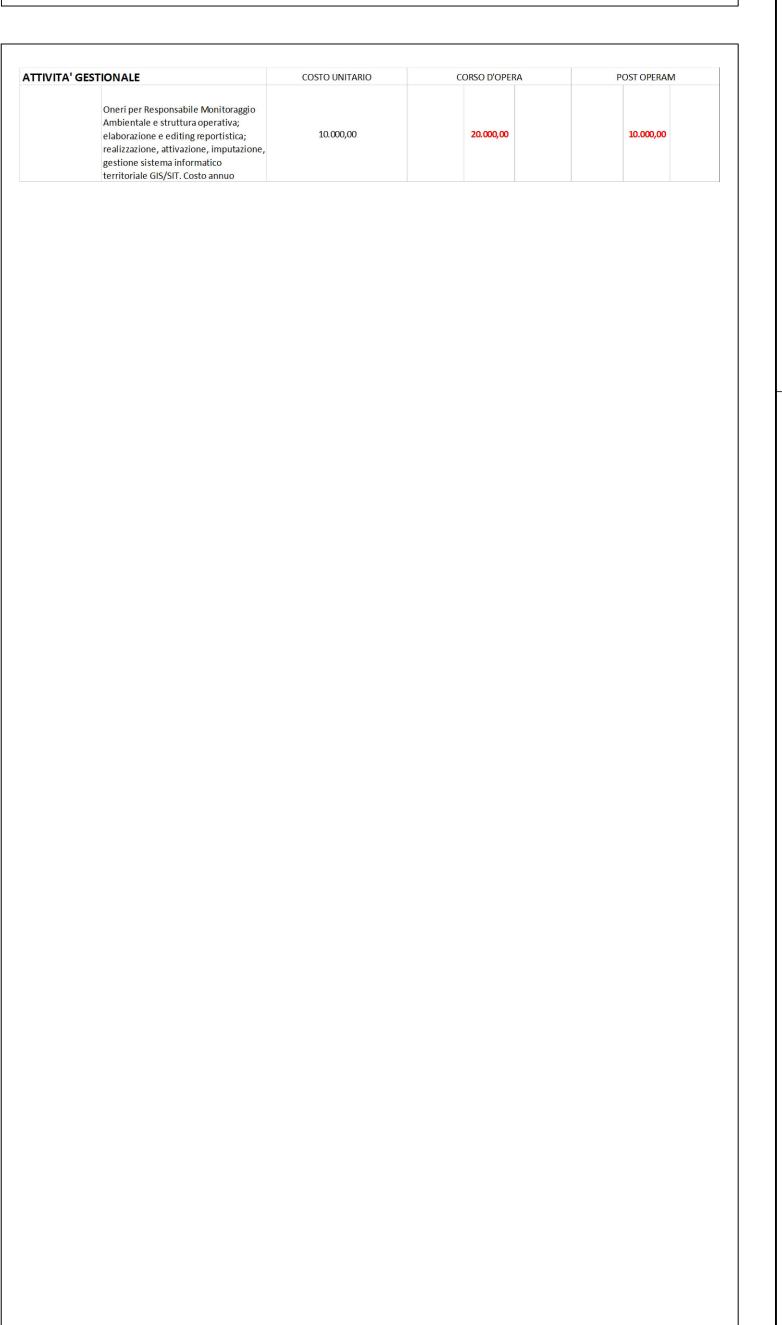
CQUE UPERFICIALI		Costo unitario	Parametri previsti				FREQ	UENZE CO	RSO D'OP	PERA								FREQUENZ	E POS	T OPER	RAM				
				AISU_05	AISU_06	AISU_07	AISU_08	AISU_09	AISU_10	AISU_11	AISU_12	AISU_13	AISU_14 QUANTITA	COSTO TOTALE	AISU_05	AISU_06	AISU_07	AISU_08 AI	SU_09	AISU_10	AISU_11 AISU_1	2 AISU_13	AISU_14	QUANTITA' TOT	COSTO
NP 050	Cloruri	20,81	x	8	8	8	8	8	8	8	8	8	8 80	1.664,80	2	2	2	2	2	2	2 2	2	2	20	41
NP 051	Solfati	20,81	x	8	8	8	8	8	8	8	8	8	8 80	1.664,80	2	2	2	2	2	2	2 2	2	2	20	41
NP 052	Azoto ammoniacale	20,81	x	8	8	8	8	8	8	8	8	8	8 80	1.664,80	2	2	2	2	2	2	2 2	2	2	20	4
NP 053	Nitriti	20,81	x	8	8	8	8	8	8	8	8	8	8 80	1.664,80	2	2	2	2	2	2	2 2	2	2	20	4
NP 054	Nitrati	20,81	x	8	8	8	8	8	8	8	8	8	8 80	1.664,80	2	2	2	2	2	2	2 2	2	2	20	4
NP 055	conducibilità elettrica specifica,	7,35	x	8	8	8	8	8	8	8	8	8	8 80	588,00	2	2	2	2	2	2	2 2	2	2	20	1
NP 056	Fosforo totale	33,14	x	8	8	8	8	8	8	8	8	8	8 80	2.651,20	2	2	2	2	2	2	2 2	2	2	20	6
NP 057	Ferro	24,48	x	8	8	8	8	8	8	8	8	8	8 80	1.958,40	2	2	2	2	2	2	2 2	2	2	20	4
NP 058	Ossidabilità al permanganato	24,48	×	8	8	8	8	8	8	8	8	8	8 80	1.958,40	2	2	2	2	2	2	2 2	2	2	20	4
NP 059	Calcio	11,02	×	8	8	8	8	8	8	8	8	8	8 80	881,60	2	2	2	2	2	2	2 2	2	2	20	2
NP 060	Magnesio	24,48	х	8	8	8	8	8	8	8	8	8	8 80	1.958,40	2	2	2	2	2	2	2 2	2	2	20	4
NP 061	Rame	24,48	x	8	8	8	8	8	8	8	8	8	8 80	1.958,40	2	2	2	2	2	2	2 2	2	2	20	4
NP 062	Cadmio	24,48	x	8	8	8	8	8	8	8	8	8	8 80	1.958,40	2	2	2	2	2	2	2 2	2	2	20	
NP 063	Piombo	24,48	x	8	8	8	8	8	8	8	8	8	8 80	1.958,40		2	2	2	2	2	2 2	2	2	20	
NP 064	Cromo	24,48	х	8	8	8	8	8	8	8	8	8	8 80	1.958,40		2	2	2	2	2	2 2	2	2	20	
NP 065	Solventi organo alogenati totali	64,26	х	8	8	8	8	8	8	8	8	8	8 80	5.140,80		2	2	2	2	2	2 2	2	2	20	1.
NP 087	Tensioattivi anionici	36,58	x	8	8	8	8	8	8	8	8	8	8 80	2.926,40	11	2	2	2	2	2	2 2	2	2	20	
NP 066	Idrocarburi policiclici aromatici IPA	211,12	x	8	8	8	8	8	8	8	8	8	8 80	16.889,60	2	2	2	2	2	2	2 2	2	2	20	4.
NP 067	Analisi colonie a 36°C	17,13	x	8	8	8	8	8	8	8	8	8	8 80	1.370,40	2	2	2	2	2	2	2 2	2	2	20	
NP 068	Analisi colonie a 22°C	17,13	x	8	8	8	8	8	8	8	8	8	8 80	1.370,40		2	2	2	2	2	2 2	2	2	20	
NP 069	Coliformi totali	24,48	x	8	8	8	8	8	8	8	8	8	8 80	1.958.40		2	2	2	2	2	2 2	2	2	20	
NP 070	Coliformi fecali	24,48	x	8	8	8	8	8	8	8	8	8	8 80	1.958,40	2	2	2	2	2	2	2 2	2	2	20	
NP 071	Streptococchi fecali	24,48	x	8	8	8	8	8	8	8	8	8	8 80	1.958,40		2	2	2	2	2	2 2	2	2	20	1
NP 144	colore	12,19	x	8	8	8	8	8	8	8	8	8	8 80	975,20		2	2	2	2	2	2 2	2	2	20	
NP 073	Analisi test microtox	179,67	x	8	8	8	8	8	8	8	8	8	8 80	14.373,60		2	2	2	2	2	2 2	2	2	20	3.
NP 074	Analisi daphnia magna	75,89	×	8	8	8	8	8	8	8	8	8	8 80	6.071,20		2	2	2	2	2	2 2	2	2	20	1.
NP 075	Analisi indice biotico esteso	483,44	X	8	8	8	8	8	8	8	8	8	8 80	38.675,20	-	2	2	2	2	2	2 2	2	2	20	9.
NP 083	Idrocarburi Totali	60,96	X	8	8	8	8	8	8	8	8	8	8 80	4.876,80		2	2	2	2	2	2 2	2	2	20	1.
NP 099.2	Temperatura aria	8,57	x	8	8	8	8	8	8	8	8	8	8 80	685,60		2	2	2	2	2	2 2	2	2	20	
NP 106	Portata	238,66	×	8	8	8	8	8	8	8	8	8	8 80	19.092,80		2	2	2	2	2	2 2	2	2	20	4.
NP 107	Temperatura acqua,	8,57	×	8	8	8	8	8	8	8	8	8	8 80	685,60		2	2	2	2	2	2 2	2	2	20	
NP 108	ossigeno disciolto	9,3	x	8	8	8	8	8	8	8	8	8	8 80	744,00		2	2	2	2	2	2 2	2	2	20	
NP 109	potenziale redox,	10,41	×	8	8	8	8	8	8	8	8	8	8 80	832,80		2	2	2	2	2	2 2	2	2	20	
NP 110.1	рн,	10,98	x	8	8	8	8	8	8	8	8	8	8 80	878,40	1.01	2	2	2	2	2	2 2	2	2	20	
NP 111	Durezza totale	20,81	X	8	8	8	8	8	8	8	8	8	8 80	1.664,80		2	2	2	2	2	2 2	2	2	20	
NP 112	Alcalinità titolata	18,97	X	8	8	8	8	8	8	8	8	8	8 80	1.517,60		2	2	2	2	2	2 2	2	2	20	
NP.161.06.01	Analisi Al COD	24,66	X	8	8	8	8	8	8	8	8	8	8 80	1.972,80		2	2	2	2	2	2 2	2	2	20	
NP.161.06.02	Analisi Al BOD5	15,91	X	8	8	8	8	8	8	8	8	8	8 80	1.272,80		2	2	2	2	2	2 2	2	2	20	
		20,52			-		~		-	-				1.272,80		_		_	-	_					38.

SUOLO		COSTO UNITARIO	Parametri previsti			F	REQUE	NZE POS	T OPER	MA				
				PEDO_15	PEDO_16	PEDO_17	PEDO_18	PEDO_19	PEDO_20	PEDO_21	PEDO_22	PEDO_23		
NP.161.05	Parametri PEDOLOGICI	354,93	x	1	1	1	1	1	1	1	1	1	9	3.194,37
NP 61	Rame	36,58	х	1	1	1	1	1	1	1	1	1	9	329,22
NP 62	Cadmio	36,58	х	1	1	1	1	1	1	1	1	1	9	329,22
NP 63	Piombo	36,58	х	1	1	1	1	1	1	1	1	1	9	329,22
NP 64	Cromo	36,58	х	1	1	1	1	1	1	1	1	1	9	329,22
NP 66	IPA	329,19	Х	1	1	1	1	1	1	1	1	1	9	2.962,71
NP 81	Manganese	36,58	x	1	1	1	1	1	1	1	1	1	9	329,22
NP 83	idrocarburi totali	60,96	Х	1	1	1	1	1	1	1	1	1	9	548,64
NP 84	Solventi clorurati	121,92	Х	1	1	1	1	1	1	1	1	1	9	1.097,28
NP 85	Solventi organici aromatici: BTEX	121,92	Х	1	1	1	1	1	1	1	1	1	9	1.097,28
NP 91	azoto totale	32,92	x	1	1	1	1	1	1	1	1	1	9	296,28
NP 92	fosforo assimilabile	19,5	x	1	1	1	1	1	1	1	1	1	9	175,50
NP 93	capacità di scambio cationico	14,62	x	1	1	1	1	1	1	1	1	1	9	131,58
NP 94	carbonio organico	23,17	x	1	1	1	1	1	1	1	1	1	9	208,53
NP 95	calcare attivo	24,38	x	1	1	1	1	1	1	1	1	1	9	219,42
NP 96	Cobalto	36,58	x	1	1	1	1	1	1	1	1	1	9	329,22
NP 97	Nichel	36,58	x	1	1	1	1	1	1	1	1	1	9	329,22
NP 98	Zinco	36,58	x	1	1	1	1	1	1	1	1	1	9	329,22
NP 110.2	рН	12,19	x	1	1	1	1	1	1	1	1	1	9	109,71
NP 114	Colore	12,19	x	1	1	1	1	1	1	1	1	1	9	109,71
NP 115	Porosità	12,19	x	1	1	1	1	1	1	1	1	1	9	109,71
NP 116	Struttura	24,38	x	1	1	1	1	1	1	1	1	1	9	219,42
NP 117	Umidità	12,19	X	1	1	1	1	1	1	1	1	1	9	109,71
NP 118	Scheletro	12,19	x	1	1	1	1	1	1	1	1	1	9	109,71
NP 119	Tessitura	24,38	x	1	1	1	1	1	1	1	1	1	9	219,42


VEGETAZIONE E FAUNA		COSTO UNITARIO						FRE	QUENZ	ZE CORSO D'OF	PERA					-							FRI	QUEN	ZE POS	T OPERAM						
				VEG_28	VEG_29 VEG_30	VEG_31	VEG_32 VEG_3	3 VEG_34	VEG_35	VEG_36 VEG_37	VEG_38	VEG_39	9 VEG_40	0 VEG_41 VEG_4	2 VEG_43	VEG_44		VEG_28	VEG_29	VEG_30 V	'EG_31	VEG_32	/EG_33 VEG_	34 VEG_35	5 VEG_36	VEG_37 VEG_38	VEG_39 VE	G_40 VEG_4	1 VEG_42	VEG_43	'EG_44	
NP 125	Rilievo diretto in area composizione floristica e stato fitosanitario	4.426,23	х	4					4		4	4	4				20 88.524,60		6	6	6	6	6 6		6	6		6	6	6	6 7.	2 318.688,56
																	88.524,60															318.688,56

ACQUE SOTTERRANE	Е	COSTO UNITARIO	Parametri previsti				FREQU	JENZE C	ORSO D	'OPERA						F	REQUENZ	E PO	ST OPE	RAM			
				AIST_11	AIST_12	AIST_13	AIST_14	AIST_15	AIST_16	AIST_17	AIST_18	QUANTITA' TOT	COSTO TOTALE	AIST_11	AIST_12	AIST_13	AIST_14 A	IST_15	AIST_16	AIST_17	AIST_18	QUANTIT A'TOT	COSTO TOTALE
NP.050	Analisi cloruri	20,81	x	8	8	8	8	8	8	8	8	64	1.331,84	2	2	2	2	2	2	2	2	16	332,96
NP.051	Analisi solfati	20,81	х	8	8	8	8	8	8	8	8	64	1.331,84	2	2	2	2	2	2	2	2	16	332,96
NP.052	Analisi azoto ammoniacale	20,81	×	8	8	8	8	8	8	8	8	64	1.331,84	2	2	2	2	2	2	2	2	16	332,96
NP.053	Analisi nitriti	20,81	x	8	8	8	8	8	8	8	8	64	1.331,84	2	2	2	2	2	2	2	2	16	332,96
NP.054	Analisi nitrati	20,81	х	8	8	8	8	8	8	8	8	64	1.331,84	2	2	2	2	2	2	2	2	16	332,96
NP.055	Analisi AI conducibilità elettrica specifica	7,35	х	8	8	8	8	8	8	8	8	64	470,40	2	2	2	2	2	2	2	2	16	117,60
NP.056	Analisi fosforo totale	33,14	х	8	8	8	8	8	8	8	8	64	2.120,96	2	2	2	2	2	2	2	2	16	530,24
NP.057	Analisi ferro	24,48	х	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.058.2	Analisi AI sott. ossidabilità al permangan	24,48	х	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.059	Analisi calcio	11,02	х	8	8	8	8	8	8	8	8	64	705,28	2	2	2	2	2	2	2	2	16	176,32
NP.060	Analisi magnesio	24,48	х	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.061	Analisi rame	24,48	х	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.062	Analisi cadmio	24,48	х	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.063	Analisi piombo	24,48	х	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.064	Analisi cromo	24,48	х	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.065	Analisi composti organo alogenati	64,26	х	8	8	8	8	8	8	8	8	64	4.112,64	2	2	2	2	2	2	2	2	16	1.028,16
NP.066	Analisi idrocarburi policiclici aromatici IP	211,12	х	8	8	8	8	8	8	8	8	64	13.511,68	2	2	2	2	2	2	2	2	16	3.377,92
NP.067	Analisi colonie a 36°C	17,13	х	8	8	8	8	8	8	8	8	64	1.096,32	2	2	2	2	2	2	2	2	16	274,08
NP.068	Analisi colonie a 22°C	17,13	х	8	8	8	8	8	8	8	8	64	1.096,32	2	2	2	2	2	2	2	2	16	274,08
NP.069	Analisi coliformi totali	24,48	x	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.070	Analisi coliformi fecali	24,48	х	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.071	Analisi streptococchi fecali	24,48	х	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.076	Analisi residuo fisso	9,71	х	8	8	8	8	8	8	8	8	64	621,44	2	2	2	2	2	2	2	2	16	155,36
NP.077	Analisi T.O.C.	44,52	х	8	8	8	8	8	8	8	8	64	2.849,28	2	2	2	2	2	2	2	2	16	712,32
NP.078	Analisi sodio	24,48	х	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.079	Analisi potassio	36,72	х	8	8	8	8	8	8	8	8	64	2.350,08	2	2	2	2	2	2	2	2	16	587,52
NP.080	Analisi tetracloroetilene	61,19	х	8	8	8	8	8	8	8	8	64	3.916,16	2	2	2	2	2	2	2	2	16	979,04
NP.081	Analisi manganese	24,48	х	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.082	Analisi Arsenico	24,48	х	8	8	8	8	8	8	8	8	64	1.566,72	2	2	2	2	2	2	2	2	16	391,68
NP.083	Analisi idrocarburi totali	97,91	х	8	8	8	8	8	8	8	8	64	6.266,24	2	2	2	2	2	2	2	2	16	1.566,56
NP.084	Analisi solventi clorurati	107,09	х	8	8	8	8	8	8	8	8	64	6.853,76	2	2	2	2	2	2	2	2	16	1.713,44
NP.085	Analisi solventi aromatici	100,97	x	8	8	8	8	8	8	8	8	64	6.462,08	2	2	2	2	2	2	2	2	16	1.615,52
NP.086	Analisi fenoli	85,67	х	8	8	8	8	8	8	8	8	64	5.482,88	2	2	2	2	2	2	2	2	16	1.370,72
NP.087	Analisi tensioattivi anionici	36,58	Х	8	8	8	8	8	8	8	8	64	2.341,12	2	2	2	2	2	2	2	2	16	585,28
NP.088	Analisi tensioattivi non anionici	36,58	Х	8	8	8	8	8	8	8	8	64	2.341,12	2	2	2	2	2	2	2	2	16	585,28
NP.089	Analisi tricloroetano	61,19	Х	8	8	8	8	8	8	8	8	64	3.916,16	2	2	2	2	2	2	2	2	16	979,04
NP.090	Analisi tricloroetilene	61,19	Х	8	8	8	8	8	8	8	8	64	3.916,16	2	2	2	2	2	2	2	2	16	979,04
NP.099.2	Misura Temperatura aria Al	8,57	х	8	8	8	8	8	8	8	8	64	548,48	2	2	2	2	2	2	2	2	16	137,12
NP.106	Misura portata	238,66	X	8	8	8	8	8	8	8	8	64	15.274,24	2	2	2	2	2	2	2	2	16	3.818,56
NP.107	Misura temperatura acqua	8,57	х	8	8	8	8	8	8	8	8	64	548,48	2	2	2	2	2	2	2	2	16	137,12
NP.109	Misura potenziale redox	10,41	x	8	8	8	8	8	8	8	8	64	666,24	2	2	2	2	2	2	2	2	16	166,56
NP.110.1	Misura PH AI	10,98	x	8	8	8	8	8	8	8	8	64	702,72	2	2	2	2	2	2	2	2	16	175,68
NP.111	Misura durezza totale	20,81	х	8	8	8	8	8	8	8	8	64	1.331,84	2	2	2	2	2	2	2	2	16	332,96
NP.112	Misura alcalinità	18,97	X	8	8	8	8	8	8	8	8	64	1.214,08	2	2	2	2	2	2	2	2	16	303,52
NP.113	Misura curva di esaurimento	122,39	X	8	8	8	8	8	8	8	8	64	7.832,96	2	2	2	2	2	2	2	2	16	1.958,24
													125.575,68										31.393,92

VEGETAZIONE E FAUNA		COSTO UNITARIO		F	REQUEN	NZE CORSO	D'OPER	Α			FR	REQUEN	ZE POST	OPERA	M		
E FAUNA				FAU_09	FAU_10	FAU_11	FAU_12	FAU_13			FAU_09	FAU_10	FAU_11	FAU_12	FAU_13		
NP 126	Rilevazione presenza fauna mobile terrestre, avifauna migratoria e nidificante con osservazione diretta e indiretta	1.615,54	Х	4	4	4	4	4	20	32.310,80	6	6	6	6	6	30	48.466,20
										32.310,80							48.466,20

RUMORE	COSTO UNITARIO			F	REQUE	NZE COI	RSO D'O	OPERA							FREQU	ENZE P	OST OP	ERAM				
			RUMO_05	RUMO_06	RUMO_07	RUMO_08	RUMO_09	RUMO_10	RUMO_11	RUMO_12			RUMO_05	RUMO_06	RUMO_07	RUMO_08	RUMO_09	RUMO_10	RUMO_11	RUMO_12		
Rilevamento su 7 giorni_TV_LM	3.793,92	Х		4						4	8 3	30.351,36			1	1	1	1	1	1	6	22.763,52
Rilevamento sulle 24 ore_LF_LC	219,69	X	1		8	1	1	1	8		20	4.393,80									0	0,00
opralluogo	343,61	X										9621,08										2061,66
eport	119,57	X										3347,96										717,42
											4	47.714,20										25.542,60

						CC	RSO D'OPE	RA						POST	OPERAN			
MOSFERA		COSTO UNITARIO	Costo x 14 gg	PARAMETR	I PREVISTI POS	TOPERAM	FREQU	ENZE POST O	PERAM			PARA	METRI PREVIS	STI POST OPERAM	FREQU	JENZE POST O	PERAM	
				ATMO_04	ATMO_05	ATMO_06	ATMO_04	ATMO_05	ATMO_06			ATMO_04	ATMO_05	ATMO_06	ATMO_04	ATMO_05	ATMO_06	COSTO
	Monitoraggio degli agenti inquinanti gassosi: NO2, Nox, Benzene, Ozono, SO2	4052,31	8104,62	Х	х	X	4	4	4	12	97.255,44		х		0	2	0	16.209,2
	Piombo	24,86	348,04	Х	X	X	4	4	4	12	4.176,48		х		0	2	0	696,0
	Nichel	24,86	348,04	Х	Х	X	4	4	4	12	4.176,48		X		0	2	0	696,08
	Cadmio	24,86	348,04	Х	X	X	4	4	4	12	4.176,48		х		0	2	0	696,08
	Arsenico	24,86	348,04	Х	X	Х	4	4	4	12	4.176,48		x		0	2	0	696,08
	Monitoraggio sequenziale/gravimetrico polveri installaz - 1gg	167,55	167,55	Х	Х	x	4	4	4	12	2.010,60		х		0	2	0	335,10
	Monitoraggio sequenziale/gravimetrico giorni ulteriori	123,96	1611,48	Х	х	X	4	4	4	12	19.337,76		х		0	2	0	3.222,9
	IPA campionamento già compreso nel prezzo polveri)	191,39	2679,46	X	х	х	4	4	4	12	32.153,52		х		0	2	0	5.358,9
	speciazione	10	140	Х	X	Х	4	4	4	12	1.680,00		х		0	2	0	280,00
	Velocità del vento	34,804	487,256	Х	X	X	4	4	4	12	5.847,07		X		0	2	0	974,51
	Direzione del vento	34,804	487,256	X	X	Х	4	4	4	12	5.847,07		X		0	2	0	974,51
	Umidità relativa	43,505	609,07	Х	X	Х	4	4	4	12	7.308,84		х		0	2	0	1.218,1
	Temperatura	11,187	156,618	Х	Х	X	4	4	4	12	1.879,42		x		0	2	0	313,24
	Precipitazione	10	140	X	Х	х	4	4	4	12	1.680,00		х		0	2	0	280,00
	Pressione	10	140	Х	X	Х	4	4	4	12	1.680,00		х		0	2	0	280,00
	Radiazione solare globale	19,888	278,432	Х	Х	X	4	4	4	12	3.341,18		X		0	2	0	556,86
											196.726,82							32.787,8

Direzione Progettazione e Realizzazione Lavori

S.S. 675 UMBRO-LAZIALE (EX RACCORDO CIVITAVECCHIA-ORTE) TRONCO 3° - LOTTO 1° - STRALCIO B REALIZZAZIONE DELLO STRALCIO FUNZIONALE TRA LO SVINCOLO DI CINELLI ED IL NUOVO SVINCOLO DI MONTE ROMANO EST DELLA SS675

> CIG 3371930CA6 CUP F11B05000460002 PROGETTO ESECUTIVO

IMPRESA ESECUTRICE ATI: Donati S.p.A

MANDATARIA S.A.L.C. spa DEMA COSTRUZIONI srl IRCOP COSTRUZIONI GENERALI

STUDI GENERALI MONITORAGGIO AMBIENTALE

Computo metrico estimativo

					1 NE	_
IL RESP. DEL PROCEDIMENTO		RDINATORE DELLA SICUREZZA E DI PROGETTAZIONE	IL GEOLOGO		ELABORA MARCO	Z 0
ott. Ing. Nicola Dinnella		. Ing. Ambrogio Signorelli e Ing. Prov. Roma A35111	Dott. Salvatore Marino Ordine Geol. Lazio 1069		Dott. Ge AP Sez. A Ordine	de E
ICE PROGETTO		NOME FILE		DE	VISIONE	
ETTO LIV. PROG. N. I	PROG.	LO402B_E_1501_T00_SG	05_MOA_EC01_A	IXL	VISIONE	
7402D E 150	1	CODICE TOO SCO.				

PROGETTO	LIV. PROG. IN. PROG.						
LO40	2B E 1501	CODICE TOOSG05	MOAEC	0 1	Α		n.a.
•				·			٠
•							·
Α	EMISSIONE		28/10/15	GUA	AS		GG
REV.	DESCRIZIONE		DATA	REDATTO) VERIFIC	CATO	APPROVATO