

Codifica TU23086B1BDX19531

Rev. **01** del 02/02/2015

Pag. **1** di 17

Nuovo collegamento a 132kV tra l'isola d'Elba e il continente

CARATTERISTICHE COMPONENTI LINEA 132 KV IN CAVO INTERRATO

Storia delle revisioni		
Rev. 01	del 02/02/2015	Revisione ed integrazione progettuale
Rev. 00	del 14/05/2010	Prima emissione

Elaborato		Verificato			Approvato
APRICC		APRICC			APRICC

Codifica
TU23086B1BDX19531

Pag. **2** di 17

Rev. 01

INDICE

3 5 6
4 5 6
6
7
8
9
10
11
12
13
14
15
16
17



Codifica
TU23086B1BDX19531

Rev. 01 Pag. **3** di 17

COMPONENTI LINEE IN CAVI INTERRATI 132 / 150 kV

1.1 Cavi 132 / 150 KV unipolari isolati in XLPE - conduttore Al

Codifica TU23086B1BDX19531

Rev. 01 Pag. 4 di 17

1.2 Cavi 132 / 150 KV unipolari isolati in XLPE – conduttore Cu

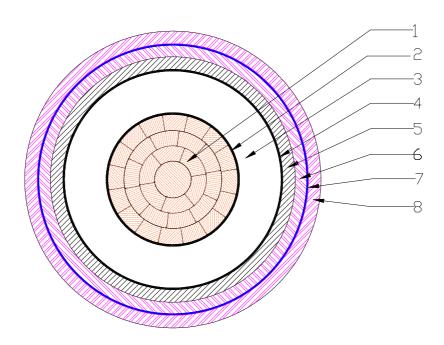


Fig. 2 - Disegno tipico del cavo di potenza terrestre

Leger	Legenda				
1	Conduttore a conci di rame				
2	Strato semiconduttivo				
3	Semiconduttore interno estruso				
4	Isolante XLPE				
5	Semiconduttore esterno estruso				
6	Nastro semiconduttore igroespandente				
7	Nastro di alluminio saldato				
8	Guaina anticorrosiva di politene				

Le principali caratteristiche tecniche sono nel seguito riportate:

Caratteristiche principali preliminari				
Cavo				
Materiale del conduttore		Rame		
Sezione tipica del conduttore	mm ²	400-600		
Diametro esterno	mm	80 - 100mm		
Peso	kg/m	~20		

Codifica **TU23086B1BDX19531**

Rev. 01

Pag. **5** di 17

1.1 Cavi 132 / 150 KV tripolari isolati in XLPE – conduttore in rame

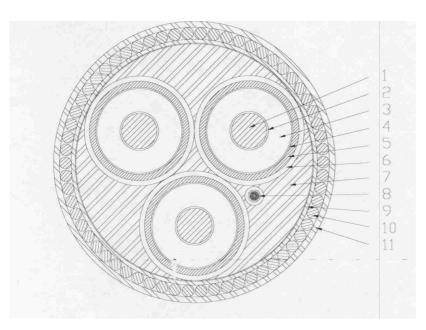
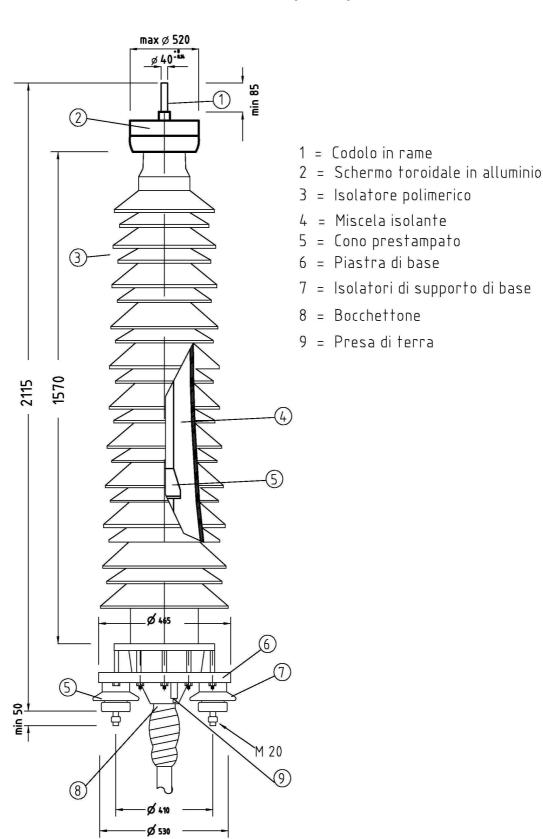


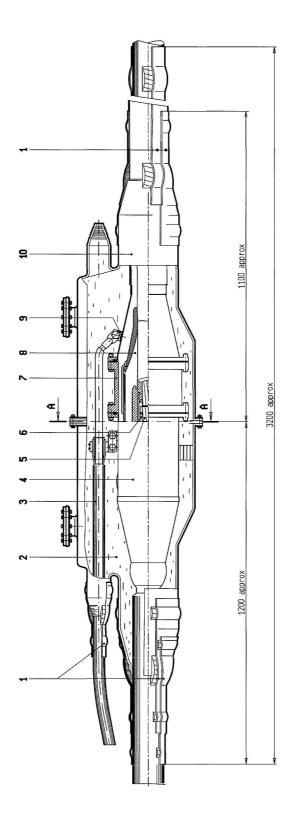
Fig. 1 - Disegno tipico (non in scala) del cavo marino a 132 kV / 150 kV con conduttore in rame con un solo sistema in fibra ottica.

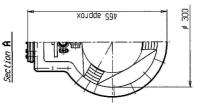

Leger	Legenda				
1	Conduttore a conci di rame o alluminio				
2	Semiconduttore interno				
3	Isolante XLPE				
4	Semiconduttore esterno estruso e nastro semiconduttore igroespandente				
5	Guaina di Pb				
6	Guaina di politene				
7	Riempitivi				
8	Cavo in fibra ottica				
9	Nastro di legatura sull'insieme dei cavi ed imbottitura di polipropilene				
10	Armatura a fili di acciaio zincato				
11	Fasciatura di polipropilene				

Caratteristiche principali preliminari del cavo marino di potenza			
Materiale del conduttore	Rame		
Sezione tipica del conduttore	400 - 600 mm ²		
Diametro esterno del cavo	~210 mm		
Peso in aria	~71 kg/m		

Codifica TU23086B1BDX19531 Rev. 01 Pag. 6 di 17

1.2 Terminali aria-cavo in materiale composito per cavi AT - schematico

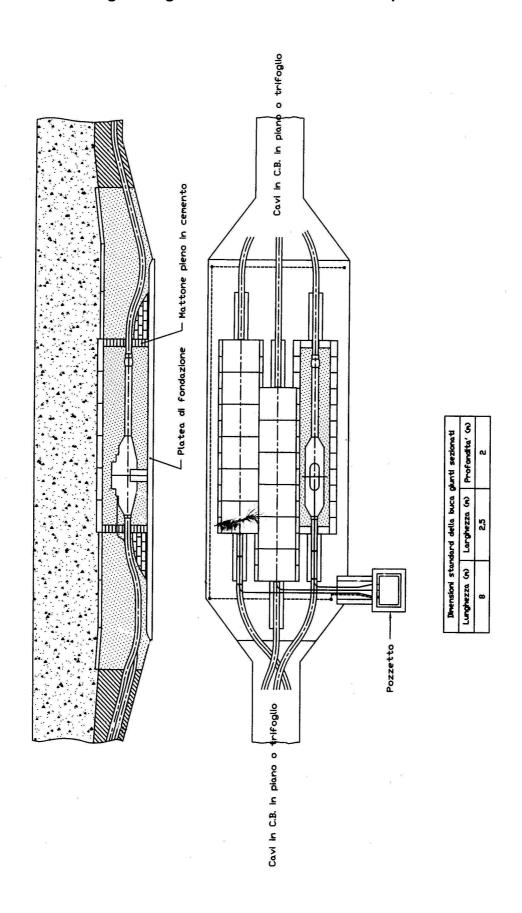



Codifica TU23086B1BDX19531

Rev. 01 Pag. **7** di 17

1.3 Giunto per cavi AT unipolari – schema tipo

1 HEATSHRINKARLE TUBES (Polyolephine)
2 INSULATING COMPOUND
3 CONCENTRIC CABLE FOR CROSS-BONDING (not included in the supply)
4 CASING (CORPOURTOR
5 CABLE CONDUCTOR
6 COMMETTAN RING (Fpoxy resin VOLTALIT ®)
7 INSULATING RING (Fpoxy resin VOLTALIT ®)
8 PREPOULDED SLEEVE (Rubber)
9 EARTHING CABLE END-CONNECTORS (Copper)
10 OUTER PROTECTION (XLPE) 59,741,3.067



Codifica TU23086B1BDX19531

Rev. 01

Pag. **8** di 17

1.4 Camera dei giunti - giunzione dei cavi - schema tipo

Codifica TU23086B1BDX19531

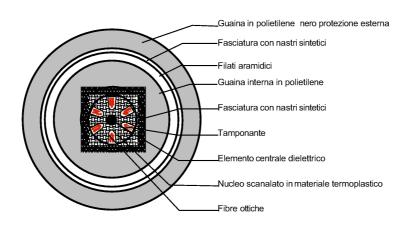
Rev. 01 Pag. **9** di 17

1.5 cavo dielettrico tamponato con Fibre Ottiche - scheda tecnica

ENEL

DIVISIONE TRASMISSIONE INGEGNERIA

CAVI OTTICI A 48 FIBRE, DIELETTRICI, TAMPONATI,
PER POSA IN TUBAZIONE


TINLTUC4000

Revisione: 00

Pagina: 3/6

CAVO TIPO C4000 - n°48 fibre ottiche

Matricola 35 90 53

La disposizione delle fibre nelle cave e il numero delle cave sono indicativi. La sezione del cavo non è in scala.

1 CARATTERISTICHE DIMENSIONALI E MECCANICHE DEL CAVO	Grandezza/Unità di misura	Valore
Elemento centrale dielettrico	diametro / mm	1.7 + 2
Nucleo scanalato ad elica	diametro / mm	7.5 + 8.0
Guaina interna in polietilene nero	spessore nominale /mm spessore medio / mm spess. min. assoluto /mm	1.0 ≥ 0.9 0.8
Guaina esterna in polietilene nero	spessore nominale /mm spessore medio / mm spess. min. assoluto /mm	2.0 ≥ 1.8 1.6
Diametro esterno del cavo	nominale / mm	16.5 ± 1
Massa	indicativa / kg/km	190
Carico applicabile durante la posa	massimo / daN	300
Raggio di curvatura	minimo / mm	350

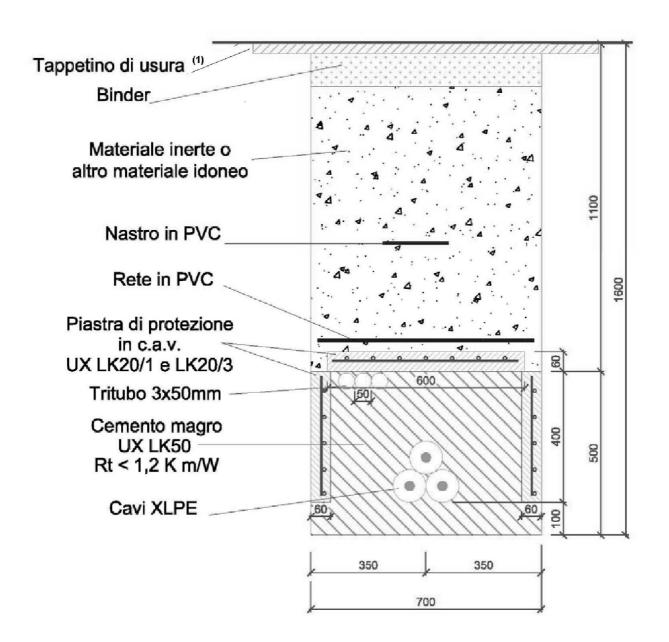
2 - CARATTERISTICHE COSTRUTTIVE DEL CAVO

Codifica TU23086B1BDX19531

Rev. 01 Pag. 10 di 17

1.1 Cavo marino fibre ottiche - scheda tecnica

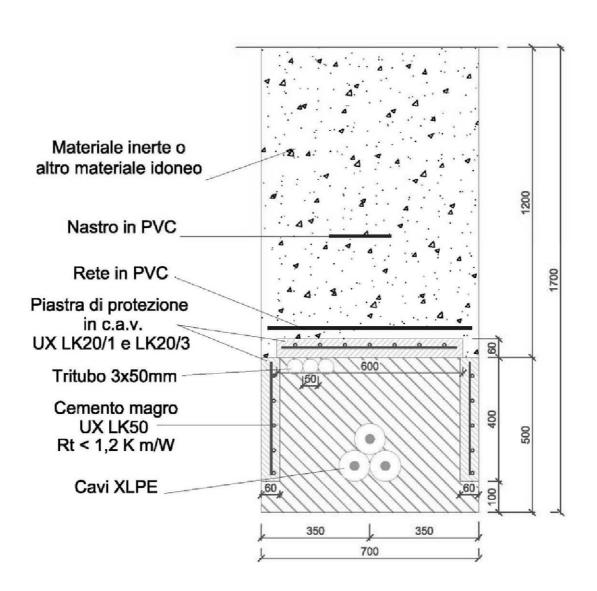
Fig. 2 - Disegno tipico (non in scala) del cavo marino a fibre ottiche


Leger	jenda			
1	Fibre ottiche			
2	Nucleo scanalato			
3	Supporto centrale			
4	Nastri protettivi			
5	Guaina di rame			
6	Guaina di polietilene			
7	Fili di acciaio zincato			
8	Imbottitura			
9	Fili di acciaio zincato			
10	Fasciatura esterna			

Caratteristiche principali preliminari del cavo marino a fibre ottiche			
Numero di fibre ottiche	Fino a 48		
Diametro esterno del cavo	25-37 mm		
Peso in aria	1.4-3.4 kg/m		
Peso in acqua	1-2.5 kg/m		

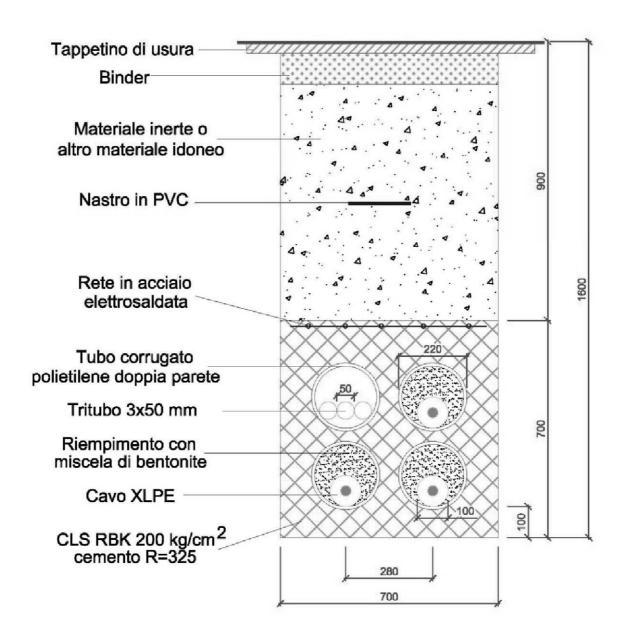
Codifica TU23086B1BDX19531 Rev. 01 Pag. 11 di 17

1.2 Posa a trifoglio su strade urbane ed extraurbane – sezione tipo


(1) Il tappetino di usura sarà ripristinato per una fascia pari alla larghezza della trincea più 0,5 m per ciascun lato.

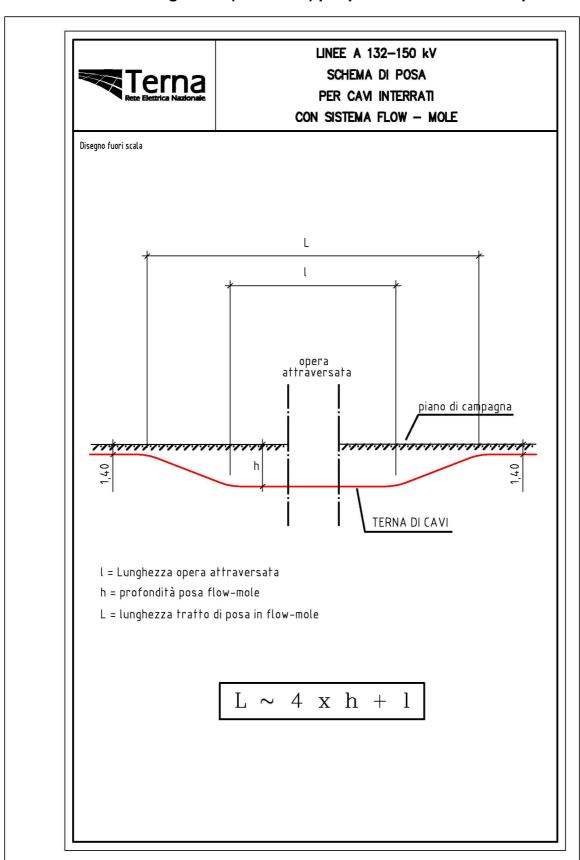
Codifica
TU23086B1BDX19531

Rev. 01 Pag. 12 di 17


1.3 Posa a trifoglio in terreno agricolo – sezione tipo

Codifica TU23086B1BDX19531 Rev. 01 Pag. 13 di 17

1.4 Posa in attraversamento stradale – sezione tipo

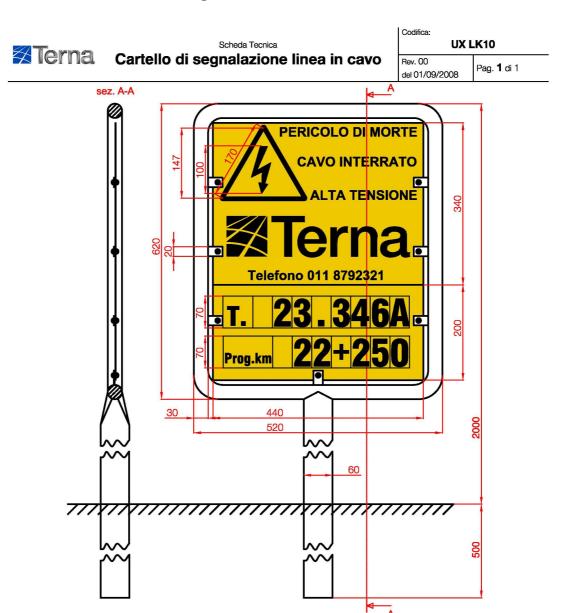


Codifica TU23086B1BDX19531

Rev. 01

Pag. **14** di 17

1.5 Perforazione teleguidata (flow mole) per posa cavi – schema di perforazione



Codifica TU23086B1BDX19531

Rev. 01

Pag. **15** di 17

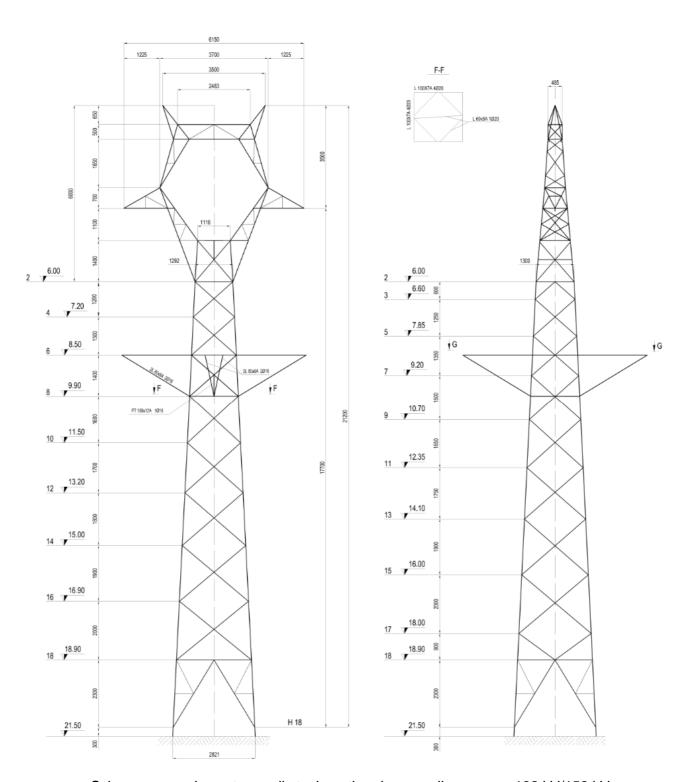
1.6 UX LK 10- Cartello di segnalazione linea in cavo

- 1) Materiale cartello: lamiera di alluminio resistente alla corrosione, doppia faccia, con spessore 25/10 mm
- 2) Materiale struttura: tubolare in acciaio saldato e zincato a caldo del diametro di 30/60 mm con spessore minimo 3 mm e linguette, per il fissaggio del cartello, delle dimensioni 30x20x2 mm
- 3) Colorazione: fondo "giallo traffico" RAL 1023 e scritte "nero traffico" RAL 9017 su entrambi i lati
- 4) Fissaggio: nel terreno vegetale con blocco di fondazione delle dimensioni di 50x50x50 cm; in roccia con blocco cilindrico delle diametro di 30 cm e profondità 50 cm con le superfici del blocco di fondazione leggermente fuori terra e spioventi; fissaggio del cartello alla struttura mediante rivetti a strappo secondo Norma UNI 9200:1994, di dimensione nominale almeno 4mm, serie 1, di forma "A", di lunghezza adeguata con corpo di alluminio e mandrino di acciaio
- 5) Posizionamento: deve essere tale da garantire la visibilità del cartello precedente e successivo, e comunque mai oltre i 50 m di distanza tra gli stessi, in caso di cavi posati in trincee diverse và utilizzata comunque una segnalazione per ogni trincea, posizionando i cartelli in modo affiancato e non alternato, così da evidenziare in modo inequivocabile la presenza del doppio tracciato
- Prescrizioni per la costruzione ed il collaudo: S10095
- 7) Unità di misura: nel disegno è il millimetro (mm), per esprimere la quantità è il numero degli esemplari (n)

	 Storia delle revisioni	Sto
Rev. 00 del 01/09/2008 Prima emissione. Sostituisce la LK10 Rev.00 del 31/07/2007.	Rev. 00 del 01/09/2008	Rev.

Elaborato		Verificato			Approvato
G. Lavecchia ING-ILC-COL		A. Posati ING-ILC-COL			R. Rendina ING-ILC

m05lO001SG-r00



Codifica **TU23086B1BDX19531**

Rev. 01

Pag. **16** di 17

1.7 Schematico nuovo sostegno CP Colmata

Schema generale sostegno di stazione tiro pieno per linee aeree 132 kV/152 kV

Codifica	BDX19531
Rev. 01	Pag. 17 di 17

1.8 Interventi stazioni elettriche

Le principali apparecchiature 132 kV, in esecuzione blindata e isolate in aria (sezione 220 kV), previste dal nuovo intervento sono le seguenti: interruttori, sezionatori per connessione delle sbarre AT, sezionatori sulla partenza linee, sezionatori di terra a chiusura rapida, scaricatori di sovratensione ad ossido metallico a protezione delle linee AT in cavo e delle reattanze di compensazione, trasformatori di tensione e di corrente per misure e protezioni, bobine ad onde convogliate per la trasmissione dei segnali.

Le principali caratteristiche tecniche complessive delle nuove installazioni saranno le seguenti:

Caratteristiche principali preliminari delle sezioni 132 kV	
Tensione massima sezione 132 kV	145 kV
Frequenza nominale	50 Hz
Correnti limite di funzionamento permanente	
Sbarre	2,5 kA
Stalli linea e ATR	2 kA
Potere di interruzione interruttori 132 kV	31.5 kA
Correnti di breve durata	31.5 kA
Condizioni ambientali limite	-25/+40 ℃
Salinità di tenuta superficiale degli isolamenti	40 g/l

Caratteristiche principali preliminari sezione reattanze di compensazione	
100 MVA	
135 kV	
ONAN	
-	