Committente:

AUTOCAMIONALE DELLA CISA S.P.A.

Via Camboara 26/A - Frazione Ponte Taro - 43015 NOCETO (PR)

Impresa Esecutrice:

AUTOSTRADA DELLA CISA A15
RACCORDO AUTOSTRADALE A15/A22
CORRIDOIO PLURIMODALE TIRRENO-BRENNERO
RACCORDO AUTOSTRADALE FRA L' AUTOSTRADA DELLA CISA-FONTEVIVO (PR)
E L' AUTOSTRADA DEL BRENNERO-NOGAROLE ROCCA (VR). I LOTTO.

C.U.P. G61B04000060008

C.I.G. 307068161E

PROGETTO ESECUTIVO

TROGETTO ESECUTIVO							
1	AMIONALE DELLA	CISA S.p.A. II Responsabile del P	rocedimento:	II Pre	esidente:		
IMPRES/ II Diretto	A PIZZAROTTI & pre Tecnico! Res	ng Laca Bondanelli	II Geologo: N A	CRI DELLA			
PROGET	TTAZIONE DI:	ZZAROTTI FONDATA NEL 1910		FABIO	1		
e	droesse n g i n e e r i n g MANDATARIA	MANDANTE S.p.A. MINISTRALA S.r.I. MANDANTE	Ing. Giova	ınni Maria Cep	parotti		18 77 A *********** B
Consuler N A	nza specialistica a	Progettista Responsabile Integrazione Prestazioni Specialistiche: Impresa Pizzarotti & C. S. D. A. Ing. Pietro Mazzoli Ordine degli Ingegneri della Provincia di Parma n. 821					
Mu I	ro di sos sez.F2-1	Asse Principal Opere di sosteg tegno-interconnessi a F2-14 e ramo CF o elazione tecnica e d	no one A1 da sez.	CF-1 a C	no F F-4		Emissione Progetto: 18/03/2014
Identif. El	laborato:						
N.RO IDENT	TIFICATIVO	CODICE COMMESSA LOTTO FASE ENTE RAAA 1 E I		S 13		O DOC N	N PROGR. DOC. REV.
B A Rev.	12/12/2014 23/06/2014 Data	Correzione refusi RIEMISSIONE PROGETTO ESECUTIVO DESCRIZIONE REVISIONE		POLUZZI POLUZZI Redatto	NIGRE NIGRE Control	LLI	MAZZOLI MAZZOLI Approvato
			0				

REV. B

FOGLIO 2 di 68

SOMMARIO

12
13
13
_113
ELEVAZIONE13
13
13
13
ECONDO NORMATIVA UNI EN 206-1
A FESSURAZIONE16
17
18
18
18
20
20
20
20
21
21
21
21
22
22
22
22
24
24
25
26
26
26
26
27
27
28

REV. B

FOGLIO 3 di 68

8.5	VERIFICA A STABILITÀ GLOBALE	30
8.6	CAPACITÀ PORTANTE E SCARICHI DEI PALI	31
8.6.1	CAPACITÀ PORTANTE	31
8.6.2	DETERMINAZIONE DEGLI SCARICHI SUL PALO	33
9	CONDIZIONI DI CARICO	34
9.1	MURO SUPERFICIALE TIPO 2 - CONCI 1 e 2	34
9.2	MURO SU PALI TIPO 2 E 3 - CONCI DA 6 A 25	35
10	COMBINAZIONI DI CARICO	38
11	IMPOSTAZIONI DI ANALISI	39
12	INVILUPPO SOLLECITAZIONI	
12.1	MURO SUPERFICIALE TIPO 1 - CONCI DA 1 A 5	
12.1.1	PARAMENTO	41
12.1.2	FONDAZIONE	42
12.2	MURO SU PALI TIPO 2 E 3 - CONCI DA 6 A 25	44
12.2.1	PARAMENTO	44
12.2.2	PALI	45
13	GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI	46
14	VERIFICHE STRUTTURALI	47
14.1	MURO SUPERFICIALE TIPO 1 - CONCI da 1 a 5	49
14.1.1	PARAMENTO	49
14.1.2	FONDAZIONE	51
14.2	MURO SU PALI TIPO 2 e 3 - CONCI da 6 a 25	53
14.2.1	PARAMENTO	53
14.2.2	FONDAZIONE	56
14.2.1	PALI	57
15	VERIFICHE GEOTECNICHE	60
15.1	MURO SUPERFICIALE TIPO 1 - CONCI da 1 a 5	61
15.2	MURO SU PALI TIPO 2 e 3 - CONCI da 6 a 25	62
15.2.1	VERIFICA DI STABILITÀ GLOBALE	62
15.2.2	VERIFICA DI PORTANZA DEI PALI	62
16	SCHEMA ARMATURA	63
16.1	MURO SUPERFICIALE TIPO 1 - CONCI DA 1 A 5	63
16.2	MURO SU PALI TIPO 2 - CONCI DA 6 A 9	64
16.3	MURO SU PALI TIPO 2 – CONCI DA 10 A 14	
16.4	MURO SU PALI TIPO 2 – CONCIO 15	
16.5	MURO SU PALI TIPO 3 - CONCI DA 16 A 25	
17	CONCLUSIONI	68

REV. B

FOGLIO 4 di 68

Quanto evidenziato con riga laterale è stato sede di revisione del 12/12/2014

FOGLIO 5 di 68

1 PREMESSA

La presente Relazione di Calcolo si inserisce nell'ambito dei lavori per il "Progetto del "Raccordo Autostradale A15/A22 - Corridoio plurimodale Tirreno-Brennero - Raccordo autostradale tra l'Autostrada della Cisa - Fontevivo (PR) e l'Autostrada del Brennero - Nogarole Rocca (VR) - I Lotto".

In particolare si tratta del progetto dei muri denominati OS13 a sostegno del ramo F (da sez. F2-1 a sez. F2-14) e del ramo CF (da sez. CF-1 a sez. CF-4) dell'Interconnessione A1-A15 (direzione La Spezia). Sul lato opposto alla sede stradale si trova il Torrente Recchio. L'elevazione possiede un'altezza variabile tra 5.37m e 8.66m, quindi, a partire dai 7.00 metri circa, si è dovuto optare per una fondazione profonda.

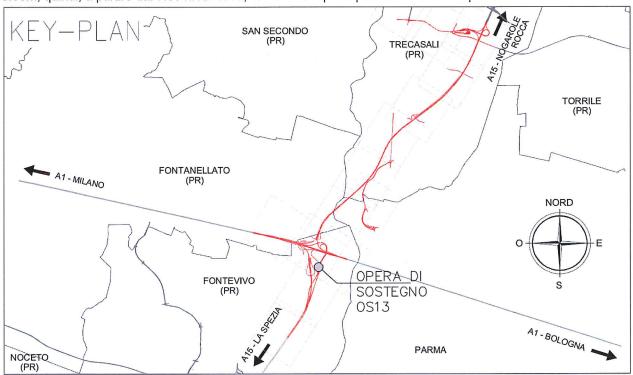


Figura 1-1 – Localizzazione Muri OS13

Lungo il tracciato sono state effettuate diverse campagne di indagini geotecniche a partire dal 1986 fino al 2013. Dalla restituzione di tali indagini si è evidenziata la presenza in loco di un terreno di buone caratteristiche geomeccaniche. In particolare si tratta di ghiaie poste in sinistra idraulica del fiume Taro aventi le caratteristiche meccaniche di seguito riportate: $\gamma=19kN/m^2$; $\phi=\delta=41^\circ$; c=0kPa; c=0kPa.

Data la posizione dell'opera, è stato assunto come riferimento per l'ottenimento dei parametri di progetto il sondaggio S1 della Campagna del 2001. L'altezza della falda è stata assunta pari alla quota di estradosso della fondazione.

Il paramento di valle del muro presenta una pendenza del 10%; in sommità è previsto un dente a valle di (10x20)cm e un cordolo porta sicurvia di dimensione (68x50)cm. Lo spessore del muro in sommità varia da 40cm per i muri tipo 1 (conci da 1 a 5), a 50cm per i muri su pali che sono quelli tipo 2 (conci da 6 a 15) e 3 (conci da 16 a 25). Per consentire lo scarico delle acque lungo il paramento sono previsti dei tubi di drenaggio φ100mm ogni (2x3)m. Per i muri è previsto un conglomerato cementizio con classe di resistenza C32/40 e un'armatura B450C (ex FeB44k).

La fondazione si prevede realizzata sopra a un getto di calcestruzzo magro dello spessore di 15cm. A favore di sicurezza non è stato considerato alcun ricoprimento di terreno sulla mensola di valle

Il terreno di riempimento per la formazione del rilevato presenta le seguenti caratteristiche meccaniche: γ =20kN/mc; ϕ =35°; δ =23.33°; c=0kPa; ca=0kPa.

Nel progetto sono stati considerati i seguenti carichi:

- pesi propri (γ_{cls}=25kN/m³) e permanenti portati (barriera: 300kN/m);
- spinta del terrreno;

CODIFICA DOCUMENTO	
RAAA1EIAPOS13GRE001B.docx	(

FOGLIO 6 di 68

- carico accidentale dovuto ai mezzi (20kN/m);
- carico accidentale dovuto all'urto di un veicolo in svio (forza concentrata pari a 45 kN pensata distribuita su una lunghezza di 4m e posta a 60cm dal piano stradale);
- azione sismica

I valori caratteristici delle azioni sono stati opportunamente combinati ed incrementati tramite coefficienti di partecipazione secondo quanto previsto dalla normativa di riferimento. Il calcolo sismico delle opere di sostegno è stato eseguito seguendo le prescrizioni dell'Ord. 3274 del 20 marzo 2003, adottando la zona sismica 3 (a_g =15%) e un coefficiente di importanza γ_i =1.3.

Per quanto riguarda le altezze delle varie tipologie di muri della OS13 si riporta di seguito la loro variabilità:

- muro tipo 1 conci da 1 a 5 h=(5.37-7.07)m;
- muro su pali tipo 2 e 3 conci da 6 a 25 h=(6.26-8.66)m;

Il calcolo dei muri in oggetto è stato svolto mediante il software di calcolo Max 9.0 e Max 10 della Aztec Informatica per quanto riguarda l'ottenimento delle sollecitazioni lungo il paramento e sulle mensole di fondazione. Le verifiche delle sezioni invece sono state svolte con il codice VcaSlu e con l'ausilio di fogli di calcolo Excel realizzati ad hoc internamente allo studio.

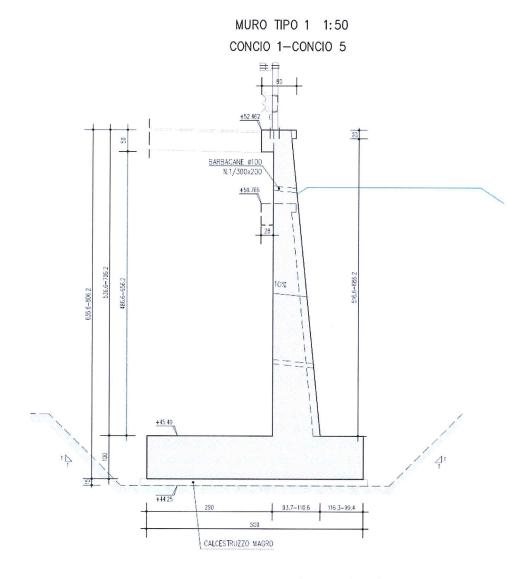


Figura 1-2 - Sezione Tipo - Muro 1 Conci da 1 a 5

FOGLIO 7 di 68

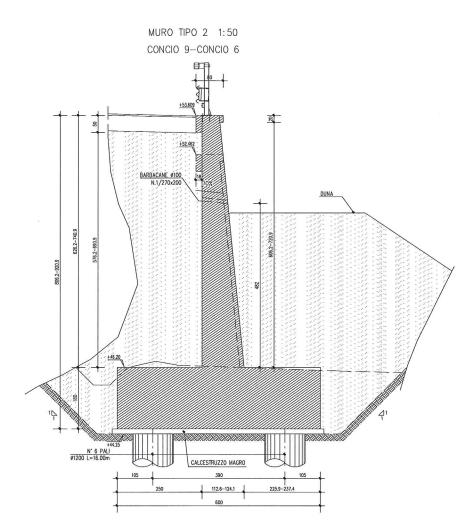


Figura 1-3 - Sezione Tipo - Muro 2 Conci da 6 a 9

FOGLIO 8 di 68

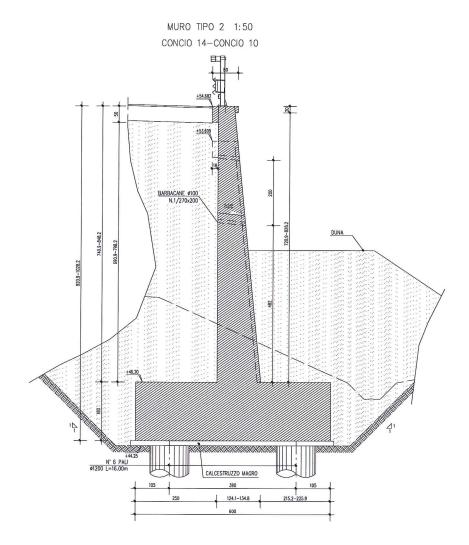


Figura 1-4 - Sezione Tipo - Muro 2 Conci da 10 a 14

FOGLIO 9 di 68

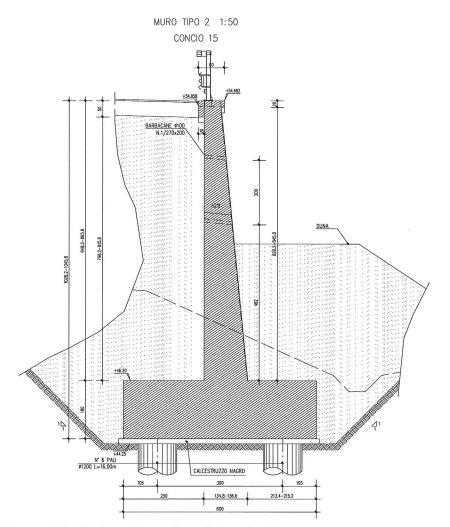


Figura 1-5 – Sezione Tipo - Muro 2 Concio 15

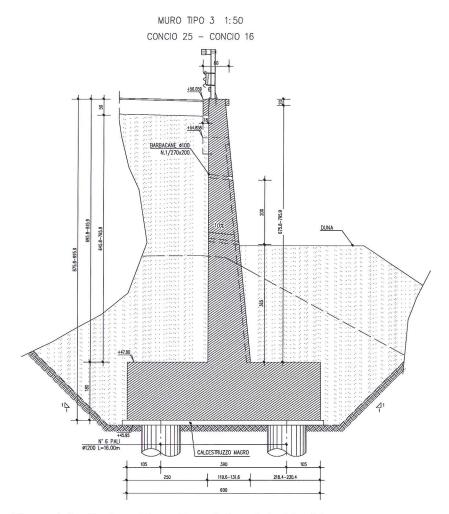


Figura 1-6 - Sezione Tipo - Muro 3 Conci da 16 a 25

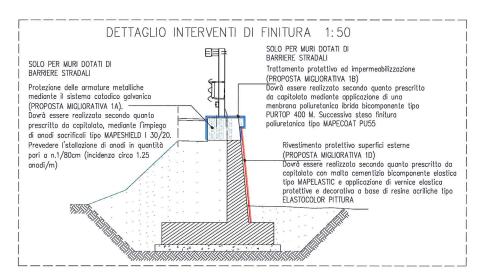


Figura 1-7 – Sezione Tipo – Interventi migliorativi

Come si vede anche dall'ultima sezione tipo, nel progetto sono stati adottati opportuni accorgimenti aventi l'obiettivo di garantire una maggiore durabilità alle opere, in particolare, oltre all'aumento della classe di esposizione del calcestruzzo (XC4+XD1+XF2 – variante migliorativa 1G), si prevede:

CODIFICA DOCUMENTO
RAAA1EIAPOS13GRE001B.docx

FOGLIO 11 di 68

- l'impermeabilizzazione della superficie esterna mediante rivestimento con malta cementizia bicomponente elastica (tipo MAPELASTIC) e vernice a base di resine acriliche (tipo ELASTOCOLOR). Tale miglioria rientra nella variante migliorativa 1D;
- protezione delle armature metalliche mediante il sistema catodico galvanico (variante migliorativa 1A);
- trattamento protettivo dei cordoli dei muri mediante membrana poliuretanica ibrida bicomponente tipo PURTOP 400 M (variante migliorativa 1B).

Gli elaborati di riferimento della presente OS sono:

CODICE	TITOLO
RAAA1EIAPOS13GRE001	Relazione tecnica e di calcolo
RAAA1EIAPOS13GRE002	Relazione tecnica e di calcolo - Allegati
RAAA1EIAPOS13GPL001	Planimetria di inquadramento dell'opera
RAAA1EIAPOS13GPL002	Pianta scavi e Tracciamento
RAAA1EIAPOS13GCA001	Carpenterie - Tav. 1/7
RAAA1EIAPOS13GCA002	Carpenterie - Tav. 2/7
RAAA1EIAPOS13GCA003	Carpenterie - Tav. 3/7
RAAA1EIAPOS13GCA004	Carpenterie - Tav. 4/7
RAAA1EIAPOS13GCA005	Carpenterie - Tav. 5/7
RAAA1EIAPOS13GCA006	Carpenterie - Tav. 6/7
RAAA1EIAPOS13GCA007	Carpenterie - Tav. 7/7
RAAA1EIAPOS13GAR001	Armature - Tav. 1/6
RAAA1EIAPOS13GAR002	Armature - Tav. 2/6
RAAA1EIAPOS13GAR003	Armature - Tav. 3/6
RAAA1EIAPOS13GAR004	Armature - Tav. 4/6
RAAA1EIAPOS13GAR005	Armature - Tav. 5/6
RAAA1EIAPOS13GAR006	Armature - Tav. 6/6 - Pali

REV. B FOGLIO

2 NORMATIVE DI RIFERIMENTO

Il dimensionamento statico e la verifica dei muri sono stati redatti nel rispetto della sotto riportata normativa:

- Legge nr. 1086 del 05/11/1971. "Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica";
- Legge nr. 64 del 02/02/1974. "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche";
- D.M. 03/12/1987. "Norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate";
- D.M. LL.PP. del 11/03/1988. "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione";
- Circolare Ministero LL. PP. 16/03/1989 N. 31104. "Istruzioni in merito alle norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate";
- D.M. LL. PP. del 04/05/1990. "Aggiornamento delle norme tecniche per la progettazione, l'esecuzione e il collaudo dei ponti stradali" e Allegato "Criteri generali e prescrizioni tecniche per la progettazione, esecuzione e collaudo dei ponti stradali";
- Circolare Ministero LL. PP. del 25/02/1991. Istruzioni relative alla normativa tecnica dei ponti stradali.
- D.M. LL.PP. del 14/02/1992. "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche";
- **D.M. 9 Gennaio 1996**. "Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche";
- D.M. 16 Gennaio 1996. "Norme Tecniche relative ai Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi";
- D.M. 16 Gennaio 1996. "Norme Tecniche per le costruzioni in zone sismiche";
- Circolare Ministero LL.PP. 4 Luglio 1996 N. 156 AA.GG./STC."Istruzioni per l'applicazione delle Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi" di cui al D.M. 16 Gennaio 1996;
- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C. "Istruzioni per l'applicazione delle Norme Tecniche" di cui al D.M. 9 Gennaio 1996;
- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG. "Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche" di cui al D.M. 16 Gennaio 1996;
- CNR 10011/97. "Costruzioni in acciaio Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione";
- CNR 10016/2000. "Strutture composte di acciaio e calcestruzzo Istruzioni per l'impiego nelle costruzioni";
- UNI EN 206-1:2001. "Calcestruzzo Specificazione, prestazione, produzione e conformità".
- O.P.C.M. 3274 20/03/2003. "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica";
- Norma Italiana UNI EN 1794-1. "Dispositivi per la riduzione del rumore da traffico stradale Prestazioni non acustiche";
- Eurocodice 2 / UNI ENV 1992-1-1. "Progettazione delle strutture di calcestruzzo" e relativi D.A.N.
 (Documento di Applicazione Nazionale) come riportato nel D.M. 09/01/1996;
- Eurocodice 3 / UNI ENV 1993-1-1. "Progettazione delle strutture di acciaio" e relativi D.A.N. (Documento di Applicazione Nazionale) come riportato nel D.M. 09/01/1996;
- Eurocodice 4 / UNI ENV 1994-1-1. "Progetto delle strutture composite acciaio calcestruzzo" e relativi D.A.N. (Documento di Applicazione Nazionale) come riportato nel D.M. 09/01/1996;
- Eurocodice 7 / UNI ENV 1997-1-1. "Progettazione geotecnica" e relativi D.A.N. (Documento di Applicazione Nazionale) come riportato nel D.M. 09/01/1996;
- Eurocodice 8 / UNI ENV 1998-1-1. "Progetto delle strutture resistenti al sisma" e relativi D.A.N. (Documento di Applicazione Nazionale) come riportato nel D.M. 09/01/1996;
- Model Code CEB-FIP 1990;
- CEB Manual on "Structural effect of time-dependent behavour of concrete" 1990;
- Structural Concrete Textbook on behavior, Design and Performance, CEB-FIP.

CODIFICA DOCUMENTO
RAAA1EIAPOS13GRE001B.docx

FOGLIO

3 CARATTERISTICHE DEI MATERIALI

Materiali come prescritti dal Decreto Ministeriale **9 Gennaio 1996**. "Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche".

3.1 CALCESTRUZZO PER MAGRONE

Per il magrone di sottofondazione si prevede l'utilizzo di calcestruzzo di classe C12/15 (Rck > 15 N/mm²).

3.2 CALCESTRUZZO PER OPERE DI FONDAZIONE - PALI

Per la realizzazione dei pali di fondazione in cemento armato della galleria e dei muri, si prevede l'utilizzo di calcestruzzo in classe C25/30 (Rck ≥ 30 N/mm²), che presenta le seguenti caratteristiche:

Resistenza a compressione (cilindrica)	\rightarrow	$f_{ck} = 0.83*R_{ck} =$	24.90 N/mm ²
Resistenza di calcolo a compressione	\rightarrow	$f_{cd} = \alpha_{cc}^* f_{ck}/\gamma_{c} = 0.85^* f_{ck}/1.6 =$	13.23 N/mm ²
Resistenza a trazione media	\rightarrow	$f_{ctm} = 0.27* f_{ck}^{2/3} =$	2.61 N/mm ²
Resistenza a trazione	\rightarrow	$f_{ctk} = 0.7* f_{ctm} =$	1.82 N/mm ²
Resistenza a trazione di calcolo	\rightarrow	$f_{ctd} = f_{ctk} / \gamma_c =$	1.14 N/mm ²
Modulo elastico		E=5700 R _{ck} ^{1/2}	31220 [MPa]

3.3 CALCESTRUZZO PER OPERE DI FONDAZIONE ED ELEVAZIONE

Per la realizzazione delle opere di elevazione in cemento armato (piedritti, solette, e muri) si prevede l'utilizzo di calcestruzzo in classe C32/40 (Rck ≥ 40 N/mm²), che presenta le seguenti caratteristiche:

Resistenza a compressione (cilindrica)	\rightarrow	$f_{ck} = 0.83*R_{ck} =$	33.20 N/mm ²
Resistenza di calcolo a compressione	\rightarrow	$f_{cd} = \alpha_{cc}^* f_{ck} / \gamma_{c} = 0.85^* f_{ck} / 1.6 =$	17.64 N/mm ²
Resistenza a trazione media	\rightarrow	$f_{ctm} = 0.27* f_{ck}^{-2/3} =$	3.15 N/mm ²
Resistenza a trazione	\rightarrow	$f_{ctk} = 0.7* f_{ctm} =$	2.21 N/mm ²
Resistenza a trazione di calcolo	\rightarrow	$f_{ctd} = f_{ctk} / \gamma_c =$	1.38 N/mm ²
Modulo elastico		E=5700 R _{ck}	36050 [MPa]

Come da proposta migliorativa 1G della Busta B, cap.3 a base di gara: "Qualità dei materiali da utilizzare nella realizzazione dell'opera anche in relazione alle modalità e agli oneri di manutenzione"

3.4 ACCIAIO PER CEMENTO ARMATO

3.4.1 BARRE

Per le armature metalliche si adottano tondini in acciaio del tipo B450C controllato in stabilimento, che presentano le seguenti caratteristiche:

Proprietà	Requisito
Limite di snervamento f _y	≥ 430 MPa
Limite di rottura f _t	≥ 540 MPa
Allungamento totale al carico massimo A_{gt}	≥ 12%

Tensione di snervamento caratteristica	\rightarrow	$f_{yk} \ge$	430.00 N/mm ²
Tensione caratteristica a rottura	\rightarrow	$f_{tk} \ge$	540.00 N/mm ²
Fattore di sicurezza acciaio	\rightarrow	$\gamma_s =$	1.15
Resistenza a trazione di calcolo	\rightarrow	$f_{vd} = f_{vk} / \gamma_s =$	373.91 N/mm ²

3.4.2 RETI

Per le reti metalliche si adottano tondini in acciaio del tipo B450A controllato in stabilimento, che presentano le seguenti caratteristiche:

CODIFICA DOCUMENTO
RAAA1EIAPOS13GRE001B.docx

REV.	
В	

FOGLIO 14 di 68

Proprietà	Requisito
Limite di snervamento f _v	≥ 390 MPa
Limite di rottura f _t	≥ 440 MPa
Allungamento totale al carico massimo A _{at}	≥ 8%
Rapporto f _t /f _v	≥ 1.10

Tensione di snervamento caratteristica	\rightarrow	$f_{vk} \ge$	390.00 N/mm ²
Tensione caratteristica a rottura	\rightarrow	$f_{tk} \ge$	440.00 N/mm ²
Fattore di sicurezza acciaio	\rightarrow	$\gamma_s =$	1.15
Resistenza a trazione di calcolo	\rightarrow	$f_{vd} = f_{vk} / \gamma_s =$	339.13 N/mm ²

3.5 TABELLA RIASSUNTIVA CLASSI DI ESPOSIZIONE SECONDO NORMATIVA UNI EN 206-1

Questa tabella e da compilarsi in funzione dell'opera da eseguire: associare ad ogni elemento progettuale (fondazione, elevazione......).

REV. B FOGLIO 15 di 68

Tab 2

Class i di e	sposizione ambie	entale secondo L	MI EN 2	106-7				
Jasse di Esposizione	Descrizione dell'ambiente di	Esempi di condizioni ambientali	UNI 9858	A/C massimo	Contenuto minimo di	mirima	Contenuto minimo di	Coprifer of minimo
mbientale	esposizione	100000000000000000000000000000000000000			cemento kg/m²	N/mm*	aria 96	Moo
	schio di corrosione o attac							
0	Moto seco	Os perintemi di edifici con umidità dell'aria molto bassa	1	-		C12/15	-	15
2 Corrosione de	lle armature per effettode	la carbonatazione						
KC1	Seccolo permanentemente bagnato	Os perintemi di edifici con umidità relatha bassa o immerso in acqua	2a	0,65	260	C20/25	E	20
WC2	Bagnato, raramente secco	Superfici in dis a contatto con acqua per lungo tempo es. fondazioni	2a	00,0	280	C25/30	-	20
XC3	Umidtá moderata	Os perintemi con umidià relativa moderata o alta è cls all'esterno protetto dalla piccoja	5a	0.55	280	C30/37	-	30
XC4	Octicamente bagnato ed asciutto	Superfici in dis a contatto con l'acqua, non nella dasse X C2.	4a,5b	0,50	300	C30/37	-	30
Corrosione de	elle armature per effettode	si cloruri esclusi quelli pr	cvenienti c	all'acous d	mare	-	1	
XD1	Umidtă moderata	Superfici in els espeste a nebbia salina	52	0,55	300×	C30/37	-	30
XD2	Bagnato, raramente asciutto	Pisone; da esposto ad acque industriali contenenti oloruri	4a,5b	0,55	300	030/37		30
XO3	Odicamente bagnato ed asciuto	Parti di ponti esposte a spruzzi contenenti doruri, pavimortazioni di parcheggi	5o	0,45	320	C35/45	-	40
4 Corrosione de	elle armature indotta da ol-	crun presenti nell'acqua	di mare					-1
XSI	Esposto alla nebbia salina ma non alfacqua di mare	Struture prossime o sulla costa	4a.55	0.50	300	C30/37	-	30
X52	Permanentemente sommerso	Parti di strutture marine	5c	0.45	320	C35/45	-	40
XS	Zone esposte alle onde o alla marea	Parti di strutture marine	5c	0.45	340	C35/45		40
	el di gelo/disgelo como s							
XF1	Moderata saturazione d'acqua in assenza di sali disgelanti	Superfici verticali in ds esposte alla pioggia e al gelo	Zb	0.55	300	C30/37	•	30
XF2	Moderata saturazione d'acqua in presenza di sali disgelanti	Superfici verticali in cis di struttura stradali esposte al gelo e nebbia dei sali disgelanti	3,45	0,55	300	C25/30	4,0 e aggregati resistenti al geloktisqelo	30
XF3	Elevata saturazione d'acqua in assenza di sali disgelanti	Superfici orizzontali in da esposte alla pioggia e al gelo	Zb	0.50	320	C30/37	4,0 e aggregati resistenti al gelodtisgelo 4,0	30
XF.d	Bevata saturazione d'acqua in presenza di sali disgelanti o acqua di mare	Strate e impalisati da ponte esposti al sali disgelanti. Superiid in de esposte drettamente a nebbia contenente sali disgelanti	3,46	0,45	340	C30/37	4,0 e aggregati resisterti al gelo/disgelo	40
6 Attacco chimi						rugge.		
804	Ambiente ohimico debolmente aggressivo (vd. prospeto 2 della EN 206)	ı	5a	0,55	300	C30/37	н	30
XA2	Ambiente chimico moderatamente aggressivo (vd. prospetto 2 della EN 2001		4", 56	0,50	320 cemento resistente ai solfati	C30/37	e.	30
X0.3	Arrbiente ohimico fortemente aggressivo (vd. prospetto 2 della EN 206)		5c	0,45	360 cemento resistente ai solfati	C35/45	E	40

REV. B

FOGLIO 16 di 68

Conglomerato cementizio per elementi strutturali opere secondarie (Muri)

ELEMENTO	CLASSE DI ESPOSIZIONE	CLASSE DI RESISTENZA MINIMA (Mpa)	COPRIFERRO (mm)	CLASSE DI CONSISTENZA	RAPPORTO ACQUA/CEMENTO (+Aria %)	DIMENSIONE MASSIMA NOMINALE DEGLI AGGREGATI (mm)
PALI	XC1	C25/30	60	S4	0.60	32
FONDAZIONE ED ELEVAZIONE	XC4+XD1+XF2	C32/40	50	S4	0.50	25

3.6 PARAMETRI DI IDENTIFICAZIONE PER LA VERIFICA A FESSURAZIONE

Come riportato nel D.M. 9 Gennaio 1996 (prospetto 7-l) si seguono le seguenti impostazioni di verifica per le fessurazioni:

Impostazioni verifiche SLE

Condizioni ambientali

Armatura ad aderenza migliorata

Verifica fessurazione

Sensibilità delle armature

Valori limite delle aperture delle fessure

Metodo di calcolo aperture delle fessure

<u>Verifica delle tensioni</u>
Combinazione di carico

Moderatamente aggressive

Poco Sensibile

 $w_1 = 0.10$

 $w_2 = 0.20$

 $w_3 = 0.40$

Circ. Min. 252 (15/10/1996)

Rara σ_c < 0.60 f_{ck} - σ_f < 0.70 f_{yk}

Quasi permanente $\sigma_c < 0.45 f_{ck}$

Rara σ_s < 0.70 f_{yk}

Prospetto 7-1

Gruppi di	Condizioni	Combinazione				
Esigenze	ambiente di azioni		Sensibi	le	Poco sensibi	
Largenze	amoiente	ai azioni	Stato limite	w_k	Stato limite	w_k
	Poco	frequente	ap. fessure	≤ w ₂	ap. fessure	≤ w
a	aggressivo	quasi permanente	decomp. o ap. fessure	≤ w ₁	ap. fessure	≤ w;
	Modanatamenta	frequente	ap. fessure	$\leq w_1$	ap. fessure	≤ w;
b	Moderatamente aggressivo quasi permanente		decompress.	***	ap. fessure	≤ w
c	Molto aggressivo	rara	ap. fessure e formaz. fessure	≤ w ₁	ap. fessure	≤ w;
		frequente	decompress.		ap. fessure	$\leq w$

w_k è definito al punto 4.3.1.7.1.3 w₁, w₂, w₃ sono definiti al punto 4.3.4.2.

REV.

FOGLIO 17 di 68

4 COPRIFERRI

Ai fini di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore viene misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina.

Per i muri di sostegno si adottano copriferri pari a:

	Copriferro - c _{min} [mm]
PALI	60
FONDAZIONI	50
ELEVAZIONE	50

REV. B FOGLIO 18 di 68

5 CODICI DI CALCOLO

5.1 VCASLU

Il software VcaSlu consente la verifica di sezioni in cemento armato normale e precompresso, soggette a presso-flessione o tenso-flessione retta o deviata sia allo stato limite ultimo che con il metodo n.

5.2 MAX 9.0 E MAX 10.0 - AZTEC

I calcoli per il dimensionamento delle strutture di sostegno (muri) sono stati eseguiti con l'ausilio del programma di calcolo *MAX 9.0*, versione 9.05b e *MAX 10.0* versione 10.07a, prodotto dalla "Aztec Informatica Srl", di Casole Bruzio (CS) (Licenza n. AIU26662G).

Nome software	N° revisione	Data revisione	Estensore	Data d'acquisto	Data validazione
MAX 9.0	9.05b	13 Novembre 2009	Aztec Informatica SrI	13 Novembre 2009	(fare riferimento al produttore)
MAX 10.0	10.07b	13 Novembre 2009	Aztec Informatica SrI	13 Novembre 2009	(fare riferimento al produttore)

Il programma MAX è dedicato all'analisi e al calcolo dei muri di sostegno. I tipi di muri che è possibile analizzare con il programma MAX sono:

- muri a gravità;
- a semigravità;
- muri in calcestruzzo armato.

Possono essere inoltre considerati, in funzione del tipo di muro e del materiale che lo costituisce, muri con:

- contrafforti;
- mensole di contrappeso e di marciapiede:
- pali di fondazione;
- tiranti di ancoraggio.

MAX consente inoltre l'analisi di muri di cantina. Il programma consente di stratificare il terreno sia in elevazione sia in fondazione, e di inserire carichi (concentrati e distribuiti) sul profilo e in qualsiasi posizione del muro.

Il programma consente di inserire carichi (concentrati e distribuiti) sul terreno e sul muro, in qualunque posizione. I carichi sono gestiti per condizioni. Definite le condizioni di carico, si possono definire le combinazioni di carico manualmente o in modo automatico previa definizione del tipo di Normativa da utilizzare:

D.M. 1988 + D.M. 1996 o Ordinanza Ministeriale 3274/2003 per il MAX 9.0;

D.M. 1988 + D.M. 1996 o D.M. 14/01/2008 (NTC 2008) per il MAX 10.0.

L'analisi può essere eseguita sia in condizioni statiche che in condizioni sismiche. Il calcolo delle armature e la verifica delle sezioni eseguito con il metodo delle tensioni ammissibili o degli stati limite ultimi.

I metodi di calcolo implementati in nel programma sono:

Calcolo della spinta:

Rankine;

Coulomb:

Culman;

Mononobe-Okabe:

Calcolo della capacità portante:

Terzaghi;

Meyerof;

Hansen;

Vesic;

REV. B FOGLIO 19 di 68

Berezantzev.

In presenza di tiranti o contrafforti sul paramento, quest'ultimo viene calcolato attraverso un modello a piastra utilizzato anche per le mensole di fondazione in presenza di pali. Le piastre e i pali vengono calcolati con il metodo degli Elementi finiti.

Analisi di stabilità del pendio nei pressi dell'opera:

Fellenius;

Bishop.


In presenza di pali di fondazione è possibile selezionare il tipo di capacità portante (capacità portante di punta, capacità portante per attrito laterale), la tipologia dei pali (pali infissi, pali trivellati), la modalità di rottura del sistema palo-terreno, ecc.

6 TERRENI

Di seguito si riportano le caratteristiche meccaniche dei terreni, la stratigrafia, il profilo del terreno e la quota di falda utilizzati nelle verifiche dei muri.

6.1 MURO SUPERFICIALE TIPO 1 - CONCI DA 1 A 5

6.1.1 CARATTERISTICHE MECCANICHE

Simbologia adottata

Nr.	Indice del terreno
Descrizione	Descrizione terreno
γ	Peso di volume del terreno espresso in [kN/mc]
γw	Peso di volume saturo del terreno espresso in [kN/mc]
ф	Angolo d'attrito interno espresso in [°]
δ	Angolo d'attrito terra-muro espresso in [°]
С	Coesione espressa in [MPa]
Ca	Adesione terra-muro espressa in [MPa]

Nr.	Descrizione	γ	γ_{w}	ф	δ	С	Ca
1	Rilevato	19.61	20.59	35.00	23.33	0.0000	0.0000
4	G1_SX	19.00	20.50	41.00	41.00	0.0000	0.0000

6.1.2 STRATIGRAFIA

Simbologia adottata

N	Indice dello strato
Y_0	Ordinata punto iniziale espresso in [m]
Y_1	Ordinata punto finale espresso in [m]

CODIFICA DOCUMENTO
RAAA1EIAPOS13GRE001B.docx

FOGLIO 21 di 68

_	Inclinazione conrecce	in	rol
а	Inclinazione espressa	111	1 1

K_w Costante di Winkler orizzontale espressa in Kg/cm²/cm

K_s Coefficiente di spintaTerreno dello strato

Nr.	Y0	Y1	a	Kw	Ks	Terreno
1	-8.07	-8.07	0.00	0.10	0.00	Rilevato
2	-12.00	-12.00	0.00	2.70	0.50	G1_SX
3	-22.30	-22.30	0.00	6.40	0.50	G1_SX
4	-25.50	-25.50	0.00	15.20	0.50	G1_SX
5	-30.00	-30.00	0.00	30.00	0.50	G1_SX

6.1.3 PROFILO TERRENO

Terreno a monte del muro

Simbologia adottata e sistema di riferimento (Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

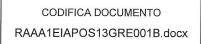
A inclinazione del tratto espressa in [°]

N X Y A 1 20.00 0.00 0.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0.00 [m]

6.1.4 FALDA


Quota della falda a monte del muro rispetto al piano di posa della fondazione 1.00 [m] Quota della falda a valle del muro rispetto al piano di posa della fondazione 1.00 [m]

6.2 MURO SU PALI TIPO 2 E 3 – CONCI DA 6 A 25

6.2.1 CARATTERISTICHE MECCANICHE

Simbologia adottata

Nr.	Indice del terreno
Descrizione	Descrizione terreno
γ	Peso di volume del terreno espresso in [kN/mc]
γw	Peso di volume saturo del terreno espresso in [kN/mc]
ф	Angolo d'attrito interno espresso in [°]
δ	Angolo d'attrito terra-muro espresso in [°]
С	Coesione espressa in [MPa]
Ca	Adesione terra-muro espressa in [MPa]

FOGLIO 22 di 68

1	Rilevato	19.61	20.59	35.00	23.33	0.0000 0.0000
4	G1_SX	19.00	20.50	41.00	41.00	0.0000 0.0000

6.2.2 STRATIGRAFIA

Simbologia adottata

N	Indice dello strato
Y_0	Ordinata punto iniziale espresso in [m]
Y_1	Ordinata punto finale espresso in [m]
а	Inclinazione espressa in [°]
K_w	Costante di Winkler orizzontale espressa in Kg/cm ² /cm
K_s	Coefficiente di spinta
Terreno	Terreno dello strato

Nr.	Y0	Y1	а	Kw	Ks	Terreno
1	-5.55	-5.55	0.00	0.10	0.00	Rilevato
2	-7.40	-7.40	0.00	0.10	0.00	Rilevato
3	-9.25	-9.25	0.00	0.10	0.00	Rilevato
4	-10.46	-10.46	0.00	0.10	0.00	Rilevato
5	-24.60	-24.60	0.00	30.00	0.50	G1_SX
6	-40.60	-40.60	0.00	30.00	0.50	G1_SX
7	-42.60	-42.60	0.00	30.00	0.50	G1_SX
8	-52.60	-52.60	0.00	30.00	0.50	G1 SX

6.2.3 PROFILO TERRENO

Terreno a monte del muro

Simbologia adottata e sistema di riferimento (Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	Χ	Υ	Α
1	20.00	0.00	0.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0.00 [m]

6.2.4 FALDA

Quota della falda a monte del muro rispetto al piano di posa della fondazione 1.80 [m] Quota della falda a valle del muro rispetto al piano di posa della fondazione 1.80 [m]

6.2.5 CARATTERISTICHE PALI DI FONDAZIONE

REV. B FOGLIO 23 di 68

Pali in c.a.

Numero di file di pali 2

Vincolo pali/fondazione Incastro

Tipo di portanza Portanza laterale e portanza di punta

Simbologia adottata

N numero d'ordine della fila

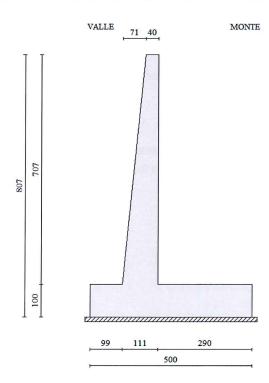
X ascissa della fila misurata dallo spigolo di monte della fondazione espressa in [m]

nr. Numero di pali della fila

D diametro dei pali della fila espresso in [cm]

L lunghezza dei pali della fila espressa in [m]

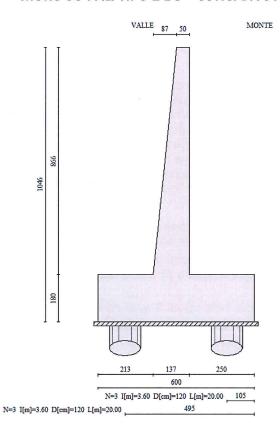
alfa inclinazione dei pali della fila rispetto alla verticale espressa in [°]


ALL allineamento dei pali della fila rispetto al baricentro della fondazione (CENTRATI o SFALSATI)

N	Χ	Nr.	D	L	alfa	ALL
1	1.05	3	120.00	16.00	0.00	Centrati
2	4.95	3	120.00	16.00	0.00	Centrati

7 GEOMETRIA

7.1 MURO SUPERFICIALE TIPO 1 – CONCI DA 1 A 5



Geometria Muro

Descrizione	Muro a mensola in c.a.
Altezza del paramento	7.07 [m]
Spessore in sommità	0.40 [m]
Spessore all'attacco con la fondazione	1.11 [m]
Inclinazione paramento esterno	5.71 [°]
Inclinazione paramento interno	0.00 [°]
Lunghezza del muro	10.00 [m]
Geometria Fondazione	
	ally lab and oil
Lunghezza mensola fondazione di valle	0.99 [m]
Lunghezza mensola fondazione di monte	2.90 [m]
Lunghezza totale fondazione	5.00 [m]
Inclinazione piano di posa della fondazione	0.00 [°]
Spessore fondazione	1.00 [m]
Spessore magrone	0.15 [m]

7.2 MURO SU PALI TIPO 2 E 3 – CONCI DA 6 A 25

Geometria Muro

Descrizione	Muro a mensola in c.a.
Altezza del paramento Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno Lunghezza del muro	8.66 [m] 0.50 [m] 1.37 [m] 5.71 [°] 0.00 [°] 10.00 [m]
Geometria Fondazione	
Lunghezza mensola fondazione di valle Lunghezza mensola fondazione di monte Lunghezza totale fondazione Inclinazione piano di posa della fondazione Spessore fondazione Spessore magrone	2.13 [m] 2.55 [m] 6.00 [m] 0.00 [°] 1.80 [m] 0.15 [m]

REV. B

FOGLIO 26 di 68

B METODI DI CALCOLO

8.1 CALCOLO DELLA SPINTA

8.1.1 METODO DI CULMANN

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;

si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);

dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

8.1.2 SPINTA IN PRESENZA DI SISMA

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ϵ l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove θ = arctg(k_h /(1± k_v)) essendo k_h il coefficiente sismico orizzontale e k_v il coefficiente sismico verticale, definito in funzione di k_h .

In presenza di falda a monte, θ assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = arctg[(\gamma_{sat}/(\gamma_{sat}-\gamma_{w}))^{*}(k_{h}/(1\pm k_{v}))]$$

Terreno a permeabilità elevata

$$\theta = arctg[(\gamma/(\gamma_{sat}-\gamma_{w}))^{*}(k_{h}/(1\pm k_{v}))]$$

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

CODIFICA DOCUMENTO	
RAAA1EIAPOS13GRE001B.docx	

FOGLIO 27 di 68

$$\Delta S = AS' - S$$
dove il coefficiente A vale
$$\cos^{2}(\beta + \theta)$$

$$\cos^{2}\beta \cos\theta$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

8.2 VERIFICA A RIBALTAMENTO – MURI SUPERFICIALI

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante Mr) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante Ms) rispetto allo spigolo a valle della fondazione e verificare che il rapporto Ms/Mr sia maggiore di un determinato coefficiente di sicurezza η_r .

Eseguendo il calcolo mediante gli eurocodici si puo impostare $\eta_r >= 1.0$.

Deve quindi essere verificata la seguente diseguaglianza

Il momento ribaltante Mr è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro η è positivo, ribaltante se η è negativo. η è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante.

Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

8.3 VERIFICA A SCORRIMENTO - MURI SUPERFICIALI

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

CODIFICA DOCUMENTO
RAAA1EIAPOS13GRE001B.docx

FOGLIO 28 di 68

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_s >=1.0

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N \operatorname{tg} \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

8.4 VERIFICA A CARICO LIMITE – MURI SUPERFICIALI

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$\frac{Q_u}{R} >= \eta_q$$

Eseguendo il calcolo mediante gli Eurocodici si può impostare n_o>=1.0

La formula di Vesic è analoga alla formula di Hansen. Cambia solo il fattore N_{γ} e l'espressione di alcuni coefficienti.

Di seguito sono riportate per intero tutte le espressioni.

Caso generale

$$q_u = cN_c s_c d_c i_c g_c b_c + qN_q s_q d_q i_q g_q b_q + 0.5 B \gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

Caso di terreno puramente coesivo ₀=0

$$q_u = 5.14c(1+s_c+d_c-i_c-g_c-b_c) + q$$

I fattori che compaiono in queste espressioni sono espressi da:

$$N_q = e^{\pi t g \phi} K_p par$$

$$N_c = (N_q - 1)ctg\phi$$

$$N_y = 2(N_q + 1)tg\phi$$

Fattori di forma

per
$$\phi$$
=0 s_c = 0.2 $\frac{B}{L}$

$$per \phi > 0 \qquad s_c = 1 + \frac{N_q}{N_c} \frac{B}{L}$$

$$s_q = 1 + \frac{B}{L} tg\phi$$

Fattori di profondità

Si definisce il parametro k come

$$k = \frac{D}{B}$$
 se $\frac{D}{B} \le 1$

$$k = arctg \xrightarrow{D} se \xrightarrow{D} > 1$$

I vari coefficienti si esprimono come

per
$$\phi$$
=0 d_c = 0.4k

$$d_{q} = 1 + 2tg\phi(1-\sin\phi)^{2}k$$

$$d_{v} = 1$$

Fattori di inclinazione del carico

Definito il parametro

$$per \phi = 0 \qquad i_c = 1 - \frac{mH}{-}$$

$$A_f c_a N_c$$

$$per \, \phi > 0 \qquad \qquad i_c = i_q - \frac{1 - i_q}{N_q - 1}$$

$$i_q = \left(1 - \frac{H}{V + A_f c_a ctg \phi}\right)^m$$

$$i_\gamma = \left(1 - \frac{H}{V + A_f c_a ctg \phi}\right)^{m+1}$$

Fattori di inclinazione del piano di posa della fondazione

per
$$\phi$$
=0 $b_c = \frac{\eta^\circ}{147^\circ}$

per
$$\phi > 0$$
 $b_c = 1 - \frac{\eta^{\circ}}{147^{\circ}}$

$$b_q = b_\gamma = (1 - \eta t g \phi)^2$$

Fattori di inclinazione del terreno

Indicando con β la pendenza del pendio i fattori g si ottengono dalle espressioni sequenti:

per
$$\phi$$
=0 $g_c = \frac{\beta^\circ}{147^\circ}$
per ϕ >0 $g_c = 1 - \frac{\beta^\circ}{147^\circ}$

$$g_q = g_\gamma = (1-tg\beta)^2$$

8.5 VERIFICA A STABILITÀ GLOBALE

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η_{g}

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_g>=1.0

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

REV. B FOGLIO 31 di 68

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\begin{array}{ccc} \Sigma_{i} & (& & \\ & \Sigma_{i} & (& & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

dove il termine m è espresso da

$$m = (1 + \frac{tg\phi_i tg\alpha_i}{n}) \cos\alpha$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima}, c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approssimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare fin quando il valore calcolato coincide con il valore assunto.

8.6 CAPACITÀ PORTANTE E SCARICHI DEI PALI

8.6.1 CAPACITÀ PORTANTE

La capacità portante dei pali è stata fornita da Rocksoil s.p.a. mediante appositi diagrammi, sia per combinazione SLU che per quella SLE, di cui si riportano di seguito gli stralci utilizzati in progetto.

Pali di fondazione - Curve di capacità portante

Normativa di riferimento: EC7

Coefficiente di sicurezza per portata di base, γ_b SLE SLU

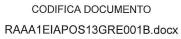
SLE 1.0

Coefficiente di sicurezza per portata laterale, γ_s

SLE

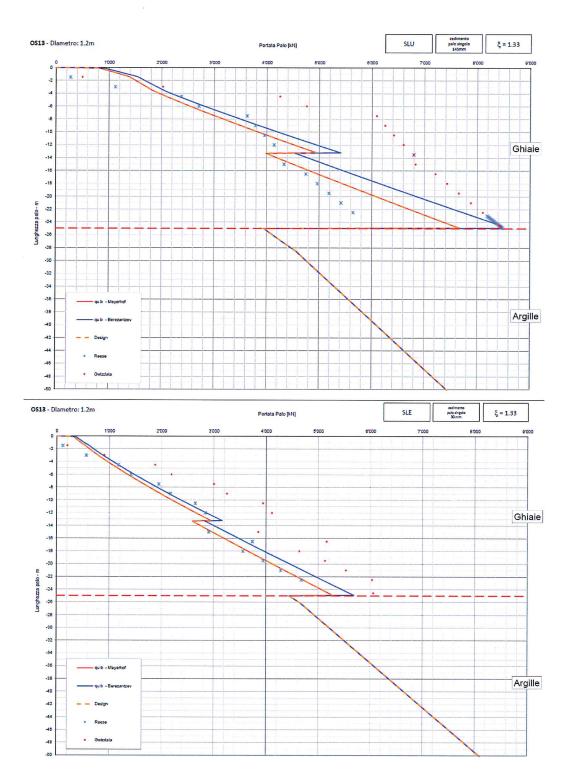
SIU

1.1


1.0

*1.15 in presenza di trazione

Nr. Verticali di indagine: 5 \Rightarrow Coefficiente di correlazione, ξ_3 = 1.29


SLE (cedimento mobilitato = 2.5%D)

SLU (cedimento mobilitato = 12%D)

FOGLIO 32 di 68

Con la stratigrafia adottata, per un palo di diametro 120mm, caratterizzato da un lunghezza di 20m viene stimata una portanza:

Combinazione	Portanza [kN]
SLE	3200
SLU-compressione	4800
SLU-trazione	-2200

REV. B FOGLIO 33 di 68

8.6.2 DETERMINAZIONE DEGLI SCARICHI SUL PALO

Gli scarichi sui pali vengono determinati mediante il metodo delle rigidezze.

La piastra di fondazione viene considerata infinitamente rigida (3 gradi di libertà) ed i pali vengono considerati incastrati o incernierati (la scelta del vincolo viene fatta dall'Utente nella tabella CARATTERISTICHE del sottomenu PALI) a tale piastra.

Viene effettuata una prima analisi di ogni palo di ciascuna fila (i pali di ogni fila hanno le stesse caratteristiche) per costruire una curva carichi-spostamenti del palo. Questa curva viene costruita considerando il palo elastico. Si tratta, in definitiva, della matrice di rigidezza del palo K_e, costruita imponendo traslazioni e rotazioni unitarie per determinare le corrispondenti sollecitazioni in testa al palo.

Nota la matrice di rigidezza di ogni palo si assembla la matrice globale (di dimensioni 3x3) della palificata,

A questo punto, note le forze agenti in fondazione (N, T, M) si possono ricavare gli spostamenti della piastra (abbassamento, traslazione e rotazione) e le forze che si scaricano su ciascun palo. Infatti indicando con p il vettore dei carichi e con u il vettore degli spostamenti della piastra abbiamo:

$$u = K^{-1}p$$

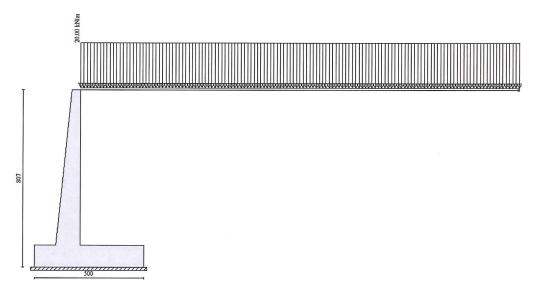
K.

Noti gli spostamenti della piastra, e quindi della testa dei pali, abbiamo gli scarichi su ciascun palo. Allora per ciascun palo viene effettuata un'analisi elastoplastica incrementale (tramite il metodo degli elementi finiti) che, tenendo conto della plasticizzazione del terreno, calcola le sollecitazioni in tutte le sezioni del palo., le caratteristiche del terreno (rappresentate da K_h) sono tali che se non è possibile raggiungere l'equilibrio si ha collasso per rottura del terreno.

9 CONDIZIONI DI CARICO

9.1 MURO SUPERFICIALE TIPO 2 - CONCI 1 E 2

Simbologia e convenzioni di segno adottate


Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

- X Ascissa del punto di applicazione del carico concentrato espressa in [m]
- F_x Componente orizzontale del carico concentrato espressa in [kN]
- F_v Componente verticale del carico concentrato espressa in [kN]
- M Momento espresso in [kNm]
- X_i Ascissa del punto iniziale del carico ripartito espressa in [m]
- X_f Ascissa del punto finale del carico ripartito espressa in [m]
- Q_i Intensità del carico per x=X_i espressa in [kN/m]
- Q_f Intensità del carico per x=X_f espressa in [kN/m]
- D / C Tipo carico : D=distribuito C=concentrato

Condizione n° 1 (Carichi mobili)

Condizione n° 2 (Urto)

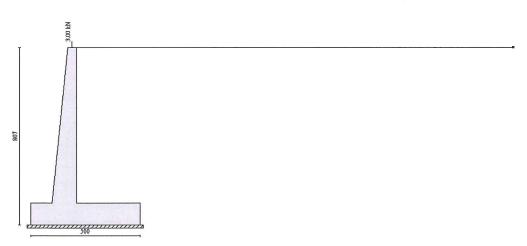
C Paramento X=0.00 Y=0.00 $F_x=11.2500$ $F_y=0.0000$ M=6.7500

REV. B

FOGLIO 35 di 68

Condizione n° 3 (Carichi permanenti - Barriera)

C Paramento


X = -0.15

Y = 0.00

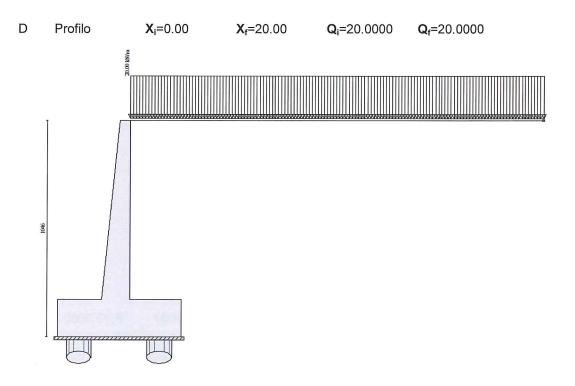
 $F_x = 0.0000$

 $F_y = 3.0000$

M=0.0000

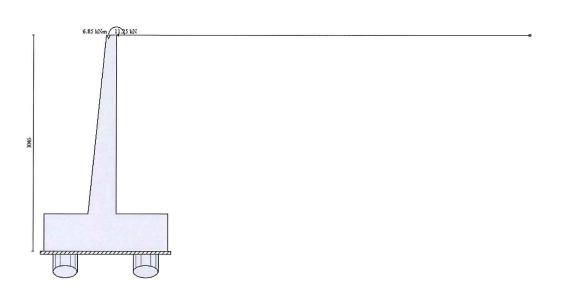
9.2 MURO SU PALI TIPO 2 E 3 - CONCI DA 6 A 25

Simbologia e convenzioni di segno adottate


Carichi verticali positivi verso il basso.

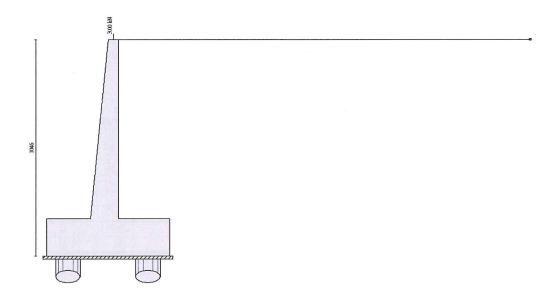
Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.


- X Ascissa del punto di applicazione del carico concentrato espressa in [m]
- F_x Componente orizzontale del carico concentrato espressa in [kN]
- F_v Componente verticale del carico concentrato espressa in [kN]
- M Momento espresso in [kNm]
- X_i Ascissa del punto iniziale del carico ripartito espressa in [m]
- X_f Ascissa del punto finale del carico ripartito espressa in [m]
- Q_i Intensità del carico per x=X_i espressa in [kN/m]
- Q_f Intensità del carico per x=X_f espressa in [kN/m]
- D / C Tipo carico : D=distribuito C=concentrato

Condizione n° 2 (Urto)

C Paramento X=0.00 Y=0.00 $F_x=11.2500$ $F_y=0.0000$ M=6.7500


Condizione n° 3 (Carichi permanenti - Barriera)

C Paramento X=-0.15 Y=0.00 $F_x=0.0000$ $F_y=3.0000$ M=0.0000

REV. B

FOGLIO 37 di 68

CODIFICA DOCUMENTO
RAAA1EIAPOS13GRE001B.docx

FOGLIO 38 di 68

10 COMBINAZIONI DI CARICO

Di seguito si riportano in modo sintetico le combinazioni di carico esaminate così come previsto dal D.M. LL.PP. 4 Maggio 1990 e dal D.M. 16 Gennaio 1996.

n. comb.	Tipo	g₁ (p.p.strut.)	g ₂ (perm.portati)	g ₃ (altre azioni perm.)	q₁ (mobili)	q₅ (vento)	q ₆ (sisma)	q ₈ (urto)
1	SLU-STAT	1.5	1.5	1.5	0	0	-	0
2	SLU-STAT	1.5	1.5	1.5	1.5	0	=	1.5
3	SLU-STAT	1.5	1.5	1.5	1.5	0	-	0
4	SLU-STAT	1.5	1.5	1.5	0	0	-	1.5
5	SLU-SIS	1	1	1	0	0	1	0
6	SLE RA	1	1	1	1	0	-	0
7	SLE FR	1	1	1	0.7	0	-	0
8	SLE Q.P	1	1	1	0	0	-	0

CODIFICA DOCUMENTO
RAAA1EIAPOS13GRE001B.docx

Stato limite

1.30

2.00

1.50

REV. B FOGLIO 39 di 68

11 IMPOSTAZIONI DI ANALISI

Spinte e verifiche secondo:

ORDINANZA 20/03/2003 - EUROCODICI

Approccio progettuale 2(DA2)

Verifiche sezioni

Metodo

Wetodo	State infine
Impostazioni verifiche SLU	
Coefficiente di sicurezza calcestruzzo	1.60
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00
Impostazioni verifiche SLE	
Condizioni ambientali	Moderatamente aggressive
Armatura ad aderenza migliorata	
<u>Verifica fessurazione</u>	
Sensibilità delle armature	Poco Sensibile
Valori limite delle aperture delle fessure	$w_1 = 0.10$
	$w_2 = 0.20$
	$w_3 = 0.40$
Metodo di calcolo aperture delle fessure	Circ. Min. 252 (15/10/1996)
<u>Verifica delle tensioni</u>	
Combinazione di carico	Rara σ_c < 0.60 f_{ck} - σ_f < 0.70 f_{yk}
	Quasi permanente σ_c < 0.45 f_{ck}
	Rara σ_s < 0.70 f_{yk}
Coefficienti di sicurezza verifiche geotecniche	
Coefficiente di sicurezza a ribaltamento	1.50

Impostazioni avanzate

Influenza del terreno sulla fondazione di valle nelle verifiche e nel calcolo delle sollecitazioni Influenza della falda a valle sia come peso sia come spinta da valle

Terreno a monte a elevata permeabilità

Coefficiente di sicurezza a scorrimento

Coefficiente di sicurezza a carico ultimo

Coefficiente di sicurezza stabilità globale

Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

Tipo di analisi

Calcolo della spinta	metodo di Culmann
Calcolo del carico limite	metodo di Vesic
Calcolo della stabilità globale	metodo di Bishop
Calcolo della spinta in condizioni di	Spinta attiva

REV. B FOGLIO 40 di 68

Sisma

Zona sismica Zona 3 (ag=15%g)
Accelerazione al suolo ag = 15.00%

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.25

Coefficiente di importanza (γ_I) 1.30

Coefficiente di amplificazione topografica (St) 1.00

Coefficiente riduzione spinta (r) 2.00

Rapporto intensità sismica verticale/orizzontale 0.00

Coefficiente di intensità sismica orizzontale (percento) $k_h = (ag^*\gamma_1 *St^*S)/r = 12.19$ Coefficiente di intensità sismica verticale (percento) $k_v = 0.00 *k_h = 0.00$

Forma diagramma incremento sismico Stessa forma diagramma statico

Partecipazione spinta passiva (percento) 0.0

Calcolo riferito ad 1 metro di muro

Lunghezza del muro

10.00 [m]

Pali

Numero elementi palo 40

Tipo carico palo Distribuito

Calcolo della portanza /

Costante di Winkler da Strato

12 INVILUPPO SOLLECITAZIONI

12.1 MURO SUPERFICIALE TIPO 1 - CONCI DA 1 A 5 12.1.1 PARAMENTO

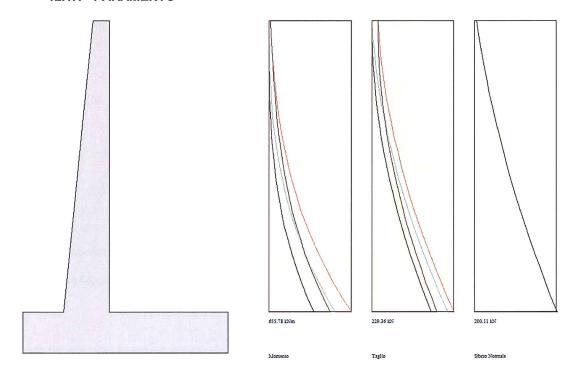


Figura 12-1 – Inviluppo sollecitazioni SLU-STATICA

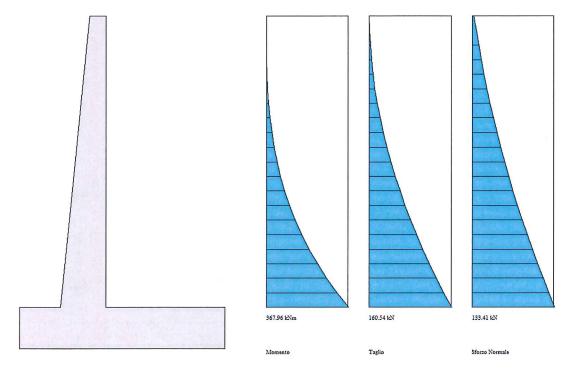


Figura 12-2 - Sollecitazioni SLU-SISMICA

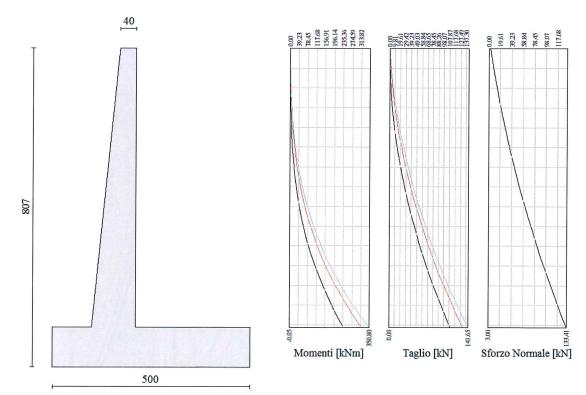


Figura 12-3 – Inviluppo sollecitazioni SLE

12.1.2 FONDAZIONE

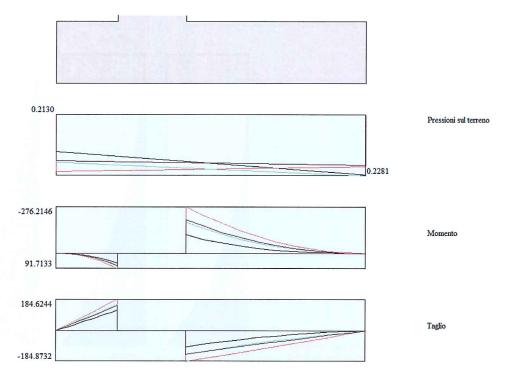


Figura 12-4 – Inviluppo sollecitazioni SLU-STATICA

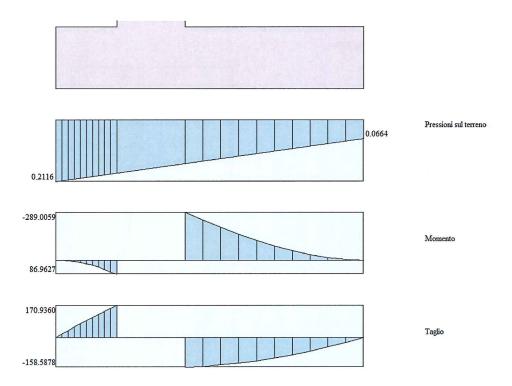


Figura 12-5 – Sollecitazioni SLU-SISMICA

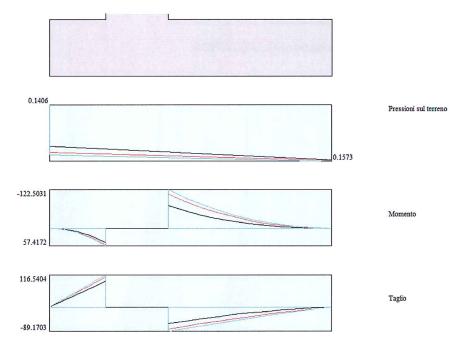


Figura 12-6 – Inviluppo sollecitazioni SLE

12.2 MURO SU PALI TIPO 2 E 3 - CONCI DA 6 A 25 12.2.1 PARAMENTO

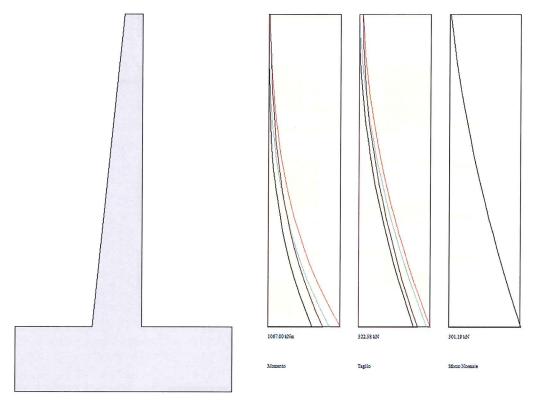


Figura 12-7 – Inviluppo sollecitazioni SLU-STATICA

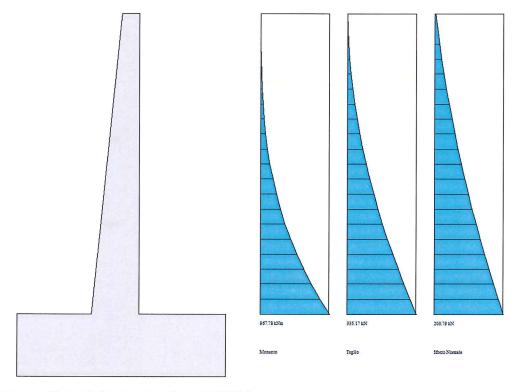


Figura 12-8 - Sollecitazioni SLU-SISMICA

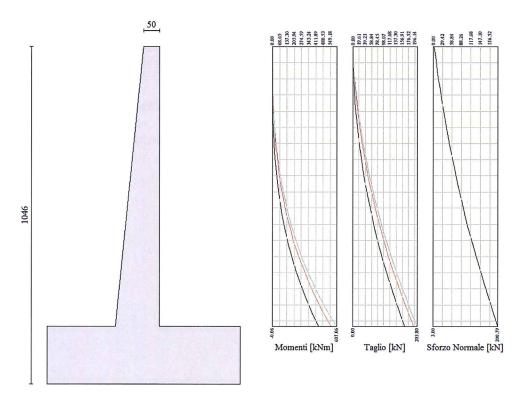


Figura 12-9 - Inviluppo sollecitazioni SLE

12.2.2 PALI

Per le verifiche strutturali si riassumono di seguito le sollecitazioni in output dal software:

Combinazioni	N	M	T
	[kN]	[kNm]	[kN]
SLU-STAT_max M	1965	869	811
SLU-STAT_max N	2721	845	841
SLU-SIS	95	933	1306
SLU-SIS	3496	933	1306
SLE-Q.PERM.	1676	523	456
SLE-FREQ.	1848	562	515
SLE-RARA	1921	579	540

Per le verifiche geotecniche si riassumono di seguito le sollecitazioni assiali considerate:

Combinazione	N _{soll.pali} [kN]
SLU-STAT/SIS max compr.	3496
SLU-STAT/SIS max traz.	1
SLE-rara	1921

REV.

FOGLIO 46 di 68

13 GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI

L'affidabilità dei codici di calcolo (MAX9.0 e MAX 10.0) e' garantita dall'esistenza di un ampia documentazione di supporto, come indicato nei paragrafi precedenti. E' possibile inoltre ottenere rappresentazioni grafiche di pressioni sul terreno e sollecitazioni della struttura facilmente controllabili mediante calcolo a mano di massima.

Per quanto riguarda invece le verifiche dell'armatura si è preferito utilizzare un verificatore esterno ultra convalidato quale VcaSlu.

Si ritiene quindi che i risultati ottenuti dalle elaborazioni siano accettabili.

REV. B FOGLIO 47 di 68

14 VERIFICHE STRUTTURALI

Per i muri a fondazione diretta si riportano le seguenti verifiche strutturali:

- pressoflessione della sezione posta alla base del paramento sia per l'inviluppo delle combinazioni SLU statiche che per la combinazione SLU sismica.
- flessione della sezione maggiormente sollecitata della fondazione sia per l'inviluppo delle combinazioni SLU statiche che per la combinazione SLU sismica.
- fessurazione per la combinazione frequente e quasi permanente sia per la sezione posta alla base del paramento che per la sezione maggiormente sollecitata della fondazione. Come previsto dal D.M.9 Gennaio 1996 nel caso di armature *Poco sensibili* e condizione ambientale *Moderatamente aggressiva* la verifica consiste nel verificare che l'apertura delle fessure w sia inferiore a w₂=0.2mm per la combinazione SLE frequente e che w sia inferiore a w₁=0.1mm per la combinazione SLE quasi permanente. Inoltre si deve verificare che le tensioni nel calcestruzzo compresso siano inferiori a: 0.60f_{ck} (=19.92N/mm²) per la combinazione rara e siano inferiori a 0.45f_{ck} (=14.94N/mm²) per la combinazione quasi permanente. Infine vi è la verifica alle tensioni dell'armatura: la massima trazione nell'acciaio non deve superare 0.70f_{vk} (=315N/mm²).
- taglio alla base del muro, per la sollecitazione di inviluppo delle combinazioni SLU (sia statiche che sismica);
- taglio nella sezione più sollecitata della fondazione, per la sollecitazione di inviluppo delle combinazioni SLU (sia statiche che sismica).

Per i muri a fondazione indiretta si riportano le seguenti verifiche strutturali:

- pressoflessione della sezione posta alla base del paramento sia per l'inviluppo delle combinazioni SLU statiche che per la combinazione SLU sismica;
- pressoflessione della sezione in testa al palo;
- verifica tirante-puntone della fondazione per l'inviluppo delle combinazioni SLU statiche, per la combinazione SLU sismica e per la combinazione SLE rara;
- fessurazione per la combinazione frequente e quasi permanente per la sezione posta alla base del paramento e per la sezione di testa dei pali. Come previsto dal D.M.9 Gennaio 1996 nel caso di armature *Poco sensibili* e condizione ambientale *Moderatamente aggressiva* la verifica consiste nel verificare che l'apertura delle fessure w sia inferiore a w₂=0.2mm per la combinazione SLE frequente e che w sia inferiore a w₁=0.1mm per la combinazione SLE quasi permanente. Inoltre si deve verificare che le tensioni nel calcestruzzo compresso siano inferiori a: 0.60f_{ck} (=19.92N/mm²) per la combinazione rara e siano inferiori a 0.45f_{ck} (=14.94N/mm²) per la combinazione quasi permanente. Infine vi è la verifica alle tensioni dell'armatura: la massima trazione nell'acciaio non deve superare 0.70f_{vk} (=315N/mm²);
- taglio alla base del muro, per la sollecitazione di inviluppo delle combinazioni SLU (sia statiche che sismica);
- taglio nella sezione di testa dei pali;
- taglio nella sezione più sollecitata della fondazione, per la sollecitazione di inviluppo delle combinazioni SLU (sia statiche che sismica).

Per quanto riguarda le verifiche a pressoflessione esse sono state effettuate tramite il software free **Vca.Slu del Prof. Gelfi**. Per le verifiche a fessurazione, a taglio e a tirante-puntone si utilizza un foglio Excel appositamente redatto internamente allo studio. Si precisa che, per quanto riguarda il taglio nel paramento e nella platea, a favore di sicurezza, la verifica si conduce secondo le formule riportate nelle NTC2008 (caso di sezioni non armate a taglio):

REV. B

FOGLIO 48 di 68

| 4

La verifica di resistenza (SLU) si pone con

$$V_{\text{Rd}}\!\ge\!V_{\text{Ed}}$$

(4.1.13)

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \\ \left(v_{min} \ + \ 0.15 \cdot \ \sigma_{cp} \right) \\ \cdot b_w d \quad (4.1.14)$$

con

 $\begin{aligned} k &= 1 + (200 / d)^{1/2} \!\! \leq \!\! 2 \\ v_{min} &= 0,\! 035 k^{3/2} f_{ck}^{-1/2} \end{aligned}$

e dove

d

è l'altezza utile della sezione (in mm);

 $\rho_1 = A_{s1}/(b_{\rm w} \cdot d) \,$ è il rapporto geometrico di armatura longitudinale ($\leq 0.02);$

 $\sigma_{cp} = N_{Ed}/A_c$

è la tensione media di compressione nella sezione (\leq 0,2 f_{cd});

 $b_{\rm w}$

è la larghezza minima della sezione(in mm).

FOGLIO 49 di 68

14.1 MURO SUPERFICIALE TIPO 1 - CONCI DA 1 A 5

14.1.1 PARAMENTO

Geometria sezione di verifica e Armatura

Pos.Sez.Ver.	В	Н	۸	Δ.
Pos.Sez.ver.	[m]	[m]	As,valle	As,monte
Base muro	1.00	1.10	5φ16=1005 mmq	5φ24=2262 mmq

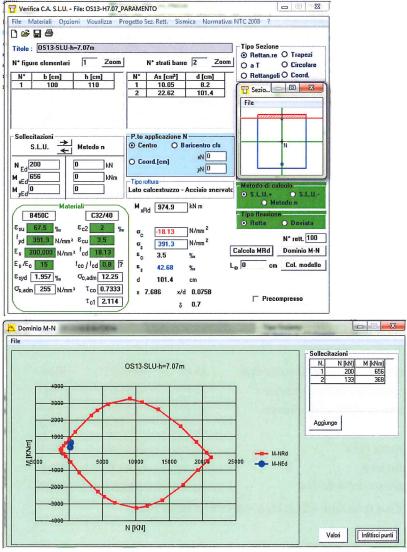


Figura 14-1 - Verifica Pressoflessione - SLU-STATICA/SISMICA - Sezione base muro

Caratteristiche dei materiali				
Coefficiente di omogeneizzazione	n =	15		
Classe cls	R _{ck} =	40	N/mm ²	
Modulo elastico acciaio	$E_s =$	2.1E+05	N/mm ²	
Caratteristiche geometriche della sezione				
Altezza	H =	110	cm	
Larghezza	B =	100	cm	
Area acciaio teso	$A_s =$	22.62	cm ²	
Copriferro baricentro acciaio teso	cs =	8.6	cm	
Area acciaio compresso	A's =	10.05	cm ²	
Copriferro baricentro acciaio compresso	c's =	8.2	cm	
Ricoprimento barre più esterne tese	c =	7.4	cm	
Ricoprimento barre più interne tese	c+S =	7.4	cm	
Diametro massimo barre tese	$\Phi =$	2.4	cm	
Sezione non fessurata: formazione fessure				
Momento flettente in condizioni di esercizio	Mes =	557.00	kNm	
Sforzo assiale in condizioni di esercizio	Nes =	-201.00	kN	
Rapporto sforzo normale/momento	res =	-0.0036	cm ⁻¹	
Resistenza media a trazione semplice del cls	$f_{ctm} =$	3.10	N/mm ²	
Resistenza limite per formazione fessure	$\sigma_{t} =$	2.58	N/mm ²	
Distanza baricentro da lembo compresso	$x_g =$	55.76	cm	
Modulo di resistenza non fessurato	$W_{sr} =$	223911	cm ³	
Momento di formazione delle fessure	$M_{ff} =$	578.24	kNm	
Trazione nel cls prodotta da Mes ed Nes	$\sigma_{\rm ct}$ =	2.31	N/mm ²	< sigmat
Figura 14-2 – Verifica fessurazione – SLE freq	uente – Se	zione base m	nuro	
Momento flettente in condizioni di fessurazione	M =	607.00	kNm	
Sforzo assiale in condizioni di fessurazione	N =	-201.00	kN	
Distanza asse neutro da lembo compresso	$x_p =$	25.50	cm	
Tensione cls	$\sigma_c =$	-5.472	N/mm ²	< 19.92
Tensione barra esterna tesa	$\sigma_s =$	244.298	N/mm ²	< 315
Momento di fessurazione	$M_{sr} =$	741.8	kNm	
Tensione nell'acciaio prodotta da Msr	$\sigma_{sr} =$	298.53	N/mm ²	
Figura 14-3 – Verifica tensioni – SLE rara – Se	zione base	muro		
Managet dettants in an eliminated for	N/	000.00	LALL	
Momento flettente in condizioni di fessurazione	M =	239.00	kNm	
Sforzo assiale in condizioni di fessurazione	N =	-133.00	kN	
Distanza asse neutro da lembo compresso	x _p =	27.96	cm N/mm²	44404
Tensione cls	$\sigma_{c} =$	-2.169		< 14.94
Tensione barra esterna tesa	$\sigma_s =$	85.453	N/mm²	< 315
Momento di fessurazione	$M_{sr} =$	778.3	kNm	
Tensione nell'acciaio prodotta da Msr	$\sigma_{sr} =$	278.27	N/mm ²	

Figura 14-4 – Verifica tensioni – SLE q.permanente – Sezione base muro

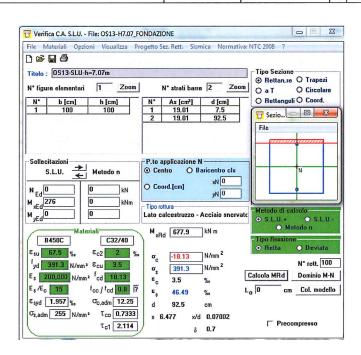

Y			
	V_{Ed}	229.00	kN
	N _{Ed}	200	kN
	Rck	40	N/mm^2
	f _{ck}	33.2	N/mm ²
	$\gamma_c =$	1.5	
	f _{cd}	18.8	
<u>.</u>	b _w	1000	mm
Geometria	h	1100	mm
leor o	С	86	mm
	d	1014	mm
tria o	f	24	mm
eometri	n°	5	
Geometria acciaio	A _{sl}	2260.80	mm^2
	ρΙ	0.002	
	$\sigma_{\sf cp}$	0.2	N/mm ²
	k	1.4441	
	V _{min}	0.3500	
	,	370.11	kN
		382.53	kN
	V_{rd}	382.53	kN
	SEZIONE	VERIFICATA	A TAGLIO

Figura 14-5 – Verifica a taglio – SLU-STATICA/SISMICA – Sezione base muro

14.1.2 FONDAZIONE

Geometria sezione di verifica e Armatura

Pos.Sez.Ver.	В	Н	Α	Α
	[m]	[m]	As,inferiore	As,superiore
	1.00	1.00	5622=1901 mmg	5622=1901 mma

cm³

kNm

N/mm²

< sigmat

187269

483.61

0.57

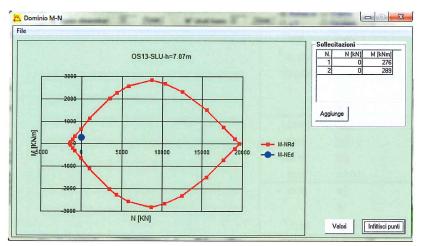


Figura 14-6 – Inviluppo sollecitazioni SLU-STATICA/SISMICA – Sezione a momento massimo

Caratteristiche dei materiali Coefficiente di omogeneizzazione n = 15 N/mm² Classe cls 40 $R_{ck} =$ N/mm² Modulo elastico acciaio $E_s =$ 2.1E+05 Caratteristiche geometriche della sezione Altezza H = 100 cm Larghezza B = 100 cm cm² Area acciaio teso $A_s =$ 19.01 Copriferro baricentro acciaio teso 7.5 cs = cm Area acciaio compresso cm² $A'_s =$ 19.01 Copriferro baricentro acciaio compresso c's = 7.5 cm Ricoprimento barre più esterne tese c = 6.4 cm Ricoprimento barre più interne tese c+S = 6.4 cm Diametro massimo barre tese $\Phi =$ 2.2 cm Sezione non fessurata: formazione fessure Momento flettente in condizioni di esercizio Mes = 107.00 kNm Sforzo assiale in condizioni di esercizio kΝ Nes = 0.00 Rapporto sforzo normale/momento 0.0000 cm⁻¹ res = N/mm² Resistenza media a trazione semplice del cls 3.10 $f_{ctm} =$ N/mm² Resistenza limite per formazione fessure 2.58 $\sigma_t =$ Distanza baricentro da lembo compresso $\chi_g =$ 50.00 cm

Figura 14-7 – Verifica fessurazione – SLE frequente – Sezione a momento massimo

 $W_{sr} =$

 $M_{ff} =$

 $\sigma_{ct} =$

Modulo di resistenza non fessurato

Momento di formazione delle fessure

Trazione nel cls prodotta da Mes ed Nes

FOGLIO 53 di 68

Momento flettente in condizioni di fessurazione	M =	123.00	kNm	
Sforzo assiale in condizioni di fessurazione	N =	0.00	kN	
Distanza asse neutro da lembo compresso	$x_p =$	18.85	cm	
Tensione cls	$\sigma_{c} =$	-1.283	N/mm ²	< 19.92
Tensione barra esterna tesa	$\sigma_s =$	75.210	N/mm ²	< 315
Momento di fessurazione	$M_{sr} =$	580.3	kNm	
Tensione nell'acciaio prodotta da Msr	Oor =	354 85	N/mm ²	

Figura 14-8 – Verifica tensioni – SLE rara – Sezione a momento massimo

Momento flettente in condizioni di fessurazione	M =	72.00	kNm	
Sforzo assiale in condizioni di fessurazione	N =	0.00	kN	
Distanza asse neutro da lembo compresso	$x_p =$	18.85	cm	
Tensione cls	$\sigma_c =$	-0.751	N/mm ²	< 14.94
Tensione barra esterna tesa	$\sigma_s =$	44.025	N/mm ²	< 315
Momento di fessurazione	$M_{sr} =$	580.3	kNm	
Tensione nell'acciaio prodotta da Msr	$\sigma_{sr} =$	354.85	N/mm ²	

Figura 14-9 – Verifica tensioni – SLE q.permanente – Sezione a momento massimo

	V _{Ed}	185.00	kN
	N _{Ed}	0	kN
	Rck	40	N/mm ²
	f _{ck}	33.2	N/mm^2
	γ _c =	1.5	
	f _{cd}	18.8	
<u>.</u> <u>a</u> .	b _w	1000	mm
Geometria cls	h	1000	mm
leol o	С	85	mm
	d	915	mm
Geometria acciaio	f	22	mm
eometr	n°	5	
Ge	A _{sl}	1899.70	mm^2
	ρ l	0.002	
	$\sigma_{\sf cp}$	0.0	N/mm^2
	k	1.4675	
	V _{min}	0.3585	
		306.66	kN
		328.05	kN
	V _{rd}	328.05	kN
	SEZIONE	VERIFICATA	A TAGLIO

Figura 14-10 – Verifica a taglio – SLU-STATICA/SISMICA – Sezione a momento massimo

14.2 MURO SU PALI TIPO 2 E 3 - CONCI DA 6 A 25

14.2.1 PARAMENTO

Geometria sezione di verifica e Armatura

Pos.Sez.Ver.	В	Н	^	Δ.
	[m]	[m]	As,valle	As,monte
Base muro	1.00	1.37	5φ20=1571 mmq	5φ24+5φ20=3833 mmq

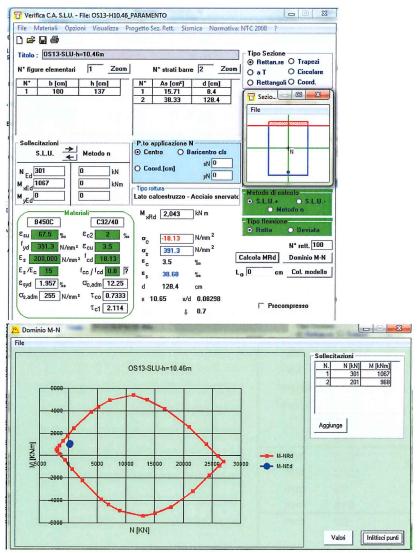


Figura 14-11 - Verifica SLU-STATICA/SISMICA - Sezione base muro

Caratteristiche dei materiali				
Coefficiente di omogeneizzazione	n =	15		
Classe cls	R _{ck} =	40	N/mm ²	
Modulo elastico acciaio	E _s =	2.1E+05	N/mm ²	
Caratteristiche geometriche della sezione				
Altezza	H =	137	cm	
Larghezza	B =	100	cm	
Area acciaio teso	$A_s =$	38.33	cm ²	
Copriferro baricentro acciaio teso	cs =	8.6	cm	
Area acciaio compresso	A's =	15.71	cm ²	
Copriferro baricentro acciaio compresso	c's =	8.4	cm	
Ricoprimento barre più esterne tese	c =	7.4	cm	
Ricoprimento barre più interne tese	c+S =	7.4	cm	
Diametro massimo barre tese	$\Phi =$	2.4	cm	
Sezione non fessurata: formazione fessure				
Momento flettente in condizioni di esercizio	Mes =	557.00	kNm	
Sforzo assiale in condizioni di esercizio	Nes =	-201.00	kN	
Rapporto sforzo normale/momento	res =	-0.0036	cm ⁻¹	
Resistenza media a trazione semplice del cls	f _{ctm} =	3.10	N/mm ²	
Resistenza limite per formazione fessure	$\sigma_{t} =$	2.58	N/mm ²	
Distanza baricentro da lembo compresso	$x_g =$	69.90	cm	
Modulo di resistenza non fessurato	$W_{sr} =$	362336	cm ³	
Momento di formazione delle fessure	$M_{ff} =$	935.72	kNm	
Trazione nel cls prodotta da Mes ed Nes	$\sigma_{\rm ct}$ =	1.40	N/mm ²	< sigmat
Figura 14-12 – Verifica fessurazione – SLE f	requente – Se	ezione base	muro	
Momento flettente in condizioni di fessurazione	M =	607.00	kNm	
Sforzo assiale in condizioni di fessurazione	N =	-201.00	kN	
Distanza asse neutro da lembo compresso	$x_p =$	37.47	cm	
Tensione cls	$\sigma_{c} =$	-3.043	N/mm ²	< 19.92
Tensione barra esterna tesa	$\sigma_s =$	110.771	N/mm ²	< 315
Momento di fessurazione	$M_{sr} =$	1224.1	kNm	
Tensione nell'acciaio prodotta da Msr	$\sigma_{sr} =$	223.38	N/mm ²	
Figura 14-13 – Verifica tensioni – SLE rara –	- Sezione base	e muro		
Momento flettente in condizioni di fessurazione	M =	439.00	kNm	
Sforzo assiale in condizioni di fessurazione	N =	-201.00	kN	
Distanza asse neutro da lembo compresso	$\chi_p =$	39.89	cm	
Tensione cls	$\sigma_{\rm c} =$	-2.221	N/mm ²	< 14.94
Tensione barra esterna tesa	σ _s =	73.896	N/mm ²	< 315
Momento di fessurazione	M _{sr} =	1267.8	kNm	
Tensione nell'acciaio prodotta da Msr	σ _{sr} =	213.41	N/mm ²	
	51			

Figura 14-14 – Verifica tensioni – SLE q.permanente – Sezione base muro

	V _{Ed}	335.00	kN
	N _{Ed}	201	kN
	Rck	40	N/mm ²
	f _{ck}	33.2	N/mm^2
	γ_c =	1.5	
	f _{cd}	18.8	
<u>.e</u>	b _w	1000	mm
Geometria cls	h	1370	mm
) seo	С	86	mm
	d	1284	mm
Geometria acciaio	f		mm
eometr	n°		
Ge	A _{sl}	3833.00	mm^2
	hol	0.003	
	$\sigma_{\sf cp}$	0.1	N/mm ²
	k	1.3947	
	V _{min}	0.3322	
		489.85	kN
		454.75	kN
	V_{rd}	489.85	kN
	SEZIONE	VERIFICATA	A TAGLIO

Figura 14-15 – Verifica a taglio – SLU-STATICA/SISMICA – Sezione base muro

14.2.2 FONDAZIONE

Geometria sezione di verifica e Armatura

Pos.Sez.Ver.	В	Н		
Pos.sez.ver.	[m]	[m]	As,inferiore	As,superiore
	1.00	1.80	10∮24=4524 mmg	7.5∳24=3390 mma

Dati geometrici					
Distanza trasversale baricentro G dell' area '	'AA" di competenza palo /	palo:	Y =	0.000	[m]
Distanza longitudinale baricentro "G" dell' ar	ea "AA" di competenza pal	o / palo:	X =	1.400	[m]
Angolo tra la direzione longitudinale e quella	della biella tesa:		ζ= arctg (Y / X) =	0.000	[°]
Distanza palo / baricentro G:			L = X / cos ζ=	1.400	[m]
Distanza longitudinale baricentro G / bordo a	area "AA":		W =	0.350	[m]
Distanza, lungo la direzione della biella tesa	, baricentro G / bordo area	"AA":	Z =	0.350	[m]
Diametro palo:			D =	1.20	[m]
Lato sezione quadrata equivalente:			D' = D/2*√π =	1.06	[m]
Spessore plinto di fondazione:			H =	1.80	[m]
Copriferro baricentro armatura tesa:			s =	7.5	[cm]
Altezza utile plinto:			h = H - s =	1.73	[m]
Braccio del tirante:			h' = 0.85 * h =	1.47	[m]
Altezza utile plinto - braccio del tirante: Angolo di inclinazione della direzione del pui	otone rispetto all'orizzontale		' = h - h' = 0.15 * h = θ = arctg (h' / L) =	0.26 46.32	[m]
Area sezione biella compressa	none rispetto aironzzontak	,,	0 = along (117 L) =	40.02	
Base in direzione trasversale: B т= min [B	т1; В т2]			0.769	[m]
con:					
$B_{T1} = D' * sen\theta =$				0.769	[m]
$B_{T2} = 2 * (Z+s'/tg\theta) * sen\theta =$				0.864	[m]
Base in direzione longitudinale: B L= D'				1.063	[m]
Armatura					
Larghezza di influenza in direzione trasversa	le: i _T =			3.600	[m]
Armatura in direzione longitudinale:	AaL = (1φ24/10) * iτ =			162.72	[cm ²]
Larghezza di influenza in direzione longitudir	nale: i⊾=			0.00	[m]
Armatura in direzione trasversale:				0	[cm ²]

b) SLU		
Carico efficace sul palo: P =	2721.00	[kN]
Compressione nel puntone: Nce = P / senθ =	3762.15	[kN]
Tiro nella biella tesa: Τ _e = Nc _e * cosθ =	2598.06	[kN]
Tiro longitudinale: Τι= Te * cosζ=	2598.06	[kN]
Tiro trasversale: T _{Te} = T _e * senζ=	0.00	[kN]
Verifica armatura biella tesa		
In direzione longitudinale: oae = Tle / Aal =	159.66	[N/mm ²]
Tensione Ultima: fyd_Le =	373.91	[N/mm ²]
In direzione trasversale: σ _{ae} = T _{Te} / A _{aT} =	#DIV/0!	[N/mm ²]
Tensione Ultima: fyd_Le =	373.91	[N/mm ²]
Verifica a compressione del puntone		
σ _c = Nc / (B τ * B ι) =	4.60	[N/mm ²]
Tensione Ultima calcestruzzo: f₀d =	19.92	[N/mm ²]

Figura 14-16 – Verifica tirante-puntone SLU-STATICA

a) Condizioni sismiche		
Carico efficace sul palo: P =	3496.00	[kN]
Compressione nel puntone: Ncs = P / senθ =	4833.69	[kN]
Tiro nella biella tesa: T _s = N _{Cs} * cosθ =	3338.04	[kN]
Tiro longitudinale: T _{Ls} = T _s * cosζ=	3338.04	[kN]
Tiro trasversale: Tτs= Ts * senζ=	0.00	[kN]
Verifica armatura biella tesa		
In direzione longitudinale: σ _{ss} = T _{Ls} / A _{aL} =	205.14	[N/mm ²
Tensione ammissibile: oamm_Ls =	373.91	[N/mm ²
In direzione trasversale: ♂≈ = Tтs / AaT =	#DIV/0!	[N/mm ²
Tensione ammissibile: σamm_Ts=	373.91	[N/mm ²
Verifica a compressione del puntone		
σ ₀ = Nc / (B τ * B L) =	5.91	[N/mm ²
Tensione ammissibile: oc_amm=	19.92	[N/mm ²

Figura 14-17 – Verifica tirante-puntone SLU-SISMICA

c) Condizioni di esercizio rara		
Carico efficace sul palo: P =	1921.00	[kN]
Compressione nel puntone: Nc₂ = P / senθ =	2656.04	[kN]
Tiro nella biella tesa: Τ _e = Nc _e * cosθ =	1834.20	[kN]
Tiro longitudinale: T _{Le} = T _e * cosζ=	1834.20	[kN]
Tiro trasversale: Tτe= Te * senζ=	0.00	[kN]
Verifica armatura biella tesa		
In direzione longitudinale: Gae = TLe / AaL =	112.72	[N/mm ²
Tensione ammissibile: σamm_Le =	301.00	[N/mm ²
In direzione trasversale: σ _{ae} = T _{Te} / A _{aT} =	#DIV/0!	[N/mm ²
Tensione ammissibile: σamm_Te=	301.00	[N/mm ²
Verifica a compressione del puntone		
σ _c = Nc / (B ⊤ * B ∟) =	3.25	[N/mm ²
Tensione ammissibile: σc_amm=	19.92	[N/mm ²

Figura 14-18 – Verifica tirante-puntone SLE-RARA

14.2.1 PALI

Geometria sezione di verifica e Armatura

Pos.Sez.Ver.	φ [m]	A _{s,long}	A _{s,trasv}
Testa pali	1.20	34φ26=18020 mmq	φ14/7.5cm

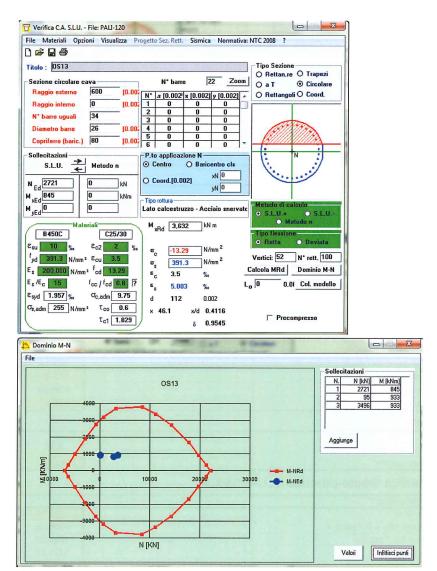


Figura 14-19 – Inviluppo sollecitazioni SLU-STATICA/SISMICA – Sezione di testa palo

CODIFICA DOCUMENTO	
RAAA1EIAPOS13GRE001B.doc	<

FOGLIO 59 di 68

Caratteristiche dei materiali				
Coefficiente di omogeneizzazione	n =	15		
Classe cls	R _{ck} =	30	N/mm ²	
Modulo elastico acciaio	E _s =	2.1E+05	N/mm ²	
Caratteristiche geometriche della sezione				
Diametro	D =	120	cm	
Area armatura esterna	A _{se} =	180.2	cm ²	
Copriferro baricentro acciaio esterno	cs =	9.3	cm	
Area armatura interna	A _{si} =			
Copriferro baricentro acciaio interno	c's =			
Ricoprimento barre più esterne	c =	8.0	cm	
Ricoprimento barre più interne	c+S =			
Diametro massimo barre	Φ=	2.6	cm	
Sezione non fessurata: formazione fessure				
Momento flettente in condizioni di esercizio	Mes =	562.00	kNm	
Sforzo assiale in condizioni di esercizio	Nes =	-1848.00	kN	
Rapporto sforzo normale/momento	res =	-0.03288	cm ⁻¹	
Resistenza media a trazione semplice del cls	f _{ctm} =	2.61	N/mm ²	
Resistenza caratt. a trazione per fless. del cls	f _{cfk} =	2.19	N/mm ²	
Area ideale	A _{cid} =	14007	cm ²	
Momento d'inerzia area ideale	J _{cid} =	13647617	cm ⁴	
Modulo di resistenza non fessurato	W _{sr} =	227460	cm ³	
Momento di formazione delle fessure	$M_{ff} =$	498.08	kNm	
Trazione nel cls prodotta da Mes ed Nes	$\sigma_{\rm ct}$ =	1.15	N/mm²	< fcfk

Figura 14-20 – Verifica fessurazione – SLE frequente – Sezione di testa palo

V_{rd}	=	2044.08	kN	Resistenza a taglio di elementi strutturali dotati di specifica armatura a taglio
V_{ed}	=	841.00	kN	Valore di calcolo dello sforzo di taglio agente
V_{rsd}	=	3123.04	kN	Resistenza di calcolo a "taglio trazione"
V_{rcd}	=	2044.08	kN	Resistenza di calcolo a "taglio compressione"
N _{ed}	=	0.00	kN	Valore di calcolo dello sforzo normale
	sezione verificata a taglio		io	

θ	=	21.80	0	Inclinazione puntoni di cls rispetto all'asse della trave	
b_{w}	=	108.00	cm	Larghezza utile della sezione	
d	=	86.45	ст	Altezza utile della sezione	

\$\phi_{\text{staf}}	=	14	mm	Diametro staffe	
		2	n°	n°braccia staffe	
A _{sw}	=	307.72	mm ²	Area armatura trasversale	
S	=	7.5	cm	Interasse tra due armature trasversali consecutive	
α	=	90	0	angolo d'inclinazione dell'armatura trasversale rispetto all'asse della trave	
f_{yk}	=	450	N/mm²	Resistenza a trazione caratteristica dell'acciaio delle staffe	

Figura 14-21 – Verifica a taglio – SLU-STATICA/SISMICA – Sezione di testa palo

REV. B

FOGLIO 60 di 68

15 VERIFICHE GEOTECNICHE

Nei paragrafi seguenti si riportano, per il muro con fondazione superficiale, i quadri riassuntivi dei coefficienti di sicurezza relativi alle verifiche geotecniche (scorrimento, ribaltamento, carico limite e stabilità globale) per le combinazioni: SLU-statiche, SLU-sismica e SLE.

Per il muro su pali invece si riportano: il coefficiente di sicurezza relativo alla verifica a stabilità globale e la verifica a portanza sia per le combinazioni SLU a compressione (statiche e sismica), che per quella SLU a trazione che per quella SLE-rara.

FOGLIO 61 di 68

15.1 MURO SUPERFICIALE TIPO 1 - CONCI DA 1 A 5



Figura 15-1 – Verifiche Geotecniche – COMBINAZIONI SLU-STATICHE

Figura 15-2 – Verifiche Geotecniche – COMBINAZIONE SLU-SISMICA

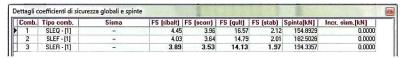


Figura 15-3 – Verifiche Geotecniche – COMBINAZIONI SLE

FOGLIO 62 di 68

15.2 MURO SU PALI TIPO 2 E 3 - CONCI DA 6 A 25

15.2.1 VERIFICA DI STABILITÀ GLOBALE

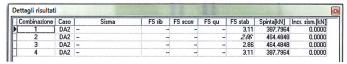


Figura 15-4 – Verifica di stabilità globale – COMBINAZIONI SLU-STATICHE

Figura 15-5 – Verifica di stabilità globale – COMBINAZIONE SLU-SISMICA

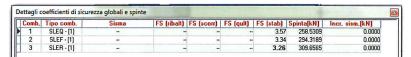
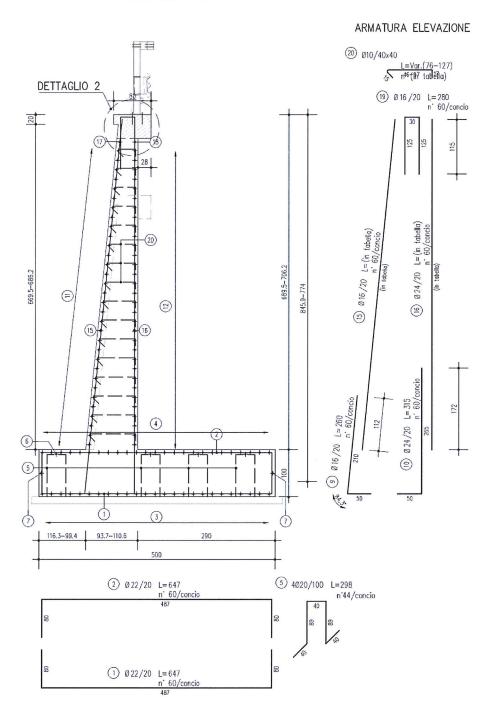


Figura 15-6 - Verifica di stabilità globale - COMBINAZIONI SLE

15.2.2 VERIFICA DI PORTANZA DEI PALI

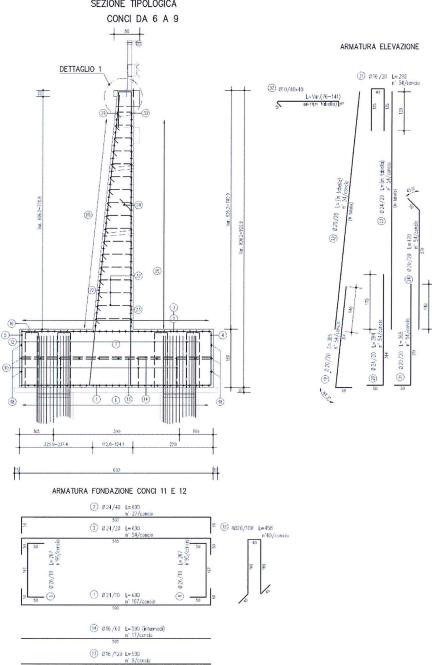
Combinazione	N _{soll.pali} [kN]		N _{port.pali} [kN]
SLU-STAT/SIS max compr.	3496	S	4800
SLU-STAT/SIS max traz.	1	S	2200
SLE-rara	1921	≤	3200


FOGLIO 63 di 68

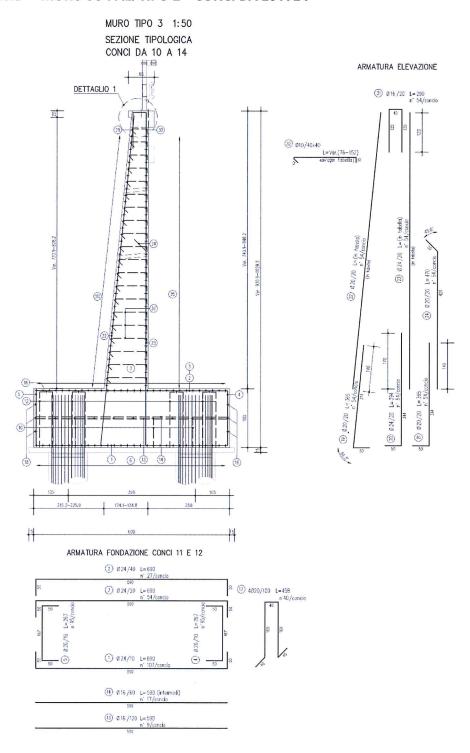
16 SCHEMA ARMATURA

Di seguito si riportano alcuni stralci degli elaborati grafici di riferimento dai quali si evince l'armatura adottata per i vari conci del muro OS13.

16.1 MURO SUPERFICIALE TIPO 1 - CONCI DA 1 A 5

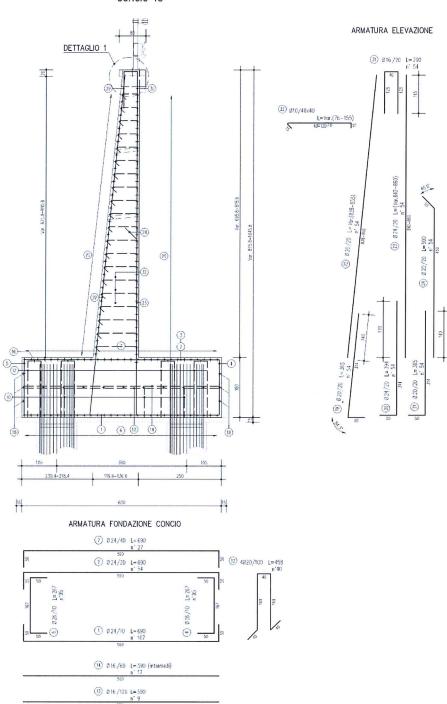

MURO TIPO 1 SEZIONE TIPOLOGICA 1:50 CONCI DA 1 A 5

FOGLIO 64 di 68


16.2 MURO SU PALI TIPO 2 - CONCI DA 6 A 9

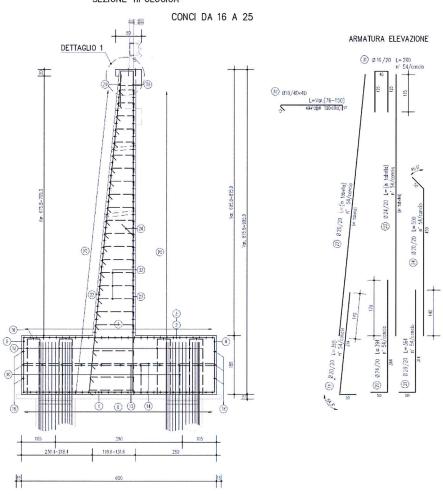
MURO TIPO 2 1:50 SEZIONE TIPOLOGICA

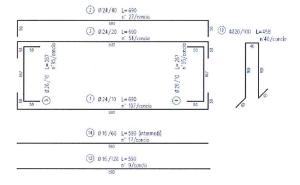
FOGLIO 65 di 68


16.3 MURO SU PALI TIPO 2 – CONCI DA 10 A 14

FOGLIO 66 di 68

16.4 MURO SU PALI TIPO 2 – CONCIO 15


MURO TIPO 2 1:50 CONCIO 15



16.5 MURO SU PALI TIPO 3 - CONCI DA 16 A 25

MURO TIPO 3 1:50 SEZIONE TIPOLOGICA

ARMATURA FONDAZIONE CONCI

REV.

FOGLIO 68 di 68

17 CONCLUSIONI

Come si evince dalle verifiche strutturali e geotecniche riportate nei paragrafi precedenti, si conclude quindi che il muro di oggetto della presente relazione risulta verificato sia nella geometria che nelle armature considerando anche il contesto geotecnico in cui esso si inserisce.

Per i particolari relativi alle carpenterie, alle armature e al sistema di smaltimento delle acque si rimanda agli elaborati grafici di riferimento elencati in premessa.