COMMITTENTE:

PROGETTAZIONE:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01e s.m.i.

Progetto cofinanziato dalla Unione Europea

CUP: J94F04000020001

U.O. CORPO STRADALE E GEOTECNICA

PROGETTO DEFINITIVO

ASSE FERROVIARIO MONACO - VERONA

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

LOTTO 1: FORTEZZA - PONTE GARDENA

DEPOSITI DEFINITIVI IN VAL RIGA

DEPOSITI DEFINITIVI IN VAL RIGA – C - PLATTNER Relazione idraulica

								SCALA:
								-
COM	MESSA LOTTO FAS	E ENTE	TIPO DOC	. OPERA/	DISCIPLIN	A PROC	R. RE	
ΙВ	L 1 1 0 D	1 1	RI	RIO	3 4 0	0 0	1 A	,O. CORP
		T		T				and Company
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
_	Fii d-fi-iti CdC	E. Lombardo		P. Tascione		O. Mazzocchi		> F. Sacchi

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
А	Emissione definitiva per CdS	E. Lombardo	05.03.2013	P. Tascione	06.03.2013	9. Mazzocchi	07.03.2013	F. Sacchi 707/03.2013
								72 80 6 10
							4	NICA

File: IBL110D11RIRI0340001A.doc Stampato dal Service n. Elab.:

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

LOTTO 1: FORTEZZA – PONTE GARDENA

 Relazione idraulica
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IBL1
 10
 D 11 RI
 RI 03 40 001
 A
 2 di 29

INDICE

1	PRE	MESSA	4
2	DOC	CUMENTAZIONE, NORMATIVE E BIBLIOGRAFIA DI RIFERIMENTO	5
	2.1	DOCUMENTAZIONE DI RIFERIMENTO	5
	2.2	NORMATIVE, RACCOMANDAZIONI, LINEE GUIDA E MANUALI	6
3	IDR	OLOGIA	7
	3.1	CALCOLO DELLE LINEE SEGNALATRICI DI POSSIBILITÀ PLUVIOMETRICA	7
4	DIM	ENSIONAMENTO DELLE CANALETTE	8
	4.1	PORTATA AL COLMO	8
	4.2	DIMENSIONAMENTO DELLA SEZIONE	12
	4.3	RISULTATI	14
	4.3.1	Dimensionamento della sezione semicircolare prefabbricata in CLS	14
	4.3.2	Canaletta trapezoidale in pietrame costituente il fosso di guardia perimetrale	18
	4.3.3	Canaletta trapezoidale in pietrame costituente il sistema di drenaggio definitivo	21
5	DES	CRIZIONE DEGLI INTERVENTI DI REGIMAZIONE IDRAULICA	25
	5.1	SCELTA DELLA TIPOLOGIA DI OPERE DI DRENAGGIO	25
	5.2	CANALETTE IN PIETRAME	26
	5.2.1	Caratteristiche	26
	5.2.2	Pescrizione delle lavorazioni	26
	5.3	CANALETTE SEMICIRCOLARI IN CLS PREFABBRICATO	26
	5.3.1	Caratteristiche	26
	5.3.2	Pescrizione delle lavorazioni	27
	5.4	Pozzetti	27
	5.4.1	Caratteristiche	27

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

LOTTO 1: FORTEZZA - PONTE GARDENA

Relazione idraulica

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IBL1 10 D 11 RI RI 03 40 001 A 3 di 29

5.4.2	Descrizione delle lavorazioni	27
5.5	TRINCEA DISPERDENTE	27
5.5.1	Caratteristiche	27
5.5.2	Descrizione delle lavorazioni	28
5.6	TRINCEA DRENANTE	28
5.6.1	Caratteristiche	28
5.6.2	Descrizione delle lavorazioni	28
5.7	TUBAZIONI MICRO FESSURATE PER DRENAGGIO PROFONDO	29
5.7.1	Caratteristiche	29
572	Descrizione delle lavorazioni	20

1 PREMESSA

Il progetto in esame riguarda l'asse ferroviario Monaco – Verona, accesso sud alla galleria di base del Brennero ed in particolare il quadruplicamento della linea Fortezza – Verona, Lotto 1: Fortezza – Ponte Gardena.

Nell'ambito di tale progetto si prevede anche la sistemazione dei depositi comunemente indicati come depositi in Val Riga. Tali depositi sono: deposito di Forch, deposito A (Vorderrigger), deposito B (Plaikner) e deposito C (Plattner). Tali depositi verranno sfruttati nella prima fase del progetto per cavare il materiale utile alle lavorazioni; in seconda battuta il progetto prevede il ripristino e la sistemazione di tali aree mediante un rinterro per recuperare la quota topografica. Sia in fase provvisoria di scavo sia in fase definitiva, il progetto prevede delle sistemazioni idrauliche per la regimazione delle acque meteoriche.

In accordo a quanto previsto in normativa (Doc. rif [12]), le acque di origine meteorica dilavanti la superficie dei depositi è da ritenersi pulita e quindi recapitabile direttamente nel fiume Isarco o nel sottosuolo senza bisogno di alcun trattamento preventivo. Nel sistema di drenaggio sono escluse le acque del cantiere che saranno oggetto del progetto della cantierizzazione (con gli opportuni trattamenti richiesti).

In particolare la presente relazione idraulica riguarda le sistemazioni idrauliche in fase di scavo e in fase definitiva di progetto per l'area C (Plattner) dei depositi di Val Riga.

Lungo il perimetro esterno dell'area sono previsti degli interventi definitivi sin dalla fase di scavo:

- ad EST è previsto un fosso di guardia esterno di convogliamento delle acque bianche. Lungo tale fosso sono presenti pozzetti di recapito e collegamento. Tale fosso, che raccoglierà in fase definitiva le acque meteoriche che competono alla porzione di copertura afferente a tale bordo dell'area, è strutturato in modo tale da convogliare le acque bianche in un pozzo di recapito finale dal quale partirà un canale per lo scarico delle acque verso il fiume Isarco.
- ad OVEST dell'area di intervento è prevista una trincea disperdente per la regimazione e scarico delle acque provenienti dai bacini naturali esterni all'area e della porzione di copertura afferente a tale bordo dell'area e che non possono essere scaricate a valle a gravità.

Per la fase di scavo, lungo le banche e lungo le scarpate, sono previste delle canalette semicircolari in CLS prefabbricate per la regimazione delle acque meteoriche. Tali canalette confluiranno in pozzetti di raccordo opportunatamente dimensionati. È inoltre prevista a fondo scavo, una serie di trincee drenanti.

Nella configurazione finale della sistemazione del deposito C, il sistema di drenaggio delle acque meteoriche, oltre agli elementi definitivi realizzati già nella fase precedente, è rappresentato da una serie di canalette in pietrame a cielo aperto gettate in opera che confluiranno in pozzetti di recapito e che permetteranno la regimazione delle acque meteoriche sulla copertura. Sono inoltre previsti embrici per il convogliamento delle acque di ruscellamento superficiali sul corpo del rinterro.

In fase definitiva di progetto, è inoltre prevista una serie di tubazioni microfessurate da installare all'interno del corpo del riempimento, mediamente ad una quota corrispondente al piano campagna originale dell'area, per garantire un efficace drenaggio della porzione in elevazione.

2 DOCUMENTAZIONE, NORMATIVE E BIBLIOGRAFIA DI RIFERIMENTO

Nella stesura della relazione si è fatto riferimento a quanto elencato di seguito.

2.1 Documentazione di riferimento

- [1]. Tratta Verona-Fortezza Lotto 1 -Progetto Definitivo per appalto Depositi In Val di Riga Generale Relazione tecnico-descrittiva IBL110D11RORI0300001A;
- [2]. Tratta Verona-Fortezza Lotto 1 -Progetto Definitivo per appalto Depositi In Val di Riga Generale Sezioni tipo IBL110D11WZRI0300003A;
- [3]. Tratta Verona-Fortezza Lotto 1 -Progetto Definitivo per appalto Depositi In Val di Riga Generale Dettagli costruttivi idraulici IBL110D11BZRI0300001A;
- [4]. Tratta Verona-Fortezza Lotto 1 -Progetto Definitivo per appalto Progetto depositi definitivi in Val Riga Depositi definitivi in Val di Riga C Plattner Planimetria di progetto IBL110D11P7RI3400001A
- [5]. Tratta Verona-Fortezza Lotto 1 -Progetto Definitivo per appalto Progetto depositi definitivi in Val Riga Depositi definitivi in Val di Riga C Plattner Pianta scavi IBL110D11P7RI3400002A;
- [6]. Tratta Verona-Fortezza Lotto 1 -Progetto Definitivo per appalto Progetto depositi definitivi in Val Riga Depositi definitivi in Val di Riga C Plattner Sezioni trasversali ante e post intervento IBL110D11W7RI3400001A;
- [7]. Tratta Verona-Fortezza Lotto 1 -Progetto Definitivo per appalto Progetto depositi definitivi in Val Riga Depositi definitivi in Val di Riga C Plattner Planimetria idraulica di progetto IBL110D11P7RI3400003A;
- [8]. Tratta Verona-Fortezza Lotto 1 -Progetto Definitivo per appalto Progetto depositi definitivi in Val Riga Depositi definitivi in Val di Riga C Plattner Planimetria idraulica di scavo IBL110D11P7RI3400004A.
- [9]. Dati pluviometrici forniti da Italferr (File B.410.xls trasmesso con mail SGI ref. 94211 del 5/02/2013).

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

LOTTO 1: FORTEZZA - PONTE GARDENA

Relazione idraulica

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IBL1 10 D 11 RI RI 03 40 001 A 6 di 29

2.2 Normative, raccomandazioni, linee guida e manuali

- [10]. Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30.
- [11]. "Linee guida per la progettazione di reti fognarie Specifica Tecnica"; Italfer, Luglio 2011 (Doc. G09009961).
- [12]. Decreto del Presidente della Provincia, 21 gennaio 2008, n. 6 "Regolamento di esecuzione alla legge provinciale del 18 giugno 2002, n. 8 recante «Disposizioni sulle acque» in materia di tutela delle acque" (CAPO IV ACQUE METEORICHE E DI LAVAGGIO DI AREE ESTERNE (art. 37 art. 47)) Provincia autonoma di Bolzano Alto Adige;
- [13]. Manuale di progettazione ferroviaria.

3 IDROLOGIA

Al fine di captare e convogliare le acque di precipitazione meteorica corrivanti sulle scarpate in fase di scavo e sulla copertura in fase definitiva di progetto dell'area A dei depositi di Val Riga, è stato dimensionato un circuito di canalette:

- per il fosso di guardia, le canalette previste sono trapezoidali rivestite in pietrame;
- per la fase di scavo, le canalette previste sono semicircolari in CLS;
- per la configurazione finale, le canalette previste sono trapezoidali rivestite in pietrame.

Si riporta di seguito la procedura di calcolo per il dimensionamento.

3.1 Calcolo delle linee segnalatrici di possibilità pluviometrica

Le linee segnalatrici di possibilità pluviometrica traducono il legame esistente tra altezza - o intensità - delle precipitazioni verificatesi in una data stazione pluviometrografica, durata e probabilità di accadimento. L'espressione analitica delle curve di possibilità pluviometrica è

 $h = ad^n$

in cui h rappresenta l'altezza di pioggia in millimetri, d è la corrispondente durata in ore ed (a; n) sono i parametri che caratterizzano la curva. L'individuazione di tali parametri richiede l'applicazione di metodologie statistiche relative agli eventi estremi.

Nel caso in esame, si è fatto riferimento In accordo a quanto riportato ai metodi indicati dalla D.G.R. 1860 del 18/12/2006. A tale scopo, i parametri a ed n della curva di possibilità pluviometrica utilizzati in riferimento al tempo di ritorno ed al tempo di corrivazione della rete di progetto sono riportati in Tabella 1 in accordo a quanto riportato nel doc. rif. [9].

Tabella 1: Parametri a ed n per la stima dell'altezza di pioggia in funzione del Tempo di ritorno

TEMPO DI	Tempo di corrivazione								
RITORNO	>1	ora	<1ora						
anni	a	n	a	n					
20	26.4	0.37	26.4	0.37					
30	28.4	0.37	28.4	0.37					

Per il dimensionamento delle reti acque bianche si è considerato cautelativamente un tempo di ritorno pari a 30 anni, in accordo a quanto riportato nel manuale di progettazione ferroviaria (Doc. Rif. [13]).

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ACCESSO QUADRUP	QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA LOTTO 1: FORTEZZA – PONTE GARDENA							
Relazione idraulica	COMMESSA	LOTTO	CODIFICA D 11 RI	DOCUMENTO RI 03 40 001	REV.	FOGLIO 8 di 29			

4 DIMENSIONAMENTO DELLE CANALETTE

Le tipologie di canalette in progetto per il drenaggio superficiale per il deposito C dei depositi di Val Riga per la di scavo e per la configurazione finale di progetto sono:

- Canaletta in CLS semicircolare con pendenza massima pari a 0.5%;.
- Canaletta in CLS semicircolare lungo la linea di massima pendenza della scapata principale.
- Canaletta trapezoidale in pietrame con pendenza massima pari a 0.5%;
- Canaletta trapezoidale in pietrame prevista lungo la linea di massima pendenza della scapata principale.

La distribuzione planimetrica dell'intervento è indicata nelle planimetrie [7] e [8] rispettivamente per la configurazione finale e "di scavo" mentre si rimanda all'elaborato [3] per i dettagli costruttivi.

4.1 Portata al colmo

La portata al colmo Q_c , valutata con il metodo della corrivazione, è definita come la portata che attraversa la sezione di chiusura con un determinato tempo di corrivazione τ_c assegnato:

$$Q_p = 278 \cdot \frac{\varphi \cdot S \cdot h}{\tau_C}$$

dove:

 $Q_p [m^3/s]$ = portata al colmo;

A [km²] = area del bacino;

 ϕ [-] = il coefficiente di deflusso;

h [mm] = pioggia netta.

 τ_{c} [h] = tempo di corrivazione.

L'altezza di pioggia netta è stata calcolata tramite la formula

$$h = a \cdot \tau_C^n$$

dove per quanto riguarda a ed n si rimanda al punto 3.1.

Per il calcolo si rimanda al punto 4.3.

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

LOTTO 1: FORTEZZA - PONTE GARDENA

Relazione idraulica

COMMESSA LOTTO CODIFICA DOC IBL1 10 D 11 RI RI C

DOCUMENTO RI 03 40 001 REV.

FOGLIO 9 di 29

Il tempo di corrivazione τ_c del Bacino di riferimento è stato valutato come media aritmetica tra i valori ottenuti dai seguenti approcci. Tali approcci sono tutti validi per il caso in esame (bacino con superfice minore di 10km^2):

Viparelli

$$\tau_C = \frac{L}{V}$$

Dove

L [m] = percorso idraulicamente più lungo;

V [m/s] = velocità della particella nel suddetto percorso assunta pari a 1.5m/s.

Per il calcolo si rimanda al punto 4.3.

Giandotti modificata

$$\tau_{\scriptscriptstyle C} = \frac{\frac{1}{Md} \sqrt{A} + 1.5L}{0.8 \sqrt{H_{\scriptscriptstyle m}}}$$

Dove:

A [km²] = area del bacino;

L [km] = lunghezza dell'asta principale;

 $H_{avg}[m]$ = dislivello medio nel bacino di interesse rispetto alla sezione di chiusura.

Per il caso in esame si è assunto cautelativamente M=0.250 (terreno coperti con erbe rade) e d=0.960 (terreni poco permeabili).

Per il calcolo si rimanda al punto 4.3.

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

LOTTO 1: FORTEZZA – PONTE GARDENA

Relazione idraulica	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Troidziono idiadiloa	IBL1	10	D 11 RI	RI 03 40 001	Α	10 di 29

Kirpich

$$\tau_C = 0.000325 \left(\frac{L}{\sqrt{i_a}}\right)^{0.77}$$

Dove:

L [m] = lunghezza dell'asta principale;

 $i_a[m/m]$ = pendenza dell'asta principale [m/m].

Per il calcolo si rimanda al punto 4.3.

Per il sito di interesse, la valutazione della portata al colmo è stata condotta assumendo le seguenti ipotesi:

- Per il dimensionamento del sistema di drenaggio relativo alla configurazione di scavo si è fatto riferimento all'area massima afferente alla canaletta semicircolare in progetto (Figura 1). Tale area ha dimanesioni pari a 1'200 mg.
- Per il dimensionamento del sistema di canalette trapezoidali relativo al fosso di guardia perimetrale e per il dimensionamento del sistema di canalette trapezoidali relativo alla configurazione finale di progetto, data la topografia del sito in esame, sono stati individuati tre sottobacini di cui in Figura 2. Per il calcolo della portata al picco Q_p da assumere nel dimensionamento della canaletta trapezoidale si è fatto riferimento al sotto-bacino 2 che date le caratteriche geometriche (area e pendenza) è dimensionante. A tale sottobacino corrisponde da una superficie pari a 12'029mq.
- data la tipologia del sito (superficie a verde), il coefficiente di deflusso è stato assunto pari a 0.3, in accordo a quanto riportato nelle linee guida ITALFER (Doc. Rif. [11]).
- Il tempo di ritorno assunto nei calcolo per la stima dell'intensità di pioggia i, e, quindi, della portata al picco Q_{p.} è pari a 30anni, in accordo a quanto riportato nel manuale di progettazione ferroviaria (Doc. Rif. [13]).

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA LOTTO 1: FORTEZZA – PONTE GARDENA					
Relazione idraulica	COMMESSA IBL1	LOTTO 10	CODIFICA D 11 RI	DOCUMENTO RI 03 40 001	REV.	FOGLIO 11 di 29

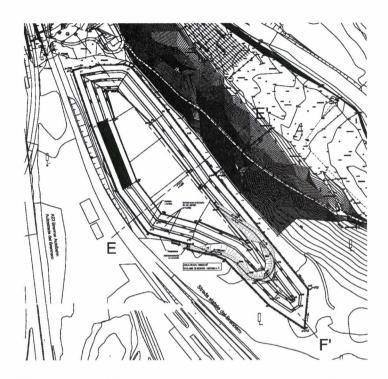


Figura 1: Individuazione sottobacini – configurazione di scavo

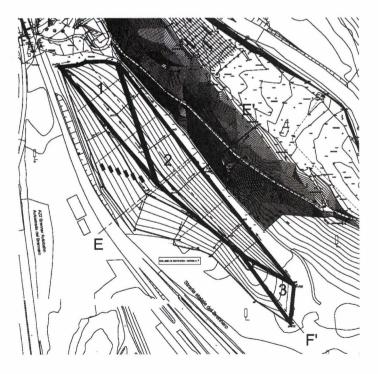


Figura 2: Individuazione sottobacini – configurazione finale di progetto

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

LOTTO 1: FORTEZZA – PONTE GARDENA

Relazione idraulica	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Tielazione idiadilea	IBL1	10	D 11 RI	RI 03 40 001	Α	12 di 29

4.2 Dimensionamento della sezione

Le dimensioni della canaletta necessarie per il deflusso della portata di picco di cui al punto 4.1, sono state calcolate in base alla formula di Chezy:

$$Q_d = V_d \cdot A = A \cdot \chi \sqrt{R \cdot i}$$

dove:

 $Q_d[m^3/s]$ = portata d'esercizio;

 $V_d[m/s]$ = velocità d'esercizio;

A [m²] = sezione utile di passaggio (area bagnata);

R [m] = raggio idraulico (area bagnata/perimetro bagnato);

i [-] = pendenza;

 χ [-] = coefficiente di Chezy.

Il coefficiente χ è ricavato dalla seguente espressione (Gaukler-Strickler):

$$\chi = \frac{D}{1} \cdot K_{1/6}$$

dove:

n [m^{-1/6}] = coefficiente di scabrezza di Manning.

La sezione utile di passaggio della canaletta è stata definita a ritroso dalla formula di Chezy, essendo nota la pendenza del canale i ed imponendo una portata d'esercizio Q_d pari alla portata Q_p di picco di cui al punto 4.1.

Per il progetto delle canalette oggetto di questa relazione, la valutazione della portata d'esercizio è stata condotta assumendo le seguenti ipotesi:

- Il coefficiente di Manning utilizzato nei calcoli è pari a 0.020 per la canaletta in pietrame e 0.016 per la canaletta in CLS;
- La velocità massima relativa alle portate di acque meteoriche nelle tubazioni non dovrà di norma superare i 5 m/s, in accordo a quanto riportato quanto riportato nelle linee guida ITALFER (Doc. Rif. [11]).

• L'altezza d'acqua calcolata tramite la formula di Chezy h_o è stata imposta minore/uguale al 70% dell'altezza totale del canale, per le canalette trapezoidali, e minore/uguale al 70% del raggio interno del canale, per le canalette semicircolari.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA LOTTO 1: FORTEZZA – PONTE GARDENA					
Relazione idraulica	COMMESSA	LOTTO	CODIFICA D 11 RI	DOCUMENTO RI 03 40 001	REV.	FOGLIO

4.3 Risultati

4.3.1 Dimensionamento della sezione semicircolare prefabbricata in CLS

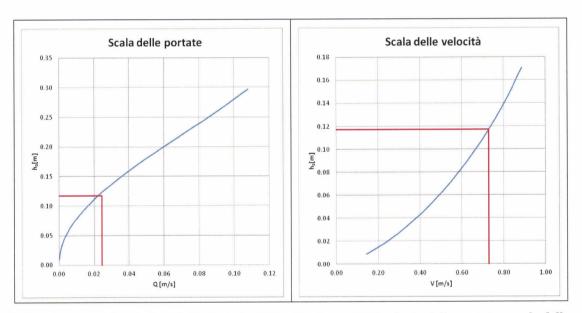
Con riferimento a quanto riportato al punto 4.1 per quanto concerne il calcolo della portata di picco e in accordo le ipotesi progettuali assunte per il deposito C, nella Tabella 2 è riportato il valore di portata massima calcolato per il dimensionamento delle canalette semicircolari previste lungo le banche e lungo le linee di massima pendenza nella configurazione provvisoria di scavo.

Tabella 2: Canaletta trapezoidale: portata di picco calcolata con il metodo della corrivazione

BACINO	Area ma 1200	L m 13.72	H m 5	θ h	i mm/h 244.63	Q m3/h 88.1	m ³ /s 0.024	Q I/s 24	
Vipar	Viparelli Tc=L/V= 9.1466667 s=							h	1
	L= 13.72 m V= 1.5 m/s								
Giandotti M	d)*A^1/2 1.25	2+1.5L)/(0	8*(Hm)^1,	/2)=	0.09	h			
Kirpich Tc=0.000325((L/ia^0.5))^0.77= ia= DH / DL = 0.36 m/m							0.00	h]

Si riportano di seguito i risultati ottenuti per la canaletta semicircolare prefabbricata in CLS nei due casi limite:

- a. pendenza del tratto omogeneo di canaletta pari a 0.5%;
- b. pendenza del tratto omogeneo di canaletta pari a 67%.



Ipotesi a): pendenza del tratto omogeneo di canaletta pari a 0.5%

Con riferimento a quanto riportato al punto 4.2 e in Tabella 2, per quanto concerne il dimensionamento della sezione di deflusso e le ipotesi progettuali assunte per il sito del deposito C, in Figura 7 è riportato l'andamento della portata di esercizio e della velocità in funzione dell'altezza d'acqua utile di passaggio h_o per un fissato valore di diametro interno.

Per un diametro interno pari pari a 0.4 m, per il deflusso della portata di picco di cui in Tabella 3, l'altezza utile h_0 necessaria è pari a 0.117 m.

Con riferimento a quanto riportato al punto 4.2, la velocità calcolata V_d, corrispondente all'h₀ valutato, è pari a 0.73 m/s inferiore al limite di 5 m/s per rimanere in condizioni di moto laminare.

 $Figura~3:~Canaletta~semicircolari~prefabbricate~in~CLS-Pendenza~0.5\,\%~-~Scala~delle~portate~e~scala~delle~velocit\`a$

Ipotesi b): pendenza del tratto omogeneo di canaletta pari a 67%

Con riferimento a quanto riportato al punto 4.2 e in Tabella 2, per quanto concerne il dimensionamento della sezione di deflusso e le ipotesi progettuali assunte per il sito del deposito C, in Figura 8 è riportato l'andamento della portata di esercizio e della velocità in funzione dell'altezza d'acqua utile di passaggio h_o per un fissato valore di diametro interno.

Per un diametro interno pari pari a 0.4 m, per il deflusso della portata di picco di cui in Tabella 3, l'altezza utile h_0 necessaria è pari a 0.054 m.

Con riferimento a quanto riportato al punto 4.2, la velocità calcolata V_d, corrispondente all'h₀ valutato, è pari a 5.37 m/s di poco inferiore al limite di 5 m/s per rimanere in condizioni di moto laminare.

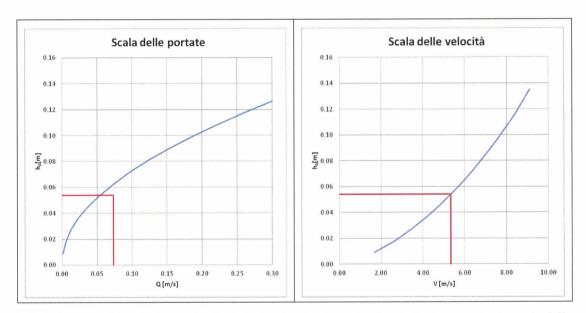


Figura 4: Canaletta semicircolari prefabbricate in CLS – Pendenza 67% - Scala delle portate e scala delle velocità

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

LOTTO 1: FORTEZZA - PONTE GARDENA

Relazione idraulica

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IBL1 10 D 11 RI RI 03 40 001 A 17 di 29

Con riferimento ai risultati sopra presentati, la canaletta semicircolare da adottare nella configurazione di scavo del deposito C di Val Riga, ha dimensioni pari a:

 $D_{int} = 40 \text{ cm}.$

Per i due casi limite di pendenza analizzati (pendenza pari a 0.5% e pari a 67%) risultano verificate la condizioni di cui al punto 4.2:

h₀<70% R_{int};

 $V_p < 5m/s$.

In paricolare:

a. pendenza del tratto omogeneo di canaletta pari a 0.5%:

$$h_0 < 70\% R_{int}$$
 0.117 m < $(70\% \times 0.2 m) = 0.14 m$;

$$V_p < 5 \text{m/s}$$
 0.73 m/s < 5 m/s.

b. pendenza del tratto omogeneo di canaletta pari a 67%:

$$h_0 < 70\% R_{int}$$
 0.054 m < $(70\% \times 0.2 m) = 0.14 m$;

$$V_p < 5 \text{m/s}$$
 NON VERIFICATA 5.34 m/s < 5 m/s.

Data la forte pendenza delle scarpate e il poco margine di sicurezza, si prescrive di scalettare le canalette previste lungo la linea di massima pendenza in modo tale da raggiungere una pendenza limite pari al 20% per in tratti omogenei di canaletta.

GRUPPO FERROVIE DELLO STATO ITALIANE	ACCESSO QUADRUP	SUD ALI LICAMEN	A GALLERI	INEA FORTEZ A DI BASE DEL LINEA FORTEZ GARDENA	BRENN	ERO
Relazione idraulica	COMMESSA IBL1	LOTTO 10	CODIFICA D 11 RI	DOCUMENTO RI 03 40 001	REV.	FOGLIO 18 di 29

4.3.2 Canaletta trapezoidale in pietrame costituente il fosso di guardia perimetrale

Con riferimento a quanto riportato al punto 4.1 per quanto concerne il calcolo della portata di picco e in accordo le ipotesi progettuali assunte per il deposito C, nella Tabella 3 è riportato il valore di portata massima calcolato per il dimensionamento delle canalette costituenti il fosso di guardia perimetrale per la regimazione delle acque meteoriche.

Tabella 3: Canaletta perimetrale trapezoidale: portata di picco calcolata con il metodo della corrivazione

					To your transfer and the same					
BACINO	Area	L	Н	θ	i	Q	Q			
	mq	m	m	h	mm/h	m3/h	m³/s	l/s		
	12029	58	4	0.12	105.89	382.1	0.106	106		
Viparelli		Tc=L/V=	38.666667	0.01	h					
		L= { V=		m m/s						
Giandotti Ma	Tc=(1/(M	d)*A^1/2+	0.34	h						
M= 0.25										
	d= 0.96									
Kirpic	h	Tc=0.0003	325((L/ia^i	0.02	h					
		ia= DH / DL = 0.07 m/m								

Si riportano di seguito i risultati ottenuti per la canaletta trapezoidale in pietrame prevista lungo il perimetro dell'area sin dalla fase di scavo.

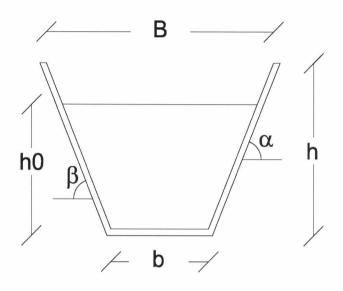


Figura 5: Canaletta in pietrame – geometria

Con riferimento a quanto riportato al punto 4.2 e in Tabella 3, per quanto concerne il dimensionamento della sezione di deflusso e le ipotesi progettuali assunte per il deposito C, in Figura 6 è riportato l'andamento della portata di esercizio e della velocità in funzione dell'altezza d'acqua utile di passaggio h_0 . per una fissata larghezza della base inferiore b e della pendenza delle pareti del canale (α e β) (vedi Figura 5).

Per una fissata pendenza del tratto omgeneo di canaletta pari a 0.5% e per una fissata larghezza della base inferiore b pari a 0.8 m e per una pendenza delle pareti del canale (α e β) pari a 60° (vedi Figura 5), l'altezza utile h_0 necessaria per il deflusso della portata di picco di cui in Tabella 3 è pari a 0.07 m.

Con riferimento a quanto riportato al punto 4.2, la velocità calcolata V_d , corrispondente all' h_0 valutato, è pari a 1.74 m/s è inferiore al limite di 5m/s.

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

LOTTO 1: FORTEZZA - PONTE GARDENA

Relazione idraulica

OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IBL1	10	D 11 RI	RI 03 40 001	Α	20 di 29

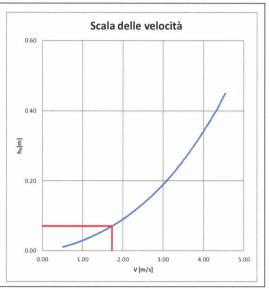


Figura 6: Canaletta in pietrame – Pendenza 0.5% - Scala delle portate e scala delle velocità

Con riferimento ai risultati sopra presentati, la canaletta trapezoidale in pietrame da adottare lungo il fosso di guardia perimetrale del deposito C di Val Riga, ha dimensioni pari a:

b = 80 cm;

h = 50 cm:

 $\alpha = \beta = 60^{\circ}$.

La pendenza del tratto di canaletta fissato è pari a 0.5%.

Data la pendenza del tratto omogeneo di caletta e le dimensioni della sezione, risultano verificate la condizioni di cui al punto 4.2:

 $h_0 < 70\% h$ 0.07 m < $(70\% \times 0.5 \text{ m}) = 0.35 \text{ m}$

 $V_p < 5 \text{m/s}$ 1.74 m/s < 5 m/s.

Si segnala che la canaletta trapezoidale in pietrame nel tratto finale di scarico verso il fiume Isarco ha pendenze molto elevate (100% e 65%). La verifica idraulica della sezione è soddisfatta anche sotto tali ipotesi. Tuttavia, in tale tratto, si prescrive di scalettare la canaletta con pendenze del tratto omogeneo pari al 20%.

4.3.3 Canaletta trapezoidale in pietrame costituente il sistema di drenaggio definitivo

Con riferimento a quanto riportato al punto 4.1 per quanto concerne il calcolo della portata di picco e in accordo le ipotesi progettuali assunte per il deposito C, nella Tabella 3 è riportato il valore di portata massima calcolato per il dimensionamento delle canalette trapezoidali previste lungo le banche e lungo le linee di massima pendenza nella configurazione finale dell'area.

Si riportano di seguito i risultati ottenuti per la canaletta trapezoidale in pietrame nei due casi limite:

- c. pendenza del tratto omogeneo di canaletta pari a 0.5%;
- d. pendenza del tratto omogeneo di canaletta pari a 50%.

Ipotesi a): pendenza del tratto omogeneo di canaletta pari a 0.5%

Con riferimento a quanto riportato al punto 4.2 e in Tabella 3, per quanto concerne il dimensionamento della sezione di deflusso e le ipotesi progettuali assunte per il sito del deposito C, in Figura 7 è riportato l'andamento della portata di esercizio e della velocità in funzione dell'altezza d'acqua utile di passaggio h_o per una fissata larghezza della base inferiore b e della pendenza delle pareti del canale (α e β) (vedi Figura 5).

Per una fissata larghezza della base inferiore b pari a 0.5 m e per una pendenza delle pareti del canale (α e β) pari a 60° (vedi Figura 5), l'altezza utile h_0 necessaria per il deflusso della portata di picco di cui in Tabella 3 è pari a 0.19 m.

Con riferimento a quanto riportato al punto 4.2, la velocità calcolata V_d , corrispondente all' h_0 valutato, è pari a 0.88 m/s inferiore al limite di 5 m/s per rimanere in condizioni di moto laminare.

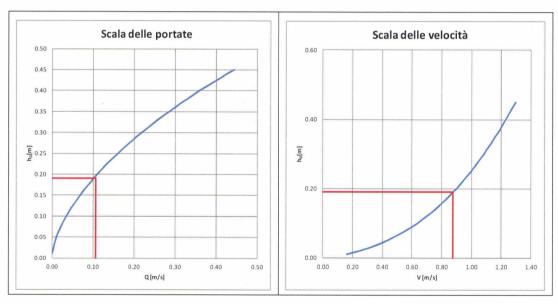


Figura 7: Canaletta in pietrame - Pendenza 0.5% - Scala delle portate e scala delle velocità

Ipotesi b): pendenza del tratto omogeneo di canaletta pari a 50%

Con riferimento a quanto riportato al punto 4.2 e in Tabella 3, per quanto concerne il dimensionamento della sezione di deflusso e le ipotesi progettuali assunte per il sito del deposito C, in Figura 8 è riportato l'andamento della portata di esercizio e della velocità in funzione dell'altezza d'acqua utile di passaggio h_o per una fissata larghezza della base inferiore b e della pendenza delle pareti del canale (α e β) (vedi Figura 5).

Per una fissata larghezza della base inferiore b pari a 0.5 m e per una pendenza delle pareti del canale (α e β) pari a 60° (vedi Figura 5), l'altezza utile h_0 necessaria per il deflusso della portata di picco di cui in Tabella 3 è pari a 0.04 m.

Con riferimento a quanto riportato al punto 4.2, la velocità calcolata V_d , corrispondente all' h_0 valutato, è pari a 3.81 m/s inferiore al limite di 5 m/s per rimanere in condizioni di moto laminare.

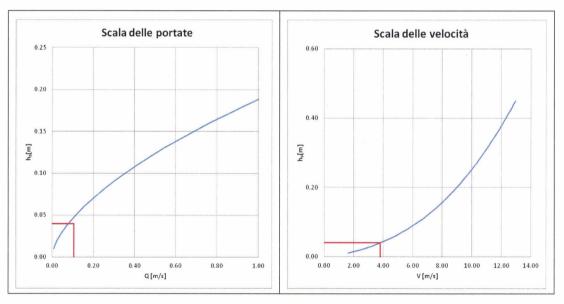


Figura 8: Canaletta in pietrame – Pendenza 50% - Scala delle portate e scala delle velocità

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

LOTTO 1: FORTEZZA - PONTE GARDENA

LOTTO

10

Relazione idraulica

COMMESSA

IBL1

CODIFICA D 11 RI DOCUMENTO RI 03 40 001 REV.

FOGLIO 24 di 29

Con riferimento ai risultati sopra presentati, la canaletta da adottare nella configurazione finale del deposito C di Val Riga, ha dimensioni pari a:

b = 50 cm;

h = 50 cm:

 $\alpha = \beta = 60^{\circ}$.

Per i due casi limite di pendenza analizzati (pendenza pari a 0.5% e pari a 67%) risultano verificate la condizioni di cui al punto 4.2:

h₀<70% h

 $V_p < 5m/s$.

In paricolare:

c. pendenza del tratto omogeneo di canaletta pari a 0.5%:

h₀<70% h

0.19 m < (70% x 0.5 m) = 0.35 m;

 $V_p < 5m/s$

0.88 m/s < 5 m/s.

d. pendenza del tratto omogeneo di canaletta pari a 50%:

h₀<70% h

0.04 m < (70% x 0.5 m) = 0.35 m;

 $V_p < 5m/s$

3.81 m/s < 5 m/s.

5 DESCRIZIONE DEGLI INTERVENTI DI REGIMAZIONE IDRAULICA

5.1 Scelta della tipologia di opere di drenaggio

Lo scopo delle opere di drenaggio in progetto è fondamentalmente quello di intercettare l'acqua e di convogliarla a gravità in direzione del vicino fiume Isarco che costituisce una zona di recapito naturale. La necessità di convogliare l'acqua di ruscellamento naturale nasce dalla necessità di ridurre i disagi dovuti alle precipitazioni intense che con il loro scorrimento provocano danni di carattere superficiale e di erosione del terreno. I drenaggi superficiali in progetto sono costituiti da canalette a sezione trapezoidale/semicircolare e sono destinate a raccogliere le acque meteoriche che altrimenti scorrerebbero liberamente sulla superficie di terreno favorendo fenomeni di erosione o alimentando ulteriormente la falda idrica sotterranea.

In accordo a quanto previsto in normativa (Doc. rif [12]), le acque di origine meteorica dilavanti la superficie dei depositi è da ritenersi pulita e quindi recapitabile direttamente nel fiume Isarco o nel sottosuolo senza bisogno di alcun trattamento preventivo. Nel sistema di drenaggio sono escluse le acque del cantiere che saranno oggetto del progetto della cantierizzazione (con gli opportuni trattamenti richiesti).

In questo ambito, si è scelto di adottare due tipologie di canalette a seconda delle fasi di progetto: in fase di scavo, data la natura temporanea dell'intervento, si è scelto una canaletta prefabbricata in CLS mentre per le canalette definitive si è preferito una canaletta trapezoidale in pietrame.

In fase di scavo, in presenza quindi delle canalette semicircolari prefabbricate, ove necessario, ossia nei tratti di raccordo a forte pendenza, si prevede di realizzare delle scalettature per ridurre la velocità media di scorrimento dell'acqua nella canaletta al fine di soddisfare i requisiti di progetto in termini di limitazione della velocità media di scorrimento dell'acqua.

In corrispondenza degli accessi carrabili previsti in fase di scavo, si è provveduto ad inserire una canaletta gettata in opera in CLS dotata di coperchio, anch'esso in calcestruzzo, posizionato in continuità con la trincea drenante, che permette il passaggio della sede stradale leggermente in rilevato. Le caratteristiche geometriche di tale manufatto sono riportate nella tavola di progetto (Doc. rif. [3]).

Dove si ha il cambio di pendenza delle canalette e nei punti di confluenza tra più rami di canalette, si è previsto l'inserimento di un pozzetto prefabbricato in CLS. Le caratteristiche geometriche di tale manufatto sono riportate nella tavola di progetto (Doc. rif. [3]).

La distribuzione planimetrica degli interventi è indicata nella planimetria idraulica di progetto e di scavo (Doc. rif.[7] e [8]).

Lungo il perimetro ad OVEST, a monte dell'area di intervento, per la regimazione delle acque provenienti dai bacini naturali esterni all'area e per quella porzione di acque meteoriche sul riempimento che non possono per questioni di pendenze essere scaricate a valle, è prevista una trincea disperdente Le caratteristiche geometriche di tale manufatto sono riportate nella tavola di progetto (Doc. rif. [3]).

Inoltre, per garantire un efficace drenaggio delle aree sul fondo in fase di scavo e del cumulo in elevazione a riempimento avvenuto, sono previsti i seguenti tipi di intervento:

GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA LOTTO 1: FORTEZZA – PONTE GARDENA							
Relazione idraulica	COMMESSA	LOTTO	CODIFICA D 11 RI	DOCUMENTO BI 03 40 001	REV.	FOGLIO 26 di 29		

- in fase di scavo sono previste, lungo il perimetro e secondo un reticolo sull'area al fondo dello scavo, delle trincee riempita di materiale arido, sul cui fondo è posizionato un tubo in HDPE φ300. Le caratteristiche geometriche di tale intervento sono riportate nella tavola di progetto (Doc. rif. [3]);
- nella configurazione finale di progetto è prevista una serie di tubazioni microfessurate in HDPE φ200 da installare all'interno del corpo del riempimento, mediamente ad una quota corrispondente al piano campagna originale dell'area, per garantire un efficace drenaggio della porzione in elevazione.

5.2 Canalette in pietrame

5.2.1 Caratteristiche

La canaletta in pietrame è caratterizzata da un basso impatto ambientale; spesso tra i sassi che rivestono il fondo possono svilupparsi delle specie vegetali erbacee che tendono a mascherare la canaletta stessa. Questo tipo di canale ha come vantaggio una certa elasticità, che ragionevolmente ben si adatterà ai cedimenti attesi sul corpo del riempimento e che potranno anche essere di diversa entità a seconda delle zone. La presenza dei massi inoltre permette una certa resistenza all'erosione causata dal passaggio dell'acqua. Si tratta in generale di canalette che necessitano di limitati interventi di manutenzione e si dimostrano estremamente durevoli.

Le caratteristiche geometriche di tale manufatto sono riportate nella tavola di progetto (Doc. rif. [3]). La distribuzione planimetrica degli interventi è indicata nella planimetria idraulica di progetto (Doc. rif. [7] e [8]).

5.2.2 Descrizione delle lavorazioni

Per la realizzazione di questo tipo di opera di drenaggio si prevede di scavare una trincea in terra di forma trapezia poi rivestita da un getto in calcestruzzo magro (con $R_{ck} \ge 150 \text{ kg/cm}^2$) in cui vengono annegati le pietre e i massi. Lo scavo deve essere fatto in modo tale che la sezione finita abbia le dimensioni utili di cui al punto 4.3.

Laddove siano previste le scalettature lo scavo della trincea ed in particolare del fondo della canaletta dovrà essere eseguito in modo da realizzare le gradonature richieste con le dimensioni indicate nella tavola di progetto dedicata alle sistemazioni idrauliche.

5.3 Canalette semicircolari in CLS prefabbricato

5.3.1 Caratteristiche

La canaletta semicircolare in calcestruzzo prefabbricato è costituita da elementi prefabbricati, di lunghezza tipicamente pari ad 1m che vengono accoppiati per mezzo di giunti a bicchiere previsti già nell'elemento prefabbricato. Sono canalette che ovviamente non si inseriscono in modo armonico nel contesto naturale circostante ma sono estremamente semplici da mettere in opera e poco costose. Proprio per questi motivi sono state scelte come canalette per i drenaggi superficiali durante le fasi di scavo.

Le caratteristiche geometriche di tale manufatto sono riportate nella tavola di progetto (Doc. rif. [3]). La distribuzione planimetrica degli interventi è indicata nella planimetria idraulica di scavo (Doc. rif. [8]).

5.3.2 Descrizione delle lavorazioni

Per la realizzazione di questo tipo di opera di drenaggio si prevede di scavare una trincea in terra di forma semicircolare, eventualmente rivestita da un getto in calcestruzzo magro (con $R_{ck} \ge 150 \text{ kg/cm}^2$), in cui vengono alloggiati gli elementi prefabricati.

IBL1

10

D 11 RI

BI 03 40 001

FOGLIO

27 di 29

Δ

Laddove siano previste le scalettature sarà necessario il getto in calcestruzzo magro (con $R_{ck} \ge 150 \text{ kg/cm}^2$) che, seguendo lo scavo della trincea dovrà essere eseguito in modo da realizzare le gradonature richieste con le dimensioni indicate nella tavola di progetto dedicata alle sistemazioni idrauliche.

5.4 Pozzetti

5.4.1 Caratteristiche

Nei punti in cui confluiscono due o più rami di canalette si provvederà ad inserire dei pozzetti prefabbricati realizzati in conglomerato cementizio vibrato ($R_{ck} \ge 300 \text{ kg/cm}^2$) convenientemente armati con acciaio FeB44k controllato in stabilimento. I pozzetti saranno completati da un grigliato metallico che permetterà al pozzetto di essere ispezionato e manutenuto.

Le caratteristiche geometriche di tale manufatto sono riportate nella tavola di progetto (Doc. rif. [3]). La distribuzione planimetrica degli interventi è indicata nella planimetria idraulica di progetto e di scavo (Doc. rif. [7] e [8]).

5.4.2 Descrizione delle lavorazioni

Per la messa in opera dei pozzetti prefabbricati si prevede di scavare uno scavo, sul fondo del quale, opportunamente compattato e preparato con uno strato in calcestruzzo magro, verrà posizionato il pozzetto. Successivamente si procederà al riempimento laterale con materiale di riporto opportunamente compattato e, alle diverse quote previste in progetto, alla realizzazione delle canalette che confluiscono nel pozzetto, fino al completo riempimento fino a piano campagna.

5.5 Trincea disperdente

5.5.1 Caratteristiche

Lungo i bordi esterni del riempimento, laddove non è stato possibile per ragioni di pendenze realizzare la raccolta e recapito delle acque meteoriche a gravità verso il fiume Isarco, si è prevista uan trincea dispendente.

La trincea disperdente, o trincea d'infiltrazione, è costituita da una scavo riempito con ghiaia, granulato di lava oppure con elementi prefabbricati in materiali plastici. L'acqua meteorica è immagazzinata nella trincea e s'infiltra lentamente nel sottosuolo. All'interno della trincea si prevede di posare anche un tubo micro fessurato in HDPE

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

LOTTO 1: FORTEZZA - PONTE GARDENA

 Relazione idraulica
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IBL1
 10
 D 11 RI
 RI 03 40 001
 A
 28 di 29

D400mm (tubo di dispersione) per aumentare la capacità d'accumulo e per garantire una più regolare distribuzione delle acque meteoriche lungo lo sviluppo della trincea.

Questi sistemi vengono realizzati quando mancano le superfici per realizzare i fossi d'infiltrazione oppure quando il suolo non è sufficientemente permeabile o, come in questo caso, per l'immissione delle acque meteoriche in eccesso derivanti dalle scarpate del reimpiemnto definitivo.

Le caratteristiche geometriche di tale intervento sono riportate nella tavola di progetto (Doc. rif. [3]). La distribuzione planimetrica degli interventi è indicata nella planimetria idraulica di progetto e di scavo (Doc. rif. [7] e [8]).

5.5.2 Descrizione delle lavorazioni

La realizzazione della trincea d'infiltrazione verrà realizzata eseguendo uno scavo a sezione obbligata nel terreno naturale, secondo le dimensioni definite negli elaborati di progetto. Per garantire l'esecuzione delle lavorazioni in sicurezza lo scavo, essendo di profondità superiore a 1.5m sarà opportunamente sostenuto e, possibilmente, verrà seguito per conci di lunghezza limitata.

Una volta eseguito lo scavo e messo in sicurezza si provvederà a posizionare un geotessuto di separazione sul fondo e sulle pareti. Successivamente si procederà al riempimento della trincea con materiale grossolano (ghiaia e ciottoli), posizionando il tubo in HDPE D400 mm a circa 15-20 cm dal fondo e completando poi il riempimento fino a piano campagna.

5.6 Trincea drenante

5.6.1 Caratteristiche

Alla base dello scavo, lungo il perimetro e con un reticolo sull'area di base, si prevede di realizzare delle trincee drenanti per la regimazione delle acque meteoriche al fine di garantire un efficace drenaggio dell'area al fondo.

Le trincee saranno riempite di materiale arido e sul fodno sarà posizionato un tubo micro fessurato in HDPE \$\phi 300\$.

Le caratteristiche geometriche di tale intervento sono riportate nella tavola di progetto (Doc. rif. [3]). La distribuzione planimetrica degli interventi è indicata nella planimetria idraulica di scavo (Doc. rif. [8]).

5.6.2 Descrizione delle lavorazioni

La realizzazione della trincea drenante verrà realizzata eseguendo uno scavo a sezione obbligata nel terreno naturale, secondo le dimensioni definite negli elaborati di progetto.

Una volta eseguito lo scavo si provvederà al riempimento della trincea con materiale grossolano (ghiaia e ciottoli), posizionando il tubo in HDPE \$\phi 300\$ mm a circa 10 cm dal fondo e completando poi il riempimento fino a piano campagna.

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

LOTTO 1: FORTEZZA - PONTE GARDENA

Relazione idraulica	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Thomas is in a sum of	IBL1	10	D 11 RI	RI 03 40 001	Α	29 di 29

5.7 Tubazioni micro fessurate per drenaggio profondo

5.7.1 Caratteristiche

Per assicurare il drenaggio della porzione in elevazione del riempimento si prevede di installare, mediamente a quote assimilabili a quelle del piano campagna originario, delle tubazioni micro fessurate in HDPE φ200mm.

Tali tubazioni saranno posizionate secondo una pendenza minima del 4-5% e scaricheranno, fuoriuscendo dal corpo del rilevato come dei micro dreni, direttamente nelle canalette di guardia rivestite in pietrame posizionate lungo il perimetro esterno dell'area.

Le caratteristiche geometriche di tale intervento sono riportate nella tavola di progetto (Doc. rif. [3]). La distribuzione planimetrica degli interventi è indicata nella planimetria idraulica di scavo (Doc. rif. [7]).

5.7.2 Descrizione delle lavorazioni

La posa in opera delle tubazioni per il drenaggio profondo verrà eseguita posando i tubi micro fessurati sul terreno, dopo aver preparato il fondo con uno strato di materiale granulare, secondo lo schema definito negli elaborati di progetto.

Una volta posata la tubazione si provvederà a ricoprirla con materiale grossolano al fine di proteggerla prima della posa del successivo strato di riempimento del rilevato.

