

ANAS S.p.A.

Commissario Governativo Delegato

OPCM n. 3869 del 23 aprile 2010 OPCM n. 3895 del 20/08/2010

REGIONE SARDEGNA

O.P.C.M. n. 3869 del 23/04/2010. Disposizioni urgenti di protezione civile per fronteggiare l'emergenza determinatasi nel settore del traffico e della mobilità nelle province di Sassari ed Olbia – Tempio, in relazione alla strada statale Sassari – Olbia

SOGGETTO ATTUATORE ANAS S.p.A.

ADEGUAMENTO AL TIPO B DELL'ITINERARIO SASSARI – OLBIA LOTTO 4

DAL km 36+100 AL km 45+610

CIG: 4658037DB8

PROGETTO ESECUTIVO

VISTO IL RESPONSABILE DEL PROCEDIMENTO Ing. Francesco Ruggieri		SILE DEL SERVIZIO PROGE	ETTAZIONE	VISTO: IL DIRETTOR	E DEI LAVORI			
	Diretto	LAVORI FINCOSIT SPA te Divisione Infrastrutture Vincenza Costantino	PROGETTAZIONE Prof. Ing. Antonio Grimaldi (Responsabile integrazione delle Attività Specialistiche) INFRASTRUTTURE PROGETTAZIONE Ing. Antonio Grimaldi (Responsabile integrazione delle Attività Specialistiche) Ing. Gianluca Pandolli Elmi (Geologo) Ing. Raffaedle Piccirillo INSTALLE (Geologo) Ing. Raffaedle Piccirillo INSTALLE (Geologo) Ing. Michele Curiale (Geordinatore delle Sicurezza in fase di Progettazione)					
ΙĽ	IDROLOGIA ED IDRAULICA RELAZIONE IDROLOGICA							
CODICE	PROGETTO NOME FILE DPCA03E10	004ID00IDRRE01C.DOCX		revisione	FOGLIO	SCALA:		
D P C A	UN PROG. N. PROG CODICE ELAB.	I D 0 0 I D R	R E 0 1	С	DI DI			
С	OTTEMPERANZA PRESCRIZIOI	NI GENIO CIVILE	Ottobre 2014	R. Malcotti	P. Iorio	R. Piccirillo		
В	REVISIONE A SEGUITO ISTRUTTORI	A ANAS DEL 24-09-2014	Ottobre 2014	R. Malcotti	P. Iorio	R. Piccirillo		
Α	EMISSIONE		Maggio 2014	R. Malcotti	P. Iorio	R. Piccirillo		
REV/	DESCRIZIONE		DATA	PEDATTO	VERIFICATO	APPROVATO		

INDICE

1.	PREMESSA	3
2 .	INQUADRAMENTO NORMATIVO	4
3.	CARATTERISTICHE DEI SOTTOBACINI	5
4.	METODO DI STIMA DELLE PORTATE AL COLMO	7
C	RITERI GENERALI	7
G	GRANDI BACINI: METODO DIRETTO TCEV	7
Р	PICCOLI BACINI: METODO RAZIONALE	9
Е	STREMIZZAZIONE DEGLI EVENTI	22
5 .	RISULTATI ANALISI IDROLOGICA	23

1. PREMESSA

L'intervento in progetto prevede l'adeguamento del collegamento stradale già esistente tra Oschiri e Berchidda lungo la SS587 Sassari-Olbia, tra la progr.36+100 m e la progressiva 45+610 m.

L'attività ha previsto la preliminare definizione del reticolo idrografico: il reticolo è stato mappato mediante diversi livelli cartografici, che comprendono la carta IGM 25.000, la CTR 10.000, il rilievo aerofotogrammetrico 1:1000 e il celerimetrico di campagna, quest'ultimi due appositamente realizzati per il presente progetto.

Definito il reticolo, sono state individuate le interferenze con le opere stradali in progetto e i bacini ad esse sottesi (Corografie).

Si possono individuare almeno 3 livelli di reticolo idrografico che interferiscono col progetto:

- 1. grandi bacini: Rio Mannu di Oschiri-Berchidda;
- 2. piccoli bacini: rii
- 3. compluvi e fossi

I primi due livelli sono individuabili da mappatura IGM e CTR, il terzo livello solo mediante rilievi di dettaglio.

Sulla scorta di tale analisi cartografica, sono state codificate tutte le interferenze, così come descritto nella Planimetria delle interferenza idrauliche.

Oltre al rio Mannu di Oschiri, per il quale sono prodotti elaborati specifici, le interferenze principali con la strada di progetto del reticolo idrografico individuato da mappatura IGM e CTR, prendono la codifica TOxx o CAxx, rispettivamente nel caso siano previsti nuovi attraversamenti oppure esclusivamente canalizzazioni/inalveazioni. I bacini sottesi delle interferenze principali hanno usualmente una superficie di diversi decine di chilometri quadrati. I criteri di verifica e dimensionamento delle interferenze TO fanno riferimento alla normativa vigente regionale e nazionale.

Le interferenze secondarie con la strada di progetto del reticolo idrografico individuato da mappatura di dettaglio (scoline, incisioni, compluvi, fossi di guardia) prendono la codifica COxx, ed hanno superfici inferiori a 1 km². I criteri di verifica e dimensionamento delle interferenze CO sono analoghi a quanto previsto per il sistema di piattaforma, essendone parte integrante.

Le interferenze dei fossi di guardia esistenti e futuri, nonché della rete di collettori di piattaforma saranno infine analizzati con codifica dedicata nella attività "Idraulica di piattaforma e presidi".

L'analisi idrologica determinerà le portate al colmo di piena nelle sezioni di attraversamento dei corsi d'acqua lungo il percorso stradale per i tempi di ritorno di riferimento del progetto.

La stima delle portate è stata elaborata con riferimento ai metodi regionali sviluppati nello studio CNR-GNDCI., "La valutazione delle piene in Sardegna (VA.PI) ", secondo le "Linee Guida per l'individuazione e la perimetrazione delle aree a rischio idraulico e geomorfologico e delle relative misure di salvaguardia" (PAI) della Regione Sardegna e in coerenza con il Piano Stralcio Fasce Fluviali regionale.

Considerando che negli ultimi anni sono stati osservati nell'isola fenomeni alluvionali assai intensi, si è ritenuto opportuno elaborare un aggiornamento delle valutazioni idrologiche precedenti sulle piogge brevi ed intense (di durata anche inferiore a 1 ora). Tale elaborazione statistica delle serie storiche aggiornate è in corso di svolgimento da parte dello scrivente. Non risultando tuttora disponibili i risultati definitivi, si mantiene l'approccio che si ritiene cautelativo condotto nel Progetto Preliminare, in cui si sono assunti dei coefficienti incrementali da applicare alle elaborazioni statistiche precedenti (+30% dei parametri di possibilità pluviometrica).

A seguito delle prescrizioni richieste dal Genio Civile prot. 33219 del 30.09.2014, è stato necessario individuare ulteriori n. 3 interferenze: TO01bis, TO12bis e Rio Mannu di Berchidda (progr. 45+000).

2. INQUADRAMENTO NORMATIVO

Le analisi sono state svolte nel rispetto della seguente normativa regionale e nazionale:

- R.D. n°523 del 1904 e ss.mm.ii.
- D.lqs. n°152 del 2006
- D.M. 11.03.1988 e Circolare 9.1.1996 n.218/24/3 del Ministero LL.PP.
- Decreto dei Presidente della Repubblica n. 380 del 06/06/2001 "Testo unico delle disposizioni legislative e regolamentari in materia edilizia"
- D.M. 14.01.2008 Norme Tecniche per le Costruzioni
- Circolare 2 febbraio 2009 n. 617. C.S.LL.PP.
- N.T.A. e Linee Guida del Piano Stralcio per l'Assetto Idrologico
- Direttive per la manutenzione degli alvei e la gestione dei sedimenti approvate dal Comitato Istituzionale dell'Autorità di Bacino regionale della Sardegna con Delibera n°22 del 1° Agosto 2012
- Piano Stralcio fasce fluviali
- Foglio condizioni della diga del Muzzone
- Legge 584/94

3. CARATTERISTICHE DEI SOTTOBACINI

La caratterizzazione fisiografica dei bacini individuati è stata eseguita mediante le seguenti basi:

- Tavolette I.G.M. alla scala 1: 25.000 a colori con aggiornamento all'anno 1958;
- CTR 1: 10.000;
- DEM (maglia 10 x 10 m) fornito dalla Regione Sardegna;
- Aerofotogrammetrico 1:1000;
- Carta uso suolo.

La delimitazione dei bacini è stata limitata ai soli corsi d'acqua interferenti con le opere in progetto.

Per ciascun bacino sotteso, sono state valutate le seguenti grandezze:

- Superficie del bacino (S km²);
- Altitudine massima (Hmax m s.m.), altitudine media (Hmedia m s.m.), altitudine minima (altitudine sezione di chiusura - Hmin - m s.m.): elaborazione GIS direttamente dalla base del DEM, come risultato di un'analisi di tipo statistico (valore medio, minimo e massimo) delle quote altimetriche delle celle del DEM interne a ciascun poligono rappresentante il bacino idrografico analizzato;
- Pendenza media del bacino (i_v m/m) elaborazione GIS direttamente dalla base del DEM, come risultato dell'analisi delle pendenze medie delle celle del DEM interne a ciascun poligono rappresentante il bacino idrografico analizzato;
- Lunghezza dell'asta (Lmax km): calcolo automatico in GIS della lunghezza dei segmenti rappresentanti i corsi d'acqua digitalizzati.

Tabella 1 – Caratteristiche fisiografiche e morfometriche dei bacini

Tabella 1 - Caratteristiche fisiografiche e morfometriche dei bacini							
Caratterizzazione morfometrica del bacin					bacino		
Codifica PP	Codifica interferenza PE	AREA	H MIN	н мах	H MEAN	iv	L
		[km²]	[m s.l.m.]	[m s.l.m.]	[m s.l.m.]	[m/m]	[Km]
B56bis	TO01	0.37	206.96	264.05	227.10	0.11	1.20
-	TO01bis	0.65	195.2	264.05	223.77	0.10	1.4
B59	TO02	0.31	206.43	270.92	234.84	0.14	1.04
B58	TO03	0.94	198.88	270.92	229.23	0.12	1.29
-	TO03.1	0.57	204.41	263.55	228.70	0.12	1.01
-	TO04	0.28	189.88	242.04	207.38	0.06	1.23
B61	TO05	0.18	185.08	217.32	197.37	0.07	0.88
B62bis	TO06	0.12	182.92	217.73	195.76	0.10	0.55
B62	TO07	4.85	168.83	271.81	211.21	0.11	3.40
B64bis	TO08	1.07	169.56	399.68	221.17	0.17	2.26
B65	TO09	0.50	174.92	273.02	203.12	0.14	0.80
B66	TO10	8.35	177.49	1146.16	466.19	0.27	9.52
B67	TO11	0.58	186.54	270.10	220.79	0.11	1.46
B68	TO12	4.22	187.79	559.63	292.73	0.20	3.90
-	TO12bis	5.11	179.5	559.6	278.9	0.18	3.8
B64	CA01	1.38	169.55	482.33	239.43	0.21	2.52
-	CA02	2.35	177.68	271.35	216.58	0.12	2.46
-	CO01	0.03	189.98	206.82	198.51	0.06	0.29
-	CO02	0.09	208.49	242.63	224.42	0.10	0.56
-	CO03	0.02	221.70	232.61	230.26	0.06	0.23
B57	CO04	0.06	221.86	241.87	232.22	0.07	0.47
-	CO05	0.10	216.03	247.07	232.28	0.10	0.52
-	CO06	0.02	211.96	241.42	223.47	0.19	0.14
B60	CO07	0.14	190.80	242.04	213.07	0.07	0.86
D10	CO08	0.09	176.44	221.36	191.73	0.11	0.38
B63	CO09	0.08	171.80	207.19	192.38	0.13	0.40
-	CO09bis	0.32	175.44	271.05	197.32	0.10	0.74
B66bis	CO10	0.15	192.19	260.84	220.42	0.18	0.80
-	CO11	0.11	190.17	244.83	216.05	0.20	4.90
A8	Riu Mannu (Oschiri)	735	158.0	1350.0	754.0	0.02	54.70
-	Riu Mannu di Berchidda	354	175.0	1350.0	-	-	26.9

4. METODO DI STIMA DELLE PORTATE AL COLMO

Criteri generali

In coerenza con le linee guida e metodologiche di PAI e PSFF, si adotta quanto segue:

- per i bacini con superficie superiore ai 60 km², al metodo diretto della regionalizzazione VAPI delle portate al colmo per la Sardegna secondo la distribuzione TCEV, riportato nelle sopraccitate Linee guida e descritto in dettaglio nella "Valutazione delle piene in Sardegna" (Cao C., Piga E., Salis M., Sechi G.M. Rapporto Regionale Sardegna, CNR-GNDCI, LINEA 1, Istituto di Idraulica, Università di Cagliari, 1991).
- per i bacini con superficie inferiore ai 60 km², si procede con metodo indiretto mediante applicazione del metodo razionale e formulazione SCS.

Grandi bacini: metodo diretto TCEV

In coerenza con le linee guida e metodologiche di PAI e PSFF, per la stima delle portate al colmo dei bacini di dimensioni superiori a 60 km², si fa riferimento al metodo diretto della regionalizzazione VAPI delle portate al colmo per la Sardegna secondo la distribuzione TCEV.

Si ricorda che le analisi svolte nell'ambito del GNDCI hanno preso in considerazione la modellazione probabilistica delle portate al colmo in Sardegna aggiornando il modello basato sulla distribuzione Lognormale, già da tempo disponibile per la Regione, predisponendo il modello basato sulla distribuzione "Two Component Extreme Values" TCEV ed effettuando un confronto fra le loro capacità interpretative.

Si riportano i passaggi significativi e gli elementi fondamentali per la definizione delle portate al colmo secondo l'applicazione del metodo regionale TCEV, rimandando alle Linee Guida PAI per una descrizione completa.

In riferimento al primo livello di analisi regionale sono state ottenute le seguenti stime dei parametri $\Lambda * e \theta *$ che caratterizzano l'intero territorio dell'isola:

$$\Lambda$$
* = 0.3938; θ * = 5.887

Al secondo livello di regionalizzazione, le stazioni a disposizione sono state differenziate in relazione al versante di appartenenza, orientale od occidentale, e alle indicazioni ottenute dalle stime preliminari di Λ_1 per ciascuna stazione. Le stime dei valori di massima verosimiglianza del parametro per i due versanti risultano:

Bacini occidentali:
$$\Lambda_1$$
 = 6.286;

Bacini orientali:
$$\Lambda_1$$
 = 4.571;

Pertanto i parametri della distribuzione di probabilità dei massimi annuali delle portate in Sardegna risultano:

$$\theta$$
* = 5.887 - Bacini occidentali: Λ_1 = 6.286, η = 4.377;

$$\Lambda$$
* = 0.3938 - Bacini orientali: Λ_1 = 4.571, η = 4.058

Nella seguente tabella vengono riportati i valori teorici del coefficiente probabilistico di crescita KT per le portate in Sardegna, limitatamente ai tempi di ritorno definiti per il Progetto di Piano Stralcio delle Fasce Fluviali, escluso T = 2 anni.

Tabella 2 - Valori teorici di Kī, coefficiente probabilistico di crescita

T	KT	KT
(anni)	(bacini occidentali)	(bacini orientali)
50	4.41	4.68
100	5.35	5.70
200	6.29	6.71
500	7.52	8.04

Per quanto concerne infine il terzo livello di analisi delle piene, nella struttura gerarchica del modello TCEV, si è fatto riferimento all'analisi del parametro modale ϵ_1 della distribuzione TCEV. Il legame teorico tra questo parametro e la piena media annua μ_x è:

$$\mu_{x} = \frac{\varepsilon_{1}}{\operatorname{Ln}\left(\Lambda_{1}\right)} \eta$$

I valori stimati nelle singole stazioni idrometriche sono stati regolarizzati in funzione della superficie del bacino S in modo analogo a quanto fatto per le medie nel modello lognormale ottenendo le seguenti relazioni:

Bacini occidentali: $ln(\varepsilon_1) = 1.1954 + 0.9235 ln(S)$

Bacini orientali: $\ln(\epsilon_1) = 0.9882 + 0.6452 \ln(S)$

Piccoli bacini: metodo razionale

In riferimento alla formula Razionale la portata di piena è espressa come prodotto tra l'intensità di precipitazione (i), di assegnata durata e tempo di ritorno (Tr), il coefficiente di assorbimento (Φ), la superficie del bacino (A) e il coefficiente di laminazione $\epsilon(t)$:

$$Q = i [\Theta c, Tr, r (\Theta c, A)] \cdot \Phi \cdot A \cdot \epsilon (\Theta c)$$

dove con Θ c si è indicato il valore di durata critica, mentre r(Θ c, A), rappresenta il fattore di ragguaglio della precipitazione all'area del bacino, espresso in funzione della durata Θ c e della superficie del bacino A.

Durata critica: tempo di corrivazione e di formazione

La durata di pioggia critica (Θ c) è assunta pari alla somma del tempo di formazione del deflusso superficiale (t_f) e del tempo di corrivazione (t_c).

Il tempo di corrivazione (t_c) è ottenuto con la formula del Soil Conservation Service:

$$t_c = \frac{100 L^{0.8}}{1900 i_v^{0.5}} \left(\frac{1000}{CN} - 9\right)^{0.7}$$
 [minuti]

Dove:

iv = pendenza media del bacino (di versante) [%];

L = lunghezza dell'asta [ft] (piedi).

In ore, la stessa formula è usualmente espressa come:

$$t_c = 1.67 * 2.587 \frac{L^{0.8}}{1900 i_v^{0.5}} \left(\frac{1000}{cN} - 9\right)^{0.7}$$
 [ore]

Dove:

iv = pendenza media del bacino (di versante, non dell'asta fluviale) [%];

L = lunghezza dell'asta [m].

<u>Il tempo di formazione del deflusso (tf)</u> esprime il tempo di formazione del deflusso superficiale prima che inizi a scorrere sul bacino e dipende dalla capacità di assorbimento del suolo e dall'intensità e durata della pioggia lorda. La sua determinazione avviene in modo iterativo. Per i bacini di piccole dimensioni, come i seguenti, si è verificato che tale tempo non sia mai superiore al 50% del tempo di corrivazione, valore che è stato assunto per la sua stima sistematica in tale analisi.

Altezze di pioggia: curve segnalatrici di possibilità pluviometrica in Sardegna

Per la definizione delle precipitazioni si segue l'analisi regionale sulle precipitazioni breve e intense riportate nel progetto "VAPI Sardegna". La procedura individuata definisce innanzitutto la sottozona omogenea SZO della Regione Sardegna di appartenenza del bacino in esame, secondo la divisione riportata in figura seguente (Figura 1).

Figura 1 - Divisione delle sottozone omogenee SZO della Regione Sardegna

La pioggia indice $\mu(t)$ di durata τ (ovvero la media dei massimi annui delle piogge di durata τ) può essere espressa in forma monomia:

$$\mu(\tau)=a_1\;\tau^{^{n_1}}$$

Dove i coefficienti a₁ e n₁ si possono determinare in funzione della pioggia indice giornaliera μ_g : $a_1 = \mu_g \ / (0.886 \dot{\,} 24^{n_1}) \ e$ $n_1 = -0.493 + 0.476 \ Log_{10} \ \mu_g$

$$a_1 = \mu_g / (0.886^{\circ}24^{-11}) e$$

 $n_1 = -0.493 + 0.476 \text{ Log}_{10} \mu_0$

La pioggia indice giornaliera μ_g viene stimata sulla base della carta delle isoiete (Figura 2).

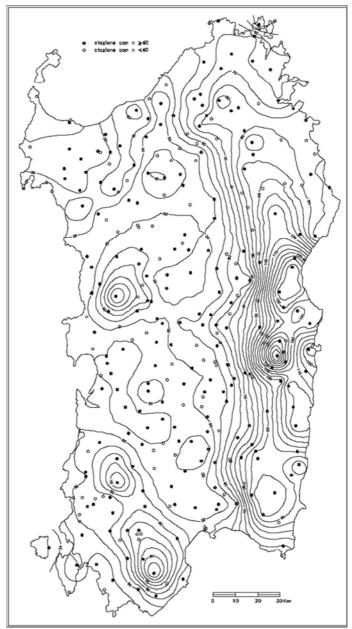


Figura 2 - Carta delle isoiete per identificare la pioggia indice giornaliera µg (mm)

L'altezza di pioggia hT(τ) di durata generica τ con assegnato tempo di ritorno T in anni si ottiene moltiplicando la pioggia indice $\mu(\tau)$ per un coefficiente di crescita KT(τ) = α_2 τn_2 :

$$hT(\tau)=\mu(\tau)\ KT(\tau)=(a_1a_2)\ \tau^{(n_1+n_2)}$$

Dove i coefficienti a_2 e n_2 si determinano con le seguenti relazioni, distinte per sottozona, per differenti T e τ .

Per tempi di ritorno T > 10 ANNI:

- SZO 1

$$\begin{aligned} \alpha_2 &= 0.46378 + 1.0386 * Log_{10}(T) \\ n_2 &= -0.18449 + 0.23032 * Log_{10}(T) - 3.3330 * 10^{-2} * Log_{10}(T)^2 \end{aligned} & \text{(per $\tau <= 1$ ora)} \\ n_2 &= -1.0563 * 10^{-2} - 7.9034 * 10^{-3} * Log_{10}(T) \end{aligned} & \text{(per $\tau >= 1$ ora)}$$

- SZO 2

Nota la durata critica, le formule permettono di calcolare l'altezza di pioggia lorda.

Altezze di pioggia ragguagliata (h_r)

La pioggia ottenuta, calcolata per la durata critica Θ di ogni bacino, viene ragguagliata all'area tramite il parametro r, secondo la formulazione utilizzata nel VAPI, che fa riferimento al Flood Studies Report:

$$\begin{array}{ll} r = 1 - (0.0394 \; A^{0.354}) \; \Theta \; (\tiny{-0.40+0.0208 \; ln(4.6-ln(A))}) & \text{per A} < 20 \; km^2 \\ r = 1 - (0.0394 \; A^{0.354}) \; \Theta \; (\tiny{-0.40+0.003832 \; (4.6-ln(A))}) & \text{per A} > 20 \; km^2 \end{array}$$

dove:

- Θ = durata critica della precipitazione;
- A = superficie del bacino (km²).

Altezze di pioggia nette (h_N)

Il valore del coefficiente di afflusso è stato calcolato con il metodo SCS-Curve Number che permette di ricavare la pioggia netta h_N in base all'espressione:

$$h_N = (h_r(\theta) - 0.2 S)^2 / (h_r(\theta) + 0.8 S)$$
 (mm)

Dove:

- h_r = precipitazione meteorica ragguagliata (mm);
- S = massima capacità di assorbimento del bacino per infiltrazione (mm).

Il valore S è stato calcolato mediante l'equazione:

$$S = 254 * ((100/CN)-1) (mm)$$

I valori del parametro di assorbimento CN sono stati ricavati secondo la metodologia elaborata dal CIMA (Centro di Ricerca Interuniversitario in Monitoraggio Ambientale, Savona) per conto e in coordinamento della Protezione Civile Nazionale.

La carta CN è costruita sulla base delle informazioni sull'uso suolo, la litologia e la permeabilità a disposizione. La procedura prevede inizialmente l'associazione ad ogni tipologia di copertura del territorio di un valore di CN secondo la classificazione riportata in Tabella 3.

Tabella 3 - Valori di Curve Number in funzione delle diverse tipologie di uso del suolo

Descrizione	CN
1111 - TESSUTO RESIDENZIALE COMPATTO E DENSO	95
1112 - TESSUTO RESIDENZIALE RADO	95
1121 - TESSUTO RESIDENZIALE RADO E NUCLEIFORME	95
1122 - FABBRICATI RURALI	95
1211 - INSEDIAMENTO INDUSTRIALI/ARTIG. E COMM. E SPAZI ANNESSI	95
1212 - INSEDIAMENTO DI GRANDI IMPIANTI DI SERVIZI	95
1221 - RETI STRADALI E SPAZI ACCESSORI	95
1222 - RETI FERROVIARIE E SPAZI ANNESSI	95
1223 - GRANDI IMPIANTI DI CONCENTRAMENTO E SMISTAMENTO MERCI	99
1224 - IMPIANTI A SERVIZIO DELLE RETI DI DISTRIBUZIONE	95
123 - AREE PORTUALI	95
124 - AREE AEROPORTUALI ED ELIPORTI	95
131 - AREE ESTRATTIVE	75
1321 – DISCARICHE	75
1322 - DEPOSITI DI ROTTAMI A CIELO APERTO, CIMITERI DI AUTOVEICOLI	75
133 – CANTIERI	95
141 - AREE VERDI URBANE	70
1421 - AREE RICREATIVE E SPORTIVE	95
1422 - AREE ARCHEOLOGICHE	75
143 – CIMITERI	95
2111 - SEMINATIVI IN AREE NON IRRIGUE	60
2112 - PRATI ARTIFICIALI	75
2121 - SEMINATIVI SEMPLICI E COLTURE ORTICOLE A PIENO CAMPO	60
2122 – RISAIE	99
2123 – VIVAI	70
2124 - COLTURE IN SERRA	75
221 – VIGNETI	60
222 - FRUTTETI E FRUTTI MINORI	60
223 – OLIVETI	60
231 - PRATI STABILI	75
2411 - COLTURE TEMPORANEE ASSOCIATE ALL'OLIVO	60
2412 - COLTURE TEMPORANEE ASSOCIATE AL VIGNETO	99
2413 - COLTURE TERMPORANEE ASSOCIATE AD ALTRE COLTURE PERMANENTI	60
242 - SISTEMI COLTURALI E PARTICELLARI COMPLESSI	60
243 - AREE PREV. OCCUPATE DA COLTURE AGRARIE CON PRESENZA DI SPAZI NATURALI IMPORTANTI	70
244 - AREE AGROFORESTALI	70
3111 - BOSCHI DI LATIFOGLIE	50
31121 - PIOPPETI SALICETI EUCALITTETI	50
31122 – SUGHERETE	65
31123 - CASTAGNETI DA FRUTTO	50
31124 – ALTRO	50
3121 - BOSCHI DI CONIFERE	70

Descrizione	CN
3122 - CONIFERE A RAPIDO ACCRESCIMENTO	70
313 - BOSCHI MISTI DI CONIFERE E LATIFOGLIE	60
321 - AREE A PASCOLO NATURALE	75
3221 - CESPUGLIETI ED ARBUSTETI	65
3222 - FORMAZIONI DI RIPA NON ARBOREE	65
3231 - MACCHIA MEDITERRANEA	65
3232 – GARIGA	65
3241 - AREE A RICOLONIZZAZIONE NATURALE	70
3242 - AREE A RICOLONIZZAZIONE ARTIFICIALE	70
3311 - SPIAGGE DI AMPIEZZA SUPERIORE A 25M	40
3312 - AREE DUNALI NON COPERTE DA VEGETAZIONE DI AMPIEZZA SUPERIORE A 25M	40
3313 - AREE DUNALI COPERTE DA VEGETAZIONE DI AMPIEZZA SUPERIORE A 25M	40
3315 - LETTI DI TORRENTI DI AMPIEZZA SUPERIORE A 25M	99
332 - PARETI ROCCIOSE E FALESIE	75
333 - AREE CON VEGETAZIONE RADA > 5% E< 40%	75
411 - PALUDI INTERNE	99
421 - PALUDI SALMASTRE	99
422 – SALINE	75
423 - ZONE INTERTIDALI	99
5111 - FIUMI, TORRENTI E FOSSI	99
5112 - CANALI E IDROVIE	99
5121 - BACINI NATURALI	99
5122 - BACINI ARTIFICIALI	99
5211 - LAGUNE, LAGHI E STAGNI COSTIERI A PRODUZIONE ITTICA NATURALE	99
5212 - ACQUACOLTURE IN LAGUNE, LAGHI E STAGNI COSTIERI	99
522 - ESTUARI E DELTA	99
5231 - AREE MARINE A PRODUZ. ITTICA NATURALE	99
5232 - ACQUACOLTURE IN MARE LIBERO	99

La carta tematica costruita utilizzando le informazioni riportate sopra restituisce una visione d'insieme delle diverse risposte del suolo secondo l'immagine sotto riportata (Figura 3).

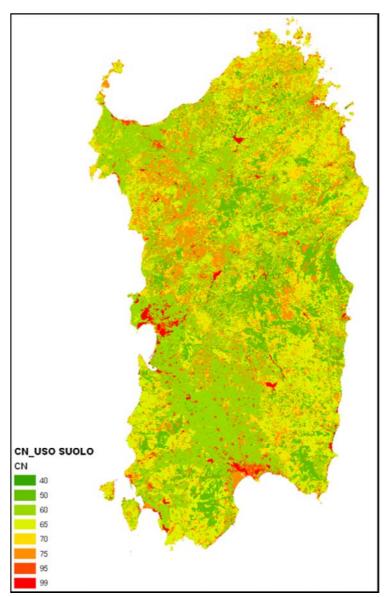


Figura 3 - Carta del CN in funzione del solo Uso Suolo, sulla base dei dati Carta CORINE

Successivamente, così come indicato dalla metodologia CIMA-Protezione Civile Nazionale, si è proceduto ad analizzare le informazioni presenti nella Carta geologica, al fine di ottenere fattori correttivi per il calcolo definitivo dei valori di CN a scala regionale (Figura 4).

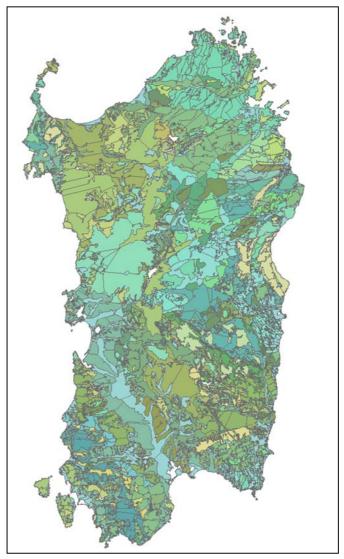


Figura 4 - Carta geologica della Sardegna

Ogni classe è stata indagata e, in considerazione degli aspetti geologici preminenti e delle caratteristiche di permeabilità proprie, sono stati stimati i coefficienti di variazione del CN da attribuire ad ogni tipo litologico.

I coefficienti di variazione del Curve Number sono stato assunti nell'intervallo di valori (- 5, +15); un coefficiente di variazione pari a -5 è tipico dei terreni incoerenti ad elevata capacità di infiltrazione: ne sono un esempio i depositi detritici, come il tipo "Ghiaie, sabbie, limi ed argille sabbiose di origine alluvionale, eolica e litorale"; al contrario un valore del coefficiente di variazione pari a +15 è proprio delle rocce con strutture cristalline compatte e poco permeabili, come il tipo "Metarioliti e Metariodaciti con fenocristalli da millimatrici a decimetrici di kfs; quarziti, metarenarie, metaconglomerati poligenici con elementi di metavulcaniti, metaepiclastiti,metagrovacche. (Ordoviciano medio)".

La tavola dei fattori correttivi al Curve Number che si è infine desunta secondo la metodologia CIMA-Protezione Civile Nazionale, è riportata in forma completa in (Tabella 4).

Tabella 4 - Assegnazione dei fattori correttivi al Curve Number per caratteristiche geologiche da attribuire, per sovrapposizione, ad ogni tipo litologico

DESCRIZIONE	ΔCN
Alternanza di metarenarie, quarziti e filladi (47b). Metarenarie e filladi a bt (47a). Successioni terrigene prevalentemente attribuite al Cambriano-Ordoviciano inf. e subordinatamente all'Ordoviciano sup. e al Devoniano-Carbonifero inf.)	5
Alternanza di quarziti, metarenarie, metapeliti e metasiltiti, metaconglomerati e brecce; olistoliti e olistostromi della successione siluro-devoniana. (Carbonifero inf.)	10
Andesiti, andesiti basaltiche e rari basalti ad affinita tholeiitica e calcalcalina, talora brecciati in colate, cupole di ristagno; lave andesitiche e dacitiche in cupole e filoni; andesiti, basalti andesitici e latiti ad affinita da calcalcalina a	10
Anfiboliti con relitti di paragenisi eclogitiche. (Precambriano)	15
Anfiboliti e anfiboliti ultramafiche con relitti di paragenesi granulitiche. (Precambriano)	15
Arenarie di San Vito e Formazione di Solanas: metaranarie micacee e quarziti alternate a metapeliti e rari metaconglomerati, con piste ed impronte di Meduse e Acritarchi; nella parte alta metapeliti viola, nere e verdastre, quarziti e metaconglomerat	10
Arenarie eoliche wurmiane (2c); Conglomerati, arenarie e biocalcareniti di spiaggia (2b); Conglomerati, sabbie, argille piu meno cementate (2a).	0
Arenarie marnose, siltiti, calcareniti sublitorali (9d). (Serravalliano med sup.)Marne e marne arenacee epibatiali (9c).(Langhiano medsupSerravalliano inf.)Marne arenacee e siltose, arenarie, conglomerati, calcareniti e sabbie silicee sublitoral	10
Argille rosso violacee, arenarie quarzoso-micacee e conglomerati di piana alluvionale, con intercalazioni di calcari silicizzati. (Permiano supTrias medio p.p)Conglomerati, arenarie, brecce vulcaniche, calcari con selci lacustri e lenti di antra	10
Basalti alcalini e transizionali, trachibasalti, andesiti basaltiche e basalti subalcalini,intercalati, alla base, da depositi di tipo fluvio lacustri (5b). (Pliocene-Pleistocene)Trachiti, trachiti fonolitiche, fonoliti, fonoliti tefritiche e tefriti	10
Conglomerati a matrice argillosa e arenarie di derivazione alluvionale (8d). Calcarivacuolari e brecciati sopratidali e intertidali; calcari microcristallini di ambiente evaporitico, marne e calcari organogeni sublitorali (8c). (Messiniano) Calcari e ar	0
Conglomerati e arenarie continentali con banchi di selce, tufiti, tufi pomicei (10f). (Burdigagliano)Arenarie, conglomerati, tufiti piu o meno arenacee, calcari sublitorali (10e)Calcari selciosi, siltiti, arenarie e conglomerati fluviali con interca	0
Conglomerati, arenarie ed argille derivanti dallo smantellamento di sedimentimiocenici (Formazione di Samassi) (3b); Sabbie carbonatiche e siltiti argillose (3a).	0
Conglomerati, arenarie marnose, marne e calcareniti sublitorali (Plioc. inf.)	0
Dolomie, dolomie marnose e marne con gessi e argille. (Trias sup)Depositi carbonatici di piattaforma: calcari dolomitici e dolomie arenacee, calcari e calcari marnosi con rare intercalazioni gessose, circalitorali e transizionali. (Trias medio)	10
Filoni a composizione prevalentemente basaltica e comenditica. (Oligocene sup Mioceneinf. medio)	10
Filoni a composizione trachibasaltica, alcalibasaltica e hawaitica.(Pliocene-Pleistocene)	10
Filoni principali di porfidi granitici e ammassi di micrograniti, principali filoni aplitici e pegmatitiche.(Carbonifero sup Permiano)	10
Filoni principali di quarzo. (Carbonifero sup. Permiano)	10
Formazione di Cabitza: argilloscisti, metarenarie, metacalcari nodulari, metasiltiti con rare lenti calcaree. (Cambriano infOrdoviciano)	10
Formazione di Dorgali: dolomie, dolomie arenacee, calcari dolomitici, da litorali a circa litorali; conglomerati, arenarie quarzose, siltiti ed argille fluvio-deltizi con livelli lignitiferi (Dogger-Malm)	5
Formazione di Gonnesa (Metallifero Auct.): metacalcari e metadolomie; metadolomie e metacalcaristromatolitici. (Cambriano inf.)	5
Formazione di Nebida (Formazione delle Arenarie Auct.): metarenarie a cemento carbonatico, metadolomie, metacalcari oolitici e micritici; arenarie siltose con rare intercalazioni di calcari (63c). (Cambriano inf.) Filladi e metarenarie, talvolta con i	10

DESCRIZIONE	ΔCN
Formazione di Serra Tonnai: metavulcaniti intermedie o raramente basiche, metagrovacche vulcaniche; Formazione di Manixeddu: metaepiclastiti, metaconglomerati a prevalenti elementi di vulcaniti acide. Formazione di M.te Corte Cerbos: metarioliti, metac	5
Ghiaie, sabbie, limi ed argille sabbiose di origine alluvionale, eolica e litorale.	-5
Granitoidi a crd. (Carbonifero supPermiano)	10
Granitoidi foliati, principalmente granodioriti tonalitiche fino a tonaliti. (Carbonifero supPermiano)	10
Granodioriti tonalitiche. (Carbonifero supPermiano)	10
Granodioriti, monzogranitiche equigranulari. (Carbonifero supPermiano)	10
Granodioriti, monzogranitiche inequigranulari. (Carbonifero supPermiano)	10
Leucograniti a grt. (Carbonifero supPermiano)	10
Leucograniti equigranulari. (Carbonifero supPermiano)	10
Marmi grigi, raramente dolomitici, con alternanze filladiche, localmente fossiliferi. (Devoniano)	5
Metacalcari nodulari. (Devoniano) Metacalcari a graptoliti. (Siluriano-Devoniano inf.)	10
Metacalcari nodulari; sottili alternanze di metacalcari e metasiltiti (49b). (Devoniano inf. medio-Tournaisiano inf.) Marmi talvolta dolomitici e calcescisti (49a). (Devoniano-Carbonifero inf.)	10
Metaconglomerati, metarcosi, metesiltiti, metagrovacche, con intercalazioni di metabasiti alcaline;metacalcareniti e metacalcari fossiliferi spesso silicizzati. (Caradoc-Ashgill)	10
Metagabbri alcalini (45b). (Carbonifero inf.)Filladi scure carboniose, metasiltiti, quarziti nere con rare e sottili intercalazioni di marmi (45a). (Devoniano)	10
Metapeliti scure carboniose, nella parte inferiore livelli di quarziti nere a graptoliti; nelle partesuperiore metalcalcari nodulari. (Siluriano infDevoniano inf.)	5
Metapeliti scure carboniose; nella parte inferiore quarziti nere a graptoliti. (Siluriano inf.)	15
Metarenarie , quarziti, filladi, metacoglomerati ad elementi di liditi, olistoliti e olistostromi della successione siluro- devoniana e ordoviciana, e metavulcaniti basiche alcaline, talora a pillow.(Carbonifero inf.)	10
Metarioliti e metariodaciti con fenocristalli da millimatrici a decimetrici di kfs; alla base sono presentiquarziti, metarenarie, metaconglomerati poligenici con elementi di metavulcaniti, metaepiclastiti, metagrovacche. (Ordoviciano medio)	15
Metasiltiti e metarenarie con intercalazioni di metavulcaniti basiche e metatufi; metaconglomeraticon olistoliti di calcari e dolomie cambriani, metasiltiti e metarenarie rosso-violacee di piana daalluvionale a costiera. (Caradoc-Ashgill)	10
Metavulcaniti acide, intermedie e basiche e metaepiclastiti. (Ordovicano medio)	10
Micascisti e paragneiss a grt+/-oligoclasio. (Paleozoico)	10
Migmatiti leucocratiche, nebuliti, magmatiti, gneiss, talora con lenti a silcati di calcio. (Precambriano)	10
Monzograniti equigranulari (28b). Monzograniti inequigranulari (28a). (Carbonifero supPermiano)	10
Ortogneiss granodioritici e granitici. (Ordoviciano medio)	10
Ortogneiss granodioritici e monzogranitici. (Precambriano)	10
Ortogneiss granodioritici. (Ordoviciano medio)	15
Paragneiss, micascisti a grt+/-st+/-ky e quarziti in facies anfibolitica di pressione intermedia, miloniti di variabile grado metamorfico tra la facies anfibolitica e quella degli scisti verdi. (Paleo-zoico)	10
Paragneiss, micascisti e quarziti in facies anfibolitica di pressione intermedia con sovraimprontadi alta temperatura. (Paleozoico)	10
Porfidi grigi: metariodaciti e metadaciti massive, spesso porfiriche, metatufi e metatufiti; metavulcanitiriolitiche metatufiti e metaepiclastiti; metaconglomerati poligenici grossolani, con clasti di metarioliti. (Ordoviciano medio)	15

DESCRIZIONE	ΔCN
Principali corpi filoniani a composizione prevalentemente basaltica ad affinita calcalcalina e subordinatamente shoshonitica. (Carbonifero sup Permiano)	10
Rioliti e riodaciti in espandimenti ignimbritici e colate, porfidi in ammassi subvulcanici, lave, brecceandesitiche, subordinati espandimenti dacitici; rioliti alcaline in espandimenti ignimbritici.(Carbonifero supPermiano sup Trias inf.)	10
Rioliti e riodaciti, daciti porfiriche vetrose e bollose. (Pliocene)	15
Rioliti, riodaciti, daciti e subordinatamente comenditi, in espandimenti ignimbritici, cupole diristagno e rare colate a cui si associano prodotti freatomagmatici; talora livelli epiclastici intercalati. (Oligocene supMiocene inf. medio)	10
Sardegna occidentale: depositi carbonatici di piattaforma: calcari, calcari dolomitici,calcarioolitici e calcari bioclastici, sublitorali; alla base marne e calcari marnosi paralici (17b). (Berriasiano-Albiano inf.)Sardegna orientale: depositi carbo	5
Sardegna occidentale: depositi carbonatici di piattaforma: calcari, marne e calcareniti glauconitiche sublitorali e localmente calcari lacustri (16b). (Cenomaniano-Campaniano)Sardegna orientale: depositi carbonatici di piattaforma: calcari marnosi e	10
Sardegna occidentale: depositi carbonatici di piattaforma: dolomie e calcari dolomitici, calcarioolitici, calcari ad oncoidi, calcari selciferi, calcari micritici, calcari marnosi e marne; alla sommitadolomie e calcari dolomitici scuri lacustri (18b	5
Sardegna orientale: calcari, calcari maenosi e marne argillose sublitorali (14b). Arenarie e conglomerati poligenici piu o meno quarzosi fluvio-deltizi (14a). (Ypresiano-Lutezianoinf.)	10
Sieniti sodiche. (Carbonifero supPermiano)	10
Sulcis e Trexenta: calcari litorali e transizionali, calcari marnosi, marne e argille continentali e paralico-transizionali con depositi di carbone; alla base sono presenti, arenarie e conglomerati di piana alluvionale. (Paleocene supEocene inf. m	0
Tonaliti (33b). Gabbri e masse gabbro-tonalitiche (33a). (Carbonifero supPermiano)	10

Utilizzando la tabella correttiva, è stata realizzata una carta tematica che restituisce visivamente la distribuzione dei fattori correttivi Δ CN (Figura 5).

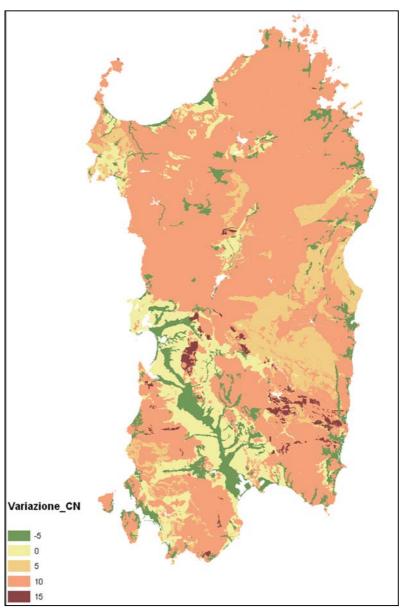


Figura 5 - Carta di variazione del CN derivante dalla stima di permeabilità del terreno desunto dalla carta geologica

In tal modo è stato possibile effettuare la correzione dei valori di Curve Number associati alle caratteristiche di uso del suolo (CORINE) con i fattori di variazione derivanti dall'analisi delle informazioni geologiche, il prodotto finale è la "Carta del Curve Number per la Regione Sardegna" in formato raster con maglia 10 X 10 metri (Figura 6).

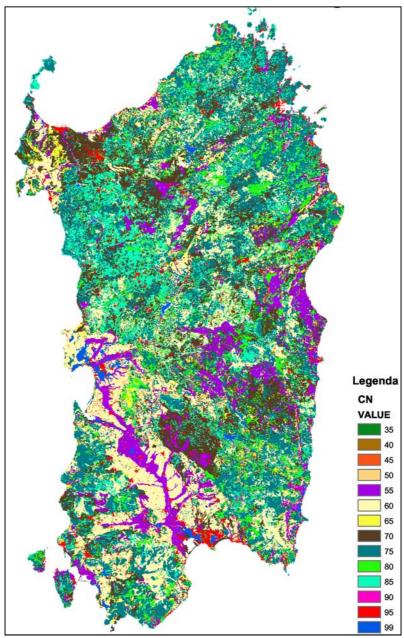


Figura 6 - Carta del CN aggiornato

Infine un ulteriore incremento del CN (che così definito nella procedura rappresenta condizioni medie di umidità del suolo antecedenti all'inizio dell'evento, AMCII) avviene per ogni sottobacino nel valutare elevate le condizioni di umidità antecedenti l'evento (condizione AMCIII).

Estremizzazione degli eventi

Alla luce degli eventi pluviometrici verificatisi negli ultimi anni, riguardanti vere e proprie alluvioni in alcune zone della Sardegna (cfr. alluvioni del 2004, 2008, 2010, 2013), sono stati assunti, in analogia a quanto condotto nel Progetto Preliminare, degli incrementi percentuali ai parametri delle curve di possibilità pluviometriche del VAPI.

Sono in corso tuttavia tramite il Servizio Idrografico Regionale degli approfondimenti atti a convalidare tale scelte; in particolare sono in corso di acquisizione ed elaborazione le osservazioni per i pluviometri dell'area di studio riguardanti le piogge breve ed intense dal 1982 ad oggi.

In attesa dello studio di aggiornamento statistico, si è deciso di operare in diverso modo, utilizzando le informazioni disponibili in letteratura sull'osservazione degli eventi degli ultimi anni.

In particolare il Settore Idrografico - Servizio Difesa del Suolo della Regione Sardegna - ha pubblicato vari rapporti sulle precipitazioni degli eventi eccezionali registrati nell'Ottobre-Novembre 2008 nella Sardegna Centrale e Orientale. Altre alluvioni si erano registrate nel Novembre 1999, nel Settembre 2006, nel Settembre 2009 (in Gallura) ed infine nell'Ottobre 2010.

Dall'esame di tutte queste informazioni sembra emergere una variazione dei principali parametri statistici ricavabili dalle precedenti serie storiche osservate. Ne consegue una probabile alterazione nella stazionarietà delle serie stesse. Si rileva, inoltre, un sensibile aumento dei fenomeni localizzati e concentrati, influente quindi sui piccoli bacini, e un aumento più contenuto degli eventi diffusi, influente sui grandi bacini. Tale circostanza potrebbe ridurre la rappresentatività dell'approccio regionalizzato del VA.PI..

Ai fini della progettazione dell'infrastruttura, si è ritenuto opportuno estrapolare, da selezionati eventi estremi non ricadenti nell'area di studio, dei parametri incrementali da applicare al calcolo idrologico.

Sulla base delle considerazioni sopra esposte, e delle elaborazioni eseguite, il progettista stima che possa essere introdotto un aumento dei valori di pioggia estremi valutabili secondo un incremento del 30% rispetto alle precedenti valutazioni.

I valori dei parametri delle suddette curve vengono riportati nel seguente prospetto:

Tabella 5 – Parametri del coefficiente di crescita KT (già maggiorati del 30%)utilizzati per le verifiche dei tombini

Durate > 1 ora **TR 50 TR 200** TR 500 **Parametri** TR 100 2.96 3.39 3.81 4.37 a_0 -0.016 -0.018 -0.020 -0.022 n_0

Durate < 1 ora **Parametri TR 50** TR 100 TR 200 **TR 500** 2.96 3.39 3.81 4.37 aո 0.161 0.205 0.240 0.274 n_0

5. RISULTATI ANALISI IDROLOGICA

Dall'analisi dei dati morfometrici, si osserva che tra i bacini in esame gli unici ad avere area superiore a 60 km² sono quelli sottesi all'asta del rio Mannu Oschiri-Berchidda.

Per tali bacini le portate idrologiche sono:

Tabella 6 - Portate di progetto del Riu Mannu di Berchidda

	PACING	Sup.	Qc [m ³ /s]				
Codifica PP	BACINO	[Km ²]	TR50	TR100	TR200	TR500	
A8	Mannu Oschiri	735	1409	1710	2076	2431	
-	Mannu Berchidda	354	718	871	1024	1224	

Per i restanti bacini individuati con codifica TO, CA e CO, è stato applicato il metodo razionale. Di seguito si riportano i valori di portata al colmo per ciascun tempo di ritorno calcolati con tale metodo. In particolare sono stati analizzati due tipologie di valori CN: quello ottenuto secondo metodologia descritta nel precedente capitolo e, in coerenza con quanto individuato nel Progetto Preliminare, quello imposto a CN=91.

Tabella 7 - Portate di progetto del reticolo secondario

		Q	q			
Codifica PP	Codifica interferenza PE	TR50	TR100	TR200	TR500	
		[m ³ /s]	[m ³ /s]	[m ³ /s]	[m ³ /s]	(m ³ /s/km ²)
B56bis	TO01	7.6	9.0	10.4	12.3	27.8
-	TO01bis	12.9	15.3	17.7	20.9	27.3
B59	TO02	6.6	7.6	8.7	10.2	28.5
B58	TO03	19.1	22.4	25.9	30.5	27.4
-	TO03.1	11.9	14.0	16.0	18.8	28.0
-	TO04	5.5	6.6	7.6	9.1	27.1
B61	TO05	3.6	4.3	4.9	5.8	28.2
B62bis	TO06	2.6	3.0	3.4	4.0	29.1
B62	TO07	73.2	87.6	102.1	121.5	21.1
B64bis	TO08	20.0	23.9	27.9	33.2	26.0
B65	TO09	10.6	12.3	14.0	16.4	28.3
B66	TO10	105.6	125.5	145.7	172.5	17.4
B67	TO11	11.3	13.5	15.7	18.6	26.9
B68	TO12	73.7	88.7	103.9	124.2	24.6
-	TO12bis	86.6	104.1	121.8	145.6	23.8
B64	CA01	26.0	31.0	36.1	43.0	26.2
-	CA02	42.5	51.0	59.6	71.1	25.4
-	CO01	0.8	0.9	1.0	1.2	29.5
-	CO02	2.1	2.4	2.7	3.2	29.2
-	CO03	0.5	0.5	0.6	0.7	28.7
B57	CO04	1.3	1.5	1.6	1.9	29.4
-	CO05	2.2	2.5	2.9	3.3	29.1
-	CO06	0.4	0.4	0.4	0.5	21.8
B60	CO07	3.0	3.5	4.0	4.8	28.3
D10	CO08	2.1	2.4	2.7	3.1	28.9
B63	CO09	1.8	2.0	2.3	2.6	28.7
	CO09bis	6.8	7.9	9.0	10.6	28.6
B66bis	CO10	3.4	3.9	4.5	5.2	29.0
-	CO11	1.9	2.3	2.6	3.2	23.9

Le verifiche idrauliche sono state effettuate applicando la portata duecentennale.