,02	
TR2	2W XFMR	Bus279	Bus284	8,28	107,70	108,02	
TR4	2W XFMR	Bus277	Bus-TR1	826,15	1239,22	1489,35	
TR6	2W XFMR	Bus294	Bus-TR6	826,15	1239,22	1489,35	
Cavo-A-C	Cable	BusA_6KV	BusC_6kV	6,31	8,69	10,74	0,007794431
Cavo-B-C	Cable	BusB_6kV	BusC_6kV	8,37	11,52	14,24	0,002583617
Cavo-Nord1-Nord2	Cable	NORD2	NORD1	6,03	7,03	9,26	0,001379689
Cavo-SSP-B	Cable	Bus02_SSP	BusB_6kV	6,86	9,44	11,67	0,008466794
Cavo-SSP-Nord2	Cable	Bus01_SSP	NORD2	29,70	34,64	45,63	0,006796666
Cavo-SSP-SUD-2	Cable	Bus01_SSP	CAB-SUD	7,04	8,21	10,82	0,001611522
Cavo-TR1	Cable	Bus01_SSP	Bus277	1,25	0,65	1,41	7,93516E-05
Cavo-TR6	Cable	Bus01_SSP	Bus294	1,25	0,65	1,41	7,93516E-05
CavoTR1_6kV	Cable	Bus282	Bus01_SSP	0,32	0,30	0,44	0,000204393
CavoTR1_27,5kV	Cable	Bus_SSP	Bus220	0,06	0,04	0,07	0,000963463
CavoTR2_27,5kV	Cable	Bus_SSP	Bus279	0,06	0,04	0,07	0,000963463
Cavo_arrivo27,5kV	Cable	Bus_arrivo27,5kV	Bus_SSP	0,04	0,04	0,05	0,000921113

	Power Grid Input Data													
	% Impedance													
Power Grid	Connected Bus	Connected Bus Rating 100 MVA Base Grounding												
ID	ID	MVASC	kV	R	X"	R/X"	Туре							
Sccmax	Bus3_Sccmax	360,000	27,500	2,76399	27,63992	0,10	Delta							
Sccmin	Bus_Sccmin	100,000	27,500	9,95037	99,50372	0,10	Delta							

	Induction Machine Input Data														
Induction Machine Connected Bus Rating PosSeqImp (Mtr Base Grounding mFact.															
ID	Туре	Qty	ID	HP/kW	kVA	kV	Amp	PF	% R	% X"	R/X"	Conn.	Туре	Amp	MW/PP
Mtr1	Motor	2	Mtr1~	370,00	456,22	0,575	458,10	87,00	9,01	46,76	0,19	Wye	Open	0,19	
Mtr25	Motor	2	Mtr25~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr36	Motor	2	Mtr36~	370,00	456,22	0,575	458,10	87,00	9,01	46,76	0,19	Wye	Open	0,19	
Mtr70	Motor	2	Mtr70~	700,00	810,33	0,575	813,60	92,34	2,64	16,46	0,16	Wye	Open	0,35	
Mtr89	Motor	2	Mtr89~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr105	Motor	2	Mtr105~	370,00	456,22	0,575	458,10	87,00	9,01	46,76	0,19	Wye	Open	0,19	

<u>Lumped Load Input Data</u>														
Motor Loads														
Lumped Load % Impedance														
ID Rating %Load Loading Machine Base												Grounding		
	kVA	kV	Amp	% PF	MTR	STAT	kW	kvar	R	X"	R/X"	Conn.	Type	
Load-Nord1	484,5	6,000	46,62	87,10	80	20	168,80	95,21	2,28	15,21	0,15	Wye	Open	
Load-Nord2	1071,9	6,000	103,14	87,14	80	20	373,60	210,37	2,28	15,21	0,15	Wye	Open	
Load-SUD-1	231,7	6,000	22,30	88,03	80	20	81,60	43,98	2,28	15,21	0,15	Wye	Open	
Lump4	200,0	0,400	288,70	87,00	50	50	43,50	24,65	6,46	15,37	0,42	Wye	Open	
Lump28	130,0	0,400	187,60	87,00	50	50	28,28	16,02	6,46	15,37	0,42	Wye	Open	
Lump39	200,0	0,400	288,70	87,00	50	50	43,50	24,65	6,46	15,37	0,42	Wye	Open	
Lump74	400,0	0,400	577,40	92,00	50	50	92,00	39,19	6,46	15,37	0,42	Wye	Open	
Lump93	130,0	0,400	187,60	87,00	50	50	28,28	16,02	6,46	15,37	0,42	Wye	Open	
Lump109	250,0	0,400	360,84	87,00	50	50	54,38	30,82	6,46	15,37	0,42	Wye	Open	

ALLEGATO 5

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 5 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE DI PROGETTO)

SHORT- CIRCUIT REPORT 1

6,000 1.10 (User-Defined) Nominal kV

Contrib	oution	3-Phase	e Fault		Line-	To-Ground	Fault		Posit	Positive & Zero Sequence Impedances Looking into "From Bus"			
From Bus	To Bus	% V kA % Voltage at From Bus kA Symm. rms					% Impedance on 100 MVA base						
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO	
Bus01_SSP	Total	0,000	8,589	0,00	172,29	173,80	0,131	0,131	1.27E+001	1.17E+002	2.31E+004	1.08E+002	
NORD2	Bus01_SSP	3,753	0,829	0,04	172,31	173,81	0,008	0,000	2.05E+002	1.20E+003			
CAB-SUD	Bus01_SSP	0,137	0,127	0,00	172,29	173,80	0,001	0,000	1.18E+003	7.82E+003			
Bus277	Bus01_SSP	0,000	0,000	0,00	172,29	173,80	0,000	0,000					
Bus294	Bus01_SSP	0,000	0,000	0,00	172,29	173,80	0,000	0,000					
Bus282	Bus01_SSP	0,315	7,250	0,01	172,29	173,80	0,117	0,131	1.18E+001	1.38E+002	2.31E+004	1.08E+002	
BusB_6kV	Bus02_SSP	0,467	0,403	0,00	172,29	173,80	0,004	0,000	9.72E+002	2.30E+003			

L-L-G 3-Phase 8,589 0,131 7,438 7,470 Initial Symmetrical Current (kA, rms) 18.316 Peak Current (kA), Method C 21,150 0.322 18,396 0,131 7,438 7,470 Breaking Current (kA, rms, symm) : 7,438 7,470 7,250 0,131 Steady State Current (kA, rms)

Fault at bus: Bus02_SSP Nominal kV = 6,000 tage c Factor = 1.10 (User-Defined)

Voltage c Factor

Contrib	pution	3-Phase	e Fault	Line-To-Ground Fault Positive & Zero Sequence I Looking into "From						nces			
From Bus	To Bus	% V	% V kA % Voltage at From Bus kA Symm. rms					m. rms	% Impedance on 100 MVA base				
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO	
Bus02 SSP	Total	0,000	8,589	0,00	172,29	173,80	0,131	0,131	1.27E+001	1.17E+002	2.31E+004	1.08E+002	
BusB_6kV	Bus02_SSP	0,467	0,403	0,00	172,29	173,80	0,004	0,000	9.72E+002	2.30E+003			
NORD2	Bus01_SSP	3,753	0,829	0,04	172,31	173,81	0,008	0,000	2.05E+002	1.20E+003			
CAB-SUD	Bus01_SSP	0,137	0,127	0,00	172,29	173,80	0,001	0,000	1.18E+003	7.82E+003			
Bus277	Bus01_SSP	0,000	0,000	0,00	172,29	173,80	0,000	0,000					
Bus294	Bus01_SSP	0,000	0,000	0,00	172,29	173,80	0,000	0,000					
Bus282	Bus01_SSP	0,315	7,250	0,01	172,29	173,80	0,117	0,131	1.18E+001	1.38E+002	2.31E+004	1.08E+002	

3-Phase L-G L-L-G Initial Symmetrical Current (kA, rms) 8,589 0,131 7,438 7,470 Peak Current (kA), Method C 21,150 0,322 18,316 18,396 0,131 7,438 7,470 Breaking Current (kA, rms, symm) 7,250 Steady State Current (kA, rms) 0,131 7,438 7,470

Fault at bus: Bus03_SSP
Nominal kV = 6,000
Itage c Factor = 1.10 (U 1.10 (User-Defined) Voltage c Factor

Contril	oution	3-Phas	e Fault		Line-	To-Ground	Fault		Posit	ive & Zero Sequ Looking into		nces
From Bus	To Bus	% V	kA	% Vol	tage at Fron	Bus	kA Symr	n. rms	%	Impedance on	100 MVA bas	e
ID	ID	From Bus	Svmm. rms	Va	Vb	Vc	la	310	R1	X1	R0	XO
Bus03_SSP	Total	0,000	8,589	0,00	172,29	173,80	0,131	0,131	1.27E+001	1.17E+002	2.31E+004	1.08E+002
BusB_6kV	Bus02_SSP	0,467	0,403	0,00	172,29	173,80	0,004	0,000	9.72E+002	2.30E+003		
NORD2	Bus01_SSP	3,753	0,829	0,04	172,31	173,81	0,008	0,000	2.05E+002	1.20E+003		
CAB-SUD	Bus01_SSP	0,137	0,127	0,00	172,29	173,80	0,001	0,000	1.18E+003	7.82E+003		
Bus277	Bus01_SSP	0,000	0,000	0,00	172,29	173,80	0,000	0,000				
Bus294	Bus01_SSP	0,000	0,000	0,00	172,29	173,80	0,000	0,000				
Bus282	Bus01_SSP	0,315	7,250	0,01	172,29	173,80	0,117	0,131	1.18E+001	1.38E+002	2.31E+004	1.08E+002

3-Phase L-G L-L L-L-G 8,589 0,131 7,438 7,470 Initial Symmetrical Current (kA, rms) 21,150 18,316 18,396 0,322 Peak Current (kA), Method C Breaking Current (kA, rms, symm) 0,131 7,438 7,470 7,250 0,131 7,438 7,470 Steady State Current (kA, rms)

ALLEGATO 5

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 5 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE DI PROGETTO)

SHORT- CIRCUIT REPORT 2

Fault at bus: BusA 6KV Nominal kV = Voltage c Factor =

6,000 1.10 (User-Defined)

Contri	bution	3-Phas	e Fault		Line-	To-Ground	Fault		Positive & Zero Sequence Impedances Looking into "From Bus"				
From Bus	To Bus	% V	kA	% Vol	tage at From	Bus	kA Symn	n. rms	%	Impedance on	100 MVA base	e	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO	
BusA_6KV	Total	0,000	6,826	0,00	171,88	173,74	0,130	0,130	3.32E+001	1.44E+002	2.31E+004	1.70E+002	
Bus367	BusA_6KV	0,789	0,077	0,01	171,89	173,74	0,001	0,000	5.06E+003	1.20E+004			
BusC_6kV	BusA_6KV	7,196	6,750	0,18	171,85	173,74	0,129	0,130	3.33E+001	1.45E+002	2.31E+004	1.70E+002	
Bus222	BusA_6KV	0,000	0,000	101,72	102,50	102,81	0,000	0,000					

3-Phase L-G L-L L-L-G Initial Symmetrical Current (kA, rms) 6,826 0,130 5,912 5,943 14,648 0,280 12,686 12,754 Peak Current (kA), Method C 0,130 5,912 5,943 Breaking Current (kA, rms, symm) 5,878 0,130 5,912 5,943 Steady State Current (kA, rms)

Fault at bus: BusB 6kV Nominal kV = Voltage c Factor = 6,000 1.10 (User-Defined)

Contri	bution	3-Phas	e Fault		Line-	To-Ground	Fault		Posit	tive & Zero Seq Looking into		nces
From Bus	To Bus	% V kA % Voltage at From Bus kA Symm. rms					n. rms	% Impedance on 100 MVA base				
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
BusB_6kV	Total	0,000	7,968	0,00	172,16	173,78	0,131	0,131	1.91E+001	1.25E+002	2.31E+004	1.28E+002
Bus8	BusB_6kV	0,518	0,062	0,01	172,17	173,78	0,001	0,000	6.27E+003	1.49E+004		
BusC_6kV	BusB_6kV	0,485	0,343	0,01	172,17	173,78	0,004	0,000	1.14E+003	2.71E+003		
Bus02_SSP	BusB_6kV	8,773	7,575	0,19	172,12	173,79	0,126	0,131	1.84E+001	1.32E+002	2.31E+004	1.28E+002
Bus47	BusB 6kV	0,000	0,000	99,40	100,00	100,33	0,000	0,000				

L-G L-L L-L-G 0,131 Initial Symmetrical Current (kA, rms) 7,968 6,900 6,933 Peak Current (kA), Method C 18,592 0,305 16,101 16,177 0,131 6,900 6,933 Breaking Current (kA, rms, symm) 6,758 6,933 0,131 6,900 Steady State Current (kA, rms)

Fault at bus: BusC_6kV

Nominal kV 6,000

Voltage c Factor 1.10 (User-Defined)

Contri	bution	3-Phas	e Fault		Line-	To-Ground	Fault		Posit	ive & Zero Seq Looking into		nces
From Bus	To Bus	% V	kA	% Vol	tage at Fron	n Bus	kA Symr	n. rms	%	Impedance on	100 MVA bas	e
ID	ID		Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
BusC_6kV	Total	0,000	7,301	0,00	172,01	173,76	0,130	0,130	2.70E+001	1.35E+002	2.31E+004	1.52E+002
Bus88	BusC_6kV	0,187	0,040	0,00	172,01	173,76	0,000	0,000	9.60E+003	2.30E+004		
Bus125	BusC_6kV	0,634	0,062	0,01	172,01	173,76	0,001	0,000	6.29E+003	1.49E+004		
Bus235	BusC_6kV	0,432	0,124	0,01	172,01	173,76	0,001	0,000	3.13E+003	7.49E+003		
Bus319	BusC_6kV	0,187	0,040	0,00	172,01	173,76	0,000	0,000	9.60E+003	2.30E+004		
BusA_6KV	BusC_6kV	0,083	0,077	0,00	172,01	173,76	0,001	0,000	5.07E+003	1.20E+004		
BusB_6kV	BusC_6kV	9,843	6,963	0,24	171,96	173,76	0,126	0,130	2.69E+001	1.42E+002	2.31E+004	1.52E+002
Bus115	BusC_6kV	0,000	0,000	101,79	102,50	102,83	0,000	0,000				

3-Phase L-G L-L L-L-G 7,301 0,130 6.323 6.355 16,177 0,289 14,010 14,081 Peak Current (kA), Method C 0,130 6,323 6,355 Breaking Current (kA, rms, symm) 6,231 0,130 6,323 6,355 Steady State Current (kA, rms)

ALLEGATO 5

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 5 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE DI PROGETTO)

SHORT- CIRCUIT REPORT 3

Peak Current (kA), Method C Breaking Current (kA, rms, symm)

Steady State Current (kA, rms)

Fault at bus: Bus_SSP
Nominal kV =
Voltage c Factor = 27,500 1.10 (User-Defined)

Contribution			3-Phas	e Fault		Line-	To-Ground	Fault		Posit	tive & Zero Seqı Looking into		ices
From Bus	To Bus		% V	kA	% Vo	tage at Fron	n Bus	kA Symr	n. rms	9/	Impedance on	100 MVA base	•
ID	ID		From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
Bus_SSP Total			0,000	7,817	0,00	173,21	173,21	0,000	0,000	3.09E+000	2.94E+001		
Bus220 Bus_SSP			0,009	0,271	0,00	173,21	173,21	0,000	0,000	1.83E+002	8.33E+002		
Bus279	Bus_SSP		0,000	0,000	0,00	173,21	173,21	0,000	0,000				
Bus_arrivo27,5kV	Bus_SSP		0,176	7,548	0,00	173,21	173,21	0,000	0,000	3.08E+000	3.04E+001		
		3-Phas	e	L-G	L-L	L-L	-G						
Initial Symmetrical Current (kA, rms)	:	7,817	0	,000	6,770	6,7	70						
Peak Current (kA), Method C		19,204	1 0	,000	16,631	16,6	31						

6,770

6,770

6,770

0,000

7,548

6,770

0,000

ALLEGATO 5

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 5 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE DI PROGETTO)

SHORT- CIRCUIT REPORT 4

Fault at bus: CAB-SUD
Nominal kV =

6,000 1.10 (User-Defined) Voltage c Factor

Contributi	on	3-Phas	e Fault		Line-	To-Ground	Fault		Posit	ive & Zero Sequ Looking into		nces	
From Bus	To Bus	% V	kA	% Voltage at From Bus kA Symm. rn					% Impedance on 100 MVA base				
ID	ID ID		Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO	
CAB-SUD	Total	0,000	7,990	0,00	172,16	173,78	0,131	0,131	1.95E+001	1.25E+002	2.31E+004	1.26E+002	
Bus01_SSP	CAB-SUD	8,444	7,862	0,18	172,13	173,78	0,129	0,131	1.98E+001	1.27E+002	2.31E+004	1.26E+002	
Load-SUD-1	CAB-SUD	100,000	0,128	100,00	100,00	100,00	0,001	0,000	1.17E+003	7.81E+003			

		3-Phase	L-G	L-L	L-L-G
Initial Symmetrical Current (kA, rms)	:	7,990	0,131	6,919	6,952
Peak Current (kA), Method C	:	18,589	0,304	16,099	16,174
Breaking Current (kA, rms, symm)	:	0,131	6,919	6,952	
Steady State Current (kA, rms)	:	6,813	0,131	6,919	6,952

Fault at bus: NORD1 Nominal kV Voltage c Factor 6,000 1.10 (User-Defined)

Contributi	on	3-Phas	e Fault		Line-	To-Ground	Fault		Posit	ive & Zero Seq Looking into		nces
From Bus	To Bus	% V	kA	% Vol	tage at Fron	n Bus	kA Symi	n. rms	%	Impedance or	100 MVA bas	e
ID	D ID		Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
NORD1	Total	0,000	6,467	0,00	171,75	173,69	0,130	0,130	4.11E+001	1.50E+002	2.32E+004	1.96E+002
NORD2	NORD1	5,702	6,202	0,15	171,72	173,69	0,127	0,130	4.36E+001	1.56E+002	2.32E+004	1.96E+002
Load-Nord1	NORD1	100,000	0,267	100,00	100,00	100,00	0,004	0,000	5.60E+002	3.74E+003		

		3-Phase	L-G	L-L	L-L-G	
Initial Symmetrical Current (kA, rms)	:	6,467	0,130	5,600	5,632	
Peak Current (kA), Method C	:	13,380	0,269	11,587	11,652	
Breaking Current (kA, rms, symm)	:	0,130	5,600	5,632		
Steady State Current (kA, rms)	:	5,408	0,130	5,600	5,632	

Fault at bus: NORD2 Nominal kV = Voltage c Factor = 6,000 1.10 (User-Defined)

Contributi	on	3-Phas	e Fault		Line-	To-Ground	Fault		Positive & Zero Sequence Impedances Looking into "From Bus"				
From Bus	To Bus	% V	kA	% Voltage at From Bus kA Symm. rms			n. rms	% Impedance on 100 MVA base					
ID			Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO	
NORD2	Total	0,000	6,803	0,00	171,86	173,71	0,130	0,130	3.56E+001	1.44E+002	2.31E+004	1.81E+002	
NORD1	NORD2	0,245	0,266	0,00	171,86	173,71	0,003	0,000	5.66E+002	3.74E+003			
Bus01_SSP	Bus01_SSP NORD2		5,951	0,72	171,68	173,71	0,119	0,130	4.29E+001	1.64E+002	2.31E+004	1.81E+002	
Load-Nord2	Load-Nord2 NORD2		0,590	100,00	100,00	100,00	0,008	0,000	2.53E+002	1.69E+003			

ALLEGATO 5

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 5 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE DI PROGETTO)

							SHORT- CIR	CUIT REPORT	- SUMMAI	RY						
							3-Phase,	LG, LL, LLG Fau	It Currents							
Bus			3-Phase Fa	ult		Line-to-G	round Fault			Line-to-l	Line Fault			*Line-to-Line	e-to-Ground	
ID	kV	l"k	ip	lk	l"k	ip	lb	lk	l"k	ip	lb	lk	l"k	ip	lb	lk
Bus-TR1	0,400	9,041	15,003	8,939	9,247	15,346	9,247	9,247	7,830	12,993	7,830	7,830	9,236	15,327	9,236	9,236
Bus01_SSP	6,000	8,589	21,150	7,250	0,131	0,322	0,131	0,131	7,438	18,316	7,438	7,438	7,470	18,396	7,470	7,470
Bus02_SSP	6,000	8,589	21,150	7,250	0,131	0,322	0,131	0,131	7,438	18,316	7,438	7,438	7,470	18,396	7,470	7,470
Bus3_Sccmax	27,500	7,827	19,256	7,558	0,000	0,000	0,000	0,000	6,779	16,676	6,779	6,779	6,779	16,676	6,779	6,779
Bus03_SSP	6,000	8,589	21,150	7,250	0,131	0,322	0,131	0,131	7,438	18,316	7,438	7,438	7,470	18,396	7,470	7,470
BusA_6KV	6,000	6,826	14,648	5,878	0,130	0,280	0,130	0,130	5,912	12,686	5,912	5,912	5,943	12,754	5,943	5,943
BusB_6kV	6,000	7,968	18,592	6,758	0,131	0,305	0,131	0,131	6,900	16,101	6,900	6,900	6,933	16,177	6,933	6,933
BusC_6kV	6,000	7,301	16,177	6,231	0,130	0,289	0,130	0,130	6,323	14,010	6,323	6,323	6,355	14,081	6,355	6,355
Bus_arrivo27,5kV	27,500	7,827	19,256	7,558	0,000	0,000	0,000	0,000	6,779	16,676	6,779	6,779	6,779	16,676	6,779	6,779
Bus_Sccmin	27,500	2,099	5,184	2,099	0,000	0,000	0,000	0,000	1,818	4,489	1,818	1,818	1,818	4,489	1,818	1,818
Bus_SSP	27,500	7,817	19,204	7,548	0,000	0,000	0,000	0,000	6,770	16,631	6,770	6,770	6,770	16,631	6,770	6,770
CAB-SUD	6,000	7,990	18,589	6,813	0,131	0,304	0,131	0,131	6,919	16,099	6,919	6,919	6,952	16,174	6,952	6,952
NORD1	6,000	6,467	13,380	5,408	0,130	0,269	0,130	0,130	5,600	11,587	5,600	5,600	5,632	11,652	5,632	5,632
NORD2	6,000	6,803	14,411	5,660	0,130	0,276	0,130	0,130	5,891	12,480	5,891	5,891	5,923	12,547	5,923	5,923

				Sequence I	mpedance Sum	mary Report							
Bus		Posit	ive Seq. Imp.	(ohm)	Negati	ve Seq. Imp.	(ohm)	Ze	ro Seq. Imp. (ohm)		Fault Zf (ohm)	
ID	kV		Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedanc
Bus-TR1	0,400	0,01412	0,02280	0,02682	0,01412	0,02280	0,02682	0,01389	0,02083	0,02504	0,00000	0,00000	0,00000
Bus01 SSP	6,000	0,04796	0,44107	0,44368	0,04796	0,44107	0,44368	87,34018	0,40974	87,34114	0,00000	0,00000	0,0000
Bus02 SSP	6,000	0,04796	0,44107	0,44368	0,04796	0,44107	0,44368	87,34018	0,40974	87,34114	0,00000	0,00000	0,0000
Bus3 Sccmax	27,500	0,23093	2,21933	2,23131	0,23093	2,21933	2,23131	0,00000	0,00000	0,00000			
Bus03 SSP	6,000	0,04796	0,44107	0,44368	0,04796	0,44107	0,44368	87,34018	0,40974	87,34114	0,00000	0,00000	0,00000
BusA 6KV	6,000	0,12563	0,54390	0,55823	0,12563	0,54390	0,55823	87,47260	0,64470	87,47498	0,00000	0,00000	0,0000
BusB 6kV	6,000	0,07238	0,47274	0,47825	0,07238	0,47274	0,47825	87,38233	0,48454	87,38367	0,00000	0,00000	0,0000
BusC 6kV	6,000	0,10213	0,51185	0,52194	0,10213	0,51185	0,52194	87,43379	0,57584	87,43568	0,00000	0,00000	0,0000
Bus arrivo27.5kV	27,500	0,23093	2,21933	2,23131	0,23093	2,21933	2,23131	0,00000	0,00000	0,00000			
Bus SSP	27,500	0,23378	2,22182	2,23409	0,23378	2,22182	2,23409	0,00000	0,00000	0,00000			
CAB-SUD	6,000	0,07380	0,47117	0,47691	0,07380	0,47117	0,47691	87,38367	0,47529	87,38496	0,00000	0,00000	0,0000
NORD1	6,000	0,15540	0,56838	0,58925	0,15540	0,56838	0,58925	87,56084	0,74232	87,56399	0,00000	0,00000	0,0000
NORD2	6,000	0,13464	0.54372	0.56014	0.13464	0.54372	0.56014	87.52361	0.68620	87,52630	0.00000	0.00000	0.0000

S COULT Engineering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T	to ST010	09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	01	Di	111
	IMPIANTI ELETTRICI	Fagilia	91	DI	

ALLEGATO 6 - CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI APERTI)

ALLEGATO 6

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 6 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI APERTI)

SHORT- CIRCUIT ANALYSIS

IEC 60909 Standard 3-Phase, LG, LL, & LLG Fault Currents

			Bus Input Data			
	Bus				Initial Voltage	
ID	Туре	Nom. kV	Base kV	Sub-sys	%Mag.	Ang.
Bus-TR1	Load	0,400	0,410	1	100,00	60,00
Bus-TR6	Load	0,400	0,410	1	100,00	60,00
Bus01_SSP	Load	6,000	6,150	1	100,00	30,00
Bus02_SSP	Load	6,000	6,150	1	100,00	30,00
Bus3_Sccmax	SWNG	27,500	27,500	1	100,00	0,00
Bus03_SSP	Load	6,000	6,150	1	100,00	30,00
BusA_6KV	Load	6,000	6,150	1	100,00	30,00
BusB_6kV	Load	6,000	6,150	1	100,00	30,00
BusC_6kV	Load	6,000	6,150	1	100,00	30,00
Bus_arrivo27,5kV	Load	27,500	27,500	1	100,00	0,00
Bus_SSP	Load	27,500	27,500	1	100,00	0,00

				<u>Lin</u>	e/Cable In	out Data						
			Ohms or Siemen	s per 1000	m per Cond	luctor (Cal	ole) or per P	hase (Line)				
					Line/Cab	le						
ID	Library	Size	Length Adj. (m)	% Tol.	#/Phase	T (°C)	R1	X1	Y1	RO	XO	YO
Cable5	11NCUN3	50	645,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000	
Cable7	11NCUN3	50	440,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000	
Cable29	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000	
Cable42	11NCUN3	50	790,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000	
Cable75	11NCUN3	120	600,0	0,0	1	75	0,1869399	0,1180000	0,0001147	0,2956703	0,2500000	
Cable117	11NCUN3	50	440,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000	
Cable120	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000	
Cable121	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000	
Cable126	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000	
Cable131	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000	
Cable132	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000	
Cable136	11NCUN3	50	790,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000	
Cavo-A-C	11NCUN3	300	626,0	0,0	2	75	0,0763020	0,1050000	0,0001646	0,1239908	0,2200000	
Cavo-B-C	11NCUN3	300	415,0	0,0	1	75	0,0763020	0,1050000	0,0001646	0,1239908	0,2200000	
Cavo-SSP-B	11NCUN3	300	680,0	0,0	2	75	0,0763020	0,1050000	0,0001646	0,1239908	0,2200000	
Cavo-SSP-Nord1	11NCUN3	240	583,0	0,0	1	75	0,0934700	0,1090000	0,0001495	0,1526040	0,2300000	
Cavo-SSP-Nord2	11NCUN3	240	1202,0	0,0	1	75	0,0934700	0,1090000	0,0001495	0,1526040	0,2300000	
Cavo-SSP-SUD-2	11NCUN3	240	285,0	0,0	1	75	0,0934700	0,1090000	0,0001495	0,1526040	0,2300000	
Cavo-TR1	11NCUN3	95	20,0	0,0	1	75	0,2365362	0,1230000	0,0001049	0,3719723	0,2600000	
Cavo-TR6	11NCUN3	95	20,0	0,0	1	75	0,2365362	0,1230000	0,0001049	0,3719723	0,2600000	
CavoTR1_6kV	11NCUN3	185	20,0	0,0	2	75	0,1220832	0,1120000	0,0001351	0,1907550	0,2400000	
CavoTR1_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,2365362	0,1430000	0,0000637	0,3760926	0,3632200	
CavoTR2_6kV	11NCUN3	95	20,0	0,0	2	75	0,1220832	0,1120000	0,0001351	0,1907550	0,2400000	
CavoTR2_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,2365362	0,1430000	0,0000637	0,3760926	0,3632200	
CavoTR3_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,2365362	0,1430000	0,0000637	0,3760926	0,3632200	
Cavo_arrivo27,5kV	33NCUN1	150	20,0	0,0	1	75	0,1516502	0,1350000	0,0000609	0,2384438	0,3400000	

					2-Windin	g Transfor	mer Input	<u>Data</u>					
Transformer		Rating				Z Variatio	n			% Tap Settin	g	Adjusted	Phase Shift
ID	MVA	Prim. kV	Sec. kV	% Z	X/R	+ 5%	- 5%	% Tot%	Prim	Sec.	% Z	Type	Angle
TR-AT1	0,250	6,000	0,400	6,000	1,500	0,000	0,000	0,000		2,500	6,000	Dyn	-30,000
TR-BT1	1,000	6,000	0,400	6,000	5,790	0,000	0,000	0,000		0	6,000	Dyn	-30,000
TR-BT2	1,000	6,000	0,400	6,000	5,790	0,000	0,000	0,000		0	6,000	Dyn	-30,000
TR-BT3	0,250	6,000	0,400	6,000	4,700	0,000	0,000	0,000		0	6,000	Dyn	30,000
TR-CT2	0,250	6,000	0,400	6,000	1,500	0,000	0,000	0,000		2,500	6,000	Dyn	-30,000
TR1	6,500	27,500	6,000	7,000	13,000	0,000	0,000	0,000		2,500	7,000	Dyn	-30,000
TR2	6,500	27,500	6,000	7,000	13,000	0,000	0,000	0,000		2,500	7,000	Dyn	-30,000
TR3	6,500	27,500	6,000	7,000	13,000	0,000	0,000	0,000		0	7,000	Dyn	-30,000
TR4	0,250	6,000	0,400	4,000	1,500	0,000	0,000	0,000		0	4,000	Dyn	-30,000
TR6	0,250	6,000	0,400	4,000	1,500	0,000	0,000	0,000		0	4,000	Dyn	-30,000

			2-Winding Tra	nsformer G	rounding	nput Data	a					
				Ground	ng							
Transformer		Rating		Conn.		Pri	mary			Seco	ndary	
ID	MVA	Prim. kV	Sec. kV	Type	Type	kV	Amp	Ohm	Type	kV	Amp	Ohm
TR-AT1	0,250	6,000	0,400	D/Y					Solid			
TR-BT1	1,000	6,000	0,400	D/Y					Solid			
TR-BT2	1,000	6,000	0,400	D/Y					Solid			
TR-BT3	1,000	6,000	0,400	D/Y					Solid			
TR-CT2	0,250	6,000	0,400	D/Y					Solid			
TR1	6,500	27,500	6,000	D/Y					Resistor		125,1	27,7000
TR2	6,500	27,500	6,000	D/Y					Resistor		125,1	27,7000
TR4	0,250	6,000	0,400	D/Y					Resistor		125,1	27,7000
TR4	0,250	6,000	0,400	D/Y					Solid			
TR6	0,250	6,000	0,400	D/Y					Solid			

ALLEGATO 6

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 6 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI APERTI)

			Branch Conne	ections			
CKT/Branch		Con	nected Bus ID		% Impedance, Po	s. Seq., 100 MVAb	
ID	Type	From Bus	To Bus	R	X	Z	Y
TR-AT1	2W XFMR	BusA_6KV	Bus222	1227,21	1840,81	2212,38	
TR-BT1	2W XFMR	BusB_6kV	Bus47	93,63	542,12	550,14	
TR-BT2	2W XFMR	BusB_6kV	Bus371	93,63	542,12	550,14	
TR-BT3	2W XFMR	BusB_6kV	Bus373	458,07	2152,95	2201,14	
TR-CT2	2W XFMR	BusC_6kV	Bus115	1227,21	1840,81	2212,38	
TR1	2W XFMR	Bus220	Bus282	8,28	107,70	108,02	
TR2	2W XFMR	Bus279	Bus284	8,28	107,70	108,02	
TR3	2W XFMR	Bus280	Bus285	8,28	107,70	108,02	
TR4	2W XFMR	Bus277	Bus-TR1	826,15	1239,22	1489,35	
TR6	2W XFMR	Bus294	Bus-TR6	826,15	1239,22	1489,35	
Cavo-A-C	Cable	BusA_6KV	BusC_6kV	6,31	8,69	10,74	0,0077944
Cavo-B-C	Cable	BusB_6kV	BusC_6kV	8,37	11,52	14,24	0,0025836
Cavo-SSP-B	Cable	Bus02_SSP	BusB_6kV	6,86	9,44	11,67	0,0084668
Cavo-SSP-Nord1	Cable	Bus01_SSP	NORD1	14,41	16,80	22,13	0,0032966
Cavo-SSP-Nord2	Cable	Bus01_SSP	NORD2	29,70	34,64	45,63	0,0067967
Cavo-SSP-SUD-2	Cable	Bus01_SSP	CAB-SUD	7,04	8,21	10,82	0,0016115
Cavo-TR1	Cable	Bus01_SSP	Bus277	1,25	0,65	1,41	0,0000794
Cavo-TR6	Cable	Bus01_SSP	Bus294	1,25	0,65	1,41	0,0000794
CavoTR1_6kV	Cable	Bus282	Bus01_SSP	0,32	0,30	0,44	0,0002044
CavoTR1_27,5kV	Cable	Bus_SSP	Bus220	0,06	0,04	0,07	0,0009635
CavoTR2_6kV	Cable	Bus284	Bus02_SSP	0,32	0,30	0,44	0,0002044
CavoTR2_27,5kV	Cable	Bus_SSP	Bus279	0,06	0,04	0,07	0,0009635
CavoTR3_27,5kV	Cable	Bus_SSP	Bus280	0,06	0,04	0,07	0,0009635
Cavo arrivo27.5kV	Cable	Bus arrivo27,5kV	Bus SSP	0,04	0,04	0.05	0.0009211

		Powe	r Grid Inpu	t Data							
Power Grid	Connected Bus	Rating			% Imp	edance					
rower drid	Connected bus	nating			100 MVA Base	Grounding					
ID	ID	MVASC	kV	R	X"						
Sccmax	Bus3_Sccmax	360,000	27,500	2,76399	27,63992	0,10	Delta				
Sccmin	Bus_Sccmin	100,000	27,500	9,95037	99,50372	0,10	Delta				

						Induction	Machine I	nput Data							
Induction Machine	Co	nnecte	d Bus		Ra	ting			PosSeqIm	o (Mtr Base		Grounding		mFact.	
ID	Type	Qty	ID	HP/kW	kVA	kV	Amp	PF	% R	% X"	R/X"	Conn.	Type	Amp	MW/PP
Mtr1	Motor	2	Mtr1~	370,00	456,22	0,575	458,10	87,00	9,01	46,76	0,19	Wye	Open	0,19	
Mtr3	Motor	2	Mtr3~	370,00	456,22	0,575	458,10	87,00	9,01	46,76	0,19	Wye	Open	0,19	
Mtr25	Motor	2	Mtr25~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr36	Motor	2	Mtr36~	370,00	456,22	0,575	458,10	87,00	9,01	46,76	0,19	Wye	Open	0,19	
Mtr70	Motor	2	Mtr70~	700,00	810,33	0,575	813,60	92,34	2,64	16,46	0,16	Wye	Open	0,35	
Mtr86	Motor	2	Mtr86~	370,00	456,22	0,575	458,10	87,00	9,01	46,76	0,19	Wye	Open	0,19	
Mtr89	Motor	2	Mtr89~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr90	Motor	2	Mtr90~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr95	Motor	2	Mtr95~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr100	Motor	2	Mtr100~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr101	Motor	2	Mtr101~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr105	Motor	2	Mtr105~	370,00	456,22	0,575	458,10	87,00	9,01	46,76	0,19	Wye	Open	0,19	

	Lumped Load Input Data													
						Motor Loa	ds							
			Lump	ed Load						% Impe				
ID		Rating			% Load		Loa	ding		Machine Ba	se	(Grounding	
	kVA	kV	Amp	% PF	MTR	STAT	kW	kvar	R	X"	R/X"	Conn.	Type	
Load-Nord1	484,5	6,000	46,62	87,10	80	20	168,80	95,21	2,28	15,21	0,15	Wye	Open	
Load-Nord2	1071,9	6,000	103,14	87,14	80	20	373,60	210,37	2,28	15,21	0,15	Wye	Open	
Load-SUD-1	231,7	6,000	22,30	88,03	80	20	81,60	43,98	2,28	15,21	0,15	Wye	Open	
Lump4	200,0	0,400	288,70	87,00	50	50	43,50	24,65	6,46	15,37	0,42	Wye	Open	
Lump28	130,0	0,400	187,60	87,00	50	50	28,28	16,02	6,46	15,37	0,42	Wye	Open	
Lump39	200,0	0,400	288,70	87,00	50	50	43,50	24,65	6,46	15,37	0,42	Wye	Open	
Lump74	400,0	0,400	577,40	92,00	50	50	92,00	39,19	6,46	15,37	0,42	Wye	Open	
Lump93	130,0	0,400	187,60	87,00	50	50	28,28	16,02	6,46	15,37	0,42	Wye	Open	
Lump109	250,0	0,400	360,84	87,00	50	50	54,38	30,82	6,46	15,37	0,42	Wye	Open	

ALLEGATO 6

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 6 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI APERTI)

SHORT- CIRCUIT REPORT 1

Fault at bus: Bus01_SSP
Nominal kV = 6,000
Voltage c Factor = 1.10 (User-Defined)

Contr	ribution	3-Phase Fault			Line-To-Ground Fault					ve & Zero Sequ Looking into '		nces
From Bus	To Bus	% V	% V	% Voltage at From Bus kA Symm. rms			% Impedance on 100 MVA base					
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
Bus01_SSP	Total	0,000	13,476	0,00	172,04	173,97	0,26	0,261	8.03E+000	7.43E+001	1.15E+004	5.42E+001
NORD1	Bus01_SSP	0,583	0,265	0,01	172,04	173,97	0,00	0,000	5.75E+002	3.75E+003		
NORD2	Bus01_SSP	2,613	0,577	0,03	172,06	173,97	0,01	0,000	2.83E+002	1.72E+003		
CAB-SUD	Bus01_SSP	0,137	0,127	0,00	172,04	173,97	0,00	0,000	1.18E+003	7.82E+003		
Bus277	Bus01_SSP	0,000	0,000	0,00	172,04	173,97	0,00	0,000				
Bus294	Bus01_SSP	0,000	0,000	0,00	172,04	173,97	0,00	0,000				
Bus282	Bus01_SSP	0,258	5,942	0,01	172,04	173,97	0,12	0,131	1.48E+001	1.69E+002	2.31E+004	1.08E+002
BusB_6kV	Bus02_SSP	0,758	0,654	0,01	172,04	173,97	0,01	0,000	6.00E+002	1.42E+003		
BusB284	Bus02 SSP	0,258	5.942	0.01	172.04	173,97	0.12	0.131	1.48E+001	1.69E+002	2.31E+004	1.08E+002

		3-Phase	L-G	L-L	L-L-G
Initial Symmetrical Current (kA, rms)	:	13,476	0,261	11,670	11,735
Peak Current (kA), Method C	:	33,210	0,644	28,760	28,921
Breaking Current (kA, rms, symm)	:		0,261	11,670	11,73536
Steady State Current (kA rms)		11.883	0.261	11.670	11,735

Fault at bus: Bus02_SSP
Nominal kV = 6,000
Voltage c Factor = 1.10 (User-Defined)

Contr	ibution	3-Phas	e Fault		Line	-To-Ground	Fault		Positive & Zero Sequence Impedances Looking into "From Bus"			
From Bus	To Bus	% V	kA	% Vc	ltage at Fro	m Bus	kA Syn	nm. rms	% Impedance on 100 MVA base			
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	R0	XO
Bus02_SSP	Total	0,000	13,476	0,00	172,04	173,97	0,261	0,261	8.03E+000	7.43E+001	1.15E+004	5.42E+001
BusB_6kV	Bus02_SSP	0,758	0,654	0,01	172,04	173,97	0,008	0,000	6.00E+002	1.42E+003		
Bus284	Bus02_SSP	0,258	5,942	0,01	172,04	173,97	0,120	0,131	1.48E+001	1.69E+002	2.31E+004	1.08E+002
NORD1	Bus01_SSP	0,583	0,265	0,01	172,04	173,97	0,003	0,000	5.75E+002	3.75E+003		
NORD2	Bus01_SSP	2,613	0,577	0,03	172,06	173,97	0,007	0,000	2.83E+002	1.72E+003		
CAB-SUD	Bus01_SSP	0,137	0,127	0,00	172,04	173,97	0,002	0,000	1.18E+003	7.82E+003		
Bus277	Bus01_SSP	0,000	0,000	0,00	172,04	173,97	0,000	0,000				
Bus294	Bus01_SSP	0,000	0,000	0,00	172,04	173,97	0,000	0,000				
Bus282	Bus01_SSP	0,258	5,942	0,01	172,04	173,97	0,120	0,131	1.48E+001	1.69E+002	2.31E+004	1.08E+002

		3-Phase	L-G	L-L	L-L-G	
Initial Symmetrical Current (kA, rms)	:	13,476	0,261	11,670	11,735	
Peak Current (kA), Method C	:	33,210	0,644	28,760	28,921	
Breaking Current (kA, rms, symm)	:	0,261	11,670	11,735		
Steady State Current (kA, rms)	:	11,883	0,261	11,670	11,735	

Fault at bus: Bus03_SSP
Nominal kV = 6,000
Voltage c Factor = 1.10 (User-Defined)

Cont	tribution	3-Phas	se Fault	Line-To-Ground Fault					Positive & Zero Sequence Impedances Looking into "From Bus"			
From Bus	To Bus	% V	% V kA			m Bus	kA Syn	nm. rms	% Impedance on 100 MVA base			
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	X0
Bus03_SSP	Total	0,000	13,476	0,00	172,04	173,97	0,261	0,261	8.03E+000	7.43E+001	1.15E+004	5.42E+001
BusB_6kV	Bus02_SSP	0,758	0,654	0,01	172,04	173,97	0,008	0,000	6.00E+002	1.42E+003		
Bus284	Bus02_SSP	0,258	5,942	0,01	172,04	173,97	0,120	0,131	1.48E+001	1.69E+002	2.31E+004	1.08E+002
NORD1	Bus01_SSP	0,583	0,265	0,01	172,04	173,97	0,003	0,000	5.75E+002	3.75E+003		
NORD2	Bus01_SSP	2,613	0,577	0,03	172,06	173,97	0,007	0,000	2.83E+002	1.72E+003		
CAB-SUD	Bus01_SSP	0,137	0,127	0,00	172,04	173,97	0,002	0,000	1.18E+003	7.82E+003		
Bus277	Bus01_SSP	0,000	0,000	0,00	172,04	173,97	0,000	0,000				
Bus294	Bus01_SSP	0,000	0,000	0,00	172,04	173,97	0,000	0,000				
Bus282	Bus01_SSP	0,258	5,942	0,01	172,04	173,97	0,120	0,131	1.48E+001	1.69E+002	2.31E+004	1.08E+002

ALLEGATO 6

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 6 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI APERTI)

SHORT- CIRCUIT REPORT 2

Nominal kV = Voltage c Factor =

6,000 1.10 (User-Defined)

Contr	ribution	3-Phas	e Fault		Line	-To-Ground	Fault			ve & Zero Sequ Looking into "		nces
From Bus	To Bus	% V	kA	% Vo	Itage at Fro	m Bus	kA Syn	nm. rms	% I	Impedance on	100 MVA base	
ID	ID	From Bus	Svmm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
BusA_6KV	Total	0,000	9,552	0,00	171,22	173,82	0,260	0,260	2.85E+001	1.02E+002	1.16E+004	1.16E+002
Bus367	BusA_6KV	0,789	0,077	0,01	171,23	173,83	0,001	0,000	5.06E+003	1.20E+004		
BusC_6kV	BusA_6KV	10,102	9,475	0,36	171,15	173,84	0,258	0,260	2.86E+001	1.02E+002	1.16E+004	1.16E+002
Bus222	BusA_6KV	0,000	0,000	101,32	102,50	102,87	0,000	0,000				

3-Phase L-L L-L-G L-G 0,260 8,272 8,335 9,552 Initial Symmetrical Current (kA, rms) 19,545 0.531 16.927 17.055 Peak Current (kA), Method C 8,335 8.272 Breaking Current (kA, rms, symm) 0.260 Steady State Current (kA, rms) 8,558 0,260 8,272 8,335

Fault at bus: BusB_6kV
Nominal kV = 6,000
Itage c Factor = 1.10 (User-Defined) Voltage c Factor =

Conti	ribution	3-Phas	e Fault		Line-To-Ground Fault				Positive & Zero Sequence Impedances				
From Bus	To Bus	% V	kA	% Vo	% Voltage at From Bus			kA Symm. rms		% Impedance on 100 MVA base			
ID	ID	From Bus	Svmm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO	
BusB 6kV	Total	0,000	12,008	0,00	171,79	173,92	0,261	0,261	1.44E+001	8.26E+001	1.16E+004	7.39E+001	
Bus8	BusB_6kV	0,518	0,062	0,01	171,79	173,92	0,001	0,000	6.27E+003	1.49E+004			
Bus11	BusB_6kV	0,266	0,047	0,00	171,79	173,92	0,001	0,000	8.30E+003	1.98E+004			
Bus310	BusB_6kV	0,266	0,047	0,00	171,79	173,92	0,001	0,000	8.30E+003	1.98E+004			
BusC 6kV	BusB 6kV	0,711	0,503	0,01	171,79	173,92	0,007	0,000	7.77E+002	1.85E+003			
Bus02 SSP	BusB 6kV	13,164	11,367	0,39	171,70	173,93	0,252	0,261	1.41E+001	8.75E+001	1.16E+004	7.39E+001	
Bus47	BusB_6kV	0,000	0,000	99,18	100,00	100,41	0,000	0,000					
Bus371	BusB_6kV	0,000	0,000	99,18	100,00	100,41	0,000	0,000					
Bus373	BusB 6kV	0,000	0,000	100,41	99,18	100,00	0,000	0,000					

L-L-G 10,400 23,665 10,464 10,400 Initial Symmetrical Current (kA, rms)
Peak Current (kA), Method C
Breaking Current (kA, rms, symm)
Steady State Current (kA, rms) 12 008 0.261 10 464 27,326 0,261 10,608 0,261 0,593 10,400 0,261 23,811 10,464

Fault at bus: BusC_6kV
Nominal kV = 6,000
Voltage c Factor = 1.10 (User-Defined)

Con	tribution	3-Phas	e Fault	Line-To-Ground Fault				Positive & Zero Sequence Impedances Looking into "From Bus"				
From Bus	To Bus	% V	% V kA			% Voltage at From Bus kA Symm. rms			%	Impedance on	100 MVA base	•
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	X0
BusC_6kV	Total	0,000	10,534	0,00	171,47	173,87	0,260	0,260	2.23E+001	9.30E+001	1.16E+004	9.81E+001
Bus88	BusC_6kV	0,187	0,040	0,00	171,47	173,87	0,001	0,000	9.60E+003	2.30E+004		
Bus125	BusC_6kV	0,634	0,062	0,01	171,48	173,87	0,001	0,000	6.29E+003	1.49E+004		
Bus235	BusC_6kV	0,432	0,124	0,01	171,48	173,87	0,002	0,000	3.13E+003	7.49E+003		
Bus319	BusC_6kV	0,187	0,040	0,00	171,47	173,87	0,001	0,000	9.60E+003	2.30E+004		
Bus322	BusC_6kV	0,187	0,040	0,00	171,47	173,87	0,001	0,000	9.60E+003	2.30E+004		
Bus337	BusC_6kV	0,187	0,040	0,00	171,47	173,87	0,001	0,000	9.60E+003	2.30E+004		
Bus352	BusC_6kV	0,187	0,040	0,00	171,47	173,87	0,001	0,000	9.60E+003	2.30E+004		
Bus355	BusC_6kV	0,187	0,040	0,00	171,47	173,87	0,001	0,000	9.60E+003	2.30E+004		
BusA_6KV	BusC_6kV	0,083	0,077	0,00	171,47	173,87	0,001	0,000	5.07E+003	1.20E+004		
BusB_6kV	BusC_6kV	14,186	10,035	0,47	171,37	173,88	0,252	0,260	2.26E+001	9.78E+001	1.16E+004	9.81E+001
Bus115	BusC_6kV	0,000	0,000	101,47	102,50	102,89	0,000	0,000				

3-Phase L-L-G L-G L-L 10,534 0,260 9,123 9,186 Initial Symmetrical Current (kA, rms) 22,399 0,553 19,398 19,532 Peak Current (kA), Method C 9,123 Breaking Current (kA, rms, symm) 0,260 9,186 Steady State Current (kA, rms) 9,344 0,260 9,123 9,186

ALLEGATO 6

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 6 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI APERTI)

SHORT- CIRCUIT REPORT 3

Fault at bus: Bus_arrivo27,5kV
Nominal kV = 27,500
Voltage c Factor = 1.10 (User-Defined)

Contr	ibution	3-Phas	3-Phase Fault		Line	-To-Ground	Fault		Positive & Zero Sequence Impedances Looking into "From Bus"				
From Bus	To Bus	% V	kA	% Vc	ltage at Fro	m Bus	kA Syn	nm. rms	% l	Impedance on	100 MVA base	•	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO	
Bus_arrivo27,5kV	Total	0,000	7,895	0,00	173,21	173,21	0,000	0,000	0		3.09E+000	2.91E+001	
Bus_SSP	Bus_arrivo27,5kV	0,008	0,340	0,00	173,21	173,21	0,000	0,000	0		1.62E+002	6.59E+002	
Sccmax	Bus3_Sccmax	100,000	7,558	0,00	173,21	173,21	0,000	0,000	0		3.04E+000	3.04E+001	

3-Phase L-G L-L L-L-G Initial Symmetrical Current (kA, rms) : 7,895 0,000 6,837 6,837 19,393 0,000 16,795 16,795 Peak Current (kA), Method C 0,000 6,837 6,837 Breaking Current (kA, rms, symm) 7,558 0.000 6.837 6.837 Steady State Current (kA, rms)

Fault at bus: Bus_SSP
Nominal kV = 27,500
Voltage c Factor = 1.10 (User-Defined)

Contri	ibution	3-Phase Fault			Line-To-Ground Fault					Positive & Zero Sequence Impedances Looking into "From Bus"				
	- n	0/ 1/		0/ 1/		_	100							
From Bus	To Bus	% V	kA	% VC	ltage at Fro	m Bus	KA Syr	nm. rms	% !	impedance on	100 MVA base	į		
ID	ID	From Bus	Svmm. rms	Va	Vb	Vc	la	310	R1	X1	RO	X0		
Bus_SSP	Total	0,000	7,886	0,00	173,21	173,21	0,000	0,000	0		3.13E+000	2.91E+001		
Bus220	Bus_SSP	0,005	0,170	0,00	173,21	173,21	0,000	0,000	0		3.24E+002	1.32E+003		
Bus279	Bus_SSP	0,005	0,170	0,00	173,21	173,21	0,000	0,000	0		3.24E+002	1.32E+003		
Bus280	Bus_SSP	0,000	0,000	0,00	173,21	173,21	0,000	0,000	0					
Bus_arrivo27,5kV	Bus_SSP	0,176	7,548	0,00	173,21	173,21	0,000	0,000	0		3.08E+000	3.04E+001		

		3-Phase	L-G	L-L	L-L-G	
Initial Symmetrical Current (kA, rms)	:	7,886	0,000	6,829	6,829	
Peak Current (kA), Method C	:	19,341	0,000	16,750	16,750	
Breaking Current (kA, rms, symm)	:	0,000	6,829	6,829		
Steady State Current (kA, rms)	:	7,548	0,000	6,829	6,829	

ALLEGATO 6

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 6 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI APERTI)

SHORT- CIRCUIT REPORT 4

Fault at bus: CAB-SUD

Nominal kV = 6,000

Voltage c Factor = 1.10 (User-Defined)

Contr	ribution	3-Phas	e Fault		Line	-To-Ground	Fault		Positive & Zero Sequence Impedanc Looking into "From Bus"		nces	
From Bus	To Bus	% V	kA	% Vo	Itage at Fro	m Bus	kA Syn	nm. rms	%	Impedance on	100 MVA base	•
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
CAB-SUD	Total	0,000	12,034	0,00	171,78	173,91	0,261	0,261	1.49E+001	8.24E+001	1.16E+004	7.15E+001
Bus01_SSP	CAB-SUD	12,787	11,906	0,36	171,70	173,91	0,259	0,261	1.51E+001	8.33E+001	1.16E+004	7.15E+001
Load-SUD-1	CAB-SUD	100,000	0,128	100,00	100,00	100,00	0,002	0,000	1.17E+003	7.81E+003		

3-Phase L-G L-L L-L-G 12.034 0,261 10,422 10,486 27,238 0,590 23,588 23,734 Peak Current (kA), Method C 10,486 0,261 10,422 Breaking Current (kA, rms, symm) 10,742 0.261 10,422 10,486 Steady State Current (kA, rms)

Fault at bus: NORD1

Nominal kV = 6,000 Voltage c Factor = 1.10 (User-Defined)

Contr	ribution	3-Phas	Line-To-Ground Fault					Positive & Zero Sequence Impedances Looking into "From Bus"			ices	
From Bus	To Bus	% V	kA	% Vc	ltage at Fro	m Bus	kA Syn	nm. rms	%	Impedance on	100 MVA base	
ID	ID	From Bus	Svmm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
NORD1	Total	0,000	10,834	0,00	171,52	173,85	0,260	0,260	2.18E+001	9.04E+001	1.16E+004	8.96E+001
Bus01_SSP	NORD1	23,217	10,568	0,74	171,36	173,86	0,256	0,260	2.25E+001	9.26E+001	1.16E+004	8.96E+001
Load-Nord1	NORD1	100,000	0,267	100,00	100,00	100,00	0,004	0,000	5.60E+002	3.74E+003		

		3-Phase	L-G	L-L	L-L-G	
Initial Symmetrical Current (kA, rms)	:	10,834	0,260	9,382	9,446	
Peak Current (kA), Method C	:	23,072	0,554	19,981	20,115	
Breaking Current (kA, rms, symm)	:	0,260	9,382	9,446		
Steady State Current (kA, rms)	:	9,726	0,260	9,382	9,446	

Fault at bus: NORD2 Nominal kV = 6,000 Voltage c Factor = 1.10 (User-Defined)

Contr	ibution	3-Phas	Line-To-Ground Fault					Positive & Zero Sequence Impedances Looking into "From Bus"			ices	
From Bus	To Bus	% V	kA	% Voltage at From Bus			kA Syn	nm. rms	% Impedance on 100 MVA base			
ID	ID	From Bus	Svmm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
NORD2	Total	0,000	9,081	0,00	171,04	173,74	0,259	0,259	3.43E+001	1.06E+002	1.16E+004	1.27E+002
Bus01_SSP	NORD2	38,498	8,500	1,48	170,71	173,75	0,248	0,259	3.79E+001	1.12E+002	1.16E+004	1.27E+002
Load-Nord2	NORD2	100,000	0.590	100.00	100.00	100.00	0.011	0.000	2.53E±002	1.60E±003		

		3-Phase	L-G	L-L	L-L-G
Initial Symmetrical Current (kA, rms)	:	9,081	0,259	7,864	7,926
Peak Current (kA), Method C	:	17,999	0,513	15,587	15,709
Breaking Current (kA, rms, symm)	:	0,259	7,864	7,926	
Steady State Current (kA, rms)	:	8,076	0,259	7,864	7,926

ALLEGATO 6

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 6 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI APERTI)

SHORT- CIRCUIT REPORT - SUMMARY 3-Phase, LG, LL, LLG Fault Currents Bus 3-Phase Fault Line-to-Ground Fault Line-to-Line Fault *Line-to-Line-to-Ground ID l"k l"k lb I"k Bus-TR 0,400 9,263 9,215 . 15,499 9,400 9,400 8,022 13,227 8,022 8,022 15,485 9,392 6,000 13,476 0.261 11,735 11,735 11,735 11,735 11,735 11,735 Bus01 SSP 33,210 11,883 0.261 0.644 0.261 11,670 28,760 11,670 11,670 28,921 6,000 27,500 13,476 11,883 0,644 0,261 0,261 11,670 28,760 28,921 6,837 11,735 7,558 11,883 6,837 11,735 Bus3 Sccmax 7,895 19,393 0,000 0,000 0,000 0,000 6,837 16,795 6,837 6,837 16,795 6,837 6,000 33,210 19,545 0,644 0,261 28,921 17,055 Bus03_SSP 13,476 0,261 11,670 28,760 11,670 11,670 11,735 9.552 8,558 0.260 8,272 16,927 8,272 8,272 BusA 6KV 0.260 8,335 8,335 8,335 6,000 6,000 27,326 22,399 23,665 19,398 12,008 10,608 0,261 10,464 9,186 6,837 1,818 10,534 9,344 7,558 2,099 0,553 0,260 19,532 9,186 BusC 6kV 0,260 0,260 9,123 9,123 9,123 9,186 27,500 27,500 27,500 7,895 2,099 19,393 5,184 0,000 0,000 0,000 6,837 1,818 16,795 4,489 6,837 1,818 6,837 1,818 6,837 1,818 16,795 4,489 6,837 1,818 Bus_arrivo27,5kV 0,000 0,000 **Bus Sccmin** 7,886 12,034 19,341 27,238 7,548 10,742 0,000 0,000 0,000 16,750 23,588 6,829 10,422 6,829 10,486 16,750 23,734 6,829 10,486 6,829 10,486 0,000 6,829 6,829 6,000 CAB-SUD 0,261 10,422 10,422 NORD1 NORD2 6,000 10,834 9,081 23,072 17,999 9,726 8,076 0.260 0,554 0,513 0,260 0,260 9,382 7,864 19,981 15,587 9,382 7,864 9,382 7,864 9,446 7,926 20,115 15,709 9,446 7,926 9,446 7,926

Sequence Impedance Summary Report													
Bus		Positive Seq. Imp. (ohm)			Negative Seq. Imp. (ohm)			Zero	Seq. Imp. (ohm)	Fault Zf (ohm)		
ID	kV	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus-TR1	0,400	0,01404	0,02209	0,02618	0,01404	0,02209	0,02618	0,01389	0,02083	0,02504	0,00000	0,00000	0,00000
Bus01 SSP	6,000	0,03036	0,28113	0,28277	0,03036	0,28113	0,28277	43,67009	0,20487	43,67057	0,00000	0,00000	0,00000
Bus02 SSP	6,000	0,03036	0,28113	0,28277	0,03036	0,28113	0,28277	43,67009	0,20487	43,67057	0,00000	0,00000	0,00000
Bus3 Sccmax	27,500	0,23352	2,19971	2,21207	0,23352	2,19971	2,21207	0,00000	0,00000	0,00000			
Bus03 SSP	6,000	0,03036	0,28113	0,28277	0,03036	0,28113	0,28277	43,67009	0,20487	43,67057	0,00000	0,00000	0,00000
BusA 6KV	6,000	0,10785	0,38408	0,39894	0,10785	0,38408	0,39894	43,80251	0,43983	43,80472	0,00000	0,00000	0,00000
BusB 6kV	6,000	0,05464	0,31258	0,31732	0,05464	0,31258	0,31732	43,71225	0,27967	43,71314	0,00000	0,00000	0,00000
BusC 6kV	6,000	0,08426	0,35177	0,36172	0,08426	0,35177	0,36172	43,76370	0,37097	43,76527	0,00000	0,00000	0,00000
Bus arrivo27.5kV	27,500	0,23352	2,19971	2,21207	0,23352	2,19971	2,21207	0,00000	0,00000	0,00000			
Bus Sccmin	27,500	0,82775	8,27747	8,31875	0,82775	8,27747	8,31875	0,00000	0,00000	0,00000			
Bus SSP	27,500	0,23633	2,20215	2,21479	0,23633	2,20215	2,21479	0,00000	0,00000	0,00000			
CAB-SUD	6,000	0,05646	0,31157	0,31665	0,05646	0,31157	0,31665	43,71358	0,27042	43,71442	0,00000	0,00000	0,00000
NORD1	6,000	0,08236	0,34194	0,35172	0,08236	0,34194	0,35172	43,75906	0,33896	43,76037	0,00000	0,00000	0,00000
NORD2	6,000	0,12962	0,39909	0,41961	0,12962	0,39909	0,41961	43,85352	0,48133	43,85616	0,00000	0,00000	0,00000

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen	to ST010	09-01	- R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	02	D:	111
	IMPIANTI ELETTRICI	Pagina	92	DI	111

ALLEGATO 7 - CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

ALLEGATO 7

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 7 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

SHORT- CIRCUIT ANALYSIS

IEC 60909 Standard 3-Phase, LG, LL, & LLG Fault Currents

			<u>Bus Input Data</u>			
		Bus			Initial Voltage	
ID	Type	Nom. kV	Base kV	Sub-sys	%Mag.	Ang.
Bus-TR1	Load	0,400	0,410	1	100,00	60,00
Bus-TR6	Load	0,400	0,410	1	100,00	60,00
Bus01_SSP	Load	6,000	6,150	1	100,00	30,00
Bus02_SSP	Load	6,000	6,150	1	100,00	30,00
Bus3 Sccmax	SWNG	27,500	27,500	1	100,00	0,00
Bus03_SSP	Load	6,000	6,150	1	100,00	30,00
BusA_6KV	Load	6,000	6,150	1	100,00	30,00
BusB_6kV	Load	6,000	6,150	1	100,00	30,00
BusC 6kV	Load	6,000	6,150	1	100,00	30,00
Bus arrivo27,5kV	Load	27,500	27,500	1	100,00	0,00
Bus_SSP	Load	27,500	27,500	1	100,00	0,00
CAB-SUD	Load	6,000	6,150	1	100,00	30,00
NORD1	Load	6,000	6,150	1	100,00	30,00
NORD2	Load	6,000	6,150	1	100,00	30,00

	Line/Cable Input Data													
			Ohms or Siem	ens per 100	0 m per Cond	uctor (Ca	ble) or per	Phase (Line						
					Line/Cabl	le								
ID	Library	Size	Length Adj. (m)	% Tol.	#/Phase	T (°C)	R1	X1	Y1	RO	XO	YO		
Cable5	11NCUN3	50	645,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cable7	11NCUN3	50	440,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cable29	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cable42	11NCUN3	50	790,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cable75	11NCUN3	120	600,0	0,0	1	75	0,1869399	0,1180000	0,0001147	0,2956703	0,2500000			
Cable117	11NCUN3	50	440,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cable120	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cable121	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cable126	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cable 131	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cable132	11NCUN3	50	360,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cable136	11NCUN3	50	790,0	0,0	1	75	0,4711649	0,1380000	0,0000817	0,7534823	0,2900000			
Cavo-A-C	11NCUN3	300	626,0	0,0	2	75	0,0763020	0,1050000	0,0001646	0,1239908	0,2200000			
Cavo-B-C	11NCUN3	300	415,0	0,0	1	75	0,0763020	0,1050000	0,0001646	0,1239908	0,2200000			
Cavo-Nord1-Nord2	11NCUN3	240	244,0	0,0	1	75	0,0934700	0,1090000	0,0001495	0,1526040	0,2300000			
Cavo-SSP-A	11NCUN3	300	478,0	0,0	2	75	0,0763020	0,1050000	0,0001646	0,1239908	0,2200000			
Cavo-SSP-B	11NCUN3	300	680,0	0,0	2	75	0,0763020	0,1050000	0,0001646	0,1239908	0,2200000			
Cavo-SSP-Nord1	11NCUN3	240	583,0	0,0	1	75	0,0934700	0,1090000	0,0001495	0,1526040	0,2300000			
Cavo-SSP-Nord2	11NCUN3	240	1202,0	0,0	1	75	0,0934700	0,1090000	0,0001495	0,1526040	0,2300000			
Cavo-SSP-SUD-1	11NCUN3	240	288,0	0,0	1	75	0,0934700	0,1090000	0,0001495	0,1526040	0,2300000			
Cavo-SSP-SUD-2	11NCUN3	240	285,0	0,0	1	75	0,0934700	0,1090000	0,0001495	0,1526040	0,2300000			
Cavo-TR1	11NCUN3	95	20,0	0,0	1	75	0,2365362	0,1230000	0,0001049	0,3719723	0,2600000			
Cavo-TR6	11NCUN3	95	20,0	0,0	1	75	0,2365362	0,1230000	0,0001049	0,3719723	0,2600000			
CavoTR1_6kV	11NCUN3	185	20,0	0,0	2	75	0,1220832	0,1120000	0,0001351	0,1907550	0,2400000			
CavoTR1_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,2365362	0,1430000	0,0000637	0,3760926	0,3632200			
CavoTR2_6kV	11NCUN3	185	20,0	0,0	2	75	0,1220832	0,1120000	0,0001351	0,1907550	0,2400000			
CavoTR2_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,2365362	0,1430000	0,0000637	0,3760926	0,3632200			
CavoTR3_27,5kV	33NCUS1	95	20,0	0,0	1	75	0,2365362	0,1430000	0,0000637	0,3760926	0,3632200			
Cavo arrivo27,5kV	33NCUN1	150	20,0	0,0	1	75		0.1350000	0,0000609	0,2384438	0,3400000			

					2-Windi	ng Transforn	ner Inpu	t Data					
Transformer		Rating		Z Variation						% Tap Setting	ı	Adjusted	Phase Shift
ID	MVA	Prim. kV	Sec. kV	% Z	X/R	+ 5%	- 5%	% Tot%	Prim	Sec.	% Z	Type	Angle
TR-AT1	0,250	6,000	0,400	6,00	1,50	0	0	0		2,500	6,0000	Dyn	-30,000
TR-BT1	1,000	6,000	0,400	6,00	5,79	0	0	0		0	6,0000	Dyn	-30,000
TR-BT2	1,000	6,000	0,400	6,00	5,79	0	0	0		0	6,0000	Dyn	-30,000
TR-BT3	0,250	6,000	0,400	6,00	4,70	0	0	0		0	6,0000	Dyn	30,000
TR-CT2	0,250	6,000	0,400	6,00	1,50	0	0	0		2,500	6,0000	Dyn	-30,000
TR1	6,500	27,500	6,000	7,00	13,00	0	0	0		2,500	7,0000	Dyn	-30,000
TR2	6,500	27,500	6,000	7,00	13,00	0	0	0		2,500	7,0000	Dyn	-30,000
TR3	6,500	27,500	6,000	7,00	13,00	0	0	0		0	7,0000	Dyn	-30,000
TR4	0,250	6,000	0,400	4,00	1,50	0	0	0		0	4,0000	Dyn	-30,000
TR6	0,250	6,000	0,400	4,00	1,50	0	0	0		0	4,0000	Dyn	-30,000

				Groundi	ng								
Transformer		Rating		Conn.			Primary		Secondary				
ID	MVA	Prim. kV	Sec. kV	Туре	Type	kV	Amp	Ohm	Type	kV	Amp	Ohr	
TR-AT1	0,250	6,000	0,400	D/Y					Solid				
TR-BT1	1,000	6,000	0,400	D/Y					Solid				
TR-BT2	1,000	6,000	0,400	D/Y					Solid				
TR-BT3	0,250	6,000	0,400	D/Y					Solid				
TR-CT2	0,250	6,000	0,400	D/Y					Solid				
TR1	6,500	27,500	6,000	D/Y					Resistor		125,1	27,	
TR2	6,500	27,500	6,000	D/Y					Resistor		125,1	27,	
TR3	6,500	27,500	6,000	D/Y					Resistor		125,1	27,	
TR4	0,250	6,000	0,400	D/Y					Solid				
TR6	0,250	6,000	0,400	D/Y					Solid				

ALLEGATO 7

Trieste Marine Terminal

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 7 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

			Branch Connection	<u>ons</u>							
CKT/Branch		Conne	cted Bus ID	% Impedance, Pos. Seq., 100 MVAb							
ID	Type	From Bus	To Bus	R	X	Z	Y				
TR-AT1	2W XFMR	BusA_6KV	Bus222	1227,21	1840,81	2212,38					
TR-BT1	2W XFMR	BusB_6kV	Bus47	93,63	542,12	550,14					
TR-BT2	2W XFMR	BusB_6kV	Bus371	93,63	542,12	550,14					
TR-BT3	2W XFMR	BusB_6kV	Bus373	458,07	2152,95	2201,14					
TR-CT2	2W XFMR	BusC_6kV	Bus115	1227,21	1840,81	2212,38					
TR1	2W XFMR	Bus220	Bus282	8,28	107,70	108,02					
TR2	2W XFMR	Bus279	Bus284	8,28	107,70	108,02					
TR3	2W XFMR	Bus280	Bus285	8,28	107,70	108,02					
TR4	2W XFMR	Bus277	Bus-TR1	826,15	1239,22	1489,35					
TR6	2W XFMR	Bus294	Bus-TR6	826,15	1239,22	1489,35					
Cavo-A-C	Cable	BusA_6KV	BusC_6kV	6,31	8,69	10,74	0,00779443				
Cavo-B-C	Cable	BusB_6kV	BusC_6kV	8,37	11,52	14,24	0,00258361				
Cavo-Nord1-Nord2	Cable	NORD2	NORD1	6,03	7,03	9,26	0,00137968				
Cavo-SSP-A	Cable	Bus02_SSP	BusA_6KV	4,82	6,63	8,20	0,00595165				
Cavo-SSP-B	Cable	Bus02_SSP	BusB_6kV	6,86	9,44	11,67	0,00846679				
Cavo-SSP-Nord1	Cable	Bus01_SSP	NORD1	14,41	16,80	22,13	0,00329655				
Cavo-SSP-Nord2	Cable	Bus01_SSP	NORD2	29,70	34,64	45,63	0,00679666				
Cavo-SSP-SUD-1	Cable	Bus01_SSP	CAB-SUD	7,12	8,30	10,93	0,00162848				
Cavo-SSP-SUD-2	Cable	Bus01_SSP	CAB-SUD	7,04	8,21	10,82	0,00161152				
Cavo-TR1	Cable	Bus01_SSP	Bus277	1,25	0,65	1,41	7,93516E-05				
Cavo-TR6	Cable	Bus01_SSP	Bus294	1,25	0,65	1,41	7,93516E-05				
CavoTR1_6kV	Cable	Bus282	Bus01_SSP	0,32	0,30	0,44	0,00020439				
CavoTR1_27,5kV	Cable	Bus_SSP	Bus220	0,06	0,04	0,07	0,000963463				
CavoTR2_6kV	Cable	Bus284	Bus02_SSP	0,32	0,30	0,44	0,00020439				
CavoTR2_27,5kV	Cable	Bus_SSP	Bus279	0,06	0,04	0,07	0,000963463				
CavoTR3_27,5kV	Cable	Bus_SSP	Bus280	0,06	0,04	0,07	0,000963463				
Cavo arrivo27,5kV	Cable	Bus arrivo27,5kV	Bus SSP	0,04	0,04	0,05	0,00092111				

			Power Gri	d Input Data							
Power Grid	Connected Bus	Rat	ina	% Impedance							
	Connected Day		9		Grounding						
ID	ID	MVASC kV		R	X"	R/X"	Туре				
Sccmax	Bus3_Sccmax	360,000	27,500	2,76399	27,63992	0,10	Delta				
Sccmin	Bus_Sccmin	100,000	27,500	9,95037	99,50372	0,10	Delta				

							Induct	tion Mac	hine Inpu	ıt Data						
Induction Mac	Induction Machine Connected Bus		Bus		ng			PosSeqIm	ıp (Mtr Base		Grounding	mFact.				
ID		Type	Qty	ID	HP/kW	kVA	kV	Amp	PF	% R	% X"	R/X"	Conn.	Type Amp		MW/PP
Mtr3	Motor	2	Mtr	3~	370,00	456,22	0,575	458,10	87,00	9,01	46,76	0,19	Wye	Open	0,19	
Mtr25	Motor	2	Mtr2	25~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr36	Motor	2	Mtr3	36~	370,00	456,22	0,575	458,10	87,00	9,01	46,76	0,19	Wye	Open	0,19	
Mtr70	Motor	2	Mtr	70~	700,00	810,33	0,575	813,60	92,34	2,64	16,46	0,16	Wye	Open	0,35	
Mtr86	Motor	2	Mtr8	36~	370,00	456,22	0,575	458,10	87,00	9,01	46,76	0,19	Wye	Open	0,19	
Mtr89	Motor	2	Mtr8	39~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr90	Motor	2	Mtr9	90~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr95	Motor	2	Mtr	95~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr100	Motor	2	Mtr1	00~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr101	Motor	2	Mtr1	01~	220,00	272,05	0,575	273,20	87,00	3,64	16,26	0,22	Wye	Open	0,11	
Mtr105	Motor	2	Mtr1	05~	370,00	456,22	0,575	458,10	87,00	9,01	46,76	0,19	Wye	Open	0,19	

	Lumped Load Input Data														
						Motor L	oads								
	Lumped Load							% Impedance							
ID	Rating			% Load			Loading			Machine B		Gre	ounding		
	kVA	kV	Amp	% PF	MTR	STAT	kW	kvar	R	X"	R/X"	Conn.	Type		
Load-Nord1	484,5	6,000	46,62	87,10	80	20	337,60	190,42	2,28	15,21	0,15	Wye	Open		
Load-Nord2	1071,9	6,000	103,14	87,14	80	20	747,20	420,74	2,28	15,21	0,15	Wye	Open		
Load-SUD-1	231,7	6,000	22,30	88,03	80	20	163,20	87,96	2,28	15,21	0,15	Wye	Open		
Lump4	200,0	0,400	288,70	87,00	50	50	43,50	24,65	6,46	15,37	0,42	Wye	Open		
Lump6	150,0	0,400	216,51	87,00	50	50	32,63	18,49	6,46	15,37	0,42	Wye	Open		
Lump28	130,0	0,400	187,60	87,00	50	50	28,28	16,02	6,46	15,37	0,42	Wye	Open		
Lump39	200,0	0,400	288,70	87,00	50	50	43,50	24,65	6,46	15,37	0,42	Wye	Open		
Lump74	400,0	0,400	577,40	92,00	50	50	92,00	39,19	6,46	15,37	0,42	Wye	Open		
Lump90	150,0	0,400	216,51	87,00	50	50	32,63	18,49	6,46	15,37	0,42	Wye	Open		
Lump93	130,0	0,400	187,60	87,00	50	50	28,28	16,02	6,46	15,37	0,42	Wye	Open		
Lump94	130,0	0,400	187,60	87,00	50	50	28,28	16,02	6,46	15,37	0,42	Wye	Open		
Lump99	130,0	0,400	187,60	87,00	50	50	28,28	16,02	6,46	15,37	0,42	Wye	Open		
Lump104	130,0	0,400	187,60	87,00	50	50	28,28	16,02	6,46	15,37	0,42	Wye	Open		
Lump105	130,0	0,400	187,60	87,00	50	50	28,28	16,02	6,46	15,37	0,42	Wye	Open		
Lump109	250,0	0,400	360,84	87,00	50	50	54,38	30,82	6,46	15,37	0,42	Wye	Open		

ALLEGATO 7

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 7 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

SHORT- CIRCUIT REPORT 1

Fault at bus: Bus01_SSP 6,000 Nominal kV =

Voltage c Factor = 1.10 (User-Defined)

Contr	ibution	3-P	hase Fault		Line	-To-Ground	Fault			e & Zero Sec Looking into		
From Bus	To Bus	% V	kA	% V	oltage at Fro	m Bus	kA Sym	ım. rms	% I	mpedance o	n 100 MVA b	ase
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
Bus01_SSP	Total	0,00	13,486	0,00	172,04	173,97	0,261	0,261	8.01E+000	7.43E+001	1.15E+004	5.42E+001
NORD1	Bus01_SSP	1,17	0,533	0,02	172,05	173,97	0,007	0,000	2.93E+002	1.87E+003		
NORD2	Bus01_SSP	1,42	0,313	0,02	172,05	173,97	0,004	0,000	5.00E+002 3.18E+0			
CAB-SUD	Bus01_SSP	0,07	0,063	0,00	172,04	173,97	0,001	0,000	2.36E+003	1.57E+004		
CAB-SUD	Bus01_SSP	0,07	0,064	0,00	172,04	173,97	0,001	0,000	2.34E+003	1.55E+004		
Bus277	Bus01_SSP	0,00	0,000	0,00	172,04	173,97	0,000	0,000				
Bus294	Bus01_SSP	0,00	0,000	0,00	172,04	173,97	0,000	0,000				
Bus282	Bus01_SSP	0,26	5,942	0,01	172,04	173,97	0,120	0,131	1.48E+001	1.69E+002	2.31E+004	1.08E+002
BusA_6KV	Bus02_SSP	0,28	0,350	0,00	172,04	173,97	0,005	0,000	1.12E+003	2.65E+003		
BusB_6kV	Bus02_SSP	0,36	0,309	0,00	172,04	173,97	0,004	0,000	1.26E+003	3.00E+003		
Bus284	Bus02_SSP	0,26	5,942	0,01	172,04	173,97	0,120	0,131	1.48E+001	1.69E+002	2.31E+004	1.08E+002

3-Phase

13 48608 0.2613676 11 67929 Initial Symmetrical Current (kA. 11 74427 Peak Current (kA), Method C 33,240 0,644 28,787 28,947 Breaking Current (kA, rms, 0,261 11,679 11,744 11.74427 Steady State Current (kA, rms) 11.883 11.679 0.261

Fault at bus: Bus02 SSP Nominal kV =

Voltage c Factor = 1.10 (User-Defined)

Contr	ibution	3-P	hase Fault		Line	-To-Ground	Fault			e & Zero Sec Looking into		
From Bus	To Bus	% V	kA	% V	oltage at Fro	m Bus	kA Sym	ım. rms	% I	mpedance o	n 100 MVA b	ase
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
Bus02_SSP	Total	0,00	13,486	0,00	172,04	173,97	0,261	0,261	8.01E+000	7.43E+001	1.15E+004	5.42E+001
BusA_6KV	Bus02_SSP	0,28	0,350	0,00	172,04	173,97	0,005	0,000	1.12E+003 2.65E+003			
BusB_6kV	Bus02_SSP	0,36	0,309	0,00	172,04	173,97	0,004	0,000	1.26E+003	3.00E+003		
Bus284	Bus02_SSP	0,26	5,942	0,01	172,04	173,97	0,120	0,131			2.31E+004	1.08E+002
NORD1	Bus01_SSP	1,17	0,533	0,02	172,05	173,97	0,007	0,000	2.93E+002	1.87E+003		
NORD2	Bus01_SSP	1,42	0,313	0,02	172,05	173,97	0,004	0,000	5.00E+002	3.18E+003		
CAB-SUD	Bus01_SSP	0,07	0,063	0,00	172,04	173,97	0,001	0,000	2.36E+003	1.57E+004		
CAB-SUD	Bus01_SSP	0,07	0,064	0,00	172,04	173,97	0,001	0,000	2.34E+003	1.55E+004		
Bus277	Bus01_SSP	0,00	0,000	0,00	172,04	173,97	0,000	0,000				
Bus294	Bus01_SSP	0,00	0,000	0,00	172,04	173,97	0,000	0,000				
Rus282	Rus01 SSP	0.26	5 942	0.01	172 04	173 97	0.120	0.131	1.48F±001	1.69F±002	2 31F±004	1.08F+00

L-L

Initial Symmetrical Current (kA, 13,48608 0,2613676 11,67929 0,644 11,679 28,787 11,744 Peak Current (kA), Method C 33,240 28,947 Breaking Current (kA, rms,

L-G

0,261 Steady State Current (kA, rms) 11,883 0,261 11,679 11,74427

Fault at bus: Bus03 SSP Nominal kV = Voltage c Factor = 1.10 (User-Defined)

Contri	bution	3-PI	nase Fault		Line	-To-Ground	Fault			e & Zero Sec Looking into		
From Bus	To Bus	% V	kA	% Vc	oltage at Fro	m Bus	kA Sym	m. rms	% I	mpedance o	n 100 MVA b	ase
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
Bus03_SSP	Total	0,00	13,486	0,00	172,04	173,97	0,261	0,261	8.01E+000	7.43E+001	1.15E+004	5.42E+001
BusA_6KV	Bus02_SSP	0,28	0,350	0,00	172,04	173,97	0,005	0,000	1.12E+003	2.65E+003		
BusB_6kV	Bus02_SSP	0,36	0,309	0,00	172,04	173,97	0,004	0,000	0 1.26E+003 3.00E+003			
Bus284	Bus02_SSP	0,26	5,942	0,01	172,04	173,97	0,120	0,131	1.48E+001 1.69E+00		2.31E+004	1.08E+002
NORD1	Bus01_SSP	1,17	0,533	0,02	172,05	173,97	0,007	0,000				
NORD2	Bus01_SSP	1,42	0,313	0,02	172,05	173,97	0,004	0,000	5.00E+002	3.18E+003		
CAB-SUD	Bus01_SSP	0,07	0,063	0,00	172,04	173,97	0,001	0,000	2.36E+003	1.57E+004		
CAB-SUD	Bus01_SSP	0,07	0,064	0,00	172,04	173,97	0,001	0,000	2.34E+003	1.55E+004		
Bus277	Bus01_SSP	0,00	0,000	0,00	172,04	173,97	0,000	0,000				
Bus294	Bus01_SSP	0,00	0,000	0,00	172,04	173,97	0,000	0,000				
Bus282	Bus01_SSP	0,26	5,942	0,01	172,04	173,97	0,120	0,131	1.48E+001	1.69E+002	2.31E+004	1.08E+002

L-G 13,48608 0,2613676 11,67929 Initial Symmetrical Current (kA, 11,74427 28,787 11,744 Peak Current (kA), Method C 33,240 0,644 28,947 Breaking Current (kA, rms, Steady State Current (kA, rms) 0.261 11.679 11,74427

ALLEGATO 7

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 7

CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

SHORT- CIRCUIT REPORT 2

Fault at bus: BusA_6KV Nominal kV =

1.10 (User-Defined) Voltage c Factor =

Positive & Zero Sequence Impedances Contribution 3-Phase Fault Line-To-Ground Fault Looking into "From Bus" To Bus % **V** % Voltage at From Bus From Bus kA Symm. rms % Impedance on 100 MVA base **Symm. rms** 12,568 ID From Bus Vh 310 R1 X1 RO BusA_6KV Total 0,00 7.93E+001 1.16E+004 6.55E+001 0,00 171,89 173,94 0,261 1.18E+001 0,261 Bus367 BusA_6KV 0,79 0,077 0,01 173,94 0,001 0,000 5.06E+003 1.20E+004 BusC_6kV BusA_6KV 2,73 2,556 0,07 171,88 173,94 0,051 0,048 6.86E+001 3.88E+002 6.32E+004 3.58E+002 Bus02 SSP BusA_6KV 8.09 9.939 0,22 171,84 173,95 0,209 0,213 1.40E+001 | 1.00E+002 | 1.41E+004 | 8.02E+001 BusA 6KV 0,00 0,000 Bus222 101.72 102.50 102.94 0.000 0.000

> 3-Phase L-G L-L L-L-G

12,56849 0,2610432 10,88463 10,94921 Initial Symmetrical Current Peak Current (kA), Method C 29,477 0,612 25.528 25,679 Breaking Current (kA, rms, 0.261 10.885 10.949 10.885 10.94921 Steady State Current (kA, rms) 0.261 11,121

Fault at bus: BusB 6kV Nominal kV = 6,000

Voltage c Factor = 1.10 (User-Defined)

Contr	ibution	3-PI	hase Fault		Line	-To-Ground	Fault			e & Zero Seq Looking into		
From Bus	To Bus	% V	kA	% Vo	ltage at Fro	m Bus	kA Sym	m. rms	% I	mpedance o	n 100 MVA l	oase
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
BusB_6kV	Total	0,00	12,322	0,00	171,85	173,93	0,261	0,261	1.29E+001	8.07E+001	1.16E+004	6.88E+001
Bus8	BusB_6kV	0,52	0,062	0,01	171,85	173,94	0,001	0,000	6.27E+003	1.49E+004		
Bus11	BusB_6kV	0,27	0,047	0,00	171,85	173,93	0,001	0,000	8.30E+003	1.98E+004		
Bus310	BusB_6kV	0,27	0,047	0,00	171,85	173,93	0,001	0,000	8.30E+003	1.98E+004		
BusC_6kV	BusB_6kV	4,73	3,346	0,13	171,82	173,94	0,070	0,068	5.09E+001	2.97E+002	4.44E+004	2.64E+002
Bus02_SSP	BusB_6kV	10,22	8,824	0,29	171,79	173,94	0,189	0,193	1.70E+001	1.13E+002	1.56E+004	9.30E+001
Bus47	BusB_6kV	0,00	0,000	99,22	100,00	100,42	0,000	0,000				
Bus371	BusB_6kV	0,00	0,000	99,22	100,00	100,42	0,000	0,000				
Bus373	BusB 6kV	0,00	0,000	100,42	99,22	100,00	0,000	0,000				

3-Phase L-G L-L L-L-G 12,32217 0,2609497 10,67131 10,73575 Initial Symmetrical Current Peak Current (kA), Method C 28,539 0,604 24,716 24,865 Breaking Current (kA, rms, 0,261 10,671 10,736 10.73575 Steady State Current (kA, rms) 10.917 0.261 10,671

Fault at bus: BusC_6kV Nominal kV = 6,000

1.10 (User-Defined) Voltage c Factor =

Contr	ibution	3-PI	hase Fault		Line	-To-Ground	Fault			e & Zero Seq Looking into		
From Bus	To Bus	% V	kA	% Vo	Itage at Fro	m Bus	kA Sym	m. rms	% I	mpedance o	n 100 MVA l	ase
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
BusC_6kV	Total	0,00	12,068	0,00	171,80	173,92	0,261	0,261	1.41E+001	8.23E+001	1.16E+004	7.27E+001
Bus88	BusC_6kV	0,19	0,040	0,00	171,80	173,92	0,001	0,000	9.60E+003	2.30E+004		
Bus125	BusC_6kV	0,63	0,062	0,01	171,80	173,93	0,001	0,000	6.29E+003 1.49E+004			
Bus235	BusC_6kV	0,43	0,124	0,01	171,80	173,92	0,002	0,000	3.13E+003 7.49E+003			
Bus319	BusC_6kV	0,19	0,040	0,00	171,80	173,92	0,001	0,000	9.60E+003 2.30E+004			
Bus322	BusC_6kV	0,19	0,040	0,00	171,80	173,92	0,001	0,000	9.60E+003	2.30E+004		
Bus337	BusC_6kV	0,19	0,040	0,00	171,80	173,92	0,001	0,000	9.60E+003	2.30E+004		
Bus352	BusC_6kV	0,19	0,040	0,00	171,80	173,92	0,001	0,000	9.60E+003	2.30E+004		
Bus355	BusC_6kV	0,19	0,040	0,00	171,80	173,92	0,001	0,000	9.60E+003	2.30E+004		
BusA_6KV	BusC_6kV	7,15	6,706	0,21	171,75	173,93	0,147	0,151	2.40E+001	1.48E+002	2.00E+004	1.26E+002
BusB_6kV	BusC_6kV	6,99	4,945	0,20	171,76	173,93	0,108	0,110	3.31E+001	2.01E+002	2.74E+004	1.72E+002
Bus115	BusC_6kV	0,00	0,000	101,67	102,50	102,93	0,000	0,000				

3-Phase L-G L-L L-L-G 10,45131 **Initial Symmetrical Current** 12,06813 0,2608416 10,5156 Peak Current (kA), Method C 27,569 0,596 23,876 24,023 Breaking Current (kA, rms, 0,261 10,451 10,516 10.5156 Steady State Current (kA, rms) 10.680 0.261 10.451

ALLEGATO 7

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 7 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

SHORT- CIRCUIT REPORT 3

Fault at bus: Bus_arrivo27,5kV
Nominal kV = 27,500
Voltage c Factor = 1.10 (User-Defined)

Contril	bution	3-Pl	hase Fault		Line	-To-Ground	Fault		Posi		quence Impeda o "From Bus"	nces
From Bus	To Bus	% V	kA	% Vc	ltage at Fro	m Bus	kA Sym	m. rms	9	6 Impedance o	n 100 MVA bas	e
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
Bus_arrivo27,5kV	Total	0,00	7,897	0,00	173,21	173,21	0,000	0,000	3.09E+000	2.91E+001		
Bus_SSP	Bus_arrivo27,5kV	0,01	0,342	0,00	173,21	173,21	0,000	0,000	1.60E+002	6.55E+002		
Sccmax	Bus3_Sccmax	100,00	7,558	0,00	173,21	173,21	0,000	0,000	3.04E+000	3.04E+001		

3-Phase L-L-G 6,839195 7,897222 0 6,839195 Initial Symmetrical Current (kA, Peak Current (kA), Method C 19,399 0,000 16,800 16,800 Breaking Current (kA, rms, Steady State Current (kA, rms) 0.000 6.839 6.839 7,558 0,000 6,839 6,839195

Fault at bus: Bus_SSP
Nominal kV = 27,500
Voltage c Factor = 1.10 (User-Defined)

Contrib	ution	3-PI	nase Fault		Line	-To-Ground	Fault		Posi	tive & Zero Seq Looking into		nces
From Bus	To Bus	% V	kA	% V	ltage at Fro	m Bus	kA Sym	m. rms	9	6 Impedance o	n 100 MVA bas	ie
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
Bus_SSP	Total	0,00	7,888	0,00	173,21	173,21	0,000	0,000	3.12E+000	2.91E+001		
Bus220	Bus_SSP	0,01	0,171	0,00	173,21	173,21	0,000	0,000	3.20E+002	1.31E+003		
Bus279	Bus_SSP	0,01	0,171	0,00	173,21	173,21	0,000	0,000	3.20E+002	1.31E+003		
Bus280	Bus_SSP	0,00	0,000	0,00	173,21	173,21	0,000	0,000				
Bus_arrivo27,5kV	Bus_SSP	0,18	7,548	0,00	173,21	173,21	0,000	0,000	3.08E+000	3.04E+001		

		3-Phase	L-G	L-L	L-L-G	
Initial Symmetrical Current (kA,	:	7,887534	0	6,830804	6,830804	
Peak Current (kA), Method C	:	19,347	0,000	16,755	16,755	
Breaking Current (kA, rms,	:	0,000	6,831	6,831		
Steady State Current (kA, rms)	:	7,548	0,000	6,831	6,830804	

ALLEGATO 7

Trieste Marine Terminal

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 7 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

SHORT- CIRCUIT REPORT 4

Fault at bus: CAB-SUD

Nominal kV = 6,00

Voltage c Factor = 1.10 (User-Def

Contrib	ution	3-PI	nase Fault		Line	-To-Ground	Fault			e & Zero Sec Looking into		
From Bus	To Bus	% V	kA	% Vo	ltage at Fro	m Bus	kA Sym	m. rms	% I	mpedance o	n 100 MVA b	oase
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
CAB-SUD	Total	0,00	12,727	0,00	171,91	173,94	0,261	0,261	1.15E+001	7.83E+001	1.16E+004	6.29E+001
Bus01_SSP	CAB-SUD	6,80	6,267	0,18	171,87	173,94	0,129	0,130	2.33E+001	1.59E+002	2.32E+004	1.26E+002
Bus01_SSP	CAB-SUD	6,80	6,333	0,18	171,87	173,94	0,130	0,131	2.31E+001	1.57E+002	2.30E+004	1.25E+002
Load-SUD-1	CAB-SUD	100,00	0,128	100,00	100,00	100,00	0,002	0,000	1.17E+003	7.81E+003		

3-Phase L-G 0,2610734 Initial Symmetrical Current 12,72744 11.02229 11.08689 Peak Current (kA), Method C : 29,946 0,614 25,934 26,086 Breaking Current (kA, rms, 0,261 11,022 11,087 Steady State Current (kA, rms) 11,287 11,022 11,08689 0,261

Fault at bus: NORD1
Nominal kV = 6,00
Voltage c Factor = 1.10 (User-Def

Contrib	ution	3-PI	nase Fault		Line	-To-Ground	Fault			e & Zero Sec Looking into			
From Bus	To Bus	% V	kA	% Vo	ltage at Fro	m Bus	kA Sym	m. rms	% I	mpedance o	n 100 MVA b	oase	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	ХО	
NORD1	Total	0,00	11,645	0,00	171,70	173,89	0,261	0,261	1.71E+001	8.48E+001	1.16E+004	7.94E+001	
NORD2	NORD1	3,32	3,609	0,09	171,68	173,89	0,079	0,075	5.45E+001	2.74E+002	4.02E+004	2.76E+002	
Bus01_SSP	NORD1	17,07	7,770	0,52	171,58	173,89	0,178	0,186	2.59E+001	1.27E+002	1.62E+004	1.11E+002	
Load-Nord1	NORD1	100,00	0,267	100,00	100,00	100,00	0,004	0,000	5.60E+002	3.74E+003			

3-Phase **Initial Symmetrical Current** 11,64491 0,260562 10.08478 10.14867 22,344 Peak Current (kA), Method C 25,801 0,577 22,486 Breaking Current (kA, rms, 0,261 10.085 10,149 10,276 10,14867 Steady State Current (kA, rms) 0.261 10.085

Fault at bus: NORD2
Nominal kV = 6,00
Voltage c Factor = 1.10 (User-Def

Contrib	ution	3-P	hase Fault		Line	-To-Ground	Fault			e & Zero Sec Looking into		
From Bus	To Bus	% V	kA	% Vo	ltage at Fro	m Bus	kA Sym	m. rms	% I	mpedance o	n 100 MVA k	oase
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	R0	XO
NORD2	Total	0,00	11,368	0,00	171,64	173,87	0,260	0,260	1.86E+001	8.66E+001	1.16E+004	8.40E+001
NORD1	NORD2	5,94	6,459	0,18	171,60	173,88	0,150	0,154	3.32E+001	1.52E+002	1.95E+004	1.42E+002
Bus01_SSP	NORD2	19,57	4,321	0,61	171,50	173,88	0,101	0,106	4.98E+001	2.28E+002	2.84E+004	2.06E+002
Load-Nord2	NORD2	100,00	0,590	100,00	100,00	100,00	0,009	0,000	2.53E+002	1.69E+003		

		3-Phase	L-G	L-L	L-L-G	
Initial Symmetrical Current		11,36829	0,2604214	9,845232	9,908909	
Peak Current (kA), Method C	:	24,843	0,569	21,515	21,654	
Breaking Current (kA, rms,	:	0,260	9,845	9,909		
Steady State Current (kA, rms)	:	10,026	0,260	9,845	9,908909	

ALLEGATO 7

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 7 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

	SHORT- CIRCUIT REPORT - SUMMARY															
	3-Phase, LG, LL, LLG Fault Currents															
Bus		3-1	Phase Fa	ult	Line-to-Ground Fault				Line-to-Line Fault					*Line-to-Line	-to-Ground	
ID	kV	l"k	ip	lk	l"k	ip	lb	lk	l"k	ip	lb	lk	l"k	ip	lb	lk
Bus-TR1	0,400	9,264	15,274	9,215	9,401	15,500	9,401	9,401	8,022	13,227	8,022	8,022	9,392	15,486	9,392	9,392
Bus01_SSP	6,000	13,486	33,240	11,883	0,261	0,644	0,261	0,261	11,679	28,787	11,679	11,679	11,744	28,947	11,744	11,744
Bus02_SSP	6,000	13,486	33,240	11,883	0,261	0,644	0,261	0,261	11,679	28,787	11,679	11,679	11,744	28,947	11,744	11,744
Bus3_Sccmax	27,500	7,897	19,399	7,558	0,000	0,000	0,000	0,000	6,839	16,800	6,839	6,839	6,839	16,800	6,839	6,839
Bus03_SSP	6,000	13,486	33,240	11,883	0,261	0,644	0,261	0,261	11,679	28,787	11,679	11,679	11,744	28,947	11,744	11,744
BusA_6KV	6,000	12,568	29,477	11,121	0,261	0,612	0,261	0,261	10,885	25,528	10,885	10,885	10,949	25,679	10,949	10,949
BusB_6kV	6,000	12,322	28,539	10,917	0,261	0,604	0,261	0,261	10,671	24,716	10,671	10,671	10,736	24,865	10,736	10,736
BusC_6kV	6,000	12,068	27,569	10,680	0,261	0,596	0,261	0,261	10,451	23,876	10,451	10,451	10,516	24,023	10,516	10,516
Bus_arrivo27,5kV	27,500	7,897	19,399	7,558	0,000	0,000	0,000	0,000	6,839	16,800	6,839	6,839	6,839	16,800	6,839	6,839
Bus_Sccmin	27,500	2,099	5,184	2,099	0,000	0,000	0,000	0,000	1,818	4,489	1,818	1,818	1,818	4,489	1,818	1,818
Bus_SSP	27,500	7,888	19,347	7,548	0,000	0,000	0,000	0,000	6,831	16,755	6,831	6,831	6,831	16,755	6,831	6,831
CAB-SUD	6,000	12,727	29,946	11,287	0,261	0,614	0,261	0,261	11,022	25,934	11,022	11,022	11,087	26,086	11,087	11,087
NORD1	6,000	11,645	25,801	10,276	0,261	0,577	0,261	0,261	10,085	22,344	10,085	10,085	10,149	22,486	10,149	10,149
NORD2	6,000	11,368	24,843	10,026	0,260	0,569	0,260	0,260	9,845	21,515	9,845	9,845	9,909	21,654	9,909	9,909

Sequence Impedance Summary Report													
Bus		Posit	ve Seq. Imp.	(ohm)	Negat	ive Seq. Imp	o. (ohm)	Zer	o Seq. Imp. (o	hm)	ı	ault Zf (ohr	n)
ID	kV	Resistance	Reactance	Impedance	Resistanc	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus-TR1	0,400	0,01404	0,02209	0,02618	0,01404	0,02209	0,02618	0,01389	0,02083	0,02504	0,00000	0,00000	0,00000
Bus01_SSP	6,000	0,03029	0,28092	0,28255	0,03029	0,28092	0,28255	43,67009	0,20487	43,67057	0,00000	0,00000	0,00000
Bus02_SSP	6,000	0,03029	0,28092	0,28255	0,03029	0,28092	0,28255	43,67009	0,20487	43,67057	0,00000	0,00000	0,00000
Bus3_Sccmax	27,500	0,23333	2,19918	2,21152	0,23333	2,19918	2,21152	0,00000	0,00000	0,00000			
Bus03_SSP	6,000	0,03029	0,28092	0,28255	0,03029	0,28092	0,28255	43,67009	0,20487	43,67057	0,00000	0,00000	0,00000
BusA_6KV	6,000	0,04462	0,29988	0,30318	0,04462	0,29988	0,30318	43,69430	0,24783	43,69501	0,00000	0,00000	0,00000
BusB_6kV	6,000	0,04875	0,30537	0,30924	0,04875	0,30537	0,30924	43,70128	0,26021	43,70205	0,00000	0,00000	0,00000
BusC_6kV	6,000	0,05338	0,31120	0,31575	0,05338	0,31120	0,31575	43,70963	0,27502	43,71049	0,00000	0,00000	0,00000
Bus_arrivo27,5kV	27,500	0,23333	2,19918	2,21152	0,23333	2,19918	2,21152	0,00000	0,00000	0,00000			
Bus_Sccmin	27,500	0,82775	8,27747	8,31875	0,82775	8,27747	8,31875	0,00000	0,00000	0,00000			
Bus_SSP	27,500	0,23613	2,20161	2,21423	0,23613	2,20161	2,21423	0,00000	0,00000	0,00000			
CAB-SUD	6,000	0,04342	0,29623	0,29939	0,04342	0,29623	0,29939	43,69195	0,23782	43,69260	0,00000	0,00000	0,00000
NORD1	6,000	0,06450	0,32081	0,32723	0,06450	0,32081	0,32723	43,73349	0,30043	43,73452	0,00000	0,00000	0,00000
NORD2	6,000	0,07033	0,32773	0,33519	0,07033	0,32773	0,33519	43,74485	0,31755	43,74601	0,00000	0,00000	0,00000

S C Explorering s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T	to ST010	09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	02	Di	111
	IMPIANTI ELETTRICI	Fagilia	93	DI	

ALLEGATO 8 - CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

ALLEGATO 8

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 8

CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

SHORT- CIRCUIT ANALYSIS

IEC 60909 Standard 3-Phase, LG, LL, & LLG Fault Currents

			Bus Input Data			
	Bus				Initial Voltage	2
ID	Туре	Nom. kV	Base kV	Sub-sys	%Mag.	Ang.
Bus-TR1	Load	0,400	0,410	2	100,00	60,00
Bus-TR6	Load	0,400	0,410	2	100,00	60,00
Bus01_SSP	Load	6,000	6,150	2	100,00	30,00
Bus02_SSP	Load	6,000	6,150	2	100,00	30,00
Bus3_Sccmax	SWNG	27,500	27,500	1	100,00	0,00
Bus03_SSP	Load	6,000	6,150	2	100,00	30,00
BusA_6KV	Load	6,000	6,150	2	100,00	30,00
BusB_6kV	Load	6,000	6,150	2	100,00	30,00
BusC_6kV	Load	6,000	6,150	2	100,00	30,00
Bus_arrivo27,5kV	Load	27,500	27,500	2	100,00	0,00
Bus_Sccmin	SWNG	27,500	27,500	2	100,00	0,00
Bus_SSP	Load	27,500	27,500	2	100,00	0,00
CAB-SUD	Load	6,000	6,150	2	100,00	30,00
NORD1	Load	6,000	6,150	2	100,00	30,00
NORD2	Load	6,000	6,150	2	100,00	30,00

	Line/Cable Input Data													
	Ohms or Siemens per 1000 m per Conductor (Cable) or per Phase (Line)													
	Line/Cable													
ID														
Cavo-A-C														
Cavo-B-C	11NCUN3	300	415,0	0,0	1	0	0,0578120	0,1050000	0,0001646	0,0939445	0,2200000			
Cavo-Nord1-Nord2	11NCUN3	240	244,0	0,0	1	0	0,0708197	0,1090000	0,0001495	0,1156240	0,2300000			
Cavo-SSP-B	11NCUN3	300	680,0	0,0	2	0	0,0578120	0,1050000	0,0001646	0,0939445	0,2200000			
Cavo-SSP-Nord2	11NCUN3	240	1202,0	0,0	1	0	0,0708197	0,1090000	0,0001495	0,1156240	0,2300000			
Cavo-SSP-SUD-2	11NCUN3	240	285,0	0,0	1	0	0,0708197	0,1090000	0,0001495	0,1156240	0,2300000			
Cavo-TR1	11NCUN3	95	20,0	0,0	1	0	0,1792172	0,1230000	0,0001049	0,2818336	0,2600000			
Cavo-TR6	11NCUN3	95	20,0	0,0	1	0	0,1792172	0,1230000	0,0001049	0,2818336	0,2600000			
CavoTR1_6kV	11NCUN3	185	20,0	0,0	2	0	0,0924992	0,1120000	0,0001351	0,1445300	0,2400000			
CavoTR1_27,5kV	33NCUS1	95	20,0	0,0	1	0	0,1792172	0,1430000	0,0000637	0,2849554	0,3632200			
CavoTR2_6kV	11NCUN3	185	20,0	0,0	2	0	0,0924992	0,1120000	0,0001351	0,1445300	0,2400000			
CavoTR2_27,5kV	33NCUS1	95	20,0	0,0	1	0	0,1792172	0,1430000	0,0000637	0,2849554	0,3632200			
CavoTR3_27,5kV	33NCUS1	95	20,0	0,0	1	0	0,1792172	0,1430000	0,0000637	0,2849554	0,3632200			
Cavo_arrivo27,5kV	33NCUN1	150	20,0	0,0	1	0	0,1149014	0,1350000	0,0000609	0,1806626	0,3400000			

				<u>2</u>	-Winding	Transfor	mer Inpu	<u>it Data</u>					
Transformer		Rating				Z Variatio	on			% Tap Setting	3	Adjusted	Phase Shift
ID	MVA	Prim. kV	Sec. kV	% Z	X/R	+ 5%	- 5%	% Tot%	Prim	Sec.	% Z	Туре	Angle
TR-AT1	0,250	6,000	0,400	6,00	1,50	0	0	0		2,500	6,0000	Dyn	-30,000
TR-BT1	1,000	6,000	0,400	6,00	5,79	0	0	0		0	6,0000	Dyn	-30,000
TR-BT2	1,000	6,000	0,400	6,00	5,79	0	0	0		0	6,0000	Dyn	-30,000
TR-BT3	0,250	6,000	0,400	6,00	4,70	0	0	0		0	6,0000	Dyn	30,000
TR-CT2	0,250	6,000	0,400	6,00	1,50	0	0	0		2,500	6,0000	Dyn	-30,000
TR1	6,500	27,500	6,000	7,00	13,00	0	0	0		2,500	7,0000	Dyn	-30,000
TR2	6,500	27,500	6,000	7,00	13,00	0	0	0		2,500	7,0000	Dyn	-30,000
TR3	6,500	27,500	6,000	7,00	13,00	0	0	0		0	7,0000	Dyn	-30,000
TR4	0,250	6,000	0,400	4,00	1,50	0	0	0		0	4,0000	Dyn	-30,000
TR6	0,250	6,000	0,400	4,00	1,50	0	0	0		0	4,0000	Dyn	-30,000

	2-Winding Transformer Grounding Input Data											
Grounding												
Transformer		Rating		Conn.		Pi	rimary			Secon	dary	
ID	MVA				Type	kV	Amp	Ohm	Type	kV	Amp	Ohm
TR-AT1	0,250	6,000	0,400	D/Y					Solid			
TR-BT1	1,000	6,000	0,400	D/Y					Solid			
TR-BT2	1,000	6,000	0,400	D/Y					Solid			
TR-BT3	0,250	6,000	0,400	D/Y					Solid			
TR-CT2	0,250	6,000	0,400	D/Y					Solid			
TR1	6,500	27,500	6,000	D/Y					Resistor		125,1	27,7
TR2	6,500	27,500	6,000	D/Y					Resistor		125,1	27,7
TR3	6,500	27,500	6,000	D/Y					Resistor		125,1	27,7
TR4	0,250	6,000	0,400	D/Y					Solid			
TR6	0,250	6,000	0,400	D/Y					Solid			

ALLEGATO 8

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 8 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

			Branch Conne	ections			
CKT/Branch		Connecte	d Bus ID		% Impedance, Po	os. Seq., 100 MVAb	
ID	Type	From Bus	To Bus	R	X	Z	Y
TR-AT1	2W XFMR	BusA_6KV	Bus222	1227,21	1840,81	2212,38	
TR-BT1	2W XFMR	BusB_6kV	Bus47	93,63	542,12	550,14	
TR-BT2	2W XFMR	BusB_6kV	Bus371	93,63	542,12	550,14	
TR-BT3	2W XFMR	BusB_6kV	Bus373	458,07	2152,95	2201,14	
TR-CT2	2W XFMR	BusC_6kV	Bus115	1227,21	1840,81	2212,38	
TR1	2W XFMR	Bus220	Bus282	8,28	107,70	108,02	
TR2	2W XFMR	Bus279	Bus284	8,28	107,70	108,02	
TR3	2W XFMR	Bus280	Bus285	8,28	107,70	108,02	
TR4	2W XFMR	Bus277	Bus-TR1	826,15	1239,22	1489,35	
TR6	2W XFMR	Bus294	Bus-TR6	826,15	1239,22	1489,35	
Cavo-A-C	Cable	BusA_6KV	BusC_6kV	4,78	8,69	9,92	0,007794431
Cavo-B-C	Cable	BusB_6kV	BusC_6kV	6,34	11,52	13,15	0,002583617
Cavo-Nord1-Nord2	Cable	NORD2	NORD1	4,57	7,03	8,39	0,001379689
Cavo-SSP-B	Cable	Bus02_SSP	BusB_6kV	5,20	9,44	10,77	0,008466794
Cavo-SSP-Nord2	Cable	Bus01_SSP	NORD2	22,51	34,64	41,31	0,006796666
Cavo-SSP-SUD-2	Cable	Bus01_SSP	CAB-SUD	5,34	8,21	9,79	0,001611522
Cavo-TR1	Cable	Bus01_SSP	Bus277	0,95	0,65	1,15	7,93516E-05
Cavo-TR6	Cable	Bus01_SSP	Bus294	0,95	0,65	1,15	7,93516E-05
CavoTR1_6kV	Cable	Bus282	Bus01_SSP	0,24	0,30	0,38	0,000204393
CavoTR1_27,5kV	Cable	Bus_SSP	Bus220	0,05	0,04	0,06	0,000963463
CavoTR2_6kV	Cable	Bus284	Bus02_SSP	0,24	0,30	0,38	0,000204393
CavoTR2_27,5kV	Cable	Bus_SSP	Bus279	0,05	0,04	0,06	0,000963463
CavoTR3_27,5kV	Cable	Bus_SSP	Bus280	0,05	0,04	0,06	0,000963463
Cavo_arrivo27,5kV	Cable	Bus_arrivo27,5kV	Bus_SSP	0,03	0,04	0,05	0,000921113

	Power Grid Input Data												
Power Grid	Connected Bus	Ra	ting	%	100 MVA Base		Grounding						
ID	ID	MVASC	kV	R	X"	R/X"	Type						
Sccmax	Bus3_Sccmax	360,000	27,500	2,76399	27,63992	0,10	Delta						
Sccmin	Bus_Sccmin	100,000	27,500	9,95037	99,50372	0,10	Delta						

Trieste Marine Terminal

PORTO DI TRIESTE - TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m

ALLEGATO 8

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 8

CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

SHORT- CIRCUIT REPORT 1

Fault at bus: Bus01_SSP
Nominal kV = 6,000

Voltage c Factor = 1.00 (Minimum If)

Contr	ibution	3-Phase Fault			Line	-To-Ground	Fault	Positive & Zero Sequence Impedances Looking into "From Bus"					
From Bus	To Bus	% V	kA	% Vo	ltage at Fro	m Bus	kA Syı	mm. rms	% Impedance on 100 MVA base				
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO	
Bus01_SSP	Total	0,00	6,807	0,00	171,11	174,57	0,237	0,237	1.36E+001	1.34E+002	1.15E+004	5.42E+001	
NORD2	Bus01_SSP	3,40	0,754	0,08	171,14	174,57	0,018	0,000	1.97E+002	1.20E+003			
CAB-SUD	Bus01_SSP	0,12	0,116	0,00	171,11	174,57	0,003	0,000	1.18E+003	7.82E+003			
Bus277	Bus01_SSP	0,00	0,000	0,00	171,11	174,57	0,000	0,000					
Bus294	Bus01_SSP	0,00	0,000	0,00	171,11	174,57	0,000	0,000					
Bus282	Bus01_SSP	0,12	2,969	0,01	171,11	174,57	0,109	0,119	2.85E+001	3.07E+002	2.31E+004	1.08E+002	
BusB_6kV	Bus02_SSP	0,00	0,000	0,00	171,11	174,57	0,000	0,000					
Bus284	Bus02_SSP	0,12	2,969	0,01	171,11	174,57	0,109	0,119	2.85E+001	3.07E+002	2.31E+004	1.08E+002	

Fault at bus: Bus02_SSP
Nominal kV = 6

Voltage c Factor = 1.00 (Minimum If)

Contr	ibution	3-Ph	ase Fault		Line	-To-Ground	Fault				quence Impe o "From Bus	
From Bus	To Bus	% V	kA	% Vo	ltage at Fro	m Bus	kA Syr	mm. rms	% lı	mpedance o	n 100 MVA	base
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
Bus02_SSP	Total	0,00	6,807	0,00	171,11	174,57	0,237	0,237	1.36E+001	1.34E+002	1.15E+004	5.42E+001
BusB_6kV	Bus02_SSP	0,00	0,000	0,00	171,11	174,57	0,000	0,000				
Bus284	Bus02_SSP	0,12	2,969	0,01	171,11	174,57	0,109	0,119	2.85E+001	3.07E+002	2.31E+004	1.08E+002
NORD2	Bus01_SSP	3,40	0,754	0,08	171,14	174,57	0,018	0,000	1.97E+002	1.20E+003		
CAB-SUD	Bus01_SSP	0,12	0,116	0,00	171,11	174,57	0,003	0,000	1.18E+003	7.82E+003		
Bus277	Bus01_SSP	0,00	0,000	0,00	171,11	174,57	0,000	0,000				
Bus294	Bus01_SSP	0,00	0,000	0,00	171,11	174,57	0,000	0,000				
Bus282	Bus01_SSP	0,12	2,969	0,01	171,11	174,57	0,109	0,119	2.85E+001	3.07E+002	2.31E+004	1.08E+002

		3-Phase	L-G	L-L	L-L-G
Initial Symmetrical Current (kA, rms)	:	6,807	0,237	5,895	5,954
Peak Current (kA), Method C	:	16,784	0,585	14,535	14,681
Breaking Current (kA, rms, symm)	:	0,237	5,895	5,954	
Steady State Current (kA, rms)	:	5,939	0,237	5,895	5,954

Fault at bus: Bus03_SSP

Nominal kV = Voltage c Factor =

1.00 (Minimum If)

Con	tribution	3-Ph	ase Fault		Line-To-Gr	ound Fault		F	ositive & Zer Lookin	ro Sequence og into "Fro	•	es	
From Bus	To Bus	% V	kA	% Vo	Itage at Fro	m Bus	kA Syı	mm. rms	% Impedance on 100		n 100 MVA	00 MVA base	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	X0	
Bus03_SSP	Total	0,00	6,807	0,00	171,11	174,57	0,237	0,237	1.36E+001	1.34E+002	1.15E+004	5.42E+001	
BusB_6kV	Bus02_SSP	0,00	0,000	0,00	171,11	174,57	0,000	0,000					
Bus284	Bus02_SSP	0,12	2,969	0,01	171,11	174,57	0,109	0,119	2.85E+001	3.07E+002	2.31E+004	1.08E+002	
NORD2	Bus01_SSP	3,40	0,754	0,08	171,14	174,57	0,018	0,000	1.97E+002	1.20E+003			
CAB-SUD	Bus01_SSP	0,12	0,116	0,00	171,11	174,57	0,003	0,000	1.18E+003	7.82E+003			
Bus277	Bus01_SSP	0,00	0,000	0,00	171,11	174,57	0,000	0,000					
Bus294	Bus01_SSP	0,00	0,000	0,00	171,11	174,57	0,000	0,000					
Bus282	Bus01 SSP	0.12	2.969	0.01	171.11	174.57	0.109	0.119	2.85E+001	3.07F+002	2.31F+004	1.08F+002	

		3-Phase	L-G	L-L	L-L-G
Initial Symmetrical Current (kA, rms)	:	6,807	0,237	5,895	5,954
Peak Current (kA), Method C	:	16,784	0,585	14,535	14,681
Breaking Current (kA, rms, symm)	:	0,237	5,895	5,954	
Steady State Current (kA, rms)	:	5,939	0,237	5,895	5,954

Trieste Marine Terminal

PORTO DI TRIESTE - TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m

ALLEGATO 8

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 8

CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

SHORT- CIRCUIT REPORT 2

Fault at bus: BusA_6KV Nominal kV =

Voltage c Factor = 1.00 (Minimum If)

BusA_6KV

0,00

Positive & Zero Sequence Impedances Contribution 3-Phase Fault Line-To-Ground Fault Looking into "From Bus" % Impedance on 100 MVA base From Bus To Bus % V kA % Voltage at From Bus kA Symm. rms
 R1
 X1
 R0
 X0

 2.99E+001
 1.64E+002
 1.16E+004
 1.16E+002
 310 0,236 ID BusA_6KV From Bus **Symm. rms** 5,510 **la** 0,236 174,54 Total 0.00 170.34 0.00 BusC_6kV BusA_6KV 5,97 5,510 174,55 2.99E+001 1.64E+002 1.16E+004 1.16E+002

0,34

100,80

170,27

102,50

103,29

0,236

0,000

0,236

0,000

3-Phase L-G L-L L-L-G Initial Symmetrical Current (kA, rms) 5,510 0,236 4,772 4,830 Peak Current (kA), Method C 12,365 0.530 10.708 10,839 Breaking Current (kA, rms, symm) 0.236 4.772 4.830 4,931 4,772 0.236 4.830 Steady State Current (kA, rms)

0,000

Fault at bus: BusB 6kV Nominal kV =

Bus222

Voltage c Factor = 1.00 (Minimum If)

Positive & Zero Sequence Impedances Contribution 3-Phase Fault Line-To-Ground Fault Looking into "From Bus" From Bus To Bus % **V** kΑ % Voltage at From Bus kA Symm. rms % Impedance on 100 MVA base ID From Bus Symm. rms BusB_6kV Total 0.00 6,337 0,00 170,86 174,56 0.237 0,237 1.88E+001 | 1.43E+002 | 1.16E+004 | 7.39E+001 BusC 6kV BusB 6kV 0.00 0.000 0.00 170.86 174.56 0.000 0.000 Bus02 SSP 6,337 1.88E+001 1.43E+002 1.16E+004 7.39E+001 BusB 6kV 7,46 170.79 174.58 0.237 0.237 0.37 BusB_6kV 0,00 0,000 Bus47 98,65 100,00 100,78 0,000 0,000 Bus371 BusB 6kV 0,00 0,000 98,65 100,00 100,78 0,000 0,000 Bus373 BusB 6kV 0.00 0.000 100,78 98,65 100,00 0,000 0,000

3-Phase L-G L-L 6,337 0,237 5,488 5,547 Initial Symmetrical Current (kA, rms) : Peak Current (kA), Method C 15,076 0,564 13,056 13,196 : Breaking Current (kA, rms, symm) 0,237 5,488 5,547 Steady State Current (kA, rms) 5.579 0.237 5.488 5.547

Fault at bus: BusC_6kV

Nominal kV =

Voltage c Factor = 1.00 (Minimum If)

Cont	ribution	3-Ph	ase Fault		Line	-To-Ground	Fault			e & Zero Sec Looking into		
From Bus	To Bus	% V	kA	% Vo	ltage at Fro	m Bus	kA Syr	nm. rms	% lı	mpedance o	n 100 MVA	base
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
BusC_6kV	Total	0,00	5,839	0,00	170,56	174,55	0,236	0,236	2.52E+001	1.55E+002	1.16E+004	9.81E+001
BusA_6KV	BusC_6kV	0,00	0,000	0,00	170,56	174,55	0,000	0,000				
BusB_6kV	BusC_6kV	8,39	5,839	0,45	170,48	174,57	0,236	0,236	2.52E+001	1.55E+002	1.16E+004	9.81E+001
Bus115	BusC 6kV	0.00	0.000	100.94	102.50	103.30	0.000	0.000				

		3-Phase	L-G	L-L	L-L-G
Initial Symmetrical Current (kA, rms)	:	5,839	0,236	5,057	5,115
Peak Current (kA), Method C	:	13,403	0,543	11,607	11,741
Breaking Current (kA, rms, symm)	:	0,236	5,057	5,115	
Steady State Current (kA, rms)	:	5,192	0,236	5,057	5,115

ALLEGATO 8

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 8

CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

SHORT- CIRCUIT REPORT 3

Fault at bus: Bus_SSP
Nominal kV = 27,5

Voltage c Factor = 1.00 (Minimum If)

Contri	bution	3-Ph	ase Fault		Line	-To-Ground	Fault		II .	e & Zero Seq Looking into		
From Bus	To Bus	% V	kA	% Vo	ltage at Fro	m Bus	kA Syr	nm. rms	% lı	mpedance or	100 MVA	base
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	R0	XO
Bus_SSP	Total	0,00	2,288	0,00	173,21	173,21	0,000	0,000	9.59E+000	9.13E+001		
Bus220	Bus_SSP	0,00	0,095	0,00	173,21	173,21	0,000	0,000	3.47E+002	2.19E+003		
Bus279	Bus_SSP	0,00	0,095	0,00	173,21	173,21	0,000	0,000	3.47E+002	2.19E+003		
Bus280	Bus_SSP	0,00	0,000	0,00	173,21	173,21	0,000	0,000				
Bus_arrivo27,5kV	Bus_SSP	0,05	2,099	0,00	173,21	173,21	0,000	0,000	9.98E+000	9.95E+001		

		3-Phase	L-G	L-L	L-L-G
Initial Symmetrical Current (kA, rms)	:	2,288	0,000	1,982	1,982
Peak Current (kA), Method C	:	5,616	0,000	4,864	4,864
Breaking Current (kA, rms, symm)	:	0,000	1,982	1,982	
Steady State Current (kA, rms)	:	2,099	0,000	1,982	1,982

ALLEGATO 8

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 8

CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

SHORT- CIRCUIT REPORT 4

Fault at bus: CAB-SUD

Nominal kV =

Voltage c Factor = 1.00 (Minimum If)

Cont	ribution	3-Ph	ase Fault		Line	-To-Ground	Fault				quence Impo	
From Bus	To Bus	% V	kA	% Vo	ltage at Fro	m Bus	kA Syr	mm. rms	% lı	npedance o	n 100 MVA	base
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
CAB-SUD	Total	0,00	6,404	0,00	170,89	174,55	0,237	0,237	1.88E+001	1.42E+002	1.16E+004	7.15E+001
Bus01_SSP	CAB-SUD	6,72	6,288	0,33	170,82	174,56	0,234	0,237	1.91E+001	1.44E+002	1.16E+004	7.15E+001
Load-SUD-1	CAR-SUD	100.00	0.116	100.00	100.00	100.00	0.003	0.000	1 17F+003	7.81F+003		

		3-Phase	L-G	L-L	L-L-G
Initial Symmetrical Current (kA, rms)	:	6,404	0,237	5,546	5,605
Peak Current (kA), Method C	:	15,214	0,563	13,176	13,315
Breaking Current (kA, rms, symm)	:	0,237	5,546	5,605	
Steady State Current (kA, rms)	:	5,621	0,237	5,546	5,605

Fault at bus: NORD1

Nominal kV =

Voltage c Factor = 1.00 (Minimum If)

Contr	ribution	3-Ph	ase Fault		Line	-To-Ground	Fault			e & Zero Sec Lookina int		
From Bus	To Bus	% V	kA	% Vo	ltage at Fro	m Bus	kA Sy	mm. rms	% I	mpedance o	n 100 MVA	base
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
NORD1	Total	0,00	5,392	0,00	170,19	174,45	0,235	0,235	3.47E+001	1.66E+002	1.16E+004	1.42E+002
NORD2	NORD1	4,71	5,150	0,28	170,13	174,46	0,228	0,235	3.68E+001	1.74E+002	1.16E+004	1.42E+002
Load-Nord1	NORD1	100.00	0.242	100.00	100.00	100.00	0.007	0.000	5.60F+002	3.74E+003		

		3-Phase	L-G	L-L	L-L-G
Initial Symmetrical Current (kA, rms)	:	5,392	0,235	4,669	4,727
Peak Current (kA), Method C	:	11,780	0,514	10,202	10,328
Breaking Current (kA, rms, symm)	:	0,235	4,669	4,727	
Steady State Current (kA, rms)	:	4,590	0,235	4,669	4,727

Fault at bus: NORD2

Nominal kV =

6,000 1.00 (Minimum If) Voltage c Factor =

Conti	ribution	3-Ph	ase Fault		Line	-To-Ground	Fault		II.		quence Imp	
From Bus	To Bus	% V	kA	% Vol	ltage at Fro	m Bus	kA Syr	nm. rms	% Ir	npedance o	n 100 MVA	base
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	la	310	R1	X1	RO	XO
NORD2	Total	0,00	5,628	0,00	170,37	174,47	0,236	0,236	3.06E+001	1.60E+002	1.16E+004	1.27E+002
NORD1	NORD2	0,22	0,242	0,01	170,38	174,47	0,007	0,000	5.65E+002	3.74E+003		
Bus01_SSP	NORD2	21,88	4,850	1,31	170,05	174,52	0,214	0,236	3.67E+001	1.85E+002	1.16E+004	1.27E+002
Load-Nord2	NORD2	100,00	0,536	100,00	100,00	100,00	0,015	0,000	2.53E+002	1.69E+003		

		3-Phase	L-G	L-L	L-L-G
Initial Symmetrical Current (kA, rms)	:	5,628	0,236	4,874	4,932
Peak Current (kA), Method C	:	12,518	0,525	10,841	10,970
Breaking Current (kA, rms, symm)	:	0,236	4,874	4,932	
Steady State Current (kA, rms)	:	4,776	0,236	4,874	4,932

ALLEGATO 8

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 8 CALCOLO DELLE CORRENTI DI CORTO CIRCUITO MASSIME (CONFIGURAZIONE FUTURA AD ANELLI CHIUSI)

							SHORT	- CIRCUIT REI	PORT SUMM	ARY						
							3-Ph	ase, LG, LL, LLC	Fault Current	is						
Bus		3-	Phase Fa	ult		Line-to-Gr	ound Fault			Line-to-Li	ne Fault			*Line-to-Line-	to-Ground	
ID	kV	l"k	ip	lk	l"k	ip	lb	lk	l"k	ip	lb	lk	l"k	ip	lb	lk
Bus-TR1	0,400	8,104	13,481	8,018	8,313	13,830	8,313	8,313	7,018	11,675	7,018	7,018	8,304	13,815	8,304	8,304
Bus01_SSP	6,000	6,807	16,784	5,939	0,237	0,585	0,237	0,237	5,895	14,535	5,895	5,895	5,954	14,681	5,954	5,954
Bus02_SSP	6,000	6,807	16,784	5,939	0,237	0,585	0,237	0,237	5,895	14,535	5,895	5,895	5,954	14,681	5,954	5,954
Bus03_SSP	6,000	6,807	16,784	5,939	0,237	0,585	0,237	0,237	5,895	14,535	5,895	5,895	5,954	14,681	5,954	5,954
BusA_6KV	6,000	5,510	12,365	4,931	0,236	0,530	0,236	0,236	4,772	10,708	4,772	4,772	4,830	10,839	4,830	4,830
BusB_6kV	6,000	6,337	15,076	5,579	0,237	0,564	0,237	0,237	5,488	13,056	5,488	5,488	5,547	13,196	5,547	5,547
BusC_6kV	6,000	5,839	13,403	5,192	0,236	0,543	0,236	0,236	5,057	11,607	5,057	5,057	5,115	11,741	5,115	5,115
Bus_arrivo27,5kV	27,500	2,289	5,620	2,099	0,000	0,000	0,000	0,000	1,982	4,867	1,982	1,982	1,982	4,867	1,982	1,982
Bus_Sccmin	27,500	2,289	5,620	2,099	0,000	0,000	0,000	0,000	1,982	4,867	1,982	1,982	1,982	4,867	1,982	1,982
Bus_SSP	27,500	2,288	5,616	2,099	0,000	0,000	0,000	0,000	1,982	4,864	1,982	1,982	1,982	4,864	1,982	1,982
CAB-SUD	6,000	6,404	15,214	5,621	0,237	0,563	0,237	0,237	5,546	13,176	5,546	5,546	5,605	13,315	5,605	5,605
NORD1	6,000	5,392	11,780	4,590	0,235	0,514	0,235	0,235	4,669	10,202	4,669	4,669	4,727	10,328	4,727	4,727
NORD2	6,000	5,628	12,518	4,776	0,236	0,525	0,236	0,236	4,874	10,841	4,874	4,874	4,932	10,970	4,932	4,932

	Sequence Impedance Summary Report												
Bus		Positi	ve Seq. Imp. (ohm)	Negat	tive Seq. Imp.	(ohm)	Ze	ro Seq. Imp.	(ohm)	I	ault Zf (ohm)
ID	kV	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus-TR1	0,400	0,01413	0,02309	0,02707	0,01413	0,02309	0,02707	0,01389	0,02083	0,02504	0,00000	0,00000	0,00000
Bus01_SSP	6,000	0,05153	0,50628	0,50890	0,05153	0,50628	0,50890	43,66986	0,20487	43,67034	0,00000	0,00000	0,00000
Bus02_SSP	6,000	0,05153	0,50628	0,50890	0,05153	0,50628	0,50890	43,66986	0,20487	43,67034	0,00000	0,00000	0,00000
Bus3_Sccmax	27,500	0,20903	2,09027	2,10069	0,20903	2,09027	2,10069	0,00000	0,00000	0,00000			
Bus03_SSP	6,000	0,05153	0,50628	0,50890	0,05153	0,50628	0,50890	43,66986	0,20487	43,67034	0,00000	0,00000	0,00000
BusA_6KV	6,000	0,11327	0,61842	0,62871	0,11327	0,61842	0,62871	43,77019	0,43983	43,77240	0,00000	0,00000	0,00000
BusB_6kV	6,000	0,07118	0,54198	0,54664	0,07118	0,54198	0,54664	43,70180	0,27967	43,70269	0,00000	0,00000	0,00000
BusC_6kV	6,000	0,09518	0,58556	0,59324	0,09518	0,58556	0,59324	43,74078	0,37097	43,74236	0,00000	0,00000	0,00000
Bus_arrivo27,5kV	27,500	0,72320	6,89896	6,93676	0,72320	6,89896	6,93676	0,00000	0,00000	0,00000			
Bus_Sccmin	27,500	0,72320	6,89896	6,93676	0,72320	6,89896	6,93676	0,00000	0,00000	0,00000			
Bus_SSP	27,500	0,72514	6,90119	6,93918	0,72514	6,90119	6,93918	0,00000	0,00000	0,00000			
CAB-SUD	6,000	0,07104	0,53623	0,54092	0,07104	0,53623	0,54092	43,70281	0,27042	43,70365	0,00000	0,00000	0,00000
NORD1	6,000	0,13130	0,62893	0,64249	0,13130	0,62893	0,64249	43,83705	0,53745	43,84034	0,00000	0,00000	0,00000
NORD2	6,000	0,11565	0,60459	0,61556	0,11565	0,60459	0,61556	43,80884	0,48133	43,81148	0,00000	0,00000	0,00000

S COLUMN SAL	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document		09-01	-R02
	PROGETTO DEFINITIVO	Data Lug	jlio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	04	Di	111
	IMPIANTI ELETTRICI	ragilla	94	וט	111

ALLEGATO 9 - COMPOSIZIONE QUADRI MT 27,5 kV e 6kV - PROTEZIONI

ALLEGATO 9

Trieste Marine Terminal

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 9 COMPOSIZIONE QUADRI MT 27,5 kV e 6kV - PROTEZIONI

	TIPO SCOMPARTO	Partenza Trafo 27,5 kV	Adattamento sbarre 27,5 kV	Arrivo da Trasformatore 6 kV	Misure 6 kV a doppio secondario	Risalita /Misure 6 kV	Congiuntore sbarra 6 kV	Arrivo/Partenza Anello 6 kV	Partenza Trafo 6 kV	Misure 6 kV con TV a triplo secondario	Partenza gru	
QUADRO MT	RELE'	Thytronic NT10		Thytronic NA60	Thytronic NV10B	Thytronic NV10B	Thytronic NA30	Thytronic NA60	Thytronic NA30	Thytronic NV10B	Thytronic NA60	
CABINA SSP	QMT - 27,5kV	3	1									
TOTALE	SEZIONE 27,5 kV	3	1	0	0	0	0	0	0	0	0	
CABINA SSP	QMT - 6kV			3	1	2	2	10	3			
CABINA NORD1	QMT - 6kV											
CABINA NORD2	QMT - 6kV							2	3	1	4	
CABINA SUD	QMT - 6kV											
CABINA A	QMT - 6kV											
CABINA B	QMT - 6kV											
CABINA C	QMT - 6kV							2	2	1	12	
TOTALE	SEZIONE 6 kV	0	0	3	1	2	2	14	8	2	16	
TOTALE	GENERALE	3	1	3	1	2	2	14	8	2	16	

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Document 0129T		09-01	- R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	0.5	D:	111
	IMPIANTI ELETTRICI	Pagina	95	DI	111

ALLEGATO 10 - CAPACITA' DELLA LINEA - CABINA SSP

ALLEGATO 10

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 10 CAPACITA' DELLA LINEA - CABINA SSP

LINEA	SEZIONE CAVO	PARTENZA DA QUADRO MT 6kV	LUNGHEZZA TOTALE	CAPACITA' PER FASE	CAPACITA' DELLA	LINEA
da SSP a NORD1	3X240	10	583	0,49	0,857	μF
da NORD1 a NORD2	3X240		244	0,49	0,359	μF
da NORD2 a SSP	3X240	12	1202	0,49	1,767	μF
da SSP a SUD	3X240	13	285	0,49	0,419	μF
da SUD a SSP	3X240	14	288	0,49	0,423	μF
da SSP a A	2//3X300	18	478	0,54	1,549	μF
da A a C	2//3X300		626	0,54	2,028	μF
da C a B	2//3X300		415	0,54	1,345	μF
da B a SSP	2//3X300	19	680	0,54	2,203	μF
		1		Ctot	10,950	μF

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen		09-01	- R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	06	D:	111
	IMPIANTI ELETTRICI	Pagina	96	DI	111

ALLEGATO 11 - CAPACITA' DELLA LINEA - CABINA NORD2

ALLEGATO 11

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 11 CAPACITA' DELLA LINEA - CABINA NORD2

LINEA	SEZIONE CAVO	PARTENZA DA QUADRO MT 6kV	LUNGHEZZA TOTALE	CAPACITA' PER FASE	CAPACITA' DELLA LINEA	
RMGC 1 - Punto Fisso 09	3x1x50	210	560	0,26	0,437 μF	
RMGC 2 - Punto Fisso 10	3x1x50	156	506	0,26	0,395 μF	
RMGC 3 - Punto Fisso 11	3x1x50	216	566	0,26	0,441 μF	
RMGC 4 - Punto Fisso 12	3x1x50	275	625	0,26	0,488 μF	
		•		Ctot	1,760 μF	

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen	to ST010	09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	07	D:	111
	IMPIANTI ELETTRICI	Pagina	97	DI	111

ALLEGATO 12 - CAPACITA' DELLA LINEA - CABINA C

ALLEGATO 12

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

ALLEGATO 12 CAPACITA' DELLA LINEA - CABINA C

GRU BANCHINA E PIAZZALE	SEZIONE CAVO	PARTENZA DA QUADRO MT 6kV	LUNGHEZZA TOTALE	CAPACITA' PER FASE	CAPACITA' DELLA LINEA	
GRU 24 ROWS	3x120	151	601	0,37	0,667	μF
PUNTO FISSO P1	3x1x50	99	449	0,26	0,350	μF
PUNTO FISSO P2	3x1x50	274	624	0,26	0,487	μF
PUNTO FISSO P3	3x1x50	342	692	0,26	0,540	μF
PUNTO FISSO P5	3x1x50	424	774	0,26	0,604	μF
PUNTO FISSO P6	3x1x50	424	774	0,26	0,604	μF
PUNTO FISSO P7	3x1x50	484	834	0,26	0,651	μF
PUNTO FISSO P8	3x1x50	484	834	0,26	0,651	μF
GRU S1	3x1x50	344	794	0,26	0,619	μF
GRU S2	3x1x50	373	823	0,26	0,642	μF
				Ctot	5,814	μF

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T	to ST010	09-01	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	00	D:	111
	IMPIANTI ELETTRICI	Pagina	98	DI	111

ALLEGATO 13 - CAPACITA' DELLA LINEA - CABINE A - B e NORD1

ALLEGATO 13

RELAZIONE TECNICA IMPIANTI ELETTRICI

Data Luglio 2015

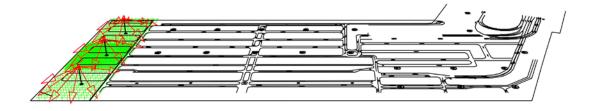
ALLEGATO 13 CAPACITA' DELLA LINEA - CABINE A - B e NORD1

GRU BANCHINA E PIAZZALE	SEZIONE CAVO	PARTENZA DA QUADRO MT 6kV	LUNGHEZZA TOTALE	CAPACITA' PER FASE	CAPACITA' DELLA I	LINEA
GRU S3 - cabina B	3x50	258	708	0,26	0,552	μF
GRU S4 - cabina B	3x50	228	678	0,26	0,529	μF
GRU S5 - cabina B	3x50	199	649	0,26	0,506	μF
GRU S6 - cabina B	3x50	169	619	0,26	0,483	μF
GRU S7 - cabina A	3x1x95	283	733	0,34	0,748	μF
Punto Fisso P4 - cabina B	3x50	218	568	0,26	0,443	μF
Punto Fisso R1 - cabina Nord1	3x50	168	518	0,26	0,404	μF
Punto Fisso R2 - cabina Nord1	3x50	170	520	0,26	0,406	μF
Punto Fisso R3 - cabina Nord1	3x50	198	548	0,26	0,427	μF
				Ctot	4,498	μF

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documen 0129T	to ST010	09-01	I-R02
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	00	D:	111
	IMPIANTI ELETTRICI	Pagina	99	DI	111

ALLEGATO14 - CALCOLO ILLUMINOTECNICO

71117	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII		Documento					
Engineering s.a.l.	ALLUNGAMENTO 100m	0129TST01009-01-R0		I-R02				
	PROGETTO DEFINITIVO	Data Lu	glio 20	15				
Trieste Marine Terminal	RELAZIONE TECNICA	Dagina	100	D:	111			
	IMPIANTI ELETTRICI	Pagina	100	Di	111			


Indice

1.	Visualizzazioni	3
1.1 1.2	Vista 3-D Pianta	3 4
2.	Indice	5
2.1 2.2 2.3 2.4	Informazioni generali Informazioni sugli ostacoli Apparecchi di progetto Risultati dei calcoli	5 5 5 5
3.	Risultati dei calcoli	6
3.1 3.2 3.3 3.4 3.5 3.6	Reticolo Esterno: Tavola grafica Reticolo Esterno: Curve iso Reticolo Esterno: Curve Isocolore Reticolo CON CONTRIBUTO: Tavola grafica Reticolo CON CONTRIBUTO: Curve iso Reticolo CON CONTRIBUTO: Curve Isocolore	6 7 8 9 10
4.	Apparecchi	12
4.1	Apparecchi di progetto	12
5.	Dati di installazione	13
5.1 5.2	Legende Posizionamento e orientamento degli apparecchi	13 13

S COULT Excitering and	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documer 0129	rsT010	09-01	1-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	101	Di	111
	IMPIANTI ELETTRICI	Pagina	101	DI	111

1. Visualizzazioni

1.1 Vista 3-D

A MVP507 WB/60

3111) Eggs	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII	Documento	
Engineering s.a.l.	ALLUNGAMENTO 100m	0129TST010	09-01-R02
_	PROGETTO DEFINITIVO	Data Luglio 20	15
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina 102	Di 111
	IMPIANTI ELETTRICI	ragilia 102	

1.2 Pianta

2. Indice

2.1 Informazioni generali

Fattore di manutenzione di progetto: 0.85.

2.2 Informazioni sugli ostacoli

Ostopolo	Fottore di tropperone (9/)	P		
Ostacolo	Fattore di trasparenza (%)	X (m)	Y (m)	Z (m)
Torre FARO 1	0	63.60	65.15	0.00
Torre FARO 2	0	63.60	197.15	0.00
Torre FARO 3	0	63.60	318.15	0.00

2.3 Apparecchi di progetto

Codice	Nr 1	Tipo di apparecchio	Tipo di lampada	Potenza (W)	Flusso (Im)
Α	23 N	MVP507 WB/60	1 * SON-T1000W	1020.0	1 * 130000

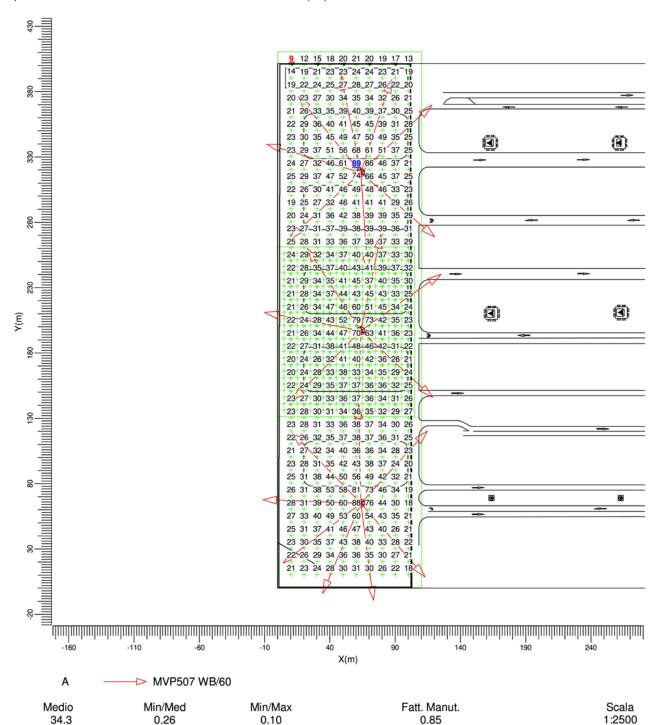
Potenza totale installata: 23.46 (kWatt)

Numero di apparecchi per disposizione:

Codice apparecchio

Disposizione	apparecchio	Potenza (kWatt)
	Α	
Centro telaio	8	8.16
Centro telaio1	7	7.14
Centro telaio2	8	8.16

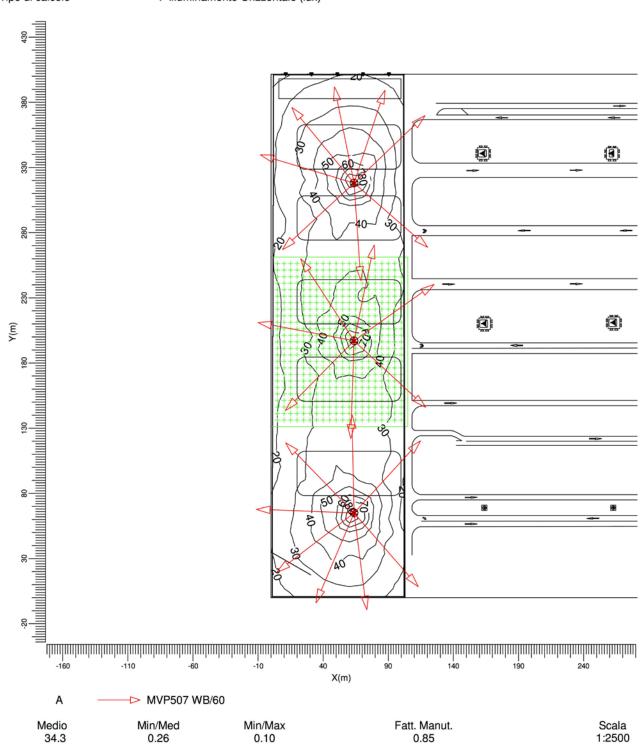
2.4 Risultati dei calcoli


Valori ottenuti: Calcolo	Tipo di calcolo	Unita'	Med. N	lin/Med M	lin/Max
Reticolo Esterno	Illuminamento Orizzontale	lux	34.3	0.26	0.10
Reticolo CON CONTRIBUTO	Illuminamento Orizzontale	lux	34.4	0.49	0.21

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documer 0129	rsT010	09-0 1	I-R02
	PROGETTO DEFINITIVO	Data Lu	glio 20	15	
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	104	Di	111
	IMPIANTI ELETTRICI	Pagina	104	DI	

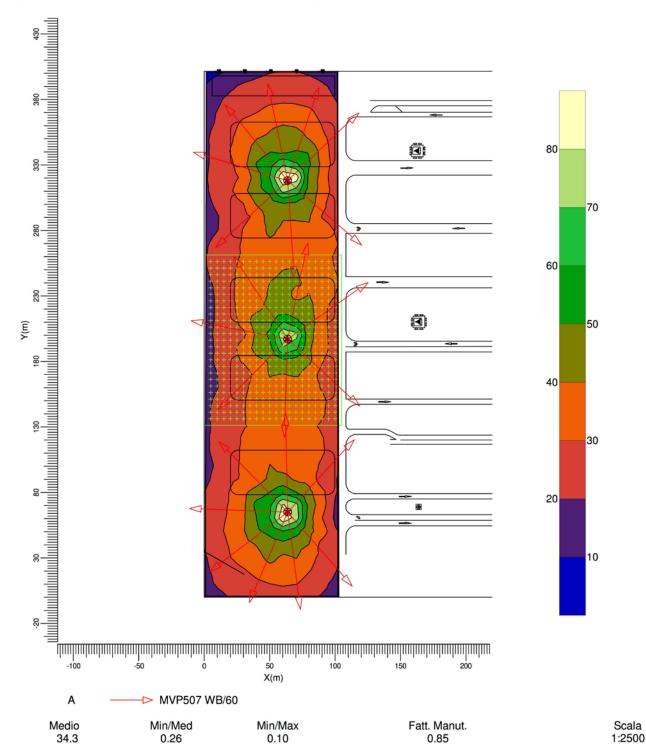
3. Risultati dei calcoli

3.1 Reticolo Esterno: Tavola grafica


Reticolo : Reticolo Esterno a Z = -0.00 m Tipo di calcolo : Illuminamento Orizzontale (lux)

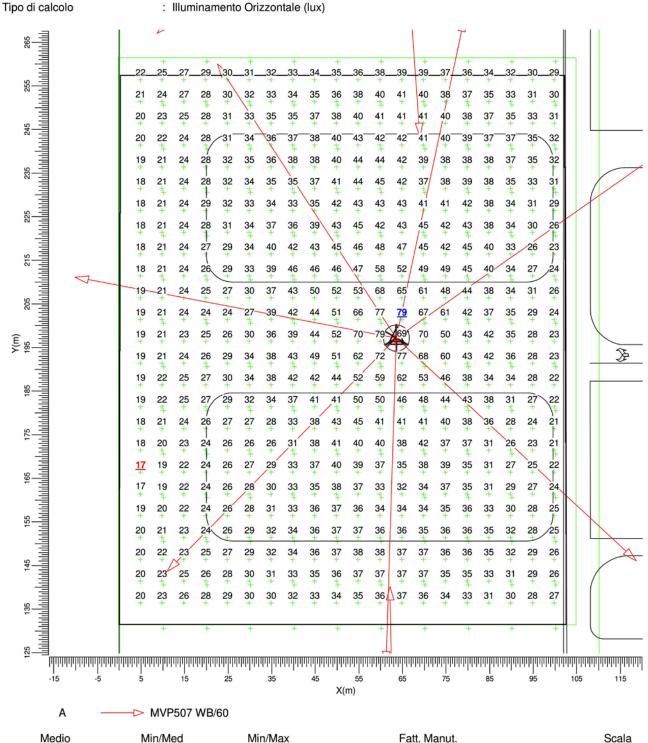
S COULT Expiretaing s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m		0129TST01009-01-R02		
	PROGETTO DEFINITIVO	Data Luglio 2015			
Trieste Marine Terminal	RELAZIONE TECNICA	Pagina	105	Di	111
	IMPIANTI ELETTRICI	ragilia	105	DI	111

3.2 Reticolo Esterno: Curve iso


Reticolo : Reticolo Esterno a Z = -0.00 m Tipo di calcolo : Illuminamento Orizzontale (lux)

S Expireraing s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02				
Trieste Marine Terminal	PROGETTO DEFINITIVO	Data Luglio 2015				
	RELAZIONE TECNICA	Pagina	106	Di	111	
	IMPIANTI ELETTRICI	rayilla 100	Di	111		

3.3 Reticolo Esterno: Curve Isocolore


Reticolo : Reticolo Esterno a Z = -0.00 m Tipo di calcolo : Illuminamento Orizzontale (lux)

S CONTRACTOR S.A.L.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m				
Trieste Marine Terminal	PROGETTO DEFINITIVO	Data Luglio 2015			
	RELAZIONE TECNICA	Pagina	107	Di	111
	IMPIANTI ELETTRICI	Pagina 107		""	

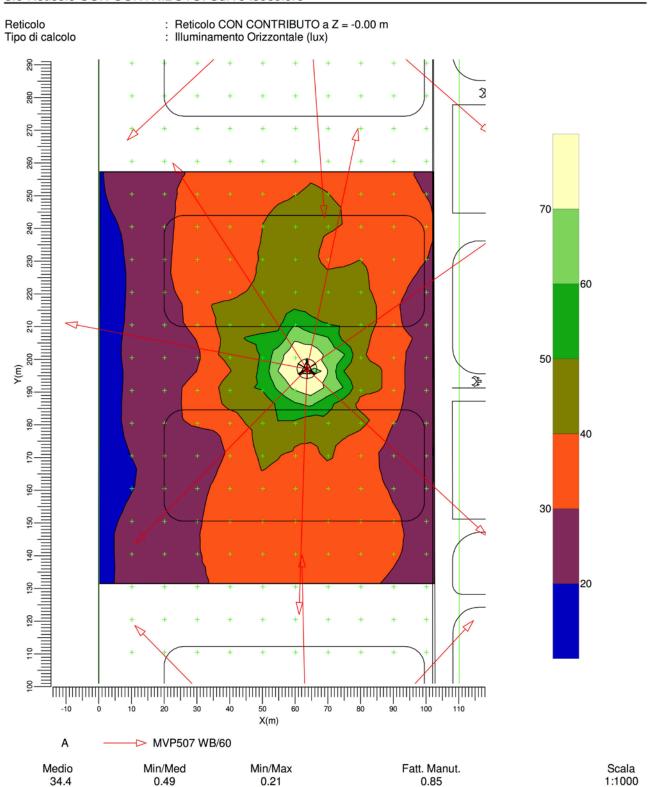
3.4 Reticolo CON CONTRIBUTO: Tavola grafica

Reticolo CON CONTRIBUTO a Z = -0.00 m

0.85

1:750

34.4 0.49 0.21


S Control of the Cont	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02				
Trieste Marine Terminal	PROGETTO DEFINITIVO	Data Luglio 2015				
	RELAZIONE TECNICA	Pagina	108	Di	111	
	IMPIANTI ELETTRICI	rayilla	108	וט	111	

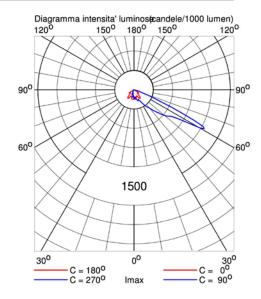
3.5 Reticolo CON CONTRIBUTO: Curve iso

S COULT Expiretaing s.a.l.	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R02				
(Trieste Marine Terminal	PROGETTO DEFINITIVO	Data Luglio 2015				
	RELAZIONE TECNICA	Pagina	100	Di	111	
	IMPIANTI ELETTRICI	Pagina 109		111		

3.6 Reticolo CON CONTRIBUTO: Curve Isocolore

S S S S S S S S S S S S S S S S S S S	PORTO DI TRIESTE – TERMINAL CONTAINER MOLO VII ALLUNGAMENTO 100m	Documento 0129TST01009-01-R0			
Trieste Marine Terminal	PROGETTO DEFINITIVO	Data Luglio 2015			
	RELAZIONE TECNICA	Dagina	110	C:	111
	IMPIANTI ELETTRICI	Pagina 110	וט	111	

4. Apparecchi


4.1 Apparecchi di progetto

OptiVision MVP507 MVP507 1xSON-T1000W WB/60

Rendimento luminoso: verso il basso

: 0.78 verso l'alto : 0.00 totale 0.78 Conventional 130000 lm Reattore Flusso di lampada Potenza totale apparecchio 1020.0 W Codice di misura : LVMA114301

5. Dati di installazione

5.1 Legende

Apparecchi di progetto: Codice Nr Tipo di apparecchio Tipo di lampada Flusso (Im) 23 MVP507 WB/60 1 * SON-T1000W 1 * 130000

5.2 Posizionamento e orientamento degli apparecchi

Nre _	Р	osizione		Angoli d	di puntame	nto
codice	X (m)	Y (m)	Z (m)	Rot.	Tilt90	TiltO
1 * A	63.60	65.15	35.00	-142.4	65.0	0.0
1 * A	63.60	65.15	35.00	-49.0	65.0	0.0
1 * A	63.60	65.15	35.00	-82.5	65.0	0.0
1 * A	63.60	65.15	35.00	134.4	65.0	0.0
1 * A	63.60	65.15	35.00	91.1	65.0	0.0
1 * A	63.60	65.15	35.00	178.0	65.0	0.0
1 * A	63.60	65.15	35.00	47.2	65.0	0.0
1 * A	63.60	65.15	35.00	-112.8	65.0	0.0
1 * A	63.60	197.15	35.00	35.0	65.0	0.0
1 * A	63.60	197.15	35.00	-42.9	65.0	0.0
1 * A	63.60	197.15	35.00	169.3	65.0	0.0
1 * A	63.60	197.15	35.00	123.1	65.0	0.0
1 * A	63.60	197.15	35.00	-134.5	65.0	0.0
1 * A	63.60	197.15	35.00	78.0	65.0	0.0
1 * A	63.60	197.15	35.00	-91.8	65.0	0.0
1 * A	63.60	318.15	35.00	129.5	65.0	0.0
1 * A	63.60	318.15	35.00	-41.2	65.0	0.0
1 * A	63.60	318.15	35.00	43.4	65.0	0.0
1 * A	63.60	318.15	35.00	101.5	65.0	0.0
1 * A	63.60	318.15	35.00	71.5	65.0	0.0
1 * A	63.60	318.15	35.00	163.3	65.0	0.0
1 * A	63.60	318.15	35.00	-137.0	65.0	0.0
1 * A	63.60	318.15	35.00	-85.9	65.0	0.0