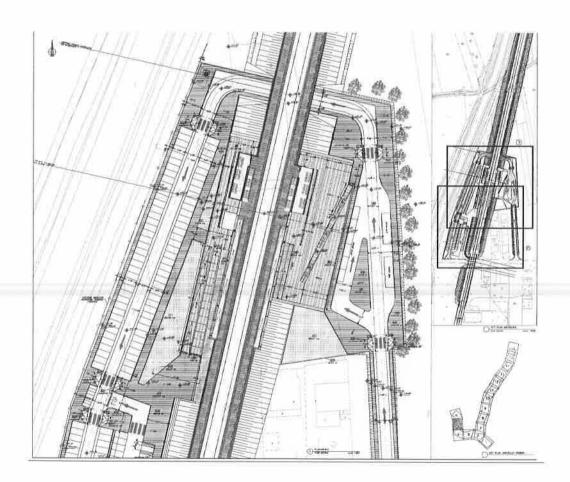
COMMITTENTE: RETE FERROVIARIA ITALIANA GRUPPO FERROVIE DELLO STATO ITALIANE PROGETTAZIONE: TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE **DIREZIONE TECNICA UO CORPO STRADALE GEOTECNICA PROGETTO DEFINITIVO** ITINERARIO NAPOLI-BARI **RADDOPPIO TRATTA CANCELLO – BENEVENTO** I LOTTO FUNZIONALE CANCELLO – FRASSO TEESINO E VARIANTE ALLA LINEA ROMA NAPOLI VIA CASSINO NEL COMUNE DI MADDALONI **FV03 – FERMATA MADDALONI** SCALA: RELAZIONE IDRAULICA COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. 0 0 1 D RI 0 3 Α 0 0 0 Rev. Data Data Data Descrizione Redatto Verificato Approvato Autorizzato Data 06/2015 06/2015 A Ingletti F. Cerrone 06/2015 Emissione esecutiva

n. Elab

File: IF0F01D11RIFV0302001A.doc


INDICE

1.	PREMESSA	3
2.	STUDIO IDROLOGICO	4
1	DIMENSIONAMENTO DELLE OPERE DI DRENAGGIO	6
1	1.1 Generalità	6
1	1.2 Requisiti prestazionali	6
1	1.3 Schema di drenaggio	6
1	1.4 Portate di progetto	7
1	1.5 Metodologia progettuale	9
1	l.6 Elementi di raccolta 1.6.1 Dimensionamento degli elementi di raccolta	9
	1.6.2 Elemento di margine	10
	1.6.3 Caditoie a griglia carrabile	14
1	1.7 Elementi di convogliamento 1.7.1 Dimensionamento degli elementi di convogliamento	18 18
	1.7.2 Collettori circolari in PEad	19

1. PREMESSA

La presente relazione riassume i risultati delle indagini sviluppate, le metodologie applicate ed i risultati dello studio idraulico delle aree interessate dal parcheggio e dalle sistemazioni superficiali relative alla fermata MADDALONI relativa al tracciato del 1° Lotto funzionale, che prevede la variante della linea storica Roma-Napoli, via Cassino, nel territorio di Maddaloni (nel seguito, per brevità, definito "Shunt di Maddaloni") ed il proseguo con la tratta Cancello – Frasso Telesino.

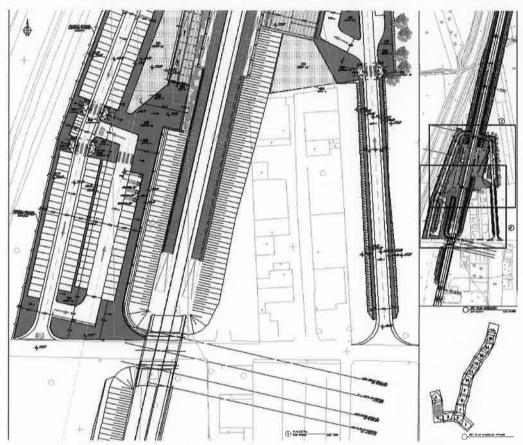


Figura 1 : Stralcio Planimetrico Fermata MADDALONI

L'area oggetto dello studio idraulico, ovvero quella sottesa dal raddoppio della linea ferroviaria, è ubicata nella Regione Campania, tra le province di Caserta e Benevento.

2. STUDIO IDROLOGICO

Per le curve di probabilità pluviometrica, si è fatto riferimento alle risultanze degli studi idrologici riportate nella relazione idrologica (IF0F01D11RIFV0001001A).

ITINERARIO	NAPOL	I – BARI			
RADDOPPI	O TRATT	A CANCELLO	D-BENEVENTO		
I LOTTO FU VARIANTE	NZIONAL	_E CANCELL	O - FRASSO TE	ELESINO	E
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	FOGLIO

RELAZIONE IDRAULICA

Nella seguente tabella si riportano inoltre le equazioni monomie di probabilità pluviometrica, espresse dall'equazione ($h_{(t)} = a \times Tp^n$), che verranno utilizzate per la determinazione delle portate massime istantanee di piena in funzione del tempo di ritorno (colonne 1 e 2).

IFOF

La colonna 3 riporta invece le opere in progetto ed il corrispondente Tr (colonna1) così come previsto nel manuale Italferr.

Tempo di ritorno (anni)	h = a * t ⁿ altezza di precipitazione (mm)	Opera di riferimento
(1)	(2)	(3)
25	47.00 x Tp ^{0,432}	Viabilità interconnessa

1 DIMENSIONAMENTO DELLE OPERE DI DRENAGGIO

1.1 Generalità

Nel presente capitolo si espongono i criteri generali seguiti per il dimensionamento e la verifica dei manufatti preposti al drenaggio delle acque meteoriche delle sistemazioni esterne.

1.2 Requisiti prestazionali

Le soluzioni per lo smaltimento delle acque meteoriche ricadenti sulla pavimentazione stradale dipendono dalle diverse situazioni ed esigenze che si incontrano nello studio della rete drenante e devono soddisfare due requisiti fondamentali:

- garantire, ai fini della sicurezza degli utenti in caso di forti precipitazioni, un immediato smaltimento delle acque meteoriche evitando il formarsi di ristagni sulla pavimentazione stradale; questo si ottiene assegnando alla pavimentazione un'idonea pendenza trasversale e predisponendo un adeguato sistema di raccolta integrato negli elementi marginali e centrali rispetto alle carreggiate;
- convogliare, ove necessario, tutte le acque raccolte dalla piattaforma ai punti di recapito.

1.3 Schema di drenaggio

Il sistema di drenaggio deve consentire la raccolta delle acque meteoriche cadute sulla superficie stradale e sulle superfici ad esso afferenti ed il trasferimento dei deflussi fino al recapito. Gli elementi utilizzati per il sistema di drenaggio possono essere suddivisi in base alla loro funzione; in particolare si ha:

Funzione	Compone	nte	Tipologia			TR progetto
Raccolta	elementi	idraulici	Caditoie,	canalette	grigliate,	25 anni

	marginali	cunette triangolari	
Convogliamento	canalizzazioni	fossi di guardia, collettori	25 anni

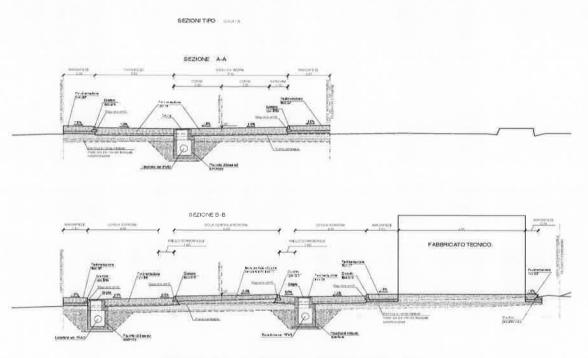


Figura 1.3-1: Sezione trasversale tipo

Nei paragrafi seguenti vengono descritti gli aspetti legati alle tipologie previste per la fase di raccolta/trasferimento

1.4 Portate di progetto

Per il calcolo delle portate di progetto è stato utilizzato il metodo razionale.

La formula razionale per la previsione della portata di massima piena, per assegnato tempo di ritorno, è direttamente dedotta dal metodo cinematico, nell'ipotesi che la durata della pioggia critica sia pari al tempo di corrivazione *tc*.

La massima portata al colmo di piena, espressa in m3/s, è calcolata mediante la seguente relazione:

$$Q_{\text{max}} = \frac{\varphi \cdot i_c \cdot A}{360}$$

dove:

φè il coefficiente di deflusso,

ic = h/tc è l'intensità della precipitazione, in mm/ora, corrispondente ad una durata della precipitazione pari al tempo di corrivazione e dipendente dal tempo di ritorno

A è l'area della superficie del bacino espressa in ha.

Il metodo razionale considera il bacino idrografico come una singola unità e stima il valore al colmo della portata di piena in modo rigoroso sotto le seguenti ipotesi:

- l'intensità di precipitazione è costante per tutta la durata dell'evento meteorico che si considera equivalente al tempo di corrivazione;
- la precipitazione è uniformemente distribuita sul bacino;
- la portata stimata ha lo stesso tempo di ritorno Tr di quello utilizzato per la determinazione dell'intensità di pioggia;
- il coefficiente di deflusso è costante durante l'evento e indipendente dall'intensità di precipitazione;
- la portata è nulla all'istante iniziale;
- il modello di trasformazione afflussi-deflussi è di tipo lineare stazionario.

Il coefficiente di deflusso φ rappresenta il rapporto tra il volume della pioggia efficace ed il volume della pioggia totale e tiene conto in modo globale delle perdite del bacino, poiché non tutto il volume di pioggia arriva nella sezione di chiusura in quanto una parte di pioggia si perde a causa di evaporazione, infiltrazione nel terreno, ritenzione nelle depressioni superficiali.

Il coefficiente di deflusso è stato posto pari ad 0.9 per le superfici pavimentate, 0.4 per le aree a verde.

Il tempo di corrivazione tc è definito come il tempo impiegato dalla goccia, che cade nel punto idraulicamente più lontano del bacino, ad arrivare nella sezione di chiusura dello stesso.

La condizione più gravosa è quella per cui il tempo di pioggia è pari al tempo di corrivazione.

Il tempo di corrivazione del bacino relativo a ciascuna sezione di calcolo è stato stimato pari a 10 minuti:

1.5 Metodologia progettuale

La metodologia di dimensionamento idraulico si differenzia se si considerano gli elementi di raccolta o quelli di convogliamento.

1.6 Elementi di raccolta

In questa sezione vengono individuati gli interassi massimi e i passi di scarico degli elementi di drenaggio diretto della superficie stradale. Per ciascun elemento tipologico di margine vengono definite la portata specifica in condizioni di moto uniforme e quindi la portata massima smaltita per le varie condizioni di pendenza longitudinale e trasversale.

Di conseguenza risultano anche definite le curve che descrivono gli interassi massimi tra gli scarichi in funzione delle caratteristiche plano-altimetriche del tracciato stradale.

1.6.1 Dimensionamento degli elementi di raccolta

Il dimensionamento consiste nello stabilire l'interasse delle caditoie grigliate. Gli elementi di raccolta previsti sono di tipo discontinuo, ovvero sono degli elementi puntuali.

Gli interassi tra gli elementi si dimensionano calcolando la portata massima smaltibile e la massima portata defluente dalla falda piana (superficie stradale scolante) per unità di lunghezza, data dalla:

$$q_0 = \varphi bi = \varphi bat^{n-1}$$

dove b (m) è la larghezza della falda, φ il coefficiente di deflusso, i (mm/h) l'intensità di pioggia.

Il coefficiente di deflusso è stato posto pari ad 0.9 per le superfici pavimentate, 0.4 per le aree a verde.

In base alla teoria dell'onda cinematica si ha che la condizione più gravosa è quella per cui il tempo di pioggia è pari al tempo di corrivazione.

Il dimensionamento dell'interasse degli elementi puntuali si ottiene facendo il rapporto tra la portata massima transitante in un'ipotetica canaletta triangolare delimitata dal manto stradale e dal cordolo, e la massima portata defluente dalla falda piana per unità di larghezza (q0):

Interasse=Qmax/q0

1.6.2 Elemento di margine

L'elemento di margine che convoglia longitudinalmente le portate verso le opere di scarico è quello formato in banchina dalla pendenza della piattaforma stradale e dal cordolo del marciapiede.

La portata massima smaltibile dalla banchina in funzione della pendenza longitudinale della strada è stata calcolata in moto uniforme con la legge di Manning, avendo fissato il massimo riempimento della banchina in modo che non venga allagata la piattaforma stradale.

Prima che la portata accumulata su un tratto di strada risulti uguale alla massima portata smaltita per le condizioni di pendenza longitudinale di progetto, è previsto lo scarico delle acque

RADDOPPI	O TRATT	A CANCELL			E
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	FOGLIO
	RADDOPPI I LOTTO FU VARIANTE	RADDOPPIO TRATT I LOTTO FUNZIONAI VARIANTE COMMESSA LOTTO	I LOTTO FUNZIONALE CANCELL VARIANTE COMMESSA LOTTO CODIFICA	RADDOPPIO TRATTA CANCELLO-BENEVENTO I LOTTO FUNZIONALE CANCELLO - FRASSO TE VARIANTE COMMESSA LOTTO CODIFICA DOCUMENTO	RADDOPPIO TRATTA CANCELLO-BENEVENTO I LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO VARIANTE COMMESSA LOTTO CODIFICA DOCUMENTO REV.

, attraverso delle griglie carrabili, in un sistema di canalizzazione sotto la piattaforma stradale, che avvia le acque ai punti di recapito. Lo scarico avviene attraverso i pozzetti posti ad un interasse costante; dove le condizioni di pendenza risultino particolarmente basse, tali cioè che l'interasse massimo ammissibile per le caditoie, derivante dal calcolo, risulti inferiore a tale valore, verrà utilizzato l'interasse derivato dal calcolo.

La portata massima smaltita dalla banchina è esprimibile attraverso la formula Manning

La portata Q massima ammissibile per le varie pendenze longitudinali *j* del ciglio di piattaforma è riportata nelle Figura 1.6-2

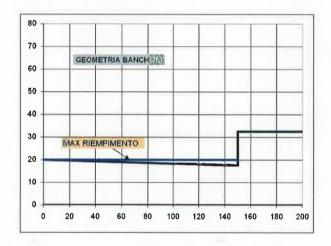


Figura 1.6-1: geometria della banchina

Figura 1.6-2: portate massime smaltite in banchina in funzione della pendenza longitudinale

SITALFERR ONUPPO RESPONSE DELLO STATO ITALIANE		O TRATT	A CANCELL	O-BENEVENTO .O - FRASSO TE		E
RELAZIONE IDRAULICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV,	FOGLIO
	IF0F	01	D 11 RI	FV 03 02 001	Α	12 di 24

La portata affluente, misurata in litri/secondo, è stata calcolata secondo le modalità descritte nel paragrafo precedente

Quando l'apporto di acqua piovana di un determinato tratto di strada raggiunge la predetta portata massima, la banchina non sarà più in grado di smaltire le portate affluenti, per cui si dovrà prevedere un pozzetto con griglia carrabile, che consenta di deviare le acque della cunetta nel sottostante tubo collettore.

Gli interassi che si ricavano sono riportati nella Tabella 1-1 e nella Figura 1.6-3

		Interasse
	Qmax	max
Pendenza	smaltibile	contributo
	(I/s)	totale
	(,, 0)	
		(m)
0.001	4	8
0.002	6	11
0.003	7	14
0.004	8	16
0.005	9	17
0.006	10	19
0.007	11	21
0.008	12	22
0.009	13	23
0.010	13	25
0.011	14	26
0.012	1.5	27
0.013	15	28
0.014	16	29
0.015	16	30
0.016	17	31
0.017	17	32
0.018	18	33
0.019	18	34
0.020	19	35

Tabella 1-1: portate massime smaltite e interassi massimi della banchina per diverse pendenze longitudinali

GRUPPO PERROVE DELLO STATO ITALIAME		O TRATT	A CANCELL	O-BENEVENTO .O - FRASSO TE	ENEVENTO FRASSO TELESINO E	
RELAZIONE IDRAULICA	COMMESSA IF0F	LOTTO 01	CODIFICA D 11 RI	DOCUMENTO FV 03 02 001	REV.	FOGLIO 13 di 24

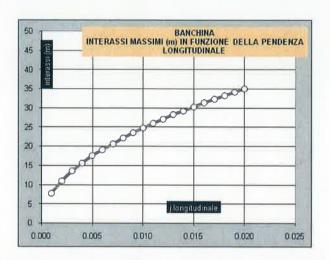
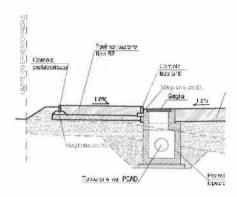


Figura 1.6-3: Banchina interassi massimi in funzione della pendenza longitudinale

Come si deduce dalle tabelle, se si eccettuano le pendenze più basse, l'interasse ammissibile tra due pozzetti per le pendenze previste in progetto è superiore a 15 metri. Per i tratti meno acclivi si utilizzerà un interasse inferiore desunto dal calcolo avendo però impostato un interasse minimo di 7.5 m e un interasse massimo di 15m.



1.6.3 Caditoie a griglia carrabile

Gli elementi di scarico delle acque convogliate longitudinalmente dalla banchina sono le caditoie

Le caditoie utilizzate nel presente progetto sono del tipo a salto sul fondo.

Le caditoie a salto sul fondo poste in banchina scaricano la portata in un pozzetto alla cui sommità è posta una griglia carrabile le cui barre, per motivi di efficienza idraulica, sono poste in senso longitudinale. A tale disposizione, infatti, corrispondono coefficienti d'efflusso molto più alti di quelli che si riscontrano con barre disposte trasversalmente.

La portata affluente, misurata in litri/secondo, è stata calcolata con la formula seguente:

$$Q_{MAX} = \frac{(\boldsymbol{\Phi}_1 \cdot LP + \boldsymbol{\Phi}_2 \cdot S) \cdot I \cdot i(25,5')}{3600}$$

dove:

- I = sviluppo massimo assegnabile alla banchina in m (interasse massimo);
- Q_{MAX} = portata massima di smaltimento in I/s;
- LP = larghezza di piattaforma più cunetta in m;
- S = larghezza media, in proiezione orizzontale, della scarpata verticale;
- Φ_1 = coefficiente di deflusso della superficie pavimentata = 0.9;
- Φ_2 = coefficiente di deflusso della scarpata = 0.7;

La somma $(\Phi_1 \cdot LP + \Phi_2 \cdot S)$ viene definita sezione equivalente e rappresenta l'area efficace contribuente al deflusso per metro lineare.

l'intensità di pioggia è stata così calcolata:

$$i = h / t_c \text{ (mm/h)}$$

dove t_c è il tempo di corrivazione espresso in ore ed h è l'altezza di precipitazione nel periodo pari al tempo di corrivazione, per il calcolo dell'intensità di pioggia si sono utilizzate le curve di probabilità pluviometriche per un tempo di ritorno t_r pari a 25 anni, ovvero:

$$h = 47.00 t^{0.432}$$

valida per tempi di pioggia compresi tra 0 ed 1 h.

Intensità di pioggia	Carlo and the second		
parametro "n"			0,432
parametro "a"			47.00
altezza di precipitazione	h _t (T=25)	mm	16.07
intensità di precipitazione	i _t (T=25)	mm/h	192.78

Tabella 1-2: Calcolo dell'intensità di pioggia con tempo di ritorno di 25 anni

I modi di defluire delle portate catturate da una caditoia sono del tipo a battente.

GRUPPO REBROVE BELLO STAFO ITALIANE		O TRATT	A CANCELLO	O-BENEVENTO .O - FRASSO TE	ELESINO	E
RELAZIONE IDRAULICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	FOGLIO
	IF0F	01	D 11 RI	FV 03 02 001	A	16 di 24

La formula utilizzata per il calcolo è:

$$Q = CA\sqrt{2gh}_0$$

dove:

h₀: Carico della luce sotto battente;

A: Area netta della bocca interessata dal deflusso a battente.

Le caditoie a griglia sono state verificate ponendo per il coefficiente C un valore pari 0.67 per il funzionamento a battente.

Caratteritiche geometriche griglia		
Modello	Grigli in ghisa	l sferoidale D400
Luce netta	600x600	mm
Telaio	700x700	mm
Peso	57	Kg
Scarico	1410	cm2

Confrontando i valori della portata di progetto con la capacità idraulica della caditoia, per le diverse condizioni geometriche di calcolo, si può notare come gli interassi di scarico imposti apportino un volume d'acqua inferiore alla capacità della caditoia.

SITALFERR ONUPPO RESPONSE DELLO STATO ITALIANE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO								
	RELAZIONE IDRAULICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
	IFOF	01	D 11 RI	FV 03 02 001	Α	17 di 24			

Figura 1.6-4: Caditoia grigliata confronto fra la capacità idraulica e la portata di pioggia in funzione dell'interasse

1.7 Elementi di convogliamento

Il sistema di drenaggio è come già detto funzionale all'allontanamento delle acque meteoriche dalla piattaforma, ed alla protezione delle carreggiate dalle acque ad essa afferenti.

Sono quindi individuabili tre parti fondamentali in cui è stato strutturato il sistema generale di drenaggio: esso ottempera alle funzioni di raccolta, trasferimento e recapito delle acque meteoriche.

Fanno parte degli elementi di raccolta che costituiscono il sistema primario le opere descritte nei paragrafi precedenti. Infatti sono elementi continui, longitudinali alla carreggiata o discontinui ad interassi dimensionati per soddisfare la funzione di limitare i tiranti idrici in piattaforma a valori compatibili con la loro transitabilità, garantendo in tal modo la sicurezza dell'infrastruttura.

In questo capitolo si analizzano gli elementi di trasferimento e recapito. Essi rappresentano il sistema secondario ove scaricano gli elementi del sistema primario, garantendo la capacità necessaria per evitare i rigurgiti in piattaforma che andrebbero a compromettere l'aspetto connesso alla sicurezza dell'utenza; con tali elementi si garantisce anche il trasferimento delle acque raccolte verso i recapiti. Sono costituiti da canalizzazioni realizzate con collettori di diverse dimensioni.

1.7.1 Dimensionamento degli elementi di convogliamento

Gli elementi di convogliamento sono costituiti dai collettori circolari e dai fossi di guardia.

Il dimensionamento viene effettuato ipotizzando che il deflusso all'interno dell'elemento avvenga in condizioni di moto uniforme.

Le caratteristiche idrauliche delle sezioni di progetto sono determinate mediante l'applicazione della formula di di Manning:

$$Q = A \frac{1}{n} R^{2/3} i^{1/2}$$

con:

Q = portata di progetto [m³/s];

A = sezione idraulica bagnata $[m^2]$;

n = coefficiente di Manning (n=0.013 per condotte in Pead);

R = raggio idraulico [m];

i = pendenza di fondo [m/m]

1.7.2 Collettori circolari in PEad

Le condotte sono realizzate in PEad con diametri esterni che vanno dal DE250 al DE500. Sono adatti per condotte interrate non in pressione, sia per tratti di linea che di attraversamento trasversale.

Gli elementi sono posti usualmente ad una distanza verticale minima di 1.0 m, misurata dalla superficie pavimentata alla generatrice superiore della tubazione.

Per il dimensionamento idraulico si è considerato il diametro interno riportato in tabella e un coefficiente di scabrezza di Manning pari a 0.0125.

DE	Diametro				
	interno				
(mm)	(mm)				
250	218				
315	272				
400	347				

500	433
630	546

Nel dimensionamento dei collettori si è utilizzata, dove possibile, la pendenza longitudinale stradale. Per i tratti molto pianeggianti e nel caso in cui il collettore è in contropendenza rispetto alla livelletta stradale si è posta una pendenza minima dello 0,20% e una velocità minima di 0,5 m/s tale da consentire alla corrente di portare via eventuali sedimenti accumulatisi nel tempo.

La verifica della sufficienza idraulica della rete di drenaggio è stata effettuata, per ciascun tratto, sulla base delle massime portate calcolate secondo i criteri enunciati nel precedente capitolo, facendo ricorso alla formulazione cinematica.

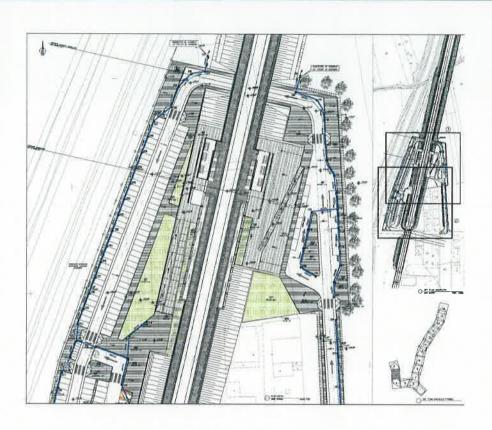
A garanzia di funzionalità nel tempo e in accordo alle regole di buona progettazione, si è ammesso un grado di riempimento massimo dei collettori pari a:

- Gr max = 50% per DI ≤ 400 mm
- Gr max = 70% per DI > 400 mm

Si è inoltre verificato che la velocità minima del flusso risultasse sempre superiore a quella di autopulizia, onde per evitare il rischio di depositi di trasporto solido ed eventuali intasamenti, e sempre inferiore a 4,3 m/s.

Nelle tabelle che seguono, si riportano: le superfici influenti su ciascun tratto di collettore, con riferimento alle sezioni di progetto; il corrispondente valore della portata, calcolata secondo l'intensità di precipitazione sopra indicata; la pendenza; i tiranti idrici; il grado di riempimento; la velocità. In questa tabella nella prima colonna è indicato il posizionamento dei collettori rispetto alle sezioni stradali, riportate in dettaglio nei relativi profili.

ITINERARIO NAPOLI – BARI


RADDOPPIO TRATTA CANCELLO-BENEVENTO

I LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE

RELAZIONE IDRAULICA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF0F
 01
 D 11 RI
 FV 03 02 001
 A
 21 di 24

RADDOPPIO TRATTA CANCELLO-BENEVENTO I LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE								
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	FOGLIO			
	VARIANTE	COMMESSA LOTTO	COMMESSA LOTTO CODIFICA	VARIANTE COMMESSA LOTTO CODIFICA DOCUMENTO	COMMESSA LOTTO CODIFICA DOCUMENTO REV.			

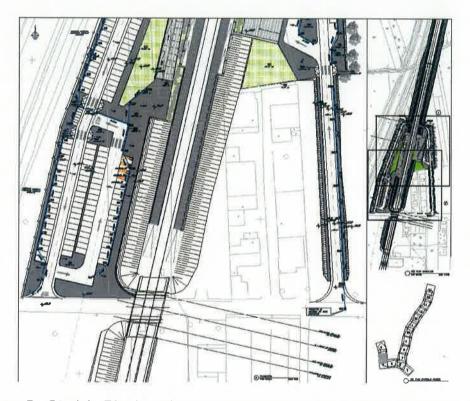


Figura 5 : Stralcio Planimetrico planimetria idraulica Fermata MADDALONI

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

I LOTTO FUNZIONALE CANCELLO - FRASSO TELESINO E VARIANTE

RELAZIONE IDRAULICA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IFOF
 01
 D 11 RI
 FV 03 02 001
 A
 23 di 24

SEZ	PK	Qcc	Qfc	Dir- collettore	Astrada	Ascarpata	tc	Qzs	DN Collettore	hu	gdr	v
Fermata Maddaloni - FV03		m slm	m elm		m²	m²	minuti	m³/s	mm	m	%	m/s
P1		49.70	49.45	4			10		250			
P2	7.83	49.68	49.43	4	98		10	0.0008	250			
P3	15.30	49.67	49,42	4	240		10	0.0020	250	0.05		_
P4 P5	22.66 30.20	49.65 49.64	49.40	1	380		10	0.0032	250	0.05	dentine	0.35
P8	37.72	49.62	49.37	4	523 666	-	10	0 0044	250 250	0.07	38	0.41
P7	45.18	49.61	49.36	1	808		10	0.0003	250	0.00	40	0.46
P8	52.70	49.59	49.34	4	950		10	0.0079	260	0.10	graditions.	0,50
P9	60.16	49.58	49.33	ı i	1'092		10	0 0091	250	0.10	47	0.50
P10	67.65	49.56	49.25	4	1'234		10	0.0103	315	0.10	granini	0.5
P11	74.75	49.55	49.24	1	1'369		10	0.0114	315	0.10	38	0.52
P12	92.48	49.54	49.22	1	1'516		10	0.0126	315	0.12	43	0.56
P13	90.44	49.52	49.02	1	3'835		10	0.0320	500	0,15		0.69
P14	98.02	49.50	49.00	ų.	3'994	45	10	0.0333	500	0.16	36	0.70
P15	105.18	49,49	48.99	4	4'144	88	10	0.0345	500	0.16	37	0.70
P16	112.70	49.47	48.97	4	4'302	134	10	0.0359	500	0.16	37	0.71
P17	120.19	49.46	48.96	1	4'459	179	10	0.0372	500	0.17	38	0.72
P18	127.69	49.44	48.94	4	4'617	224	10	0.0385	500	0.17	39	0.72
P19 P20	135.18 142.68	49.43 49.41	48.93	1	4'774	268	10	0.0398	500	0.17	40	0.73
P20	160.16	49.40	48.91	4	4'932	313	10	0.0411	500	0.17	40	0.74
P22	167.68	49.40	48.90	4	5'089 5'246	358 403	10	0.0424	500 500	0.18	41	0.75
P23	107.00	49.37	48.87	4	5'404	448	10	0.0450	600	0.18	42	0.75
P24	172.66	49.35	48.85	Ů.	5'561	493	10	0.0463	500	0.19	43	0.76
P25	180.16	49.34	48.84	1	5'719	538	10	0.0477	600	0.19	44	0.77
P26	187.64	49.32	48.82	1	5'876	583	10	0.0490	600	0.19	44	0.7
P27	195.13	49.31	48.81	4	6'033	628	10	0.0503	600	0.19	45	0.77
P28	204.93	49.29	48.79	4	6'156		10	0.0513	600	0.20	45	0.78
P29	214.89	49.27	48.77	+	6'280		10	0.0523	500	0.20	46	0.78
P30	222.70	49.25	48.75	+	6'378		10	0 0531	500	0.20	47	0.79
P31	229.06	49.24	48.74	1	6'457		10	0.0538	500	0.21	48	0.79
FOSSO	235.84	49.23	48.73	1	6'542		10	0.0545	500	0.21	48	0.79
P32		50.53	60.28	4			10		250			
P33	8.61	50.51	60.26	1	162		10	0.0013	250	0.03	12	0.23
P34	16.60	60.60	50.25	1	296		10	0 0025	250	0.05	24	0.35
P35	23.12	60.48	50.23	1	439		10	0 0037	260	0.07	32	0.41
P36	30.59	50.47	50.22	1	581	9	10	0.0048	260	0.07	34	0.42
P37	38.09	50.45	50.20	1	724		10	0 0060	250	0.08	37	0.45
P38 P39	45.59	60.44	50.19	4	866		10	0.0072	250	0.09	42	0.47
P40	63.51 62.26	50.42 50.41	50.17 50.09	+	1'017	Еноон	10	0 0085	250	0.10	47	0.50
P41	74.21	50.38	50.07	+	1'183		10	0.0099	315 315	0.10	38	0.52
P42	89.19	50.35	50.04	Ť	1'997	-	10	0.0143	315	0.12	45	0.57
P13	98.15	60.33	49.93	4	2'167		10	0.0181		0.12	36	0.60
P43	-,001.10	60.86	50.61	4	2.107	-	10	0.0101	250	0.12	50	0.00
P44	10.04	60.84	60.69	1	151		5	0.0025	250	0.05	21	0.32
P41	20.16	60.82	50.57	4	302		5	0 0050	250	0.07	31	0.41
P45		50.50	50.25	4			10		250			
P46	8.76	50.49	60.24	1	128		10	0.0011	250	0.01	6	0.15
P47	14.78	50.47	50.22	1	281		10	0.0023	250	0.05	24	0.35
P48	23.31	60.46	50.20	1	443		10	0.0037	250	0.07	32	0 42
P49	31.87	60.44	60.19	4	606			0.0050	250	0.07	in order	
P60	40.09	50.42	60.10	4	1'206			0.0101	315	0.10		0 52
P51	47.64	50.40	50.09	Ψ.	1'350			0.0112	316	0.10	1000000	0.52
P62	55.20	50.39	50.07	4	1'493		10	0.0124	315	0.12	42	0.55
P53	63.24	50.37	50.06	1	1'646			0.0137	315	0.12		0.57
P54	70.50	60.36	50.04	4	1'784		10	0 0149	315	0.12	-	0.57
P66	91.00	60.34 60.32	60.02	+	1'984		10	0 0165	316	0.13		0.59
P57	100.85	50.30	49.92 49.90	4	2'174 2'361	_	10	0.0181	400	0.12	36	0.60
FOSSO	108.26	50.28	49.88	† †	2'501	-	10	0.0197	400 400	0.13 0.13	37 38	0.61
P58	100.00	50.60	50.35	Ų.	2 301		10	0.0206	250	0.13	30	0.62
P59	7.70	50.58	50.33	4	77		5	0.0013		0.03	12	-
P60	16,43	50.57	50.33	Ť	164			0.0027		0.05		0.32
P61	25.00	50.55	60.30	Ť.	250		5	0.0027		0.07		0.41
P62	33.11	50.53	50.28	, i	331		5	0.0055		0.08	April Activity	0.45
P50	44.45	50.51	50.26	J.	445			0 0074		0 09		0.48
P63		50.60	50.25	4			10	2 0014	250	5 55		3.40
P64	15.02	50.35	50.10	1	150			0.0013		0.01	6	0.34
P85	29.97	60.20	49.95	Ť.	300			0 0025		0 04	والبائدنية	0.68
P66	45.11	60.05	49.80	1	451		-	0.0038		0.04	District Second	0.69
P67	60.03	49.90	49.66	1	600		-	0.0050		0.05	manus Parlin	-
P68	74.98	49.75	49.60	į.	750		_	0.0062			-	0.79

Tabella 1-3: Caratteristiche idrauliche dei collettori